
Internship report:
Uniform and non-structural subtyping

Stéphane Glondu
supervised by Zhendong Su

University of California
Davis, USA

June–August, 2005

Abstract

We expose a new approach to tackle non-structural subtyping prob-
lems. We introduce uniform subtyping as a means to capture some proper-
ties of non-structural subtyping. In the uniform theory, we show that the
validity of a first-order sentence is decidable, and entailment is PSPACE-
hard. In addition, we give decidable approximations to entailment and
subtyping constrained types — two problems which are still open in the
non-structural theory.

Contents
1 Introduction 2

1.1 Context of the internship . 2
1.2 Introduction of the subject . 2

2 Preliminaries on subtyping 2
2.1 Types as trees . 3
2.2 Structural subtyping . 3
2.3 Non-structural subtyping . 4
2.4 Uniform subtyping . 4
2.5 Constraints and first-order logics 5
2.6 Constrained types and entailment 5

3 Decidability and complexity results 6
3.1 The logic SkS . 6
3.2 Decidability of U1 . 6
3.3 Complexity of uniform entailment 8

4 Non-structural entailment 9
4.1 Preliminaries . 9
4.2 An approximation to non-structural entailment 10
4.3 Comparison with a previously known algorithm 10

5 Subtyping constrained types 13

1

6 Conclusion 13

References 14

1 Introduction

1.1 Context of the internship
This report is relative to the 11-week internship I made with Professor Zhendong
Su at the Computer Science Department of the University of California, Davis.

His research interests span programming languages, software engineering
and computer security, focusing on programming language-based techniques and
tools for improving and ensuring software reliability and security.

I worked mainly on non-structural subtype entailment, a problem he tackled
during his PhD, but which is a side project now. Even though this problem
is still open, many intermediate results have been proved in the domain of
subtyping while trying to solve it. My work was to investigate Prof. Su’s new
intuitions on subtyping — and maybe get new ones by myself.

1.2 Introduction of the subject
Typing is a powerful static analysis tool which detects unsound code. The basic
idea is that every value in a programme must have a type. There is a form
of typing in (almost) every programming language. For example, an integer
constant cannot (or should not) be used as a function. With type checking,
the programmer must provide some types for his programme, and the compiler
checks the validity of these types. It is implemented in most of the languages.
With type inference, the programmer does not have to worry about types, the
compiler infers antomatically all the types from the constants. Some languages
such as Objective Caml use very sophisticated typing systems with inference.

However, a value can have several types. Sometimes, some structures such
as lists can be manipulated regardless of the type of their contents, but they
do have a different type. In this case, they have a polymorphic type, which is
a parametrized type (such as α list → α for a function which extracts the first
element of a list). This phenomenon is pretty well understood now, and it is
implemented in practice in the last version of Java for example.

In other cases, we want to modelize a subset relationship between some
types: an integer can be seen as a real, or an object with a method move can be
seen as an object with no method at all. Many languages use ad-hoc implicit
casting to overcome this problem. But the theoretical aspects are not yet totally
understood.

I worked on the latter point, called subtyping. Intuitively, a type τ1 is a
subtype of a type τ2 — written τ1 6 τ2 — if one can (soundly) use a value of
type τ1 where a value of type τ2 is expected.

2 Preliminaries on subtyping
In this section, we review basic concepts on subtyping. We discuss the various
choices of type expression languages, their signatures, subtype orders, and the

2

notion of subtype constraints. We also introduce some problems related to
subtyping: first-order theories and entailment.

2.1 Types as trees
Types can be viewed as trees over some ranked alphabet Σ, the signature of
the given type language. A signature consists of a finite set of function sym-
bols, the type constructors. Each symbol f has an associated arity(f) > 0 —
indicating its number of arguments — and, for all 1 6 i 6 arity(f), a polarity
pol(f, i) ∈ {−1, 1}. We call a position i covariant if pol(f, i) = 1, and con-
travariant otherwise. Symbols with arity zero are type constants. Non-constant
types are constructed.

We identify nodes π of trees with relative addresses from the root of the
tree. A word πi addresses the i-th child of node π, and ππ′ the π′ descendant
of π. The root is represented by the empty word ε. We define a tree τ over
Σ as a partial function τ : (N − {0})∗ → Σ. Tree domains are prefixed closed,
non-empty and arity consistent. A tree τ is finite if its domain Dτ is finite, and
infinite otherwise. We write TΣ for the set of possibly infinite trees over Σ.

Given a function symbol f with n = arity(f) and trees τ1, . . . , τn ∈ TΣ, we
define f(τ1, . . . , τn) as the unique tree τ with τ(ε) = f and τ(iπ) = τi(π). We
define the polarities of nodes in trees as follows:

polτ (ε) def= 1

polf(τ1,...,τn)(iπ) def= pol(f, i)× polτi
(π)

For partial orders 6, we denote by 61 the order 6 itself, and by 6−1 the
reversed relation >. Subtype orders are partial orders on trees over some sig-
nature Σ. We will denote types by variations of τ and paths by variations of
π.

2.2 Structural subtyping
A structural subtype order is parametrized by a (partially) ordered set (B,6B)
representing constant types and a set of non-constant constructors F . The
signature is Σ = B ∪ F . We define inductively the relation 6S on finite
Σ-trees:

• b 6S b′ iff b 6B b′ for all b, b′ ∈ B;

• f(τ1, . . . , τn) 6S f(τ ′1, . . . , τ
′
n) iff f ∈ F , arity(f) = n, and for all 1 6 i 6 n,

τi 6pol(f,i)
S τ ′i .

More generally, we define cutk(τ) by:

cutk(τ)(π) def=

 τ(π) if π ∈ Dτ and |π| < k
τ(π) if π ∈ Dτ , τ(π) ∈ B and |π| = k
? if π ∈ Dτ , τ(π) ∈ F and |π| = k

where ? is some arbitrary, fixed symbol in B. For any Σ-trees τ1 and τ2, τ1 6S τ2

iff cutk(τ1) 6S cutk(τ2) for all k ∈ N.

3

Example 1. Consider B = {int, real}, with int 6 real, and F = {→,×} (the
usual constructors). From a function f : real → real, you can build a sequence
(un) : int → real. This can be summarized in real → real 6 int → real. Two
integers can be seen as two reals: int× int 6 real× real.

2.3 Non-structural subtyping
In non-structural subtyping, two distinguished constants are added to structural
type languages, a smallest type ⊥ and a largest type >. The order 6NS is defined
as 6S with the additional rule ⊥ 6NS τ 6NS > for all τ .

Example 2. ⊥ can be the type of a computation that does not terminate
properly, such as an exception raise or an ill-founded recursion. In the ML
system, this is denoted by an unbound type variable. > can be the type of
something which contains no data, such as an empty object or () in Objective
Caml.

Example 3. Non-structural subtyping modelizes objects: two comparable ob-
jects do not have necessarily the same set of methods.

2.4 Uniform subtyping
Like in [4], we use uniform subtyping as an intermediate notion. In uniform
subtyping, the signature Σ has a partial order 6Σ, all the constructors have
the same polarities and the same arity k > 2 (there is no constant). Therefore,
all types are infinite trees — actually total functions from {1, . . . , k}∗ to Σ.
Moreover, the polarity polτ (π) of a node is independant of τ : we will write
pol(π). The order 6U is defined on Σ-trees by:

τ1 6U τ2 ⇐⇒ ∀π ∈ {1, . . . , k}∗ , τ1(π) 6pol(π)
Σ τ2(π)

Remark 4. Classical infinite types are recursive types. We denote by µα.τ
— where α is a type variable and τ is a finite term using variables (possibly
α) — the solution of the equation α = τ (we will not discuss its existence and
uniqueness here). If g ∈ Σ, g∞

def= µα.g(α, α), i.e. g∞ is the infinite binary tree
whose all nodes are labelled g.

Example 5. Consider Σ = {⊥,>}, with ⊥ 6 >, binary constructors, con-
travariant in the first argument, and covariant in the second one. Let τ⊥ and
τ> be the solutions to the system:

τ⊥ = ⊥(τ>, τ⊥)
τ> = >(τ⊥, τ>)

Then τ⊥ 6 τ> holds.

Remark 6. By putting an appropriate order on Σ, we could have defined
structural and non-structural subtype orders in this way:

τ1 6 τ2 ⇐⇒ ∀π ∈ Dτ1∩τ2 , τ1(π) 6
polτ1

(π)

Σ τ2(π)

4

2.5 Constraints and first-order logics
Atomic constraints are equations or inequations between type variables. One
can combine constraints and logical connectors to get formulas. Here, we con-
sider only first-order formulas. In the subsequent proofs, we will use the follow-
ing syntax for atomic constraints C and formulas φ:

C ::=x 6 y | x = f(x1, . . . , xn)
φ ::=C | φ1 ∧ φ2 | ¬φ1 | ∃x.φ1

where x, x1, . . . , xn denote variables, f denote an n-ary constructor. One can
check that other constraints and formulas (such as disjunctions or universal
quantifications) can be expressed in this syntax.

A constraint is a conjunction of atomic constraints. S1, NS1 and U1 will de-
note the first-order logics in the structural, non-structural and uniform theories
respectively.

Given a signature Σ, an assignment is a mapping from variables to Σ-terms.
Assignments will be denoted by variations of σ and ρ. We define the relation
σ |= φ (σ satisfies φ) in the usual way:

σ |= x 6 y ⇐⇒ σ(x) 6 σ(y)
σ |= x = f(x1, . . . , xn) ⇐⇒ σ(x) = f(σ(x1), . . . , σ(xn))

σ |= φ1 ∧ φ2 ⇐⇒ σ |= φ1 and σ |= φ2

σ |= ¬φ1 ⇐⇒ σ 6|= φ1

σ |= ∃x.φ1 ⇐⇒ there exists τ such that σ[x := τ] |= φ1

We will also say that σ k-satisfies φ (written σ |=k φ) if cutk ◦ σ |= φ. The
symbol |= will be tagged by NS or U in the non-structural and uniform theories
respectively.

A sentence is a closed formula (i.e. without free variables), and a formula is
satisfiable if there exists an assignment which satisfies it. A sentence is valid if
it is satisfied by the empty assignment.

2.6 Constrained types and entailment
Corresponding to polymorphic type schemes in Hindley/Milner style type sys-
tems, polymorphic subtype systems have so-called constrained types, in which
a type is restricted by a system of constraints. An ML style polymorphic type
can be viewed as a constrained type with no constraint.

Example 7. Let double def= λf.λx.f(fx). The usual type for this function in
the ML system is (α → α) → α → α. However, double has also the constrained
type — more general — (α → β) → α → β\ {β 6 α}.

In practice, constrained types can be large and complicated. Therefore, it
is important to simplify the types to make them and the associated constraints
smaller. Type and constraint simplification is related to the following decision
problem of constraint entailment : a constraint C entails a constraint τ1 6 τ2 if
for every valuation σ such that σ |= C, σ |= τ1 6 τ2. W.l.o.g., we will consider
problems of the form C |=? x 6 y.

5

Remark 8. The problem C |=? x 6 y can be expressed by the first-order
sentence ∀x1, . . . , xn. C ⇒ x 6 y, where x1, . . . , xn are the free variables of
C ⇒ x 6 y.

3 Decidability and complexity results
In [6], there is a deep study of NS1, and validity in this theory has been proved to
be undecidable. In [3], it is shown that S1 is decidable when assignments assign
to finite (non-recursive) terms. In this section, we prove that U1 is decidable,
and we adapt a proof from [2] to give a lower bound on the complexity of
entailment in this theory.

3.1 The logic SkS

We prove the decidability of U1 via a reduction to SkS. SkS is the monadic
second-order logic of the infinite k-ary tree (see [7] or [1] for an introduction).
We will use the following syntax:

i ::= 1 | · · · | k
t ::= ε | πi

φ ::= π = t | π ∈ X | ∀π.φ1 | ∃X.φ1 | φ1 ∧ φ2 | ¬φ1 | · · ·

First-order variables represent addresses and are denoted by variations of π,
second-order variables represent (possibly infinite) sets of addresses and are
denoted by variations of X or L. Rabin proved the following result:

Theorem 1 (Rabin’s Tree Theorem [5]). The validity of a sentence in SkS
is decidable.

3.2 Decidability of U1

In table 1, we encode a U1-sentence φ into an SkS one JφK. We consider the
signature Σ = {f1, . . . , fn}, where function symbols have arity k and are co-
variant in all arguments. A variable x is encoded into n second-order variables
Lx=f1 , . . . , Lx=fn

, where Lx=g denotes the inverted positions of nodes of x la-
beled with g. Notice that inversion is essential to encode x = g(x1, . . . , xk).
With these explanations, we can prove the following lemma:

Lemma 2. φ is valid if and only if JφK is valid.

Proof. If φ is a U1-formula, the free variables of JφK are Lx=f1 , . . . , Lx=fn
, where

x ranges over the free variables of φ. If σ (ρ resp.) is an assignment on free
variables of φ (resp. JφK), we define an assignment r(σ) (s(ρ) resp.) by

r(σ)(Lx=g)
def= {π̃ | σ(x)(π) = g}

s(ρ)(x)(π) def=g such that π̃ ∈ ρ (Lx=g)

where π̃ denotes π reversed. We also define

UTerms(φ) def=
∧

x free in φ

UTerm(x)

6

Partition(X1, . . . , Xn) def=∀π.
n∨

j=1

π ∈ Xj ∧
n∧

l=1
l 6=j

π 6∈ Xl

UTerm(x) def=Partition(Lx=f1 , . . . , Lx=fn)

Jx 6 yK def=∀π.
∨

g,h∈Σ
g6Σh

(π ∈ Lx=g ∧ π ∈ Ly=h)

Jx = g(x1, . . . , xk)K def=ε ∈ Lx=g ∧
k∧

i=1

∀π.
∨

h∈Σ

(π ∈ Lxi=h ∧ πi ∈ Lx=h)

J∃x.φK def=∃Lx=f1 . . .∃Lx=fn
.UTerm(x) ∧ JφK

Jφ1 ∧ φ2K
def= Jφ1K ∧ Jφ2K

J¬φK def=¬ JφK

Table 1: U1 into SkS

We now prove by induction on φ that if σ |= φ, then r(σ) |= JφK, and conversely,
if ρ |= JφK∧UTerms(φ) then s(ρ) |= φ (notice that s(ρ) is always well defined in
this case):

• if φ ≡ x = g(x1, . . . , xk) or φ ≡ x 6 y, it is a direct consequence of the
definitions;

• if φ ≡ ∃x.φ1, let σ′ be an extension of σ to x such that σ′ |= φ1.
Clearly, r(σ′) |= UTerm(x), and by induction, r(σ′) |= Jφ1K, hence r(σ) |=
JφK. Conversely, let ρ′ be an extension of ρ to Lx=f1 , . . . , Lx=fn

such
that ρ′ |= UTerm(x) ∧ Jφ1K ∧ UTerms(∃x.φ1). Notice that UTerm(x) and
UTerms(∃x.φ1) cover all free variables of φ1 so that we can apply the
inductive hypothesis to get s(ρ′) |= φ1. Therefore, ρ |= φ;

• if φ ≡ φ1∧φ2, then σ |= φ1 and σ |= φ2, then r(σ) |= Jφ1K and r(σ) |= Jφ2K
(by induction), then r(σ) |= Jφ1 ∧ φ2K. The converse is similar;

• if φ ≡ ¬φ1, then σ 6|= φ1. We proceed by contradiction: if r(σ) |= Jφ1K,
then s(r(σ)) |= φ1 (by induction), but clearly s(r(σ)) = σ. Therefore,
r(σ) 6|= Jφ1K, and r(σ) |= JφK. The converse is similar.

This ends the proof of lemma 2 since UTerms(φ) is True when φ is closed.

Remark 9. Because of inversion, this embedding cannot be extended to for-
mulas involving possibly finite trees.

Remark 10. We can prove the same result with contravariant constructors
as well by adding a quantified second-order variable representing the set of all
covariant positions.

The following is a corollary of this lemma and theorem 1:

Theorem 3. U1 is decidable.

7

3.3 Complexity of uniform entailment
As in the non-structural case, uniform subtype entailment is PSPACE-hard.
The proof is the same as Henglein and Rehof’s [2], by reduction from the
CLOSED-UNIV problem — Given a prefix-closed NFA A (i.e. all states are
final) over a nontrivial alphabet Σ, does L(A) = Σ∗ hold? — which is known
to be PSPACE-complete.

From a prefix-closed NFA over {1, 2}, we build a constraint over the uni-
form signature Σ = {⊥,>, f}, where constructors have arity 2 and are co-
variant in both arguments. Let A = (Q, {1, 2} , δ, q0, Q) be a prefix-closed
automaton on {1, 2}. We assume that Q =

{
q0, . . . , q|Q|−1

}
and that there

are n simple transitions in δ ordered in some arbitrary, fixed sequence. Let
α0, . . . , α|Q|−1, β, δ1, . . . , δn be distinct variables. We define Ck by:

• if the k-th simple transition is qi 7→1 qj , then Ck
def= αi 6 f(αj , δk);

• if the k-th simple transition is qi 7→2 qj , then Ck
def= αi 6 f(δk, αj);

• if the k-th simple transition is qi 7→ε qj , then Ck
def= αi 6 αj .

We define CA by:

CA
def= β = f(β, β) ∧

n∧
k=1

Ck

Clearly, CA can be constructed from A in logarithmic space. Moreover, the
following lemma shows that this is a correct reduction:

Lemma 4. L(A) = {1, 2}∗ if and only if CA |= α0 6 β.

Proof.

⇐ We suppose L(A) 6= {1, 2}∗ and prove CA 6|= α0 6 β. Let w ∈ {1, 2}∗ such
that w 6∈ L(A). Since we can assume w.l.o.g. that A has at least one state,
and since A is prefix-closed, ε ∈ L(A), so L(A) 6= ∅. Then there exists
a prefix w′ of w of maximal length such that w′ ∈ L(A); we can assume
that w can be written as w = w′1w′′ — the case w = w′2w′′ is similar.
Since A is prefix-closed, for any state qk such that q0 7→w′

qk, there is
no state ql such that qk 7→1 ql. Hence, for any k such that q0 7→w′

qk,
the constructed upper bounds on αk in the transitive closure of CA are
— by construction of CA — of the form αk 6 f(δm, αs), where δm is
unbounded in CA. Therefore1, the largest solution2 σ∨ to CA satisfies
σ∨(α0)(w′1) = >, thereby showing that CA 6|= α0 6 β.

⇒ We suppose L(A) = {1, 2}∗ and prove CA |= α0 6 β. Let w ∈ {1, 2}∗.
Then w1 ∈ L(A), and there is a transition q0 7→w qj 7→1 qk for some qj , qk.
By construction of CA, there is αj 6 f(αk, δm) in the transitive closure
of CA for some δm. Therefore2, for any solution σ to CA, σ(α0)(w) 6Σ f ,
thereby showing CA |= α0 6 β.

We have proved the following:

Theorem 5. Uniform subtype entailment is PSPACE-hard.
1these parts are the only differences with Henglein and Rehof’s proof
2we will not discuss its existence and uniqueness here

8

4 Non-structural entailment
We consider the signature Σ = {⊥,>, f}, where f has arity 2 and is covariant
in both arguments. The decidability of non-structural subtype entailment with
such a simple signature is still an open problem. In this section, we give a sound
(but incomplete) approximation to this problem.

4.1 Preliminaries
We define some shorthands for transforming non-structural objects into uniform
ones (we suppose that x⊥ are x> are reserved variable names):

• if τ is an NS-term, τU is τ where each occurrence of ⊥ (resp. >) is replaced
by ⊥∞ (resp. >∞). Notice that τ and τU agree on Dτ ;

• if C is an NS-constraint,

CU def= C ′ ∧ x⊥ = ⊥ (x⊥, x⊥) ∧ x> = > (x>, x>)

where C ′ is C where each occurrence of ⊥ (resp. >) is replaced by x⊥
(resp. x>);

• if σ assigns variables to NS-terms,

σU(y) def=

 ⊥∞ if y = x⊥
>∞ if y = x>
σ(y)U otherwise

and, conversely, we define shorthands for transforming uniform objects into
non-structural ones:

• if τ is a U-term, τNS is τ where any child subtree of a node labeled ⊥ or
> is removed. Notice that τ and τNS agree on DτNS , and

(
τU

)NS = τ ;

• if σ assigns variables to U-terms, σNS(y) def= σ(y)NS.

Then, we prove two lemmas:

Lemma 6.

1. If τ1 and τ2 are two U-terms such that τ1 6U τ2, then τNS
1 6NS τNS

2 .

2. If τ1 and τ2 are two NS-terms such that τ1 6NS τ2, then τU
1 6U τU

2 .

Proof.

1. We have, for all π ∈ {1, . . . , k}∗, τ1(π) 6Σ τ2(π), and in particular for
π ∈ DτNS

1
∩DτNS

2
.

2. We prove the second part by contradiction. Assume τU
1 66U τU

2 . Let π
be a minimal path such that τU

1 (π) 66Σ τU
2 (π). Clearly, π 6= ε, so let us

decompose π into π′i, with i ∈ {1, . . . , k}. By minimality of π, we have
τU
1 (π′) 6Σ τU

2 (π′). Let us check that each case leads to a contradiction:

• if π ∈ Dτ1 ∩Dτ2 , then we get a direct contradiction with τ1 6NS τ2;

9

• if π ∈ Dτ1 \Dτ2 , then τU
2 (π′) must be >, and we get a contradiction

with τU
1 (π) 66Σ τU

2 (π);

• the case π ∈ Dτ2 \Dτ1 is symmetric;

• if π 6∈ Dτ1 ∪Dτ2 , then τU
1 (π′) and τU

2 (π′) must be constants, and we
get another contradiction with τU

1 (π) 66Σ τU
2 (π).

Lemma 7. Let C be an NS-constraint.

1. If σ |=NS C, then σU |=U CU.

2. If σ |=U CU, then σNS |=NS C.

Proof. We prove the first part by induction on C:

• if C ≡ x = t, where t ∈ {⊥,>, f(x1, x2)}, it is clear;

• if C ≡ x 6 y, then σ(x) 6NS σ(y), and lemma 6 yields the result;

• if C ≡ C1 ∧ C2, then σ |=NS C1 and σ |=NS C2, and we get the result by
induction.

We would prove the second part in a very similar way.

Remark 11. This result cannot be extended to all formulas because of nega-
tions. For example, if σ

def= [x := ⊥(f∞, f∞), y := ⊥∞] and φ
def= ¬(x 6 y), we

have σ |=U φU, but σNS 6|=NS φ.

4.2 An approximation to non-structural entailment
Proposition 8. Let C be an NS-constraint. If CU |=U x 6 y, then C |=NS x 6
y.

Proof. If σ |=NS C, then σU |=U CU (by lemma 7), then σ(x)U 6U σ(y)U (by
hypothesis), then σ(x) 6NS σ(y) (by lemma 6).

Remark 12. Unfortunately, the converse is false. For example, let us consider
the constraint C

def= x 6 f(y, y) ∧ f(z, z) 6 y ∧ f(u, u) 6 z ∧ u = >. The
entailment C |=NS x 6 y holds, but CU |=U x 6 y does not: consider σ =
[x := f(y, y), y := >(z, z), z := f(u, u), u := >∞].

Remark 13. We can also prove a similar proposition with a contravariant
constructor.

4.3 Comparison with a previously known algorithm
In this section, we compare the algorithm suggested by proposition 8 with the
primitive subtyping algorithm described by Trifonov and Smith in [8]. We prove
that our algorithm is (at least) more powerful than theirs. We still do not know
whether it is strictly more powerful or gives exactly the same results.

Let us first recall some definitions:

10

(⊥) K ` ⊥ 6 τ (>) K ` τ 6 >

(=) K ` x 6 x, if x ∈ DK (f)
K ` τ1 6 τ ′1 K ` τ2 6 τ ′2
K ` f(τ1, τ2) 6 f(τ ′1, τ

′
2)

(↑) (K, x 6 τ, x 6 τ ′) ` τ 6 τ ′

(K, x 6 τ) ` x 6 τ ′
(↓) (K, x > τ, x > τ ′) ` τ ′ 6 τ

(K, x > τ) ` τ ′ 6 x
if (K, x 6 τ, x 6 τ ′) is contractive if (K, x > τ, x > τ ′) is contractive

Table 2: Rules for primitive subtyping

Definition 1. A constraint map is a finite map K assigning to each type variable
x in its domain two sets, the upper and lower bounds on x respectively. We
use the more intuitive notations x 6 τ ∈ K and x > τ ∈ K for τ ∈ π1(K(x))
and τ ∈ π2(K(x)) respectively (πi is the i-th projection). Notice that K is not
required to be antisymmetric; e.g. x 6 y ∈ K is different from y > x ∈ K.

A constraint map is just a practical way of representing a constraint:

Definition 2. The kernel Ker(C) of a constraint C (seen as a set of atomic
constraints) is the constraint map defined by the set of constraints

{τ 6 τ ′ ∈ Cl(C) | τ or τ ′ is a variable}

where a constraint of the form x 6 y sets the appropriate bounds on both
variables, and Cl(C) is the transitivity and decomposition closure of C.

Definition 3. A constraint map K is contractive if there is no {x1, . . . , xn} ⊆
DK such that xn = x1 and xi 6 xi+1 ∈ K (resp. xi > xi+1) for each i ∈
{1, . . . , n− 1}.

Definition 4. A constraint map K is canonical if

• K assigns exactly one upper and one lower constructed bound — the
canonical bounds — to each variable in its domain;

• if x 6 y ∈ K and y 6 z ∈ K, then x 6 z ∈ K, and similarly for the lower
bounds;

• if (x 6 y, x 6 τ, y 6 τ ′) ⊆ K, where τ and τ ′ are constructed, then
K ` τ 6 τ ′, and similarly for the lower bounds.

For a consistent constraint C, Ker(C) and C are equivalent. Trifonov and
Smith also give an algorithm to compute a canonical constraint map Can(C)
from a constraint C which is equivalent to C. Given an entailment judgement
C |=?

NS τ 6 τ ′, the idea of the algorithm is to find a proof of Can(C) ` τ 6 τ ′

using the rules in table 2. Moreover, the relation K ` τ 6 τ ′ is decidable. For
more details, see [8].

Actually, Trifonov and Smith’s proof of soundness of their algorithm — which
we recall here — suits to show that ` is decided by our algorithm.

Lemma 9. If K is contractive, K ` τ 6 τ ′ has a proof, and σ |=k
U KU, then:

11

1. if the proof of K ` τ 6 τ ′ has an instance of a rule other than (↑) or (↓)
at its root, then σ |=k+1

U (τ 6 τ ′)U;

2. otherwise, σ |=k
U (τ 6 τ ′)U.

Proof. By induction on the structure of the proof of K ` τ 6 τ ′.

1. If the last rule is (⊥), (>) or (=), it is obvious3; if it is (f), it is a direct
consequence of the inductive hypothesis.

2. We now consider the case where the last rule is (↑) (the case (↓) is similar).
So τ is some type variable, and the antecedent of the rule is of the form
(K, τ 6 τ ′) ` τ1 6 τ ′, where τ 6 τ1 ∈ K. If one or both of τ1 and τ ′ are
variable, the last rule in the proof of this sequent may be (↑) or (↓) again,
so the proof of K ` τ 6 τ ′ ends in a chain of one or more instances of
these two rules.
Let 〈τ0, . . . , τn〉 and 〈τ ′0, . . . , τ ′m〉 be respectively the sequences of left and
right hand sides of the conclusions of these instances, from the root. Here,
τ0 = τ , n is equal of the number of instances of (↑), and τi is a variable if
i ∈ {0, . . . , n− 1}. Similarly, τ ′0 = τ ′, m is equal of the number of instances
of (↓), and τ ′i is a variable if i ∈ {0, . . . ,m− 1}. At the other end of the
chain, there is a proof of some (K, K ′) ` τn 6 τ ′m ending in a rule other
than (↑) or (↓). Notice that K ′ consists exactly of the constraints in the
conclusions of rules in this chain.
Moreover, one can prove by induction on i that τi 6 τi+1 ∈ K for each
i ∈ {0, . . . , n− 1}. Indeed, for i ∈ {0, . . . , n− 2}, the (i + 1)-th instance
of (↑) (from the root) is of the form:

(↑) (K, K ′
i, τi 6 τ ′j) ` τi+1 6 τ ′j

(K, K ′
i) ` τi 6 τ ′j

for some j and K ′
i ⊆ K ′, where τi 6 τi+1 ∈ (K, K ′

i). If τi 6 τi+1 6∈ K,
then τi 6 τi+1 ∈ K ′, so τi 6 τi+1 is the conclusion of the (l+1)-th instance
of (↑), for some l < i. But this implies τi = τl, and since — by induction
— {τl 6 τl+1, . . . , τi−1 6 τi} ⊆ K, K is not contractive, which contradicts
the assumptions. Therefore, τi 6 τi+1 ∈ K. Similarly, one can prove that
τ ′j > τ ′j+1 ∈ K for each j ∈ {0, . . . ,m− 1}.
We now establish that σ |=l

U K ′U for each l ∈ {0, . . . , k} — and therefore
σ |=k

U (τ 6 τ ′)U — by induction on l:

• any assignment 0-satisfies any constraint;
• if σ |=l

U K ′U, where l < k, then σ |=l
U (KU,K ′U), and — by (the

first) inductive hypothesis, and since the proof of (K, K ′) ` τn 6 τ ′m
has a rule other than (↑) or (↓) at its root — σ |=l+1

U (τn 6 τ ′m)U.
Moreover, all the constraints in K ′ are of the form τi 6 τ ′j or τ ′j > τi.
Since l + 1 6 k, we have σ |=l+1

U KU, so the following holds in the
uniform model induced by σ truncated at level l + 1:

τ0 6 · · · 6 τn 6 τ ′m 6 · · · 6 τ ′0

which covers all constraints in K ′U.
3however, the “obviousness” is not exactly the same as in Trifonov and Smith’s proof

12

Proposition 10. If K is contractive and K ` τ 6 τ ′, then KU |=U (τ 6 τ ′)U.

Proof. If σ |=U KU, then for all k, σ |=k
U KU, then at least σ |=k

U (τ 6 τ ′)U (by
lemma 9), then σ |=U (τ 6 τ ′)U.

Remark 14. When K = (x 6 f(x,⊥), x 6 f(⊥, x)), K ` x 6 f(⊥,⊥) does
not hold whereas K |= x 6 f(⊥,⊥) does. In the uniform translation, it also
holds. But [8] gives a “canonicalization” algorithm which seems to cover all the
cases covered by the uniform approach. However, we still do not know whether
there exists a judgement K |=? x 6 y which is true, decided by our algorithm
and not by Trifonov and Smith’s.

5 Subtyping constrained types
Like entailment, subtyping constrained types is still an open problem in the
non-structural theory. The problem

α1\C1 6?
NS α2\C2

— where both types use disjoint sets of variables — can be expressed by the
first-order sentence

∀α2, x1, . . . , xn. C2 ⇒ ∃α1, y1, . . . , ym. C1 ⇒ α1 6 α2

where α2, x1, . . . , xn are the free variables of C2 and α1, y1, . . . , ym the ones of
C1.

The main purpose of [8] is to give an approximation to this problem. We
can also use the previous ideas to give another approximation algorithm:

Proposition 11. Let x1\C1 and x2\C2 be two constrained types in the non-
structural theory. If x1\CU

1 6U x2\CU
2 , then x1\C1 6NS x2\C2.

Proof. If σ2 |=NS C2, then σU
2 |=U CU

2 (by lemma 7), then there exists σ′1 such
that σ′1 |=U CU

1 and σ′1(x1) 6U σ2(x2)U (by hypothesis). Let σ1 be (σ′1)
NS.

Therefore, σ1 |=NS C1 (by lemma 7), and σ1(x1) 6NS σ2(x2) (by lemma 6).

6 Conclusion
During this internship, we showed the decidability of the first-order theory of
uniform subtype constaints, and realized that there is a close link between non-
structural and uniform subtyping. We also gave a new approximation algorithm
to non-structural subtype entailment and subtyping constrained types. This
algorithm is conceptually simple, but the difficulty is hidden behind Rabin’s
Theorem and we do not have a working implementation so far.

In the end, I am grateful to Zhendong Su for having supervised me. This
internship was really enriching scientifically. Davis is mainly a university town,
but it is approximately 120 km away from San Francisco and the Silicon Valley,
and 220 km away from Lake Tahoe, in the Sierras, which gives the possibility to
go to both places in day or week-end trips. Besides, the Sierras are a beautiful
place to do hiking, camping, or just see nature.

13

References
[1] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,

and M. Tommasi. Tree Automata Techniques and Application, chapter Logic,
Automata and Relations, pages 86–94. GRAPPA, Université Lille 3, avail-
able on: http://www.grappa.univ-lille3.fr/tata, October 2002.

[2] Fritz Henglein and Jakob Rehof. Constraint automata and the complexity
of recursive subtype entailment. In ICALP ’98: Proceedings of the 25th
International Colloquium on Automata, Languages and Programming, pages
616–627, London, UK, 1998. Springer-Verlag.

[3] Viktor Kuncak and Martin Rinard. Structural subtyping of non-recursive
types is decidable. In Eighteenth Annual IEEE Symposium on Logic in
Computer Science, 2003.

[4] Joachim Niehren, Tim Priesnitz, and Zhendong Su. The complexity of sub-
type satisfiability over posets. In 14th European Symposium on Program-
ming, volume 3444 of LNCS, pages 357–373. Springer Verlag, April 2005.

[5] Michael O. Rabin. Decidability of second-order theories and automata on
infnite trees. Transactions of the American Mathematical Society, 141:1–35,
1969.

[6] Zhendong Su, Alexander Aiken, Joachim Niehren, Tim Priesnitz, and Ralf
Treinen. The first-order theory of subtyping constraints. In ACM TOPLAS,
December 2004.

[7] Wolfgang Thomas. Handbook of theoretical computer science (vol. B): formal
models and semantics, chapter Automata on infinite objects, pages 133–191.
MIT Press, Cambridge, MA, USA, 1990.

[8] Valery Trifonov and Scott F. Smith. Subtyping constrained types. In SAS
’96: Proceedings of the Third International Symposium on Static Analysis,
pages 349–365, London, UK, 1996. Springer-Verlag.

14

http://www.grappa.univ-lille3.fr/tata

	Introduction
	Context of the internship
	Introduction of the subject

	Preliminaries on subtyping
	Types as trees
	Structural subtyping
	Non-structural subtyping
	Uniform subtyping
	Constraints and first-order logics
	Constrained types and entailment

	Decidability and complexity results
	The logic SkS
	Decidability of U1
	Complexity of uniform entailment

	Non-structural entailment
	Preliminaries
	An approximation to non-structural entailment
	Comparison with a previously known algorithm

	Subtyping constrained types
	Conclusion
	References

