
Noname manuscript No.
(will be inserted by the editor)

Diagnosis from Scenarios

Löıc Hélouët · Hervé Marchand · Blaise

Genest · Thomas Gazagnaire

the date of receipt and acceptance should be inserted later

Abstract Diagnosis of a system consists in providing explanations to a su-
pervisor from a partial observation of the system and a model of possible
executions. This paper proposes a partial order diagnosis algorithm that re-
covers sets of scenarios which correspond to a given observation. Systems are
modeled using High-level Message Sequence Charts (HMSCs), and the diagno-
sis is given as a new HMSC, which behaviors are all explanations of the partial
observation. The main difficulty is that some actions of the monitored system
are unobservable but may still induce some causal ordering among observed
events. We first give an offline centralized diagnosis algorithm, then we discuss
a decentralized version of this algorithm. We then give an online diagnosis
algorithm, and define syntactic criteria under which the memory used can be
bounded. This allows us to give a complete diagnosis framework for infinite
state systems, with a strong emphasis on concurrency and causal ordering in
behaviors. The last contribution of the paper is an application of diagnosis
techniques to a security problem called anomaly detection. Anomaly detection
consists in comparing what occurs in the system with usual/expected behav-
iors, and raising an alarm when some unusual behavior (meaning a potential
attack) occurs.

1 Introduction

Complexity of distributed systems calls for automated techniques to help de-
signers and supervisors in their tasks. Before correcting a system’s software,
or taking a decision (for instance a reconfiguration of a network), stakeholders

L. Hélouët · H. Marchand
INRIA, Centre Rennes - Bretagne Atlantique, Campus de Beaulieu, RENNES, France

B. Genest
IRISA/CNRS, Campus de Beaulieu, RENNES, France

T. Gazagnaire
OCamlPro SAS, Gif-sur-Yvette, FRANCE

2

need to obtain information on what led to a faulty configuration, on the cur-
rent state of the system, etc. The role of diagnosis is to provide a feedback to
supervisors of a system (this can be online, to obtain some information on the
current status of a running system, or offline, to know why a fault occurred
and then correct the incriminated part of the system). Usually, diagnosis re-
lies on observation of the system (for instance some information stored in log
files during execution), and on some a priori knowledge of the behaviors of
a system. However, observations can only be partial: distributed systems are
now so complex that monitoring every event in a running system is not real-
istic. In telecommunication networks, for example, the size of complete logs
recorded at runtime grows fast, and can rapidly exceed the storage capacity of
any machine, or the computing power needed to analyze them. Furthermore,
the time penalty imposed by the observation to the system also advocates for
a partial observation. The choice of an appropriate subset of observable events
influences accuracy and efficiency of diagnosis, and should be seen a part of
the design of a complex system.

Several techniques are frequently called “diagnosis” while addressing differ-
ent goals. Any technique that provides online or offline information on a system
to a supervisor can be called diagnosis, but we will focus more precisely on
one of them, namely history diagnosis.History diagnosis reconstructs an actual
set of possible executions of a system from a partial observation. The a priori
knowledge on the system available for this is defined as a model of system’s
behaviors. The objective is then to build a set of plausible explanations (runs
of the model) that comply with the observations [4]. Then, these potential ex-
planations can be exhaustively checked to find a fault, or to provide feedback
to system’s supervisor. Note that fault and history diagnosis solve different
problems: fault diagnosis detects if a fault has occurred (and very often which
fault occurred), while history diagnosis provides a set of explanations (faulty
or not) for a given observation.

Within this paper, we will address history diagnosis of distributed systems.
The major objective of this work is to exploit concurrency in the system, and
avoid combinatorial explosion using partial order models. It is well-known
that interleaved models can be of size exponentially greater than concurrent
models [7]. Hence, as long as an analysis of a system does not need to study
all global states, true concurrency models should provide efficient solutions. In
this paper, we propose to model the diagnosed system with High-level Message
Sequence Charts (or HMSCs for short), a scenario formalism allowing to model
distributed systems working on different processes [18]. The observation of the
system is provided as a partial order, and the explanation is given as a non-
interleaved representation of all possible executions that may have generated
the observation according to the model.

This paper proposes a history diagnosis technique based on partial order
models. We consider that observations of a monitored system are provided as
a partial order, and use HMSCs as a model of the observed system to find
explanations of an observation. The algorithm detailed in this paper starts
from an observation O given as a partial order, an HMSC model H of the

3

possible behaviors of the system, and the knowledge of the type of events that
have been recorded in O to build a new model based on O and H that contains
all possible explanations for observation O provided by H .

We do not impose restrictions on the observation architecture: observed
events occurrence may be collected in a centralized way, or separately by dis-
tributed observers. However, we will consider that for a given process, all ob-
served events are totally ordered. Furthermore, the processes may be equipped
to record the respective order between events located on different processes.
This ordering can be deduced for example from messages numbering, or from
a vectorial clock tagging observed events [24,12]. Hence the observation O
may specify some particular ordering between events that is not only induced
by emissions and receptions of messages. This additional information can be
used to refine the set of explanations provided by the model. Indeed, if an
event e happens before an event e′ in the observation, then in any possible
explanation provided by the model, e must be causally related to e′. We also
assume that the observation mechanisms inserted in the distributed system
are lossless. That is, we can reliably use the fact that an event did not appear
in an observation to find or rule out explanations.

Fig. 1 Scenario-based diagnosis framework

Figure 1 shows an usual diagnosis architecture. The monitored system is com-
posed of 4 processes P1, P2, P3 and P4, represented by white squares. Com-
munication links between these processes are symbolized by arrows between
processes. Some sites in the system are equipped by sensors or software probes,
represented by dark squares in the figure, that detect the occurrences of some
events (a message is sent or received, a timeout has occurred, a program has
reached a specified point in its control flow, ...). These events are sent to a
centralized mechanism, the diagnoser. The communications to the diagnoser
can use the communication means of the monitored system, or another net-
work dedicated to this task. We only suppose that no observed event is lost,
and that all messages that are sent from a process to the diagnoser respect
a FIFO ordering (this can be easily achieved by tagging the information sent
with the clock of the monitored process). Only a subset of what occurs on a
process is monitored. The diagnoser receives individual event reportings from
probes, and builds an observation O from the received information. It then
uses a model (in our case an HMSC H) that describes all possible behaviors

4

of the system (or at least a reasonably large subset of them) to output a new
model (the diagnosis) that defines the set of all executions of H that are con-
sistent with the observation O (the explanations). In our case, the output of
the diagnoser is a new HMSC that describes all possible explanations of an ob-
servation. Note that so far, we make no assumption on whether the diagnosis
algorithm is implemented in a centralized or decentralized way.
– The first result of this paper is that we can finitely represent the set of

runs of a distributed system modeled as an HMSC to explain a particular
observation O. The explanation produced is a generator of all executions of
the model for which the projection on observed events is compatible with
O. More precisely, we show that the set of explanations can be described
by another HMSC. This gives the basis of a diagnosis algorithm.

– The second result of this paper is that a global explanation can be re-
constructed from local diagnosis performed for each pair of processes. This
allows for an easy partition of the diagnosis problem into smaller tasks,
and hence for a distribution of a global diagnosis task to several diag-
nosers. Within this setting, each diagnoser computes separately the set of
executions that can explain what it has observed. A last step combines
the local explanations to produce a global explanation. This also opens the
way for distributed diagnosis algorithms.

– The third part of this paper focuses on an online version of the algorithms
described in the previous sections. In this case, the diagnoser receives ob-
served events one after another, and builds a diagnosis incrementally. In
this algorithm, the main objective is to reuse at step n the part of the diag-
nosis computed at state n− 1. We show an efficient algorithm that allows
for this incremental construction. We also show some sufficient syntactic
restrictions to perform online diagnosis with finite memory.

– The fourth part of this paper shows an application of diagnosis to security,
and more precisely to anomaly detection. An anomaly is an unexpected
behavior, which can mean that an attack of a system has occurred. We
propose a definition of anomaly detection as a weakened version of diagno-
sis, namely the existence problem. When no explanation of an observation
can be found in a model, then the observed behavior is considered as il-
legal. witnesses an anomaly. This anomaly detection framework uses our
diagnosis algorithms, and can then be used in an offline or online setting.

The major contribution of this paper is to propose a history diagnosis frame-
work using infinite state models. This paper is an extended version of a pre-
liminary work published in [17]. It is organized as follows: section 2 gives a
taxonomy of diagnosis-related problems (namely fault diagnosis, history diag-
nosis and existence problems) and compares the approach of this paper with
former works. Section 3 introduces the scenario language used, and section 4
introduces the formal definition of observations and explanations. Section 5
defines the main algorithms for diagnosis, and shows how to retrieve expla-
nations in a decentralized framework. Section 6 shows how to adapt offline
algorithms to perform online detection. Section 7 shows the application of
diagnosis to anomaly detection. Section 8 concludes this work.

5

2 A taxonomy and state of the art of diagnosis related problems

In this section we formalize three problems related to observation and monitor-
ing of systems, namely diagnosis, history diagnosis, and the existence problem.
We also list some existing approaches for diagnosis and history diagnosis. The
initial common assumptions for these three problems are that:

– We monitor a system composed of a set of independent processes P =
{P1, . . . Pk} that communicate asynchronously. This system does not nec-
essarily have a finite number of states. Some processes in the system are
instrumented (this can be done by inserting code in the process) to report
some interesting events: message arrivals, sendings, exceptions,... Hence,
we observe a modified version of the original system P = {P ′

1, . . . P
′
k}, in

which each P ′
i is either the original process Pi or an instrumented version.

In addition to the instrumented processes, the system is equipped with a
particular processD called a diagnoser. Each P ′

i produces observations and
report them to the diagnoser. Observed events are occurrences of actions
belonging to an observation alphabet Σobs. The more general setting for
event reporting is that an instrumented processes P ′

i send asynchronously
to the diagnoser D an indication that some action in Σobs has occurred,
along with a sequence number that is maintained on P ′

i . This message
sending to D as well as the sequence number management is part of the
code inserted in Pi. The overall observation collected at diagnoser D from
instrumented processes can be remembered as: a sequence of actions (a
word from Σ∗

obs) ordered according to the notifications received by the di-
agnoser, a Parikh vector (a function Ψ : Σobs → N) counting the number
of occurrences of each observable action, or as a partially ordered set of
observable events. This latter is the setting that will be used in this pa-
per, and we describe it more precisely in section 4. In the sequel, we will
denote by O such an observation. As an observation records information
on observable events, it is almost (up to some missing causal relations) the
projection Πobs(R) of a run R of the system on its observable events.

– the known executions of the running system are represented by a model
M . This model can be a set of logical formulae, a finite state machine, a
Petri net,... The model M can describe behaviors as sequences of actions
from a fixed alphabet Σ ⊇ Σobs, or in the case of HMSCs as partial orders.
The set of all behaviors of M is called the language of M , and denoted by
L(M). Some non-observable events called faults represent failures of the
system. The model M is not always an exact representation of the running
system. One reason is that full knowledge of the system’s behaviors may
not be available. Another reason is that the considered system can not
be represented using the chosen formalism. Note also that all diagnosis
problem may become undecidable if the chosen model is too powerful. For
instance, one can show that diagnosis is undecidable for communicating
Finite State Machines as a consequence of undecidability of reachability
for this model [6]. Hence, the model M may only give an approximation
of the actual behaviors of the running system. As a consequence, one may

6

obtain an observation O of the running system such that no execution of
L(M) produces O when executed. We however suppose that the behaviors
of the model and those of the running system are sufficiently close to ensure
that diagnosis is significant, that is if we call L(P) the set of executions of

the running system, we have |L(P)\L(M)|
L(M) ∼ 0 and |L(M)\L(P)|

L(P)| ∼ 0.

The objective of fault diagnosis is to detect, from an observation O and a
model M whether a fault has occurred. We can formalize the question as ”
given an observation O and a model M , is there a run containing a fault f in
Π−1

obs(O) ∩ L(M)”. A major challenge in fault diagnosis is to decide whether
for given sets of faults and observable events the system is diagnosable, i.e.
the occurrence of a fault can eventually be detected after a finite number
of observations [32]. If the answer is positive, one can build a process that
monitors observable actions and raises an alarm when a fault has occurred.

The objective of history diagnosis is slightly different, and does not focus
on faults. Starting from an observation O, one wants to know everything that
may have occurred in the system while producing this observation. History
diagnosis can be formalized as ”given an observation O and a model M , com-
pute the largest subset X ⊆ L(M) such that for every run R ∈ X we have
Πobs(R) = O”. In a context where observed events are reported in an asyn-
chronous fashion to a diagnoser, an observation records only events that have
reached the diagnoser. To handle this asynchrony, we can adapt our formaliza-
tion of diagnosis and compute the largest set X ⊆ L(M) such that there exists
O′, an observation that contains O (this notion of containment might differ
depending on the considered model but one can see O as a prefix of O′) and
such that for every R ∈ X we have Πobs(R) = O′. Note that the computed
sublanguage X is not necessarily finite, nor regular. Whenever possible (this
depends on the nature of O and M) we want to refine the history diagno-
sis as : ”given an observation O and a model M , compute a model M ′ such
that L(M ′) ⊆ L(M), for every run R ∈ L(M ′), Πobs(R) is an observation that
contains O, and such that L(M ′) is the largest language with such properties”.

The existence problem is a simplified history diagnosis problem that con-
sists in deciding whether some run of a model M can explain an observation
O. This can be formalized as ”given an observation O and a model M , does
L(M) ∩Π−1

obs(O) = ∅ ”?

To complete this taxonomy of diagnosis problems, let us add that fault or
history diagnosis can be addressed offline (the observation is fixed, the system
is stopped) or online (the diagnosis is built incrementally while the system is
still running, and progresses with every event that is reported to the diagnoser
and appended to the observation. In the rest of this paper, we will address the
history diagnosis and existence problems in a setting where observations are
partially ordered sets of events, collected asynchronously by a monitor. We
will assume that each instrumented process provides a total ordering on the
events it reports, and that some additional causal dependencies among events
observed by distinct process may also be provided. This can be achieved if
some processes tag their observation with additional information (for instance

7

a vectorial clock). The model of the system is a High-level Message Sequence
Chart. We will show that history diagnosis and existence from HMSCs are
decidable problems, and can be addressed offline and online. The main advan-
tages in using HMSCs are first the ability to perform diagnosis using models
with infinite state space but finitely represented, and second avoiding an in-
terleaved representation of runs of the model.

Let us now highlight the differences between diagnosis and supervisory
control. Supervisory control consists in monitoring a system (often called the
plant), and prevent the occurrence of some actions so that the system’s be-
haviors remains within a predetermined specification. The problem addressed
in diagnosis is slightly different. Supervisory control prevents some ”bad ac-
tions” to occur. In a system equipped with a diagnoser, bad actions can still
occur, but the diagnoser must raise an alarm when it has enough information
showing that some undesired feature has occurred. The problem addressed by
history diagnosis is not to raise alarms, but rather to provide explanations on
how the system may have behaved from the observations collected so far. His-
tory diagnosis can be useful after the occurrence of a fault, to detect why the
fault occurred. But it can also be used to obtain information on the behavior
of a running system in non-faulty situations. History diagnosis returns all the
possible explanations that are compatible with the observations regardless of
whether they describe faulty behaviors. For fault diagnosis, when there exists
observations for which some explanations contain a fault, and some others do
not, the observed system is not diagnosable (one can not decide whether a fault
has occurred or not). Such situation should be avoided. However, for history
diagnosis, this situation is not a problem.

Let us briefly review some existing results in the domains of model-based
fault diagnosis and history diagnosis. We do not claim exhaustiveness, but
simply refer to approaches that are related to the work presented in this paper.

[32] proposes a fault diagnosis framework based on automata. The objective
is to detect when a fault has occurred. Lafortune et al. show that in some
cases, the system is not diagnosable, that is it may not be possible from an
observation to claim whether a fault has occurred or not. [35] proposes a
modular diagnosis solution with observers modeled as automata. The proposed
approach allows the local diagnosers to communicate to build a more accurate
view of what occurred within the system. The approach of [10] is close, but does
not assume real-time communication among local diagnosers. [23] addresses
offline and online diagnosis for Mealy machines, that is automata with input
and outputs on transitions (the outputs of the machine are used to model the
fact that an event is observed). The diagnosis consists in partitioning the state
space of the system into subsets called cells, and deciding from observations
in which cell the system is. Beyond the fact that these approaches detect
occurrences of faults [32,35,10] or if the system has reached some particular
sate, on may note that these approaches use finite state models.

[14] proposes an online modular diagnosis framework based on Petri nets.
The local diagnosers and the system models are Petri nets. The local monitors
are allowed to communicate to reach a global diagnosis, which is an estimation

8

of the current state of the system. The authors also show that with some good
partitioning of the observed events, local diagnosers can achieve the same result
as a global diagnoser. This work allows to deal with infinite state systems. One
difference with our approach is that an exact model of the system is supposed
to be known, allowing diagnosers to be defined as abstractions of the system’s
model. However, as already mentioned in this section, such a model is not
always available.

[30] proposes history diagnosis from modular definition of a system us-
ing automata. Local diagnosis computed by each component are assembled to
output a global diagnosis. [3] considers history diagnosis from a set of com-
municating automata with bound on communication buffers. This is essential,
as unbounded communicating automata can simulate Turing machines, which
makes history diagnosis an undecidable problem. So this restriction limits the
expressive power of the model to that of finite automata. Hence, these ap-
proaches are modular, but address only diagnosis with finite-state models.
This can be a drawback if the running system is not finite state, and exceeds
for instance the bounds on communication channels imposed by the model.

[4] studies history diagnosis using safe Petri nets. Observations are defined
as occurrence nets (acyclic Petri nets, that can be seen as partial orders). The
approach uses an incremental construction of an unfolding net which embeds
the observation. [8] studies history diagnosis using symbolic unfolding tech-
niques from safe high-level parameterized Petri nets. The main objective of
this work is to find a complete parameterized set of explanations. The ap-
proach builds a symbolic unfolding, that is an unfolding of the Petri net dec-
orated with constraints on the parameters. This technique allows to separate
the control flow and the parameterized values in the proposed explanations,
but also to represent infinite sets of explanations. Similar techniques can be
applied to time Petri nets [9]. The incremental aspect of these approaches is
clearly well adapted for online diagnosis, but does not always allow for a finite
representation of explanations. When unobservable events may have occurred
an arbitrary number of times, unfolding may never stop, and the incremental
approach fails. Note also that these three approaches deal with systems with
a finite number of markings (infinity only comes from parameters in [8,9]).

Our work addresses history diagnosis for infinite state systems, and does
not rely on unfolding techniques but rather on the construction of a model
generating all (and possibly infinite sets of) explanations.

3 Scenarios

Scenarios are a popular formalism to define use cases of distributed systems.
Several languages have been proposed [18,29], but they are all based on similar
representations of distributed executions with compositions of partial orders.
We use Message Sequence Charts, a scenario language standardized by ITU
[18]. A part of this standard is well accepted and used in the industry. The
advantage of working with partial order models is well known: as soon as a
problem can be solved without enumerating all global states of a model, the

9

solution can be computed more efficiently (saving up to exponential time)1.
Formally, Message Sequence Charts can be defined by two layers of descrip-
tion. At the first level, basic MSCs (or simply MSCs in the rest of the paper)
describe asynchronous interactions among components of a system called in-
stances. An instance usually represents a process, or a group of processes of
a distributed system. For simplicity, we will consider that instances in MSCs
represent processes of a system, and we will indifferently use one term or
the other. In an MSC, instances exchange messages (in asynchronous mode),
and can also perform atomic actions. These interactions are then composed
by High-Level Message Sequence Charts, a finite-state automaton labeled by
MSCs. We can define these two models as follows:

First of all, we will consider executions of a system composed of a set of
processes P , executing actions from an alphabet Σ which contains labels of
the form p(a) denoting internal actions, p!q(m) denoting sending of messagem
from process p to process q, and q?p(m) denoting the reception by process q of a
messagem sent by process p. We can partition Σ into Σ!∪Σ?∪Σa, respectively
the sending, reception and internal actions, or into

⋃

p∈P Σp, where Σp denotes
the actions executed by process p.

Definition 1 A (basic) Message Sequence Chart (MSC for short) over a set
of processes P and a set of actions Σ is a tuple M = (E,≤, α, µ, φ), where:

– E is a set of events
– ≤ is a partial order relation (reflexive, transitive, antisymmetric) over E
– α : E −→ Σ is a labeling function. As for labels, we can partition E into

E! = α−1(Σ!), E? = α−1(Σ?) and Ea = α−1(Σa).
– µ : E! −→ E? is a bijection pairing message emissions and receptions.
– φ : E −→ P is a function that associates a process to each event. For a

given event e ∈ E, φ(e) will be sometimes called the locality of e. We can
define a partition {Ep}p∈P of the set of events according to the processes
of M , i.e. ∀p ∈ P , Ep = φ−1(p).

Furthermore, all MSCs must satisfy the following properties:

i) ∀p ∈ P, ≤ ∩ Ep×Ep is a total order. We will often denote by ≤p the
restriction of ≤ to events located on process p and by < the intransitive
and irreflexive reduction of ≤.

ii) (µ ∪
⋃

p∈P ≤p)
∗ = ≤

Intuitively, the meaning of e ≤ f is that e must occur before f in any exe-
cution of the considered scenario, the meaning of φ(e) = p is that event e is
executed by process p, and the meaning of µ(e) = f is that e is a message
sending, and f is the corresponding reception. For a more detailed description
of all MSC features, we refer interested readers to [18]. MSCs have a graphical
representation which is close to their formal definition: the visual aspect of

1 Note however that some problems such as model-checking of LTL formulae, etc usually
rely on a computation of global state space. Hence, some problems can not be addressed
within their partial order representations.

10

an MSC is almost the Hasse diagram of the underlying partial order defined
by processes and messages. The only difference between MSCs and Hasse dia-
grams occurs when two messages between the same processes are crossing: the
Hasse diagram shows a total order on sending and receiving events, while the
corresponding MSC depicts both messages. Note that map µ is a bijection: ev-
ery message sent in an MSC is also received within this MSC (and conversely).
We will then say that MSCs are communication closed.

Example 1 Consider the Message Sequence Chart of Figure 2 : three processes
called Sender, Medium and Receiver exchange asynchronous messages Data,
Info and Ack, and process Sender performs local action a.

Act2

e1

e2

e3

e4

e5

e6

e7
e8

Sender ReceiverMedium

e1

e8

data

Info
Ack

e6
e7

e4

e3

e2 e5Act1

Fig. 2 An MSC Example and its underlying partial order

Instances are symbolized by a vertical line enclosed between a white and a black
rectangle. Messages are symbolized by arrows from the emitting instance to the
receiving one. Atomic actions are symbolized by a rectangle enclosing the name
of the action. In this example, we get for example {Sender!Medium(data),
Medium?Sender(data)} ⊆ Σ. We also have α(e1) =Sender!Medium(data),
α(e8) = Receiver?Medium(Info), etc. We get ESender = {e1, e2, e3} and
µ(e1) = e4, µ(e7) = e3.

w = e1 . . . e|E| such that each event of E appears exactly once in w, and ∀i, k ∈
1..|E|, ei+k � ei. Back to the previous example, a possible linear extension of
M is e1e4e2e5e6e7e8e3. A linearization of an MSC M is a word σ = a1. . . . a|E|

of Σ∗ that is the labeling of some linear extension w of M i.e. σ = α(w) (with
α extended from letters to words). The semantics of an MSC M is defined
as the set of all its linearizations, and is denoted Lin(M). Computing the
linearizations of an MSC resumes to providing an interleaved interpretation
of its partial order. This calculus should be avoided when possible, as a finite
state machine recognizing Lin(M) can be exponential in the size of M .

From now on, we will consider that all MSCs are defined on similar set of
processes P , even if these processes are not active in the MSC. We will also
denote by Mǫ the empty scenario.

MSCs alone do not have enough expressive power to describe complex
behaviors. They can only define a single and finite partial ordering among

11

events. However, the MSC formalism has been extended with several opera-
tors to allow iterations, alternatives, and sequential composition. Sequential
composition allows to glue two MSCs along their common instance axes to
build larger executions. It is formally defined as follows:

Definition 2 Let M1, M2 be two MSCs. The sequential composition of M1

and M2 is denoted M1 ◦ M2, and is the MSC M1 ◦ M2 = (E1 ⊎ E2,≤1◦2

, α1 ⊎ α2, µ1 ⊎ µ2, φ1 ⊎ φ2), where ≤1◦2= (≤1 ∪ ≤2 ∪{(e1, e2) ∈ E1 × E2 |
φ(e1) = φ(e2)})∗, with ⊎ denoting disjoint union, and f1⊎f2 denotes a function
defined over Dom(f1) ⊎Dom(f2), that associates f1(x) to any x ∈ Dom(f1)
and f2(x) to any x ∈ Dom(f2).

Intuitively, composing sequentially two MSCs M1 and M2 consists in drawing
M2 below M1. The semantics of M1 ◦M2 is the set of linearizations Lin(M1 ◦
M2). Note that sequential composition does not impose synchronization among
instances: in M1◦M2, one needs not wait for the execution of all events inM1

before starting executing events in M2. Indeed, events of M1 and M2 can be
concurrent in M1 ◦M2 if they are located on distinct processes. If all events in
M1 andM2 are located on distinct processes, then their sequential composition
is simply the union of both models. However, for every common process p in
M1 and M2, all event executed by p in M1 must occur before events located on
p in M2 (this is the intuitive meaning of {(e1, e2) ∈ E1 × E2 | φ(e1) = φ(e2)}
in the definition of ≤1◦2).

Example 2 A sequential composition of two MSCs is shown in Figure 3. In
the composition M1 ◦M2, action a and the sending of message m, for exam-
ple, are still concurrent events. The linearization P1!P2(m).P3!P2(n).P3(a).
P2?P1(m).P2?P3(n) is a valid execution of M1 ◦ M2. In particular, notice
that executing P3!P2(n) before P2?P1(m) is allowed.

m

aa

P1 P2

MSC M1

m

P2 P3
n

MSC M2
P1 P2

MSC M1 o M2
P3

n

Fig. 3 Sequential composition of MSCs

Sequential composition of MSCs allows for the definition of infinite sets of
MSCs of arbitrary size. However, the usual way to define such sets of MSCs
and to give a more intuitive structure to a set of MSCs is to use a higher level
formalism called High-level Message Sequence Charts (HMSC) that proposes
several other operators such as alternative and iteration. An HMSC can be seen
as a finite-state automaton labeled by MSCs, formally described as follows:

12

Definition 3 A High-level Message Sequence Chart (or HMSC for short) is
a tuple H = (N,−→, ni,M, F) where:

– N is a set of nodes, F ⊆ N is a set of final (or accepting) nodes, ni ∈ N is
an initial node,

– M is a finite set of MSCs,
– −→⊆ N ×M×N is a transition relation.

In an HMSC, nodes define potential global states of the system, that are used
to glue MSCs. Note however that these nodes do not impose any synchroniza-
tion among processes, and that a system may never pass through these global
states. An HMSC is then just the generator for a set of partial orders. We will
call the degree of H the maximal number of transitions leaving any node of H .

Example 3 Consider the HMSC H in Figure 4. The initial node n0 is de-
picted by the presence of a downward triangle, and the only final node n1

is depicted by the presence of an upward triangle. The transitions of H are
(n0,M1, n0),(n0,M3, n0) and (n0,M2, n1). The HMSC of Figure 4 describes a
simple interaction between a client and a server. The client can query a server
and has to wait for an answer before doing anything else (MSC M1). After
answering, the server stores the question in its database. The client can also
send a notification message Alive to the server to keep its session alive (MSC
M3). These two behaviors M1 and M3 can be iterated an arbitrary number
of times (described by the loops in the HMSC graph) before the client closes
the session (MSC M2). Note that the atomic action Record can be concurrent
with the reception of an answer, but also with the sending of message Close
or Alive by the client.

Fig. 4 High-level MSC

The whole terminology for automata applies to HMSCs. A path of H is a

sequence of transitions ρ = n0
M1−→ n1 . . .

Mk−→ nk such that ∀i ∈ 0...k −
1, (ni,Mi+1, ni+1) ∈−→. If n0 = ni, then ρ is called an initial path, and if
nk = n0, then ρ is called a cycle. If nk ∈ F , ρ is called an accepting path.
An HMSC H hence defines a set of accepting paths denoted by PH . To each

13

path ρ of PH , one can associate a unique MSC Mρ obtained by concatenation
of successive MSCs labeling transitions of ρ, i.e. Mρ = M1 ◦ · · · ◦ Mk. The
MSC Mρ will be called a run of H . An HMSC can then be considered as the
generator for the set of MSCs FH = {Mρ | ρ ∈ PH}, and its semantics is given
as the set of linearizations LH =

⋃

M∈FH

Lin(M).

Remark 1 Even if H is an automaton labeled by MSCs, its linearization lan-
guage LH may not be a regular language. For instance, the HMSC of Figure 4
does not have a regular set of behaviors (the Client process can send an ar-
bitrary number of Alive messages before the first of them is received by the
Server process). It has been shown that High-level Message Sequence Charts
embed the expressive power of Mazurkiewicz traces [26], and rational relations.
Consequently, several classical model-checking problems (language inclusion,
equality, universality, vacuity of intersection,...) are undecidable for HMSCs.
It is even undecidable in general to know whether the linearization language
of an HMSC is regular. Fortunately, several subclasses of HMSC allow for
the decision of some problems. For instance, regular HMSCs [1] allow for all
model-checking problems that are feasible on finite-state machines, globally co-
operative HMSCs [15] allow for decision procedures for inclusion, equality, and
vacuity of intersection, etc. In the next sections, we show that history diag-
nosis with HMSCs as models is decidable without restriction. This means in
particular that our results offer a diagnosis solution for a class of infinite

state models, which can be seen as an improvement with respect to solu-
tions based on finite state models such as finite-state automata or safe Petri
nets. Note also that increasing the expressive power of the system’s model to
embed the expressive power of Communicating Finite State Machines leads to
undecidability.

4 Observation

Let us now define the essential notions that will be used to find explanations
of an observation. An observation O performed during an execution of a sys-
tem should be an abstraction of an existing execution (i.e. an abstraction of
an MSC). A subset of events is monitored on several processes of the system:
every time a monitored event e is executed, a message is sent by a local ob-
server to the supervision mechanism. In the following, we will only suppose
that observations are lossless (all events that are monitored are effectively
reported when they occur), faithful (observers never send events that did
not occur to the supervising architecture, and do not create false causalities),
and received within a bounded delay of at most tobs time units. The set
of types of monitored events is defined as an observation alphabet Σobs. We
hence consider that probes observe only events which type belongs to Σobs, and
defining the contents of this alphabet is a mean to tune probes. We will also
consider that for each process, the observation is a sequence, that is, the com-
munication between local observers and the supervision architecture is FIFO.
The observations can contain additional ordering information (built from lo-
cal observations and additional information such as packet numbers, vectorial

14

clocks,...), and are thus considered as labeled partial orders. Note also that
events are not observed on all instances, hence we define a set Pobs ⊆ P on
which events are monitored (i.e. Pobs = φ(α−1(Σobs))). Formally, observations
can be defined as labeled partial orders as follows:

Definition 4 An observation is a tuple O = (EO,≤O, αO, µO, φ0), where
EO,≤O, αO, φO have the usual meaning in MSCs and µO is a partial applica-
tion that pairs events of EO. Observations have to define a total order ≤Op

on
each process, as for MSCs, and satisfy the inclusion (µO ∪

⋃

p∈P ≤Op
)∗ ⊆≤O.

The events recorded in an observation are the information sent by probes: the
fact that a message of type m was sent or received, that an internal action
was executed, etc. We suppose that the logged events have the same form as
the events in the HMSC that will be used to explain an observation, i.e. that
no pre-processing of the logs is needed to compare it with our model of the
system. From the definition, observations are a relaxed version of MSCs with
less constraints on ordering: they are not necessarily communication-closed, as
some message sendings of EO!

may not have an image through µO, and some
receptions may not be the image of an emission a sending. This is justified by
the fact that we do not want to enforce that both the sending and reception
of messages are observed. Furthermore, condition ii) of MSCs is relaxed, that
is we do not require anymore that the union of local ordering and message
mapping forms a transitive reduction of ≤O as in MSCs. Indeed, all events are
observed locally, and nothing guarantees that message sendings and receptions
are correctly mapped, nor that both ends of a message are observed. However,
vectorial stamping, packet numbering or similar information exchanged among
processes can help building a causal order that is richer than a simple collection
of sequences of observed events on each process. In an observation O, the
intuitive meaning of e ≤O f is that it was observed that e is a causal
predecessor of f . Note that e ≤O f necessarily means that e occurred before f
(meaning that the date of occurrence of e is smaller than the date of occurrence
of f), but that the converse is not true: an event e can occur before another
event f , but yet the two events are not causally related. Observations can be
composed like MSCs using the ◦ operator. In the sequel, we will adopt the
following graphical convention for observations. Processes will be represented
as in MSCs, but without the black rectangle ending the process line. Events
will be represented as boxes labeled by the event type, and the covering of the
ordering relation will be depicted as arrows between causally related events.

Example 4 We show an example of observation in Figure 5. Processes P and Q
are monitored. In this observation, two events have occurred on P : an atomic
action a and the sending of a message m to Q. A single event has occurred on
Q, an atomic action b. Note that the message sending precedes action b.

For an arbitrary partial order O = (EO,≤O, αO, µO), we will denote by <O

the covering of relation ≤O, i.e x <O y iff x ≤O z ≤O y and ∄z ∈ EO, x ≤O

z ≤O y. For a given event e ∈ EO, we will denote by ↓(e) the set of all causal
predecessors of e. We will also denote by max≤(p) the maximal event located

15

Fig. 5 An example observation

on process p. Furthermore, slightly abusing the notation, for a set of events
E, we will denote by O \ E the restriction of O to EO \ E, and write e ∈ O
instead of e ∈ EO. Finally, we will say that a set of events E ⊆ EO is causally
closed in O if for all a ≤O b with b ∈ E, then a ∈ E.

Now that we have defined the observations that are produced by the probes
and collected by our diagnosis architecture, let us show how MSCs and HMSCs
can be used to explain observations.

Definition 5 LetM = (E,≤, α, µ, φ) be an MSC over a set of processes P and
a set of actions Σ. Let Σobs ⊆ Σ be an observation alphabet. The projection of
M over Σobs is an observation denoted by ΠΣobs

(M) = (EO,≤O, αO, µO, φO)
such that EO = E ∩α−1(Σobs), ≤O=≤ ∩ (EO ×EO), and αO (resp. µO, φO)
is the restriction of α (resp. µ, φ) to EO.

Note that an MSC is also an observation (but the converse is not true). How-
ever, what a monitoring system observes from these executions are just projec-
tions. Indeed, it is not possible to instrument a system in such a way that any
instruction or event occurring on every process is recorded. This also holds for
the causal relationships between observed events. Hence, an observation is a
partial view of what occurred in a system, and the observed order among ob-
served events might be less precise than the actual causal ordering of the real
execution observed by the probes. This is captured by the notion of sub-order
defined below. Clearly, this means that observations are sub-orders of projec-
tions of executions on observed events. Furthermore, the systems described and
their observation mechanisms are networks of machines communicating asyn-
chronously. Events collected by probes on each site are sent asynchronously to
the diagnoser. This means that when performing diagnosis, we have to take
into account that some observed events were not yet received, and hence do
not appear in the observation. This is captured by the notion of prefix.

Definition 6 Let O = (EO,≤O, αO, µO, φO) be an observation. A prefix of O
is an observation O′ = (E′

O,≤
′
O, α

′
O, µ

′
O, φ

′
O) such that E′

O ⊆ EO is causally
closed in O, and ≤′

O, α
′
O, µ

′
O, φ

′
O are restrictions of ≤O, αO, µO, φO to E′

O. A
sub-order of O is an observationO′ = (EO,≤′

O, αO, µ
′
O, φ

′
O) such that ≤′

O⊆≤O

and µ′
O ⊆ µO.

16

Slightly abusing our definition, we will say that a set of events E ⊆ EO is a
prefix of O if the restriction of O to E is a prefix of O. We will say that an
MSC M and an observation O are consistent when O is an observation that
might have been collected by probes during the execution of M . This can be
formally defined by a matching relation between O and M :

Definition 7 Let O = (EO,≤O, αO, µO, φ0) be an observation, and M =
(E,≤, α, µ, φ) be an MSC over a set of processes P and a set of actions Σ. O
matches M with respect to an observation alphabet Σobs (denoted by O ⊲Σobs

M) if O is a prefix of a sub-order of ΠΣobs
(M).

Whenever O ⊲Σobs
M , we will say that M is an explanation of O (w.r.t obser-

vation alphabet Σobs). We will also write O ⊲ M instead of O ⊲Σobs
M when

Σobs is clear from the context. Let us detail this definition. We require O to be
a sub-order of a prefix of the projection of M . The prefix requirement imposes
that when an event is observed in O, all the observable preceding events on the
same process have also been observed. Note however that M can still contain
observable events that have not yet been observed. The sub-order requirement
imposes that any causal ordering found in O is actually an ordering described
in M (but the converse needs not hold). Note that this matching definition is
close to the definition of matching proposed by [27,25]. This matching is an
embedding relation from an MSC M to another MSC N , that preserves events
labeling and ordering. Such embedding means that N is a refinement of M .
It was shown in [27] that this matching can be extended to HMSCs, and used
for verification purposes. However, in this paper, we will only use matchings
from finite observations to finite MSCs.

Proposition 1 O ⊲Σobs
M if and only if there exists a matching function

hO,M : EO −→ EM that sends events of EO onto events of M such that:

– hO,M respects the labeling (α(hO,M (e)) = α(e)) and causal ordering of O
(e ≤O f =⇒ hO,M (e) ≤M hO,M (f))

– for every pair of events e ≤M f in M located on the same process, and
such that α(e) ∈ Σobs and α(f) ∈ Σobs. The fact that h−1

O,M (f) is defined

implies that h−1
O,M (e) is also defined. Furthermore, this function is unique.

Proof: It is easy to see that if hO,M exists, then it is the (unique) function
hO,M : EO → EM that sends the k-th event of EO on instance p onto the k-th
event of πΣobs

(M) on instance p for all k ∈ N and p ∈ Pobs (due to the fact that
O is totally ordered and closed by precedence on each process). If hO,M does
not preserve causal ordering for some events located on distinct processes, then
O can not be a prefix of a sub-order of πΣobs

(M). Conversely, if O is a prefix of
a sub-order of πΣobs

(M), then for every ordered pair of events e ≤O f in O, we
have hO,M (e) ≤M hO,M (f). Similarly, for every f ∈ hO,M (EO), all observable
predecessors of f on the same process must be in hO,M (EO), otherwise the
observation O, which is totally ordered processwise, can not be a prefix of a
sub-order of ΠΣobs

(M). ⊓⊔

17

Corollary 1 Given an observation O such that O⊲Σobs
M and an observation

O′ such that O′ is a prefix of O, or O′ is a sub-order of O, then O′ ⊲Σobs
M .

Furthermore, if O′ = ΠΣ′(O) for some alphabet Σ′ ⊆ Σobs, then O′ ⊲Σ′ M .

Proof: The proof is straightforward, as it is sufficient to consider the restric-
tion of hO,M to events of O′ to obtain a matching relation from O′ to M . ⊓⊔

Note that a prefix of a sub-order of an MSC M is not necessarily a sub-order of
a prefix of M . Consider for instance the MSC M1 in Figure 6. The observation
that contains only one occurrence of a on P1 and one occurrence of b on P2 is a
prefix of the sub-order of M1 where all causal dependencies between the events
on P1 and the events on P2 have been removed. However, this observation is
not a suborder of any prefix of M1. Indeed, any suborder of a prefix of M1

that contains one occurrence of b must contain two occurrences of a.

Proposition 2 Let O be an observation and M be a MSC. Then, checking
whether O ⊲Σobs

M can be done in O(|M |+ | ≤O | × | ≤M |).

Proof: The first step to verify a matching relation is to build the mapping
hO,M from O to M , that is compare sequences of observable events along
each process. This can be computed in linear time in the size of M . Then, for
each pair of events (a, b) appearing in ≤O we have to verify that hO,M (a) ≤M

hO,M (b). ⊓⊔

Example 5 Let us illustrate matching on the examples of Figure 6, where
Σobs = {a, b}, O1, O2, O3, O4 are observations, M1,M2,M3,M4 are MSCs,
and the matching relation hOi,Mi

that sends an observation onto an execution
is represented by dotted arrows when it exists.

– Let us consider O1 and M1: there is an injective mapping from the obser-
vation to a prefix of the explanation. a’s and b are concurrent in the obser-
vation, but the order O1 can clearly be injected in M1, hence O1 ⊲Σobs

M1.
– For the pair O2, M2, there is also an injective mapping that maps O2 to a

prefix of the projection of M2 onto Σobs. The event c in M2 does not have
to be matched, as it is not an observed event.

– For the pair O3,M3, a and b are unordered in the explanation M3 and hence
the observation O3 can not be injected in M3. This example is interesting,
as it illustrates the main difference between diagnosis from an interleaved
and a non-interleaved representation. MSC M3 indicates that events a and
b are not causally related. Event a may occur before b, or the converse, or
both event may occur concurrently. From the observation O3 we learn that
b could not occur before a. However, M3 does not explain why b could not
occur before a, and hence is not a valid explanation for O3. In some sense,
a non-interleaved model provides more information than an interleaved one
(mainly on the causal dependencies among events), and this information
can be exploited to improve accuracy of diagnosis.

– For the pair O4, M4, there is no injective mapping satisfying the three con-
ditions of the morphism defined in proposition 1. Indeed, an occurrence of b

18

Fig. 6 Two matching examples w.r.t {a, b} and two counter examples

should have been observed between two a’s. Hence, M4 is not an explanation
of O4.

From these examples, one may notice that the observation of some events pro-
vides information on whether an execution M is an explanation of what has
been observed, but also that the causal ordering of some events in the observa-
tion or their absence can also be used to rule out some possible explanations
(this is the case for the pairs (O3,M3) and (O4,M4)).

Definition 8 Let O be a partial order over Σobs and H be an HMSC. The
set of explanations provided by H for an observation O is the set of paths
PO,H = {ρ ∈ PH | O ⊲Σobs

Mρ}.

Notice that the set of explanations provided by H is not always finite nor its
linearization language is regular, but we will prove that it can be described by
an HMSC in section 5, Theorem 1. As already mentioned, observations may be
collected either in a centralized or a distributed way, and observed events can
be sent to supervising mechanisms via asynchronous communications. Hence,
the model of our system can describe runs which projections are all larger
than the observation collected so far. Note however that thanks to the pre-
fix condition, our framework does not impose observations to be complete

projections of an MSC labeling an accepting path of H , but should only be
embedded into an explanation.

19

Our goal is to build incrementally the set of all explanations provided by
an HMSC. This means that if we study MSC concatenations, we should be
able to test whether it is worth or not continuing along a path of an HMSC.
This leads us to introduce the notion of compatibility defined as follows:

Definition 9 An MSC M is compatible with an observation O if and only if
there exists an MSC M ′ such that O ⊲Σobs

M ◦M ′. Given an HMSC H and a
run ρ ∈ PH , then Mρ is compatible with an observation O (w.r.t HMSC H) if
there exists ρ′ such that ρρ′ ∈ PH and O ⊲Σobs

Mρρ′ .

When H is clear from the context, we will drop the reference to H and simply
write that Mρ is compatible with O, or even ρ is compatible with O. It is
worth noting that when M and O are compatible, then there exists a unique
maximal embedding function h that sends a prefix of O onto events of M , and
such that any embedding h′ of O into M ◦M ′ is an extension of h. Hence, the
unique embedding h of O into some MSC in FH can be built incrementally.

5 Offline diagnosis

The main objective of our diagnosis approach is to extract from an HMSC
H a generator for the set of explanations PO,H of an observation O. More
formally, the problem can be stated as follows. Given an observation O of an
instrumented system, and an HMSC H , build a new HMSC H ′ such that, for
every accepting path ρ of H ′, we have O ⊲Mρ

This generator H ′ can be defined as a product between the original HMSC
and the observation, with synchronization on monitored events. In the rest
of the paper, this new HMSC will be called a diagnosis HMSC (or simply
a diagnosis). The nodes of a diagnosis HMSC are products of a node of the
original HMSC with the subset of events of O observed so far, that will be
called the progress of the observation. For any node n = (v, EO) of a diagnosis
HMSC, a path ρ leading to n should generate an MSC Mρ that embeds O.

Next we outline some difficulties we will face in order to build a diagnosis

HMSC. First, one can not decide if a path ρ = n0
M1−→ n1 . . .

Mk−→ nk is an ex-
planation of O just by considering the projections ΠΣobs

(M1), . . . , ΠΣobs
(Mk).

This is basically due to the fact that in generalΠΣobs
(M1◦M2) 6= ΠΣobs

(M1)◦
ΠΣobs

(M2): the former may provide more ordering on projected events than
the latter (see for instance the MSCs M1 and M2 in Figure 7). For similar
reasons, we cannot use as a basis for diagnosis a copy of the original HMSC
which transitions are labeled by projections of MSCs as shown by Example 6.

Second, a major difficulty is to know the influence of unobservable events
and of concatenation on the causal ordering of observable events. As already
mentioned, valid explanations may contain an arbitrary number of unobserved
events. Fortunately, we can always keep an abstract and bounded representa-
tion of these unbounded orders, by projecting runs of our models on observable
events, and recalling some causalities. This abstraction of runs will be mod-
eled by a partial function gO,M : P −→ 2O that associates to each instance
p ∈ P the observed events of O preceding the last event (observed or not) on

20

instance p after playing some run M of an HMSC. Intuitively, gO,M (p) recall
the events of O preceding some event located on process p. More formally, for
an observation O and an MSC M compatible with O, we have:

gO,M (p) = h−1
O,M

(

↓
(

max≤M
(p)
)

)

∩Dom(hO,M),

where hO,M is the (unique) maximal embedding of prefixes of O in M . Notice
that function gO,M defines an abstraction of a run that is not redundant with
the order contained in O, since the run of the HMSC represented by gO,M can
provide more ordering on observed events than O.

Example 6 Let us illustrate the use of function g with an example. Consider
the two MSCs of figure 7, and the observation alphabet Σobs = {a, b, b′, c, c′}.
O1 and O2 are the the projections of M1 and M2 on Σobs. We can remark that
ΠΣobs

(M1 ◦M2) and O1 ◦ O2 consist of isomorphic sets of events, but define
different causal orderings on theses events (b and c′ are causally ordered in
ΠΣobs

(M1 ◦ M2) but not in O1 ◦ O2. The reason is that the causality from
Medium to Receiver induced by message Info is lost during projection. Let
us suppose that MSC M1 has been played as an explanation of observation
O1. Then, the function gO1,M1

computed after M1 to explain observation O1

associates event a to process sender, events {a, b} to process Medium, and
events {a, b, c} to process Receiver.

Fig. 7 Concatenation and Projection

21

Let us now show that for a given observation O, the projections and the
function g can be computed incrementally. To do so, we first show how to
compute the projection of M1 ◦ M2 according to the projections of M1 and
M2 (i.e ΠΣobs

(M1) and ΠΣobs
(M2)) and the function gO,M1

:

Proposition 3 Let M1 = (E1,≤1, α1, µ1, φ1), M2 = (E2,≤2, α2, µ2, φ2) be
two MSCs, and let ΠΣobs

(M1) ◦ ΠΣobs
(M2) = (E,≤, α, µ, φ). Then for any

observation O such that M1 is compatible with O,

ΠΣobs
(M1 ◦M2) = (E,≤′, α, µ, φ), where

≤′=

(

≤ ∪{(x, y) ∈ ΠΣobs
(M1)×ΠΣobs

(M2) | ∃z ≤2 y, x ∈ gO,M1
(φ(z))}

)∗

Proof: Let us suppose that there exists (x, y) that are ordered in ΠΣobs
(M1 ◦

M2), but not in ≤′. Then, obviously x ∈ E1 and y ∈ E2, and furthermore,
φ(x) 6= φ(y). As (x, y) are ordered in ΠΣobs

(M1 ◦ M2) without being on the
same process, then there exists an event x′ ∈ E1 such that x ≤ x′, and an
event y′ ∈ E2 such that φ(x′) = φ(y′). Hence, we have that x ∈ g(φ(x′)), and
x ≤′ y, contradiction. ⊓⊔

We can now show how to compute the function gO,M1◦M2
from gO,M1

and M2.

Proposition 4 Let M1 = (E1,≤1, α1, µ1, φ1), M2 = (E2,≤2, α2, µ2, φ2) be
two MSCs such that M1 ◦M2 is compatible with O. Then, for every p ∈ P,

gO,M1◦M2
(p) = gO,M1

(p) ∪ {gO,M1
(φ(e)) | e ≤2 e′, φ(e′) = p}

∪ {e ∈ h−1
O,M1◦M2

(πΣObs
(M2) ∩O) | e ≤2 e′, φ(e′) = p},

where hO,M1◦M2
is the largest embedding of prefixes of O into M1 ◦M2.

Proof: Suppose that there exists a process p ∈ P and an event e ∈ O such
that e ∈ gO,M1◦M2

(p) but e is not in the incremental computation of g. Then,
clearly e 6∈ gO,M1

(p). If e ∈ M1, then e ∈ gO,M1◦M2
(p) if and only if there exists

a causal chain of events hO,M1◦M2
(e) < e1 < ...ei < ej < ... < en in M1 ◦M2

such that en ∈ E2 and is located on process p, ei ∈ M1 and ej ∈ M2 are located
on the same process. Hence by definition, e ∈ gO,M1

(φ(ei)) and also belongs to
the incremental construction of gO,M1◦M2

(p). If e ∈ M2, then e ∈ gO,M1◦M2
(p)

if and only if there exists a causal chain hO,M1◦M2
(e) < ... < en inM2 such that

en ∈ E2 is located on process p. This case is also captured by the incremental
construction. ⊓⊔

Hence it is sufficient when studying an arbitrary long path ρ of an HMSC
that is compatible with O to memorize the finite set of observed events in Mρ

and gO,Mρ
to be able to build incrementally a faithful projection of the MSC

labeling any continuation of this path (and make sure that this continuation is
still compatible with the observation). We are now ready to build the product
AO,H of an observation O on an alphabet Σobs and an HMSC H :

22

Definition 10 Given an HMSC H and an observationO on an alphabet Σobs,
the diagnosis HMSC AO,H is defined as a tuple AO,H = (Q, δ, q0,M, F ′),
where δ is a new transition relation, Q ⊆ N × Prefix(O) × F , where F is the
set of functions from P to 2O.

– q0 = (ni,Mǫ, g∅), where g∅ is a function over an empty domain.

–

(

(n,E, g),M, (n′, E′, g′)

)

∈δ with E 6= O iff

– n
M
−→ n′,

– For every process p, either E′′
p is a prefix of EOp, or EOp is a prefix

of E′′
p , where E′′ = E ⊎ πΣObs

(M). When this property holds, then
E′ = EO ∩ h−1(E′′), where h is the largest partial mapping of events
of EO onto events of E′′ that preserves local ordering ≤p, and labeling.
Note that E′ is necessarily a prefix of O. When the property does not
hold for MSC M , then the transition is not allowed.

– g′(p) = g(p) ∪ {g(φ(e)) | e ≤M e′, φ(e′) = p} ∪ {e ∈ πΣObs
(M) | e ≤M

e′, φ(e′) = p},
– For all a, b ∈ E′ with a <0 b, either a, b ∈ E (in this case, the ordering

of a and b has already been checked in former transitions), or h(a) ≤M

h(b), or ∃c ≤M h(b) with a ∈ g(φ(c)) (the existence of a causal ordering
between a and b is ensured by proposition 3).

–

(

(n,EO, g),M, (n′, EO, g)

)

∈ δ iff n
M
−→ n′.

– F ′ = {(n,EO, g) | n ∈ F},

Note that g(p) is updated only when the explanation provided at a given state
is incomplete. It is updated to memorize the observable events in the causal
past of the last event (observed or not) executed by each instance. Similarly, we

make sure during construction of a transition

(

(n,E, g),M, (n′, E′, g′)

)

∈ δ

that any order a <O b is preserved in E′: either both h(a), h(b) appear in
MSCs preceding M (i.e. a, b ∈ E) and their ordering was already checked, or
they are both events ofM which are ordered in M , or h(a) was observed before
MSC M (i.e. a ∈ E), h(b) is in M , and is a successor on the same process of an
event that necessarily occurs after h(a). We hence ensure by construction that
for any path ρ of AO,H , Mρ is compatible with O. Transitions of AO,H of the

form

(

(n,E, g),M, (n′, E′, g′)

)

∈ δ can be projected to obtain transitions of

the form (n,M, n′) that are used in H to move from one state to another. We
denote by LAO,H

the set of accepting paths of AO,H , and by LH,AO,H
⊆ PH

the set of paths of H that are projections of LAO,H
on the first component of

each state.

The diagnosis AO,H is an HMSC with a particular shape: for every cycle
c, all states in c have the same set of observed events and function g. Except
for cycles over final nodes, transitions in cycles are labeled by MSCs that do
not contain observable events. Hence, AO,H can be seen as an acyclic graph

23

connecting strongly connected components of H with unobservable behaviors.
We will show later (in section 6.2) that this property can be used to reduce the
size of the information kept in memory. The explanations provided by AO,H

of course include paths that go through unobservable components, however,
we believe that the transitions on interest in AO,H are the moves that make
function g progress, i.e. that explain in which scenario an event appears, or
why some causal dependencies among observed events hold.

Theorem 1 [17] Let AO,H be the diagnosis HMSC computed from O and H,
and ρ ∈ PH . Then O ⊲Σobs

Mρ iff ρ ∈ LH,AO,H
. Moreover, AO,H is of size

O(|H | × |O||P|×|PObs|).

Proof: It is obvious from the construction of δ that any accepting path ρ
of LH,AO,H

generates an MSC Mρ such that O ⊲Σobs
Mρ, as we forbid any

transition where a <O b and hO,Mρ
(a) �Mρ

hO,Mρ
(b). Reciprocally, consider

ρ /∈ LH,AO,H
. If ρ 6∈ PH then we are done. Now, let ρ ∈ PH . This path ρ is

of the form ρ = ρ1ρ2 where ρ1 is the longest sequence of transitions for which
there exists a sequence of transitions ρ′ ∈ LH,AO,H

such that ρ′ = ρ1.ρ
′
2. Thus

ρ2 is of the form (n,M, n′).ρ3 and Mρ1
◦M is not compatible with O, which

is thus also the case for ρ.

For the complexity statement, notice that a prefix can be uniquely represented
by remembering its last event on each observed instance. Hence the number
of prefixes of O is lower than |O||PObs|. Moreover, notice that g associates to
every instance i ∈ P a prefix of O. Last, notice that for every state (n,E, g),
we have E =

⋃

p∈P g(p), hence E is superfluous as it can be computed from
g. We however kept the prefixes of the observation in the definition of states
for the sake of readability of the construction of AO,H . ⊓⊔

Theorem 1 means in particular that LH,AO,H
= PO,H . Hence, AO,H is the

generator of all explanations of observationO provided by the HMSC modelH .
The restriction of AO,H to coaccessible states of F ′ is the diagnosis provided
for observation O from the HMSC model H .

Corollary 2 Let H be an HMSC of degree d over p processes, labeled by MSCs
of size at most m, and O be an observation. Then, computing AO,H can be
done in O((m + p2 + (m+ p2)4)× d× |H | × |O||P|×|PObs|).

proof : Appending a transition, i.e. an MSC M to an existing AO,H needs
to verify that the matching relation computed so far can be extended. If g(p)
is recorded efficiently (for instance with a sorted list of events per process),
then finding an extension of the embedding h from O to the currently built
explanation consists in starting, for each process p with the successor of the last
event seen so far, and comparing sequentially sequences of observable events
on p in O and M . This can be done in linear time in the size of M . Now,
each minimal event in h−1(EM) can have at most p immediate predecessors.
We can hence build a new order P (M) = (EM ∪ Pred(M),≤PM , α, φ, µ) in
which Pred(M) is the set of predecessors of h−1(EM) in O, and x ≤PM y if
x ≤M y or x ∈ g(φ(y)). If the ordering in O is stored efficiently (for instance

24

using immediate predecessor/successor lists), then building P (M) can be done
in O(p2). Intuitively, P (M) represents the observable ordering according to
what has been executed so far in an explanation and according to M . Now,
it remains to show that the restriction of O to events in h−1(EM ∪Pred(M))
matches P (M). Following Proposition 2, and as the matching relation needs
not be recomputed, this can be done in O((m+ p2)4) (or even more efficiently
in O(4 · (m + p2)2) if we consider the covering of order relations). For every
state of AO,H , this test has to be performed at most d times.⊓⊔

Note that even if the way observations and g are stored may influence the
overall worst case time complexity, it remains a constant factor depending
only on characteristics of the model H , and not on the size of the observation.
Note also that complexity may increase with the size of the observation, but
remains linear in the size of the model.

Remark 2 Paths in LH,AO,H
are not the minimal paths embedding O, as AO,H

allows any transition of H from its accepting states. To find only minimal

paths, we can consider the relation δ′ = δ ∩ {
(

(n,E, g),M, (n′, E′,M ′)
)

| E 6=
EO}, and the set of accepting nodes F ′ = {(n,EO, g)}. For a centralized offline
diagnosis performed with a complete observation, this has no importance.
However, we will see in section 5.2 that when the diagnosis problem is split into
sub-problems, it is important to return all paths embedding the observation.

Example 7 Consider the HMSC H and the observation O of Figure 8. The
HMSC describes the behavior of three processes P1, P2, P3. Let us denote by
e1 the occurrence of action a in O and by e2 the occurrence of action b. Let us

Fig. 8 An HMSC example and an observation

suppose that we have equipped a distributed system to observe any occurrence of

actions a and b and that we obtain the observation O. Clearly, n0
M1
−→ n0

M2
−→

25

n1 is not an explanation of O for the observation alphabet Σobs = {a, b}, as a
and b are not causally related in M1◦M2. The diagnosis AO,H computed from
O and H with this observation alphabet is given in Figure 9. The transitions
with a dark cross symbolize transitions of the original HMSC that cannot be
fired in the diagnosis HMSC. For example, from the initial state, the transition
labeled by M2 cannot be used, as any path ρ starting with this transition would
not allow a matching from O to Mρ. One can easily verify that O matches any
MSC composition of the form M3∗ ◦M1 ◦M3 ◦M3 ◦M3∗ ◦M2. Note that if
we choose as observation alphabet Σobs = {a, b, !m}, the observation O has no
explanation in H. To complete this example, let us focus on the construction of
a particular transition from q2 to q3. State q2 is of the form (n0, E2, g2), where
E2 is the set containing a single event e1 labeled by action a, located on process
P1, and g2(P1) = g2(P2) = {e1}. We want to check if transition (n0,M3, n0)
of the HMSC model is compatible with what has been observed so far, and if
so, compute a new state q3 = (n0, E3, g3). As M3 does not contain observable
events we necessarily have E3 = E2. However, as e1 ∈ g2(P2), then in any
path ρ considered so far in the HMSC that ends in configuration q2, there exists
a successor of h(e1) located on P2. Hence, after appending (n0,M3, n0) to any
path ending in q2, we have g3(P1) = g3(P2) = g3(P3) = {e1}, as the message
n from P1 to P2 in M3 creates a new event on P3 that is a successor of e1.

5.1 Offline Existence

The diagnosis problem can be simplified to answer a simpler question : is there
an explanation for an observation O in H? In the sequel, we will refer to this
question as the existence problem, which can be formalized as follows: given
an HMSC H , an observation alphabet ΣObs and an observation O, ∃?ρ ∈
PH , O ⊲Mρ. This is equivalent to answering the question : ”does LH,AO,H

= ∅
? ”

Theorem 2 Let H be an HMSC, Σobs be an observation alphabet, and O be
an observation. Deciding whether there exists an explanation for O in H w.r.t.
Σobs is an NP-complete problem.

Proof: First, let us show that the existence problem is in NP . There ex-
ists an explanation for O in H if and only if we can exhibit a path ρ of
H such that O ⊲Σobs

Mρ. Let us suppose that ρ is a path of length greater
than |O|2 × |P| × |H |. Whenever, ρ is an explanation for O, this path has
at most |O| transitions labeled by an MSC which contains an event e that
is the image of some event of O via the matching function hO,Mρ

. Hence,
we can exhibit a sub-sequence of consecutive transitions in ρ of size greater
than |O| × |P| × |H | that are only labeled by unobservable MSCs, or which
labeling MSCs are not used to explain O (that is they comport only events
which are not in hO,Mρ

(EO)). Then, two cases can appear. Either ρ′ is a suf-
fix (resp. a prefix) of ρ, or not. If ρ′ is a suffix (resp. a prefix), then we can
remove it from ρ to obtain a smaller explanation. If not, then ρ is of the form
ρ = ρ1.ρ

′.ρ2. As ρ
′ is of size greater than |O|×|P|×|H |, it necessarily contains

26

Fig. 9 A diagnosis HMSC

at least |O| × |P| cycles of H , and hence it is a sequence of transitions of the
form ρ′ = u1.β1.u2.β2 . . . β|O|×|P|.u|O|×|P|+1, where each βi is a cycle of H .
Note that each path ρ corresponds to a path of AO,H , but that loops of H
are not necessarily loops of AO,H , as nodes of AO,H contain a reference to
an HMSC node, plus a function g (observed events sets are redundant with
g, as shown in theorem 1, and can be forgotten). Hence, each βi is a cycle
from a node ni to a node ni in H , and is mapped to a path from a node
(ni, E, gi) to a node (ni, E, gi+1) in AO,H . If gi = gi+1, then this path of
AO,H is a cycle, and can be removed from ρ to obtain a smaller explanation
ρ1.u1β1 . . . βi−1.ui.ui+1.βi+1 . . . u|O|×|P|+1.ρ2. If gi 6= gi+1, then there exists at
least one process such that |gi(p)| > |gi+1(p)|. Let us suppose that for every
i ∈ 1..|O|×|P|−1, we have that βi is mapped to a path ofAO,H from (ni, E, gi)
to (ni, E, gi+1) with gi 6= gi+1. Then, we necessarily have g|O|×|P|−1(p) = E for
every p, and β|O|×|P| is mapped to a loop of AO,H , and can be removed from
ρ to obtain a smaller explanation ρ1.u1β1 . . . β|O|×|P|.u|O|×|P|+1.ρ2. Hence, if
an explanation exists for an observation O, then there is necessarily an expla-
nation of length at most |O|2 × |P| × |H |. We can then select in polynomial
time a path of H of length lower than |O|2 × |P| × |H |.

27

Now let us show that for such path ρ = n0
M1−→ n1 . . .

Mk−→ nk, we can check
in polynomial time whether O ⊲Σobs

Mρ. First, the sequential concatenation
of all MSCs to obtain Mρ can be computed in polynomial time in the size of
the path. Let m be the maximal size of the causal ordering relation, and n
be the maximal number of events in all MSCs of H . We can use the following
algorithm to compute the concatenation M = (E,≤, α, µ, φ) of two MSCs
Mi = (Ei,≤i, αi, µi, φi), with ni events and causal ordering of size mi, i ∈ 1, 2.

– Compute E = E1 ⊎ E2

– initialize ≤ with ≤1 ⊎ ≤2

– for every process p ∈ P , find the maximal event x on p in M1 and the
minimal event on p in M2, and add x ≤ y to the ordering relation. Then
compute the closure : for every z ≤1 x and every y ≤2 z′, add z ≤ z′ to
the ordering relation.

This gives a complexity of O(n1 + n2 +m1 +m2 + p× (n1 ×m1 + n2 ×m2 +
m1 ×m2)) for concatenation. Computing Mρ resumes to k concatenations of
MSCs with less than k×n events and a causal ordering relation of size smaller
than (k × n)2, and can hence be performed in polynomial time, and results
in an MSC with at most k × n events and a causal ordering relation of size
at most (k × n)2. Then, from proposition 2, verifying that O ⊲Σobs

Mρ can be
done at most in O(k × n+ | ≤O | × (k × n)2). Hence, we can guess a path of
H to explain O in polynomial time, and check in polynomial time whether it
is an explanation for O. So, the existence problem is in NP .

Now, let us show that the existence problem is NP -hard. We proceed by
reduction from the 3SAT problem. Let φ = C1 ∧ · · · ∧ Cm be a conjunctive
formula in normal form over n variables v1, . . . , vn, with m clauses, and where
each clause Ci is of the form Ci = l1i ∨ l2i ∨ l3i , and each literal lji refers to

a variable in v1, . . . , vn or its negation, that is lji = vk or lji = vk, for some
k ∈ 1..n. We can build an HMSC H with n+ 3 nodes, 2n+ 2 transitions and
2n+2 MSCs, an observation alphabet Σobs and an observation O such that φ is
satisfiable iff O has an explanation in H w.r.t. Σobs. The observation and the
HMSC are defined over a set of processes P = {Pv1 , . . . , Pvn}∪{Pc1 , . . . , Pcn}.
The observation alphabet Σobs is composed of m+1 letters {a0, ac1 , . . . , acm}.
The observation O contains one occurrence of each letter in Σobs, and is such
that the occurrence of a0 is located on process Pv1 , the occurrence of each
aci is located on process Pci and the event labeled by a0 causally precedes
all other events (see Figure 10). The HMSC H , also depicted in Figure 10,
comports a set of nodes Q = {q0, qe, qf} ∪ {qv1 , . . . , qvn}, and is labeled by
MSCs Start, End and Tv1 , . . . , Tvn , Fv1 , . . . , Fvn . The MSC Start consists in a
single occurrence of action a0 located on process Pv1 . The MSC End consists
in one occurrence of action aci on each process Pci , i ∈ 1..m. Each MSC
Ti = X1 ◦ · · · ◦Xm ◦ Vi is a concatenation of m+ 1 MSCs. Each Xj is either
an MSC that contains a message from Pvi to Pcj if one of the literals of
clause Cj is vi, and is the empty MSC otherwise. MSC Vi is a message from
process Pvi to process Pvi+1

if i < n and the empty MSC otherwise. Each
MSC Fi = Y1 ◦ · · · ◦ Ym ◦ Vi is a concatenation of m + 1 MSCs. Each Yj is

28

either an MSC that contains a message from Pvi to Pcj if one of the literals of
clause Cj is vi, and is the empty MSC otherwise. Finally, there is a transition
from q0 to qv1 labeled by Start, a transition from qe to qf labeled by End, and
two transitions from qvi to qvi+1

respectively labeled by Ti and Fi for every

Fig. 10 Encoding SAT problems with an existence problem

i ∈ 1..n− 1, and two transitions from qvn to qe respectively labeled by Tn and
Fn. An occurrence of each action in Σobs appears in an explanation ρ of O
if and only if ρ is a path from q0 to qf . Clearly, φ is satisfiable iff there is a
variable assignment such that for every clause Cj , not all literals l

1
j , l

2
j , l

3
j are

evaluated to false, and hence iff there is an explanation that embeds a causal
ordering from a0 to every acj . ⊓⊔

Theorem 1 shows that the complexity of diagnosis increases with the size of
the observation, and Theorem 2 shows that even a simpler problem such as
existence of an explanation can rapidly become difficult to solve. To handle
this complexity, we can reduce the size of the observed alphabet, which will
hopefully produce smaller observations, or try to split a problem into smaller
ones and then combine the results. The following proposition shows that limit-
ing the observation capacities of the system does not produce wrong negatives
for the existence problem.

Proposition 5 [17] Let H be an HMSC, Σobs be an observation alphabet, and
O be an observation. Let Σ′

obs ⊆ Σobs. Then if ΠΣ′
obs

(O) has no explanation
from H w.r.t. Σ′

obs, then O has no explanation w.r.t. Σobs from H.

Proof: Suppose that there exists no explanation for an observation O, with
alphabetΣ′

obs, but that we can build a diagnosis HMSC AO,H with observation
alphabet Σobs such that LAO,H

6= ∅. In particular, it means that for every path
ρ ofH , there is no embedding of O into Mρ w.r.t. Σ′

obs. If no embedding exists,

29

then either there exists a process p such that ΠΣ′
obs

∩Σp
(O) is not a prefix of

ΠΣ′
obs

∩Σp
(Mρ), and then Mρ does not embed O with observation alphabet

Σobs, or there exists two events x ≤O y with labels α(x), α(y) ∈ Σ′
obs. As

projection preserves ordering, x and y are ordered both in O and ΠΣ′
obs

(O),
and Mρ can not embed O. Hence we can not have LAO,H

6= ∅. ⊓⊔

This property possibly reduces the time needed to give a negative answer to
the existence problem and will be useful later on in the paper to divide the
diagnosis problem into smaller tasks, and hence reduce the time needed to
build a complete diagnosis.

5.2 Splitting the diagnosis problem

So far, the diagnosis framework proposed is centralized (all observations are
sent to a central diagnoser that computes the generator for the set of expla-
nations) and offline (the production of a diagnosis is performed once for all
from a fixed observation). The main objective of the approach is to perform
all calculi on partial order models, and avoid the state space explosion due to
an interleaved search in the execution model. From Theorem 1, the central-
ized diagnosis amounts to build a diagnosis HMSC of exponential size in the
number of considered processes. We can also see that the interleaved behav-
iors of the model are never studied, but that in worst cases, one may have to
consider all linearizations of an observation, as function g memorizes prefixes
of O. This situation may occur when the HMSC model H is labeled by MSCs
which contain at most one observable event per transition of H . Despite this
fact, representing observation as a partially ordered set of events still makes
sense. It allows to differentiate between events that are concurrent and ordered,
which interleaved models can not do. Furthermore, linearizing an observation
a priori imposes a systematic exponential blowup, and forces representing lin-
earizations that will never be considered otherwise by the diagnosis during the
construction of AO,H . Hence in practice, the compact partial order represen-
tation for O can only be more efficient than an interleaved counterpart.

A solution to reduce complexity is to split the diagnosis computation into
several simpler sub-problems that can be easily distributed to solve the diag-
nosis concurrently. Formally, given an HMSC model H and an observation O,
compute AO,H as a product of smaller problems AO,H = AO1,H ⊗ . . .AO1,H .

In this section, we will show a distribution schema that does not change
the result of centralized diagnosis, but can allow for a faster detection of non-
existence when no explanation of an observation exists. Splitting the diagnosis
into several smaller sub-problems, which solutions can be computed inde-

pendently by distinct machines, and then combining local solutions allows
to produce a global answer. We will also show at the end of this section that
properties of splitting also open the way for distributed diagnosis frameworks.

The main idea is to separate the diagnosis into smaller problems using
projections of the observation on subset of processes. From proposition 5, we
know that it is sufficient to find no diagnosis for an observation O projected on
an alphabet Σ′ ⊆ Σobs to be sure that no diagnosis exists for O. In particular,

30

this applies to the case when Σ′ is the restriction of Σ′
obs to events that are

observable on a chosen subset of processes. The hard technical point is then to
combine local diagnosis, and show that their combination produces the same
result as the centralized version.

Let p, q ∈ P be a pair of instances and O = (O,≤O, α0, µO) be an obser-
vation. The local diagnosis for instances p, q is the diagnosis HMSC Ap,q =
AπΣ′ (O),H with the observation alphabet Σ′ = Σobs ∩ (Σp ∪ Σq). Since an
explanation of an observation for some alphabet Σ is still an explanation for
any alphabet Σ′ ⊆ Σ, we have that LH,AO,H

⊆ LH,Ap,q
. Hence, a finer diag-

nosis can be obtained from successive compositions of local diagnosis. This
composition ⊗ is simply an intersection, defined as a synchronous product of
two diagnosis HMSCs.

Definition 11 Let AO,H = (Q, δ, q0,M, F) and A′
O′,H = (Q′, δ′, q′0,M, F ′)

be two diagnosis HMSCs. The synchronous product of AO,H and A′
O′,H is de-

noted by AO,H⊗A′
O′,H , and is the HMSC AO,H⊗A′

O′,H = (Q×Q′, δ′′, (q0, q
′
0),

M, F × F ′), where
(

(v, w),M, (v′, w′)
)

is a transition of δ′′ iff (v,M, v′) ∈ δ
and (w,M,w′) ∈ δ′.

We can now formalize the distribution of diagnosis: given an observationO and
an HMSC H , project O on pairs of processes to obtain smaller observations
O1, . . . Ok, compute all AOi,H for i ∈ 1..k, and then compute AO1,H ⊗ · · · ⊗
AOk,H . Theorem 3 below shows that the product is a diagnosis automaton for
O, as when a run belongs to every Ap,q, for pairs of processes in Pobs then it
is an explanation of O.

Theorem 3 For every HMSC H and observation O, we have
LH,AO,H

= LH,A⊗ , where A⊗ =
⊗

p6=q∈PObs
Ap,q.

Proof : For every pair of processes p, q in Pobs, the observation alphabet
Σ′ = Σobs ∩ (Σp ∪ Σq) is contained in Σobs. Hence, from corollary 1, it is
obvious that for every path ρ of H , if Mρ is an explanation of an observation
O, then Mρ is also an explanation for the projection ΠΣ′(O) on the smaller
observation alphabet Σ′. Hence PO,H ⊆ LH,Ap,q

for all p, q ∈ PObs, and we
have the first inclusion LH,AO,H

= PO,H ⊆ LH,A⊗ .
For the second inclusion, let ρ ∈ LH,A⊗ . This means in particular that

ρ ∈ LH,Ap,q
for every pair p, q in Pobs. Let hO,Mρ

: EO → EMρ
be the (unique)

function such that the k-th event of E0 on instance p is sent by hO,Mρ
to the

k-th event of α−1
Mρ

(ΣObs) on instance p for all k and p ∈ PObs. We can denote
by hp,q the restriction of hO,Mρ

to events located on p, q ∈ PObs. Clearly, hp,q

is also the unique mapping defined by πΣObs∩(Σp∪Σq)(O) ⊲ Mρ.
We have easily that for every p, q ∈ PObs, for every event e located on p,

αO(e) = αMρ
(hO,Mρ

(e)) = αMρ
(hp,q(e)). Then, for every pair of events e, f ∈

EO located on p, we have that e ≤O f implies that hO,Mρ
(e) = hp,q(e) ≤Mρ

hp,q(f) = hO,Mρ
(f).

Now, assume that e, f ∈ O are causally ordered and located on different
instances, p and q. Since ρ ∈ LH,Ap,q

, and since the projection of O on a pair

31

of processes preserves the ordering on projected events, we have hO,Mρ
(e) =

hp,q(e) ≤ hp,q(f) = hO,Mρ
(f).

Last, assume by contradiction that hO,Mρ
(EO) is not a prefix of πΣobs

(Mρ).
Then there exists e, f ∈ Mρ, located on processes p and q, and of type in
Σobs such that e ≤M f , e /∈ hO,Mρ

(EO) and f ∈ hO,Mρ
(EO). However,

since ρ ∈ LH,Ap,q
, we know that hp,q(EO) is a prefix of some sub-order of

πp,q(πΣobs
(Mρ)), which gives us a contradiction. ⊓⊔

From Theorem 1, we know that the size of Ap,q is in O(|O|2|P| × |H |).
Let us detail how this can impact the diagnosis and existence problems. An
immediate idea stemming from theorem 3 is to split computation of AO,H

from O and H into |PObs|×(|PObs|−1)
2 sub-problems, that is compute Ap,q from

ΠΣobs∩(Σp∪Σq)(O) for each pair of processes p 6= q ∈ PObs, and then compute
the product of these local diagnosis. To obtain the final diagnosis, we then have

to compute a product of |PObs|×(|PObs|−1)
2 diagnosis if none of the local results

is empty. Note that the size of a local diagnosis is not necessarily smaller than
the size of the original diagnosis HMSC computed in the centralized version.
The size of the whole product is exactly the same as in the original version.
However, the time needed to complete diagnosis is enhanced if some local
problems can be computed in parallel, or in any case when one of the local
diagnosis returns an empty diagnosis. Indeed, if LH,Ap,q

= ∅ for some pair
p, q ∈ P2

Obs, then LH,AO,H
= ∅, and it is useless continuing the computation

of all other local diagnosis.

Fig. 11 Decentralized Diagnosis/Existence problem

This allows for a decentralized version of our initial diagnosis architecture,
depicted in Figure 11. There is still a central diagnoser that collects the ob-
servation. Its role is then to compute a projection ΠΣobs∩(Σp∪Σq)(O) for every
pair p 6= q considered, and send it to local diagnosers. Each local diagnoser pos-
sesses a copy of H , and upon reception of an observation ΠΣobs∩(Σp∪Σq)(O),

32

computes a diagnosis Ap,q and returns it to the central diagnoser. The central
diagnoser computes incrementally the product A⊗ of the received diagnosis
after each reception of a local result, and returns the final result when all local
diagnosis have been completed. It can also return the empty diagnosis as soon
as one local diagnoser returns an empty diagnosis. Note that there is no need

for |PObs|×(|PObs|−1)
2 local diagnosers, as each of them can compute more than

one local diagnosis.

Theorem 3 shows that the diagnosis problem can be brought back to a
product of smaller local diagnosis problems. A question that immediately arises
is whether the existence problem can also be decentralized, and even more
interesting, be seen as the conjunction of boolean answers to local existence
problems. Formalizing the problem, we want to split the boolean existence
problem EP : ”is LH,AO,H

empty” into several boolean problems EPp,q: ”is
LH,Ap,q

empty” for p, q ranging over pairs of distinct observable processes.
The answer to each local problem EPp,q is either true (LH,Ap,q

is empty) or
false (LH,Ap,q

is not empty).

For the existence problem, we know that as soon as a local diagnosis is
empty, H provides no explanation for O. Hence, if the disjunction

∨

EPp,q is
true, the answer to the global existence problem is also true (disjunction yields
no wrong positives). However, disjunction of local answers may yield wrong
negatives. Indeed, there are cases where all local diagnosis HMSC have a non-
empty language (i.e. LH,Ap,q

6= ∅ for every pair p, q ∈ P2
Obs) but where the

global diagnosis is nevertheless a HMSC with empty language (i.e. LH,AO,H
=

⋂

p,q∈P2
Obs

LH,Ap,q
= ∅). The example of Figure 12 shows such case.

To avoid wrong negatives, one must compute a product A⊗ = Ap1,q1 ⊗
· · · ⊗ Apn,qn of local diagnosis obtained for each pair of distinct processes in
Pobs. Then the answer to the global problem EP is the answer to the question
”is LH,A⊗ empty”’, and may differ from

∨

EPp,q. This product can always
be built (it is a simple product of HMSCs, as proposed in definition 11).
As for diagnosis, the product can be built incrementally from local diagnosis
computed concurrently, and a negative answer can be returned as soon as a
local diagnoser returns an empty diagnosis.

An immediate question is how to ensure that existence can be addressed as
a disjunction of smaller existence problems, i.e., EP =

∨

EPp,q ? This property
holds only if for distinct pairs {p, q} and {p′, q′} of observable processes such
that LH,Ap,q

6= ∅ and LH,Ap′,q′
6= ∅ the intersection LH,Ap,q

∩ LH,Ap′,q′
is also

non-empty. It means that for every observation O, all Ap,q with non-empty
language must follow at least a common path. This property seems difficult
to ensure, except when the running system and the model used to perform
diagnosis it have the same behaviors, and that the existence problem can be
trivially answered without computing the product: an observation always has
an explanation, so LH,AO,H

6= ∅.

Example 8 Consider the HMSC H and the observation O of figure 12. For
each pair of processes p 6= q in {P1, P2, P3} × {P1, P2, P3}, it is possible to

33

Fig. 12 Example showing that computing a product is needed for decentralized existence

find an explanation for ΠΣobs∩(Σp∪Σq)(O). However, H does not contain an
execution that exhibits at the same time events a, b, c.

Another solution to decentralized diagnosis is to consider process by process
diagnosis, that is compute the diagnosis HMSC Ap = AπΣobs∩Σp (O),H that

provides all explanations of H for πΣobs∩Σp
(O) for each p ∈ Pobs. Computing

this set of HMSCs gives a less precise solution than with pairs of processes,
because ordering between events of O located on distinct processes cannot be
used to discriminate some paths. Indeed, in general LAp,q

⊆ LAp
⊗ LAq

, but
equality does not hold. However, the initial step computing Ap is performed
with complexity in O(|O| × |H |).

Notice that Ap,q has to be computed only for pairs p 6= q ∈ Pobs for which
there exists two events e, f ∈ EO respectively located on p and q and such
that e ≤O f . If no such ordering from p to q exists in O, then Ap,q = Ap⊗Aq.
This opens the way for a distributed diagnosis framework. Indeed, one can
easily adapt Theorem 3 to show that if P can be partitionned into clusters
of processes P1, . . . ,Pk in such a way that for every observation O, and for
every pair e, f ∈ EO of events, e ≤O f implies that e and f are located in the
same cluster, then one can compute a global diagnosis for each Pi, i ∈ 1..k,
and build a global diagnosis as a product of local solutions. Hence, one can
design local diagnosers, and combine their solutions when needed. If clusters
are small, the construction of local diagnosis is of reasonable complexity (but
computing the whole product may still be costly).

6 Online diagnosis

So far, we have only considered offline diagnosis and offline existence problems,
that is finding a posteriori from an observation what occurred during the use of
a system, or if a model provides any explanation at all. We now address these
problems online, that is compute solutions incrementally as observed events

34

arrive from probes. A näıve approach to solve these problems online with the
framework described in section 5 would be to remember the whole observation,
and to apply the offline diagnosis algorithm with the whole observation every
time a new event is observed. This technique is clearly inefficient, but proves
the existence of an online diagnosis algorithm. The cost of such solution is:

C = |H | ×
∑

i∈1..|O|

i|P|×|PObs|

This solution is of course too costly, and calls for an incremental and efficient
search for explanations. The main objective is then to reuse the part of the
diagnosis performed at step n during step n+1. Formally, given an observation
O, an HMSC H , a diagnosisAO,H and an event e, the online diagnosis problem
consists in computing a new diagnosis HMSC H ′ such that O.e ⊲Mρ for every
final path of H ′ as a function H ′ = IncrementDiagnosis(AO,H , O, e). In this
section, we explore the possible solutions to perform efficiently online diagnosis
and existence checking, and the memory needed to run such algorithms. As
offline and online diagnosis algorithms should return the same results, we
cannot expect the online solution to be faster than the offline one, nor to
return smaller results. However, in an online setting, it is worth noticing that
some parts of the diagnosis that have been computed and can not be refuted
by future observations can be stored on a disk, while the rest of the diagnosis
is kept in memory for future analysis. For the online existence problem, the
non-refutable part of the diagnosis can simply be forgotten. The first thing to
define in an online framework is the information that must be kept in memory.
We will show that at each step of online diagnosis, only a part of the diagnosis
built so far needs to be remembered to continue diagnosis on the fly. We
address the following two problems; The first one is the online construction
of a diagnosis, that is the incremental construction of an object similar to
the output of offline diagnosers. The second question addressed is the online
detection of existence of an explanation. Obviously, the second problem is a
specialization of the first one, and needs recording less information than for
online diagnosis.

Before entering into the technical details let us describe how new occur-
rences of observed events are collected and assembled to produce a coherent
observation. Consider again Figure 1 in section 1. A diagnoser collects all in-
formation coming from observed processes. In offline diagnosis, we consider
that diagnosis starts from an already built observation. In the online setting,
the diagnoser repeatedly receives newly observed events from probes, and up-
dates observation and diagnosis accordingly. The only assumptions on com-
munications from probes to the diagnoser is that the communication channels
are FIFO and asynchronous. Furthermore, two events observed on the same
machine are necessarily ordered. If two events e, f have been observed on dis-
tinct processes and e precedes f in the execution, f might be received by
the diagnoser before e. As already mentioned, observed events can be tagged
by information such as vectorial clock to record a part of the ordering among
them, or at minimal a sequence number on the executing process. This tagging

35

mechanism is ensured by probes: in the simplest setting, probes just attach an
increasing sequence number to their observations, in a more elaborated set-
tings, they can maintain vectorial clocks. Let us call O the observation that
has been built so far. When an event f is received, if its tag indicates that
an observable event e that does not belong to O precedes it, then f is not
appended to the observation, and the diagnoser waits for the arrival of e to
append f . If the tags associated to f are consistent with the events observed
so far in O, and in particular do not mention the existence of an unreceived
observable event in the past of f , then f can be appended to O without wait-
ing. Hence, a diagnoser may have to memorize some events before using them
for diagnosis. In the rest of the paper, we will consider that when an event is
appended to an observation O, all its predecessors in O are known, and have
also been appended. We will also denote by O.e the observation obtained by
appending an event e to O. The rest of this section is organized as follows:
Section 6.1 shows that some parts of a diagnosis do not influence the online
construction of a diagnosis. Section 6.2 shows that one can compute a small
structure summarizing a complete diagnosis to save space. Section 6.3 shows
how to abstract the useless information identified in section 6.1 to save space.
Section 6.4 studies the necessary conditions under which online diagnosis runs
with finite memory. Section 6.5 builds on the results of former sections to pro-
pose an online existence algorithm, and section 6.6 summarizes the results of
the whole section 6.

6.1 Safe parts of a diagnosis

In this section, we first define formally the parts of a diagnosis that have no
influence on future steps of the online construction of a diagnosis. These parts
are called the safe parts of a diagnosis.

Definition 12 Let AO,H = (Q, δ, q0,M, F) be the diagnosis HMSC com-

puted from observation O and HMSC H . Let t = (qk−1
Mk−→ qk) be a transi-

tion of AO,H . We will say that t is safe if every observable event of Mk has

been observed: for every observable event e ∈ Mk, and every path ρ = q0
M1−→

q1 . . . qk−1
Mk−→ qk of AO,H , there exists f in O such that e = hO,Mρ

(f) (where
hO,Mρ

is the unique embedding of O in Mρ). Let T be a set of transitions of
AO,H . We say that T is a safe part of AO,H if it contains only safe transitions.

Note that two paths ρ1, ρ2 of AO,H going through the same transition

t =
(

(n,E, g)
M
−→ (n,E′, g′)

)

have the same impact on t being safe or not.

Indeed, for i ∈ {1, 2} and an observable event e ∈ M , there exists f in O such
that e = hO,Mρi

(f) if and only if e ∈ E′ \E. But mapping e and f consists in

checking that they have identical labels, and are both the kth observed event on
their process. This does not depend on the path followed, hence e = hO,Mρ1

(f)
if and only if e = hO,Mρ2

(f).

36

It implies that the union of two safe parts is a safe part, and hence there
exists a maximal safe part Tmax. For representation reasons, we will be inter-
ested only in maximal connected safe parts, that is the connected components

of Tmax. We will say that two transitions q1
M1−→ q′1 and q2

M2−→ q′2 are connected
if q1 = q′2 or q2 = q′1.

It is easy to build Tmax in linear time in the number of transitions of

Ao,H : (n,E, g)
M
−→ (n,E′, g′) ∈ Tmax iff |E′| − |E| = |πΣObs

(M)| (there are
as many events in E′ \ E as observable events in M). One can also compute
every connected component of Tmax in linear time in |Tmax|. In the rest of
the paper, we will say that an event e in an MSC Mρ is safe if it has been
observed (i.e. there exists an embedding hO,Mρ

and an event f ∈ EO such that
hO,Mρ

(f) = e).

Fig. 13 Observations and safe parts

Example 9 Let us consider Figure 13, which shows an observation (in the cen-

ter of the figure) and two paths of a diagnosis AO,H , ρ1 = q0
M1−→ q1

M2−→

37

q2
M3−→ q3

M4−→ q4
M5−→ q5 and ρ2 = q0

M1−→ q1
M2−→ q2

M ′
3−→ q′3

M ′
4−→ q3

M4−→

q4
M5−→ q5. The observation alphabet is Σobs = {P1(a), P2(b), P3(c)}. Paths

ρ1 and ρ2 are valid explanations for the observation O depicted in the cen-
ter of the figure, as there exists embeddings from O to Mρ1

and Mρ2
, depicted

by the dotted arrows from events of O to their image in the corresponding
MSC. Safe events are denoted by grey squares. The maximal safe part of ρ1

is T1 = {q0
M1−→ q1

M2−→ q2
M3−→ q3

M4−→ q4}. The maximal safe part of ρ2 is

T2 = {q0
M1−→ q1

M2−→ q2
M ′

3−→ q′3} ∪ {q3
M4−→ q4}. Note that the maximal safe

part in ρ2 is not made of consecutive transitions, as M1,M2,M
′
3,M4 have been

completely observed, but not M ′
4. If AO,H contains only paths ρ1 and ρ2 then

we have Tmax = T1 ∪ T2.
Note also from this figure that even though in the explanation M1 ◦M2 ◦

M3 ◦M4 ◦M5 some events are ordered, as for instance atomic actions P2(b) in
M3 and P1(a) in M4, this ordering does not appear in the observation. Last,
note that the last occurrences of P1(a) and P1(c) in MSC M5 are not mapped
to any event of O in path ρ1, and similarly for the last occurrence of P1(a)
and the last two occurrences of P1(c) in path ρ2. Nevertheless, Mρ1

and Mρ2

are explanations of O, as these actions can be considered as not yet observed.

Proposition 6 Let O = (EO,≤O, αO, µO, φO) be an observation, and let ρ =
t1.t2 . . . tn be a path of LAO,H

. Then for every O′ such that O is a prefix of
O′, and EO′ \EO = {e}, there exists an embedding of O′ in Mρ if and only if

there exists a transition tk = (n,E, g)
M
−→ (n′, E′, g′) of ρ such that:

– The minimal event f on φ(e) in πΣObs
(M) \ hO,Mρ

(E′ \ E) is such that
α(f) = α(e). Intuitively, f is the first unobserved event in M on process
φ(e).

– For each e′ <O′ e, there exists f ′ ∈ M , such that f ′ ≤M f , and either e′ ∈
g(φ(f ′)), or hO,Mρ

(f ′) = e′. Intuitively, this means that all the images of
predecessors of e are also predecessors of the image of e in the explanations
built.

– For every transition ti = (ni, Ei, gi)
Mi−→ (n′

i, E
′
i, g

′
i) in t1 . . . tk−1,

πΣO,φ(e)(M) = πΣObs,φ(e)(E
′ \ E), where πΣObs,p(X) denotes the restric-

tion of X to events located on process p and with labels in ΣObs. Intuitively,
this last property means that M is the first MSC in path ρ that contains
an unsafe event on process φ(e).

Proof: This can easily be shown by contradiction. ⊓⊔
Notice that since |E′| − |E| 6= |πΣObs

(M)|, tk /∈ Tmax. Proposition 6 shows
how to ensure that an embedding exists from observation O.e to the MSC
Mρ labeling a path ρ. This property should be checked when event e arrives
at the diagnoser. Proposition 6 also indicates that when diagnosis is built
incrementally, Tmax does not influence the next steps of the construction (this
holds even for connected component of Tmax that do not contain the initial
state). Hence, we can just forget (or store somewhere for later use) Tmax,
as it will not influence the construction of the diagnosis, and remember the

38

connections among unsafe transitions provided by the safe parts. Checking that
an event does not have a predecessor on its process can be done efficiently by
searching backward unobserved events in the diagnosis HMSC, and verifying
that all predecessors of an event appear along a path can be checked locally to
a transition using function g. Hence, the search for an appropriate embedding
can be performed locally to each unsafe transition.

Proposition 6 only shows how to verify that observation O.e is still em-
bedded in a path of the diagnosis built so far for observation O. Now, as new
events arrive, the observation and the diagnosis HMSC should be updated
jointly. The following propositions show how to update AO,H to AO.e,H . We
first show how to update a single path, then extend this construction to a
complete diagnosis HMSC.

Proposition 7 Let ρ = t1 . . . tk be a path of LAO,H
such that there exists an

embedding of O′ = O.e in Mρ, and e is mapped to an event f of transition

ti = (n,E, g)
Mi−→ (ni, Ei, gi), i ∈ 1..k. Let ρ′ = t1 . . . ti−1.t

′
i.t

′
i+1 . . . t

′
k where

t′i = (n,E, g)
Mi−→ (ni, Ei ∪ {e}, g′i), and every t′j is obtained by adding {e} to

the observed event set, and updating function g as in definition 10. Then ρ′ is
a path of LAO′ ,H

.

Proof: This can easily be shown by contradiction. ⊓⊔
This proposition shows how to update a path (and hence a diagnosis

HMSC) when an embedding of O.e exists in this path. More precisely, when a
function gj is updated to g′j with j ≥ i, we will have e ∈ g′(p) iff there exists
an event f located on process p and such that hO.e,Mρ

(e) ≤ f in Mi ◦ . . .Mj.
However, in some cases, all events along a path ρ may have been observed.
Hence, there is no unsafe event matching the freshly observed event e in Mρ,
and one has to append new transitions to this path to provide explanations
for O.e. This is shown in the following proposition.

Definition 13 Let ρ be a path of LAO,H
ending in state (n,E, g), and let

γ = t1. . . . tk be a path of H starting from node n where each ti, i ∈ 1..k is of

the form ni−1
Mi−→ ni. The extension of ρ with γ is a path ρ.t′1 . . . t

′
k, where

t′1 is of the form (n,E, g)
M1−→ (n1, E, g1), and each t′i, i ∈ 2..k is of the form

(ni−1, E, gi−1)
Mi−→ (ni, E, gi), where for every p ∈ P , e ∈ E and j ∈ 1..k, we

have e ∈ gj(p) iff there exists a process q and two events f, f ′ in M1 ◦ · · · ◦Mj

such that e ∈ g(q), φ(f) = q, φ(f ′) = p and f ≤ f ′.

As shown in the definition, the extension mechanism only updates function
g, as it involves no new observation. It is straightforward to see that if ρ is a
path of LAO,H

, then any extension of ρ is also a path of LAO,H
.

Proposition 8 Let ρ be a path of LAO,H
ending in state s = (n,E, g) such

that all events of process φ(e) in Mρ have been observed in O. Let O′ = O.e,
and ρ′ be the extension of ρ with a path γ of H. Then, there is an embedding
of O′ in Mρ′ iff:

39

– There exists an event f in Mγ such that α(f) = α(e) and f is the first
observable event on process φ(e) in Mγ, and

– for each e′ <O′ e, there exists f ′ ∈ Mγ, f
′ ≤ f , and e′ ∈ g(φ(f ′)).

Proof: This can easily be shown by contradiction. ⊓⊔
Proposition 8 shows how a path of AO,H can be extended to explain a

new observation O.e. From propositions 7 and 8, an algorithm to build a
diagnosis incrementally looks straightforward: when a new event e arrives, find
the minimal transitions that are not in Tmax containing an event explaining
e. Find the maximal transitions for which all observable events on φ(e) are
the image of some event in O, and extend them to find an explanation for e.
However, there may exist an infinite number of possible extensions for maximal
transitions. The next section shows that it is sufficient to consider extensions
of diagnosis with acyclic paths, and to work with a reduced version of the
diagnosis HMSC.

6.2 Summarizing a diagnosis

As already mentioned in section 5 (remark 2), the diagnosis AO,H built from
an HMSC H and an observation O does not provide the smallest paths leading
to an explanation. First, the construction of AO,H may produce states that
are not co-accessible, i.e. from which a final state where the whole observation
O has been explained can never be reached. These states can however easily
be detected and removed. On the other hand, AO,H may contain loops. In
particular, any transition from a state in which the observation have been
completely explained (states of the form (n,E, g) with E = EO) is allowed.
These transitions make sense in an offline context where we are interested
by a generator of all explanations of an observation contained in a model.
However, in an online context, the observation available at a given moment is
only a prefix of an eventual observation. We will show in the sequel that one
can remember a smaller structure called a summary during online construction
and then build a complete diagnosis. For this reason, we will mainly focus on
minimal and acyclic paths containing an observation.

Definition 14 Let ρ = (n0, E0, g0)
M0−→ (n1, E1, g1)

M1−→ . . .
Mk−1

−→ (nk, Ek, gk)
be a path of a diagnosis HMSC AO,H such that O ⊲Σobs

Mρ. ρ is said to be a
minimal acyclic explanation of O if and only if:

– there is no prefix of ρ that explains O,

– ρ does not contain subsequences of the form (ni, E, g)
Mi−→ (ni+1, E, g) . . .

Mj

−→
(ni, E, g).

In particular, this definition means that a minimal acyclic path can not contain
a cycle of the original HMSC H in which the set of observed events or the set
of observed causalities do not progress. It can not either contain suffixes of

the form (ni, E, gi)
Mi−→ (ni+1, E, gi+1) . . .

Mj−1

−→ (nj , E, gj), as the observation
is already explained by smaller paths.

40

Example 10 Consider for instance the diagnosis built in Figure 9. The path

q0
M1
−→ q1

M3
−→ q2

M3
−→ q3

M2
−→ q4 is a minimal acyclic path, but q0

M1
−→ q1

M3
−→

q2
M3
−→ q3

M3
−→ q3

M2
−→ q4 is not.

Proposition 8 shows how to extend a path ρ with a sequence of transitions ρ′

of H of arbitrary size. However, we will see in the sequel that it is sufficient to
work with summaries, that is abstractions of acyclic and minimal paths to find
a correct diagnosis. To find explanations in an extension of a path ρ, we hence
simply have to consider the minimal and acyclic path of H containing an ex-
planation for the searched event e. This restriction works because embeddings
are unique relations: if one can embed O into Mρ, that is build a function
hO,Mρ

, then hO,Mρ
is also the embedding function from O to any MSC Mρ.ρ′

obtained with an extension of ρ.

Proposition 9 Let ρ be a minimal acyclic path of AO,H (i.e. embeds O) such
that all events of process φ(e) in Mρ have been observed in O. Let O′ = O.e.
Then, finding the set Pe of all paths γ of H such that extensions of ρ with γ
are minimal and acyclic and embed O′ can be done in O(|P| × |H | × 2|P|).

Proof: We have to search an event f such that α(f) = α(e) in all acyclic
paths that start from the final node reached by ρ. We furthermore have to
verify that f is the first observable event on φ(e), and that the image of all
predecessors of e via hO,Mρ will be predecessors of f . For this, we can build a
finite-state automaton that remembers the current state of the HMSC visited,
and for each predecessor e′ of e and for each process p ∈ P| whether e′ has a
successor on p or not. The construction stops when:

– an event which is not labeled as e is found on process φ(e),
– the next transition to play brings back to an already visited state (hence

we are going to build a cycle, and the followed path is not minimal),
– an event that is labeled as e and is minimal on process φ(e) is found, but

with incorrect set of predecessors.
– an event that is labeled as e and is minimal on process φ(e) is found, with

correct set of predecessors (this path is successful, minimal, and acyclic).

Hence, there are at most |P|×|H |×2|P| such states to explore to find minimal
extensions explaining O.e. ⊓⊔

This construction guarantees that if a path ρ is minimal and acyclic, then for
any ρ′ ∈ Pe, we have that ρ.ρ′ is also minimal and acyclic. Note that the con-
struction used in this proof is not a set of paths, but a finite-state automaton.
In the sequel, we will denote by Ext(q, e) the finite-state automaton built from
a state q of AO,H to find a minimal and acyclic explanation containing a new
event e. We can now use this definition to refine the online construction of
diagnosis. When a new event e arrives, find the minimal transitions that are
not in Tmax containing an event explaining e, and update AO,H accordingly
(as defined in proposition 7). For every maximal transition t = (q,M, q′) for
which all observable events on φ(e) are the image of some event in O, compute

41

Ext(q′, e), and append it to AO,H . The obtained result is not yet a diagnosis,
as it does not contain all paths embedding O.e. However, we can show that a
diagnosis can still be constructed from this smaller structure.

The next definition and proposition show that the diagnosis HMSC built
in offline diagnosis in section 5 is an acyclic HMSC decorated by unobservable
loops. Hence, it is possible to work on a reduced form of diagnosis that forgets
these loops, and to get back to a complete diagnosis from this acyclic diagnosis.

Definition 15 Let AO,H = (Q, δ,M, q0, F) be the diagnosis computed from
observation O and HMSC H . A silent transition of AO,H is a transition of

the form (n,E, g)
M
−→ (n′, E,G), i.e. that does not change the set of observed

events or the value of g(p) for every p ∈ P . The summary of AO,H is the
diagnosis HMSC AO,H obtained by:

1) removing all cycles over silent transitions,
2) removing transitions from accepting states,
3) restricting the obtained HMSC to co-accessible nodes.

Note that the first step of summary construction does not remove all silent
transitions. Some silent transitions are needed to guarantee that transitions
with observable events remain accessible. Hence, only silent cycles, which ob-
viously do not change the set of observed events, function g, or connections
among nodes of AO,H should be removed. Computing AO,H then consists in a
traversal of AO,H that disallows transitions creating a silent cycle and transi-
tions from accepting states. The obtained tree is then reduced to co-accessible
states. Computing a summary can hence be done in linear time in the num-
ber of transitions of AO,H . The HMSC AO,H is exactly the structure that is
built incrementally by considering acyclic extensions of maximal transitions
in AO,H when new events are observed.

Example 11 Consider the example of Figure 9. Obtaining a summary from this
diagnosis HMSC simply consists in removing the self loops labeled by M3 on
states q0 and q3.

Proposition 10 Let AO,H be a diagnosis HMSC restricted to co-accessible
states. Then AO,H is unique and acyclic. Furthermore, computing AO,H from
AO,H and vice versa can be done in linear time.

Proof: As all silent cycles have been removed, each path of AO,H has a
bounded number of silent transitions, and a bounded number of non-silent
transitions. Each transition in AO,H is a move towards a non-silent transition,
and when a non silent transition is taken it is impossible to get back to previ-
ously traversed states. As progress (growth of the number of mapped events
in O) is guaranteed after at most |H | transitions, and as all transitions are
disallowed when all events of O are mapped, then AO,H is finite and acyclic.

Note that in a diagnosis HMSC, cycles are necessarily composed of silent
transitions. Hence, the computation of a summary does not affect reachability
of observable transitions (except in accepting states, from which summaries

42

forbid all transitions). The summary can then be seen as the result of a tau∗

minimization (a minimization procedure for transition systems that considers
weak bisimulation as equivalence relation on states [5]), followed by addition
of acyclic unobservable paths needed to reach all observable transitions. This
procedure guarantees uniqueness of the obtained summary.

The transformation of diagnosis into acyclic automaton is functional (it is
simply a projection of AO,H on a subset of its transitions). To get back to
the initial diagnosis, it suffices to add all transitions from accepting states to
the acyclic diagnosis, and to connect to each state of AO,H the silent strongly
connected components of H . For a fixed H and O, this construction is also a
deterministic function, that adds at most |H | transitions per state of AO,H .

⊓⊔

This proposition is important, and shows that we can perform online diagnosis
by computing incrementally an acyclic summary, and then obtain a complete
diagnosis HMSC. Of course, the complete diagnosis does not have to be com-
puted at each observation, and should be returned on demand to users of the
diagnosis framework. Note also that a summary can be much smaller than the
original diagnosis AO,H which can be of size up to (|H | × |AO,H |).

Fig. 14 A diagnosis and its summary

Example 12 Consider the diagnosis HMSC in the left part of Figure 14.
Transitions labeled by silent MSCs are symbolized by dashed arrows. Note on
this example that all successors of an accepting state are also accepting. Note
also that cycles over states that are not accepting are exclusively composed
of silent transitions. The diagnosis HMSC at the right of the figure is the
summary of the diagnosis HMSC at the left of the figure. It is obtained by re-
moving transitions (q4,M6, q3), (q5,M6, q1) and all transitions leaving q6, and
then restricting the obtained HMSC to coaccessible nodes. Note that transitions
(q1,M5, q2) and (q2,M6, q3) are silent, but remain in the summary, as they are
needed to reach observable transitions labeled by M2,M3,M4.

43

6.3 Abstraction of a diagnosis

So far, we have seen that it is sufficient to build a summary online to obtain
a complete diagnosis HMSC generating all explanations of an observation.
We have also seen that when a new event is observed, some transitions of
a diagnosis HMSC called the safe part, do not influence the existence of an
embedding. Hence, this safe part can simply be forgotten if the goal is to check
existence of an explanation or stored on disk for later use if we want to keep
all explanations for an observation.

Note that if the objective is to perform history diagnosis, safe parts must

be stored in order to output a correct result. If the objective is only existence
checking, then storing or not safe parts does not modify the result returned
by the existence algorithm presented in section 6.5.

Definition 16 Let AO,H be a diagnosis HMSC let Tmax be the set of safe
transitions of AO,H , and let F ⊆ Tmax be a maximal connected subset of
Tmax. A module for F is a triple ModF = (InF , OutF , T (ModF)), where InF

is the set of states which have predecessors out of F and OutF is the set of
states which have successors out of F , and T (ModF) ⊆ InF × OutF collects
all pairs of states in InF ×OutF for which there exists a path in F

A module describes whether in a set of transitions F , one can go from a state
q to a state q′ using only transitions of F . It can be used to replace the safe
transitions connecting unsafe parts of AO,H . One can easily prove that for any
pair of paths ρ, ρ′ and a module ModF such that ρ ends in a state q of InF ,
ρ′ starts in a state q′ of OutF , and (q, q′) ∈ T (ModF) then an observation
O′ ⊒ O has an embedding in ρ.ρF .ρ

′ for every ρF path of F from q to q′ if
and only if O′ \ EρF

and ρ.ρ′ satisfy the conditions of proposition 6.
Hence, a diagnosis HMSC can be replaced by a set of unsafe transitions

and a set of modules connecting them. Then the online diagnosis can be made
as follows: Assume that O was observed and AO,H was built (potentially with
modules for Tmax).

First, we determine Tmax as shown in section 6.1. The connected compo-
nents that contain the initial state(s) can be forgotten or stored on disk, as
they will not influence the construction of diagnosis. Then, for each remaining
connected component F of Tmax, we create a new module ModF in AO,H ,
summarized as: for each state q of AO,H such that there exists an outgoing
transition in F and an ingoing transition not in F , q is an in-state of MF . For
each state s of AO,H such that there exists an ingoing transition in F and an
outgoing transition not in F , q is an out-state of MF . We denote by In(MF)
and Out(MF) its set of in-states and out-states respectively.

For each in-state q and out-state q′ of ModF such that there exists a path
with transitions of F from q to q′, we create a module-transition from q to q′.
We denote by T (ModF) the set of module-transitions of MF .

We denote by S(F) the states to or from a transition of F . Now, we delete
from the main memory (but keep on the hard disk) transitions of F , and states
in S(F) \ [In(MF) ∪Out(MF)].

44

Later, when we observe a new event e, we update the unsafe transitions and
modules following propositions 7 and 9. This structure with modules can be
used exactly as AO,H , that is we can update its transitions, or extend it with
new paths. The actions to perform to update AO,H will depend on the nature

of transitions in the unsafe part. Each transition t = (n,E, g)
M
−→ (n′, E′, g′),

can be classified as follows:

a) – t has no predecessor containing unobserved events on process φ(e),
– there exists an event f in EM such that α(f) = α(e) and |h(Eφ(e))| =

|{f ′ ∈ EM | α(f) ∈ ΣO∧f ′ <φ(e) f}| (f is the next observable event on
process φ(e) in this path and it is compatible with e). Slightly abusing
the notation, we write h(E) instead of writing hO,Mρ

(E) for each path ρ
that ends at transition t. Note that conditions on hO,Mρ

(E) can easily
be checked using the information available in state (n,E, g), as once
E is given, the embedding relation in EM is unique. We will use this
notation in the next items.

– For each e′ <O′ e, there exists f ′ ∈ M , such that f ′ ≤ f , and either
e′ ∈ g(φ(f ′)) or h(f) = e′ (the extension of the mapping with the pair
(e, f) preserves observed causal ordering).

b) – t has no predecessor containing unobserved events on process φ(e),
– there exists an event f in EM such that |h(Eφ(e))| = |{f ′ ∈ EM |

α(f) ∈ ΣO ∧ f ′ <φ (e)f}|, but α(f) 6= α(e) (the next observable event
on process φ(e) is not compatible with e)

c) – t has no predecessor containing unobserved events on process φ(e),
– there exists an event f in EM such that α(f) = α(e) and |h(Eφ(e))| =

|{f ′ ∈ EM | α(f) ∈ ΣO ∧ f ′ <φ (e)f}| (the next observable event on
process φ(e) is compatible with e)

– there exists e′ <O′ e, such that for all f ′ ∈ M with f ′ ≤ f , we have
e′ /∈ g(φ(f ′)) and f ′ 6= h(e′). (there exists no predecessor of f explaining
the fact that e′ causally precedes e)

d) – t has no predecessor containing unobserved events on process φ(e),
– |h(Eφ(e))| = |πΣO

(M) ∩ Eφ(e)| (all observable events on φ(e) have al-
ready been observed). In particular, this means that there exists no
event f in EM such that |h(Eφ(e))| = |{f ′ ∈ EM | α(f) ∈ ΣO ∧ f ′ <φ

(e)f}|
– t has a successor transition t′ in AO,H .

e) t is a maximal transition in AO,H for process φ(e), i.e. it has no successor

transition in AO,H , and for every preceding transition ti = (ni, Ei, gi)
Mi−→

(n′
i, E

′
i, g

′
i), all events on process φ(e) in Mi have been observed.

f) t is not a minimal transition containing unobserved events on process φ(e)

along any path containing this transition, i.e. there exists t′ = q
M ′

−→ q′

which satisfies condition a), and such that there exists a path from q′ to t
in AO,H

g) t is a module transition (in particular, this means that all transitions ap-
pearing in the module are safe, so t can be ignored).

45

Case a) corresponds to transitions ending paths which embed O · e, without
adding new transitions to AO,H . Cases b), c) correspond to transitions ending
paths which do not embed O · e (because the type of the first observable event
on process φ(e) differs from the type of e (case b), or because some causality
e′ ≤ e of O is not embedded (case c)). We can delete b and c type transitions
from AO,H , as well as any path containing a transition of this kind, which is
not an explanation for O.e.

Case d) corresponds to transitions which observable events on process φ(e)
have all been observed and mapped to an event of O. There is still one pro-
cess containing events to be observed, as t is not safe. However, paths ending
with this transition have already been extended, as there exists a successor
transition. Such transition need not be considered to explain e.

Case e) corresponds to transitions which are at the end of a path ρ in which
all events on φ(e) have already been observed. We have to extend AO,H from
the states reached by such transitions to find an explanation for e.

Case f) corresponds to transitions for which there exists a preceding tran-
sition still containing an unobserved event on φ(e), hence no event ofM should
be mapped to e. However, these transitions can be used later to explain further
events.

Case g) describes how to deal with module transitions. Theses transitions
represent safe parts of paths and are just kept in memory to preserve con-
nectivity in the diagnosis HMSC. They can not be refuted nor provide an
explanation for newly observed event e. They are simply ignored, and can
even be erased if they are minimal in the diagnosis HMSC.

Let Ta be the set of type a transitions. For every transition t ∈ Ta, we need
to update ta and all its successors. Let Tb and Tc be the set of type b and c
transitions. We need to remove from AO,H all paths containing a transition in
Tb ∪ Tc. Transitions in Td ∪ Tf ∪ Tg do not trigger any modification of AO,H .
Finally, for every transition te of Te, we need to extend the path ending in
te to find an explanation for event e. If no extension exists, then all paths
containing te must be removed from AO,H . This gives us the algorithm 1.
For the sake of readability, we have split this algorithm into several phases
that classify transitions, update them, and extend e-type transitions. Most of
these procedures (excepted the extension) can be achieved by a Depth First
Search (DFS) on the existing summary. Furthermore, all these procedures can
be grouped in a single exploration of AO,H .

Proposition 11 Let AO,H be a (summarized and abstracted) diagnosis for an
observation O, and let e be a new event. Then the size of the summarized and
abstracted diagnosis AO.e,H is in O(|AO,H | + Ke × |P| × |H | × 2|P|), where
Ke is the number of type e transitions, and can be computed in O(|AO,H | +
Ke× |P| × |H | × 2|P|).

proof : Finding Tmax is linear in the size of AO,H , as well as search for
connected components. Removing transitions from AO,H can be done with a
complexity that depends on the set to be removed, which is necessarily of size
lower than |AO,H |. Note that removing Tmax, Tb and Tc can be done at the

46

Algorithm 1 IncrementDiagnosis(AO,H ,O,e)

INPUT: An HMSC H, a summary AO,H , an observation O, a newly observed even e

OUTPUT: a new summary AO◦{e},H

Compute Tmax

/* nb : Tmax may contain module transitions */
Compute C, connected components of Tmax

for c ∈ C do

/* store c on disk */
AO,H := AO,H \ c

if c is not an initial component then

AO,H := AO,H ∪ T (Modc)
end if

end for

Ta = Tb = Tc = Td = Te = Tf = Tg = ∅
for t ∈ AO,H do

class t in Ta, Tb, Tc, Td, Te, Tf or Tg

end for

AO,H := AO,H \ (Tb ∪ Tc)
restrict AO,H to transitions that are accessible from an initial state, and coaccessible from
sates of the form (n,EO, g) (DFS search).
for ta ∈ Ta do

ta is of the form ta = (n,E, g)
M
−→ (n′, E′, g′) and fa is the event mapped to e in M

Compute t′a = (n,E, g)
M
−→ (n′, E ∪ {e}, g′′), where

g′′(p) = g′(p) ∪ {e} if there exists f ′ > fa such that φ(f ′) = p

and g′′(p) = g′(p) otherwise
AO,H := AO,H \ {ta} ∪ {t′a}

end for

Perform a DFS to update event set E and function g at each node reachable from a
transition in Ta.
for te ∈ Te do

te is of the form te = s
M
−→ s′

/* Extend the path ending in s′ if possible */
X = Ext(s′, e)
if X 6= ∅ then

AO,H := AO,H ∪ Ext(s′, e)
end if

end for

restrict AO,H to transitions that are accessible from an initial state, and coaccessible
from states of the form (n,EO ∪ {e}, g) (DFS search).
return AO,H

same time. Finding accessible and coaccessible states can be done in at most
2× |AO,H |. Dealing with transitions in Ta means a DFS in AO,H (all updates
due to transitions in Ta can be performed during the same exploration). The
costly part can be to extend the maximal paths of AO,H , which can be done
in Ke× |P| × |H | × 2|P|. The size of the resulting summary increases the size
of AO,H by at most Ke× |P| × |H | × 2|P| states. ⊓⊔

Note that for a diagnosis of height h and and HMSC of degree d, we have that
Ke ≤ dh ≤ |AO,H |.

47

Corollary 3 Computing online a summary for an observation O can be done
in

O

∑

i∈1..|O|

|H | × (i − 1)|P|×|PObs| + dh(i−1) × |H | × |P| × 2|P|

where h(i) is the maximal height of the diagnosis HMSC built at step i.

Let us compare the respective complexities of the naive online diagnosis men-
tioned at the beginning of this section (that is O(|H |×

∑

i=1..|O|

i|P|×|PObs|)) and

this incremental diagnosis. At first sight, incremental construction of a diagno-
sis seems inefficient, as it has an overhead in O(|H |×

∑

i=1..|O|

dh(i−1)×|H |×|P|×

2|P|). This is due to the fact that, to compute a maximal safe part, one may
have to extend all leaves of the previously built diagnosis, and that nothing
guarantees that large subsets of transitions become safe at every construction
step. Hence, the complexity above does not take into account the fact that at
each step, a part of the diagnosis can be stored on disk and erased from mem-
ory. Note also that dh(i) is a rough upper bound on the number of paths to
extend at step i, but that in practice, it is unlikely that all MSCs in M can be
chosen from any state, or that all paths need to be extended. Hence, the actual
number of paths in the summary at step i should remain lower than dh(i). Note
also that h(i) is necessarily lower than |H | × i. Last, we know that the incre-
mental extension of the summary at step i can be done by studying only the
unsafe part of the summary at step i− 1. But there is no guarantee that this
unsafe part remains bounded. However, if one can erase safe transitions at the
same rate as new transitions are appended to extend the diagnosis, then there
is a constant K such that throughout the computation, the unsafe part of the
computed summary remains of height lower than K. Then the complexity of
incremental diagnosis is in O

(

|O| × (dK + dK × |H | × |P| × 2|P|)
)

.
Note that so far, even if AO,H is an abstracted summary, there is no guar-

antee that the size of its unsafe part remains bounded. In the general case,
the height of summaries remains bounded if all observed processes in the run-
ning application produce their observations at the same rate (i.e. there is no
race between processes in the implementation), and if the arrival of observa-
tions to the diagnoser guarantees that each transition of the diagnosis HMSC
becomes safe after a finite number of observations. Last, notice that the diag-
nosis HMSC obtained from a summary built online is exactly the diagnosis
obtained in the offline setting, and hence with the same number of nodes in
O
(

|H | × |O||P|×|PObs|
)

.
Note however that in general nothing guarantees that an implementation is
race free. Consider for example the HMSC of Figure 15. This model is com-
posed of three MSCs, and the observation alphabet is Σobs = {a, a′, b, c, d}.
With this model, any path explaining an observation O has to remember

M1.M
|O|−1
2 as long as atomic action c has not been observed. If the sequence

of observed events at step i is of the form a.(a′.b)i, then the unsafe part kept

48

Fig. 15 An example HMSC in which online observation can grow unboundedly

in memory by the algorithm is of the form (n0
M1−→ n1).(n1

M2−→ n1)
i, and the

successive observations increase the size of the unsafe part of the computed
summary. Hence, if P1 and P2 are faster than P3, or if P3 needs more time
than other processes to report occurrences of c, the unsafe part of the diagnosis
built from the observations may grow up to an arbitrary size.

In the sequel, we will show some syntactic conditions on H that ensure that
for every sequence of observable events, incremental construction of diagnosis
can be done with unsafe suffixes of bounded size in memory.

6.4 Online diagnosis with finite memory

We have shown in previous sections that offline and online diagnosis is always
a decidable problem for HMSCs. However, resources limitations may impose
to perform online diagnosis with finite memory. Formally, for a given model
H , we want an online algorithm that always runs with finite memory, and
outputs AO,H for any observation O. If ΣObs is located on a single process p,
then the projection of an HMSC on a single p is a regular language, and we
can perform diagnosis with a finite state automaton that monitors process p
as in [33]. However, observing a single process is a very restrictive solution. A
natural question is whether, for a given observation alphabet, some systems
can be modeled by HMSCs for which diagnosis is always feasible with finite
memory, independently from what is observed. The challenge is then to exhibit
a subclass of HMSCs that ensures that the part of summaries that is kept in
memory remains bounded. When a system can be modeled by an HMSC lying
within this class of models, online diagnosis runs with finite memory. A first

49

obvious candidate is the so-called syntactic class of regular Message sequence
charts introduced by [1].

Definition 17 Let M be an MSC. The communication graph CG(M) =
(P, V) is a directed graph such that :

– P = {φ(EM)} is the set of processes that are active in M ,
– (p, q) ∈ V iff M contains a message exchange from p to q, i.e. V =

{(φ(e), φ(e′)) | (e, e′) ∈ µM}

An HMSC H is called a regular HMSC if and only if for every cycle ρ of H
the communication graph CG(Mρ) is strongly connected.

Alur et al. have shown [1] that for any regular HMSC H = (N,−→, ni,M, F),
the set Lin(H) forms a regular language. This language is recognized by an
automaton ALin(H), of size at most in O(2|P|×|N |× (b×|N |× |P|)|P|). The in-
tuition behind regular HMSCs is that a process can not be too far ahead from
other participants of a protocol, and has to wait for some “acknowledgment”
of all its actions in any iterative behavior. This way, a process p can not per-
form an arbitrary number of actions independently from the other processes,
and can not either send an arbitrary number of messages without waiting for
the reception of a message from the other processes. The whole linearization
language of a regular HMSC H is recognized by a finite automaton BH , that
memorizes the set of actions that have to be done by each process (we call the
states of BH configurations of H) to remain compatible with H . One can see
configurations as a list of unexecuted parts of MSCs. The projection of lin-
earizations of H on the observation alphabet ΣObs is also a regular language,
that is recognized by an automaton B′

H which transitions are labeled by letters
from ΣObs, and which states are sets of configurations from BH .

However, observing a regular system is not sufficient to ensure that diagno-
sis can be performed with finite memory, as the observation process itself can
introduce some asynchronism between actual behavior and collected observa-
tions. Indeed all probes do not necessarily send their observations at the same
speed. They can for instance be located at different places of a network, and
very far from the diagnoser. Hence, even if all processes of the implementation
are well synchronized, some processes might appear as ahead of the others in
the observation.
Consider for instance the example of Figure 16. The observable events are
actions a and b, but the probe attached to process P1 needs at most 1 time
unit to send its observations, while the probe attached to process P2 needs at
most 3 time units. At a given moment, the online observation of this regular
system may exhibit much more a’s than b’s, as shown in the chronograms at
the bottom of the figure. For instance, at time 6, the observation received at
the diagnoser exhibits 3 occurrences of a and one b, even if in the corresponding
execution, the difference between the number of a and b is lower or equal to
1. However, if the observation architecture guarantees that the delay on the
observation is bounded w.r.t. the actual behavior, and if the processes of the
system execute events with a known maximal rate of r events per time unit,
then online diagnosis with finite memory is achievable.

50

Fig. 16 Desynchronization of observation at probes and at diagnoser

Theorem 4 Let H be a regular HMSC, let Σobs be an observation alphabet.
If every process in the observed system sends its observations with a bounded
delay δobs, and an execution rate r, then online diagnosis for an observation
O can be performed with memory at most in O(NO×k× 2|P|×|N |× (b×|N |×
|P|)|P|), and in time lower than

O(|O| ×NO × k × 2|P|×|N | × (b × |N | × |P|)|P|)

where k = |P| × δobs × r, and NO is in O

(

Σ
i∈1..k

2
i2

4
× 3i

2
×ln i × |Σobs|i

)

Proof: The main idea is to monitor the system with the finite automaton
B′
H that describes the projection of all linearizations of H , plus a finite set of

partially ordered events that are not yet explained. However, the trick is to
forget these memorized events of the observation O in sequence, that is choose
online a linearization of O that is also a linearization of some behavior of H .
States of B′

H describe configurations of H , that is the last node of H visited,
and the part of each visited MSC that have not yet been executed. At each

51

step, the system can be in several of these configurations. When a new event is
observed, for a given state s, one must decide whether this event is compatible
with the configuration, and move to a new set of target configurations. If the
observed event e is not fireable from state s, then two solutions are possible:
either e can not be the next event observed on process φ(e), and the assumption
that the system was in state s was wrong. In the latter case, all sequences of
transitions ending at s at former step must be discarded. The other possibility
is that according to the configuration in s, e has a predecessor f , that has not
yet been observed. However, observation of f may arrive later than that of e.
Note that according to our observation semantics, f and e can be observed
as concurrent events, or we can have f ≤ e, but not the converse. Hence, one
may have to wait up to δObs time units to receive f , and then forget e. In the
meantime, the observer may observe the arrival of δObs × r new events. If f is
not observed after this delay, then the linearization ending in state s was not
an explanation for the observation, and this state can be forgotten, or marked
as wrong. Note however that as H is regular, processes have to wait for one
another if they are active within the same loop. Hence, inside a single loop β,
a group of processes may force the diagnoser to recall at most δObs × r × |P|
events. The diagnoser can then consume one minimal event every 1/r time
unit. Similarly, if the system has entered a behavior described by another loop
β′ of H , that does not involve processes participating in β. However, events
from this loop must be fireable from s, as both loops are concurrent, or again,
s must wait to consume events, but needs only to recall a bounded number of
events. Note that there can be at most |P| such concurrent loops. So, when n
events have been reported to the diagnoser, the explanations (linearizations)
computed so far may explain the whole observation or only up to some k ≤ n,
with k > n− |P| × δobs × r and have to memorize unexplained events. Hence,
at a given moment, one may have to remember up to NO × 2|P|×|N | × (b ×
|N | × |P|)|P| states, where NO is the number of observations of size at most

|P| × δobs × r. Kleitman and Rotschild [21] gave a bound of 2
n2

4
× 3n

2
×lnn for

the number of partial orders of size n. We must in addition label these orders,

i.e. NO is in O

(

Σ
i∈1..k

2
i2

4
× 3i

2
×ln i × |Σobs|i

)

, for k = |P| × δobs × r ⊓⊔

From Theorem 4, it is straightforward to design a diagnosis algorithm. We
keep in memory states of the form (s,M, i), where s is a state of B′

H and M
a partially ordered set of events, and i ∈ N is the step at which this state was
recorded. Intuitively, i means that s is remembered since ith observed event.
We start the diagnosis from the initial state of B′

H , and an empty order, and
at date 0. When a new event e arrives at a date d(e), for each state (s,M, i)
kept in memory:

– a transition by α(e) is fireable from state s to state s in BH . Then store

on disk transition (s,M, i)
α(e)
−→ (s′,M, i + 1). Then repeat the transition

operation following linearizations of M .
– no transition by α(e) is fireable from state s. If there is no reachable tran-

sition from s by α(e), then s is marked as wrong state. If e needs to wait

52

for a predecessor event to be fireable, then it will appear later in the lin-
earization that currently stops at s. So, e is kept in memory with its date
of observation d(e), that is we transform state (s,M, i) into (s,M.e, i)

– every state with memorized event with date lower than d(e) − δobs is de-
clared wrong and forgotten.

At the end of the observation, one can rebuild all transitions, and discard the
paths that lead to a wrong state. Note that unlike the offline or incremental
diagnosis proposed before, we explore linearizations of H , which can be costly.
A second remark is that if we run the incremental diagnosis of section 6.3 with
a regular HMSC, we might be unable to forget safe parts.

Fig. 17 A regular HMSCs that may generate small modules

Consider for instance the regular HMSC of Figure 17, and let us set as obser-
vation alphabet ΣObs = {a, b, c}. When an observation that contains as many
occurrences of a and b, but no occurrence of c, one can not decide whether
MSC M2 occurred or not. Hence, the summary built from such observation
has the shape of the HMSC of Figure 18, where the HMSC node reached in
states q0, q1, q3, q5 is n0, and n1 in q2, q4, q6. Transitions labeled by M1 can be
replaced by an equivalent module, as all events in M1 are safe. However, the
connectivity provided by these modules must be preserved, and none of them
can be removed from the summary. Hence, as each M1 transition is equiva-
lently replaced by a module, the size of the summary is not improved. This
situation holds for observations of any size that do not contain an occurrence
of event c. Hence, even if we have guarantees on delays and rates of the ob-
served system and H is regular, the incremental diagnosis may have to keep an
infinite summary in memory. Now, if we consider an observation O′ = O ◦ {c}
that is simply the observation O of Figure 18 with an additional event labeled
c, then the online diagnoser needs only to remember that the diagnosis built
from O′ ends in H at node n1. The erased part of the diagnosis will contain
all paths with three occurrences of a and b, and one occurrence of c ending
in n1. Conversely, a linearization based algorithm memorizes a state from an
automaton that recognizes the language (a.b)∗.c plus a finite number of oc-

53

currences of a and b, so it runs with finite memory. An interesting extension
of this work is to study conditions when one algorithm should be preferred to
the other.

Fig. 18 The diagnosis for an observation O.

6.5 Online detection of existence

Solving the existence problem offline consists in building a diagnosis HMSC
as described in section 5 , and verifying that the language of this HMSC is
not empty. We now want to check existence online. Formally, given H and
successive observations O0 = Mǫ and Oi+1 = Oi.ei, i ∈ N+, where ei it the i

th

event arriving at the diagnoser, we have to check at every step i ∈ N+ that
AOi,H contains at least one explanation, and if not raise an alarm. For the
online detection, the fact that we do not have to output a diagnosis simplifies
the process, as the safe parts of the diagnosis that are built online need not
be stored, and can just be forgotten. This leads to the algorithm 2 next page.

6.6 Summary of results

Let us briefly summarize the results obtained so far:

Offline diagnosis: we have shown (Theorem 1, section 5) that offline diag-
nosis can be performed in space in O(|H | × |O||P|×|PObs|), and in Corollary 2
that this can be done with time complexity in O((m+ p2 + (m+ p2)4)× d×

|H | × |O||P|×|PObs|). This offline diagnosis can be split into |Pobs|×(|Pobs|−1)
2

smaller problems (Theorem 3, section 5.2), each of them returning an answer
Ap,q of size in O(|O|2|P| × |H |). However, these diagnosis are local to a pair of
processes, and one needs to compute a product A⊗ of local diagnosis to ob-
tain a global result. This product is exactly the diagnosis obtained in a global
setting, so there is no complexity gain to expect in the worst case.

Offline existence: As offline existence consists in checking emptiness of
LH,AO,H

, the worst case complexity is the same as for offline diagnosis. Note

54

Algorithm 2 OnlineExistence()

INPUT : an HMSC H, continuously arriving events (denoted e)
/* it is assumed that a user can interrupt the procedure at any time */
/* and then consider AOH as the explanation for all observed events */
OUTPUT : an error message if no diagnosis exists for the observation collected */
or a diagnosis AOH if the algorithm is interrupted
Continue := true ; O = ∅
while Continue = true do

receive observation {e}
continue := false
/* progress diagnosis */
AOH := IncrementDiagnosis(AO,H , O, e)
if AOH = ∅ then

/* there is no explanation containing e, and no explanation can be */
/* found with more observed events: existence checking can stop*/
Continue := false

else

O = O ∪ (e, {e} × Pred(e))
/* add e to the observation */

end if

end while

Output “No explanation in H for current observation.”

however that the construction of LH,AO,H
can be stopped as soon as a witness

path reaching a final state, and hence showing the non-emptiness of LH,AO,H

is found. In most cases, if the construction of AO,H is performed with a depth
first policy, the existence problem is likely to be solved faster than the diagno-
sis. Existence can also be split into several sub-problems. However, existence
of a solution for every pair of observable processes does not guarantee that a
global solution involving all processes exists. However, LH,AO,H

is empty as
soon as some LH,Ap,q

is empty. Similarly building incrementally the product
of local diagnosis Ap1,q1 ⊗ . . .Apn,qn , one can stop as soon as the language
LH,Ap1,q1

⊗...Api,qi
is empty for some i < n, without computing the whole pro-

duct. Hence, splitting the existence problem is likely to improve efficiency in
practice. A major improvement can be expected if diagnosis can be made lo-
cal, that is if we can compute a local diagnosis Ap for each observed process
and ensure that

⊗

p∈PObs

Ap = AO,H for every observation O. Of course, if all

observations are located on one single process p, computing Ap is sufficient.
However, beyond trivial cases such as this one, we have not yet found syntactic
conditions on H and ΣObs ensuring for every observation O that Ap = AO,H ,
or that the diagnosis for O is given by a product

⊗

p6=q∈X

Ap,q for a small subset

X ⊂ PObs. Combining smaller diagnosis problems is also the key to distributed
diagnosis frameworks, and is an interesting research direction.

Online diagnosis: for the online diagnosis, the memory needed is of course
in O(|H | × |O||P|×|PObs|), as the diagnosis computed online and offline must
be the same, and as one can never be sure that even a single safe part
will appear during the construction of the diagnosis. The increment time

55

for online diagnosis (the time needed to compute AO.e,H from AO,H) is in
O(|AO,H | + Ke × |P| × |H | × 2|P|), where Ke is the number of transitions
in AO,H that lead to an extension of AO,H (Proposition 11, section 6.3).
This means that the overall worst case time complexity to build a diagno-

sis online is in O

(

∑

i∈1..|O|

|H | × (i− 1)|P|×|PObs| + dh(i−1) × |H | × |P| × 2|P|

)

,

where h(i) is the height of the summary built at step i by the algorithm.
Hence, worst case complexity is not favorable to online diagnosis. However,
in practice, an observable event is unlikely to remain unobserved forever, and
safe parts should appear. If the height of the memorized diagnosis remains
bounded by some constant K, then for a HMSC of degree d the memory
needed is in O(dK), and the overall complexity of online diagnosis becomes in
O
(

|O| × (dK + dK × |H | × |P| × 2|P|)
)

.

Online existence: Online existence has the same space and time complexity
as online diagnosis, as one may have to remember the whole diagnosis HMSC
built from the beginning if no safe part appears.

Diagnosis with finite memory: for the regular HMSCs, when a delay δobs
between an observation and its reception by the diagnoser exists, and when
processes execute events with a bounded rate r one can use an automaton rec-
ognizing all linearizations of H to monitor a system. In such case, online diag-
nosis can be performed with memory at most in O(NO×k×2|P|×|N |×(b×|N |×

|P|)|P|), where k = |P|×δobs×r and NO is in O

(

Σ
i∈1..k

2
i2

4
× 3i

2
×ln i × |Σobs|i

)

.

At each step, the diagnoser knows in which states the system can be and com-
putes the next reachable states. The past states and transitions need not be
kept in memory, and can be stored. The time and space complexities for diag-
nosis with regular HMSCs are in O(|O|×NO×k×2|P|×|N |×(b×|N |×|P|)|P|)
. Note that in the regular online case, we memorize linearizations of the HMSC
model. Hence, regularity should not be exploited in an offline context, where
the non-interleaved compact representation of runs provided by HMSCs is fully
exploited.

Online existence with finite memory:In the regular setting, one can sim-
ply memorize the states in which the system can be. This means that the algo-
rithm runs with memory and space in O(NO×k×2|P|×|N |×(b×|N |×|P|)|P|),
as there is no need to record past states. The worst case time complexity how-
ever is in O(|O| ×NO × k × 2|P|×|N | × (b× |N | × |P|)|P|).

Optimality: Note that there is some minimal amount of information that
needs to be stored by a diagnoser, independently from the technique used and
from the nature (regular or not) of the HMSC model. The diagnoser needs
to memorize at least all final transitions appended to the AO,H built so far,
and for each transition, the set Ekeep of observed events that may still have
a causal successor (there are at least |Pobs| such events) plus an abstraction
of the causal relations between events, which can be represented as a function
from Ekeep to 2P . Keeping a trace of this causal ordering is essential to make

56

sure that observed causal dependencies appear in the provided explanations.
So when one possesses a bound on the maximal width w of AO,H and on the
number of events kp that need to be memorized, then a diagnoser can not run
faithfully with memory lower than in O(w×kp×|P|). Note however that such
bounds w and kp are not guaranteed to exist in general.

Let us now discuss the optimality of the offline and online diagnosis con-
structions. We already know from Remark 2 that the diagnosis generated for
an observation O and a model H are not minimal, as they generate all paths
embedding O, including paths which contain a prefix that already embeds O.
One can also remark that the information recorded in states of the generators
that are constructed by the offline algorithm is not minimal: states contain in-
formation on the respective ordering of events (more precisely using function
g) that is not always useful. In some cases, the fact that an event e ∈ EO is
”seen” by a process p (i.e. e ∈ g(p)) could be forgotten, hence saving space at
construction time. However, this simplification can be done only if it is sure
that the considered event e will not have an observable causal successor on
process p. In the offline context, where all observed successors of an event e
are known at diagnosis time, the size of the diagnosis HMSC can also be re-
duced after full construction of the diagnosis. We can ignore the information
contained in states, and use a co-determinization procedure to ensure that the
diagnosis is the minimal structure generating all paths that embed the ob-
servation. However, we can co-determinize only when final states are known,
so this technique does not apply in an online setting. Similarly, pertinence of
the information recorded is states highly depends on event that may occur
in the future after the current observation. As these events are not known
in advance, all available information attached to nodes of the diagnosis must
be kept, even if it turns out to be useless in the future. Even worse, useless
information may have to be kept forever, so the diagnosis built online is not
even asymptotically minimal, as one may never be able to decide which part
of the recorded information will become useless.

The offline diagnosis algorithm has been implemented in a scenario tool
called SOFAT [16], and was tested on a TCP-IP scenario model, using ran-
domly generated observations. The TCP-IP model can be found in [13]. Though
the theoretical worst case bound for offline and online diagnosis is rather pes-
simistic, the algorithm returns solutions rapidly for observations with hundreds
of observable events. Note that carefully choosing the events that need to be
observed (for instance making sure that there exists one observable event per
MSC) helps reducing the number of paths considered in AO,H hence saving
space and time. However, diagnosis in real distributed systems such as telecom-
munication networks needs to address gigabytes of logged information on each
monitored site. To scale up to this size, diagnosis will probably need to lose
some precision. The solutions might be to forget a part of the built diagnosis,
and return only a partial answer, to filter logs, hence loosing some precision,
or also to work with coarse grain logs that is group sequences of events and
work with a smaller quotiented observation.

57

7 An application of diagnosis for Anomaly Detection

The diagnosis framework shown in previous sections is originally designed to
help debugging a distributed application when a fault has occurred. In this
section, we address another possible application of diagnosis for security. In
a diagnosis framework, the model represents the expected behavior of the
system. We have already mentioned that the diagnosis obtained from an ob-
servation may produce an empty set of explanations. In a debugging context,
this can be bothering, and means that our model is not complete enough to
provide explanations for a given observation. If on the contrary, we consider
that our model is a complete representation of the normal use of a system,
then, finding no explanation for a given observation means that the currently
observed execution is not a normal behavior, and that our system may have
security problems: it is attacked by an intruder, some process has been cor-
rupted, ... We will show in this section how diagnosis can be used in the context
of anomaly detection.

Many intrusion detection systems (IDS) are “signature-based”, that is rec-
ognize patterns from a collection of known attacks. These IDS can recognize
attacks in a single frame from packet headers, or in a session that is a sequence
of packet exchanges between two given IP addresses. The techniques used to
recognize an attack range from Bayesian networks, statistical methods, fuzzy
inference systems, etc. to data mining techniques. Usually, IDS try to classify
a situation according to an attack nomenclature, or as normal if the observed
behavior is too far from the criteria that characterize an attack. To train IDS,
huge attack databases have been collected [28,11].

However, these IDS mechanisms suffer several weaknesses. First of all, as
IDS are trained from datasets, they can not discover novel attacks. For this
reason, a new complementary solution called anomaly detection has been pro-
posed. Anomaly detection still relies on monitoring, but compares an observa-
tion with a description of a normal situations. The assumption is that when
an attack occurs, it usually exploits weaknesses of a system, that are rarely
used in normal conditions. This is peculiarly true for denial of service attacks,
where the rate of some requests suddenly becomes unusual. Hence, a detection
of some unusual behavior in a system is assumed to be a potential attack, and
raises an alarm. The main challenge here is to establish a profile of normal
behaviors. This can be done in the same ways as for IDS, using statistical
techniques [31], or with a specification-based approach. [22] proposes a logical
framework to define normal behaviors, and [34] proposes a definition of normal
behaviors using extended finite state machines. Detection of anomalies is then
performed by comparing a linearization of an execution with the descriptions
of correct behaviors.

Another weakness of session or packet based IDS is that they can not
deal with attacks that involve several users or processes in a system. This is
the case for example of covert channels, that use legal access to a system to
create illegal flows of information between unauthorized peers. These covert
channels, however, often use resources repeatedly and in a non-standard way.

58

We then need techniques that detect attacks involving an arbitrary number
of processes. Existing specification based anomaly detection frameworks such
as [34] can take this into account, but rely on interleaved representations of
behaviors, which increases the size of models. The executions of distributed
systems can be represented as partial orders, hence computing or representing
interleaved models is clearly not needed, and slows down the detection of
anomalies. Several surveys on IDS and anomaly detection have already been
published. We refer interested readers to [2,19,20] for more information.

In this section, we show that the diagnosis techniques described in 5 and 6
can be used for anomaly detection. The advantages when using scenarios are
manifold. First, scenarios are partial order models, and can avoid costly in-
terleaved representations. Second, scenarios are widely used to define systems
requirements. These requirements can serve as a starting basis to create larger
models of legal behaviors. The main idea behind the solution proposed is to
observe the running system, and to compare the observation with a set of pre-
determined “standard” behaviors, defined as a (potentially infinite) collection
of partial orders. When an observed run can not be described as a super-
position of standard executions, then it is considered as suspect. This can
be compared with diagnosis techniques, and we will show in the sequel that
scenario-based anomaly detection can be brought back to the existence prob-
lem. Our detection framework analyzes behaviors involving multiple exchanges
among several processes, without computing an interleaved representation of
the legal behaviors nor of the observation.

7.1 Monitoring architecture

The anomaly detection framework proposed hereafter relies on the diagnosis
techniques proposed in sections 5 and 6, and on an architecture that collects
a subset of what occurs in the system, and compares the observation to the
HMSCs defining normal behaviors. We can formalize the problem as follows:
given an observation O and a set of HMSCs H1, . . . , Hk over disjoint alphabets
Σ1, . . . , Σk, depicting legal uses of a system, check for every i ∈ 1..k that there
exists an explanation for ΠΣi

(O) provided by Hi.
The framework we consider is a distributed system, composed of several

sites (or processes) P = P1, . . . , Pn, providing distributed applications D =
A1, . . . , Ak to a set of users U = U1, . . . , Uq. This system is monitored by
inserting probes on each site as described in section 1, with the only difference
that the diagnoser will compare observed executions with several models.

Each user can run several applications of the system, according to a prede-
fined policy. Whenever a user Ui, i ∈ 1..q uses an application Aj , j ∈ 1..k, we
depict the normal use of application j by user i as an HMSC Hij , and define an
observation alphabet Σij . We set Hij = (Nij ,−→ij , n

i
ij , ,Mij , Fij), where all

MSCs in Mij , are defined over a subset of Pij = Ui ∪P . More intuitively, the
depicted interactions do not involve other users of the system. We also require
that Σi,j ∩ Σk,l = ∅ for every (i, j) 6= (k, l). This may seem restrictive, but if

59

we consider that all communications and events during a session are tagged
with an unique session number, this property is immediately met. Note also
that we could define more general HMSCs involving several users and sev-
eral applications without changing the formal techniques described hereafter.
However, we feel that such models would be much more difficult to design.

The system is instrumented to detect the occurrence of some events with
signature in

⋃

i∈1..q,j∈1..k

Σij and to send them to a centralized diagnoser that

logs all events. This is the usual diagnosis architecture defined in previous
sections. Here again, the observation mechanisms can provide some causal
ordering among events, and events located on a given process are totally or-
dered. The observation collected is compared with the models of legal use of
all applications by the diagnoser. This monitoring architecture is depicted in
Figure 19. The logged file can be seen as an observation.

Fig. 19 Architecture of the anomaly detection framework

7.2 Anomaly detection with Diagnosis techniques

The anomaly detection framework proposed in this section uses several el-
ements of the diagnosis techniques presented in the previous sections. Note
however that observations of distributed systems will mix uses of several ap-
plications by several users, and we need to recover the order associated to each
pair (user, application) that is contained in O, but forget the causal ordering
that is due to messages exchanges from other users and applications. This
is not captured by the definition of projection, and we need to define a new
restriction operation to separate the observation of different sessions:

Definition 18 Let O = (EO ,≤O, αO, µO) be an observation defined over a
set of processes P and over an alphabet Σ = Σij ∪ Σ′. The restriction of
O to Σij is an observation RΣij

(O) = (EO′ ,≤O′ , αO′ , µO′) such that EO′ =
EO ∩ α−1(Σij), µO′ = µO ∩ E2

O′ and ≤O′=
(

{(e, e′) ∈ E2
O′∩ ≤O| φ(e) =

φ(e′)} ∪ (E2
O′∩ <O)

)∗

60

Intuitively, the restriction is the transitive and reflexive closure of the total or-
dering due to processes plus the ordering due to messages among events which
label belongs to Σij . Let us now show how the existence problem described in
section 5.1 can be used for anomaly detection. Clearly, if we consider that an
HMSC model provided to the diagnoser represents all legal behaviors, proving
that no explanation exists for an observation O means that O can not be con-
sidered as a legal behavior of the system. Furthermore, in a distributed setting,
checking existence can be fast, as no explanation exists for an observation as
soon as one sub-problem has no solution.

We propose a partial order anomaly detection framework based on the ar-
chitecture and techniques of sections 5 and 6. This detection can be performed
either:

– offline, that is after recording an execution, the anomaly detection algo-
rithm is run to discover whether this execution contains an attack

– online, that is a monitoring systems analyzes current execution and raises
a warning as soon as an anomaly is detected.

An advantage of the proposed techniques is that there are no wrong positives.
Another advantage is conciseness of the models and of anomaly diagnosis: legal
behaviors are given in terms of HMSCs, i.e. the interleaved representation of
legal behaviors is never computed.

Let us now formalize our scenario-based anomaly detection framework.
First of all, we can notice that if we use an HMSC Hij to describe the be-
haviors attached to user ui and to the system when running application j,
we need to allow this user to run this application several times. Further-
more, an attack is not necessarily contained in a single use of an applica-
tion. We then have to compare several successive (mis-)use of an applica-
tion with normal use. This can be defined by computing a cyclic version
of Hij = (Nij ,−→ij , n

i
ij , Fij ,Mij), denoted by H∗

ij , and defined as H∗
ij =

(Nij ,−→′
ij , n

i
ij , Fij ,Mij), where

−→′
ij=

−→ij \{(n,M, n′) | n′ ∈ Fij}
∪{(n,M, ni

ij) | ∃(n,M, n′′) ∈−→ij ∧n′′ ∈ Fij}

In a more intuitive way, in H∗
ij , transitions to final states are redirected to

the initial state. We will consider that there is an anomaly when an observed
behavior can not be explained as a mix of all legal behaviors defined by HMSCs
in {H∗

ij}i∈1..q,j∈1..k. This is usual for anomaly detection, as we can consider
that an attack exploits unknown (and then unused) weaknesses of a system,
and furthermore that attackers do not necessarily have enough knowledge of
the system to generate an attack while behaving as in a normal session.

Definition 19 Let U1, . . . Uq be a set of users of a system composed of processes
P1, . . . , Pn and applications A1, . . . Ak. Let O be the observed behavior of the
system. Then Ui has an unusual behavior in O when using application Aj if
RΣij

(O) has no explanation in H∗
ij . An observed behavior contains an anomaly

if and only if at least one user Ui, i ∈ 1..q has an unusual behavior when using
an application Aj , j ∈ 1..k.

61

Theorem 5 Let {Hij}i∈1..k,j∈1..q be a set of normal behaviors of a system
composed of q users, k applications, and n processes. Then, anomaly detection
in an observation O can be performed in O(k × q × h× |O|(n+1)×pobs), where
h is the size of the largest HMSC in all Hij ’s and pobs is the maximal number
of process observed in all Hij ’s.

Proof: Simple corollary of Theorem 1. Anomaly detection is simply the iter-
ation of the existence problem for all models H∗

ij , and observations that are
projections on the alphabet Σij . Every H∗

ij is defined over a set of processes of
size lower or equal to n, plus a user. Then, a diagnosis has to be performed for
every H∗

ij , that is at most q× k times, and for a restriction of the observation,
that is an observation of size lower than |O|. ⊓⊔

We have assumed for convenience and efficiency that all observation alpha-
bets were disjoint. Within this setting, the conclusion of the analysis is obvi-
ous: when all restrictions RΣij

(O) have their explanation in H∗
ij , no alarm is

raised, and when a single projection have no explanation, an alarm must be
raised. Hence, if we consider that observations are faithful, that is all observed
events really occurred, no observation is lost by the supervision architecture,
and the order among them is contained in the order of the execution, then we
can not have wrong positives: when an alarm is raised, the actual execution
that has produced the observation is not a mix of MSCs provided by the mod-
els. Note however that wrong negatives can still occur. This is not surprising,
as observations only record a subset of all events that have occurred during an
execution, and similarly only a subset of causal ordering among the observed
events. Even when an execution of the monitored system is not a run of the
model, the observation recorded during this execution may still find a compat-
ible explanation. As a consequence, the detection framework may miss some
faulty behaviors.

Remark 3 The disjoint alphabets assumption can be relaxed, but forces con-
sidering all possible partitions of O, that is assign to each event of O a pair
i, j of user and application. This means that in the worst case (when all Σij

are equal), we have to apply diagnosis techniques to up to (q.k)|O| different
partitions of the observation. The exponential blowup is not the only prob-
lem with overlapping observation alphabets. If none of the possible partitions
shows unusual behaviors, then the observation corresponds to an interleaving
of projections of normal executions. If some (but not all) partitions exhibit an
anomaly, then two possible interpretations can be considered: an alarm must
be raised, as there is a possibility of abnormal behavior, or conversely, as at
least one partition of events allows for an anomaly free interpretation of the
observation, and the behavior observed should be considered as normal.

Offline detection can be used when something went wrong in a system, to make
sure that the reason for a failure, for data corruption, or something bad that
occurred is not due to an attack. However, detection mechanisms find their
full interest when they can be used online to monitor ongoing executions, and

62

raise an alarm when an anomaly is detected. Then a supervisor, that might
be an automatic process or a human operator has to analyze the threat and
react accordingly. The decision that follows an alarm depends on the analysis
performed by other detection mechanisms, on the severity of the supposed
attack, but also on the security level that one wants to provide for a system,
and may range from closing a session, banishing a user or an IP address from
the system, to switching off the whole system.

Similarly to offline anomaly detection, online anomaly detection is an adap-
tation of the online existence problem. The main difficulty here is to maintain
several copies of the online existence algorithm (one per H∗

ij , and to feed
these monitors with the correct observed events. In a setting where all obser-
vation alphabets are disjoint, this is not a problem. In case these alphabets
are not disjoint, the solution consists in assigning an observed event to a pair
(user,application) and create a copy of all diagnosers for every possible assign-
ment. However, the cost of this solution is rapidly prohibitive.

8 Conclusion

We have proposed a centralized offline and online diagnosis framework based
on scenarios. The diagnosis problem can be easily split into sub-problems to
speed-up the algorithms, which opens the way for distributed diagnosis frame-
works. An easier diagnosis related problem called the existence is NP-complete.
We have shown that diagnosis can be computed offline from a definitive ob-
servation, or on the fly. An efficient online solution is to compute a summary
of the diagnosis, and work only on the (unsafe) part of the summary that is
needed to continue explanations. However, in the general case, this unsafe part
is not bounded. We have shown some syntactic restrictions on HMSCs and on
the observed system that allow for incremental diagnosis with finite memory.
However, this result applies only if the communication of observations from
probes to diagnoser does not let a process produce observable events much
faster than the others (this phenomenon is mainly due to communication de-
lays and execution rates). As the considered models for finite memory are
regular HMSCs, processes must wait for each other in loops, and the corre-
sponding consumption of observed events by the diagnoser almost follows the
order of production. We also need to ensure that only a bounded number of
new observations can occur between the moment a probe observes an event,
and the moment this observation is used on the diagnoser. This is guaranteed
by the bound on communication delays from the system to the diagnoser, and
by imposing a maximal rate to each process. This could also be ensured by
adding some time information (for instance duration of events and communi-
cations) to HMSCs. In a timed context, we think that a bound on the size of
the unsafe part might be easy to obtain for a larger class of HMSCs if we can
ensure that a bounded number of observable events can be produced by each
process during a time unit - this hypothesis is close to the non-Zeno property
that is frequently used in timed automata, see [36] for instance.

63

Another interesting extension of this work is to consider diagnosis from
more powerful scenario models such as Causal MSCs [13]. Indeed, MSCs do
not allow for the design of behaviors such as sliding windows. This can be
considered as a limitation, as these behaviors are quite frequent in actual pro-
tocols. However, extending the scenario model inconsiderately could rapidly
make diagnosis an undecidable problem (diagnosis is not decidable for com-
municating automata for example).

The diagnosis techniques proposed in this paper rely on behavioral mod-
els that are supposed close enough to the behaviors of an implementation.
However, some discrepancies may still exist between the model and the set
of behaviors exhibited by a running system, and our diagnosis algorithm may
return an empty set of explanations. An interesting idea is to propose a diag-
nosis that returns the closest explanations found instead of an exact one, or
the set of explanations of the largest prefixes of the observation for which
an explanation exists. This would help finding the discrepancies between the
model and the running system.

Nevertheless, the fact that diagnosis may fail can be used for security ap-
plications. We have depicted a scenario based anomaly detection framework
that detects an anomaly when the existence problem has a negative answer.
This framework could be easily extended to take into account combinations of
verdicts, integrate undesired behavior (known attacks), or allow some differ-
ences between the observation and the explanations provided by models, and
raise alarms only when there is a certain distance with expected behaviors is
exceeded. Our intuition is that known attacks can also be described as finite
abstract scenarios over roles instead of processes. The challenge is then to
decide whether an observation coincides in some way with an attack scenario.

At last, one noticeable fact is that in all the proposed solutions of the
paper, the costly and sometimes infinite interleaved representation of HMSCs
is never computed. This shows some applications such as diagnosis can be
entirely handled with partial order models.

References

1. R. Alur and M. Yannakakis. Model Checking of Message Sequence Charts. In Proceed-
ings of CONCUR’99, LNCS 1664, pages 114–129, 1999.

2. S. Axelson. Intrusion detection systems: A taxomomy and surveytechnical report. Tech-
nical Report 99-15, Dept. of Computer Engineering, Chalmers University of Technology,
Sweden, 2000.

3. P. Baroni, G. Lamperti, P. Pogliano, and M. Zanella. Diagnosis of large active systems.
Artif. Intell., 110(1):135–183, 1999.

4. A. Benveniste, E. Fabre, C. Jard, and S. Haar. Diagnosis of asynchronous discrete
event systems, a net unfolding approach. IEEE Transactions on Automatic Control,
48(5):714–727, May 2003.

5. J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstraction.
Theor. Comput. Sci., 37:77–121, 1985.

6. Daniel Brand and Pitro Zafiropoulo. On communicating finite state machines. Technical
Report 1053, IBM Zurich Research Lab., 1981.

7. L. Castellano, G. De Michelis, and L. Pomello. Concurrency versus interleaving: an
instructuve example. Bulletin of the EATCS, 31:12–14, 1987.

64

8. Th. Chatain and C. Jard. Symbolic diagnosis of partially observable concurrent systems.
In FORTE’04, volume 3235 of Lecture Notes in Computer Science, pages 326–342.
Springer, 2004.

9. Th. Chatain and C. Jard. Time supervision of concurrent systems using symbolic un-
foldings of time petri nets. In FORMATS’05, volume 3829 of Lecture Notes in Computer
Science, pages 196–210, 2005.

10. O. Contant, S. Lafortune and D. Teneketzis. Diagnosability of discrete event systems
with modular structure. Discrete Event Dynamic Systems, 16(1):9–37, 2006.

11. DARPA. Intrusion detection dataset. http://www.ll.mit.edu/IST/ideval/data/data index.html,
2000.

12. C. Fidge. Logical time in distributed computing systems. Computer, 24(8):28–33, 1991.
13. Th. Gazagnaire, B. Genest, L. Hélouët, P. S. Thiagarajan and S. Yang. Causal message

sequence charts. Theor. Comput. Sci., 410(41):4094–4110, 2009.
14. S. Genc and S. Lafortune. Distributed diagnosis of discrete-event systems using petri

nets. In ICATPN, volume 2679 of Lecture Notes in Computer Science, pages 316–336,
2003.

15. B. Genest, D. Kuske, and A. Muscholl. A kleene theorem and model checking for a class
of communicating automata. Information and Computation, 6(204):920–956, 2006.

16. L. Hélouët. Sofat : Scenario formal analysis toolbox. INRIA Rennes, 2008.
www.irisa.fr/distribcom/Prototypes/SOFAT/.

17. L. Hélouët, T. Gazagnaire, and B. Genest. Diagnosis from scenarios. In Workshop on
Discrete Event Systems, WODES’06, 2006.

18. ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS,
September 1999.

19. A. K. Jones and R. S. Sielken. Computer system intrusion detection: A survey. Technical
report, Dept. of Computer Science, University of Virginia, 1999.

20. P. Kabiri and A. A. Ghorbani. Research on intrusion detection and response: A survey.
International Journal of Network Security, 1(2):84–102, 2005.

21. D. J. Kleitman and B. L. Rotschild. Asymptotic enumeration of partial orders. Trans-
actions of the American Mathematical Society, (205):205–220, 1975.

22. C. Ko, M. Ruschitzka, and K. N. Levitt. Execution monitoring of security-critical
programs in distributed systems: A specification-based approach. In IEEE Symposium
on Security and Privacy, pages 175–187, 1997.

23. F. Lin. Diagnosability of discrete event systems and its applications. Discrete Event
Dynamic Systems, 4:197–212, 1994.

24. F. Mattern. On the relativistic structure of logical time in distributed systems. Parallel
and Distributed Algorithms, pages 215–226, 1989.

25. A. Muscholl. Matching specifications for Message Sequence Charts. In FoSSaCS’99,
LNCS 1578, pages 273–287, 1999.

26. A. Muscholl and D. Peled. Message sequence graphs and decision problems on
mazurkiewicz traces. In MFCS, pages 81–91, 1999.

27. A. Muscholl, D. Peled, and Z. Su. Deciding properties for message sequence charts. In
FOSSACS’98, pages 226–242. Springer-Verlag, 1998.

28. University of California. Kdd cup 1999 data, 1999.
29. OMG. Uml superstructure specification, v2.0. OMG Document number formal/05-07-

04, 2005.
30. Y. Pencolé and M. O. Cordier. A decentralized model-based diagnostic tool for complex

systems. International Journal on Artificial Intelligence Tools, 11(3):327–346, 2002.
31. O. Salem, S. Vaton, and A. Gravey. An efficient online anomalies detection mechanism

for high-speed networks. In MonAM’07, 2007.
32. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. C. Teneketzis.

Failure diagnosis using discrete-event models. IEEE Transactions on Control Systems
Technology, 4(2):105–124, 1996.

33. F. B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3(1):30–50,
2000.

34. R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and S. Zhou.
Specification-based anomaly detection: A new approach for detecting network intru-
sions. In 9th ACM conference on Computer and communications security, 2002.

65

35. R. Su, W. M. Wonham, J. Kurien, and X. Koutsoukos. Distributed diagnosis for quali-
tative systems. In in 6th International Workshop on Discrete Event Systems, Zaragoza
(WODES-2002, pages 169–174, 2002.

36. S. Yovine. Model checking timed automata. In European Educational Forum: School
on Embedded Systems, pages 114–152, 1996.

