
A Hybrid Factored Frontier Algorithm for Dynamic Bayesian Networks

Sucheendra K. Palaniappan1 , S. Akshay1, Blaise Genest2

and P. S. Thiagarajan1

1School of computing, National University of Singapore,
{suchee,akshay,thiagu}@comp.nus.edu.sg

2 CNRS, IPAL UMI, joint with NUS-I2R-A*STAR, Singapore.
bgenest@irisa.fr

Abstract. Probabilistic models are often used to describe the dynamics of biochemical networks. To analyze these
models one must compute the probability of a state at a given time. Doing this exactly is intractable for large
networks and hence approximate methods are needed. In this light, the Factored Frontier algorithm (FF) is a simple
and efficient approximate algorithm. But its error behavior has not been analyzed so far. We first observe that
theoretically the errors incurred by FF can be quite large. In practice too, even for a small biochemical network,
FF’s performance can be rather inaccurate. To overcome this, we propose an algorithm which works like FF but at
each time slice, we maintain more explicitly the probabilities of a small number of states. We show that by tuning
the sizes of these sets we can reduce errors at the cost of paying a higher -but still polynomial time- computational
price. Our algorithm performs quite well when applied to the EGF-NGF pathway model [3], consisting of 100 time
slices and 32 variables at each time slice.

1 Introduction

Probabilistic models are increasingly used to describe the dynamics of biochemical networks [4, 5, 7, 8, 12,
13, 15, 19]. The common theme in these approaches is that the behavior of the network can be described
by a Markov chain in which each state consists of a vector of finite valued random variables. Each random
variable will correspond to a molecular species (protein, gene etc.) and its value will reflect its current con-
centration. To analyze the behavior of the network, one needs to compute at each time point of interest, the
current probability distribution of the states. The number of states will be exponential in the number of vari-
ables. Consequently, for large networks, it is infeasible to explicitly maintain and compute this probability
distribution. In fact, it is also infeasible to spell out the transition matrix of the Markov chain.

However, each molecular species will often take part only in a few reactions and hence the next value
of a variable will be directly influenced by the current values of only a few other variables. In this case,
one can factor the Markov chain into a probabilistic graphical model such as a Dynamic Bayesian Network
(DBN) [15] in which the dynamics is captured locally through Conditional Probability Tables (CPTs). This
solves the problem of representing the Markov Chain compactly. However the time complexity of exactly
inferring the next probability distribution from the current one is still exponential in the size of the network
[1]. Hence one must resort to maintaining and computing approximate probability distributions which are
usually called belief states.

In the literature two attractive approximate algorithms have been proposed for DBNs and related models.
In the Boyen-Koller algorithm [1] (BK for short), a belief state is maintained compactly as a product of
marginal functions. Roughly speaking, this belief state is then propagated exactly at each step through the
transition model consisting of the CPTs and then the new belief state is compacted again into a product
of marginal functions. BK is accompanied by a sophisticated error analysis [1, 2] which shows that the
discrepancy produced between the belief state and the actual probability distribution in one step does not
affect future discrepancies too much. Hence the key is to bound the one step error.

Unfortunately, for large DBNs, exact propagation of the belief state at a step is itself infeasible. The
Factored Frontier algorithm (FF, for short) [16] overcomes this by directly computing the new marginal
functions via the propagation of the current marginal functions through the CPTs. This ensures that the
time complexity is exponential in the maximal in-degree of the DBN graph and not in the size of the whole
network. Further, FF is very simple and easy to implement.

In settings where DBNs model the dynamics of biochemical networks, it is important that (i) one has
a good understanding on the error incurred in a single step of the algorithm (ii) the errors are not large
(iii) measures can be taken by spending more computational effort if necessary to reduce the errors. To the
best of our knowledge, no analysis is available regarding the single step error incurred by FF. Secondly,
even on a small system (as we show in Section 5), it can produce errors as high as 0.16 on the marginals.
Further, FF does not have any tunable parameters using which one can improve accuracy by increasing the
computational effort.

In this paper we present an enhanced version of FF called the Hybrid Factored Frontier algorithm (HFF,
for short) which addresses these limitations of FF. It is a parametrized algorithm in which by tuning the
parameters one can reduce the errors. We also derive the single step error bound for our algorithm. The main
idea behind HFF can be explained as follows. Suppose the error | B̂(s) − B(s) | is large where B̂ is the
actual belief state and B is the approximated belief state. Since both are probability distributions, for the
error to be large, either B̂(s) or B(s) has to be large and hence the number of such vectors s -called spikes-
has to be small. Thus, at each step, in addition to maintaining a belief state just as FF does, we also maintain
a small set of spikes and their probabilities. It is however computationally infeasible to determine the set of
spikes and their joint probabilities exactly. Hence HFF achieves this approximately. The time complexity of

1

FF is linear in n, the number of variables and exponential in D, the maximal in-degree of the DBN graph.
For HFF it is quadratic in the number of spikes, linear in n and exponential in D. On the other hand, our
error analysis shows that the worst case single step error made by HFF is lower than that for FF. In addition,
our experimental results using a bio-pathway model based on 32 variables and 100 time points (thus the
DBN has 3200 nodes) also show that whenever FF makes a “large” error, the error made by HFF is never as
much and often considerably lower. Further, by increasing the number of spikes, we can reduce the errors.
In fact when the number of spikes is 0, HFF is exactly FF and when the set of spikes is the set of all states
then HFF corresponds to exact inference. In this sense, HFF is a parametrized extension of FF.

In the next section we introduce DBNs and explain how they arise in our approach to bio-pathways
modeling. In Section 3, we discuss the FF algorithm and analyze its one step and overall error. In Section 4,
we present HFF together with its error analysis. Section 5 presents our experimental results based on the
EGF-NGF pathway [3] and we conclude with a discussion in Section 6. Many of the technical details and
background information can be found in [18].

2 Dynamic Bayesian Networks

Through the next three sections we fix an ordered set of n random variables {X1, . . . , Xn} and let i, j range
over {1, 2, . . . , n}. We denote by X the tuple (X1, . . . , Xn). The random variables take values from the
set V of cardinality K. As usual, we let xi and sometimes vi to denote a value taken by Xi. Our dynamic
Bayesian networks will be time variant but with a regular structure [16]. They will be unrolled over a finite
number of time points. Further, there will be no distinction between hidden and observable variables.

A Dynamic Bayesian Network (DBN) is a structure D = (X , T,Pa, {Cti}) where:

– T is a positive integer with t ranging over the set of time points {0, 1, . . . , T}.
– X = {Xt

i | 1 ≤ i ≤ n, 0 ≤ t ≤ T} is the set of random variables. As usual, these variables will be
identified with the nodes of the DBN. Xt

i is the instance of Xi at time slice t.
– Pa assigns a set of parents to each node and satisfies: (i) Pa(X0

i = ∅) (ii) If Xt′
j ∈ Pa(Xt

i) then
t′ = t− 1. (iii) If Xt−1

j ∈ Pa(Xt
i) for some t then Xt′−1

j ∈ Pa(Xt′
i) for every t′ ∈ {1, 2, . . . , T}. Thus

the way nodes at the t − 1 time slice are connected to nodes at the tth time slice remains invariant as t
ranges over {1, 2, . . . , n}.

– Cti is the Conditional Probability Table (CPT) associated with the node Xt
i specifying the probabilities

P (Xt
i | Pa(Xt

i)).

The regular structure of our DBNs induces the function PA given by:Xj ∈ PA(Xi) iffXt−1
j ∈ Pa(Xt

i)

for some t. We define î = {j | Xj ∈ PA(Xi)} to capture Pa in terms of the corresponding indices.
We will adopt the following notations. xI will denote a vector of values over the index set I ⊆

{1, 2, . . . , n}. It will be viewed as a map xI : I → V . We will often denote xI(i) as xI,i or just xi if
I is clear from the context. If I = {i} is singleton, and xI(i) = xi, we will identify xI with xi. If I is the full
index set {1, 2, . . . , n}, we will simply write x. Further, we denote by Xt the vector of random variables
(Xt

1, . . . , X
t
n).

Thus Cti (xi | uî) = p specifies p to be the probability of Xi = xi at time t given that at time t − 1,
Xj1 = uj1 , Xj2 = uj2 , . . . , Xjm = ujm with î = {j1, j2, . . . , jm}.

The probability distribution P (Xt
1, X

t
2, . . . , X

t
n) describes - probabilistically- the possible states of the

system at time t. In other words, P (Xt = x) is the probability that the system will reach the state x
at t. Starting from P (X0) at time 0, given by P (X0 = x) =

∏
iC

0
i (xi), one would like to compute

P (Xt
1, . . . , X

t
n) for a given t.

2

We can use the CPTs to inductively compute this:

P (Xt = x) =
∑
u

(∏
i

Cti (xi | uî)
)
P (Xt−1 = u)

with u ranging over V n.
Since | V |= K, the number of possible states at t is Kn. Hence explicitly computing and maintaining

the probability distribution is feasible only when n is small. This motivates the search for maintaining
P (Xt) compactly and computing it approximately but efficiently. Before we describe how our algorithm
achieves this, we first describe how we use DBNs to model the dynamics of bio-pathways.

2.1 DBN Models of Bio-pathways

Biological pathways are often described as a network of bio-chemical reactions. Consequently the dynamics
of a reactions network can be modelled as a system of ODEs; one equation of the form dy

dt = f(y, r) for
each molecular species y, with f describing the kinetics of the reactions that produce and consume y, y
being the molecules taking part in these reactions and r denoting the rate constants (parameters) associated
with these reactions. For large pathways, this system of ODEs will not admit a closed-form solution. Hence
one will have to resort to large scale numerical simulations to perform analysis. Further, model calibration
and validation will have to be carried out using limited data that has only crude precision. Guided by this
we have developed a method for deriving a dynamic Bayesian network from a system of ODEs that models
a bio-pathway [15].

We assume the states of the system are observed only at a finite number of time points {0, 1, . . . , T}.
Next we partition the range of each variable yi (rate constant rj) into a set of intervals Ii (Ij). The initial
values as well as the parameters of the ODE system are assumed to be distributions (usually uniform) over
certain intervals. We then sample the initial states of the system sufficiently many times [15] and generate
a trajectory by numerical integration for each sampled initial state. The resulting set of trajectories is then
treated as an approximation of the dynamics of ODE system.

A key idea is to compactly store this set of trajectories as a dynamic Bayesian network. This is achieved
by exploiting the network structure and simple counting. First we specify one random variable Yi(Rj) for

)(a

)(b)(c

ESk
dt
dP

ESkkESk
dt

dES

ESkkESk
dt
dE

ESkESk
dt
dS

.

).(..

).(..

...

3

321

321

21

=

+−=

++−=

+−=

Et

ESt

Pt

St

Et+1

ESt+1

Pt+1

St+1

Pr (P t+1 = I | P t = I’, ES t = I’’)=0.7

Fig. 1. a) The enzyme catalytic reaction network (b) The ODEs model (c) The DBN approximation for 2 successive time slices

3

each variable yi (parameter rj). The node Y t−1
k (Rt−1j) will be in Pa(Y t

i) iff yk(rj) appears in the equation
for yi. On the other hand Rt−1j will be the only parent of the parameter node Rtj since the parameter values
don’t change once their initial values have been fixed. In Figure 1, we show a simple enzymatic reaction
network, its ODE model and the structure of its DBN approximation for 2 successive time points.

An entry in its CPT of the form Cti (I | Îi) = p says that p is the probability of the value of yi falling
in the interval I at time t, given that the value of Zkl was in Ikl for each Zt−1kl

in Pa(Y t
i). The value p is

calculated through simple counting. Suppose N is the number of generated trajectories. We record, for how
many of these trajectories, the value of Zkl simultaneously falls in the interval Ikl for each kl ∈ î. Suppose
this number is d. We then determine for how many of these d trajectories, the value of Yi falls in the interval
I at time t. If this number is d′ then p is set to be d

d′ .
The one time cost of constructing the DBN can be easily recovered through the gains obtained in doing

parameter estimation and sensitivity analysis [15]. Moreover, new experimental data can be more easily
integrated into the DBN approximation -typically by updating the parameter estimates- through belief prop-
agation [10].

3 The Factored Frontier Algorithm

In what follows, we term the approximate probability distributions to be belief states and denote them as B,
Bt etc. while exact probability distributions will be denoted as P , P t etc. Thus a belief state B is just a map
from V n → [0, 1] s.t.

∑
u∈V n B(u) = 1. Marginal functions are used by FF to represent belief states. A

marginal function is a map M : {1, . . . , n}×V → [0, 1] s.t.
∑

v∈V M(i, v) = 1 for each i. In what follows,
u, v will range over V while u and v will range over V n.

From a marginal function M , one can obtain the belief state BM via BM (u) =
∏
iM(i,ui). On the

other hand, a belief state B induces the marginal function MB via MB(i, v) =
∑

u|ui=v
B(u). It is easy

to see that for a marginal function M , we have MBM
= M , but in general BMB

6= B for a belief state B.
When the variables are all mutually independent however, we will have BMB

= B.
Suppose we are given a DBN as described in the previous section. FF computes inductively a sequence

M t of marginal functions as follows:

– M0(i, u) = C0
i (u).

– M t+1(i, u) =
∑

v∈Vî
[Cti (u | v)

∏
j∈îM

t(j,vj)].

Thus, FF maintains Bt, the belief state at t, compactly as the marginal function M t. In other words,
Bt(u) =

∏
jM

t(j,uj) = BMt . To estimate FF’s error behavior, suppose the DBN transforms the belief
state Bt−1 into the new belief state B̂t. It is easy to show that B̂t is given by:

B̂t(x) =
∑
u

(∏
i

Cti (xi | uî)
)
Bt−1(u)

FF however computes only the marginal function M t =M
B̂t , which then abstractly represents the new

belief state Bt = BMt . One can show that if Bt−1 is accurate then M t as computed by FF will also be
accurate. More precisely, if Bt−1 = P t−1 then M t =MP t (see Prop.1 in [18]). We note that B0 is accurate
by definition and hence M1 will also be accurate but not necessarily B1.

Consequently, due to Bt = BM
B̂t

, the one step error εt incurred by FF at step t is bounded by
maxu∈V n{|B̂t(u)−BM

B̂t
(u)|}. We can bound εt from above by ε0 where : ε0 = max{|B(u)−BMB

(u)|}
with B ranging over the set of all possible belief states and u ranging over V n.

4

The overall error at time t, denoted ∆t is given by ∆t = maxu∈V n(|P (Xt = u) − Bt(u)|). Using
a reasoning similar to [1], this error can be bounded as: ε0(

∑t
j=0 β

j), where 0 ≤ β ≤ 1 is a constant
determined by the stochastic transition matrix associated with the DBN. Further, β < 1 under fairly mild
restrictions placed on the underlying Markov chain and in this case we have

∑t
j=0 β

j < 1/(1− β).
A technical analysis of ε0 shows that ε0 converges to 1 as n, the number of variables, tends to ∞.

Interestingly, the FF error on a marginal can be large in practice too. Specifically, for the simple network of
Figure 1, we get an error as high as 0.16 on one of the marginals.

4 The Hybrid Factored Frontier Algorithm

During the error analysis for FF, we observed that if εt is large then Bt(v) is large for some v and hence
M t(i,vi) is large for every i. But then there can’t be too many such v. For instance, there can be only one
such v if we want M t(i,vi) >

1
2 for each i. Thus if we can record Bt(v) explicitly for a small subset of

V n for which M t is high for all dimensions then one can significantly improve FF. Unfortunately this can
not be done exactly since it will involve an exhaustive search through V n. Instead we will have to do this
approximately.

Accordingly, the Hybrid FF algorithm works as follows. Starting with t = 0, we inductively compute
and maintain the tuple (M t, St, Bt

H , α
t), where:

– M t is a marginal function.
– St ⊆ V n is a set of tuples called spikes.
– Bt

H : V n → [0, 1] is a function such that Bt
H(u) = 0 if u 6∈ St and

∑
u∈St Bt

H(u) < 1.
– αt =

∑
u∈St Bt

H(u).

We define M t
H(i, v) = [M t(i, v)−

∑
{u∈St|ui=v}B

t
H(u)]/(1−αt) for all i and v. It is easy to observe

that this is a marginal function. We next define Bt as follows:

Bt(u) = Bt
H(u) + (1− αt)

∏
i

M t
H(i,ui) (1)

We need to useM t
H rather thanM t since cumulative weight of the contribution made by the spikes needs

to be discounted from M t. This will ensure that Bt is a well defined belief state. The crucial parameter for
our algorithm is σ, the number of spikes we choose to maintain. The accuracy of the algorithm improves
as σ increases but so does the running time. We have found σ = n3 to be more than ample and still
computationally feasible for a large network as shown in the next section.

4.1 The algorithm

We initialize with M0 = C0, S0 = ∅, B0
H = 0 and α0 = 0 and fix σ.

Then, we inductively compute (M t+1, St+1, Bt+1
H , αt+1) from (M t, St, Bt

H , α
t) as follows.

Step 1: Compute M t+1 as

M t+1(i, v) =
∑
u∈St

[Ct+1
i (x | uî)×B

t
H(u)]

+(1− αt)×
∑
uî

[Ct+1
i (x | uî)×

∏
j∈î

Bt
H(j,uj)]

5

Step 2: We then compute a set St+1 of at most σ spikes using M t+1 as follows.
We want to consider as spikes u ∈ V n where M t+1(i,ui) is large for every i. To do so, we find a

constant ηt+1 such that M t+1(i,ui) ≥ ηt+1 for every i for a subset of V n containing σ elements and for
all other u′, there exists i with M t+1(i,u′i) < ηt+1. We compute ηt+1 via binary search. First we fix the
precision with which we want to compute ηt+1 to be ξ (we choose ξ = 10−6, which implies 20 iterations of
the loop described below). The search for ηt+1 proceeds as follows:

– η1 = 0 and η2 = 1.
– While η2 − η1 > ξ do

1. η = η1+η2
2 .

2. Set ai to be the number of values v with M t+1(i, v) > η.
3. Set Ui to be this set of values.
4. If

∏
i(ai) > σ then η1 = η; otherwise η2 = η

– endwhile
– Return ηt+1 = η2 and St+1 =

∏
i Ui

Step 3:
Finally, we compute Bt+1

H (u) for each u in St+1 as follows.

Bt+1
H (u) =

∑
v∈St

(Bt(v)×
∏
i

Ct+1
i (ui | vî))

4.2 Analysis of the Hybrid FF

One can establish the following properties of our algorithm. We refer the reader to the full paper [18] for
the details.

Proposition 1. 1. For σ = 0, the hybrid FF algorithm is the same as FF and for σ = Kn, it is the exact
algorithm.

2. Bt is a belief state for every t.
3. Suppose P t = Bt. Then P t+1(v) =M t+1(i, v) for every i, v.
4. The time complexity of hybrid FF is O(T · n · (σ2 +KR+1)), where T is the number of time points, n

is the number of variables, σ is the number of spikes, K = |V | and R is the maximum in-degree of the
DBN.

We recall the time complexity of FF is O(n ·KR+1) and hence the additional computational effort re-
quired by HFF is O(T · n · σ2). However, in our applications HFF will be run as an off-line computation
where in one sweep, the required information about the belief states can be gathered. Where repeated exe-
cutions are required, such as for combinations of parameter values that best match experimental data ([15])
one can initially run FF repeatedly to narrow down the range of possibilities and then run HFF once to get
an accurate estimate.

The error analysis for hybrid FF proceeds along the lines for FF presented in the previous section. The
one step error, can be bounded from above by ε′0 with ε′0 ≤ min{(1 − α), η}, where α = mint(α

t) and
η = maxt(η

t). In particular, if σ ≥ 1, then η ≤ 1/2 and thus ε′0 ≤ 1/2.
The cumulative error at t is then given by: ∆′t ≤ ε′0(

∑t
j=0 β

j) where β is as specified in the previous
section. Thus, the worst case error is better than the one for FF, and can be much better if α is large enough
or η small enough, which we can monitor on the fly.

6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 9 17 25 33 41 49 57 65 73 81 89 97

FF Exact Inference Hybrid FF (n^3 Spikes)

M
t (

 E
, [

0,
1)

)

Time points

Fig. 2. M t(E, [0, 1]) for all t

5 Results

We have implemented our algorithm in C++. The experiments reported here were carried out on a Opteron
2.2Ghz Processor. First we ran HFF on the DBN for the simple enzyme catalytic system shown in 1.

We fixed the parameters of the system using known values and divided the value space of each variable
into 5 equal intervals [0, 1), [1, 2), . . . , [4, 5] and assumed the initial distributions to be uniformly distributed
over certain intervals (see [18]). The time scale of the system was set to be 10 minutes which was evenly
divided into time points ranging over [0, 1, . . . , 100] . We fixed the number of spikes to be 43 = 64 and
ran HFF and FF. This being a small example, we could compute the probability distributions over the states
for each time point exactly. From this we derived the exact marginal distributions for each species. FF
performed well for the product species P . However for E, ES and S it deviated from the actual distribution
for certain marginals. For instance, for E and the interval [0, 1), it deviated by as much as 0.168 for the
marginal M t(E, [0, 1)) as shown in Figure 2. This figure also shows the time evolution of this marginal for
HFF and the exact one. As can be seen, the HFF profile is almost the same as that of the exact one (in fact
this was already the case for σ = n2 = 16). Figure 3 shows the maximum error curves for FF and HFF
relative to the exact one; it the maximum of the errors taken over all 5 intervals at each time point. As can
be seen, the maximum error incurred by HFF is lower.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 9 17 25 33 41 49 57 65 73 81 89 97

FF Error Hybrid FF Error

Time points

M
ax

im
um

 a
bs

ol
ut

e
er

ro
r

 fo
r

E

Fig. 3. Maximum Error of FF and HFF with respect to exact for E

7

Fig. 4. EGF-NGF pathway

We next considered the EGF-NGF pathway in PC12 cells. This cell line is a valuable model system
in neuroscience. Specifically, PC12 cells proliferate in response to EGF stimulation but differentiate into
sympathetic neurons in response to NGF. This phenomenon has been intensively studied [9] with a tran-
sient activation of Erk1/2 associated with cell proliferation, while a sustained activity has been linked to
differentiation. The network structure of this pathway shown in figure 4. The ODE model of this pathway
is available in the BioModels database [17]. It consists of 32 differential equations (one for each molecular
species) and 48 associated rate parameters (estimated from multiple sets of experimental data). Its DBN
approximation was adapted from the one constructed in [15] and details can be found in [14]. We computed
the HFF profiles for various sizes of spikes set. Next we ran FF and compared its profiles with those of HFF.
For many of the species FF did quite well. However, 6 species out of 32 exhibited a significant difference,
among which were important proteins such as Activated Sos and Activated Erk.

Since the DBN consisted of 3200 nodes (32 nodes per time slice; 100 time slices), with each node’s
variable assuming 5 possible values, it was not possible to compute the exact probability distributions over
532 states at each time point. However, to compare the accuracy of FF and HFF (with σ = n3 = 32768
for this DBN), one does not necessarily need the exact distribution. Denoting M t

σ (respectively, M t
FF) the

marginal at time t computed by HFF with σ spikes (respectively, FF), the quantity |M t(i, v) − P (Xt
i =

v)| − |M t
FF (i, v)− P (Xt

i = v)| does not depend on the exact marginal P (Xt
i = v). Rather, it depends on

the marginals (M t
σ(i, v),M

t
FF (i, v)) and their relative position with respect to the exact marginal.

Now, as σ approachesKn (whereK = |V |), α approaches 1 and thus the belief states computed by HFF
approach the exact distributions. Hence, we ran HFF with different values of σ -denoted HFF(σ)- ranging
from HFF(3072) upto HFF(100000) and looked for a pattern. From the relative positions of the curves, and
the high value of α (always bigger than 0.6) for HFF(100000), we infer that the curve for HFF(100000) is on
the same side of FF and HFF(32768) as the exact marginal. Hence, the quantity |M t

32768(i, v)−M t
100000| −

|M t
FF (i, v)−M t

100000| is a good approximation for |M t
32768(i, v)−P (Xt

i = v)|−|M t
FF (i, v)−P (Xt

i = v)|.
In figure 5 we show for Activated Erk, the computed marginals of the concentration of this protein falling in
the interval [2, 3) for FF as well as HFF(3072), HFF(32768) and HFF(100000).

8

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1 9 17 25 33 41 49 57 65 73 81 89 97

FF HFF (3072 Spikes) HFF (32768 Spikes) HFF (100000 Spikes)

Time points

M
t (

 A
ct

ER
K

, [
2,

3)
)

Fig. 5. Time profile of M t(ActErk ∈ [2, 3]) for FF and HFF with various choices for σ

We also gathered and compared the errors incurred by HFF(n3 = 32768) and FF relative to HFF(100000)
for ActErk over all 5 intervals consisting of 100 × 5 = 500 points as well as all the proteins consisting of
32×5×100 = 16000 points. The comparison of the errors is shown in figure 6. The 80 data points at which
FF does better by more than 0.01 compared to HFF(n3) can be explained by examining figure 5. As can be
seen, when the FF curve crosses the HFF(100000) curve, the HFF(n3) curve will be further away.

Further, we computed αt which sums up the approximated probabilities of the spikes at t. The result
is shown in figure 7. The relatively high values of αt for most t indicate that our approximate method of
computing the spikes (step 2) and their probabilities (step 3) in HFF is of good quality. It also shows that the
single step error is quite low for HFF in this pathway model.

-80

-3

837

179

19

193

93

54

-200 0 200 400 600 800 1000 1200

Over all
proteins

ActErk over
all intervals

ActErk in [2,3]

FF better by >0.01 HFF better by [0.01,0.1) HFF better by >0.1

Fig. 6. Relative error of HFF(32768) and FF with respect to HFF(100000) (in terms of no. of time points)

9

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 9 17 25 33 41 49 57 65 73 81 89 97

HFF (3072 Spikes) HFF (32768 Spikes) HFF (100000 Spikes)

Time points
α

Fig. 7. The evolution of α for the EGF/NGF pathway model.

It took 40 hours to compute HFF(100000) to establish the standard for comparing FF and HFF(32768).
For HFF(32768), it took 3.8 hours, for HFF(3072) it took 2.5 minutes, while FF took just 0.2 seconds. How-
ever, the current implementation of HFF is quite naive and sequential and there are significant opportunities
to improve its accuracy and performance. Further as mentioned earlier, in our applications HFF is an off-line
computation and hence the accuracy gained through this extra computational effort is quite encouraging.

6 Discussion

A variety of approaches to modeling bio-pathway dynamics use Markov chains as the underlying model.
A key piece of information that is needed for many analysis tasks is the probability distribution of the
states at each time point. The state of the Markov chain will consist of a vector of random variables and
the dimension of this vector will correspond to the number of entities participating in the pathway. Hence,
for large pathways, explicitly representing the probability distributions and exactly computing them, are
both infeasible. One must resort to approximate methods. In this light, the Factored Frontier algorithm is a
simple and efficient approximate algorithm but its error behavior was not well understood till the present.
It also seems to incur significant errors even for small biochemical networks. To overcome this we have
presented here an extension of FF called the Hybrid Factored Frontier algorithm. In addition to maintaining
and propagating belief states in a factored form, HFF also maintains a small number of full dimensional
state vectors called spikes and their probabilities at each time slice. This adds a tunable parameter to FF
using which one can improve the accuracy at the price of increased but polynomial time computational cost.
We have provided an error analysis for HFF as well as FF which shows that HFF can perform better. This is
also validated by our experiments on a fairly large pathway model.

Here we have used probabilistic approximations of ODE models as a source of our DBNs. It will be
important to derive DBN models from other sources of biological relevance such as [5, 7, 13]. We plan to
optimize the implementation of our algorithm and also explore alternative methods for computing the spikes
and their probabilities. Secondly, we would like to estimate the contraction factor β to bound the cumulative
error. Further, we would like to exploit the pathway structure of the biological system [11] to further optimize
our algorithm. We are also developing other DBN models of signaling networks to which we plan to apply
HFF. A related and important goal will be to develop approximated probabilistic verification techniques
based on logics such as PCTL [6] using HFF.

10

References

1. Xavier Boyen and Daphne Koller. Tractable inference for complex stochastic processes. In Proceedings of the 14th Annual
Conference on Uncertainty in Artificial Intelligence (UAI-98), Madison, Wisconsin, USA, pages 33–42, 1998.

2. Xavier Boyen and Daphne Koller. Exploiting the architecture of dynamic systems. In AAAI/IAAI, pages 313–320, 1999.
3. K. S. Brown, C. C. Hill, G. A. Calero, K. H. Lee, J. P. Sethna, and R. A. Cerione. The statistical mechanics of complex

signaling networks: nerve growth factor signaling. Physical Biology 1, pages 184–195, 2004.
4. Muffy Calder, Vladislav Vyshemirsky, David Gilbert, and Richard J. Orton. Analysis of signalling pathways using continuous

time markov chains. T. Comp. Sys. Biology, pages 44–67, 2006.
5. Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer, and Jean Krivine. Rule-based modelling of cellular signalling.

In CONCUR, pages 17–41, 2007.
6. Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability. Formal Asp. Comput., 6(5):512–535, 1994.
7. Thomas A. Henzinger, Maria Mateescu, and Verena Wolf. Sliding window abstraction for infinite markov chains. In CAV,

pages 337–352, 2009.
8. Sumit Kumar Jha, Edmund M. Clarke, Christopher James Langmead, Axel Legay, André Platzer, and Paolo Zuliani. A bayesian

approach to model checking biological systems. In CMSB, pages 218–234, 2009.
9. B. N. Kholodenko. Untangling the signalling wires. Nature Cell Biology 9 (3), pages 247–249, 2007.

10. Geoffrey Koh, David Hsu, and P. S. Thiagarajan. Incremental signaling pathway modeling by data integration. In RECOMB,
pages 281–296, 2010.

11. Geoffrey Koh, Huey Fern Carol Teong, Marie-Vronique Clment, David Hsu, and P. S. Thiagarajan. A decompositional ap-
proach to parameter estimation in pathway modeling: a case study of the akt and mapk pathways and their crosstalk. In ISMB
(Supplement of Bioinformatics), pages 271–280, 2006.

12. M. Kwiatkowska, G. Norman, and D. Parker. Symbolic Systems Biology, chapter Probabilistic Model Checking for Systems
Biology. Jones and Bartlett, 2010.

13. M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model checker. In T. Field, P. G. Harrison,
J. T. Bradley, U. Harder (Eds.), Computer Performance Evaluation / TOOLS, Vol. 2324 of Lecture Notes in Computer Science,
Springer, pages 200–204, 2002.

14. Bing Liu, P. S. Thiagarajan, and David Hsu. Supplementary materials for the egf-ngf pathway modeling.
http://www.comp.nus.edu.sg/ rpsysbio/tcs10.

15. Bing Liu, P. S. Thiagarajan, and David Hsu. Probabilistic approximations of signaling pathway dynamics. In P. Degano,
R. Gorrieri (Eds.), CMSB, Vol. 5688 of Lecture Notes in Computer Science, Springer, pages 251–265, 2009.

16. K. P. Murphy and Y. Weiss. The factored frontier algorithm for approximate inference in DBNs. In Proceedings of the 17th

Annual Conference on Uncertainty in Artificial Intelligence, San Francisco, CA, USA, pages 378–385, 2001.
17. N. Le Novere, B. Bornstein, A. Broicher, M. Courtot, M. Donizelli, H. Dharuri, H. Sauro L. Li, M. Schilstra, B. Shapiro,

J. Snoep, and M. Hucka. Biomodels database: A free, centralized database of curated, published, quantitative kinetic models
of biochemical and cellular systems. Nucleic Acids Research 34, pages D689– D691, 2006.

18. Sucheendra K. Palaniappan, S. Akshay, Blaise Genest, and P. S. Thiagarajan. A hybrid factored frontier algorithm, 2010.
Available at: www.comp.nus.edu.sg/˜suchee/hybridlong.pdf.

19. W.S.Hlavacek, J.R.Faeder, M.L.Blinov, R.G.Posner, M.Hucka, and W.Fontana. Rules for modeling signal-transduction sys-
tems. Science STKE, 2006:re6, 2006.

