
Nearest fixed points and concurrent priority
games

Bruno Karelovic and Wies law Zielonka

LIAFA, Université Paris Diderot - Paris 7
bruno.karelovic@gmail.com

zielonka@liafa.univ-paris-diderot.fr

Abstract. As it is known the values of different states in parity games
(deterministic parity games, or stochastic perfect information parity games
or concurrent parity games) can be expressed by formulas of µ-calculus –
a fixed point calculus alternating the greatest and the least fixed points
of monotone mappings on complete lattices.
In this paper we examine concurrent priority games that generalize parity
games and we relate the value of such games to a new form of fixed point
calculus – the nearest fixed point calculus.

1 Introduction

As it is well known parity games are closely related to µ-calculus. This fact was
first observed in the context of turn based deterministic games [1, 2], next for
perfect information stochastic games [3, 4] and for concurrent stochastic games
[5].

Intuitively, parity games capture a situation where we meet two types of
properties, desirable ones and undesirable ones. Moreover properties are ordered
by a priority relation. This leads to a classification of infinite runs of a system, a
run is desirable iff the property associated with the maximal priority encountered
infinitely often during the run is desirable.

We can try however a finer classification of properties by quantifying them
by real numbers from a closed bounded interval I = [p1, p2] of real numbers.
To this end we associate with the most preferable properties the reward p2 and
with the most undesirable the reward p1. However in general we can have also a
whole spectrum of intermediate properties with rewards between p1 and p2. As
in parity games the properties can be ordered by a priority relation, the priority
over properties has nothing to do with the natural reward order on I, given two
properties a and b with rewards r(a), r(b) ∈ I, it is possible to have r(a) < r(b)
(b gives a better payoff than a) with the priority of a greater than the priority
of b, i.e. property a whenever happens then it “invalidates” property b. As in
parity games, given an infinite run we take the property a of maximal priority
encountered infinitely often during the run and define the reward of the run as
the reward associated with this property.

We obtain in this way a class of games that we call priority games. Deter-
ministic priority games can be reduced to parity games, in particular solving

a sequence of parity games we can find the values of all states in the priority
games and optimal memoryless strategies for both players. Perfect information
stochastic priority games also admit optimal memoryless strategies, however we
do not know if they can be reduced to parity games. In this paper we examine
concurrent stochastic priority games. As it turns out the values of such games
can be obtained by a new kind of µ-calculus. The traditional µ-calculus alter-
nates the greatest and the least fixed points, the µ-calculus in this paper defines
for each r ∈ I = [p1, p2] the nearest fixed point of a monotone function (nearest
to r). The greatest and the least fixed points are just special cases of the nearest
fixed points (they are nearest to p1 and to p2 respectively).

Even if priority games just extend parity games we think that our approach
contributes also to a better comprehension of parity games. Indeed it is noto-
riously difficult to comprehend the µ-calculus formulas that give solutions to
parity games. This follows from the fact that it is difficult to grasp the meaning
of a µ-calculus formula alternating several greatest and least fixed points.

Our approach has advantage because it provides a natural interpretation in
terms of games of a partially evaluated µ-calculus formula, where fixed points
are applied only to some variables while other variables are left free. In our
approach each variable in the formula corresponds to a state of the game and
free variables correspond to absorbing states. Then adding a new fixed point
over a free variable has the following interpretation in term of games – the
state corresponding to this variable changes its nature from absorbing to non-
absorbing. And the usual method for approximating a new fixed point giving
the value of the state turns out to be nothing else but the natural algorithm for
calculating the value the new non-absorbing state. At the end, when all fixed
points are applied, then this corresponds to the final situation where all states
are transformed from absorbing to non-absorbing.

2 Concurrent Stochastic Priority Games

A two-player arena G = (S,A,B, p) is composed of a finite set of states S =
{1, 2, . . . , n} ⊂ N (we assume without loss of generality that S is a subset of
positive integers) and finite sets A and B of actions of players Max and Min.
For each state s, A(s) ⊆ A and B(s) ⊆ B, are the set of actions that players
Max and Min have at their disposal at s. We assume that A and B are disjoint
and (A(s))s∈S, (B(s))s∈S are partitions of A and B..

For s, s′ ∈ S, a ∈ A(s), b ∈ B(s), p(s′|s, a, b) is the probability to move to s′

if players Max and Min execute respectively actions a and b at s.

An infinite play is played by players Max and Min. At each stage, given the
current state s, the players choose simultaneously and independently actions
a ∈ A(s) and b ∈ B(s) and the game moves to a new state s′ with probability
p(s′|s, a, b). The couple (a, b) is called a joint action.

A finite history is a sequence h = (s1, a1, b1, s2, a2, b2, s3 . . . , sn) alternating
states and joint actions and beginning and ending with a state. The length of h

is the number of joint actions in h, in particular a history of length 0 consists of
just one state and no actions. The set of finite histories is denoted H.

A strategy of player Max is a mapping σ : H → ∆(A), where ∆(A) is the
set of probability distributions on A. We require that supp(σ(h)) ⊆ A(s), where
s is the last state of h and supp(σ(h)) := {a ∈ A | σ(h)(a) > 0} is the support
of the measure σ(h).

A strategy σ is stationary if σ(h) depends only on the last state of h. Thus
stationary strategies of player Max can be identified with mappings from S to
∆(A) such that supp(σ(s)) ⊆ A(s) for each s ∈ S.

A strategy σ is pure if supp(σ(h)) is a singleton for each h. Pure stationary
strategies of player Max are identified with mappings σ : S → A such that
σ(s) ∈ A(s).

Strategies for player Min are defined in a similar way.
We write Σ(G) and T (G) to denote the sets of all strategies for player Max

and Min respectively.
We omit G and write Σ, T if G is clear from the context. We use σ and τ

(with subscripts or superscripts) to denote strategies of players Max and Min
respectively.

An infinite history or a play is an infinite sequence
h = (s1, a1, b1, s2, a2, b2, s3, a3, b3, . . .) alternating states and joint actions. The
set of infinite histories is denoted H∞. For a finite history h by h+ we denote
the cylinder generated by h consisting of all infinite histories with prefix h. We
assume that H∞ is endowed with the σ-algebra B(H∞) generated by the set of
cylinders.

Strategies σ, τ of players Max and Min and the initial state s determine in
the usual way a probability measure Pσ,τs on (H∞,B(H∞)).

A concurrent stochastic priority game is obtained by adding to G a reward
mapping

ρ : S→ I

associating with each state s a reward ρ(s) belonging to a closed interval I ⊂ R.
The payoff uρ(h) of an infinite history h = (s1, a1, b1, s2, a2, b2, s3, a3, b3, . . .)

in the priority game is defined as

uρ(h) = ρ(lim sup
n

sn). (1)

Thus the payoff is equal to the reward of the greatest (in the usual integer order)
state visited infinitely often.

The aim of player Max (player Min) is to maximize (resp. minimize) the
expected payoff

Eσ,τs [uρ] =

∫
H∞

uρ(h)Pσ,τs (dh).

Concurrent priority games contain two well known classes of games.

(1) Concurrent parity games [6] correspond to concurrent priority games with
the reward mapping having rewards in the two element set {0, 1} rather than
arbitrary rewards in the interval I.

(2) The second subclass of concurrent priority games is the class of Everett’s
recursive games [7]. Everett games are concurrent priority games such that
all non-absorbing states have reward 0 (a state s is absorbing if p(s|s, a, b) =
1 for all joint actions (a, b)).

Thus in Everett games players receive the payoff 0 if the play remains forever
in non-absorbing states, otherwise, for plays ending in an absorbing state,
the payoff is equal to the reward associated with this state. Note that Everett
games contain as a subclass the class of reachability games which correspond
to Everett games such that all absorbing states have reward 1.

From the determinacy of Blackwell games proved by Martin [8] it follows that
concurrent priority games have values, i.e. for each state s, supσ infτ Eσ,τs [uρ] =
infτ supσ Eσ,τs [uρ]. (Blackwell games do not have states but the result of Martin
extends immediately to games with states as shown by Maitra and Sudderth [9].)

For two subclasses of concurrent priority games mentioned earlier we have
more precise results. A proof of determinacy of concurrent stochastic parity
games using fixed points was given by de Alfaro and Majumdar [5]. And for
Everett’s games Everett proved not only that such games have values but also
that both players have ε-optimal stationary strategies [7].

Notation: For an arenaG byG(ρ) we will denote the priority game obtained
by endowing G with the reward mapping ρ. Another notation used frequently
in the paper is G(x1, . . . , xn) which denotes the priority game with n states
{1, . . . , n} having rewards x1, . . . , xn respectively.

3 Interval Lattice and Nearest Fixed Point

Let us recall that a complete lattice is a partially ordered set (E,≤) such that
each subset X of E has the least upper bound

∨
X and the greatest lower bound∧

X. A mapping f : E → F from a lattice E to a lattice F is monotone if for
all x, y ∈ E, x ≤ y implies f(x) ≤ f(y). The set of such monotone mappings
is denoted Mon(E,F). The greatest and the least element of a complete lattice
will be denoted respectively > and ⊥.

Theorem 1 (Tarski [10]). For each complete lattice (E,≤) and a monotone
mapping f : E → E the set P of fixed points of f is non-empty and is a complete
lattice, in particular P has the greatest and the least element.

In this paper we are interested in the complete lattice I ⊆ R of real numbers
from a closed interval I and in the product lattice In endowed with the compo-
nentwise order. In the sequel we will fix I = [⊥,>] and ⊥, > will always denote
the minimal and maximal elements of I.

Let f : x 7→ f(x) be a monotone mapping from I to itself. For a monotone
mapping f : I → I and r ∈ I we define the nearest fixed point µrx.f(x):

(1) if f(r) = r then µrx.f(x) = r,

(2) if f(r) < r then f maps the interval [⊥, r] into itself and by Tarski’s fixed
point theorem there exists the greatest fixed-point of f in [⊥, r] and µrx.f(x)
denotes this fixed point (in other words, µrx.f(x) is the greatest fixed point
of f in [⊥, r]),

(3) if f(r) > r then f maps the interval [r,>] into itself and by Tarski’s fixed
point theorem, there exists the least fixed-point of f in [r,>] and µrx.f(x)
denotes this fixed point (in other words, µrx.f(x) is the least fixed point of
f in [r,>]).

A mapping f : I → I is nonexpansive if for all x, y ∈ I, |f(x)−f(y)| ≤ |x−y|.
It is known that in general complete lattices a transfinite induction can be

necessary in order to calculate the least and the greatest fixed points of mono-
tone mappings. The following lemma shows that for monotone nonexpansive
mappings from I to I the situation is much simpler:

Lemma 2. Let f : I → I be monotone and nonexpansive.

(i) Let r ∈ I and let (rn)n≥0 be the sequence of real numbers such that r0 = r
and rn+1 = f(rn). The sequence (rn) is monotone and it converges (in the
usual sense of convergence in R with the euclidean metric) to µrx.f(x).

(ii) The set of fixed points of f is a closed subinterval of I.
(iii) Let e1, e2 be respectively the least and the greatest fixed points of f . Then

µrx.f(x) = e1 if r < e1, µrx.f(x) = r if r ∈ [e1, e2] and µrx.f(x) = e2 if
r > e2.

Note that (iii) shows that µrx.f(x) is indeed the fixed point which is closest (in
the sense of the euclidean distance) to r.

Proof. (i) If f(r) ∝ r then by monotonicity fn+1(r) ∝ fn(r) for all n ≥ 0, where
∝ is either ≤ or ≥. But a bounded monotone sequence of real numbers converges
to some r∞ ∈ I. Since f is nonexpansive |f(r∞)− fn+1(r)| ≤ |r∞− fn(r)|. The
left-hand side of this inequality converges to |f(r∞)− r∞| while the right-hand
side converges to 0.

(ii) Suppose that x < y are two fixed points of f and z ∈ [x, y]. Then
x = f(x) ≤ f(z) ≤ f(y) = y and |x− f(z)| = |f(x)− f(z)| ≤ |x− z|. Similarly
|f(z) − y| ≤ |z − y|. However both these inequalities can hold simultaneously
only if f(z) = z. Thus if e1 and e2 are the least and the greatest fixed points of
f then all elements of [e1, e2] are fixed points of f .

(iii) Direct consequence of (ii).

3.1 Nested Nearest Fixed Points

For any set D we endow the set ID of mappings from D to I with the order
relation: for f, g ∈ ID, f ≤ g if f(x) ≤ g(x) for all x ∈ D. Then (ID,≤)
is also a complete lattice, for a set F ⊆ ID, ΘF is a mapping f such that
f(x) = Θh∈Fh(x), Θ ∈ {

∨
,
∧
}. Note that the product lattice In can be seen as

a mapping from {1, . . . , n} into I, i.e. is covered by this definition.

The lattice II contains the lattice Mon(I, I) of all monotone mappings from
I to I. Note that for any set F ⊆ Mon(I, I), ΘF calculated in the lattice II or
in the lattice Mon(I, I) gives the same result, Θ ∈ {

∧
,
∨
}.

Lemma 3. Let f, g ∈ Mon(I, I) and r ∈ I. If f ≤ g then for each r ∈ I,
µrx.f(x) ≤ µrx.g(x).

Proof. If f(r) ≤ r ≤ g(r) then µrx.f(x) ≤ f(r) ≤ r ≤ g(r) ≤ µrx.g(x).

If r < f(r) ≤ g(r) then f and g are monotone mappings from [r,>] to
[r,>] and then µrx.f and µrx.g are the least fixed points of f and g considered
as mappings from the lattice [r,>] to [r,>]. However, if f ≤ g, where f and g
monotone, then the least (greatest) fixed point of f is ≤ than the least (greatest)
fixed point of g (Proposition 1.2.18 in [11]).

The case f(r) ≤ g(r) < r is symmetric to the previous one. ut

We endow Rn with the norm ‖(x1, . . . , xn)‖ = maxi|xi|.
We say that a mapping f ∈ Mon(In, Im) is monotone nonexpansive if for all

x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ In, ‖f(x)− f(y)‖ ≤ ‖x− y‖.
By Mone(I

n, Im) we denote the set of monotone nonexpansive mappings
from In to Im.

Given f ∈ Mon(In, I) by

µrzi.f(z1, . . . , zi−1, zi, zi+1, . . . , zn) (2)

we denote the mapping from In−1 to I which maps (z1, . . . , zi−1, zi+1, . . . , zn) ∈
In−1 to the nearest fixed point of the mappinng zi 7→ f(z1, . . . , zi−1, zi, zi+1, . . . , zn).

Lemma 4. Let us fix r ∈ I.

If f ∈ Mon(In, I) then the mapping (2) belongs to Mon(In−1, I).

If f ∈ Mone(I
n, I) then the mapping (2) belongs to Mone(I

n−1, I).

Proof. The first assertion follows immediately from Lemma 3.

For (x1, . . . , xi−1, xi+1, . . . , xn) ∈ In−1 we define inductively a sequence of
mappings:

g0(x1, . . . , xi−1, xi+1, . . . , xn) = f(x1, . . . , xi−1, r, xi+1, . . . , xn)

gk+1(x1, . . . , xi−1, xi+1, . . . , xn) =

f(x1, . . . , xi−1, g
k(x1, . . . , xi, xi+1, . . . , xn), xi+1, . . . , xn).

We shall prove that for all k and all x = (x1, . . . , xi−1, xi+1, . . . , xn) and y =
(y1, . . . , yi−1, yi+1, . . . , yn) in In−1,

|gk(x)− gk(y)| ≤ ‖x− y‖. (3)

For k = 0 this follows directly from the fact that f is monotone nonexpansive.
Suppose that (3) holds for k. Then

|gk+1(x)− gk+1(y)| =
|f(x1, . . . , xi−1, g

k(x), xi+1, . . . , xn)− f(y1, . . . , yi−1, g
k(y), yi+1, . . . , yn)| ≤

max{|x1 − y1|, . . . , |xi−1 − yi−1|, |gk(x)− gk(y)|, |xi+1 − yi+1|, . . . |xn − yn|} ≤
max{|x1−y1|, . . . , |xi−1−yi−1|, ‖x−y‖, |xi+1−yi+1|, . . . |xn−yn|} ≤ ‖x−y‖.

Now it suffices to note that, by Lemma 2, gk(x) and gk(y) converge respectively
to µrxi.f(x1, . . . , xi, . . . , xn) and to µryi.f(y1, . . . , yi, . . . , yn) when k ↑ ∞. ut

Let f ∈ Mone(I
n, In). Thus f is a vector of mappings f = (f1, . . . , fn)

where, for each i, fi ∈ Mone(I
n, I). Let (r1, . . . , rn) ∈ In.

For each k, 1 ≤ k ≤ n, we define a monotone nonexpansive mapping F (k) :
In−k → Ik:

In−k 3 (xk+1, . . . , xn) 7→ F (k)(xk+1, . . . , xn) ∈ Ik.

(for k = n, F (n) will be just a constant from In not depending on any variable).

Since F (k) is a mapping into Ik, it is composed of k mappings into I, F (k) =

(F
(k)
1 , . . . , F

(k)
k).

For k = 1, F (1) is mapping into I and we will identify it with F
(1)
1 .

We define F (k) by induction. For k = 1,

F (1)(x2, . . . , xn) = F
(1)
1 (x2, . . . , xn) = µx1

r1.f1(x1, x2, . . . , xn).

Suppose that F (k−1)(xk, . . . , xn) = (F
(k−1)
1 (xk, . . . , xn), . . . , F

(k−1)
k−1 (xk, . . . , xn))

is already defined.
Intuitively, given F (k−1) as above to obtain F (k) we should eliminate the

variable xk. To this end we use the kth component mapping fk of f .
First we define

F
(k)
k (xk+1, . . . , xn) =

µrkxk.fk(F
(k−1)
1 (xk, . . . , xn), . . . , F

(k−1)
k−1 (xk, . . . , xn), xk, xk+1, . . . , xn), (4)

and subsequently we put

F
(k)
i (xk+1, . . . , xn) = F

(k−1)
i (F

(k)
k (xk+1, . . . , xn), xk+1, . . . , xn), for 1 ≤ i < k.

(5)
By Lemma 4 and since the composition of monotone nonexpansive mappings
is monotone nonexpansive we can see that all mappings F (k) are monotone
nonexpansive.

We shall write
µrkxk. . . . µr1x1.f(x1, . . . , xn)

to denote the mapping F (k) defined above and we call it the k-th nested fixed
point of f . For k = n we will speak about the nested fixed point without men-
tioning k.

4 Value of the Concurrent Priority Game as the Nested
Nearest Fixed Point

4.1 Auxiliary One-Shot Game

In this section we define auxiliary matrix games.
Let x = (x1, . . . , xn) ∈ In and let G(x) be a priority game with n states.
A one shot game Γk(x1, . . . , xn) is the game played on G in the following

way. The game starts at state k, players Max and Min choose independently
and simultaneously actions a ∈ A(k) and b ∈ B(k). Suppose that the next state
is m. Then player Max receives from player Min the payoff xm and the game
Γk(x1, . . . , xn) ends.

Note that Γk(x1, . . . , xn) can be seen a zero-sum matrix game where the pay-
off obtained by player Max from player Min when players play actions a, b respec-
tively is equal to

∑
m∈S xm · p(m|k, a, b) . The value of the game Γk(x1, . . . , xn)

will be denoted by

Φk(x1, . . . , xn) := val(Γk(x1, . . . , xn)). (6)

We will be interested in Φk(x1, . . . , xn) as a function of the reward vector x =
(x1, . . . , xn).

Since all entries in the matrix game Γk(x1, . . . , xn) belong to I,
val(Γk(x1, . . . , xn)) ∈ I, i.e. Φk is a mapping from In into I.

The following well known properties of matrix games are essential (see for
example [12]):

Theorem 5. Let M1 and M2 be two matrix games of the same size. Then

– If M1 ≤ M2 (where the inequality holds componentwise) then val[M1] ≤
val[M2].

– |val[M1]− val[M2]| ≤ ‖M1 −M2‖, where ‖M‖ = maxi,j |M(i, j)|.

From Theorem 5 it follows that

Proposition 6. The mapping Φk defined in (6) is monotone and nonexpansive.

4.2 Priority Games with One Non-absorbing State

In this section we will study concurrent priority games with one non-absorbing
state. Let us recall that a state i is absorbing if for all (a, b) ∈ A(i) × B(i),
p(i|i, a, b) = 1.

We shall write Gk(x1, . . . , xn) to denote a priority game G with n states
having rewards x1, . . . , xn and such that all states, except state k, are absorbing.
We shall call such a game absorbing. A game starting in an absorbing state i,
i 6= k, is trivial, the game remains forever in i and the payoff is equal to the
reward xi associated with state i. For plays starting in the non-absorbing state
k either at some moment we hit an absorbing state i and the payoff obtained for

such plays is xi (and it is irrelevant what players play once an absorbing state
is attained) or we remain forever in k and the payoff for such a play is xk. Such
games are equivalent to Everett games with one non-absorbing state.

Thus only the value and players’ strategies in the non-absorbing state k are
of interest in Gk(x1, . . . , xn).

In the sequel we will use the following notation. For x = (x1, . . . , xn) ∈ In
and e ∈ I we write (x−k, e) to denote the element (x1, . . . , xk−1, e, xk+1, . . . , xn)
of In.

Moreover if σ, τ are strategies of players Max and Min in the one shot game Γ
(i.e. for each state s ∈ S, σ(s) ∈ ∆(A(s)) and τ(s) ∈ ∆(B(s)) are mappings from
states to distributions over actions) then σ∞ and τ∞ will denote the stationary
strategies in the priority game G such that at each stage players select actions
independently of the past history with probabilities given by σ and τ .

Lemma 7. Let Gk(x) be an absorbing priority game and r ∈ I. Then

val(Gk(x−k, r)) = µrxk.Φk(x1, . . . , xk, . . . , xn).

(i) If µrxk.Φk(x) ≥ r then player Min has an optimal stationary strategy while,
for each ε > 0, player Max has an ε-optimal stationary strategy.

(ii) If µrxk.Φk(x) ≤ r then player Max has an optimal stationary strategy in
Gk(x−k, r) while, for each ε > 0, player Min has an ε-optimal stationary
strategy.

Note that from this lemma it follows that if µrxk.Φk(x) = r then both players
have optimal stationary strategies in the absorbing game Gk(x−k, r).

4.3 General Priority Games

Let G be a priority game.
Note that

(x1, . . . , xn) 7→ Φ(x1, . . . , xn) = (Φ1(x1, . . . , xn), . . . , Φn(x1, . . . , xn))

where Φi defined in (6) are monotone and nonexpansive mappings from In to I.
By G≤k we will denote the priority game obtained from G by transforming

all states i, such that i > k into absorbing states. On the other hand, all states
j ≤ k have the same available actions and transition probabilities as they have
in G.

Of course, the value of each absorbing state j of the game
G≤k(r1, . . . , rk, xk+1, . . . , xn), k < j ≤ n, is xj thus only the values of non-
absorbing states 1, . . . , k are of interest.

It turns out that these values are obtained as nested fixed points:

Theorem 8. Let (r1, . . . , rk) ∈ Ik. Then the nested fixed point

(F
(k)
1 (xk+1, . . . , xn), . . . , F

(k)
k (xk+1, . . . , xn)) := µrkxk. · · ·µr1x1.Φ(x)

is the vector of values of non-absorbing states (1, . . . , k) of the game
G≤k(r1, . . . , rk, xk+1, . . . , xn).

As it is known for parity games, which form a special subclass of priority
games, the winning regions (in the deterministic case [2]) or the values (for con-
current stochastic parity games [5]) can be described by an appropriate formulas
of µ-calculus – a fixed point calculus over an appropriate complete lattice where
we alternate the greatest and the least fixed points. From this point of view
Theorem 8 looks just as an extension of known results to a wider framework of
priority games. However there is one ingredient of Theorem 8 that seems to be
new.

It is notoriously difficult to comprehend a µ-calculus formula alternating
several greatest and least fixed point.

Theorem 8 provides a natural interpretation in the term of games of a formula
where only some initial fixed points are applied.

Let

(v1, . . . , vk) = µrkxk.µrk−1
xk−1. · · ·µr1x1.Φ(x1, . . . , xk, rk+1, . . . , rn) (7)

Then (v1, . . . , vk) are the values of states 1, . . . , k in the priority game

G≤k(r1, . . . , rk, rk+1, . . . , rn) (8)

which differs from the original priority game G(r1, . . . , rk, rk+1, . . . , rn) in that
the states k + 1, k + 2, . . . , n are absorbing in the game (8).

Now when we add another fixed point to (7) to obtain

(v′1, . . . , v
′
k, v
′
k+1) =

µrk+1
xk+1.µrkxk.µrk−1

xk−1. · · ·µr1x1.Φ(x1, . . . , xk, xk+1, rk+2, . . . , rn)

then this can be interpreted as an operation transforming state k + 1 form a
non-absorbing in the game (8) into a non-absorbing in the game
G≤k+1(r1, . . . , rk, rk+1, . . . , rn).

5 Algorithmic Issues

One can wonder if the recursive formulas for the nested nearest point cannot be
used to approximate the values of fixed points, i.e. the values of the states in
the priority game. Unfortunately in general this seems to be difficult, if at levels
1, . . . , k we stop iterations before attaining the fixed points then the resulting
errors can even change the direction of iterations at level k + 1. Moreover it is
difficult to see when we can stop iterations (there is no criterion to estimate the
distance between the value obtained at some iteration and the limit fixed point).

However there is one case when the recursive formulas developed in this paper
can be used to solve the priority game, this is the case of perfect information
stochastic priority games where for each state only one of the two players chooses
actions to play (the other player can be seen as having only one action at this
state). First we have the following counterpart of Lemma 7:

Lemma 9. Let Gk(x) be a priority game with the unique non-absorbing state
k, r ∈ I. Let k be controlled by one player (either Max or Min) who chooses an
action to play and the probability distribution over next states depends uniquely
upon the action chosen by the controlling player. Then the value

val(Gk(x−k, r)) = µrxk.Φk(x1, . . . , xk, . . . , xn).

of state k can be calculated in polynomial time and the controlling player has an
optimal pure strategy.

Proof. For each action a of the player controlling k we have the following formula
for the expected reward after playing a once:

Eak[R] = Eak[R|A] · p(A|k, a) + r · p(k|k, a)

where R is the expected reward after playing a once, A is the event that the
next state is absorbing, p(A|k, a) =

∑
j∈A p(j|k, a) is the probability that the

next state is absorbing when a is executed, r · p(k|k, a) is the probability that
we remain in k when the player plays a in k. From this formula we can calculate
Eak[R|A] i.e. the expected reward under condition that the next state is absorbing.

The expected payoff obtained when we play the strategy a∞ (play only a as
long as the current state is k) is equal

Ea
∞

k [u] =

{
Eak[R|A] if p(A|k, a) > 0,

r otherwise.
(9)

Thus if k is controlled by player Max (Min) then he should play action a
that maximizes (minimizes) (9) as long as we are in k. ut

Thus Lemma 9 shows how to solve one state perfect information stochastic
priority game. To solve a perfect information priority game with any number of
non-absorbing states we use the induction. However instead of value iteration
algorithm (which can be non-terminating) we use the strategy iteration (which
always terminate as the number of pure strategies is finite). In fact this algorithm
just tries to accelerate and optimize the procedure calculating the nested nearest
fixed points.

Algorithm 1 on page 12 implements a recursive procedure
SolveGame(k, (r1, . . . , rk, xk+1, . . . , xn)) that calculates the vector (a1, . . . , ak) of
actions played in non-absorbing states 1, . . . , k by optimal pure stationary strate-
gies in the perfect information stochastic priority gameG≤k(r1, . . . , rk, xk+1, . . . , xn).

References

1. Emerson, E., Jutla, C.: Tree automata, µ-calculus and determinacy. In: FOCS’91,
IEEE Computer Society Press (1991) 368–377

2. Walukiewicz, I.: Monadic second-order logic on tree-like structures. Theoretical
Computer Science 275 (2002) 311–346

3. McIver, A., Morgan, C.: Games, probability and the quantitative µ-calculus qmu.
In: Proc. LPAR. Volume 2514 of LNAI., Springer (2002) 292–310 full version
arxiv.org/abs/cs.LO/0309024.

4. McIver, A., Morgan, C.: A novel stochastic game via the quantitative mu-calculus.
In Cerone, A., Wiklicky, H., eds.: Proc. of the Third Workshop on Quantitative
Aspects of Programming Languages (QAPL 2005). Volume 153, Issue 2 of ENTCS.,
Elsevier (2005) 195–212

5. de Alfaro, L., Majumdar, R.: Quantitative solution to omega-regular games. Jour-
nal of Computer and System Sciences 68 (2004) 374–397

6. Chatterjee, K., de Alfaro, L., Henzinger, T.: Qualitative concurrent parity games.
ACM Transactions on Computational Logic 12 (2011) 28:1–28:51

7. Everett, H.: Recursive games. In: Contributions to the Theory of Games, Vol. III,
Princeton University Press (1957) 47–78

8. Martin, D.: The determinacy of Blackwell games. Journal of Symbolic Logic 63(4)
(1998) 1565–1581

9. Maitra, A., Sudderth, W.: Stochastic games with Borel payoffs. In Neyman, A.,
Sorin, S., eds.: Stochastic Games and Applications. Volume 570 of NATO Science
Series C, Mathematical and Physical Sciences. Kluwer Academic Publishers (2004)
367–373

10. Tarski, A.: A lattice-theoretical fixpoint theoem and its aplications. Pacific J.
Math. 5 (1955) 285–309

11. Arnold, A., Niwiński, D.: Rudiments of µ-calculus. Volume 146 of Studies in Logic
and the Foundations of Mathematics. Elsevier (2001)

12. Parthasarathy, T., Raghavan, T.: Some Topics in Two-Person Games. Elsevier
(1971)

Algorithm 1: Calculate optimal pure stationary strategies in a perfect
information stochastic priority game with k non-absorbing states. We as-
sume that OneState(k, c1, . . . , cn) is the procedure described in Lemma 9
returning the optimal action for the game with one non-absorbing state
k and reward vector (c1, . . . , cn) and value(k, (a1, . . . , ak)) is the value of
state k when players play actions (a1, . . . , ak) in states 1, . . . , k respectively.

1 SolveGame(k, (r1, . . . , rk, xk+1, . . . , xn)) Result: a vector (a1, . . . , ak) of
actions, ai action played in state i by the optimal strategy of the player
controlling i.

2 if k = 1 then
3 return OneState(1, r1, x2, . . . , xn);
4 end
5 w ← rk;
6 while true do
7 (a1, . . . , ak−1)← SolveGame(k − 1, r1, . . . , rk−1, w, xk+1, . . . , xn);
8 ak ← OneState(k, a1, . . . , ak−1, w, xk+1, . . . , xn);
9 z ← value(k, (a1, . . . , ak));

10 if z = w then
11 return (a1, . . . , ak);
12 end
13 w ← z;

14 end

