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We consider a discrete-time Markov decision process with Borel state and action
spaces, and possibly unbounded cost function. We assume that the Markov transition
kernel is absolutely continuous with respect to some probability measure w. By
replacing this probability measure with its empirical distribution u, for a sample of size
n, we obtain a finite state space control problem, which is used to provide an
approximation of the optimal value and an optimal policy of the original control model.
We impose Lipschitz continuity properties on the control model and its associated
density functions. We measure the accuracy of the approximation of the optimal value
and an optimal policy by means of a non-asymptotic concentration inequality based on
the 1-Wasserstein distance between w and w,. Obtaining numerically the solution of
the approximating control model is discussed and an application to an inventory
management problem is presented.

Keywords: Markov decision processes; long-run average cost; approximation of the
optimal value and an optimal policy; concentration inequalities; Wasserstein distance

AMS Subject Classification: 90C40; 90C05

1. Introduction

This paper is concerned with numerical methods for Markov decision processes (MDPs).
We are interested in approximating numerically the optimal value function and an optimal
policy of a discrete-time MDP with Borel state and action spaces, and unbounded cost
function under the long-run expected average cost criterion.

MDPs with general (Borel) state and action spaces, and unbounded cost function have
been extensively studied from a theoretical point of view; see, e.g. [2,16,18]. The existence
of optimal policies and the characterization of the optimal value function have been
established using various techniques such as, for instance, dynamic programming and
related algorithms (the value iteration and the policy iteration algorithms), and the linear
programming (LP) approach. The issue of the approximation of the optimal value and an
optimal policy remains, in general, an open issue. This is because, except for some
particular cases, the usual approaches to MDPs do not allow to obtain explicitly the
optimal value and an optimal policy (not even to approximate them). This is due to the
nature itself of the above techniques. As an illustration, the policy and the value iteration
algorithms require to perform successive maximizations (over a Borel domain) of
functions with Borel domain. Moreover, convergence of the policy iteration algorithm for
an average cost control problem requires particularly demanding hypotheses; see [17] and
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the references therein. Also, the LP formulation of an MDP is stated on an infinite-
dimensional space of measures over a Borel space, and so it is hardly tractable from a
numerical perspective.

On the other hand, a finite MDP (that is, with finite state and actions spaces) can be, in
principle, solved numerically. The computational effort, however, grows exponentially
with the number of variables involved, thus limiting drastically the practical interest of the
above-mentioned techniques. In this context, several approaches have been proposed to
solve (or approximate) numerically a finite MDP: reinforcement learning, neuro-dynamic
programming, approximate dynamic programs and simulation-based techniques, to name
just a few; see the survey [24] and the books [3,8,22,23]. In the particular context of
the average cost control problem, there exist several approximation techniques
[1,6,7,9,10,13,20,21,25] related to randomized/simulation-based approaches. All these
methods are exclusively focused on MDPs with finite or countable state and action spaces,
and bounded cost function. We can also mention [19], in which the authors study the
convergence of several actor-critic algorithms for MDPs with Borel state and action
spaces by minimizing the long-run average cost criterion over a parametrized family of
policies; therefore, the optimization problem is not addressed in its full generality.

Summarizing, though there exists an extensive literature on the approximation of
discrete and finite MDPs, the challenge of approximating an MDP with general state and
action spaces, and unbounded cost function remains open. Our aim is to address this
problem for such general MDPs under the long-run expected average cost criterion. We
base our approach on the hypothesis that the transition kernel Q(dyl|x,a) defining the
dynamics of the original control model M has a density function g(y|x, @), which satisfies
suitable Lipschitz continuity properties, with respect to a reference probability measure
u(dy), that is, Q(dy|x, a) = g(ylx, a)u(dy). The idea is to approximate M with a control
model M, , defined through the dynamics g(y|x, a)u,(dy), in which u is replaced with its
empirical distribution u, obtained from a sample of size n. Moreover, the action sets A(x)
of the original model are replaced in M,,, with smaller sets Ay(x), where the Hausdorff
distance between A(x) and Ay(x) is of (small) order d > 0.

Concerning our main contributions, let us mention the following points.

e Our framework (an MDP with general state and action spaces with possibly
unbounded cost function) is clearly more general than most of the settings studied in
the literature. Moreover, the average cost control problem is much more technically
demanding in the context of Borel state and action spaces than in the discrete
setting. As already mentioned, the policy iteration algorithm, which has been the
basis for the development of several numerical procedures to approximate MDPs,
is not of great applicability in this context.

e Our approach is based on the construction and the analysis of a simpler model M, ;
with finite state space. From this model, we provide an approximation of the
value function and we construct an e-optimal control policy for the original control
model M.

e The convergence of these approximations is proved and, in addition, the accuracy
of the approximations is characterized in terms of a concentration inequality
measuring the non-asymptotic deviation between the value function of the original
MDP and its approximations. These inequalities are based on the 1-Wasserstein
distance between w and w,.

The above convergence results are derived in the general context where the sets Ay(x)
satisfy some weak technical hypotheses. However, the construction of model M,, , and the
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associated numerical approximation method depends on the choice of the family of sets
Ay(x) and, in particular, on their topological structure. From a practical point of view, there
exist two natural choices for the family Ay(x):

e The first possibility corresponds to a finite Ay(x), leading to a finite model M, .
It is then shown that the numerical approximations of the value function and the
e-optimal policy can be obtained by solving two finite LP problems, for which we
can use the powerful solvers available nowadays that can handle really large LPs.
In this case, in order to solve M, ;, our method could be also combined with the
techniques that deal with finite MDPs with ‘large’ state and actions spaces; see
[1,6,7,9,10,13,20,21,25].

e The second natural choice is Ay(x) = A(x). Then, by using similar arguments as in
section 5.3 in [12], it can be shown that the finite-state, possibly infinite-action
(hence, still infinite-dimensional) LP problem associated with M,,; reduces to a
finite-dimensional nonlinear optimization problem that can be solved numerically
by using nonlinear optimization tools such as, e.g. the simulated annealing
technique.

Finally, let us mention Ref. [14], which follows an approach related to ours. Starting
from the recursive equation formulation of an MDP x,; = F(x;, a;, &) and by replacing
the disturbances distribution of {&} with its empirical distribution, the authors measure the
accuracy of an optimal policy for the perturbed model in terms of the 1-Wasserstein (or
Kantorovich) distance between the original and the empirical disturbances. The nature of
the approximation method in [14] is fundamentally different to ours. Indeed, in [14] the
idea consists in perturbing the disturbances process, while in our work we approximate
(perturb) a probability measure underlying the Markov transition kernel. These two
different approaches yield approximating models having different properties. Among
them, let us emphasize that the perturbed model in [14] does not have a finite state space,
neither considers a modification of the action spaces. Consequently, these points preclude
any tractable numerical approach, as opposed to our case. Let us also mention that, in our
paper, our hypotheses are only imposed on the original control model, while in [14] the
assumptions concern both the original and the perturbed control models; e.g. Assumption
1 in [14]. In connection with the approach in [14], see also Remark 4.2 below.

The rest of the paper is organized as follows. In Section 2 we define the control model
M, state our main assumptions and provide some useful basic results on M. The
approximating control models M, ; are defined in Section 3 and some of their basic
properties are studied. Section 4 addresses the issue of the approximation of the optimal
value of M, while Section 5 is concerned with the approximation of an optimal policy. In
Section 6 we discuss how to solve numerically the approximating control model M,, ;.
Finally, Section 7 shows an application of our technique to an inventory management
system.

Notation. The following notation will be used throughout the paper. Given x and y in
the Euclidean space R", let (x, y) be the usual inner product of x and y. By |x| = (x, % we
will denote the norm of x € R". Let 0 and 1 be the elements of R" with all components
equal to 0 and 1, respectively. If 6; and 6, are in R", we shall write 6; = 6, (respectively,
0, > 6,) when all the components of 6, are greater than or equal to (respectively, strictly
greater than) the corresponding components of 6.

We recall that E is said to be a Borel space if it is a Borel subset of a complete and
separable metric space. Its Borel o -algebra will be denoted by B(E). If vy is a measure on
(E,B(E)) and v : E— R? is a measurable mapping, then the (component-wise) integral of
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v with respect to y will be denoted by y(v) := IE vdy € R?, provided that it is well
defined and finite. The Dirac probability measure concentrated at x € E will be denoted by
d,; that is, for B € B(E) we have 8,(B) = 13(x), where 15 denotes the indicator function.

If E is a Borel space and w : E— [1,+00) is a measurable function, the class of
measurable functions f : £ — R such that [|f|],, := sup,ez{l f(x)|/w(x)} < oo is a Banach
space denoted by B,,(E), and ||-||,, is the associated norm, called the w-norm. The family
of real-valued measurable functions on E with finite w-norm which, in addition, are
continuous (respectively, Lipschitz continuous), is denoted by C,(E) (respectively,
L, (E)). We denote by M,,(E) the family of measures v on E such that »(w) is finite. For
continuous w, the w-weak topology on M,,(E) is the coarsest topology for which all the
real-valued mappings defined on M,,(E) by n+— n(f) for f € C,,(E) are continuous.

Let M'(E) be the family of probability measures A on E with finite first moment, that
s, jE p(x, x0)A(dx) < oo for some xy € E, with p the metric in E. The 1-Wasserstein
metric on M'(E) ([4], p- 234) is defined as

WiA, ) = sup for A,\ € M(E), (1.1)

fEL

- f

where L is the family of 1-Lipschitz continuous functions f : E— R.
Finally, we let R, = [0,0) and N ={0,1,2, ...}.

2. The control model
We will deal with the Markov control model M := (X, A,{A(x) : x € X}, O, ¢), where

e X is the state space, assumed to be a Borel space (i.e. a measurable subset of a
complete and separable metric space), with metric py.

e A is the action space, assumed to also be a Borel space, with metric pa.

e The set of feasible controls in state x € X is A(x), which is a non-empty measurable
subset of A. We suppose that K := {(x,a) € X XA : a € A(x)} is a measurable
subset of X X A and that it contains the graph of a measurable function from X to A.

e The stochastic kernel Q on X given K is the transition probability function.

e The measurable function ¢ : K — R is the cost-per-stage function.

In the family of closed subsets of A the Hausdorff metric is defined as

pu(Ci, Cy) := sup inf {pa(a,a)} v sup inf {pa(a,d))}.
aEC, adelC, dEC, a€C,

It is a well-known result that py is indeed a metric, except that it might not be finite. The
following notation will be used throughout. Given a measurable function v : X — R we
define Qv: K— R as Qv(x,a) := fx v(y)P(dylx, a), provided that the corresponding
integrals are well defined and finite.

Let [ be the family of measurable functions f : X — A such that f(x) € A(x) for all
x € X. By hypothesis, [ is non-empty. Let Hy := X and H, := KX H,—; for t = 1 be the
history of the MDP up to time t.

DEFINITION 2.1. A control policy is a sequence 7 = {m;},en Of stochastic kernels 77, on
A given H, satisfying m(A(x)|h)=1 for all h, €H, and r€&€N, where
hy := (x0,4aq, --.,%—1,d,—1,%). Let IT be the class of all policies.
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Let @ be the family of all stochastic kernels ¢ on A given X such that ¢(A(x)|x) = 1 for
all x € X. A policy 7 is said to be randomized stationary if there exists ¢ € ® such that
,(-|h;) = ¢(-|x;) for all t € N and h € H,. The class of randomized stationary policies is
identified with ®.

Each f € [ is identified the policy 7 € II such that m(-|h;) is the Dirac measure
concentrated at f(x,), for all x, € X and r € N. We say that f € F is a deterministic
stationary policy. Clearly, we have F C ® C II.

Let (X X A)®, B((X X A)™)) be the canonical space consisting of the set of sample
paths (X X A)® = {(x;,a;)},en and the associated product o -algebra. Therefore, {x;},n
stands for the state process and {a; },cp, is the action process. For notational convenience,
we define F, as the o -algebra generated by (xy, a) for 0 = s =< ¢. From ([16], Chapter 2)
we know that for every policy 7 € Il and any initial state x € X there exists a unique
probability measure P™* on (X X A)*, B(X X A)*)) such that, for any B € B(X), C €
B(A) and h, € H; witht € N,

P™(xo € B)=13(x), P™(a, € Clh) = m(Clh,), and
PW,.Y(x[+1 € Blhtvat) = Q(leta af)'
The expectation operator associated with P™" is denoted by E ™.

Let 0 < a < 1 be a given discount factor. The total expected a-discounted cost of the
policy 7r € II for the initial state x € X is defined as

o)
> alex, a)
=0

and the long-run expected average cost of the policy 7 € II for the initial state x € X is
given by

Volx,m) :=E™

)

1 t—1
J(x, m) = lim ;E” [Z (g, ak)‘| .

k=0
The value function of the a-discounted control problem is

Vi(x):= inf Vu(x,m) for x EX
mell

and a policy 7" € II is said to be a-discount optimal if V,(x, 7") = VZ(x) for every
x € X. Similarly, the value function of the average cost control problem is

J'(x) = infJ(x,m) for x EX
eIl

and a policy 7" € II is said to be AC-optimal if J(x, w*) = J*(x) for every x € X.
Next we state our assumptions on the elements of the control model M.

Assumption A.

(A1) The action set A(x) is compact for each x € X. The multifunction ¥ from X to A
defined by W(x) := A(x) is Ly-Lipschitz continuous with respect to the Hausdorff metric.
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(A2) There exists an L,,-Lipschitz continuous function w : X — [1, o) such that there are
constants d € (0, 1) and b € R with

Ow(x,a) = dwx)+ b for all (x,a) € K. 2.1

(A3) The cost function c is in L, (), i.e. ¢ is L.-Lipschitz continuous on [ and there is a
positive constant ¢ such that, for all (x,a) € [K,

le(x, a)| = ew(x).

The Lipschitz condition in Assumption (A1) means that there exists a positive Ly such
that py(A(x),A(y)) = Lypx(x,y) for every x,y € X. As a consequence of ([11], Lemma
2.6), the multifunction W : X — A is continuous.

Assumption B.

(B1) There exists a probability measure w on (X, 5(X)) and a measurable function
q : X X K— R such that w(w) < 400 and

O(B|x,a) :J qOlx,a)u(dy) for all B € B(X) and (x,a) € K.
B

(B2) There exist positive constants g, L, and L, such that function g satisfies the
following properties:

qOylx, @) = gw(x), (2.2)

lglx, @) — q(zlx, )l = Lypx(y,2), (2.3)

lglx, @) = qylY, d))l = Lylpx(x, X) + pala, )], 2.4)
lwqlx, @) = w(z)g(zlx, )| = Lygw(x)px(v,2), (2.5)

for every (x,a) and (¥',d') in K, and y, z € X.
(B3) There exists some xy € X and a > 0 such that

J exp{apx(x, xo) } u(dx) < oo
X

and, in particular, u € Ml(X).

Remark 2.2. From Assumptions (B1) and (2.4) in Assumption (B2), it follows easily that
for any v € B,,(X), (x,a) and (¥, d’) in K

|0v(x, @) — Qv(', )| = Lyl wn)px (x,x') + pala, )], (2.6)

and so Qv is Lipschitz continuous on [K. In particular, Q is strongly continuous (that is,
Qv is continuous on K for any bounded measurable function v on X) and Qw is continuous
on K.
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The following facts on discount optimality are well known. For a proof, the reader is

referred to ([15], Lemma 3.2). For every discount factor 0 < a < 1, the discounted
optimal value function V, verifies

Vo| = ‘ <w(x)+La) for all x €X 2.7

and, in particular, VZ € B,,(X). Moreover, VZ is a solution of the a-discounted cost
optimality Equation (a-DCOE)

Vi) = gj?){c(x, a) + aJ Vi (»Q(dylx,a)} for x € X. (2.8)
a X, X
When dealing with average optimality, we impose another condition.

Assumption C. There E:xists Xo € X such that function h, defined by h,(x)=
Vi(x) — Vi(xo) satisfies h = supaec,lliall,, < co.

Let us introduce g, = (1 — @)V} (x). A standard calculation shows that the a-DCOE
can be re-written as

8a + ho(x) = min {c(x,a) + aJ ho()Q(dylx, a)}.
a€A(x) X

LEmmA 2.3. For any 0 < « < 1, function A, is in L,,(X) and its Lipschitz constant is

[Lc 4+ Lyu(w)h](1 + Ly).

Proof. For notational convenience, let us introduce
Ay(x,a,X,d) = le(x,a) — (X, d)| + alQha(x,a) — Qho (X, d)]
for (x,a) and (¥/,a’) in IK. Then we have
c(x,a) + aQhy(x,a) = c(X,d) + aQha(¥,d) + Au(x,a,x,d)
for any (x,a) and (¥, d’) in K, implying that

ha(x) = —ga + (v, d) + aQho(¥, d') + inf {Aa(X,a,«tj7a/)}

= ho()+ sup inf {A.(x,a,x a)}

aEAR) a€A(x)
By symmetry, we obtain that

ho(X) = ho(x) + sup 1nf {Aa(x a,xX,a)}.

aEA(x) @ EAWX)
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Therefore, for all x and X’ in X

|ho(x) — ho(X)] = sup 1nf {Aa(x a,x,a)} v sup 1nf {Aa(x a,x,d)}.

a€A(x) @' EAN) dEAW) 4EAM)
On the other hand, from Assumptions (A3), C and Remark 2.2
Ao(x,a,x,d) = [LC + an,u(w)l_z] (px(x, X)) + pa(a,d)).
Now using Assumption (A1), the result follows. ]

We say that the pair (g,/7) € R X B,,(X) is a solution to the average cost optimality
Equation (ACOE) for M if

g+ hx)= mm {c(x a) + J h(»)O(dylx, a)} for any x € X. 2.9)

It is important to note that, in general, there might not exist solutions to the ACOE; rather,
there are solutions to the average cost optimality inequality (or inequalities); see [15] or ([18],
Theorem 10.3.1). In our next proposition we prove that, under our hypotheses on the control
model, there exists a solution (g, ) to the ACOE for which, besides, / is Lipschitz continuous.

PrROPOSITION 2.4. Under Assumptions A, B and C there exists a solution (g*, h) €
R X L,,(X) to the ACOE for the control model M. Moreover, g* = J*(x) for every x € X.

Proof. From (2.7), we have that g, is bounded for 0 < a < 1. In addition, from Lemma
2.3, the family of functions {h,:0 < a <1} is equicontinuous. Therefore, from
Assumption C and Ascoli’s theorem, it follows that there exist (g*,h) € R X B,,(X), with
I%ll,, = &, and a sequence {ay} such that

ay—1, go,—g" and hy(x)— h(x) for any x € X

as k — oo. In addition, the fact that the Lipschitz constants of %, do not depend on « (recall
Lemma 2.3) implies that 4 € L,,(X), with Lipschitz constant [L. + L, wOw)h](1 + Ly). Now,
by using standard arguments, see, for instance, Theorem 4.1 in [15], we obtain the result. [J

We conclude this section with a technical result that will be useful in the sequel.

LemmaA 2.5. Suppose that Assumptions A and B hold. Givenv € L,,(X) and (x,a) € [K, the
function y — v(y)q(ylx, a) is Lipschitz continuous on X with Lipschitz constant given by
K,w(x), with

Ky = ”V”w(qu + Z]Lw) +gL,.

Proof. For every y,z € X we have, from (2.2) in Assumption (B2),

v(»g(ylx, a) — v(2)qzlx, )| = vnllgOylx, a) — g(zlx, @)l + q(zlx, a)|[v(y) — v(2)]
= |vll,wMlgOlx, a) — q(zlx, a)| + L,gw(x)px(y, 2).
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Function w being Lipschitz continuous — Assumption (A2) — and from (2.2) and (2.5) in
Assumption (B2),

w)lq(ylx, a) — qzlx, )l = Iwq(ylx, a) — w(2)q(zlx,a)l + lw(y) — w(z)lq(zlx, a)
= (qu + qu)W(x)pX(y7 2).

The stated result follows. O

3. The approximating control models

Throughout this section, we suppose that Assumptions A and B are satisfied.

We suppose that there is a probability space (Q, F,P) and a family {Y,},=, of i.i.d.
random variables taking values in X with distribution u. For each n = 1, the M (X)-
valued mapping u, defined on () by

1 n
pa(dy) =~ By (dy) 3.1)
k=1

is called the empirical probability measure. It is a random variable since the M (X)-
valued mapping defined on X" by (xi,...,x,)— 1/nd> ", 8, is continuous. As a
consequence, the 1-Wasserstein distance W(uw,, i) is a real-valued random variable. We
will denote by P the outer measure associated with the probability measure P, which is
defined on the class of all subsets of ().

Let us recall a known result. For a proof, the reader is referred to Corollary 2.5 and
Theorem A.5 in [5].

THEOREM 3.1. Suppose that the probability measure w satisfies Assumption (B3). There
exists some 1y such that, given any 0 < y < vy, there are constants S,7 > 0, depending
on vy, with

P{W (o, ) > v} = Sexp{—Tn} for all n=1.

The following notation will be useful in the forthcoming. Given z > 0, define for
n=1

Fi(2)={w € Q: Wi(uy(w),p) =z} E F.

DErFINITION 3.2. The constants ¢; are defined as

1 1—d 1—d

[ = d R = .
T T AL+ Ly M P T AL, + L+ 4d+ b))

They verify ¢3 = ¢; = ¢}, and so, for n = 1 we have F,(¢3) C F,(¢2) C F,(c}).

The meaning of constants ¢; will become clear later. We make another hypothesis.

Assumption D. For all D> 0 there exists a family Ay(x), for x € X, of subsets of A
satisfying the following hypotheses.
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(D1) For every x € X, Ay(x) is a non-empty closed subset of A(x). We suppose that
Ky ={(x,a) EXXA:a € Ayx)}

is a measurable subset of X X A, containing the graph of a measurable function from
XtoA.
(D2) For every x € X,

Pr(A(X), Ay(x)) = dDw(x). (3.2)

(D3) The multifunction W, from X toA defined by Wy(x) := Ay(x) is Ly »-Lipschitz
continuous with respect to the Hausdorff metric. We suppose that
Supy>oLy» = pr < o0,

We define, for n = 1 and (x,a) € K,,

Bax,a) =j 4031, a)n(dly). (33)
X

Observe that

Bux,a) — 1 = J qOlx, @) (dy) —J qOlx, a)pu(dy)
X X

and so, from Lipschitz continuity of y+— g(y|x,a) for fixed (x,a) — see (2.3) in
Assumption (B2)

|Ba(x, @) — 1] = LyWi(, ) for all (x,a) € K. (34

We introduce a family of random kernels Q, for n = 1 depending on w € () through
the empirical measure w, associated with w.

DEerFINITION 3.3. Given n =1 and for w € F,(¢;) consider the kernel Q, on X
given [,

> v 4Yilx, a)
ZZ:] q(Yk|x7 a)

0n(Blx,a) = JB qOlx, @)y (dy) =

1
Bu(x, a)

for B € B(X) and (x,a) € K.

Note that for every fixed w € (), the kernel Q, is supported on the finite set
{Yi(w)} =4=n- The condition w € F,(c;) ensures that B,(x,a) = 1/2 for all (x,a) € Ky;
therefore, Q,(-|x, a) is well defined on F,(¢c;). We also have that Q,, is a stochastic kernel
on F,(¢;), meaning that Q,(X|x,a) = 1 for (x,a) € K.

DEFINITION 3.4. Givenn = 1, w € F,(¢;) and d > 0, the control model M,, ; is defined by
the following elements

(X1A7{AD(-X) L X EX}anC)

(cf. the definition of the control model M).



Downloaded by [82.230.168.241] at 07:04 15 November 2014

Stochastics: An International Journal of Probability and Stochastic Processes 11

Associated with the control model M, », the set 11, denotes the family of all control
policies. Given 7 € II, and any initial state x € X, let P|; be the underlying probability
measure on (X X A)*, B(X X A)™)) such that, for any B € B(X), C € B(A), and h, € H,
with t € N,

P;i(xo € B)=1Ip(x), PJi(a; € Clhy) = m(Clhy), and
P,’,Tj;‘(xtﬂ € Blhy, a;) = Qu(Blx,, ay).

For notational convenience, E,; will denote the associated expectation operator.

Let F, be the family of measurable functions f : X — A such that f(x) € Ay(x) for all
x € X. Clearly, F, C F. Also, let @, C ® be the family of stochastic kernels on A given X
such that @(Ay(x)|x) =1 for all x € X. Sets F, and ®, are identified with the class of
stationary deterministic and randomized policies for M,, », respectively. We will also use
the notation Q,(-|x,f) and Q,(:|x, ¢) to denote the Markov kernels associated with the
stationary policies f € F, and ¢ € Dy, i.e.

0,(Blx,f) = Qu(Blv.f()) and Q. (Blx, <p>=j 0,(Blx, a)e(dal)

Ap(x)

for B € B(X) and x € X.

It is worth noting that the Markov chain with transition function Q,(-|x, ¢), for x € X
and ¢ € Dy, is essentially a finite state Markov chain. Indeed, for whatever initial state
Xo € X, the subsequent states x; for ¢ = 1 lie in the finite set I', = {Y3(w)},=4=,. This
finite state space, however, varies with @ € Q and n = 1.

Propositions 3.5 and 3.6 below explore some properties of the control models M,, ;.
They suppose that Assumptions A, B and D hold.

ProOPOSITION 3.5. Fix n = 1, w € F,(¢;) and d > 0. For any v € B,,(X),

)

L, _ ,
|Quv(x,a) — Qv )l = 2|Ivll, L, [M(W) +Z} [1+2gw)] [px(x,x') + pa(a, d)],
q

for any (x,a) and (x',d) in [K,. In particular, the mapping (x,a) — Q,v(x, a) is locally
Lipschitz continuous on .

Proof. First observe that

1Bu(x, @) = Bu(X, )| = Lylpx(x, ') + pala,a)], (3.5)

by deﬁnltlon Of B” (See Equatlon (3.3)) and
Mn M + P 3 .

by using the fact that w is L,-Lipschitz continuous and w € F,(c;). Now, Q,v(x,a) —
O.v(¥,d") equals

1
Bulx, a)

J VO)G01x, () — VOGO, ) an(dy)
X

1
:Bn(xlv al) JX
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and so

1
10w, @) — QX d)] = nmjwwmmm—wmmWW)
Bn(x7 a) X

1B, @) — B, )
mmwmw@@'M“L”””M“”M“”

= 2l Lo [1 4 2gw()] [px(x,x) + pala, d)],

by using Equation (3.5) and the fact that 8,(x,a) = 1/2. Finally, combining the previous
equation and (3.6) the result follows. O

As a direct consequence of this lemma, we obtain that the kernel Q, is strongly
continuous, and also that Q,w is continuous on [K,. It is worth noting that, for v € B,,(X),

the mapping Qv is Lipschitz continuous (see Remark 2.2). For the kernel Q,, this might not
hold, and we have that Q,v is locally Lipschitz continuous.

PROPOSITION 3.6. Given n = 1 and d > 0, on F,(¢;) we have
14+d
Ow(x,a) = Tw(x) +2b for any (x,a) € K.

As a consequence,

14+4d\’ 4b
EIw(x)] = (;) w(x)+m 3.7

forany x € X, w € I, and r € N.

Proof. Note that

1- n\As
an(x’a)slﬁ(xa)lj W(y)q(ylx,a)nn(dy)JrJ w()q(ylx, @) u,(dy).
Bu(x,a) X X

By Lipschitz continuity of wg and Assumption (A2) we have

JX wgOlx, a)pn(dy) = Lygw(x)W1 (1, ) + Qw(x, @)
= Lygw(OW i, pa) + dw(x) + b.
Therefore, from Equation (3.4)
O.w(x,a) = [Zqul(;L, M) + 1] [quw(x)Wl(,LL, M) + dw(x) + b]
and so,
Ow(x,a) = d,w(x)+2b for all (x,a) € K,

with d, = d + 2W;(u, w,)(L,; + Ly,g), and the first statement easily follows. The second
statement of this proposition is now a direct consequence. ]
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Givenn = 1,0 > 0 and w € F,(¢c») we can introduce, for the control model M,, 5, the
total expected a-discounted cost of the policy 7 € II for the initial state x € X defined as

Va,n,b(x7 7T) = E;,Tg

(o]
> ale,a))|,
=0

and the long-run expected average cost of the policy 7 € II, for the initial state x € X is
given by

_ 1 t—1
Jna(x, ) 1= tlirg E:;C L; c(x, ak)] .
The value function of the a-discounted control problem is

VZnD(x) = lnlfl Va.n,D(x7 77) for x€ X
T, =i ;

and a policy 7" € I, is said to be a-discount optimal if V4, y(x, 7°) = szn,h(x) for every
x € X. Similarly, the value function of the average cost control problem is

J; b(x) = inf Jn,D(-x7 77) for x € X
’ €l

and a policy 7" € I, is said to be AC-optimal if J,,»(x, 7*) = JZ_D(x) for every x € X.

Observe that J: (%) is defined on F,(¢,) as the optimal value function of the control
model M, ;. For éompleteness, we propose the following definition of J:,n(x)~ If the
control model M,,; is well defined and its optimal average cost value function exists, let
J:b(x) be the corresponding value function (in particular, this holds when w € F,(c,)).
Otherwise, define J, ,(x) € R arbitrarily.

4. Approximation of the optimal average cost

Our next results compare the difference between Qv and Q,v when v is a Lipschitz
continuous function.

PROPOSITION 4.1. Given n = 1, v € L,(X) and (x,a) € K, on F,(¢;) we have

|0v(x,a) = Quv(x, a)| = Cow)Wi(k, pn), 4.1

with C, = 2K, + 2L,|Ivll,.(d + b), where constant K, comes from Lemma 2.5.

Proof. First of all, observe that Q,v(x, a) is finite for any (x, a) € [, by using Proposition
3.6. From Definition 3.3 we have

1
Bu(x,a)

Ov(x,a) — Quv(x,a) =J v(y)glx, a)u(dy) — J v(»)g(ylx, @) u,(dy)
X X
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and so,

|Ov(x,a) — Quv(x, @)| =

1
J vl a)u(dy)—J v(Y)q(ylx, @), (dy)
Bulx,a) |)x X

|Bn(-x, a) — 1|
S ), Moloieo

= 2K,w) Wi, pn) + 2L Wi, o) VI (dw(x) + b),

where we have used Lemma 2.5, Equation (3.4) and Assumption (A2). The stated result
follows. O

Remark 4.2. When comparing our hypotheses to those in [14], note that Assumption 2(d)
in [14] implies, using our notation, that |Qv(x,a) — Q,v(x,a)| is bounded above by a
constant multiplied by the distance between the original and the perturbed disturbance
distributions. Under our hypotheses, we obtain a weaker inequality in Proposition 4.1
because we have, in addition, the multiplicative term w(x).

Next we state our main results in this section.

THEOREM 4.3. Suppose that Assumptions A, B, C and D are satisfied. There exist positive
constants G| and G, such that for every n = 1, d > 0 and w € F,(c;) we have

8" = J1a0| = GIWi () + 62D for x € X.

Proof. Given 7 € II, and x € X, observe that E}; [A(x,)] is finite by using Proposition 3.6.

n,

On the other hand, for any (x,a) € I, we have from Proposition 4.1
g+ h(x) = c(x,a) + Quh(x,a) + Cw()Wi (g, wn).
Consequently, taking the expectation
g+ ETh(x)] = E (i, ap)] + Epy T )]+ ChWi (g, ) Ey Tw(x)]

for all k = 0. Summing over k =0, ..., — 1 yields
—1 t—1 )
18"+ h(x) = > Emale(a, a)l + EyyTh(e)] + ChiWi (s, m) Y Eralwe)].  (4.2)
k=0 k=0

From Proposition 3.6 we have

—_

S BT 0] = — 2w + 43)
: o W _l_dwx T4 .

Il
S

and

ET ()| = h [w(x) + %] , (4.4)
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with % as in Assumption C (recall the proof of Proposition 2.4). Dividing by ¢ in (4.2),
combining Equations (4.3) and (4.4), and taking the superior limit as 7 tends to infinity,

B O 4b
g" = lim - ;E Lot @)l + CoW i (pts ) 7——-

Since 7 is arbitrary, we obtain

£

" 4b
= J,30) + C Wi (e, pn) T4 4.5)

Recalling Remark 2.2, Assumptions (A1) and (A3), it follows by using Proposition D.5
in [16] that there is a measurable selector f* € F such that

g+ h(x) = c(x,f*(x)) + Qh(x,f " (x)). (4.6)

Now observe that the function defined on I, by (x,a) — pa(a,f"(x)) satisfies the
hypothesis of Proposition D.5 in [16]. Consequently, by using Assumption D there exists
f € T, satisfying

i pa(a,f" () = paGio).f () = ow(x), (4.7)

for any x € X.
From Remark 2.2, Assumption (A3) and (4.7), we obtain

g+ h(x) = =[x, [ () = cCx, fo)l = [Qh(x, f"(x)) — Oh(x, fix))
+ c(x, ftx)) + Qh(x, fix))
= — (L + Lypm)h) ow(x) + c(x, fx)) + Oh(x, fix)),

and so,

8"+ h(x) = = [(Le + Lypuw)h)d + CyW i (1, ) W) + ¢(x, f00) + Quh(x, f0),
by Proposition 4.1. Finally by using the same arguments as before for the stationary policy

7 generated by f, we obtain that

. _ 4b
8" = Jup(x, @) — [(Le 4+ LoD + CuW i, wn)) T—d (4.8)

Combining Equations (4.5) and (4.8) and letting

4b
G1 :Ch —

and G, = (L. + Lypu(w)h) ——

4b
1—d

1

we obtain the result. O

We note that we have bounds on the norm of 4 (recall Assumption C) and its Lipschitz
constant (as a consequence of Lemma 2.3). Therefore, constants G| and G, defined above
do not depend on n = 1 nor on d: they depend on constants related to the control model M
that have been introduced in Assumptions A, B and C.
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THEOREM 4.4. Suppose that Assumptions A, B, C and D are satisfied. There exists g9 > 0
such that for any 0 < & < g there exist d > 0 and constants &', 7’ > 0 such that

IP*{

foralln=1and x € X.

Joa(0) — g*‘ > s} = S'exp{—T7'n})

Proof. Define gy = 2Gyy, where the constants G; and 7, are taken from Theorems 4.3
and 3.1, respectively. Fix ¢ such that 0 < & = g). We define

& &
C C 2G1 an 2G2

Given arbitrary n = 1 and w € F,(¢), J;D(x) is the optimal average cost of the control
model M,, , for the initial state x € X.

Since ¢ = 1y, we obtain from Theorem 3.1 that there are positive constants S’ and 7"
such that

P{W1(, pn) > ¢} = S exp{—T'n}.
On the other hand, on the set F,(¢) we have, by Theorem 4.3,

*

J;D(x) —g | =G Wi(u,m,) +Grd=e.

Therefore, {|JZ$D(X) —g"| > e} C{W(u, w,) > ¢}. The stated result follows. O

Note that we do not take probability P of the set {|J7 ,(x) — g*| > &} but, rather, its
outer probability P*. This is because the issue of the measurability of J; (%) has not been
addressed. We also note that Assumption (D3) has not been used yet. We will need it in our
next section.

5. Approximation of an average cost optimal policy

In this section, we introduce another assumption on the control model.

Assumption E. Let w : X — [1, 00) be the L, -Lipschitz continuous function introduced in
Assumption A. There exists (x*,a”) € X such that w* = Qw(x*,a™) is finite and, in
addition, there is some 0 < d < 1 such that

J w)|0@dylx, a) — O(dyl¥, d)| = d(w(x) + w(x)) forall (x,a) and (¥,d’) in K,
X

where |Q(C|x,a) — OC|¥',d)] is the total variation of the signed kernel
O(lx,a) — QCIx', d).
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We note that Assumption E implies Assumption A2. Indeed, given (x,a) € KK we have
Ow(x,a) = J w)IQWylx, @) — Q(dylx™, a)l + Ow(x™,a") = dw(x) + (™ + dw(x")).
X

Therefore, Assumption (A2) holds by letting b := w™ + dw(x™). That is why we have used
the same constant 0 < d < 1 in Assumptions (A2) and E. As we shall see, Assumption E
is also a sufficient condition for Assumption C.

Our next lemma is a direct consequence of ([18], Theorem 7.3.14).

LemmA S.1. Under Assumption E, the control model M is uniformly w-geometrically
ergodic on [F. This means that, for each f € [, the Markov chain on X with transition
kernel given by O(:|x,f(x)) has a unique invariant probability measure u; on X with
ur(w) < 00, and that

suE|Ef‘X[u(xt)] — p,f(u)| = Rd"|lull,w(x) forall t €N, u € B,(X), and x € X,
fe

with R = 1+ (b/(1 — d)).

The important feature of this result is that constants R and b are the same for every
deterministic stationary policy. A standard calculation shows that, under uniform
w-geometric ergodicity, we can obtain Assumption C by letting

_ Rec

for any fixed xop € X. Hence, in what follows we will not suppose Assumption C and,
instead, we will use Assumption E.

PRrOPOSITION 5.2. Suppose that Assumptions A, B, D and E hold. Let » = 1, d > 0 and
o € F,(¢3), and define R = 1 + 4(w(x*) + b)/(1 — d). Under these conditions, we have
that the control model M, ; is (R, (1 +d) /2)-uniformly w-geometrically ergodic on ®,.
This means that, for each ¢ € ®;, the Markov chain on X with transition kernel given by
0,(+|x, @) has a unique invariant probability measure /,LZ;D on X with ,ufz;b(w) < 00, and that

- (1+d\'
sup |E**[u(x,)] — ,U,Z;D(u)l = R(;) Jlull,,w(x) forall t€N, u € B,,(X), and x € X.
pEDy

Proof. Let us prove that the control model M,, ; satisfies Assumption E. Since w € F,(¢3),
from Proposition 3.6 we have Q,w(x,a) = ((1 4+ d)/2)w(x) + 2b for all (x,a) € [K;, and
so the first condition in Assumption E is satisfied for any a* € Ay(x™) by letting

‘ 14+d
W= %w(x*) + 2b.

Concerning the second statement in Assumption E, given (x,a) and (', d') in [<, we have

qlx,a)  qOl¥,d)
Bu(x,a)  Bu(X,d)

J w)|Qu(dylx, @) — Qu(dylx’, d) =J W(y)‘ M (dy)
X X
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(this is because, from Definition 3.3, the kernel Q,(:|x,a) has density g(ylx,a)/B.(x, a)
with respect to wu,). By Assumption (B2), the function

qOlx,a)  qOlY,d)
Bn(xa a) Bn(xla a)

y = w(y)

is Lipschitz-continuous on X with Lipschitz constant given by

L w(x) w(x)
"\ Bulx,a) - B, d)

) = 2qu'(w(x) + W(-XI))
because on F,(1/2L,) we have B,(x,a) = 1/2 and B,(x,a’) = 1/2. Therefore,

J wIQn(dylx, a) = Qu(dyl¥', a)l = 2Ly (w(x) + wX )W (1, pa)
X

qOlx,a)  q(Gl¥',d)
Bll(xa a) Bn(xla al)

Observe now that w(y)|(g(ylx, @))/(Ba(x, @) — (q(ylx', @)/ (Bu(x', @))| is less than

m(dy).

+J w(y)
X

lw()q(ylx,a) — wqOlx',a)l — wy)qOly', d)
Bu(x,a) Bu(x,a)B, (X, a

< aOb D = WO O 100010, 2, W 11 1)
B @)

by recalling Equation (3.4). Since Ow(X,d') = dw(x') + b = (d + b)(w(x) + w(x')) we
obtain that

S1Bi.a) — B0

Jmmgwmm—@wwwl
X

d
= [m + 2W i (@, ) [Log + 4Lg(d + )] | [W(x) + w(X)]

= [d +2W (i, pa)(Lig + Lgl1 + 4(d + D)D] [w(x) + w(x)].
Finally, we have established that for all (x,a) and (', d') in <,
J wIQu(dylx, a) — Qu(dylx’, )| = d,(w(x) + w(x))
X

where
dy = d + 2W (@, ) [Lug + Lyg[1 + 4(d + b)]].

We note that, on F,(c3), we have d, = (1 + d)/2.
Summarizing, the control model M, satisfies

O.wx",a )S%w(x )+2b < oo forsome (x,a’) € kK,
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and, for all (x,a) and (¥, d) in [y,

1+d
J w)|Qu(dylx, @) — Q,(dylx,d)| = (%)-(W(X) +w))). (5.1
X

It follows from Lemma 5.1 that the control model M, is (R, (1 + d)/2)-uniformly
w-geometrically ergodic on Fy. It remains to show that M,, ; is (R, (1 4+ d) /2)-uniformly
w-geometrically ergodic on ®,. To see this, fix ¢ € @, and note that Q,(-|x, ¢) has
density

¢(dalx)

- J q(ylx, a)
Avr) Bn(x, @)

with respect to w,. Therefore

JX wMIQ0u(dylx, @) — O, (dylx, )| ,(dy)

qOlx,a) _ qOlx, a’)] /
= - d dd'|x)| pa(d
Jx w(y)‘ JAD(x)XAD(x’) {Bn(% a)  Bux',a’) @ldalx) X (A 1) | ()

SJ J W(y)‘q(ylx7a)_q(y|x’7a’)
Ap(O)XAy () JXx Bu(x,a) Bu(x',a’)

< (#) W) + W),

pa(dy)p(dalx) X g(da'lx')

by (5.1). Recalling ([18], Theorem 7.3.14), the result follows. O

Let us now comment on Assumption E. Assumptions A, B and C on the control model
M ensure that the corresponding ACOE has a solution (g™, /). Besides, we have obtained
explicit bounds on the norm of /. To approximate an optimal policy, we need a solution to
the ACOE for control model M, ;. In general, imposing Assumption C on M does not
imply that a similar condition is satisfied by M, 3. On the other hand, as seen in
Proposition 5.2, Assumption E for M does imply the same condition for M,, ;. Moreover,
it has the advantage that we have explicit values for the constants involved in the uniform
w-geometric ergodicity. This will allow to establish the ACOE for M,,; and to obtain
bounds on the norms of the involved functions.

Concerning constants ¢; introduced in Definition 3.2, their interpretation is now clear.
On F,(¢;) the control model M, ; is well defined; on F,(c,) the optimal average cost
function J:‘b is finite; on F,(c3) the control model M, is uniformly w-geometrically
ergodic.

We recall the definition of the ACOE. Givenn = 1,d > 0 and w € F,(c;), we say that
the pair (g, h) € RX B,,(X) is a solution to ACOE for the control model M,,  if

g+ h(x) = min {c(x, a)+ J h(»)Q,(dy|x, a)} forall x € X. (5.2)
a€A,(x) X



Downloaded by [82.230.168.241] at 07:04 15 November 2014

20 F. Dufour and T. Prieto-Rumeau

We say that f € [, is an M, y-canonical policy if it attains the minimum in (5.2), that is,

g+ h(x) = clx,f(x)) + J h()Q,(dy|x,f(x)) forall x € X.
X

THEOREM 5.3. Suppose that Assumptions A, B, D and E are satisfied. Given n = 1 and
D > 0, consider w € F,(¢c3).

(i) There exists a solution (g:‘b,h,,_,b) € RxB,,(X) to the ACOE for the control
model M,, ;. This solution satisfies

g:,b =Jr () forall x€X, and |l =H,

where

2Re

H:
1—d

(1 + w(xp)).

(ii) If (¢, #) is any other solution to the ACOE for M,,, then ¢’ = g, , and functions
K and h,, differ on X by a constant. '

(iii) The set of M,, ,-canonical policies is non-empty and it does not depend on the
particular solution £, 5 of the ACOE. Moreover, any M, y-canonical policy is
average optimal for M, 5.

Proof.

(i) According to the results in Section 3, Assumptions 3.1 and 3.2 in [15] are
satisfied. Therefore, for every 0 < a <1, from ([15], Lemma 3.2), the

discounted value function VM » belongs to B,,(X) and, besides, it verifies

‘ anD(X)’ =— [w(x) + %} (5.3)

and satisfies the discounted optimality equation

Va0 = Ieml(l ){C(L a)+ aJ Vo Qn(dylx, d)}~ (5.4
a X m
Now consider xo € X and define the function hg,p as hgpup(x) = Znh(x) -

(xo) for x € X. If f* € F, attains the minimum in DCOE (5.4), then

anh

mmmﬂsip

= Z ( )Rc[w(x) + w(xp)]

=0

E M TeConf "] — B3 eCo, £ ()]
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(i)

by using Proposition 5.2 and so, for every 0 < a < 1
”haﬁn,D”w =H. (55)

Introduce gqnp = (1 — a)VZ,n,D(XO)' The discounted optimality equation can be
re-written as

Band + hana) = agi?x){C(x, a)+ aj hans (. a)}.

X

We observe that, as a consequence of (5.3), the sequence {ga,mb } is bounded when
0 < a < 1. By using similar arguments as in Lemma 2.3 and Proposition 3.5, it
follows that

L, _ «
hann () = hapnp()| = |:Lc +2HL, {M(W) + i] [1+ 2qW(X)]} (1+Ly)px (x,x).
q

(5.6)

From the previous equation, it follows that the family of functions {A,» : @ €
(0, 1)} is equicontinuous. Now, by using inequality (5.5) and Ascoli’s theorem,
we obtain that there exist a sequence {a;}, a constant g;D € R and a function
ha» € B,,(X) such that

a— 1, guyad— g;b and g u5(x) = hyp(x) forany x € X

as k — oo. Clearly, from (5.5) we have ||h,|l,, = H, while (5.6) implies that &, ,
is locally Lipschitz continuous on X.

By using standard arguments (in particular, we make use of the extended
Fatou lemma in ([18], Lemma 8.3.7)), we obtain that

S T up(x) = agl/jl(l){){d& a) + J R n () Qn(dylx, a)}

X

for all x € X. The fact that g, , = J,(x) for x € X follows in a straightforward
way. '
Let (g1,hy) and (g2,hy) in RXB,,(X) be two solutions to the ACOE for the
control model M, ;. The fact that g, = g, = gfl , follows from standard
arguments, such as those used in the proof of item (ij above.

Hence, it remains to show that i) and h, differ by a constant, i.e. there exists
v € R such that /;(x) — hy(x) = y for all x € X. Let the policies f; and f; in [y
attain the minimum in the ACOE for %, and h,, respectively; that is, we have for
alx e X

g;D + h(x) = c(x,f1) + JX h (O, (dylx, f1) (5.7)

= c(x,f2) + J hi(»)Qn(dylx. f2), (5.8)
X
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g:,b + ]’lz(x) = C(xva) + JX hz(}’)Qn(dﬂX,fz) (59)

= c(x.f1) +J hoy()Qn(dylx. f1), (5.10)
X

with c(x, f1(x)) = c(x,f1) and Q,(dy|x,f1(x)) = Q.,(dy|x,f1). Consider now the
transition matrices of the policies f;, for i = 1,2, when restricted to the set of
states I',, = {Y3(®)}=4=,. The corresponding transition matrix will be denoted
by P;, with P;i(x,y) = Q,({y}|x,fi(x)) for x,y € ', (recall Definition 3.3). By
Proposition 5.2, the transition matrix P; has a unique invariant probability
measure. Therefore, I, can be partitioned into an irreducible class of positive
recurrent states R; and a (possibly empty) class of transient states 7;. So, let us
write the transition matrix P; in block form

Pi(R;,R)) 0
Fi=\pra.ry pPariTy )

where we highlight the transitions between the classes of recurrent and transient
states. It is a well known fact that

(= P(T;, )~ =T+ > (PAT, )" and (1= P(T;,T)) ' PAT;,R)1 =1,
k=1
(5.1D

By (5.7) and (5.10) we have that function #; — h, on I, (that will be interpreted
as a column vector) is subharmonic for P, meaning that iy — h, = Py(hy — hy).
As a consequence, foreachx € I', and t = 0

E[(hy = h)(x)] = hy(x) = ha(x).

By Proposmon 5.2, this implies that [.Lf (h1 —h) = h(x) — hy(x)forallx €T,
with M bemg the invariant probability measure associated with the policy f.
Consequently, hy — hy is constant on R;. Similarly, using (5.8) and (5.9) we
obtain that 4#; — h;, is superharmonic for P, and it follows that 4; — A, is constant
on R,. Summarizing, there exist y; and 7y, € R such that

hi(x) — hy(x) = 7y, forall x € Ry and hy(x) — hy(x) = 7y, forall x € R,.
(5.12)

Now, by (5.8), for every x € T»,

h() = > P, () = —gn,+c(n.f2)+ Y Palx, )l ()

YET, YER,

or, in matrix notation and denoting, generically, by u(S) the column vector u
restricted to the components of S C T',,,

(I = Po(T2, To)h(T?) = —g;Dl + (T2, f2) + Pa(T2, Ro)hi (R). (5.13)
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Also, from (5.9),

(I = Py(T2, T2)ho(T) = —g;DI + (T2, f2) + Po(T2, Ry)hy(Ry). (5.14)

Since the matrix (I — P,(T>, )7 ! is non-negative (recall (5.11)), it follows
from (5.13) that

M(T2) = (U= P2, T2) ™" (=g), 1+ (T2 f2) + PoT2, R (R) )
However, we have h(R;) = hy(R,) + -1, and so

hi(Ty) = (@ = Py(T5,T>) " (—g;bl + (T2, f2) + Pao(T2, Ry)(ha(R2) + Y21)>
= hy(T>) + 1,

where we have applied (5.11) and (5.14). By following a similar argument, we
obtain that 4;(T) — ho(T1) = y11. So far, we have established that

hi(x) — ha(x) = y1 on Ry, hi(x) = ha(x) = v  on Ry,

and
hi(x) = ha(x) = y; on Ty, hi(x) = hay(x) = vy, on T».

In particular, y; = hyi(x) — hy(x) = 7y, forall x € T,.

Suppose, for the moment, that y; < y,. Then we necessarily have
R| N R, = 0. Define the policy f € T, as follows: fix) = f1(x) if x € R;, and
f(x) = f2(x) if x € R, (the definition outside R; U R, is not relevant). We have
that R; and R, are two disjoint recurrent classes for f. In this case, it is not possible
that {Q,(-|x,H} has a unique invariant probability measure (recall Proposition
5.2). This leads to a contradiction, and so y; = y, =: v.

Once we know that hy(x) = hy(x) + 7 for all x € T',, the equality is extended
to X —T', by noting that 4;(x) for x € X — I',, is uniquely determined by the
values of A; in I',;; namely,

G+ hi0) = agib?x){C(x, D+ > () ()lx, a)},

ver,

and i (x) — hy(x) = yforx € X — I, follows.
(iii) This statement easily follows from (ii) and standard arguments. O

Under the hypotheses of Theorem 5.3, we note that the optimal average cost g:‘h of
M,» is such that |g, ,| = 4¢b/(1 — d). We also note that the solution A, to the ACOE
that has been constructed in the proof of Theorem 5.3 is in fact the unique solution to the
ACOE such that £, 3(xo) = 0.
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LEmMMA 54. Forn =1, >0 and w € F,(¢3), let h,» € B,,(X) be the solution in the
ACOE for the control model M, ;, constructed in Theorem 5.3. Define for x € X

Fup@) = min {e(x.a)+ B, (x,0)Quhnp(x.)) :agib?x>{c(x’a)+JX hn‘z,(y)q(ylx,amn(dy)}.

Function 7,5 is in L,,(X), it verifies

, = I+d
”gn@ + hn,D_hn,D“w = HLq (T + 2b> Wl (/—Lv :U“n) and

- 5+d 4¢cb
h  =H|—— —
” n,b”w ( 4 +b) + 1 — da

and its Lipschitz constant is

* LH/'
(1+Ly) (Lc +HL, (;L(w) + 2Lq) > .

Proof. It is clear from our continyity hypotheses that 71,,71, is measurable (see, e.g. ([16],
Proposition D.5.(b))), and so also £, , € B,,(X). In addition, by the ACOE in Theorem 5.3,
forallx € X

8np + np(x) = min {C(L a) +J s (MQn(dylx, a)}
’ a€Ay(x) X

= min {c(x, a) +J

a€Ay(x) X

By (NgO1x, @)pn(dy) + (1 = Bu(x, @) JX B 53 Qn(dylx, a)}-

Since we have

1+d

‘(1 = Bu(x, ) L By y(0)Qn(dylx, @)| = HL, (T + 2b) Wi, m)w(x),

it follows by using Proposition 3.6 that

where g . is interpreted as a constant function on X. The bound on 172, 51l,, easily follows
from the previous inequality. Indeed, we have

14+d
| SHLq(%Hb)Wlw,un),

g:7b + hn,b - i;ln,b

- 1+d "
Vol = HL, (T+ 2b> Wt )+ 1l Dl

Now, we obtain the desired bound by recalling that Ig:’bl =4cb/(1 — d) and ||hy,ll,, = H
(see item (i) of Theorem 5.3) and by observing that for w € F,(¢3) C F,(c;) we have
Wi(u, un) = 1/2L, (see Definition 3.2).
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For notational convenience, let us introduce

A,,(x, a,x/,a/) = |C(-x7 a) — C(xjval)l + |Bn(xa a)thnﬁb(xa a) — Bn(x/7a/)Qilhn,b()‘vaal)|

for (x,a) and (', d') in [, (cf. the definition of A,(x,a,x’,d’) in the proof of Lemma 2.3).
Then, proceeding as in the proof of Lemma 2.3 we have

ljlnA,D(x) = ilnA,D(xl) + sup inf {An(x a, xl a )}7

' EA(X) a€A,(x)
and, symmetrically,

Byn(X) = hyn(x) + sup inf {A (x,a,x,d)}.

€Ay (x) @ EA(Y
So, for all x and ¥’ in X

72,.5(x) = han()l = sup 1nf {A (x,a,¥,d)} v sup inf {A,,(x a,x,a)}.

a€A(x) 4 EAK dEAW) 4EMK

Now, from Assumption (A3), item (i) of Theorem 5.3, (2.4) and (3.6) we easily obtain that

Ay(x,a,¥,d) = {Lg + HL (M(W) + iﬂ [px(x,x) + pala,d)]. (5.15)

With Assumption (D3), this yields the Lipschitz constant of 7,5. g

This means that function 4, ; in the average optimality equation for M, ; is not
necessarily Lipschitz continuous (in fact, it is locally Lipschitz continuous), but it can be
approximated by a Lipschitz continuous function fz,,,b, with an approximation error which
is controlled in the w-norm by the Wasserstein distance W;(uw,,n). We note that in
Proposition 2.4 we could derive that 4 in the average optimality equation for M is
Lipschitz continuous.

THEOREM 5.5. Suppose that Assumptions A, B, D and E are satisfied. There exist constants
H, and H; such that given n =1, > 0 and w € F,(c3), any M, »-canonical policy
Jup € Fy C T verifies

J(fun,¥) = g+ HiWi(u, uy) + dHy  for x € X.

Proof. Let hy, 5 be the solution of the ACOE for M, ; constructed in Theorem 5.3, and let
Jup attain the minimum in the corresponding ACOE, that is,

8o np(@®) = €0, fun(@) + Ol p(x, fa () for x € X. (5.16)

Our first step in this proof is to ‘replace’ &, with /1,3 in (5.16). To this end, regarding the
left-hand side of (5.16), note that by Lemma 5.4,

. - 1+d
8up T hua(x) = hy(x) + HL, (% + 2b> Wi, w)w(x) foreach x € X,
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while, for the right-hand side,

. ) 1+d
hn,b(y) = hn,D(y) - gn,b - HLq (T + 2b> Wl(Ma :u’n)W(Y) foreach y € X7

and so

= " 1+d
thn,b(xa a) = thn,b(xa a) — gnp - HLq (T + 2[9) Wl(Mv Mn)QnW(x7 a)

foreach (x,a) € Ky,

whence, by Proposition 3.6,

7 Pz . 1+d g
thn,b(x;ﬁl,h(x)) = thn‘D(x; nil(x)) - gnA,D - HLq (2 + 2b) Wl(/“(’a /J,n)W(X)
foreach x € X.
So far, we have established that

1+d 34d * 7
HL, (T + Zb) (T + 2b) Wi, )W) + &, + hinp(x)

= (X, fun(6) + Ol n(x, fu(x))

for all x € X. Now we use the fact that 71,,@ € L,,(X) — Lemma 5.4 — and Proposition 4.1
to derive

1+d 3+d # 5
(C,;mh + HL, (T + Zb) (T + 2b> ) Wi, pn)w(x) + &, + hpp(x)

= (X, fun (X)) + Ol (X, fun(x))

for all x € X. Taking into account the bounds on IIfzn,DIIW and its Lipschitz constant in
Lemma 5.4, we obtain that there exists a constant G that depends only on the constants in
Assumptions A, B, E and L’fl, in (D3) (and not on n nor on D) such that

GWOW 1 (R, ) + &y 1 p(0) = €08, fn (1)) + Oy n(X, (X))

for all x € X. Iterating this inequality and using (by now) standard arguments, we derive
4b ~
Gle(/‘Lv /an)"i_gn’b = J(f,@,x) for x € X.

By Theorem 4.3, we conclude that there are constants H; depending on the parameters in
our assumptions (and not on n nor on d) such that

g = J(n,x) =g  +H W (1, ) + d2Hy  for x € X.
This completes the proof. |

We have that J (fmb,x) is defined for w € F,(c3). We extend this definition as we did
with J:’D(x) in the previous section. If the control model M,,; is well defined and if a
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solution to the corresponding ACOE exists, let J (f,m, x) be the average cost (for the control
model M) of any canonical policy (in particular, these statements hold on F,(c3)).
Otherwise, define J(f,, », x) arbitrarily.

THEOREM 35.6. Suppose that Assumptions A, B, D and E are satisfied. There exists g9 > 0
such that for any 0 < & < g there exist D > 0 and constants S”, 7" > 0 such that

P {UGn0) — g > &) = 8 exp{—T"n)

forallm =1 and x € X.

Proof. The proof is similar to that of Theorem 4.4. Just define g9 = 2H,yy, where the
constants H; and vy, are taken from Theorems 5.5 and 3.1. Fix & such that 0 < & = g,
and let

& &
=G A= and D=——.
¢ (3 2H1 an 2H2

Note now that the set {J(f,,,t,,x) > g* + &} is contained in {W{(u, w,) > c} and proceed as
in the proof of Theorem 4.4. |

6. Numerical approximations

Suppose that Assumptions A, B, D and E are satisfied. Given n = 1 and d > 0, consider
w € F,(c3). Moreover, we will suppose that the sets Ay(x) are finite for every x € X. We
recall the notation I', = {Yi(w)},<;=,. In what follows, we consider the control model
M, restricted to the states in I',. We can do so because we have Q,(I',|x,a) = 1 for all
x €I';, and a € Ay(x). Therefore, in what follows we will be dealing with a unichain, finite
state and action average cost MDP.

LP formulation of the average cost problem. Consider the following (primal) LP
problem (P)

minimize Z Z c(x, a)z(x, a)

x€l, a€Ay(x)

subject to

Z 2(x,a) = Z Z 2, d)0,({x}|¥,d) forall xET,,

a€Ay(x) X Er', d€EAX)

Z Z Z(x,a)=1 and z(x,a) =0 forall x €T, and a € Ay(x).

xEl, aEAy(x)

Here, the variable z(x, a) is interpreted as a state-action limiting frequency.

It is known that the minimal value of (P) equals g ,, the optimal average cost of
the control model M, ;. Moreover, if {z"(x,a)} is “an optimal solution of (P),
letting X" ={x € I’y : > e,y 2 (x,@) > 0}, define the randomized stationary policy
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¢" € ®, as

2 (x,a)

—— 12  for a € Ay(x) and x € X7, 6.1
Za/eAD(X)ZX(X, a/) b( ) ( )

¢ (a}ln) =

and define it arbitrarily for states in I', — X ™. We have that the policy ¢ is average cost
optimal for the control model M,, ;. Besides,

MZ’D(X) = Z 2*(x,a) for x €T,

a€A,(x)

is its unique invariant probability measure. In particular, R(¢™) := X" is the set of
recurrent states for ¢*.

Observe that our procedure in Section 5 to approximate an optimal control policy for
M is concerned with a canonical policy fm for M,, 5. The policy ¢* determined above is
average optimal for M, ; but it might not be canonical. Hence, to use our method in
Section 5, we must solve the ACOE for M,, , in order to find a canonical policy.

The dual problem of (P) is the LP problem (D) given by:

maximize g subject to g+ h(x) = c(x,a)+ Z O,({}x, a)h(y)
yer,

forall x €T, and a EAy(x), g€R and h(x) ER for x €T,

Its optimal value is g:‘b and, at optimality, we obtain a solution of the following
inequalities

I a&iﬁr(l){){c(x, a) + Z 0,y lx, a)h(y)} forall x € T,. 6.2)

yel,

It is important to mention that, by solving (D), we might not obtain a solution to the ACOE
for the control model M,, ;, although we know from Theorem 3 that such a solution indeed
exists.

Solving the ACOE by LP. Next we show how we can find a solution to the ACOE for
the control model M, ; by solving two linear programs.

LEMMA 6.1. Let {z"(x, @)} be an optimal solution of (P), let ¢* € ®, be as in (6.1), and fix
arbitrary x* € R(¢"). Let h* € R" be the unique solution of the ACOE for M,, , such that
h*(x*) =0, and let & € R™!, with h(x*) = 0, verify the inequalities in (6.2). Then we
have h(x) =< h*(x) for all x € T',,.

Proof. We deduce from (6.2) that

oo T h) = c(x, @)+ > Qullyllx, @h(y) forall x €T,

yEL,

with c(x, ¢*) = fAb(x) c(x,a)p"(dalx). Since ¢ is average optimal, i.e.

D el @) = g5,

xerl’,
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the above inequality necessarily holds with equality for the recurrent states R(¢™) of ¢™:

gup T () = c(x, ") + Z O,({y}x, ¢ Hh(y) forall x € R(¢").

YER(¢™)

On the other hand, we deduce from the ACOE that

gp ) =cl, e+ > 0uy}lx, e’y forall x € R(e").
YER(¢™)

Therefore, function 7 — h*, when restricted to the set of recurrent states R(¢”), is
subharmonic for ¢* and, hence, constant. Since h — h* vanishes at x* € R(¢"), we
conclude that h(x) = h*(x) for all x € R(¢™).

Now, let f* € F, be a canonical policy for M, », that is, it attains the minimum in the
ACOE:

gy Hh )= f)+ Y Oy} fHR ) forall x €T, (6.3)

e,

Since we also have, by (6.2),

oy Hh) = cCrf )+ > 0uly}lx.fHh(y) forall x €T, (6.4)

yEL,

we obtain that 4 — h™ is superharmonic for the kernel Q,,(-|-,f ™). Hence, h — k™ is constant
on set R of recurrent states for f . Arguing as in the proof of Theorem 5.3(ii), we have that
R N R(¢™) is not empty, and so h(x) = h*(x) for all x € R.

Let us now write (6.4) in matrix form for the transient states 7 = 1", — R of f ™

W(T) = o(T,f*) = iy + Ppo(T, DI(T) + Py+(T, RIW(R),
with
Pr-(R,R) 0
0l f ") = ( PR BT ) .

This implies, as in the proof of Theorem 5.3(ii), that

WT) = A= (1T (T %) = gL+ Py (T, RMR)) .
= A= P, T (e f") = gl + P (T, RN R)) |

=h'(D), (6.6)

where (6.5) follows from the fact that # = h™ on R, and (6.6) is deduced from (6.3). This
completes the proof that i(x) = h™(x) for all x € T, O

Note that the proof that # = &™ mainly relies on the properties of the canonical policy
7. Since our goal is, in fact, to solve the ACOE, such a canonical policy is not, therefore,
‘available’. That is why this proof uses the policy ¢, which can be explicitly determined
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by solving (P), and then uses the link between them: R N R(¢™) # 0, deduced from the
ergodicity property of M, on ®, (recall Proposition 5.2).

As a consequence of Lemma 6.1, we have that 2* in the ACOE for M, 5, with
h*(x™) = 01is the maximal solution /4 of (6.2) with A(x™) = 0. This leads to the definition of
the LP problem (D) as

maximize Z h(x) subjectto g;d + h(x) = c(x,a) + Z 0.{y}x, a)h(y)

x€r, yvel,

forall x €T, and a € Ay(x), h(x)=0 and hkx) ER for x €T,

It should be clear that £ *, the unique solution of the ACOE with 2*(x™) = 0, is the unique
optimal solution of (/). Observe also that the LP problem (D’) is somehow ‘parametrized’
by the optimal value g:_’D and the state x*. We summarize these results in our next theorem.

THEOREM 6.2. Suppose that Assumptions A, B, D and E are satisfied. Given n = 1 and
D > 0, consider w € F,(c3) and suppose that the sets Ay(x) are finite for every x € X. The
following procedure allows to derive g;b € R and the policy fn"h € F, — the optimal
average cost and a canonical policy for M,,» — with the properties given in Theorems 4.4
and 5.6.

e Solve the LP problem (P). Let g, , € R be its optimal value and let {z*(x,a)} be an
optimal solution. Determine a state x* € T, with 3 _ a2 xF,a) > 0.

e For g;b and x* as above, solve the LP problem (D) and determine h* € RITH,
which is a solution of the ACOE for M, ». The canonical policy fn,b can now be
obtained from A",

Therefore, we can find the solutions to the ACOE for M,, ; by solving two ‘connected’
LP problems (P) and (D'). These LP problems are connected in the sense that, first of all,
we must solve (P) and then, with some data obtained from this solution, we solve (D),
which yields the solution to the ACOE.

7. Application to an inventory management system

The dynamics of the inventory management system is given by
X1 = max{x, +a, — &,0} for t €N, (7.1)

where x, stands for the stock level at the beginning of period ¢, a, is the amount
ordered by the controller at the beginning of period 7 and & is the random demand
at the end of period . We suppose that {£ },cn are i.i.d. random variables taking
values in R;, with density function f with respect to the Lebesgue measure and
distribution function F. The capacity of the warehouse is given by M > 0.
Therefore, we have

X=A=[0,M] and A() =[0,M —x] for x € X,

and so K={(x,a) € [0,M] X [0,M] : x+a = M}. The transition kernel is given by

O(Blx,a) = (1 — F(x + a))I3(0) + J Sx+a—ydy (7.2)
[0x+alNB
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for measurable B C X and (x,a) € K. The controller incurs a (buying) cost of b > 0 for
each ordered unit, a holding cost & > 0 for each period a unit spends in the warehouse
and receives an amount of p > 0 for each unit that is sold. Therefore, the running cost
function is

c(x,a) = ba + h(x + a) — pE[min{x + a, £}],

where ¢ has density f, that is,

X+a
c(x,a) =ba+ h(x+a) — pJ sf(s)ds — p(x+a)(1 — F(x+ a)) for (x,a) € K.
0

Due to the particular nature of the state 0 € X, which can be reached with positive
probability, the state space X is endowed with the following metric:

lx — x| if x, X € (0,M]
px(e, ¥y ={ 1+4x if x=0 and ¥ € (0,M]
0 if x=x=0.

This consists in considering the usual topology on (0,M ], and letting O to be an isolated
point identified with — 1. On A = [0,M ] we consider the usual topology.

PropOSITION 7.1. Suppose that the distribution function F of the demand has a density
function f which is Lipschitz continuous on [0, M]. In addition, assume that f(0) = 0 and
F(M) <1. Under these conditions, the inventory management system satisfies
Assumptions A—E in this paper.

Proof. In this proof we will use the following fact. If x, ¥’ € X then |x — ¥| = px(x,x/). In
particular, Lipschitz continuity of a function when X is endowed with the usual topology
implies Lipschitz continuity with respect to py.

Assumption (A1) holds since dy(A(x),A(x)) = |x — ¥| for x,x¥ € X. Also, letting
w = 1, Assumption (A2) is satisfied by choosing any 0 < d < 1 and b > 0 such that
d+ b = 1. Finally, it is clear that Assumption (A3) holds because f and F are Lipschitz
continuous on [0, M].

Concerning Assumption B, fix arbitrary 0 < p < 1 and define the probability measure
non X as follows:

1 —
w0} =p and wB) = Tp/\(B) for measurable B C (0, M],

where A is the Lebesgue measure on R. It then follows from (7.2) that the density function
of Q(:|x, a) with respect to u is given by

1
5(1 —F(x+a) for y=0,

- M
40k = fpf(era—y) for 0 <y=x+a,
0 for x+a=y=M.



Downloaded by [82.230.168.241] at 07:04 15 November 2014

32 F. Dufour and T. Prieto-Rumeau

The fact that g is Lipschitz continuous both in y € X and (x,a) € K easily follows from
Lipschitz continuity of fon [0,M ] and on the fact that f{0) = 0; so, Assumption (B2) holds.
Assumption (B3) trivially holds, and therefore Assumption B is satisfied.

Now we turn to Assumption D. Given d > 0, let ¢, = 2 + [M/d], where [M /D] is the
integer part of M/d. For x € X define

M — x)i
Ab(x)={ﬂ:j=0,l,...,qb—1}.
g — 1

This consists in choosing ¢, equally spaced points in A(x) = [0,M — x]. Clearly,

Assumption D holds, while we have dy(A(x),Ay(x)) = M/(g» — 1) =D (Assumption

(D2)). Finally, we have that x — A;(x) is Lipschitz continuous with Lfl, = 1.
Concerning Assumption E, which implies Assumption C, we observe that for (x, a) and

,d) in K
J 10(dylx,a) — Q(dylX,d)| = j lqOlx,a) — gO 1Y, )l u(dy)
X X

M
—|F+a)— F( + )| +J fa+a—y)—f( +d —yldy
0
=|F&x+a)— FX +d)|+Fx+a)+FX +d)
=2F(max{x+a,xX +d'}) =2F(M).

Consequently, Assumption E holds by letting d = F(M) < 1. (]
Numerical experimentation. Define the density function of the demand as
— 1 —x/A fe =0
fx) = pxe or x =
for some parameter A > 0. In this case, we have
1
- (1 +m) o OFa)/A for y=0,
)4 A

Q(ylx) a) = ll W .e_(x+a_y)//\ for O < y =x+ a,
-p

0 for y>x+a

and
= ba + h(x + XTay\ _ta)a
cx,a)=ba+h(x+a)—2pAl1— |1+ = e )

We take the following values for the parameters of the control model:

1 5
M=10; b=7, h=3; =17; =—; [==.
0; ; 3 p ;P 0 5

For the approximation of the action sets we have chosen ¢, = 20.
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Table 1. Estimation of the optimal average cost g*.

n =50 n =150 n =300 n =500 n="700 n = 1000
Mean —26.8755 —26.4380 —26.2817 —26.1717 —26.1553 —26.1659
SD 22119 1.4578 1.0145 0.8104 0.6662 0.5734

To approximate the optimal average cost of the inventory management problem we have
generated n (forn = 50, 150, 300, 500, 700, 1000)1i.i.d. samples of the probability measure p.
For each such sample, the value g:n has been determined by solving the primal LP problem
(P) described in Section 6. Such computations have been repeated 500 times, thus yielding
500 observations of the random variable g . The results are summarized in Table 1.

We observe that the expected values éonverge very fast, with a decreasing variance.
Also, we have displayed the density estimation for the 500 samples of g;D for the above
values of n; see Figure 1. '

Regarding the approximation of an optimal policy, for the n
(n =50, 150,300, 500,700, 1000) i.i.d. samples of the probability measure w we have
solved the ACOE of the control model M,, , by solving the linear programs (P) and (D');
recall Theorem 2. Once the solution 2" to the ACOE (on the states of I',)) is obtained, we
can determine a canonical policy fn,D € [F,. Namely, given arbitrary x € X we can
explicitly determine an action a* zf"nﬁb(x) € Ay(x) such that

min {c(x, a)+ > 0y}, a)h(y)} =cx,a)+ Y Oulytx,aHh().  (73)

EA
a0 VET, VET,

To evaluate the policyfn,t, under the control model M we proceed as follows. If the system is
in state x € X, we determine the actionﬁ7h(x) asin (7.3). Then we simulate a transition of the
control model M under the dynamics (7.1). This procedure is repeated 2000 times starting
from the initial state xo = 5. Then we compute the average value of the corresponding
c(xy,a;) for t =0, ...,2000. Therefore, to evaluate J(fnyh, Xo) we have performed a
minimization as in (7.3) foreach t = 0, 1, ..., 2000. This procedure is repeated 500 times,
so that we obtain a sample of size 500 of the random variable J (fmb, Xo) (we note that, by
ergodicity, this average cost does not depend on the initial state x(). Our results are displayed
in Table 2, while in Figure 2 we display the corresponding density estimation.

07 1 1 1 1 1 1
0.6 | N=50 B
—— N=150
0.5 —— N=300 -
—— N=500
0.4  Ne700 -
0.3 - —— N=1000| |
0.2 -
0.1 -
0 T T T T T T
-34 -32 -30 -28 -26 -24 -22 -20

Figure 1. Density estimators for g ..
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Table 2. Estimation of the average cost of the policy fn,n-

n =50 n =150 n =300 n =500 n="700 n = 1000
Mean —25.6312 —25.8387 —25.9724 —26.0406 —26.0497 —26.0833
SD 0.7648 0.5394 0.3954 0.3387 0.3276 0.3133

1.4 L 1 1

1.2

1

0.8

0.6

0.4

0.2

0 T T T
-28 -27 -26 -25 -24

Figure 2. Density estimators for J(f,,ﬁb,xo).

Table 3. Relative error of the policy f:,m in the control model M.

n=>50 n =150 n =300 n =500 n =700 n = 1000

4.63% 2.27% 1.18% 0.50% 0.40% 0.32%

We also observe that the expected values converge very fast, that the variances become
very small as well and also that these figures are very close to those given in Table 1.

For each n, define g, as the mean value of the 500 observations of g, , given in
Table 1, and define also j,,,b as the mean of the 500 observations of J (f,,ﬁb, Xo). In Table 3 we
display the relative error I(j,,vt. — 8n»)/ g,,,bl, which we interpret as follows: taking g, as
the ‘true’ value of g*, the relative error in Table 3 measures how far the policy fm eF,
constructed from the control model M,, ,, is from optimality in the control model M. The
results in Table 3 show that our method to approximate an optimal policy is fairly accurate.
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