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Résumé

Tumeurs et cancer

Le terme cancer est utilisé pour décrire un grand nombre de maladies
qui ont en commun la croissance anormale d’un groupe de cellules qui en-
vahissent d’autres parties du corps appelé tumeur maligne [HW00]. Pour
qu’une tumeur devienne maligne, les cellules doivent se reproduire anormale-
ment et sans contrôle par l’organisme, elle doivent être immortelles et ne
plus répondre aux signaux envoyés par le reste du corps. Dans cette thèse
nous utiliserons le terme tumeur au lieu de tumeur maligne par soucis de
concision.

TRAIL comme traitement tumoral

L’apoptose ou mort cellulaire programmée est un mechanisme controlé
génétiquement, nécessaire au developpement tissulaire car il élimine les cel-
lules superflues. Ce mecanisme est notamment nécéssaire à l’élimination des
cellules dont l’ADN est endommagé et qui pourraient devenir cancéreuses
[Won11].

TRAIL (Tumour Necrosis Factor-α-Related Apoptosis-Inducing Ligand)
est une protéine de la famille TNF qui peut induire l’apoptose en se liant à
deux recepteurs membranaires, les "death receptors" DR4 et DR5 [POC+97,
CEJ+97].

La liaison de TRAIL aux death receptors induit la formation de DISC
(death-inducing signaling complex) et l’activation de Caspase 8, qui elle
même active deux réseaux de signalements se terminant par l’apoptose. Une
étape critique de ce processus est la perméabilisation de la membrane mi-
tochondriale externe (MOMP) qui déclenche le clivage de la protéine PARP
(voir figure 1.1). La présence de PARP clivée dans la cellule est un bon
indicateur de l’apoptose [MF91, NDB+97, DNM+97].

Les cellules normales ont démontrées une résistance à TRAIL élevée, con-
trairement a certains types de cellules cancéreuses [Sri01], faisant de celui-ci
une cible intéressante pour certains traitements anti-cancer. Tous les can-
cers ne répondent pas positivement à TRAIL mais pour ceux qui le font les
résultats sont encourageants [MLM+07].
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Figure 1: Représentation simplifiée de la voie biologique TRAIL

Dans cette thèse, nous examinerons spécifiquement le cas particulier de la
réaction des cellules HeLa au traitement. Nous savons que, bien que la plu-
part des cellules HeLa soient affectées par TRAIL, certaines sont résistantes
et survivent au traitement indépendamment de la concentration de TRAIL.
Cette résistance à TRAIL s’est montrée transitoire et permet à une fraction
des cellules de survivre à la saturation de TRAIL [FRSS13]. Des études sur
le devenir des cellules sœurs ont montré que cette survie provient principale-
ment de différences naturelles dans les concentrations de protéines régulant
l’apoptose [SGA+09, RHH+09]. La résistance des cellules survivantes re-
tourne progressivement en quelques jours à la valeur trouvée pour les cellules
aléatoires en raison de la synthèse naturelle des protéines.

Modèles in silico du traitement

En raison de l’existence d’une résistance transitoire, enchaîner des traite-
ments à grande fréquence peut être sous-optimal. D’autre part, le traitement
doit être suffisamment fréquent pour dépasser la croissance naturelle de la
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tumeur. Aussi, alors que TRAIL cible spécifiquement les cellules cancéreuses,
il peut aussi déclencher l’apoptose dans les cellules normales [Ber16]. Pour
ces raisons, il y a un intérêt à trouver la quantité et la fréquence de traitement
optimales pour maximiser la mort de la lignée de cellules tumorales tout en
minimisant la quantité totale de TRAIL utilisée.

Au lieu de tester directement les protocoles in vivo, la simulation in silico
peut être utilisée pour tester un grand nombre de protocoles. Un petit nom-
bre des protocoles les plus prometteurs testés in silico peut ensuite être testé
in vivo. Cela permettrait d’économiser du temps et de l’argent en réduisant
le nombre d’expériences in vivo.

Modélisation Multi-échelle
Notre objectif est de faire un modèle in silico qui représente fidèlement

l’effet des concentrations protéiques internes sur des traitements tumoraux
successifs. Deux niveaux différents doivent être considérés: Au niveau tissu-
laire, le modèle doit prendre en compte la croissance naturelle de la tumeur
et le traitement détruisant une fraction de la tumeur. Au niveau cellu-
laire, le modèle doit représenter avec précision les concentrations des pro-
téines dans la cellule et le devenir de la cellule après traitement. Il doit
y avoir une identification claire de la mort de la cellule. Il a été montré
que le clivage de PARP est un bon identificateur du processus d’apoptose
[MF91, NDB+97, DNM+97]. Nous utiliserons donc une forte concentration
de PARP clivé comme indicateur que la cellule est morte, comme utilisé par
[BSDB14].

Pour étudier l’évolution tumorale sous traitement de TRAIL, nous avons
donc besoin d’un modèle prenant en compte à la fois les niveaux tissulaires
et cellulaires tout en évitant une explosion calculatoire due au nombre élevé
de cellules individuelles à l’intérieur d’une tumeur.

Au niveau cellulaire, nous avons besoin d’un modèle qui puisse à la fois
représenter l’état de la voie biologique et être facilement utilisé au niveau
tissulaire. La méthode que nous développons utilise des distributions mul-
tivariées de probabilités sur les protéines. Cela permet de garder une trace
de l’influence des protéines du système à l’intérieur de chaque cellule sans
énumérer toutes les cellules.

Le modèle doit également être capable de simuler rapidement l’évolution
du système. Pour cela nous proposons de représenter l’évolution de la dis-
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tribution multivariée en utilisant une abstraction appelée réseau dynamique
bayésien (DBN). On peut alors utiliser soit des simulations du DBN soit des
interférences approchées, c’est-à-dire le calcul de la distribution multivariée.

Au niveau tissulaire, nous devons considérer les différences de conditions
environnementales qui existent entre les différentes cellules de la tumeur
(principalement leur accès au traitement et leurs contraintes de croissance).
Pour les prendre en compte, nous proposons de subdiviser la population en
sous-populations avec leurs propres distributions (protéiques). La croissance
de ces sous-populations doit être modélisée en prenant en compte les décès
dus au traitement.

Contributions

Nous avons développé une méthode utilisant des distributions multivar-
iées pour représenter une population de cellules soumises à la voie de signali-
sation de TRAIL. Une représentation exacte étant intraitable, nous utilisons
une représentation où les espèces biologiques sont groupées en "clusters" non
disjoints. Pour ces clusters, la distribution exacte est calculée. La distribu-
tion de deux espèces liées par une chaine de clusters peut être approximée
avec une précision raisonnable. Nous montrons que l’information mutuelle
que partagent les variables est en grande partie conservée par cette approxi-
mation, de manière théorique aussi bien qu’expérimentale.

Nous avons developpé une méthode d’abstraction automatique d’une voie
de signalisation par des réseaux bayésiens dynamiques (DBN), afin de mod-
éliser l’évolution d’un groupe de cellules soumises à l’influence de cette voie
dans le temps. Le modèle permet de modéliser efficacement l’impact d’une
voie de signalisation à partir d’un sous ensemble réduit de variables (passant
de 92 à 10). Ce modèle est la fondation pour un modèle multi-niveau prenant
en compte l’évolution de la tumeur et l’évolution des composants d’une voie
de signalisation à l’intérieur des cellules qui la composent.

Nous avons enfin développé une technique d’inférence pour les DBNs.
Cette technique se distingue par son utilisation des clusters pour conserver au
mieux les corrélations entre espèces biologiques d’un pas de temps à l’autre.
Nous montrons que cette technique est efficace comparée aux techniques an-
térieures.
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Nos prototypes sont à la disposition de la communauté scientifique et sont
téléchargeables sur: https://perso.crans.org/∼genest/D22.zip.
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Abstract
This thesis examines a new way to study the impact of a given pathway on

the dynamics of a tissue through Multi-Level Analysis. The analysis is split
in two main parts: The first part considers models describing the pathway
at the cellular level. Using these models, one can compute in a tractable
manner the dynamics of a group of cells, representing it by a multivariate
distribution over concentrations of key molecules. The second part proposes
a 3d model of tissular growth that considers the population of cell as a set
of subpopulations, partitionned such as each subpopulation shares the same
external conditions. For each subpopulation, the tractable model presented
in the first part can be used. This thesis focuses mainly on the first part,
whereas a chapter covers a draft of a model for the second part.
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Chapter 1

Introduction

1.1 Tumours and cancer

Cancer is a term defining a large range of diseases that have in common
the abnormal growth of a group of cells that invade other parts of the body
called malignant tumour [HW00]. For a tumour to become malignant, the
cells have to reproduce abnormally and without possible control, they must
be immortal and stop responding to apoptotic signals of the rest of the body.
In this thesis we will use the term tumour instead of malignant tumour for
short.

1.2 TRAIL as a tumour treatment

Apoptosis or programmed cell death is a genetically controlled mechanism
necessary for tissue developpement through the elimination of unwanted cells.
This mechanism is notably used naturally to eliminate cells with damaged
DNA that could otherwise possibly lead to cancer [Won11].

Tumour Necrosis Factor-α-Related Apoptosis-Inducing Ligand (TRAIL)
is a protein from the TNF family that can induce the apoptosis process by
binding to two transmembrane receptors, the death receptors DR4 and DR5
[POC+97, CEJ+97]. TRAIL’s binding to the death receptors leads to the
formation of the death-inducing signaling complex (DISC) and the activation
of Caspase 8, that activates two different signaling pathways leading to apop-
tosis. A critical state in this process is the mitochondrial outer membrane
permeabilization (MOMP) that triggers the cleavage of the PARP protein

15



16 CHAPTER 1. INTRODUCTION

Figure 1.1: Simplified representation of the TRAIL pathway

(see figure 1.1). The presence of cleaved PARP in the cell is a good indicator
that apoptosis is ongoing [MF91, NDB+97, DNM+97].

Normal cells were shown to be highly resistant to TRAIL while some
tumour cells are vulnerable to its action [Sri01], making it an interesting
target for some cancer treatments. Not all cancers respond positively to
TRAIL but for those that do, results are encouraging [MLM+07].

In this thesis we will consider specifically the particular case of HeLa cells
response to treatment. We know that while most HeLa cells are affected by
TRAIL, some are resistant and survive the treatment regardless of TRAIL
concentration. This resistance to TRAIL has been shown to be transient
and allows a fraction of the cells to survive at TRAIL saturation [FRSS13].
Studies on the fate of sister cells have shown that this survival comes mostly
from naturally occuring differences in the concentration levels of proteins
regulating apoptosis [SGA+09, RHH+09]. While almost all surviving cells
are resistant right after the treatment, some of them gradually lose this re-
sistance over time through random changes in their protein concentrations.
The average number of resistant cells return to it’s initial value after a few
days.



1.3. IN SILICO MODEL OF THE TREATMENT 17

1.3 In silico model of the treatment

Because of the existence of a transient resistance, successive treatments with
a high frequency can be suboptimal. On the other hand the treatment must
be frequent enough to outpace the tumour’s natural growth. Also while
TRAIL targets specifically cancer cells, it can trigger apoptosis in normal
cells [Ber16]. For those reasons, there is an interest in finding the optimal
quantity and frequency of treatment to maximize the tumour cells line’s
death while also minimizing the total quantity of TRAIL used.

Instead of testing in vivo protocols directly, in silico simulations can be
used to test a large number of protocols. A small number of the most promis-
ing protocols tested in silico can then be tested in vivo. This would allow to
save both time and money by reducing the number of in vivo experiments.

In this thesis, for simplicity, we will consider unvascularized tumours.
Without vascularizations, tumours can grow up to a million cells without
having the core necrotizing too much due to the lack of oxygenation and
nutrients. Larger tumours require vascularization to continue their growth
[FH73].

1.4 Multi scale modelling

Our goal is to make an in silico model that faithfully represents the effect of
the internal protein concentrations arising from TRAIL treatments and their
effect on the resistance rate for subsequent treatments. Two different levels
must be considered : At the tissular level, the model must take into account
the natural growth of the tumour and the treatment killing a fraction of
the tumor. At the cellular level, the model must represent accurately the
concentrations of the proteins in the cell and the cell’s fate after treatment.
There needs to be a clear identification of the cell’s death. It was shown
that the cleavage of Parp is a good indicator of the apoptosis process [MF91,
NDB+97, DNM+97]. We will thus use a high concentration of cleaved PARP
as an indicator that the cell is dead, as in [BSDB14].

To study the tumour evolution under TRAIL treatment, we thus need a
model taking into account both the tissular and cellular levels while avoiding
a computationnal explosion due to the high number of individual cells inside
a tumour.

At the cellular level we need a model that can both represent the state of



18 CHAPTER 1. INTRODUCTION

the pathway at any time and be easily used at the tissular level. The method
we will study uses a multivariate distribution of probabilities over all the
proteins. This will allow us to keep track of the influence of the proteins of
the system inside every cells at once without enumerating every single cell.

The model must also be able to quickly simulate the evolution of the
system. For that we propose to represent the evolution of the multivariate
distribution using a dynamic bayesian network (DBN). We can then use
either simulations of the DBN or approximated interence, that is computation
of the multivariate distribution.

At the tissular level, we need to consider the differences in environmental
conditions that exist between different cells in the tumour (mostly their ac-
cess to treatment and their growth constraints). To take them into account
we propose to subdivide the population in sub-populations with their own
(protein) distributions. The growth of those sub-populations accounting for
the deaths due to treatment has to be modeled.

1.5 Contributions
The main contribution of this thesis is a new approach to simulate the evo-
lution of biological systems containing multiple correlated variables, such as
led by the dynamics of pathways. This approach contains two main steps.
First, the pathway is represented as a multivariate distribution of all the bi-
ological components considered. To avoid a combinatorial explosion in this
representation, we developped a cluster based representation that allows to
keep perfectly some of the main correlations and have reduced errors on other
highly correlated components.

We developped an automated method of abstraction of a signaling path-
way using DBNs to model the evolution of cells subject to the influence of
the pathway over time. This model allows to reduce the numer of variables
significantly (from 92 to 10) as well as accelerating simulations by an order
of magnitude compared to ODEs.

Second, we developped an inference method for DBNs to predict the evo-
lution of the system. DBNs have already been used to model and study
biological systems leading to novel finding in immune system regulation
[LZT+11]. Our approach goes further by using clusters in those DBNs to
preserve the correlations between important variables ans thus increase the fi-
delity of the model compared to simple DBNs. The algorithm for inference of
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clustered DBNs as well as the data used are available at https://perso.crans.org/∼genest/D22.zip.
The second contribution is still a work in progress and consists in a new

model for the representation of a tumor and its growth. While there ex-
ist good models of tumor growth taking into account its topology such as
[WBP+15], our model has the advantage of being fast and that it considers
cells not individually but as group sharing the same external conditions. This
lays the ground for a future multi-level representation of a tumor where the
evolution of a pathway that influence cell death like the apoptosis pathway
can be modeled for each sub-population sharing the same external conditions
instead of individual cells making it more tractable.

1.6 Outline
This thesis is organized as follows :

In chapter 2 we will look at the possible representations of the distribution
of a large number of variables and propose a new representation allowing to
preserve correlations while being tractable for a large number of variables.

In chapter 3 and 4 we will study the use of DBNs to represent the evolution
of a pathway over time and new methods to increase the accuracy of the
inference at each time step.

In chapter 5 we will look at the use of DBNs to model the evolution of a
tumor over time that allows to decouple the complexity of the computations
from the size of the tumor.

Finally in chapter 6 we will summarize our results and propose some
perspectives derived from this work.
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Chapter 2

Representing multivariate
distributions

2.1 Introduction

When studying a process like apoptosis over a large group of cells, it is crucial
to understand how the population as a whole will evolve. Slight differences
in cells of the population can have a large impact in the outcome of those
processes. For instance the overexpression of a single protein can entirely
block a pathway. In the case of TRAIL, the pathway ultimately results in
the apoptosis of the cell and we know that the overexpression of antiapoptotic
proteins can prevent the apoptosis. Due to naturally occuring differences in
protein production and degradations, cells inside a same population differ in
protein concentrations and, in the specific case of TRAIL treatment, those
variations can change the cells fate [SGA+09]. Because of that, we need to
take into account this variability among cells:

Representing the particular configurations of a population can be com-
plicated. One could consider the means of the concentrations for proteins of
interest in the population of cells but this method would result in consider-
ing all cells as identical and hence with the same outcome. As an example,
let’s consider two cell populations A and B under TRAIL treatment shown in
figure 2.1. Both have a different distribution of concentration of an antiapop-
totic protein among cells but with the same average value. The antiapoptotic
proteins prevent death if they are at high concentration. Populations A and
B both have the same mean concentration (medium) but we can easily see

21
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Antiapop Pop A Pop B
low 0% 50%
med 100% 0%
high 0% 50%
death 100% 50%

Figure 2.1: Example of the outcome of two populations with the same average
concentration of an antiapoptotic protein that prevent death when at high
concentration

that the outcome for A (every cell dies) is vastly different from B (half the
cells survive).

The other extreme would be to consider the state of every individual cells,
but this would lead to very large models hence very intensive computations.
We propose instead to represent the particular configuration of a population
of cells in a more tractable manner, using multivariate probability distribu-
tion. Each specie’s concentration would be one random variable. A concern
that arises with this approach is that, because of the large number of variables
in the system, representing the exact joint distribution is still intractable.

To make this approach amenable to large systems, we explore different
techniques to approximate the exact joint distribution over a large set of
variables. In this chapter, we consider the problem of (approximately) rep-
resenting a probability distribution, as those that appear in populations of
cells governed by the same biological pathway. Beyond classical approxima-
tions, we propose to use the Chow-Liu tree representation [CL68], based on
non-disjoint clusters of two variables.

We compare these approximate stochastic representations on different
models of increasing complexities. Our experiments show that the Chow-Liu
based approximation scheme is more accurate than existing ones to model
probability distributions deriving from biopathways, while requiring a mini-
mal complexity overhead.

This chapter also introduces the notations, concepts and tools that will
be used throughout this thesis, including information theory concepts, as
well as the pathways we will use for our in silico experiments.

The work presented through this chapter comes mainly from [PPFG18,
PPFG17], in which I was first author.
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2.2 Different representations of a multivariate
distribution

As a first step, we will assume that species are described by discrete variables.
We refer the reader to section 2.6 to obtain discrete values from continuous
variables. Let’s consider a system constituted of n different variables, each
able to take s possible values. A distribution associates a probability to each
possible state of the system. Exactly representing this distribution requires
sn different values. For instance, consider a three variable distribution with
binary values ∆0, with exact representation:

P (X1 = 0, X2 = 0, X3 = 0) = 0.1

P (X1 = 0, X2 = 1, X3 = 0) = 0.2

P (X1 = 1, X2 = 0, X3 = 0) = 0.1

P (X1 = 1, X2 = 1, X3 = 0) = 0.15

P (X1 = 0, X2 = 0, X3 = 1) = 0.05

P (X1 = 0, X2 = 1, X3 = 1) = 0.1

P (X1 = 1, X2 = 0, X3 = 1) = 0.1

P (X1 = 1, X2 = 1, X3 = 1) = 0.2

The exact representation becomes impossible to use realistically for large
values of n. The most naive and simple approach to represent the distribution
in a tractable manner is when all variables are independent. All variables are
thus represented independently. Using the ∆0 example, we would obtain :

P (X1 = 0) = 0.45

P (X1 = 1) = 0.55

P (X2 = 0) = 0.35

P (X2 = 1) = 0.65

P (X3 = 0) = 0.55

P (X3 = 1) = 0.45

This representation is detailed in subsection 2.2.2.
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Another solution we explore consists in considering disjoint clusters of
variables. This can be seen as an extension of the previous method where
we consider joint distributions of c variables instead of single variables. The
representation of the system consists in the exact representation of the corre-
lations of the variables inside each cluster and those clusters are independent
: A variable inside a cluster is independent to any variable inside any other
cluster.

For ∆0, we would obtain with clusters {X1, X2} and {X3}:

P (X1 = 0, X2 = 0) = 0.15

P (X1 = 1, X2 = 0) = 0.2

P (X1 = 0, X2 = 1) = 0.3

P (X1 = 1, X2 = 1) = 0.35

P (X3 = 0) = 0.55

P (X3 = 1) = 0.45

This approximation is detailed in subsection 2.2.3.

Last, it is possible to allow variables to be in multiple clusters. This can
allow to partially keep the correlations between the species inside the clusters
that share the protein.

For ∆0, we would obtain with clusters {X1, X2} and {X1, X3}:

P (X1 = 0, X2 = 0) = 0.15

P (X1 = 1, X2 = 0) = 0.2

P (X1 = 0, X2 = 1) = 0.3

P (X1 = 1, X2 = 1) = 0.35

P (X1 = 0, X3 = 0) = 0.3

P (X1 = 1, X3 = 0) = 0.25

P (X1 = 0, X3 = 1) = 0.15

P (X1 = 1, X3 = 1) = 0.3

This approximation is detailed in subsection 2.2.4.
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2.2.1 Formalism

We now formalize the different representations : We assume a set X =
{X1, ..., Xn} of random variables over the indices I = {1, ..., n} (for instance
concentrations of molecules). We assume that these variables take discrete
values in the same set V of values (for instance, V = {very low,low,medium,
high,very high}). In our case, the size |V | of V would be small, typically
around 5, while the number of variables n would be larger, typically around
30. For a subset J ⊆ I of indices, we denote by ~XJ the tuple of variables
{Xj|j ∈ J}, and by ~xJ = (xk)k∈J a tuple in V J . A distribution P over
X is a function P : V I → [0, 1] such as

∑
~x≤V X P (~x) = 1. We denote by

P (~xJ) = P ( ~XJ = ~xJ) the probability that the tuple of variable ~XJ takes
the tuples of values ~xJ . By definition, we have P (~xJ) =

∑
{xi|i/∈J} P ( ~X = ~x)

with ~xi = xi for all i /∈ J and ~xi = ~xY,i for i ∈ J . This operation is called
marginalization.

The exact representation of a probabilistic distribution over the set of
variables X with values in V involves |V ||X| values (each encoding a proba-
bility in [0, 1]). We call such values joint probabilities.

2.2.2 Fully factored representation

The first approximated representation assumes that the joint probability is
equal to the product of individual probabilities. In this way, it suffices to
keep only the marginal probability for each species, that is |V | · |X| values.
More precisely, the representation is a function Q : I ∗V → [0, 1] that follows
the rule: Q(i, xi) = P (Xi = xi).

We call such an approximation fully factored, and denote it by PFF It
represent the distribution:

PFF (~xX) =
∏
i

P (Xi = xi) (2.1)

The main interest of this approximation is its really low complexity.
Obviously, on the other hand, with such a scheme, correlations between

variables are lost. It is not too hard to understand that such representation
will not represent faithfully the original distribution in cases where correla-
tions are not negligeable. For most pathways, as we will see in the section
2.8 the concentrations of proteins can be highly correlated. We now propose
representations that allows to consider some of these correlations.
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2.2.3 Disjoint cluster representation

We describe now an approximation taking into account the most important
correlations: The disjoint cluster representation. In this representation, we
group variables that share information into disjoint clusters. For each cluster,
the joint distribution of the variables in the cluster is represented. A variable
inside a given cluster is considered independent to every variable outside of
the cluster.

One could thus think of disjoint clusters of correlated values, relations
between disjoint clusters being handled in the succint fully-factored form.
Assuming that each cluster is of size m and c is the number of clusters
(c = |X|

m
), the representation Q is a function Q : c ∗ V m → [0, 1] that follow

the rule: Q(c, ~xKc) = P ( ~Xc = ~xKc) We call such approximation the disjoint
clustered approximation.

Assuming a known clusterisation (Kj)1≤j≤c with c clusters we obtain

Pcluster(~xX) =
∏
j≤c

P (~xKj
) (2.2)

This gives a representation using |X|
m
· |V |m values.

It can be noted that increasing the cluster size quickly cause the represen-
tation to be intractable. Also the limit cases of this representation are Fully
Factored form = 1 and the exact distribution form = |X|. A major problem
of the representation is that even if the strongest correlations are preserved,
most correlations are lost. In cases where there are chains of correlations,
every possible clusterisation (with clusters smaller than the chains) would
break those chains.

2.2.4 Non-disjoint cluster representation

In general, there are correlation between almost each species involved in a
biological pathway (which we will confirm in Section 2.8). As the fully-
factored and disjoint clustered approximated representations impose no cor-
relation between most of the species, a lot of information is lost using these
approximated representations. We thus propose to use c non-disjoint clus-
ters (Kj)1≤j≤c, allowing to keep some correlations between each species. The
representation Q is the same as disjoint clusters: Q : c ∗ V m → [0, 1] that
follow the rule: Q(c, ~xKc) = P ( ~Xc = ~xKc).This representation keeps c · |V |m
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Figure 2.2: Graph forming an unrooted tree. There is only at most a single
path linking two given nodes.

values, that is |V |m values for each of the c clusters. Notice that the number
c of clusters may be more than N

m
as clusters are non-disjoint.

One cannot reuse the formula of Pcluster, as variables can be used in
different clusters, and their contribution would be counted several times.
Instead, one has to discount the contribution of a variable of a cluster when
it has already be counted for a previous cluster. For simplicity, throughout
this chapter we will only consider clusters of size 2. We will not allow loops
between clusters, meaning there will be at most one path to link two species
through clusters. If we consider a graph with species as nodes and clusters
as edges, because loops are forbidden, this graph forms a tree (or a forest).

Formally, the undirected graph can be written as G = (I, E) in the fol-
lowing manner: vertices are defined by I with I = {1, ..., n}, and the edge
{j, k} is present in E iff there exists some cluster Ki such that {j, k} ∈ Ki.

Graph G is a cluster tree (see Figure 2.2) iff there is no subgraph with a
sequence S = i1, ..., in ∈ I, s.t. ∀j ∈ S, {j, j + 1} ∈ E and {in, i1} ∈ E

The approximated probability distribution, denoted PNDC (for non-disjoint
clusters forming a tree) is the following:

PNDC(X = x) =
c∏
i=1

P (
−−→
XKi

= −→xKi
)∏

j∈Kold
i

P (Xj = xj)
(2.3)

where Kold
i = Ki ∩ (∪j<iKj) represents variables of Ki already present in

K1 ∪ ... ∪Ki−1.
Equivalently, denoting Ci the number of clusters containing i, we have:

PNDC(X = x) =

∏c
i=1 P (

−−→
XKi

= −→xKi
)∏N

i=1 P (Xi = xi)Ci−1
(2.4)
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Notice that (2.3) generalizes (2.2) that already generalizes (2.1). What is
true on PNDC thus also applies for PFF and Pcluster.

Proposition 1 PNDC defined in (2.3) for a cluster tree is a proper probability
distribution over X, i.e.

∑
x∈V X PNDC(X = x) = 1. Moreover, PNDC does

not depend on the ordering of clusters used in (2.3).

Proof We first prove that any permutation does not affect the value of
PNDC . By induction, we can derive that the second statement of the propo-
sition hold true for any order of clusters.

Let i the index at which the permutation occurs. Let’s consider the two
possible cases for permutations :

-First case: the clusters, that we will call Ki and Ki+1, don’t have a
variable in common. We can assume without loss of generality that Ki =
{1, 2} and Ki+1 = {3, 4}.

PNDC(X = x) = P1 ∗ P (X1=x1,X2=x2)
Q1∗Q2

∗ P (X3=x3,X4=x4)
Q3∗Q4

∗ P2, with
P1 the part of the product before those two clusters, and P2 the part

after.

Qk =

{
P (Xk = xk), if k ∈ ∪j<iKj

1, otherwise

Q1 and Q2 depend on ∪j<iKj. It is important to note that because Ki ∩
Ki+1 = ∅, Q3 and Q4 also depend only on ∪j<iKj.

After permutation we get :
P1 ∗ P (X3=x3,X4=x4)

Q3∗Q4
∗ P (X1=x1,X2=x2)

Q1∗Q2
∗ P2 = PNDC(X = x)

because Ki ∩Ki+1 = ∅, Q1 and Q2 don’t change.
-Second case: the clusters, that we will call C1 and C2, have a variable

in common. We can assume without loss of generality that Ki = {1, 2} and
Ki+1 = {2, 3}:

PNDC(X = x) = P1 ∗ P (X1=x1,X2=x2)
Q1∗Q2

∗ P (X2=x2,X3=x3)
P (X2=x2)∗Q3

∗ P2,
because X2 is present in Ki.Also because X1 and X3 ar only present in

one of those clusters, Q1 and Q3 are not changed by the order.
After permutation we get :
P1 ∗ P (X2=x2,X3=x3)

Q2∗Q3
∗ P (X1=x1,X2=x2)

Q1∗P (X2=x2)
∗ P2 = PNDC(X = x)

Which is equal to the first equation.

Let’s now consider a particular ordering of nodes: the one obtained using
breadth first search starting from the root of the tree. This gives an ordering
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for clusters, starting with K1 = {1, 2}, etc. Because of the previous proof,
the first statement beeing true with this ordering is also true for any order.
Now, simply observe that each generic term in (2.3) is the conditional dis-
tribution of XKi

given XKold
i
. Indeed, each Kold

i is made of one indice, but
for K1{1, 2} which have Kold

1 empty. Hence PNDC(X = x) ∈ [0, 1] for all x.
Now we can easily prove by recursion on the number n ≥ 2 of variables that∑

x PNDC(X = x) = 1: For n = 2, we have
∑

x1,x2
PNDC1(X1 = x1, X2 =

x2) =
∑

x1,x2
P (X1 = x1, X2 = x2) = 1

Else, consider n+1 variables. Xn+1 is a leaf, with parent some k. Let J =
{1, ..., n}. Thus PNDCn+1( ~X = ~x) = PNDCn( ~XJ = ~xJ) ∗ P (Xk=xk,Xn+1=xn+1)

P (Xk=xk)
.

We can easily see that if we marginalize onXn+1 :
∑

x1,...,xn+1
PNDCn+1( ~X =

~x) =
∑

x1,...,xn
PNDCn( ~XJ = ~xJ)∗

∑
xn+1

P (Xk=xk;Xn+1=xn+1)
P (Xk=xk)

. Now observe that∑
xn+1

P (Xk = xk;Xn+1 = xn+1) = P (Xk = xk) (this is a marginalization),
and hence the sum is equal to

∑
x1,...,xn

PNDCn( ~XJ = ~xJ) which is 1 using the
induction hypothesis.

We can conclude that PNDCn+1( ~X = ~x) is a distribution of all n. �

2.3 Handling PNDC with low complexity

A priori (2.3) is not straightforward to use. We show here that it can how-
ever be used with low complexity when careful algorithms are used. More
precisely, we show that it’s possible to compute the distribution of a subset
of variables in a reasonable amount of time, without computing the whole
variables distribution.

Consider a subset J ⊂ I of indices. Formally, given xs ∈ V for all s ∈ J ,
we define PNDC(~xJ) =

∑
xt|t/∈J PNDC(~xX), the marginalisation of PNDC(~xX)

on J .
To compute PNDC(~xJ) with low complexity, we proceed as follows: for all

node s at depth i, we denote Js the descendants of s that are in J , plus {s}
if it is not in J . We compute PNDC(~xJs) inductively: given t a child of s,
from the computation of PNDC(~xJt), one can simply obtain PNDC(~xJt∪{s}) by
applying the formula (2.3):

PNDC(~xJt∪{s}) =
PNDC(~xJt) · P (Xs = xs, Xt = xt)

P (Xt = xt)

We can do the same for every child t of s. Let Tt = Jt ∪ {s} if t ∈ S, and
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Tt = Jt∪{s}\{t} otherwise. We can compute PNDC(~xTt) from PNDC(~xJt∪{s})
by marginalizing out t when t is not in S.

From there, one can compute PNDC(~xJs), by joining together all the
PNDC(~xTt) and dividing d − 1 times by P (Xs = xs), where d is the num-
ber of children of s in the tree using (2.4):

PNDC(~xJs) =

∏
t child of s PNDC(~xTt)

P (Xs = xs)d−1

Hence, we can compute all probability values over a subset J of n vari-
ables. This computation can thus be done in a reasonable amount of time,
|X| times the number |V |n of values to compute.

Proposition 2 Let J ⊆ I. Then one can compute PNDC(~xJ) in time O(|X| ·
|V ||J |) all possible tuples ~xJ ∈ V J 1.

2.4 Information Theory
In order to quantify correlation strength to better select clusters plus related
tasks we will perform in chapter 3, we now recall some basic tools from
information theory.

2.4.1 Entropy

First, we introduce Shannon’s Entropy [SW49]. Entropy is an obvious can-
didate to mesure the information contained in a distribution. It is a good
tool to mesure the quantity of information of a variable.

The entropy H(X) of a K-valued discrete random variable X is:

H(X) = −
∑
x∈X

p(x)logK(p(x))

For p(x) = 0, we use the convention p(x)logK(p(x)) = 0.
For instance, for a variable X, if the discretization scheme perfectly splits

the data such that each of the K valuations has equal probability, then its
entropy H(X) = −K ∗ (1/K) ∗ logK(1/K) = 1. In the worst case, all the
data points are concentrated in a single interval of the random variable, and
the entropy is 0.

1To obtain this complexity, we initially reroot the tree with a variale of J at the root.
This ensures that the root is not marginalized out.
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2.4.2 Mutual information

We often want to quantify the strength of correlations of pairs of variables. To
that effect we will use Mutual Information (MI for short), which is commonly
used in information and probability theory. It gives a quantitative measure of
the correlation between two variables. Mathematically, mutual information
evaluates how similar the joint distribution between two random variables
compared to the product of the marginal probabilities of the individual vari-
ables. This metric has attractive information-theoretic interpretations and
can be used to measure non-linear associations.

In formal terms, given two discrete K-valued random variables X and Y ,
the mutual information MI(X;Y ) between X and Y is given by:

MI(X, Y ) =
∑
y∈VY

∑
x∈VX

p(x, y)logK

(
p(x, y)

p(x)p(y)

)

When a variable Z is known, it can be helpful to know how much infor-
mation is shared between two variables X and Y on top of the information
already given by knowing Z. Formally, given three discrete random vari-
ables X,Y and Z, the mutual information MI(X;Y |Z) between X and Y
conditioned on Z is given by:

MI(X;Y |Z) =
∑
z∈VZ

∑
y∈VY

∑
x∈VX

p(x, y, z)logK

(
p(x, y, z)p(z)

p(x, z)p(y, z)

)
where VR is the set of values of variable R ∈ {X, Y, Z}, and p(x, y, z) is the
joint probability that X = x, Y = y and Z = z. We will use this in chapter
3.

2.4.3 Kulback-Leibler divergence

To mesure the variation between a distribution and its approximation we can
use the Kulback-Leibler divergence.

Given two distributions P and Q of K-valued variables, we quantify their
differences using the Kulback-Leibler divergence with the following formula :

KL(P,Q) =
∑
~x∈V X

P ( ~X = ~x) logK
P ( ~X = ~x)

Q( ~X = ~x)
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We consider a group of clusters optimal if using those clusters gives a lower
or equal Kulback-Leibler divergence with the original distribution than any
other cluster group.

2.5 Obtaining optimal clusters

A main problem with the clustered representation (disjoint or not) is to
obtain optimal clusters, that is clusters for which PNDC will approximate as
well as possible the real probability distribution P . In that respect, the Chow
Liu algorithm [CL68] allows to compute an optimal tree (actually, a forest
in general, that is with possibly several roots).

The Chow-Liu algorithm uses mutual information in order to select the
clusters, as described in Algo. 1. A tree is considered optimal if the sum
of the mutual information shared inside all clusters is superior or equal to
that sum for any other tree. This will imply that, if the Kulback-Leibler
divergence of those clusters with the original distribution is lower of equal
than the Kulback-Leibler divergence for any other group of clusters forming
a tree.

More formally, let T = (X,E) an undirected acyclic graph, with X the
set of variables. Let S = {x | ¬∃y, {x, y} ∈ E}, that is the set of nodes with
no neighbours. The clusters associated with T are the pairs {x, y} ∈ E, plus
the set S of singletons.

Let KT be the clusters associated with the tree T . We can compare the
approximation PT of distribution P obtained using KT and the approxima-
tion PS obtained with the set of clusters associated with any another tree S.
Prop. 3 states the optimality of the tree built using the Chow-Liu algorithm:
its Kulback-Leibler divergence KL is optimal.

Algorithm 1: Chow Liu Algorithm. Computes an optimal tree of
clusters.
For each pair {Xi, Xj} in X, compute MI(Xi, Xj).
Sort edges {i, j} by decreasing value of MI(Xi, Xj).
Starting with an empty graph as tree T , repeat:
- consider the next edge {i, j} in the list
- if {i, j} does not close a cycle in T , add it to the tree
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Proposition 3 The probability distribution P ∗NDC,2 derived by (2.4) from a
Chow-Liu tree T = (X,E) satisfies

KL(P, P ∗NDC,2) = min
PNDC,2

KL(P, PNDC,2) (2.5)

Moreover, one has

KL(P, PFF ) = KL(P, PNDC,2) +KL(PNDC,2, PFF ) (2.6)

The proof of the first point can be found in [CL68]. The second point derives
from [Csi75]. Observe that it holds for all cluster tree approximations of P ,
which proves that PNDC,2 is always a better approximation of P than PFF .

Augmenting the size of clusters is always beneficial. For example, let
I = K1 ∪ ... ∪ Kc be a cluster tree with clusters of size 3, let G3 = (I, E3)
be the triangulated graph defined by clusters (maximal cliques) Ki, and let
us further assume that the Ki are adequately ordered. Let PNDC,3 be the
probability distribution associated to G3 by (2.3). For any tree T forming a
subgraph of G3, and the associated distribution PNDC,2, one has

KL(P, PNDC,2)

= KL(P, PNDC,3) +KL(PNDC,3, PNDC,2) (2.7)

which generalizes and complements (3). So adding edges to a Chow-Liu
tree approximation of P can only improve the resulting approximation of P .
However, there is no simple procedure that would give the optimal G3 graph:
this problem was proved to be NP-complete. Nevertheless, greedy procedures
generalizing the Chow-Liu algorithm can perform well [Mal91].

2.6 Entropy-based discretization
Protein concentrations are often described with continuous variables. In this
section we will discuss the ways to discretize the variables representing each
specie into a limited number of states.

A simple and common strategy to discretize a variable is to get an es-
timate of the minimal (usually 0) and maximum value it can take, and to
partition this range into equal sized intervals, henceforth called uniform dis-
cretization (see e.g. [LHT11]). In our case, each variable describes the con-
centration level of a biochemical species. The 5 ranges will be called very low,
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low, medium, high and very high. This scheme has therefore the advantage
of being easily interpretable biologically.

Alternatively we can use entropy as defined in section 2.4.1 to analyse the
quality of the uniform discretization: If the entropy is close to 1, the uniform
discretization is a good candidate. On the other hand, if the entropy is close
to 0 it mean the uniform discretization is a bad representation. For cases
where the uniform discretization represent badly the system we can choose
to use an equal size discretization instead: that is using ranges that possess
the exact same weight. This discretization garantee that all ranges contain
information. It can result though in ranges of very different sizes and in some
case some ranges can be disproportionately different.

Another way to make a trade off between optimizing size and optimizing
weight is to use the Lloyd Max algorithm [Llo82, Max60].

2.7 Biological Pathways

In this section, we present the pathways on which we will perform our exper-
iments on. Those are presented from the smallest ot the largest. The enzyme
catalysis is a simple tool we used to test rapidly our model. The EGF-NGF
pathway presents the advantages of being well known and is mainly used to
verify that our algorithm work on multiple pathways and isn’t overfitted for
the apoptosis pathway.

2.7.1 Enzyme Catalysis

S + E
k1−−⇀↽−−
k2

ES
K3−−→ E + P

Figure 2.3: Enzyme catalytic reaction

The simple enzyme catalytic system is shown in Fig. 2.3. It describes a
typical mass action based kinetics of the binding (ES) of enzyme (E) with
substrate (S) and its subsequent catalysis to form the product (P). The value
space of each species (variable) is divided into 5 equal intervals. The time
scale of the system is 10 minutes which was divided into 100 time points.
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This reaction possess the advantage of containing only 4 components mean-
ing it’s possible to compute its exact distribution for each time point in a
reasonable amount of time. This allows to compare our methods to the exact
computation which is not possible on larger pathways.

2.7.2 Abstracted Apoptosis Pathway
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Figure 2.4: Apoptosis pathway. In white are shown the 10 proteins used for
the abstracted pathway.

TNF-related apoptosis-inducing ligand (TRAIL), an apoptosis inducing
protein in cancer cells, has been considered as a target for anti-cancer ther-
apeutic strategies. Biological observations on HeLa cells suggest that in a
population of cells, TRAIL application only leads to fractional killing of cells.
Further, there is a time dependent evolution of cell resistance to TRAIL. We
consider an abstraction, consisting of 10 (out of 58) protein variables (shown
in white in fig. 2.4). The time horizon of the model is the first 90 minutes
period after injection of TRAIL, which was divided into 22 time points. Each
variable can take 5 possibles values discretized using the trade off shown in
section 2.6. We will explain in chapter 3 how this abstraction is obtained au-
tomatically (see also [PBP+17]). One of the most important species to track
in that pathway is cPARP, which is an indicator of the apoptosis [CAB].
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2.7.3 EGF-NGF Pathway

The EGF-NGF pathway describes the behavior of cells to EGF or NGF
stimulation [BHC+04]. EGF (Epidermal Growth Factor) is involved in cel-
lular differenciation and proliferation while NGF (Nerve Growth Factor) is
involved in the growth and proliferation of nerve cells specifically [TMC72,
LC56]. It consists of 32 variables (one for each molecular species). The value
domains of the 32 variables were divided into 5 uniform intervals as described
in section 2.6. The time horizon of each model was assumed to be 10 minutes
which was divided into 100 time points.

Figure 2.5: EGF-NGF pathway

2.8 Results

Our algorithm is implemented in Python. All experiments were performed
on an Intel i7-4980HQ processor (2,8 GHz quad core Haswell with SMT)
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with 16 GB of memory. For each of the pathway case study discussed in the
previous section, we consider the probability distributions at an arbitrarily
chosen time point. As one cannot compute the exact joint probability for
large systems, we evaluate them considering the mutual information between
any pair of variables (computed from 10.000 simulations of the system), to
understand where correlations are lost. We use Prop. 2 to compute MI values
for the Tree Cluster representation.

We explain these numbers in more detail in the following subsections.

2.8.1 Enzyme Catalysis

The system is very simple with only 4 variables. The tree obtained using the
Chow-Liu algorithm is the same over all time points, with {{E, S}, {E,P},
{E,ES}} as set of non-disjoint clusters. To compare with a disjoint clus-
ter representation, we chose the set of disjoint clusters with highest mutual
information, that is {{E, S}, {ES, P}}. On this example, in addition to com-
puting the largest difference in MI, we provide the maximum difference of
the probability of joints and the Kullback-Leibler divergence as the system
is small enough to compute them. Fig. 2.9 shows the approximated corre-
lations obtained using the different approximations at an arbitrarily chosen
time point (corresponding to 2 minutes).

Fig.2.7 shows the measures at that time of the system. It can be seen
that our Tree Cluster representation manages to preserve most of the mutual
information (of the original distribution, 0.277 of 0.278) between variables,
which translates to minimal error on computed probabilities (< 0.005). It is
important to note that the case of Disjoint Clusters while better than FF,
is still short of capturing all the dependencies faithfully in the distributions:
it considers independent a pair (out of only 16) variables with MI = 0.11
(the maximum correlations between two different variables have MI = 0.27).
This results in a probability error 10 times higher (0.05) than using Tree
Cluster, which is small but significant for such a trivial example.

2.8.2 Abstracted Apoptosis Pathway

We display on Fig. 2.9 the approximated correlations obtained using the
different approximations for an arbitrary time point (corresponding to 30
minutes). Fig.2.8 shows the statistics for this time point. Our Tree Cluster
approach captures most of the mutual information between variables (0.1 out
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Figure 2.6: Mutual information shared by the 4 variables using different
approximations. In order : Fully factored, Disjoint clusters, Tree cluster.
The last representation is the real mutual information shared.
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Representation Mean MI max MI Error Max P error KL diverg.
FF 0.22 0.27 0.22 0.31
Disjoint Cluster 0.26 0.11 0.05 0.12
Tree Cluster 0.277 0.04 0.005 0.001
Exact 0.278 0 0 0

Figure 2.7: Table representing the errors of approximations w.r.t. the real
distribution for the enzyme catalytic reaction’s probability distribution at 2
minutes.

of 0.12), and the maximum error on the MI is the least (0.12) compared to
FF or Disjoint Clusters (0.2, 0.32). Also, the size of the representation does
not increase too much (225 values vs 125 or 50).

Fig. 4.4 shows the two trees computed by algorithm 1 [CL68] at the arbi-
trarily chosen time of 20 and 90 minutes. Most links of the tree follow direct
correlations, except for the link Bid-cPARP at 90 minutes. Our interpreta-
tion is that, at 90 minutes, Bid does not play much of a role anymore, and
its correlation is not meaningful. Further, Bax, Bcl2c and Mcl1, which are
highly correlated, and which transduce or inhibit the signal are connected
towards the downstream only through R∗. The reason is that the correlation
with R∗ is higher than the direct correlations, and as we produce a tree, the
direct correlations are removed by the algorithm. Notice that this interaction
graph can change in time (compare at time 20 and 90 when Bid swaps from
one side of the tree to the other side).

Representation mean MI max MI Error Size of representation
FF 0.06 0.32 50
Disjoint Cluster 0.08 0.2 125
Tree Cluster 0.1 0.12 225
Exact 0.12 0 107

Figure 2.8: Table representing the errors of approximations w.r.t. the real
distribution for the Apoptosis pathway’s probability distribution at 30 min-
utes.
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Figure 2.9: Mutual information shared by the variables using different ap-
proximations. In order : Fully factored, Disjoint clusters, Tree clusters. Then
is shown the real MI.
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2.8.3 EGF-NGF Pathway

In case of the EGF-NGF pathway, we consider a biologically reasonable set
of disjoint clusters, grouping a species with its activated form, as their con-
centrations are very correlated. We display on Fig. 2.11 the approximated
correlations obtained using the different approximations at time 5 minute
of the EGF-NGF pathway. Tree Cluster manages to keep some correlations
among almost every pair of variables, which is not the case for FF or Disjoint
clusters, assuming independence of almost every pair of variables. The loss
of information is also minimal, as confirmed by Fig.2.10 (MI error ≤ 0.07).

Representation mean MI max MI Error Size of representation
FF 0.016 0.6 160
Disjoint Cluster 0.019 0.2 400
Tree Cluster 0.023 0.07 775
Exact 0.026 0 1022

Figure 2.10: Table representing the errors of approximations w.r.t. the real
distribution for the EGF-NGF pathway’s probability distribution at 5 min-
utes
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Figure 2.11: Mutual information shared by the variables using different ap-
proximations. In order : Fully factored, Disjoint clusters, Tree clusters. Then
are showed the real MI as well as the difference between Tree Cluster and
the real MI for clarity.
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2.9 Conclusion
The tree cluster representation we presented in this chapter is a good candi-
date to represent the distribution of large biological systems where compo-
nents are deeply connected. The use of this representation can be extended
to other problems where the relations between a high number of compo-
nents must be represented. For the problem at hand: The modelization of
the evolution of acquired resistance to TRAIL, this representation allow to
keep track of the important correlations between the key proteins involved
in the resistance. We will see in the next two chapters how we can model the
evolution of the system over time.
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Chapter 3

Cellular level: Modeling the
evolution of multivariate
distributions

3.1 Introduction

Beyond the modeling of the distribution, our goal is to be able to model the
evolution of a population of cells with respect to a specific pathway. To do
this, several solutions are possible:

The system can be modeled as ODEs (see next section) which is a fine-
grain model: Results are precise but the computation is slow, particularly for
large systems. To use ODEs with our multivariate distribution we need to
generate randomly thousands of simulations from the initial distribution. It is
then possible to compute the probabilities to be in each cluster configuration
at each time point as we will see in the next chapter.

Another possibility that we will explore is to use DBNs, a coarse-grained
abstraction, instead. We will present how to obtain a DBN abstraction from
an ODE model. In this chapter we will show that simulating DBNs is faster
that simulating the fine-grained model it abstracts. The results of this chap-
ter have been published in [PBP+17, PPB+16b, PBP+15] on which I col-
laborated.

45
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3.2 Ordinary Differential Equations

In order to model the complex behavior and interactions of signaling net-
works, researchers have proposed multiples computational models [KL06].

A set of Ordinary Differential Equations (ODEs) is one of the main mod-
elling frameworks used to describe the evolution of a biological system when
it can be reduced to a set of competitive reactions. It has the following fea-
tures : It is a deterministic model that describes precisely the evolutions of
multiple variables. It is a fine-grained model meaning that it describes the
evolution of the system after an infinitesimal time period. Concretely, to
numerically integrate ODEs generally require time steps of the order of the
second to represent accurately the results of multiple competitive chemical
reactions. In the case of biological systems, the evolution of each possible
biochemical component can be modeled as a differential equation making
ODE models easy to generate even for large systems and is precise as long
as every componant stays in large enough quantity.

For instance let us consider a simple biological reaction of Fig. 3.1.
Simulating ODEs requires short time steps to account for the influences of

each microvariation on the system and stay accurate. On the other hand, we
want to be able to study the behavior of the system over weeks. Using ODEs
is possible but would be very time consuming. Also it is important to note
that to obtain the new distribution we would require multiple simulations
(in the order of thousands) for the new distribution to be significative.

It is easy to see that for those reason, the use of ODEs would require
billions of steps and be intractable for a system studied during multiples
weeks.

We propose instead a coarse grain model, that is a model describing the

S + E
k1−−⇀↽−−
k2

ES
K3−−→ E + P

The underlying ODEs are :
dS
dT

= −k1 ∗ S ∗ E + k2 ∗ ES
dE
dT

= −k1 ∗ S ∗ E + k2 ∗ ES + k3 ∗ ES
dES
dT

= k1 ∗ S ∗ E − k2 ∗ ES − k3 ∗ ES
dP
dT

= k3 ∗ ES

Figure 3.1: Simple enzymatic reaction modeled as an ODE.
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Figure 3.2: Two simulations of ODEs of a variable that evolves linearly over
time. After discretization for the DBN (represented by the horizontal and
vertical separators), the lower one will give stay in the interval 1, while the
second goes from the interval 1 to 2. The CPT of the corresponding DBN
will give at time 1 the variable 50% of chance to keep the value 1 and 50%
to take the value 2.

evolution of the system with time steps of the order of minutes. This model
uses dynamic bayesian networks (DBNs).

3.3 The Dynamic Bayesian Network model

Using a discrete coarse-grain model has two advantages over ODEs :

• Because these allow to use time steps several orders larger than the
reaction times, we can use a smaller number of time points and it is
faster to generate a simulation.

• Because they use directly discrete values, the same as the ones that
represent the distribution of clusters. Hence one simulation of a discrete
model correspond to many simulations of ODEs.

When the range of variables is quantized in a discrete set of intervals,
the dynamics can be stochastic, even when it represents a deterministic dy-
namic,e.g. given by ODEs. Consider the following case represented in fig
3.2:

• Two ODE configurations c1 and c2 at time point t.
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• They result in configurations d1 and d2 at time t+ 1.

• c1 and c2 lie in the same quantized configuration

• d1 and d2 lie in different quantized configurations

The result of that is that the same configuration can result in multiple dif-
ferent configurations. Stochasticity allow to deal with this.

3.3.1 Definition of DBNs

DBNs are a type of compact Markov chain. In order to obtain a compact
representation, the values taken by a variable at a given time depend only of
the values of a small subset of variables at the previous time point.

Throughout this chapter, we will use the following notations :
Let {X1, . . . , Xn} be a set of ordered random variables. {0, 1, . . . , T} a

set of time points. Let i and j two number such as 1 ≤ i ≤ n and 1 ≤ j ≤ n.
We denote X t

i the variable Xi at time t.
A DBN is a graph model representing a set of random variables. Every

variable Xi at a given time point t depends on a fixed set of variable at time
t− 1 that will be called parents Pa of Xi.

Formally we represent a DBN as the following structureD = (X , T,Pa, (CPT ti )
t≤T
1≤i≤n)

where :

• T is a positive integer with t ranging from a set of time points {0, 1, . . . , T}.

• X = {X t
i | 1 ≤ i ≤ n, 0 ≤ t ≤ T} is the set of our variables. For

instance, X t
i can be the variable representing the concentration of a

protein at time t.

• Each variable Xi at each time t is associated with a set of parents
Pa(X t

i ). Parents must satisfy the following properties :

- Pa(X0
i = ∅)

This mean that at time 0, variables don’t have parents.

- If X t′
j ∈ Pa(X t

i ) then t′ = t− 1.

For any other time point t the variables possess a group of parent
variables at t− 1.
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- If X t−1
j ∈ Pa(X t

i ) for some t then X t′−1
j ∈ Pa(X t′

i ) for every t′ ∈
{1, 2, . . . , T}.

A given variable Xi will keep the same group of parents for all t > 0.
For instance in figure 3.3, the variable X1 has X0 and X1 as parent
except for t = 0 where the variable has no parents.

• For all t ≤ T , 1 ≤ i ≤ n, CPT ti is the conditional probability table
(CPT) for variables i at time point t as described below.

The links between parents and children are associated with the edges of
the graph. Nodes at the t − 1 time point are connected to nodes at the t
time point, and this remains invariant as t ranges over {1, 2, . . . , n}. The
regular structure of a DBN induces the function PA over variables given by:
Xj ∈ PA(Xi) iff X t−1

j ∈ Pa(X t
i ) for some t. We will denote ı̂ the variables

parent of i that is we define ı̂ = {j | Xj ∈ PA(Xi)}.

Conditional Probability Tables

We call CPTs the table, associated with each variable for each time point,
that specifies the probability that a variable takes a given value knowing the
values of all its parents. The table is noted CPT ti for the variable X t

i . For
t > 1, this CPT specifies the probabilities P (X t

i | X t−1
ı̂ )).

CPT ti (xi | ~yı̂) = P (X t
i = xi | X t−1

ı̂ = ~yı̂)

Thus CPT ti (xi | ~yı̂) = p specifies that p is the probability of Xi = xi at
time t given that at time t − 1, Xj1 = yj1 , Xj2 = yj2 , . . . , Xjm = yjm with
ı̂ = {j1, j2, . . . , jm}.

The semantics of a DBN is the following: from a configuration ~y at time
t− 1, the probability to move to configuration ~x at time t is:

CPT t( ~X = ~x | ~Y = ~y) =
n∏
i=1

CPT ti (xi | ~yı̂)

That is it represents the heterogenous Markov chain (S, δ)t with t ≤ T , a
set of configuration S = V x and a stochastic function of transition δt(~y, ~x) =

CPT t( ~X = ~x | ~Y = ~y).
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Figure 3.3: Representation of a simple DBN. Here for instance, the variable
X1 at time 1 depends on the variables X0 and X1 at time 0
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1 = 0|X0

1 = 0, X0
0 = 0) = 0.7
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Figure 3.4: Representation of the CPT of a two state variable X1 at time
t = 1 depending on two variables, itself and X0 at time t = 0.
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3.4 From ODEs to DBNs

The work in this section mostly come from [LHT11]. To obtain DBNs from
ODEs we need to define :

1. The time steps

2. The set of variables to consider

3. The discretization of variables

4. The initial conditions

5. The parents relations

6. The conditional probability tables

Liu et al. proposed a method to generate DBNs from ODEs [LHT11].
The required values are obtained as follow :

1. Time steps:

Time steps are chosen by the user, limited to time points of importance.
These are either points for which we have experimental data or that we
want to consider. The fewer time points the faster the DBN simulation.

2. Set of variables to consider:

The variables considered in the DBN are the concentrations of all the
biological species in the system. As a side note, the original paper also
consider unknown constants as variables of the DBN to be able to infer
their value.

3. Discretization of variables:

The range for values each variable can take is quantized in a set of
intervals I = {I0, ..., IK−1} with K as the number of intervals for the
variable. To determine those ranges, minimum and maximum values
are statistically determined for all variables. Intervals are then de-
termined using uniform discretization of section 2.6. For complexity
reasons, k is typically = 5: {very low, low, medium, high, very high}
concentrations.
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4. Initial conditions:

The initial conditions for the DBNs are the discretized probability dis-
tribution of the initial conditions of the variables taken independently.

5. Parents relations:

Parents relations are derived directly from the ODE equations : Each
variable’s parents are the set of variables appearing in the differential
equation describing its evolution including the variable itself.

6. Conditional probability tables:

Millions of ODE simulations are drawn. We denote nb(Cond) the num-
ber of simulations satifying the conditions Cond. For a given variable
the CPTs are approximated by the following formula applied to the
results obtained from ODE simulations :

CPT ti (x | ~y) =
nb(X t

i = x,X t−1
ı̂ = ~y)

nb(X t−1
ı̂ = ~y)

Notice that having nb(X t−1
ı̂ = ~y) = 0 creates singularities that we will

discuss in section 4.1. We will consider in a first step that nb(X t−1
ı̂ =

~y) > 0 for all i ∈ X AND t < T .

If we use the example from section 3.2 we have the following set of ODEs:
dS
dT

= −k1 ∗ S ∗ E + k2 ∗ ES
dE
dT

= −k1 ∗ S ∗ E + k2 ∗ ES + k3 ∗ ES
dES
dT

= k1 ∗ S ∗ E − k2 ∗ ES − k3 ∗ ES
dP
dT

= k3 ∗ ES
[LHT11] transform them into the following DBN:
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The parents for a given variable in the DBN are all the species that have
a direct impact in its evolution in the ODE plus itself. For instance here P’s
production depend only on the concentration of ES, his parents are for all
time points > 0 ES and P . This can be written as : ÊS = {ES, P}

There are some notable issues with using directly [LHT11], in particular
for the apoptosis pathway:

• Uniform discretization: The issue with using the uniform discretization
is that for some variables (e.g. polymerized molecules with non linear
dynamics), the range of values is very limited (e.g. with extremely
small values), except for rare outliers with extreme values. In such
cases, the uniform discretization would bundle almost all the values
together in a single discretized interval, and be almost useless. The
more different cases fall in the same interval, the more simulations are
used to generate the same CPTs, with a wide range of values. If the
lower values of an interval have notable different effects compared to
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higher values, the CPTs will allow a wide range of results reducing the
precision of the simulation, see fig. 3.5.

• Choice of parents: The choice of parents proposed by [LHT11] can be
limiting. First, variables can have many parents (In particular, the C8
protein in the apoptosis pathway has 9 parents using the usual method).
The efficiency of the DBN approach (both in terms of space complexity
and simulation time) scales down exponentially with the number pa of
parents of a variable. Formally, the size of a CPT is O(k∗|V |pa), where
|V | is the number of values for each variable, and k the number of
variables. Second, the time elapsed between time points can be several
order of magnitude larger than the time needed for reactions to occur.
Thus choosing parents based on other correlations than direct reactions
can give better results.

3.5 DBNizer method

In this section we will decribe the methods that were used in the tool DB-
Nizer [PBP+17]. We will describe our strategy to obtain a discrete proba-
bilistic structure that represents a system dynamics. In practice, our algo-
rithms will take as inputs a large set of trajectories sampled at discrete time
points. We will assume that this set represents all the relevant dynamics of
the original system.

Compared to the original method by Liu et al., we will use the following
method to build the DBN:

1. The time steps:
The time steps follow the same rules as [LHT11].

2. Set of variables:
In order to improve efficiency, we consider explicitely only a subset of
of variables, selected using mutual information (MI) as we will see in
section 3.5.2

3. The uniform discretization of variables is replaced by a Lloyd-Max dis-
cretization when needed, as we will discuss in subsection 3.5.1

4. The initial conditions follow the same method as [LHT11].
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5. The parents relations are not based on reactions but evaluated using
medium term impact as we will discuss in subsection 3.5.3

6. The conditional probability tables are built using the method in [LHT11].

The key steps of DBNizer include the identification of the most impor-
tant variables and the inference of the most informative local dependencies
between them. To do so, we will rely on well-established information theory
notions. DBNizer automatically constructs the full DBN structure. First it
generates a large number of trajectories of the underlying biochemical model
by numerical integration of the original model. Second, it selects the suit-
able subset of variables to be used for DBN construction and infers their edge
relationships. Third, it calculates probabilities for each entry in the CPTs
through simple counting (as in [LHT11]). It also automatically considers
model refinement through iterative improvements.

As a first step, given that we are interested in a discrete abstraction of
the underlying system, we will describe how to discretize the values of model
variables using entropy. After this, we will explain how using mutual infor-
mation, our algorithm chooses a small subset of the most relevant variables
of the original system and then infers a directed graph of the most important
influences between them.

3.5.1 Discretization in DBNizer

As seen in Section 2.6, a choice can be made between uniform discretization
and entropy based discretization.

We use entropy to check the effectiveness of the uniform discretization.
Only for variables X with an acceptable level of entropy (we chose H(X) ≥
0.4 for the apoptosis pathway), we stick with the uniform discretization.

For variables where uniform discretization have a low entropy (< 0.4), we
resort to an alternate quantization algorithm which automatically discretizes
these variables with the goal of maximizing the entropy. For this, we first
sample enough simulations of the HSD model to obtain a histogram of values
for each variable, over all time points. Based on these histograms, we par-
tition the values to have an equal number of samples in each interval (or as
close as possible). This ensure that the entropy is 1 (or close to 1). On top
of that, we use the Lloyd-Max [Llo82, Max60] discretization algorithm which
minimizes the distortion (quadratic distance of the samples and their discrete
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Figure 3.5: a. Evolution of a continuous variable y in function of x. b. Shows
the range obtained for a uniform and an equal size discretization as well as
the weight of those ranges. Figures c. and d. are a visual representation of
uniform and equal size discretization respectively.

values). The downside of this method is that the biological interpretation
can be lost. Additionally, this increases the size of the internal representation
of transition probabilities in the abstract model. These are the reasons we
use it only for variables where uniform discretization results in a low entropy.
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3.5.2 Inferring key random variables

In high-dimensional dynamical systems, not all variables convey the same
quantity of information on the dynamics. In order to define a set of important
variables, we propose to use mutual information between variables and the
signal of interest. In the apoptosis pathway, we are interested in the cell
fate (dynamics of death). The latter is modeled as a binary variable D: it
represents if the cell was alive or dead 8 hours after exposing the cell to
250 ng/ml TRAIL (death is defined by a cPARP concentration threshold of
100000 units in the HSD model [BSDB14]).

We first compute for each variable the mutual information between its
initial configuration and the cell fate. A simple way of choosing relevant
variables is to select the k variables having the highest mutual information
w.r.t the signal of interest (here D). However, doing so is not necessarily
a good choice. For instance, assume that variables X and Y have very
similar dynamics. Hence MI(D;X) and MI(D;Y ) are very similar (say
high). However, selecting both variables {X, Y } is not efficient as the value
for (X, Y ) does not bring much more information than say X alone. This
can be automatically detected by considering MI(D;Y |X), which would be
much lower than MI(D;Y ). In the extreme case where X = Y , we have
MI(D;Y |X) = 0.

Consequently, we adopted the following scheme. First we select the vari-
able, say X1, having the highest mutual information with D, MI(D;X1),
and hence being the most important variable for its effect on death. Then
we select the second variable, say X2, as the one that, conditioned on X1,
has the highest mutual information withD,MI(D;X2|X1). We continue this
for k steps until the mutual information, given by MI(D;Xk|X1 · · ·Xk−1), is
sufficiently low. At this stage we stop our computation.

While this identifies variables (which have an initial value) that have a
considerable impact on death, it may miss some key intermediate variables
important for conveying the signal of death. We explained at the begining
of this section how to find such variable.

3.5.3 Inferring local dependencies between key variables

A crucial step towards constructing an accurate abstraction is to find the set
of important local dependencies between the identified variables. Our strat-
egy to find those is again to rely on mutual information. Let V = {v1....vk}
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be the k identified variables, and T = {0, 1....t− 1} be the discretized set of
t time points.

Direction of local dependencies

We first build the directed graph based on the reaction network, GRN =
(VRN , ERN). The set of vertices of GRN is the set of variables of the original
system. Edges of GRN are defined with respect to the reaction network of
the biological system: (X, Y ) ∈ ERN if the concentration of X influences the
concentration of Y in some reaction, that is, if X appears in the differential
equation of Y . For instance, if we have a one-way reaction that produces
Z from X and Y , then X, Y and Z will be vertices, and (X,Z), (Y, Z)
and (X, Y ) and (Y,X) will be edges of GRN . Once we have constructed the
reaction network graph, we build the graph G+

V over the set of vertices V
made of the selected variables {v1....vk}. In G+

V , we have an edge (vi, vj) iff
vj is reachable from vi in GRN . Stated differently, G+

V is the vertex-induced
subgraph of the transitive closure of GRN .

Selecting important parents

We chose to limit the number of parents to 4 per variable. Increasing the
number of parents does not improve the accuracy much while slowing down
the simulations, while decreasing it reduces the accuracy [PBP+17].

GraphG+
V reflects potential dependencies between selected variables. How-

ever, not all are useful (either because they are negligeable or redundant).
To obtain a smaller, but still sufficiently informative set of local dependen-
cies between variables, we define GMI = (V,EMI) by refining G+

V using
mutual information. Denoting Ev the predecessors of v ∈ V in G+

V , and
Zm

1 , . . . , Z
m
k , Y

m, V m+1 the random variables of z1, . . . , zk, y at time m and v
at time m+ 1, we define:

M(Y ;V |Z1, . . . , Zk) = max
m∈T

MI(Y m;V m+1|Zm
1 , . . . , Z

m
k )

For each key variable v, we select the variables influencing v iteratively,
as in Section 3.3. First, we select the variable, z1 ∈ Ev, having the highest
value forM(Z;V ). Then we select z2 ∈ Ev as the variable having the highest
M(Z;V |Z1), and iterate until we have the desired number of parents.
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3.5.4 Choice of additionnal variables

There may be additional variables, not identified in Section 3.5.2, that are
important for the transduction of signal. Adding these variables in the DBN
can further improve its accuracy. For this, we iteratively find additional
variables v and build an associated DBN to assess how important they are.
We rank a DBN according to the weighted mean difference between the
simulation outputs of the original biochemical model and the DBN. More
precisely, to select an additional variable on top of a set V of variables, we
rank the DBNMIDBN V ∪{v} automatically built with set of variables V ∪{v},
for every v /∈ V . We select v optimizing the rank of MIDBN V ∪{v}. We iterate
from V ′ = V ∪{v}, and stop when no additional variable really improves the
accuracy. The exact subset of variables chosen by this iterative discovery is
sensitive to parameters of our tool. This is because several variables carry
similar information. Indeed, different choices do not impact the results much

3.6 Computational results

In this section we will outline our key experimental results to compare the
different models according to different metrics (time per simulation, accu-
racy, etc.). Unless stated otherwise, we consider treatments with 250 ng/mL
of TRAIL and simulate cell behaviors for 8 hours after treatment. The con-
centration of cPARP was used as an indicator of cell death. “Observations”
(i.e. time points) were available every 2 minutes for the first 30 minutes, and
every 15 minutes for the subsequent 7.5 hours. We used 100000 simulations
of the original HSD model to populate the CPT entries of the DBNs. Using
more simulations does not improve the accuracy of the DBNs (Table 3.1).
All experiments were carried on a quad core 2.8Ghz Intel Xeon E5-1603 CPU
with 8 GB RAM.

We will consider DBNs obtained by our tool DBNizer, as described in the
next subsection. For comparison, we consider DBN RNDBN , defined using
the technique advocated in [LHT11], where the local dependency between
nodes is chosen from the underlying reaction network GRN . For analysis
purpose, we also consider DBN MIDBN 58 with the same 58 variables as
RNDBN , but which differs by the parent relation, defined using our mutual
information based procedure. DBN simulations are performed using look-
ahead simulations [PPB+16b].
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3.6.1 Abstractions produced by DBNizer

Using the approach described in Section 3.5.2, we select variables having
maximal effect on cell fate. Setting a cut-off of 0.005 for conditional mutual
information, we obtained 6 variables, namely by order of importance Bcl2c,
XIAP , Flip, Bax , Mcl1 and Bid (Table 3.2). The species that are not
considered, have an initial concentration with almost no impact on the cell
fate. In addition to these 6 variables, we also added cPARP as it is the
marker for cell death. This set of variables is used to define and compute a
mutual information based DBN, MIDBN 7.

To test the robustness of our variable selection scheme, we reiterated
the computations for a significantly different amount of TRAIL, namely 10
ng/mL. The key native variables did not vary much: only the least informa-
tive variable, Bid , is replaced by Smacm (Table 3.2).

Following the procedure described in Section 3.5, the complexes tBid -
Bax , C8 -Bid and activated-C3 were iteratively added, resulting in DBNs of
increasing size, MIDBN 8, MIDBN 9, and MIDBN 10. The procedure stopped
at 10 variables since adding any other variable to MIDBN 10 did not improve
significantly the discerning power of the DBN.

The variables considered byMIDBN 10 are depicted in white in Figure 3.6.
The associated network of causalities (parent relation) computed automat-
ically for MIDBN 10 is represented on Figure 3.6. This network has several
interesting features. First, one could be surprised by the fact that the acti-
vated initiator Caspase8 (C8 ∗) does not appear. The DBN does not need the
concentration of C8 ∗ explicitly as it can be fairly-well evaluated using Flip
and R∗. The same goes for Bax ∗, generally considered a critical player for
apoptosis decision, which can be fairly well evaluated using tBid -Bax , Bax

Samples used to build Discerning power
MIDBN 58 (HSD: 100%)

500000 94.14%
100000 94.12%
50000 93.5%

Table 3.1: Effect of different sample sizes on the discerning power of the most
demanding DBN 58 for 250ng/ml of TRAIL. All the 3 DBNs gave compara-
ble results. We settled on 100000 samples used to build every MIDBN in the
paper because it offers a good compromise between accuracy and DBN con-
struction time. This is easily tunable as an exposed parameter in DBNizer.
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TRAIL = 250 ng/mL TRAIL = 10 ng/mL
species MI species MI
Bcl2c 0.33 Bcl2c 0.456
XIAP 0.023 XIAP 0.014
Flip 0.023 Bax 0.008
Bax 0.021 Mcl1 0.01
Mcl1 0.025 Smacm 0.011
Bid 0.020 Flip 0.009

Table 3.2: Conditional mutual information of species with respect to death
decision computed in two different conditions. The identified set of most
important variables does not vary much in the two conditions.
and Mcl1 . The level of free Mcl1 is therefore more informative on the cell
fate than the level of Bax ∗. One can hypothesize that this comes from the
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Figure 3.6: Inferred connectivity network for MIDBN 10 (self connections not
represented). The nodes of the DBN are Flip, Bid , Bcl2c, tBid -Bax , Bax ,
Mcl1 , C3 -PARP , XIAP , cPARP and activated form of R. Selected variables
correspond either to the upper part of the pathway or to its lower part, with
only one representative of mitochondrial processes (Mcl1 ).
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fact that free Mcl1 is able to efficiently sequester recently-produced active
Bax , making its level a measure of the cell’s resistance to apoptosis induc-
tion. More generally, the set of reactions taking place into the mitochondrion
is barely represented. The direct inhibitor XIAP of the executioner caspase
C3 ∗ is in our abstraction directly influenced by tBid -Bax and Mcl1 (in ad-
dition to R∗; Figure 3.6). This strongly suggests that the mitochondrion
acts as a black box with a fast (given the timescale of DBNs) and relatively
simple input/output function.

3.6.2 Quality and efficiency of the abstractions

In this section, we evaluate the different abstractions produced. Ideally,
behaviors predicted using the original or an abstract model should match.
However, because the original model is stochastic (and the abstract one too),
such a direct comparison is not possible. A first, global measure of quality
is given by the comparison of the predicted percentage of cell death. The
original HSD model predicts that nearly 70% of cells die. Abstract models
should predict similar values (see Table 3.3, second column). Moreover, the
timing of death, that is, the distribution of death times, should be similar
(see Figure 3.7).

A more refined measure of abstraction quality is provided by the dis-
cerning power. The probability that a cell dies depends on its initial state,

Model cell death
(HSD: 69.9%)

discerning power
(HSD: 100%)

Time / 1000
simulations
(HSD: 56s)

MIDBN 7 70.43% 96.14% 2.13s (26.3X)
MIDBN 8 69.57% 96.31% 2.64s (21.21X)
MIDBN 9 69.33% 96.37% 2.98s (18.8X)
MIDBN 10 69.03% 96.84% 3.30s (17X)
MIDBN 58 66.85% 94.12% 73.05s
RNDBN 92.29% 85.53% 299s

Table 3.3: Quality and efficiency of the abstractions. All mutual information
based DBNs show good results for quality as measured by percentage of cell
death and discerning power (see text for their definition), with MIDBN 10

providing the best results. All compact DBNs show good performance as
measured by simulation time with at least a ten times speedup with respect
to the reference HSD model.
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that is, the initial concentrations of the proteins involved in signal transduc-
tion. Indeed, it has been observed that applying TRAIL to two sister cells
just after division results in highly correlated fates (dead or alive) of the two
cells [SGA+09]. We say that a model has a good discerning power if for many
different initial conditions, it is able to predict the death probability obtained
with the original model for the same initial conditions (see Fig. 3.8 for an
illustration). Note that it is a more stringent criterion than the overall death
percentage. In practice, we ran 200000 simulations of the HSD model, and
record in each case the fate of the cell (dead or alive) together with its initial
configuration defined as the discrete value of the initial concentrations of the
6 selected key proteins whose initial configurations have an impact on the cell

Figure 3.7: Distribution of the time of death during a TRAIL treatment as
predicted by the reference HSD model and two abstractions, RNDBN and
MIDBN 10. The death distribution of MIDBN 10 very closely follows that of
the HSD model with only a marginal error at the peak value. RNDBN on
the other hand significantly overestimates the number of cell death during
the period 100-200 minutes and slightly underestimates it later on.
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Figure 3.8: Dead cell percentage for various initial configurations as predicted
by HSD, MIDBN 10 and RNDBN . As expected, death probability is max-
imal when pro-apoptotic proteins Bid and Bax are high and anti-apoptotic
proteins, XIAP , Bcl2c, Mcl1 , and Flip, are low (e.g. 100% in initial configu-
ration 120210). The converse holds as well (e.g. 15% in initial configuration
212120) MIDBN 10 accurately follows the dynamics of the original model,
in accordance with its good discerning power. In contrast the cell death
percentage for RNDBN does not vary much over all initial configurations.

fate. For instance, the configuration XIAP : low, Bid :high, Bcl2c :verylow,
Bax : high, Mcl1 : low, Flip : verylow (configuration 120210) was highly
represented (2628 samples) and highly associated to cell death (99% proba-
bility), whereas the configuration XIAP : high, Bid : low, Bcl2c : veryhigh,
Bax : low, Mcl1 : high, Flip : verylow (configuration 213120; 809 samples)
leads to cell death in only 9% of the simulations. For each initial configura-
tion, we compute the difference between the predictions by the HSD model
and the DBN abstraction weighted by the percentage of occurrence of this
profile in the HSD simulations. For statistical reasons, we focused on the
60 most frequent configurations that together represent 50% of the 200000
simulations. Any single such configuration is represented in at least 700 sim-
ulations. The discerning power is then defined as 100% minus this weighted
error (see Table 3.3, second column).

Regarding the efficiency of the simulation, we assess the time needed to
run 1000 simulations of the original HSD model and of its various abstrac-
tions, MIDBN 7, MIDBN 8, MIDBN 9, MIDBN 10, and for referenceMIDBN 58

and RNDBN . All these information are provided in Table 3.3 (last column).
As represented in Fig. 3.7, and summarized in Table 3.3 (first column),

all DBNs using mutual information provide good to very good descriptions
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of the dynamics of cell death. This is in sharp contrast to the reaction net-
work based DBN, RNDBN . The comparison of RNDBN and MIDBN 58,
having both 58 nodes, clearly shows that the critical feature is to have a
proper parent relation. As expected, the comparison of DBNs with 7 to
10 variables (Table 3.3) shows that adding more variables improves accu-
racy. However, the performance of MIDBN 58 is slightly worse than that of
MIDBN 7, indicating that in probabilistic representations there might be a
trade off between the capacity to store information (favoring large DBNs)
and to reuse it (favoring small ones).

Similar results are found for the discerning power (Table 3.3 (second col-
umn)). All MI based DBNs have a > 94% discerning power, in sharp contrast
to RNDBN (< 86%). To better analyze the low performance of RNDBN , we
represent the predicted percentage of cell death in different initial configura-
tions (Figure 3.8). We observe that irrespective of the initial configuration,
RNDBN predicts a constant high death rate (> 80%): Influences between
variables are not well captured by RNDBN for this challenging dynamical
system (high dimension, strong non-linearities).

The analysis of simulation times (Table 3.3, last column) shows that the
performance of abstraction depends strongly on their size. Large DBNs,
RNDBN and MIDBN 58, are actually slower to simulate than (an optimized
implementation of) the original HSD model. All compact DBNs however
show good performance, being at least 17 times faster than the HSD model
(for MIDBN 10) and up to 26 times faster (for MIDBN 7). Experiments run
for treatment with 10ng/mL TRAIL display very similar results.

In summary, using MI based DBNs is essential to obtain abstractions of
good quality; and using low-dimensional DBNs is essential to obtain efficient
abstractions. MIDBN 7 to MIDBN 10 present both advantages, with slightly
different trade-offs.

3.6.3 Importance of MI based abstractions

In the previous section, we found that the approach used to define local de-
pendencies between variables has a critical impact on the abstraction quality.
To better understand why this choice is so important, we focus in this section
on how the parent relation is represented in RNDBN and in MIDBN 58 for
one particular complex, namely M∗−Smacm.

An excerpt of the network is represented in more detail in Figure 3.9.
Because of the reaction forming M∗−Smacm, the parents of M∗−Smacm
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Figure 3.9: Excerpt of the apoptosis reaction network focusing on the com-
plex M∗− Smacm and mitochondrial reactions. For the structure-based
RNDBN , parents of M∗−Smacm are M∗−Smacm, Smacm and M∗. For the
MI-based MIDBN 58, parents areM∗−Smacm, Bax ∗, Bax2 ∗, and Bax4 ∗−M ,
depicted in yellow.

in RNDBN are M∗, Smacm, and M∗−Smacm. In MIDBN 58, Bax ∗, Bax2 ∗,
and Bax4 ∗−M have been chosen as parents by our MI-based approach, in
addition to M∗−Smacm itself (depicted in white in Figure 3.9).

We conjecture that the speed of reactions from Bax4∗ to M∗−Smacm is
faster than the timestep of the DBN, while Bax ∗ and Bax2∗ have a more grad-
ual evolution. This seems confirmed considering a trajectory of the system,
as depicted in Fig 3.10. Because of causality, one would expect that a signif-
icant increase of reactants in a reaction would cause a significant increase of
the products. After discretization, this should typically lead to two successive
threshold crossing events, reactants being followed by products. However, if
reactions are fast it may often be the case that the two threshold crossings
happen during the same time interval and therefore appear simultaneously
after time discretization, thereby loosing causality and mutual dependence
between the current values of parents and the future value of the variable to
predict. This can be observed in Figure 3.10 where bothM∗ andM∗−Smacm
cross their threshold during the interval 150-165 minutes. Defining parent
relations based on the reaction network might therefore not be appropriate
for systems showing fast and slow dynamics (referred to as “snap-action” in
[ABS+08]) as is the case for apoptosis.
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Figure 3.10: Temporal evolution of the concentration (top) and its discretized
value (bottom) for selected variables of one simulation of the apoptosis path-
way. During the time interval 150-165, Bax4∗−M , M∗ and Smacm−M∗ go
simultaneously from level 1 to level 2. Using these fast evolving variables is
not as informative as using variables Bax ∗,Bax2∗ evolving more slowly.

3.7 Conclusion

In this chapter we proposed a strategy to automatically infer from ODEs the
structure of small DBNs and demonstrate their accuracy and efficiency. This
model allows to accurately represent cell death resulting from the apoptosis
pathway compared to the original model DBNs were generated from, the
HSD model (the mismatch is of the order of 1%). The model is an order of
magnitude faster than the original simulations and is also general and can
be used for different set of data given that sufficient simulations are given to
train the DBN.

While DBNs describe accurately the values of variables in regard to their
parents, they can fail to keep track of correlations that exist between variables
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for different reasons than parents values (e.g. mutually exclusive proteins).
As a future work, we propose an alternative: a class of models more accurate
than DBNs, that would encode probabilities of tuples of variables in CPTs
rather than over single variables (e.g. CPT ti,j(x, y | ~U)).



Chapter 4

Cellular level: Analysing the
evolution of the pathway

Modeling the evolution of a pathway containing dozens of species over a long
period of time can lead to several computation hurdles. The main one is
keeping the complexity of the calculations under a reasonable level without
losing too much precision. DBNs as shown previously represent a good way
to reduce this complexity. Still, analysing the DBN is a complex task. Two
ways to do so will be described in this chapter : The first one, by drawing
many runs using a simulation algorithm. This is not an easy task because
of singularities [PPB+16b], which are configurations of the system that are
reached even if they never were present in the original data (and in the CPT)
and thus from which the DBN can’t determine a following step. The second
one, by computing the probability distribution using an (approximated) in-
ference algorithm. Results from this chapter come from [PPFG18, PPFG17]
in which I am first author. I also implemented the main algorithm, which is
freely available at https://perso.crans.org/∼genest/D22.zip.

4.1 Singularities

A problem that can arise with DBNs that wasn’t explored in the previous
chapter is the risk of singularities.

We will show through a simple example how those singularities appear:
Consider a system with 2 variables X1 and X2 each of which takes values

from the discrete set {0, 1}. Figure 4.1 (a) shows the possible configurations

69
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Figure 4.1: Example of singularity. (a) shows the possible configurations of
the system. (b) shows the dependencies (top) and the CPTs generated from
this system (bottom). (c) shows the new possible configurations derived from
the CPTs.

of the system for all value assignments of the variables. For instance, the
rectangle corresponding to (0, 0) means that the system is at configuration
defined by X1 = 0 and X2 = 0 and so on. Figure 4.1 (a) also shows that the
original dynamics of the system forbids it from reaching the configuration
(1, 1) i.e., the system cannot reach the configuration with both X1 = 1 and
X2 = 1. More precisely, if the system is in configuration (0, 0) at time t, at
time t+ 1, it can stay in the same configuration (0, 0), or go to configuration
(0, 1) or (1, 0). However, it cannot go to configuration (1, 1).

Fig. 4.1 (b) shows the DBN construction from the system in Fig. 4.1 (a),
as outlined in the previous subsection. Variables X t+1

1 , X t+1
2 are dependent

on both X t
1 and X t

2, as shown on the top part of the figure. The bottom part
of Fig. 4.1 (b) shows the conditional probability table for X t+1

1 and X t+1
2 .

For instance, in the table for X t+1
1 , the first column describes the parent con-

figuration tuples, i.e, the values for X t
1 and X t

2. The second column describes
the value X t+1

1 can take. The third column represents the corresponding
probabilities. The first row describes that if (X t

1, X
t
2) = (0, 0), then X t+1

1

taking value 0 (resp. 1) has probability 75% (resp. 25%) of happening. This
CPT is stochastic:

∑
v∈{0,1}CPT

t
i (v | (0, 0)) =

∑
v∈{0,1}CPT

t
i (v | (0, 1)) =∑

v∈{0,1}CPT
t
i (v | (1, 0)) = 1. Notice that owing to the system dynamics,

there is no value in the CPT corresponding to (X t
1, X

t
2) taking value (1, 1),

which is a source of singularity in the CPT. Two problems arise from singu-
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larities, as shown in Fig. 4.1 (c). First, from configuration (X t
1, X

t
2) = (0, 0),

there is a (small but non null) probability to sample 1 for variable X t+1
1

and 1 for variable X t+1
2 , and thus to end up in configuration (1, 1). This

is a problem because configuration (1, 1) does not correspond to a behav-
ior of the original system. An additional problem is that from this singular
configuration (1, 1), there is no defined outgoing probability distribution.

This is manageable using different methods:
For simulations by avoiding those singularities through look-ahead algo-

rithms that actively look if generated simulations will create singularities and
retry if they do so [PPB+16b]. We will show in the next section one such
algorithm.

For inference (see section 4.3.1), avoiding those singularities is not possi-
ble anymore as all possible paths are explored. This leads to substochastic
distributions, that is for which entrie sums up to less than 1. This must
be corrected or else the total probability will shrink over time. A simple
solution is to renormalize at every step. The outcome is then similar as the
look-ahead algorithm as missing CPTs are ignored with both frameworks.

4.2 Look-ahead simulations

Typically drawing a simulation from the DBN involves starting from an ini-
tial value assignment over all variables of the DBN (drawn from the initial
distribution). Next, for each variable, independently, we pick its value as-
signment at the next time point according to the distribution dictated by the
CPT entries corresponding to its current value assignment. We continue this
procedure for all time points of the DBN. In this simulation procedure, sin-
gularities appear if a configuration that was never explored in the simulations
that served to generate the CPTs is reached.

We use instead a procedure called look-ahead simulation that actively
avoid singularities. Its main idea is to sample tuples of values ~v representing
the configuration at time t, according to the configuration ~y at time t−1 and
the corresponding CPTs, but conditioned to the fact that ~v has been seen at
time t at least once during the original simulations of the system. Computing
exactly this conditional probability is however not possible in general as that
would require to recompute on the fly the probability for each of the many
possible tuples ~v.

Instead, for efficiency reasons, we over-approximate this set of configura-
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Algorithm 2: Look-ahead simulation of DBNs
W [1, ..., n] = {−1, ...,−1} . W [i] = −1 means that the value of variable i
is not yet set for i = 1, ..., n do
Preti(W ) = {~l ∈ V ı̂ |

∑
k∈K CPT

t
i (k | ~l) = 1 ∧ ∀m with W [m] 6=

−1,~l[m] = W [m]}
s← 0 forall the ~l ∈ Preti(W ) do

. Compute the probabilities for value assignments in
Preti(W )
p← 1 forall the j ∈ ı̂ do

. Compute probabilities of ~l
p← p · CPT ti (~l[j] | v̂)

Prob[~l]← p
s← s+ p . Sum of probabilities in Preti(W )

if s = 0 then
Abort . No configurations are consistent with W

x← rand([0, s])

z ← 0 forall the ~l ∈ Preti(W ) do
. Pick a ~l according to Prob

z ← z + Prob[~l] if x ≥ z then
. The current ~l has been chosen for variables in ı̂ forall

the j ∈ ı̂ do
W [j]← ~l[j]

break

for i = 1, ..., n do
vi ← W [i]

tions. We fill up iteratively a partial value assignment W remembering the
values of variables which have been already set (W [i] = −1 if i has not yet
been set). The i-th iteration, focused on the variable i, assigns values for
parents of i, that is for variables in ı̂. For this, we consider the set Preti(W )
which only retains value assignments ~vı̂ for ı̂ at time t which have been seen
in the simulations and which are consistent with W .

Notice that by (inductive) construction of v̂, CPT ti (~l[j] | v̂) is well de-
fined at line 8.
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Theorem 1 In the case where there is no singular configurations, Algo-
rithm 2 generates the same distribution over configurations W than a naive
algorithm.

4.3 Bayesian Inference

Instead of generating simulations, we can use Bayesian Inference to update
the probability distribution for each time point knowing the computational
probability tables of the DBN.

Because the probability distribution P t is often too complex to be used
directly, we often use other representations, possibly approximated and called
belief states Bt. Inference is an iterative process that computes a belief state
of the system at time t, given the belief state at t − 1 and the conditionnal
probability tables.

The formula of the belief state in general terms is:

Bt+1(~x) = f(Bt, CPT t)

where f is a function which depends upon the exact representation of the
belief state. We will see some examples below.

4.3.1 Exact inference

Consider the case where the belief state is the exact distribution: Bt(~x) =

P ( ~X t = ~x). In this case, function f is given by the following :

Bt+1(~x) =
∑
~u

Bt(~u)
∏
i

CPT ti (xi|~uı̂)

For each time point, we require the joint probability distribution of the
system Bt(~u) = P ( ~X t = ~u) at the previous time point, meaning we need to
know each possible joint probability distribution P (X t

1 = u1, ...., X
t
n = un),

the system can take. Each variable X t
n can take v discrete values in {1, ..., v}.

Because there are n variables that can each take v values, there are vn states
for the system at time t. With n large, this quickly becomes intractable.
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Algorithm 3: Factored Frontier Algorithm
Input : Initial conditions P 0

FF , probability tables P t
i (x|uı̂)

Input : Parents ı̂ for each i for each time point t
Initialization:: B0(yi, zj) = P 0

FF (yi, zj)
for t ∈ [0..T − 1] do

for i ∈ N, xi ∈ V do
Bt+1(xi) =

∑
~uı̂∈V ı̂ Bt(~uı̂)× CPT ti (xi|~uı̂))

4.3.2 Factored frontier

There exist multiples methods to infer a dynamic bayesian network in a
tractable manner. The Boyen Koller algorithm [BK98] does an exact update
of the system, then marginalize on selected subsets. This approximation re-
duce the complexity of inference with DBN. A variation of this algorithm
called the Factored frontier algorithm [MW13] forgo the exact update for
an approximated one. It calculates the new distribution of a variable us-
ing the distributions of all the parents without accounting for correlations
between those parents. In that case, the belief state is given as Bt

FF (i, xi)
which is an approximation of P (X t

i = xi). It represents the distribution
BFF (~x) =

∏
iB

t
FF (i, xi). This approximation removes the correlations that

exist between the variables. The formula of the belief state in that case is
for all i ∈ I:

Bt+1
FF (i, xi) =

∑
~uı̂∈V ı̂

Bt
FF (i, ~uı̂)× CPT ti (xi|~uı̂) [MW13]

Algorithm 3 is a rough representation of FF.

4.4 Tree Clustered Inference

We now generalize the Factored Frontier algorithm to take into account cor-
relations. We denote by app(P ) an approximation of a probability distri-
bution P under a more manageable form. For FF we have app(P ) = PFF
that uses the fully factored approximation from chapter 2. We now use a
more precise approximation, namely the non disjoint clusters approximation,
app(P ) = PNDC.
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4.4.1 A Generic Inference Algorithm

The belief state Bt is computed inductively as follows: First, let B0 =
app(P 0). Then, inductively, we let Qt+1 be the exact probability distribution
computed by CPT t from Bt: Qt+1(~xX) =

∑
~u∈V X Bt(~uX)

∏n
i=1CPT

t
i (xi |

~uı̂). We last define Bt+1 = app(Qt+1).

In general, Qt+1 cannot be computed explicitly in a tractable way. We
can however show that for app(B) = BK for a set K of non disjoint clusters
associated with a tree T , one can compute Bt. For that, we will use prop. 2
to compute Bt(~uı̂∪̂) and prop. 4 to compute Bt+1(~x).

Notice that the set of clusters K can vary with time. In practice, we will
compute at each time point t, the best approximation using clusters using
the Chow-Liu method (see Chap. 2) to select the optimal Kt.

Proposition 4 Let Xi, Xj be two variables and ı̂, ̂ their parents. Then
Bt+1(Xi = xi, Xj = xj) =

∑
~uı̂∪̂∈V ı̂∪̂

Bt(~uı̂∪̂)× CPT ti (xi|~uı̂)× CPT tj (xj|~û)

Algorithm 4: Clustered Factored Frontier (CFF)
Input: Trees Gt = (I, Et), for each time point t ≤ T
Input: Parents Xı̂ for each variable Xi, i ∈ I
Input: Local transition probabilities CPT t(Xi|Xı̂)i,t
Input: Initial distributions P 0(Xi, Xj) for {i, j} ∈ E0

Init : B0(Xi, Xj) = P 0(Xi, Xj) for {i, j} ∈ E0

for t ∈ [1..T ] do
for {i, j} ∈ Et do

compute Bt−1(Xı̂∪̂) by the message passing algorithm on Gt−1

Bt(Xi, Xj) =
∑

xı̂∪̂
Bt−1(xı̂∪̂) · CPT t(Xi|xı̂) · CPT t(Xj|x̂)
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Proof For t ≥ 0, we have:

Bt+1(xi, xj) =Qt+1(xi, xj) =
∑

~x|~xi=xi,~xj=xj

Qt+1(~x)

=
∑

~x|~xi=xi,~xj=xj

∑
~u

∏
k

Bt(~u)(CPT tk(xk | ~uk̂))

=
∑
~u

Bt(~u)
∑

~x|~xi=xi,~xj=xj

∏
k

(CPT tk(xk | ~uk̂))

=
∑
~u

Bt(~u) · CPT ti (xi | ~uı̂) · CPT tj (xj | ~û)

The last of the above equalities follows since each of the summands within
the expression adds up to 1. We separate ~u into (~v,~v′) with ~v with variables
in ı̂ ∪ ̂. By applying the definition of marginalization, we obtain:

Bt+1(xi, xj) =
∑
~v

CPT ti (xi | ~vı̂) · CPT tj (xj | ~v̂)
∑
~v′

Bt(~v,~v′)

=
∑
~v

CPT ti (xi | ~vı̂) · CPT tj (xj | ~v̂)Bt(~v)

�
Denoting p the maximal number of parents ı̂ ∪ ̂ of a cluster {i, j}, we

get:

Theorem 2 For app the approximation on the tree of clusters, Algo. 4 in-
ductively computes BT from B0 in time O(T · |I| · |V |p · (|I|+ |V |2)).

Proof The correctness of the proof comes directly from Prop. 4. The com-
plexity follows from the following:

• The t comes from the induction on the time point.

• There are at most |X| clusters as each node as a unique parent on the
tree, which gives the last |X|.

• Now, for each cluster {i, j}, one computes at most |V |pa values cor-
responding to Bt(Xk = ~uk)k∈ı̂∪̂. This takes time |V |pa+1 · |X|, using
Prop. 2.
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• Further, Algo. 4 computes for each xi ∈ V and xj ∈ V a value by
summing over |V |pa values, which gives a complexity of |V |pa+2 =
|V |pa+1 · |V |.

�

Practical considerations

In practice, the transition probabilities CPT t(Xi| ~Xı̂) are matrices of dimen-
sion |V | × |V ||̂ı|. They derive from data produced by fine grain models, and
thus may exhibit singularities, such as zero rows in the case where the con-
ditioning value Xı̂ = xı̂ was never observed in the data (see [PPB+16b] for
a discussion). In addition, an expression like

B̃t(Xi) ∝
∑
xı̂

CPT t(Xi|~xı̂)Bt−1(~xı̂) (4.1)

involves a large number of small values, and may thus suffer from rounding
errors. We thus introduce a renormalization in (4.1) to ensure that it yields
a proper probability distribution on variable Xi.

In the same way, the central relation of Algo. 4

Bt(Xi, Xj) =
∑
xı̂∪̂

Bt−1(~xı̂∪̂) · CPT t(Xi|~xı̂) · CPT t(Xj|~x̂) (4.2)

may not sum to one and furthermore, when marginalizing outXj inBt(Xi, Xj)
and Xk in Bt(Xi, Xk), one may not get the same marginal Bt(Xi). We there-
fore rely on (4.1) (renormalized) to compute the expected marginals B̃t(Xi)
and B̃t(Xj) at time t, and then impose the term Bt(Xi, Xj) derived from (4.2)
to satisfy both these marginals. This is performed by the standard Iterative
Proportional Fitting Procedure (IPFP). In our experiments, convergence (up
to numerical noise) took place in 5 to 6 iterations of IPFP.

4.4.2 An algorithm with reduced complexity

We now refine Algo. 4, that performs approximated inference, in order to
lower the exponential factor of |V | from |̂ı ∪ ̂| + 2 to max(|̂ı|, |̂|) + 2. The
improvement can thus be significant.
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Indeed the most space and time consuming task is generating the prob-
ability table of Bt−1(~uı̂∪̂).It is possible though to use the fact that depen-
dencies follow a tree to factorize Bt−1(~uı̂∪̂) · CPT (xi|~uı̂) · CPT (xj|~û) into
Bt−1(~uK) · CPT (xi|K) · CPT (xj|K) for some set K with |K| ≤ min(|̂ı|, |̂|)
and thus reduce the necessary probability table size. The idea can be shown
in a simple example: Let’s consider three variables A, B and C. A and B form
a cluster as well as B and C at time t and A,B ∈ ı̂ and B,C ∈ ̂ as shown
in figure 4.2. We want to compute Bt−1(~uı̂∪̂) · CPT (xi|~uı̂) · CPT (xj|~û).

Figure 4.2: A small example showing how CPTs can be reduced. Here with
proper marginalization it is possible to reduce them so they depend only on
B.

We set K = {B} as B "separates" A from C. Let’s look at variable A.
It is in ı̂ and not in ̂, and this variable is in clusters with variable B. It is
possible to remove the variable A from CPT (xi|~uı̂) making it dependant on B
only. This requires only the distribution on {A,B} because CPT (xi|~uK) =∑

uA
· CPT (xi|~uı̂) · B(~uı̂|~uK). We can then repeat this process for ̂ and

remove C from CPT (xj|~û) knowing the distribution on {B,C}. After the
marginalization, Bt−1(uı̂∪̂) is of size |V | instead of |V |3. And the tables
needed for the marginalization were of size |V |2

Notice that we couldn’t do the same for B without requiring the whole
distribution.

Formally, let us consider a separating set K ⊆ I of nodes that separates
nodes of ı̂ from those of ̂ on tree G = (I, E), i.e. any path from ı̂ to ̂ on
G crosses K (see Fig.4.3). Notice that one has ı̂ ∩ ̂ ⊆ K, and that taking
K = ı̂ or K = ̂ satisfies this separation property. In the following, we build
a separating set K with good algorithmic properties:

First, for k ∈ K not a leaf of G, we define the k-section of G as follows: it
is the minimal subtree of G rooted at k, containing at least 2 nodes, and such
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that its leaves are either in K or are leaves of G. For instance, on Fig. 4.3,
we have r ∈ K, and the r-section has 6 nodes, including r and s. It has three
leaves, two being the children of s, plus another leaf in K. For k, k′ ∈ K not
leaves of G, the intersection between the k-section and the k′-section have
either no node in common, or only one, which is either k or k′. For k ∈ K
not a leaf of G, we define the strict k-section of G as the k-section minus the
leaves of the k-section which are in K.

The set K is built bottom-up, that is recursively starting from leaves and
progressing up towards the root of G. Each node will be tagged by a number
in {0, 1, 2, 3}. Nodes tagged 3 will be nodes of K. We first tag a leaf by:

• 0 if it is not in ı̂ ∪ ̂,

• 1 if it is in ı̂ \ ̂,

• 2 if it is in ̂ \ ı̂,

• 3 if it is in ı̂ ∩ ̂.

We then inductively tag a node by:

• 3 if it has a child tagged by 1 (or himself is in ı̂) and if it has a child
tagged by 2 (or himself is in ̂). Else:

• 1 if it is in ı̂ \ ̂ or as at least one child tagged as 1,

K

î
ĵ

r

s

t

Figure 4.3: A more complex exemple. Here the separating set K between
ı̂ and ̂ is shown in grey. CPTs can be reduced to depend only on this
separating set.
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• 2 if it is in ̂ \ ı̂, or has one child tagged by 2

• by 0 otherwise.

At the end of the procedure, we set K as the set of nodes tagged by 3.
That is, a node k where at least one branch of type i and one of type j meet
is declared to belong to K. The separating set K in Fig. 4.3 has been built
using this algorithm. Node s is tagged 2 as it has one child in ̂. Then r is
tagged 3 as it is himself in ı̂ and it has has a child (node s) tagged by 2. It
is easy to see that K is a separating set, and that for all k ∈ K not a leaf
of G, the strict k-section contains at least one node of ı̂ and one node of ̂
(possibly, this is the same node if it is in ı̂ ∩ ̂, and possibly, this is k itself).
In particular, |K| ≤ min(|̂ı|, |̂|).

We now examine an efficient algorithm that computes CPT (yi|~xK) from
CPT (yi|~xı̂). It inductively eliminates nodes in ı̂ \K, section by section, in
a bottom-up fashion, removing nodes in ı̂ \ K and adding nodes from K.
We consider the properties of this procedure with respect to ı̂, but the same
holds with respect to ̂.

Let us define a set of nodes that will evolve in our procedure :

• A ⊆ K ∪ ı̂ progressively introduces nodes of K in replacement of nodes
of ı̂, initialized to A = ı̂. At the end of the procedure, A = K.

Let us start from deepest k-sections in the tree, for k ∈ K. First, if k a
leaf, there is nothing to do as k ∈ K∩ ı̂. The set A stays the same. Otherwise,
for all k′ below k in the tree, k′ has already been considered by induction,
that is k′ ∈ A. Let C be the subset of nodes in the strict-k-section that are
in ı̂. We will explain how to perform an operation amounting to:

A := (A \ C) ∪ {k}

At every step, |A| does not increase, as |C| ≥ 1 (in the case where C =
{k}, nothing happens). At the begining of the procedure, we have P (yi|~xı̂),
that is P (yi|~xA) as A is initialized to ı̂. It is easy to inductively compute
P (yi|~x(A\C)∪{k}) from P (yi|~xA). We have:

CPT (yi|~x(A\C)∪{k}) =
∑
xC\{k}

CPT (yi|~xA)B(~xA|~x(A\C)∪{k})
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Algorithm 5: Improved CFF (ICFF)
Input: Trees Gt = (I, Et), for each time point t ≤ T
Input: Parents Xı̂ for each variable Xi, i ∈ I
Input: Local transition probabilities CPT t(Xi|Xı̂)i,t
Input: Initial distributions P 0(Xi, Xj) for {i, j} ∈ E0

Init : B0(Xi, Xj) = P 0(Xi, Xj) for {i, j} ∈ E0

for t ∈ [1..T ] do
for {i, j} ∈ Et do

for node k of tree in K in a bottom up fashion do
for each child v of k with v labeled 1 do

Inductively search the tree top down from v till nodes of
K or leaves are found. Let C be the set of nodes in ı̂ \ ̂
found, and D be the set of nodes of K found plus k.
Define CPT ti (yi | ~xA\C∪{K}) =∑

~xK

Bt−1(C ∪D)

Bt−1(D)
CPT ti (yi | ~xA)

let A := A \ C ∪ {K}
/* symetrically for v labeled 2. */

compute Bt−1(~xK) by the message passing algorithm on Gt−1

Bt(yi, yj) =
∑

~xK
Bt−1(~xK) · CPT ti (yi|~xK) · CPT tj (yj|~xK)

Let D be the set of nodes in K that are in the k-section, and let E =
A \ (C ∪ D). We have A ∪ {k} = C ∪ D ∪ E and (A \ C) ∪ {k} = D ∪ E.
Using (2.3), as E is separated from C,D by D, we obtain:

B(~xA|~x(A\C)∪{k}) =
B(~xC∪D∪E)

B(~xD∪E)
=
B(~xC∪D)

B(~xD)

It thus suffices to set:

CPT (yi|~x(A\C)∪{k}) :=
∑
xC\{k}

CPT (yi|~xA) · B(~xC∪D)

B(~xD)
(4.3)

We prove that using this method improves greatly the complexity.

Theorem 3 Given B0 = P 0, one can compute B1, . . . , BT in time O(T · |I| ·
(|I|+ |V |) · p · |V |p+1), where p = maxt,{i,j}∈Et max(|̂ı|, |̂|).
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Proof We have :

B(yi, yj) =
∑
xı̂∪̂

B(~xı̂∪̂)CPT (yi|~xı̂)CPT (yj|~x̂) (4.4)

where distribution B( ~X) is a tree distribution on G = (I, E), which is thus
defined by the tuple [B(Xu, Xv) ]{u,v}∈E.

The fact thatK separates ı̂ from ̂ entails that ~Xı̂ and ~X̂ are conditionally
independent given ~XK for distribution B. Therefore

B(~xı̂∪̂) =
∑
xK

B(~xı̂|~xK)B(~x̂|~xK)B(~xK) (4.5)

By plugging this expression into (4.4) one gets

B(yi, yj) =
∑
xK

CPT (yi|~xK)CPT (yj|~xK)B(~xK) (4.6)

where

CPT (yi|~xK) =
∑
xı̂

CPT (yi|~xı̂)B(~xı̂|~xK) (4.7)

CPT (yj|~xK) =
∑
x̂

CPT (yj|~x̂)B(~x̂|~xK) (4.8)

Now, notice that if we inductively run (4.3) from A0 = ı̂ till AN+1 = K we
obtain

∏N
`=0B(~xA`+1

|~xA`
) = B(~xAN

|~xA0). We now show that
∏N

`=0B(~xA`+1
|~xA`

) =
B(~xAN

|~xA0) = B(~xı̂|~xK). For that we proceed by induction showing that

Proposition 5

B(~xA`+2
|~xA`

) = B(~xA`+2
|~xA`+1

) ·B(~xA`+1
|~xA`

)

Proof Consider A`+1 = A` \ C ∪ {k} and D = (C ∪ {k}) ∩K. Thanks to
formula 2.3 on NDC, because D separates C and A`+1 we have:

B(~xA`+2∪A`
) = B(~xA`+2∪A`+1

) · B(~xC∪D)

B(~xC)

B(~xA`+1∪A`
) = B(~xA`+1

) · B(~xC∪D)

B(~xC)
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Thus :

B(~xA`+2∪A`
) = B(~xA`+2∪A`+1

) ·
B(~xA`+1∪A`

)

B(~xA`+1
)

(4.9)

We can compare both side of the statement:

B(~xA`+2
|~xA`

) =
B(~xA`+2∪A`

)

B(~xA`
)

B(~xA`+2
|~xA`+1

) ·B(~xA`+1
|xA`

) =
B(~xA`+2∪A`+1

)

B(~xA`+1
)
·
B(~xA`+1∪A`

)

B(~xA`
)

Thus using (4.9):

B(~xA`+2
|~xA`

) = B(~xA`+2
|~xA`+1

) ·B(~xA`+1
|~xA`

)

�
We can see using that proof that at the end of the two inner for loops of

Algo 5, we have indeed computed CPT (xi|~xK) and CPT (xj|~xK).

Let us now analyse the complexity of the algorithm. The recursion step
requires first to compute B(xC∪D) and B(xD). According to Prop. 2, this
can be done in time O(|I| · V |C∪D|). We now show that |C ∪ D| ≤ |̂ı| + 1.
Let us partition ı̂ into J1 ] J2 ] J3, with J1 the set of nodes of ı̂ which are
not below k, J2 = C and J3 the rest, that is nodes below the strict k-section.
By construction, each strict k-section contains at least a node of ı̂. It means
that |D \ {k}| ≤ J3. Thus |C ∪D| ≤ 1 + |J2|+ |J3| ≤ 1 + |̂ı|. Then we need
to perform the summation

∑
xC\{k}

P (yi|xB) · B(xC∪D)
B(xD)

. For that, we need to
consider a table with 1 + |A∪C ∪D| = 1 + |A∪ {k}| variables. As |A| ≤ |̂ı|,
it gives a tables with at most |V ||̂ı|+2 entries. Computing the sum is linear
in the number of entries. We then need to repeat this process for all k ∈ K,
which is less than |̂ı| times. Hence one can compute P (yi | xK) for all yi, xK
in time O(|̂ı|(|I|+ |V |)|V |1+|̂ı|).

To conclude the proof, let us gather all elements. We have T time points
and |I| clusters (as they form a tree). For each pair of values (yi, yj), one
must derive P (yi|xK), P (yj|xK) and then perform (4.6). The latter has com-
plexity O(|V |K) with |K| ≤ min(|̂ı|, |̂|), which is clearly dominated by the
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computation of P (yi|xK), P (yj|xK). This results in a total complexity of
O(T · |I| · (|I|+ |V |) · p · |V |p+1). �

Notice that it is a crude upper bound on the worst case complexity, and
the actual complexity will be almost always better than that by a factor |V |
to |V |2. If further there is a node in |̂ı ∩ ̂| for all (i, j) ∈ Et, it suffices to
set it as the root of G to obtain an immediate improvement of factor |V |.
Also, when removing nodes from ı̂, one can remove branches of k-sections
which does not contain nodes in ı̂. On the other hand, the complexity in
Theorem 2 will always be the actual complexity in all cases. So even if |̂ı∪ ̂|
is close to max(̂ı, ̂), using this improved algorithm is faster than using the
non improved version: we obtained improvement of an order of magnitude
using it, and no slowdown.

4.4.3 Error Analysis

We can analyze the error ∆t = |P t − Bt| obtained at time t, w.r.t. the one
step error ε0 = maxt |Qt − Bt|, when using Algo. 4 (or equivalently Algo. 5
which computes the same quantities but with a better complexity).

Following [BK98, PAL+12], this scheme ensures that, denoting by β ≤ 1
the contraction factor associated with the DBN:

Proposition 6 ∆t ≤ ε0
∑t

j=0 β
j. Further, if β < 1, we have ∆t ≤ ε0

1−β .

Proof By definition, we have that after applying the CPT to two distribu-
tions P, P ′, the results P̃ , P̃ ′ will be at distance at most |P̃ − P̃ ′| ≤ β|P −P ′|.
In particular, we have that |P t −Qt−1| ≤ β|P t−1 −Bt−1|.

Now, we shall show that ∆t can be bounded by ε0(
∑t

j=0 β
j). By defini-

tions and triangular inequality, we have:

∆t = |Bt − P t|
≤ |Bt −Qt|+ |Qt − P t|
≤ ε0 + β∆t−1

Then by recursively computing the second factor, we obtain,

∆t ≤ ε0 + βtε0 + ββε0 + . . .+ (ββ · · · β)ε0

≤ ε0(
t∑

j=0

βj)
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Further if β < 1, we have:

∆t ≤ ε0(
t∑

j=0

βj) ≤ ε0(
∞∑
j=0

βj) =
ε0

1− β

�

Bounding the one step error

We can further analyze on the fly the one step error ε0 made at each step.
For that, it suffices to consider the result of [CL68] for the Chow Liu ap-
proximation: we have that the one step error at step k is εk = |Bt − Qt| =∑

iH
t(xi)−H t( ~X)−

∑
(i,j)clustersH

t(xi, xj), where H t stands for the entropy
(at time t), defined as follows:

H t( ~X) = −
∑

~xX∈V X

Qt(~xX) logQt(~xX)

Now, H(xi, xj) and H(xi) are already computed by our algorithm for all
i and all clusters (i, j). Computing H t( ~X) exactly is however more complex,
as Qt is a multivariate distribution over tens of variables. Nevertheless, it
suffices to under-approximate it in order to over-approximate the one step
error εk.
Under-approximating the entropy: One easy under-approximation is
H(X) ≥ 0. To improve it, one can compute better values by computing a
subset S of tuples for which Q(x) is large, and under-approximate Q(x) for
these tuples. This can be done in a way very similar to the computation of
spikes in [PAL+12]:

It suffices to use Bt(xi, xj) and Bt+1(yi, yj) for clusters in order to select
thousands of tuples ~x at time t and ~y at time t + 1 with potentially large
B(~x) and Q(~y) (ones which have the largest projection on clusters). Let St
and St+1 be these two sets of tuples. For ~x ∈ St, the probability Bt(~x) is
computed exactly from values of Bt(xi, xj) for the clusters. For ~y ∈ St+1, we
under-approximate Qt+1(~y) ≥

∑
~x∈St Bt(~x)

∏
i P

t
i (yi | ~xı̂).

We then use the following to under-approximate H t+1( ~X):

H t+1( ~X) ≥ −
∑

~y∈St+1

Qt+1(~y) log(Qt+1(~y))
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4.5 Results

In this section we will detail the result obtained with INFERNO, a program
generated in python 2.7 to simulate the evolution of biological pathways using
the cluster approximation on DBNs shown in the previous section. It is freely
available at https://perso.crans.org/∼genest/D22.zip. All experiments were
performed on an Intel i7-4980HQ processor (2,8 GHz quad core Haswell with
SMT) with 16 GB of memory.

The program is tested using the 3 different sets of data that were shown
in chapter 2.

• An enzyme catalysis system: The time scale of the system is 10 minutes
which was divided into 100 time points. The parents relations for the
DBN are obtained using [LHT11, LZT+11]. Conditional probability
tables were populated by drawing 105 simulations from the underlying
ODE model.

• The extrinsic apoptosis pathway (TRAIL): The time horizon of the
model is the first 90 minutes period after injection of TRAIL, which
was divided into 22 time points. Again, as before, 105 trajectories
were generated by simulating the HSD model to fill up the conditional
probability tables.

• The EGF/NGF pathway: The time horizon of each model was assumed
to be 10 minutes which was divided into 100 time points. The parents
relations for the DBN are obtained using [LHT11, LZT+11]. To fill up
the conditional probability tables, 105 trajectories were generated by
simulating the ODE model.

For each of the pathway case study, we consider the the approximated
inference algorithm, compared with statistical simulations of the DBNs using
the algorithm from [PPB+16b]. Results can be found in Fig. 4.5. We report
mean error over marginals normalized to FF (with FF = 100%), as the
raw numbers are not meaningful - most marginals being irrelevant and thus
diluting the raw error tremendously).

We explain these numbers in more detail in the following subsections.
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Figure 4.4: Trees built from the abstracted Apoptosis pathway. At 20 min-
utes on the left, and 90 minutes on the right. The dependencies for CPTs are
represented by blue arrows, the edges of the trees are represented by dotted
black arrows.

4.5.1 Enzyme Catalysis

As evident in Fig.4.5(a), our method is the most accurate for inference: 20
times less errors overall than Disjoint clusters, and 30 times less maximal
error, while being only 20% slower.

4.5.2 Abstracted Apoptosis Pathway

Fig.4.5(b) shows that our algorithm based on Tree Cluster makes minimal
error (≤ 0.06). In terms of trade off, it makes half the errors compared with
Disjoint Clusters and takes only 1.5 times longer to compute. Compared
with FF, it improves accuracy by 7-8 times (FF is very inaccurate on some
variable), while being 6.3 times slower. Fig. 4.6 (left) shows the dynamic
of the marginal for RAct over time as computed by the different algorithms:
Tree Cluster is extremely close to the simulative curve, while Disjoint Cluster
is sizably off and FF makes larger errors.

4.5.3 EGF-NGF Pathway

This pathway allows us to compare the inference algorithms with another
approximated algorithm, called HFF (Hybrid FF) [PAL+12]. In short, HFF
keeps a small number of joint probabilities of high value (called spikes),
plus an FF representation of the remaining of the distribution. The more
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(a) Enzyme catalytic reaction:
Method Max. Error Mean Error (normalized) Nb. Error > 0.1 Comput. Time

FF 0.17 100% 49 0.2s
Disj. Cluster 0.12 65% 16 0.5s
Tree Cluster 0.004 3% 0 0.6s

(b) Apoptosis pathway:
Method Max. Error Mean Error (normalized) Nb. Error > 0.1 Comput. Time

FF 0.44 100% 124 2.2s
Disj. Cluster 0.12 24% 2 9.8s
Tree Cluster 0.06 14% 0 13.8s

(c) EGF-NGF pathway (normalized wrt FF for comparison with HFF):
Method Max. Error Mean Error Nb. Error > 0.1 Comput. Time

FF 100% 100% 100% 1x
HFF (3k) 62% 60% 50% 10x
HFF (32k) 49% 38% 35% 1100x

Disjoint Cluster 84% 79% 84% 1.9x
Tree Cluster 32% 14% 16% 4.2x

Figure 4.5: Table representing the errors of the different inference algorithms.

Time	(hours) Time	(minutes)

Figure 4.6: Evolution of P (cPARP = 2) in the apoptosis pathway (left)
and of P (ErkAct = 2) in the EGF-NGF pathway(right) as computed by the
inference based either on FF or Tree cluster approximations (broken lines),
compared with the real value (solid line).

spikes, the more accurate and the slower the algorithm. As HFF has been
implemented in another language (C++) on a different data structure, we
report the error with FF as the baseline in order to draw a fair comparison,
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in terms of errors (FF=100%) and time (FF=1x). The superiority of our
approach for inference is even more evident in this case. Fig.4.5(b) shows
that our method produces 3 times less errors overall than the most accurate
method considered before. The maximal errors and number of errors greater
than 0.1 are also substantially reduced. FF and disjoint clusters can be 2 to
4 times faster, but with very large errors (see Fig. 4.6 right for an example
of large error), while HFF proposes worse results both in terms of time and
of accuracy.

4.5.4 Discussion on Inference Algorithms

We compare the evolution of concentrations of each molecule using the dif-
ferent inference algorithms (Fig. 4.5). Overall, performing inference based on
the tree clustered representation is fast (less than 15 seconds), while being
the most accurate of all the inference algorithms we tested, included HFF
with a lot of spikes (32k). To visualize the errors incurred by different ap-
proximations, we draw in Fig.4.6 the probability that Erk∗ takes a medium
concentration in the EGF-NGF pathway and the probability that R∗ takes a
medium concentration in the apoptosis pathways. The tree cluster approxi-
mation follows very closely the simulative curve (in this examples as well as
in every examples we considered), while other algorithms are further away,
sometimes being far from what is computed by simulations.

4.6 Conclusion

In this chapter, we reviewed several inference algorithms. With different case
studies, we show that the algorithm based on non-disjoint clusters of size two
forming a tree structure offers a very good trade-off between accuracy and
tractability.

In the context of a tissue made of tens of thousands of cells, capturing
the inherent variability of the population of cells is crucial. In order to study
multi-scale systems in a tractable way, we thus advocate a two-step approach:
Firstly, abstract the low level model of the pathway of a single cell into a
stochastic discrete abstraction, e.g. using chapter 3.

Secondly, use a model of the tissue, which does not explicitly represent
every cell but qualitatively explains how the population evolves. In this way,
one needs not explicitly represent the concentration of each of the tens of
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thousands of cells, but rather only keep one probability distribution. We
show how to build such a population model in the next chapter. We will
finally use approximate inference, as discussed in this chapter, to keep track
of the evolution of the probability distribution.



Chapter 5

Tumour level: A layered
subpopulation abstraction

The last part of the thesis tackles the creation of a model that can represent
the tumour growth and its response to treatment accounting for the transient
resistance that was discussed in the introduction. This model must allow to
account for a large amount of cells (up to a million for an unvascularized
tumour) and be compatible with the cellular model we have shown in the
previous chapter. A poster [PPB+16a] describes the content of this chapter
and a paper is a work in progress.

5.1 Different representations

5.1.1 Usual models

There exist multiple mathematical models for tumour growth [BLB+14].
Those models can give great insight on how to use treatment optimally, like
for example [SZH+]. Surprisingly, even if growth of tumour is determined by
complex factors, it obeys simple laws that can easily be modeled: Tumours
usually follow a short exponential growth phase followed by a linerar growth
phase [SMC+04]. Many of those models consider only the number of tumoral
cells but not their position. There are some, though, that focus on the 3d
growth of a spheroid of tumour cells. These models allow to take into account
some specific consequences to the positions of the cells like the necrosis of
the cells in the middle of the tumour due to the reduced access to nutrients
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and oxygen. This also allows to take into account the diffusion of treatment
inside the tumour [CRB14]. Tumours of big enough size can become resistant
to treatment due to the treatment being unable to reach the center of the
tumours [HYM07].

5.1.2 Population model

In our case, we need a way to take into account variability among cells in
the tumour as it has implications on their fate (see chapter 2). As said
before, considering every single cell cause a combinatorial explosion. A way
to represent the cell’s fates is to group them in sub populations with the
same constraints and external stimuli. This way the stochastic abstraction
shown in the previous chapter can be used on the whole subpopulation at
once.

The main variables that can influence a cell’s fate (its growth and its
death) are the following :

• the access to nutrients and growth possibility. Cells in the middle of
an unvascularized tumour receive few nutrients and their growth rate
is reduced while their chances to necrotize rise.

• the quantity of treatment received. This depends on the permeability
of the tumour to treatment and the cells position.

Because both of those are directly linked to the distance to the surface,
a layered spheroid representation makes sense. The outer layer keeps the
same conditions while inner layer have different conditions depending on
their proximity to the outer layer.

5.2 Representation of the system and its evo-
lution

To represent the state of the system, we can consider each layer as an entity
containing one single variable : its discretized cell density.

The system evolution is computed using a DBN-like framework. The
concentration of a layer at time t depends on the concentration of a subset
of layers at time t-1. Natural choices for this subset are the layer of interest
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Figure 5.1: Layered representation of a tumour. Layers colored in red are
fully filled with cells while white ones are empty.

and the layers directly above and below (the inner layer only considers the
layer above).

To obtain data to evaluate the initial conditions and fill the CPTs, we
used a modified version of a spacial tumour growth model by Waclaw et al
[WBP+15].

5.2.1 Choice of layer sizes and hypothesis

For the DBNs we consider that the new concentration of a layer is dependant
of itself and the layers directly above and below at time t-1, except for the
first layer that depends on the layer above and itself.

According to the DBN model represented in chapter 3, to model the
growth of each layer, we would need CPTs for each layer at each time point.
Such a model can only replay what was observed. However we want to
generate a predictive model, which is able to predict behaviors that were not
observed directly.

A solution for that is to use the same CPTs for all time points and all
layers (but the inner layer). This gives the model some predictive power
derived from the knowledge of a limited period of time.

If we want to use CPTs that way, we need to be sure to choose time steps
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Figure 5.2: Left: A discretization of the data. Right: 3 DBN runs using
those discretized values for CPTs

and layer sizes that make CPTs identicals.
A study of the growth model we use shows that the growth is cubic with

the number of cells. To obtain layers that are filled at the same rate, we thus
need layers to have the same radius.

5.2.2 Time-independent CPTs

Something important to note with DBN-like frameworks is that the time
dependence is a way to deal with the information lost with the discretization.
Indeed, using the same CPTs for all time points can lead to wide inaccuracies
as shown in figure 5.2.

This example represents a possible discretization for a given set of data.
Let’s consider simple time-independent CPTs generated by this set, that de-
pend only of the specie itself. The CPTs generated tell that if the discretized
value is [10-11] at a given time it will have 21% chances to be [11-12] at the
next time step and 79% chances to stay the same. We can clearly see that
the data suggest that it should take around 5 or 6 time steps for the value to
go in the range [11-12] after entering the range [10-11]. However with those
CPTs, there is a 18% chance to stay 7 units of time or more in a row in the
[10-11] range. With those CPTs, there is also a 21% chance that it takes
only two steps to go from the range [9-10] to [11-12]. Those problems stem
from the fact that the DBN keeps no track on the position of a value inside
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Figure 5.3: Left: A more refined discretization of the data. Right: 3 DBN
runs using those discretized values for CPTs

a range. The larger the range, the more inaccurate it will be. Usually for
complexity reasons, the number of discrete values can’t be too high (often
around 5).

In order to handle a unique CPT for multiple time points, we require a
precise discretization: More discrete states make all tangible variations in the
simulation generate CPTs that possess those variations. The more discrete
states, the more precisely those variations are collected. Figure 5.3 shows
the results of multiplying by 5 the number of discretized states on the same
data as the previous example. With this second example it’s impossible to go
from the value 9.5 to 11.5 in 2 steps. It’s possible (but unlikely) to be stuck
in the same state multiple times in a row. And the more discrete states, the
smaller a variation can be and still induce a garanteed change of state.

On the other hand this bigger CPT matrix also becomes more impractical
to store and to use and more discrete states require more simulations to fill
the matrix of the CPTs.

5.2.3 CPT choice for the model

To balance the necessity of fine tuned discrete states and a reasonable size
for CPTs, we use different precisions in the CPTs. The number of discretized
states is fixed to 101 but for CPT we ignore the units for the layers aboves and
below and round them to the nearest multiple of ten (reducing the number of
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Figure 5.4: The CPT for Y t+1 are of the form: CPT (yt+1|xt1, yt1, yt2, zt1, xt+1
1 )

with x, y, z possibles values of X, Y and Z respectively with x1 = x÷10 and
x2 = x%10 and same for y and z.

possible values to 11). This reduce the size of the CPT matrix from roughly
108 to 106. The first layer depend only on the layer above and itself, its
matrix size is thus around 105. In those 105 cases, a lot are impossible. An
extreme example would be a full layer while the layers below are empty.
Instead of the explicit representation, we use a sparse representation to only
represent the possible cases and further reduce the size of the CPTs.

Our first expermentation with this model shows that adding an extra de-
pendency to the layer below at the same time step helps keeping the layers
consistant (less singularities, see Chap. 4). Like the layer below at the pre-
vious time point, the precision is kept to the tens. No modification is done
to the calculation of the first layer. This new model forces to compute the
CPTs from the inner layer to the outer one due to those extra dependencies.
The CPTs are shown in figure 5.4.

5.2.4 Data generation for the model

We use a modified version of the TumourSim algorithm [WBP+15]. In this
modified version, because the genetic influence part of the algorithm is not
our concern here, we set the genetic evolution of the population to 0. Instead,
to create data for a spheroid representation, we generate the barycenter of
the tumour at various times of execution, then count the cells inside each
assigned layer by looking at their distance of the barycenter. The inner layer
is a sphere of large radius due to the fact that data are only collected when
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the spheroid is large enough so the barycenter stay stable while the tumour
grows. All the other layers are concentric spherical shells of the same radius.
Their inner sphere radius being the outer layer of the previous layer. A cell
is considered inside a layer if its center falls inside this layer. The number of
cells inside each layer is transformed in a density by dividing by the volume of
the layer. Those densities are then discretized into a range of values between
0 and 100. The discretized values are chosen using the maximum entropy
discretization shown in chapter 2.

By generating 10000 runs of the desired evolution (like growth phase alone
or growth phase followed by a treatment phase) we can generate the CPTs.
We consider only 2 different variables : the inner layer and the other layers
for CPT generations. Considering all layers identical allow to fill the CPTs
with a reduced quantity of data.

5.2.5 DBN-like model

We present now a model that simulates the evolution of a tumour using the
DBN generated using the method previously presented. This model is an
unpublished work in progress. It currently allows to simulate DBNs using
different CPTs for sets of time points. This allows to simulate changes in the
conditions of tumour like alterning growth phases where the tumour isn’t
under stress and treatment phases where the tumour is actively attacked by
a treatment.

5.2.6 Singularities

During the simulations, because of the high number of discretized states,
singularities may appear (see Chap. 4). When such a singularity occurs,
instead of discarding the run, the program simply removes the last two time
points done and restart with the values of the last remaining time point. This
operation can be done at most 25 times for a single run, after that the run is
discarded. This avoids run beeing stuck on dead ends. While this method is
not foolproof, it greatly reduces the number of runs lost due to singularities.
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5.3 Model and results
We test the algorithm on multiple sets of data generated from the modified
version of TumourSim which is the algorithm presented in [WBP+15]. This
agent based algorithm model the growth of a 3D tumour from a single cell
and can include a treatment phase. The main modifications done to the
algorithm is adding a calculation of the barycenter of the tumour as well as
calculate all the positions of the cells relative to the barycenter. A few other
minor modifications are made to allow successions of growth and treatment
phases.

The main data sets used are the following :

• A growth phase model.

• A death phase model on surface (time to treat = 250, end treatment
= 350).

• A diffuse death phase model (time to treat = 200, end treatment =
300).

Values for the TumourSim parameters are as follow for all 3:

• Growth rate: 1
• Death rate: 0.8
• Treatment growth rate: 0.2
• Treatment death rate: 0.95
• Normal model with no migration and no genetic influence.

Time points are selected as following : Tn = time 100+2∗n in the original
simulation. For all 3 models, the 200 first time points are used.

5.3.1 Growth model

The first model is a simple growth model. The DBN is trained on a limited
number of time points (in our experiment: 50) and the inital conditions are
the distribution of the initial conditions of our training data.

Our goal is twofold :

• Have DBN simulations that follow the original simulations with good
precision.
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• Be able to extend those simulations indefinitively

To test the extrapolation of the DBN, we generate data for 100 time
points and use the first 50 time points for training while using the 50 others
for comparision. The results of the experiments are shown in figure 5.6.

5.3.2 Death models

Taking death due to treatment into account in our model requires to switch
between two different CPTs for the DBNs : One for the growth phase and
one for the death phase.

Our training data includes a growth phase followed by a treatment phase
where cells die massively. Two models are tested : A surface death, where
treatment can’t penetrate the inner layers of the tumours and a treatment on
a permeable tumour, where all cells are affected. Both versions are integrated
in the TumourSim model.

For our first experiments, we trigger the switch to "death mode" at the
same time point as the original model. Intuitively, the "initial conditions"
after the switch will match approximately the conditions in the original model
then the death phase start. Thus the CPTs of the death phase for those
conditions should exist, avoiding singularities.

To be sure our model can handle different times of treatments with the
same data, we make two sets of data: A learning set with a given treatment
time. And a comparision set with an other treatment time. Our CPTs are
generated using the first set, but we make the switch at the time of the second
set and compare it to it.

5.3.3 Simulation of cycles

A major concern when simulating multiple cycles of growth and death is
that the transition between two different CPT structures can easily lead to
singularities in the DBN. For the permeable tumour treatment for instance,
death affect all layers equally, making a porous structure where for example
all layers can be half-filled. The growth phase on the other side normally
have all layers filled, one after an other. Never in a normal growth phase,
three consecutive layers are half filled at the same time. This means that no
data will exist in the CPTs to restart the growth from there.
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Figure 5.5: Mean densities of multiple layers. In blue: Training data from
the original model. In red: Result from the DBN. In green : Extended data
from the original model
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Figure 5.6: Death on surface model. The first figure represent the mean
of 1000 experiments on all layers. The second is a representation of 100
experiments for the third layer
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For death on surface, the state of the system at the end of the death
phase is closer to possible states after a growth phase, allowing in most cases
the growth to restart but it’s still possible to reach states in the death phase
that never obtained in the growth phase.

A solution to that problem is to use the fact that our CPTs are time
independent and layer independent and force the generation of growth data
after death phases.

5.4 Conclusion
This model describing a tumour growth is still a work in progress and several
hurdles have yet to be solved. Mainly, the incorrect transitions between suc-
cessive growth and death phases due to lack of corresponding CPTs requires
an efficient and fast CPT completion method we didn’t develop yet.



Chapter 6

Outlook

6.1 Summary and conclusion

Throughout chapter 2 to 4 we have described a way to model the evolution of
a poulation of cells under a pathway as a distribution. The resulting model
is a promising candidate for a multi-level model of a tumour reaction to
treatment. This model has many advantages : It can keep track accurately
of multiple dependant proteins concentrations using a reasonable amount of
computationnal ressourses (both space and time). The representation as a
distribution allows to draw conclusion for entire groups of cells sharing the
same conditions. The inference model allows to infer the new state for the
whole group at once instead of requiring multiple simulations. Also time
is quite flexible in the model. Generating CPTs with different time steps
can allow to precisely model critical moments with short time steps (like
immediately after TRAIL injection) and use longer time steps for periods
during which the system evolves slowly, reducing the computationnal strain
on the model.

In chapter 5 we started a proposition for a model that allows to represent
the evolution of a tumour as a spheroid with reduced computationnal strain
compared to usual agent based models.

6.2 Perspectives

The next logical step in this work is to combine the two abstractions to
describe the growth of a tumour and its reaction to successive treatments
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acknowledging transient resistances. This would be done by running the
layer model for growth, while running in parallel the cellular model for each
subpopulation to account for both death due to treatment and acquired re-
sistance. The proposed idea is to consider three different steps :

• Step 1: TRAIL injection. (step skipped when no injection) Look at
model of tumour to compute the TRAIL level received by each layer of
the tumour depending on its permeability and the quantity injected.

• Step 2: Update the distribution of each layer w.r.t TRAIL level. Run
the evolution of the apoptosis pathway during a few time points, update
to the new distribution and extract the proportion of cells killed during
that time.

• Step 3: Compute the growth of the tumour using the number of deaths
from step 2 as death rates for the respective layers (during one time
step equivalent in duration to the sum of time steps in step 2).

The steps are repeated multiple times to obtain the full simulation for the
desired period of time.

This multi-level model would pose multiple challenges: The growth time
scale is weeks while the apoptosis pathway’s time scale is hours to day. Syn-
chronysing both can thus be challenging. Layers aren’t immuable objects,
new ones can appear as the tumour grows and cells can move from a layer
to an other. Taking that into account may require exchange of information
between the layers, which isn’t done by the current model. Also, while the
pathway abstraction is a good indicator of different proteins concentrations
in most cases, it currently fails to correctly model the evolution of proteins
when partial death is involved. Causes are unknown but it seems to be re-
sult in an overepresentation of states that lead to death. Tackling all these
challenges will be the aim of future work.
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