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Abstract

This paper considers a tree-rewriting framework for modeling documents evolving through service

calls. We focus on the automatic verification of properties of documents that may contain data

from an infinite domain. We establish the boundaries of decidability: while verifying documents

with recursive calls is undecidable, we obtain decidability as soon as either documents are in the

positive-bounded fragment (while calls are unrestricted), or when there is a bound on the number

of service calls (bounded model-checking of unrestricted documents). In the latter case, the

complexity is NexpTime-complete. Our data tree-rewriting framework resembles Guarded Active

XML, a platform handling XML repositories that evolve through web services. The model here

captures the basic features of Guarded Active XML and extends it by node renaming and subtree

deletion.

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

From static in house solutions, databases have become more and more open to the world,

offering e.g. half-open access through web services. As usual for open systems, their design

requires a careful static analysis process, helping to guarantee that no malicious client may

take advantage of the system in a way for which the system was not designed. Static analysis

of such systems very recently brought together two areas - databases, with emphasis on

semi-structured XML data, and automated verification, with emphasis on model-checking

infinite-state systems. Systems modeling dynamical evolution of data are pretty challenging

for automated verification, as they involve feedback loops between semi-structured data,

possibly with values from unbounded domains, and the workflow of services. If both topics

have been studied extensively on its own, very few papers tackle decidability of algorithms

when all aspects are present at the same time.

An interesting model emerged recently for handling XML repositories evolving through

web services, namely Active XML (AXML) [4]. These are XML documents that evolve

dynamically, containing implicit data in form of embedded service calls. Services may be

recursive, so the evolution of such documents is both non-deterministic and unbounded in

time. A first paper analyzing the evolution of AXML documents considered monotonous

documents [3]. With this restriction, as soon as a service is enabled in a document, then from

this point on the service cannot be disabled and calling it can only extend the document.

In particular, information can never be deleted. Recently, a workflow-oriented version of

AXML was proposed in [5]: the Guarded AXML model (GAXML for short) adds guards
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to service calls, thus controlling the possible evolution of active documents. Decidability in

co-2NexpTime of static analysis for the recursion-free GAXML fragment w.r.t. a variant of

LTL with data tree patterns as atomic formulas was established in [5]. Static analysis is

more complex in [5], due to the presence of unbounded data. The crucial restriction needed

for decidability is a uniform bound on the number of possible service calls. Compared to [3],

service invocation can terminate, and more importantly, negative guards can be used. But

still, deletion of data is not possible. Finally, the GAXML model relies on a rather involved

semantics of service calls.

In this work, our aim is twofold. First, we aim at embedding and extending the GAXML

model in a simpler framework based on tree rewriting. Our model DTPRS (data tree pattern

rewriting systems) uses the same basic ingredients as GAXML, which are tree patterns

for guards and queries. However, our formalism allows to describe several possible effects

of a service call: materialization of implicit data like in GAXML, but also deletion and

modification of existing document parts. This model is a simplified version of the TPRS

model proposed in [15], but in this setting it can additionally handle unbounded data.

Our second, and main objective is to get decidability of static analysis of DTPRS wi-

thout relying on a bound on the number of service calls. For doing that, we use a technique

that emerged in the verification of particular infinite-state systems such as Petri nets and

lossy channel systems. The main concept is known in verification as well-structured transi-

tion systems (WSTS for short) [1, 13]. WSTSs are one example for infinite-state systems

where (potentially) infinite sets of states can be represented (and effectively manipulated)

symbolically in a finite way.

Our basic objects are data trees, i.e., trees with labels from an infinite domain. We

view data trees as graphs, and define in a natural way a quasi-order on such graphs. Then

we show that a uniform bound on the length of simple paths in such graphs, together

with positive guards, makes DTPRS well-structured systems [1, 13]. As a technical tool

we use here tree decompositions of graphs. In a nutshell we trade here recursion against

positiveness, since considering both leads to undecidable static analysis. We show that

for positive-bounded DTPRS, termination and tree pattern reachability are both decidable.

On the negative side, we show that the verification of very simple Tree-LTL properties is

undecidable even for positive-bounded DTPRS. On the positive side, the decidability result

for pattern reachability can be extended to the verification of existential positive Tree-LTL

properties. We then consider the type-checking problem, another static analysis problem,

and show its Co-NexpTime-completeness for arbitrary DTPRS. Finally, we show that bounded

model-checking of arbitrary DTPRS is NexpTime-complete.

Related work: Verification of web services often ignores unbounded data (c.f. e.g. [17,

14]). On the other hand, several data-driven workflow process models have been proposed.

Document-driven workflow was proposed in [20]. Artifact-based workflow was outlined in

[16], in which artifacts are used to represent key business entities, including both their data

and life cycles. An early line of results involving data establishes decidability boundaries for

the verification of temporal (first-order based) properties of a data-driven workflow processes,

based on a relational data model [11, 10, 12]. This approach has been recently extended to

the artifact-based model [9].

On the verification side, there is a rich literature on the verification of well-structured

infinite transition systems [1, 13], ranging from faulty communication systems [7] to programs

manipulating dynamic data [2] (citing only a few recent contributions). The latter work is

one of the few examples where well-quasi-order on graphs is used.

Organization of the paper: In the next section, we fix some definitions and notations, then
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define the DTPRS model. In Section 3 we show that analysis of DTPRS with recursive DTD

or negated tree patterns is undecidable. In Section 4 we define positive-bounded DTPRS

and prove our decidability results. Then in Section 5, we show the undecidability of the

verification of simple Tree-LTL properties and the decidability of existential positive Tree-

LTL properties for positive-bounded DTPRS. In Section 6, we consider the type-checking

problem for DTPRS and show its Co-NexpTime completeness. Finally in Section 7, we

consider bounded model-checking problem for DTPRS and show its NexpTime-completeness.

2 Definitions and notations

In this paper, documents are labeled, unranked, unordered trees. We fix a finite alphabet Σ

(with symbols a, b, c, . . . , called tags) and an infinite data domain D (with symbols d, . . . ).

A data tree (see Figure 1) is a (rooted) tree T with nodes labeled by Σ ∪ D. A data tree

T can be represented as a tuple T = 〈V,E, root, ℓ〉, with labeling function ℓ : V → Σ ∪ D.

Internal nodes are Σ-labeled, whereas leaves are (Σ ∪ D)-labeled. We also fix a (finite) set

of variables X (with symbols X,Y, Z, . . .) that will take values in D, and use ∗ as special

symbol standing for any tag. Let T denote the set Σ ∪ X ∪ {∗}.

library

book

bid

123456

available

book

bid

826312

rid

M2036

lent

reader

rid

M2036

capacity

4

Figure 1 A document for a library system: The reader M2036 borrows a book with identifier

826312 from the library, and has capacity 4, namely he or she is able to borrow at most 4 other

books.

We now introduce the different components used in our rewriting rules: data tree patterns

to locate and specify a pattern of the document, data constraints to express data equalities

and inequalities, data tree pattern queries to extract information from a document.

A data constraint is a Boolean combination of relations X = Y , with1 X,Y ∈ X . A data

tree pattern (DTP) P = 〈V,E, root, ℓ, τ, cond〉 is a (rooted) T -labeled tree 〈V,E, root, ℓ〉,
together with an edge-labeling function τ : E → {|, ||} and a data constraint cond. Edges

that are |-labeled denote child edges, and ||-labeled edges denote descendant ones. Internal

nodes are labeled by Σ ∪ {∗}, and leaves by T . A matching of a DTP P into a data tree

T is defined as a mapping preserving the root, the Σ- and D-labels (with ∗ as wildcard),

the child and the descendant relations, satisfying cond and mapping X -labeled nodes to

D-labeled ones. In particular, a relation X = Y (X,Y ∈ X ) in a DTP P means that the

corresponding leaves of P must be mapped to leaves of T carrying the same data value. An

injective matching of P into T means that the mapping above is injective. A relative DTP is

a DTP with one designated node self . A relative DTP (P, self ) is matched to a pair (T, v),

where T is a tree and v is a node of T .

We use Boolean combinations of (relative) DTPs as rule guards. DTPs in a Boolean

combination are matched independently of each other, except that nodes designated by self

1 For simplicity we disallow here explicit data constants X = d (d ∈ D): they can be simulated by tags
from Σ.
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library

book

bid

Y

rid

X

lent

reader

rid

X

4

Figure 2 A data tree pattern (DTP).

must be matched to the same node of T . Boolean operators are interpreted by the standard

meaning.

A data tree pattern query (DTPQ) is of the form body  head , with body a DTP and

head a tree such that

the internal nodes of head are labeled by Σ and its leaves are labeled by (Σ ∪ D ∪ X ),

every variable occurring in head also occurs in body,

there is at least one variable occurring in head , i.e., at least one leaf of head is labeled

by X (i.e., head is not a constant tree).

Let T be a data tree and Q = body  head be a DTPQ. The evaluation result of Q over

T is the forest Q(T ) of all instantiations of head by matchings from body to T . For example,

the DTPQ P  head with P given by Figure 2 and head consisting of a unique node labeled

by Y , returns a forest consisting of one-node trees labeled by identifiers of books which are

borrowed by readers with capacity 4. A relative DTPQ is defined like a DTPQ, except that

its body is a relative DTP. A relative DTPQ Q is evaluated on a pair (T, v). The result of

Q(T, v) is defined as above, except that matchings of body must map node self to v. For

instance, the relative DTPQ P  head where the reader node is labeled self will return a

forest of one-node trees labeled by identifiers of books which are borrowed by a particular

reader with capacity 4 designated by self .

Similar to GAXML, data tree rewriting rules are guarded by (Boolean combinations of)

DTPs and they can add information to a tree via queries. In addition, our rules can rename

tags and delete nodes, together with their subtrees. Each rule comes along with a context

called locator, that also describes all the operations related to a rewriting step. A locator

L is a relative DTP with additional labels append , del, and rena (a ∈ Σ). The meaning of

these labels is to add information (append), delete a node and its subtree (del) and rename

a tag into a (rena). Labels append and rena are not exclusive. They are restricted to be

attached to nodes of L that are labeled by Σ ∪ {∗}. Label del can be attached to any node.

We assume that all descendants in L of a node with del are also labeled by del , and that

nodes labeled by del cannot be labeled by append or rena.

library

book append(F )

available renlent

L

reader

rid

X

capacity

5 ren4

ridF

X

Figure 3 DTP rule “borrow”: The reader identifier is added as a subtree to the node “book”

whose state is renamed as “lent”, and the capacity of the reader is decreased by renaming.

A data tree pattern rewriting rule (DTP rule for short) R is a tuple 〈L,G,Q,F , χ〉 with:

L is a locator ,
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G is a guard: a Boolean combination of (relative) DTPs,

Q is a finite set of relative DTPQs,

F is a finite set of forests with internal nodes labeled by Σ and leaves labeled by Σ∪D∪
X ∪Q,

χ is a mapping from the set of nodes of L labeled by append to F .

A DTP rewriting system (DTPRS) is a pair (R,∆) consisting of a finite set R of DTP

rules and a static invariant ∆. The latter is a DTD τ together with a data invariant inv,

i.e. a Boolean combination of DTPs. As usual for unordered trees, the DTD τ describes

the syntax of trees. It is defined as a tuple (Σr,P) such that Σr is the set of allowed root

labels, and P is a finite set of rules a→ ψ such that a ∈ Σ and ψ is a Boolean combination

of inequalities of the form |b| ≥ k, where b ∈ Σ ∪ {dom} (dom is a symbol standing for

any data value), and k is a non-negative integer. A positive DTD is one where the Boolean

combinations above are positive. A non-recursive DTD is one where the rule graph is acyclic

(the rule graph has Σ as vertex set and edges (a, b) for every a, b such that b occurs in a

a→ ψ). For ∆ = (τ, inv) we write T |=∆ for a data tree T satisfying both τ and inv.

An example of a DTP rule for a reader of capacity 5 to borrow a book from a library is

illustrated in Figure 3, including the locator L and F = {F}.
We first describe the semantics of DTP rules informally. First, the locator is mapped

against the data tree in a non-deterministic way. Then, queries are evaluated, thus deter-

mining the information that will possibly enhance the tree using the append-labels in the

locator. Deletion and renaming are performed as expected. The resulting data tree must

satisfy the static invariant ∆.

We now define the semantics formally. Let T = 〈V,E, root, ℓ〉 be a data tree with T |=∆,

and let R = 〈L,G,Q,F , χ〉 be a DTP rule.

Let µ be an injective matching from L to T . Let ν be the assignment of data values to

variables in L such that ν(X) = ℓ(µ(v)) for every v labeled by X ∈ X in L.

For each variable X ∈ X we denote its evaluation as X(T ), with X(T ) = ν(X) if defined,

and X(T ) a fresh data value otherwise. Here a fresh data value is a data value

which does not appear in T . Furthermore, it is required that all the new variables of R,

i.e. variables occurring in F , but not in L, should take mutually distinct fresh values.

For each forest F ∈ F , we denote its evaluation by F (T ), by replacing labels Q ∈ Q by

Q(T ) and labels X ∈ X by X(T ). Recall that all queries Q ∈ Q are evaluated relatively

to µ(self ).

A data tree T ′ is obtained from T by

deleting subtrees rooted at nodes µ(v) whenever v is labeled by del in L,

changing the tag of a node µ(v) to a whenever v is labeled by rena in L,

appending F (T ) as a subforest of nodes µ(v) whenever v is labeled by append in L

and χ(v) = F ,

every other node of T keeps its tag or data.

The rule R is enabled on data tree T if there exists an injective matching µ of L into T

such that (1) the guard G is true on (T, µ(v)) with v labeled by self in L, and (2) there

is a data tree T ′, obtained from T and µ by the operations specified above, satisfying

T ′|=∆.

Let T
R−→ T ′ denote the transition from T to T ′ using DTP rule R ∈ R.

◮ Remark. 1. The injectivity of the matching µ ensures that the outcome of a rewriting

step is well-defined. In particular, no two nodes with label del and append (or rena),
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resp., can be mapped to the same node in the data tree. Notice that mappings used for

guards or queries may be non-injective.

2. For the new variables occurring in F , but not in L, we choose mutually distinct fresh

values. We could have chosen arbitrary values instead, and enforce that they are fresh

and mutually distinct a posteriori using the data invariant inv. In this case, inv needs

negation. The inv (or the locator) can be also used to enforce that the (arbitrarily)

chosen values already occur in T . This kind of invariant would be positive.

3. In our definition of DTP rules, it might appear that guards are redundant w.r.t. the

locator. However, this is not the case in general, e.g. in the situation that guards include

disjunctions or negations of DTPs.

Given a DTPRS (R,∆), let T −→ T ′ denote the union of T
R−→ T ′ for some R ∈ R,

and T
+−→ T ′ (or T

∗−→ T ′) denote the transitive (or reflexive and transitive) closure of

T −→ T ′. Moreover, let T ∗R(T ) denote the set of trees that can be reached from a data tree

T by rewriting with DTP rules from R, i.e. T ∗R(T ) = {T ′ | T ∗−→ T ′}. For a set of data

trees I, let T ∗R(I) be the union of T ∗R(T ), for T ∈ I.
We are interested in the following questions, given a DTPRS (R,∆):

Pattern reachability: Given a DTP P and a set of initial trees2 Init, given as the conjunc-

tion of a DTD and a Boolean combination of DTPs, is there some T ∈ T ∗R(Init) such

that P matches T ?

Termination: Given an initial data tree T0, are all runs (rewriting paths) T0 → T1 → · · ·
starting from T0 finite?

The reason for the fact that termination of DTPRS is defined above w.r.t. a single initial

data tree is that termination from a set of initial trees is already undecidable without data

(see Proposition 3).

3 Undecidability

As one might expect, the analysis of DTPRS is quickly undecidable – and sometimes already

without using any unbounded data. The proof of the proposition below is obtained by a

straightforward simulation of 2-counter machines.

◮ Proposition 1. Both pattern reachability and termination for DTPRS (R,∆) are undeci-

dable whenever one of the following holds:

1. the DTD in ∆ is recursive,

2. either guards in R or the invariant ∆ contain negated DTPs.

The above result holds already without data.

The next result shows that with data, we can relax both conditions above and still get

undecidability of DTPRS. The main idea is to use data for creating long horizontal paths

(although trees are supposed to be unordered). Such horizontal paths can be obtained

e.g. with a tree of depth 2, with each subtree (of the root) containing three nodes, a node

plus its two children labeled respectively by data values di, di+1. Assuming all data values

di are distinct (and distinguishing d1), then a linear order on these subtrees is obtained.

◮ Theorem 2. Both pattern reachability and termination are undecidable for DTPRS (R,∆)

such that (1) the DTD in ∆ is non-recursive and (2) all DTPs from guards in R and the

invariant ∆ are positive.

2 We require that every tree in Init satisfies ∆.
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We end this section with a remark on the undecidability of termination from an initial

set of trees. First we notice that – already without data – DTPRS can simulate so-called

reset Petri nets [15]. These are Petri nets (or equivalently, multi-counter automata without

zero test) with additional transitions that can reset places (equivalently, counters) to zero.

They can be represented by trees of depth 2, where nodes at depth one represent places,

and their respective number of children (leaves) is the number of tokens on that place.

A DTPRS (without data) can easily simulate increments, decrements and resets (using

deletion in DTPRS). It is known that so-called structural termination for reset Petri nets is

undecidable [18], i.e., the question whether there are infinite computations from any initial

configuration, is undecidable. This implies:

◮ Proposition 3. The following question is undecidable: Given a DTPRS (R,∆), is there

some tree T0 satisfying ∆ and an infinite computation T0 −→ T1 −→ · · · in (R,∆)? This

holds already for non-recursive DTD in ∆ and without data constraints in DTPs.

It follows from Proposition 3 that termination from an initial set of trees, namely to

decide whether for every T0 ∈ Init, all the runs starting from T0 terminate, is undecidable.

4 Positive-bounded DTPRS

In this section we consider positive-bounded DTPRS, a fragment of DTPRS for which we

show that pattern reachability and termination are decidable.

From Proposition 1, we know that in order to get decidability, the DTD in the static

invariant ∆ must be non-recursive. For a non-recursive DTD, there is some B such that every

tree satisfying the DTD has depth bounded by B. In the following, we assume the existence

of such a bound B. Also from Proposition 1, we know that for obtaining decidability we

need to restrict ourselves to positive guards and positive data invariants.

However, from Theorem 2, we know that these restrictions alone do not suffice to achieve

decidability. We also need to disallow long linear orders created by data. For this, we

introduce a last restriction, called simple-path bounded, which is defined in the following.

Let T = 〈V,E, root, ℓ〉 be a data tree. The graph G(T ) associated with T is the undirected

graph obtained from T by merging all the nodes labeled by the same d ∈ D into a single node

d. Formally, G(T ) = (V ′, E′), where V ′ = {v ∈ V | ℓ(v) ∈ Σ} ∪ {ℓ(v) | v ∈ V, ℓ(v) ∈ D} and

E′ = {{v, w} | ℓ(v), ℓ(w) ∈ Σ, (v, w) ∈ E} ∪ {{v, d} | ℓ(v) ∈ Σ, ∃w s.t. (v, w) ∈ E, ℓ(w) = d}.
A simple path of T is a simple path in G(T ), i.e. a sequence of vertices v1, . . . , vn in G(T )

such that for all i 6= j, {vi, vi+1} ∈ E′ and vi 6= vj . The length of a path v1, . . . , vn is n− 1.

Formally, a DTPRS (R,∆) is positive-bounded with set of initial trees Init, if:

non-recursive-DTD: the DTD in the static invariant ∆ is non-recursive. In particular,

trees satisfying the DTD have depth bounded by some B > 0.

positive: all guards in R and the data invariant in ∆ are positive Boolean combinations

of DTPs. The DTD in ∆ is positive as well.

simple-path bounded: there exists K > 0 such that for any T0 ∈ Init, the length of

any simple path in any T ∈ T ∗R(T0), is bounded by K.

Notice that the third condition above implies that all data trees have depth bounded

by K. So we always assume that B ≤ K. Notice also that in positive-bounded DTPRS,

the data value inequality is allowed in DTPs, that is, we can state that two data values are

different. Moreover, fresh data values (for the new variables in DTP rules) can be used to

model some conceptually negative data constraints, like for instance key properties. Notice

also that there is no restriction on the DTD of the initial set Init. However, since the DTD

in the invariant ∆ is positive, “at most”-constraints must be ensured via the rewriting rules.
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The library example illustrated in Figure 1 includes DTP rules for book borrowing (Fi-

gure 3) and returning, the registration of new books and new readers (where fresh data

values can be used to guarantee that the rid and bid are “keys”), and the deletion of reader

accounts. It is easy to notice that the library example satisfies the first 2 conditions above.

It is also the case for the third condition. Indeed, all simple paths are bounded by 7: A

longest path is for instance: library - book - rid - M2036 - rid - reader - capacity - 4. Notice

that the bound still holds even if the capacity of a reader is unbounded.

The rest of the section is devoted to the proof of the following result:

◮ Theorem 4. Given a positive-bounded DTPRS (R,∆), pattern reachability and termina-

tion are both decidable.

We prove Theorem 4 by using the framework of well-structured transition systems (WSTS)

[1, 13], which has been applied to DTPRS without data in [15]. We recall briefly some de-

finitions. A WSTS is a triple (S,−→,�) such that S is an (infinite) state space, � is a

well-quasi-ordering3 (wqo for short) on S, and −→ is the transition relation on S. It is

required that −→ is compatible w.r.t. �: for any s, t, s′ ∈ S with s −→ t and s � s′, there

exists t′ ∈ S such that s′ −→ t′ and t � t′.
Let TB,K denote the set of data trees whose depths are bounded by B and lengths of

simple paths are bounded by K. From the definition of positive-bounded DTPRS, we know

that T ∗R(Init) ⊆ TB,K . In the following, we prove Theorem 4 by defining a binary relation

� on TB,K and showing that (TB,K ,−→,�) is a WSTS.

4.1 Well-structure of positive-bounded DTPRS

We define a binary relation � on TB,K as follows. Let T1 = 〈V1, E1, root1, ℓ1〉, T2 =

〈V2, E2, root2, ℓ2〉 ∈ TB,K , then T1 � T2 if there is an injective mapping φ from V1 to

V2 such that

root preservation: φ(root1) = root2,

parent-child relation preservation: (v1, v2) ∈ E1 iff (φ(v1), φ(v2)) ∈ E2,

tag preservation: If ℓ1(v) ∈ Σ, then ℓ1(v) = ℓ2(φ(v)),

data value (in)equality preservation: If v1, v2 ∈ V1 and ℓ1(v1), ℓ1(v2) ∈ D, then

ℓ2(φ(v1)), ℓ2(φ(v2)) ∈ D, and ℓ1(v1) = ℓ1(v2) iff ℓ2(φ(v1)) = ℓ2(φ(v2)).

It is easy to see that � is reflexive and transitive, so it is a quasi-order. In the following,

we first assume that � is a wqo on TB,K and show that −→ is compatible with �, in order to

prove Theorem 4. We show in Section 4.2 that � is indeed a wqo: for any infinite sequence

of data trees T0, T1, . . . ∈ TB,K , there are i < j such that Ti � Tj.
◮ Proposition 5. Let (R,∆) be a positive-bounded DTPRS. Let T1, T

′
1, T2 ∈ TB,K , T1

R−→ T2

for some R ∈ R, and T1 � T ′1. Then there exists T ′2 ∈ TB,K such that T ′1
R−→ T ′2 and T2 � T ′2.

Consequently, in the positive-bounded fragment −→ is compatible w.r.t. � in TB,K , thus

(TB,K ,−→,�) is a WSTS.

In addition, it can be shown that (TB,K ,−→,�) satisfies some additional computability

conditions which are needed to show the decidability of pattern reachability and termination,

namely, effectiveness of pred-basis for pattern reachability and effectiveness of successor

relation for termination. With these computability conditions, Theorem 4 then follows from

the properties of WSTS (c.f. Theorem 3.6 and Theorem 4.6 in [13]).

3 A wqo � is a reflexive, transitive and well-founded relation with no infinite antichain.
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4.2 Well-quasi-ordering for data trees

In order to prove that � is a wqo over TB,K , we first represent a data tree T as a (labeled)

undirected graph Gℓ(T ), then we encode Gℓ(T ) into a tree (without data) of bounded depth

using the concept of tree decompositions. Define a binary relation ≤ on labeled trees (wi-

thout data) of bounded depth as follows: T1 ≤ T2 if there is an injective mapping from T1

to T2 preserving the root, the tags, and the parent-child relation. It is known that ≤ is a

wqo on labeled trees of bounded depth without data [15].

Let GK be the set of labeled graphs with the lengths of all simple paths bounded by

K. In the following, we show that � on TB,K corresponds to the induced subgraph relation

(formally defined later) on GK , and the fact that ≤ is a wqo for labeled trees of bounded

depth implies that the induced subgraph relation is a wqo on GK .

Given a data tree T = 〈V,E, root, ℓ〉 ∈ TB,K , the labeled undirected graph representation

Gℓ(T ) of T is obtained from G(T ), the graph associated to T , by adding labels encoding

information of data tree nodes (tag, depth . . .). Formally, Gℓ(T ), is a ((Σ× [B + 1]) ∪ {$})-
labeled (where [B + 1] = {0, 1, · · · , B}) undirected graph (V ′, E′, ℓ′) defined as follows,

V ′ = {v ∈ V | ℓ(v) ∈ Σ} ∪ {ℓ(v) | v ∈ V, ℓ(v) ∈ D},
E′ = {{v, w} | ℓ(v), ℓ(w) ∈ Σ, (v, w) ∈ E} ∪ {{v, d} | ℓ(v) ∈ Σ, ∃w, (v, w) ∈ E, ℓ(w) = d},
Let v ∈ V such that ℓ(v) ∈ Σ, then ℓ′(v) = (ℓ(v), i). In addition, ℓ′(d) = $ for each

d ∈ V ′ ∩ D.

Let ΣG denote (Σ× [B + 1]) ∪ {$}. For ΣG-labeled graphs, we define the induced sub-

graph relation as follows. Let G1 = (V1, E1, ℓ1), G2 = (V2, E2, ℓ2) be two ΣG-labeled graphs,

then G1 is an induced subgraph of G2 (denoted G1 ⊑ G2) iff there is an injective mapping φ

from V1 to V2 such that

label preservation: ℓ1(v1) = ℓ2(φ(v1)) for any v1 ∈ V1,

edge preservation: let v1, v
′
1 ∈ V1, then {v1, v

′
1} ∈ E1 iff {φ(v1), φ(v′1)} ∈ E2.

From the definition of the labeled graph representation of data trees, it is not hard to

show that the induced subgraph relation ⊑ corresponds to the relation � on data trees.

◮ Proposition 6. Let T1, T2 ∈ TB,K , then T1 � T2 iff Gℓ(T1) ⊑ Gℓ(T2).

Now we show how to encode any ΣG-labeled graph belonging to GK into a labeled tree

of bounded depth by using tree decompositions.

Let G = (V,E, ℓ) be a connected ΣG-labeled graph, then a tree decomposition of G is a

quadruple T = 〈U,F, r, θ〉 such that:

(U,F, r) is a tree with the domain U , the parent-child relation F , and the root r ∈ U ,

θ : U → 2V is a labeling function attaching each node u ∈ U a set of vertices of G,

For each edge {v, w} ∈ E, there is a node u ∈ U such that {v, w} ⊆ θ(u),

For each vertex v ∈ V , the set of nodes u ∈ U such that v ∈ θ(u) constitutes a connected

subgraph of T .

The sets θ(v) are called the bags of the tree decomposition. The depth of a tree decom-

position T = 〈U,F, r, θ〉 is the depth of the tree (U,F, r) and the width of T is defined as

max{|θ(u)| − 1 | u ∈ U}. The tree-width of a graph G = (V,E) is the minimum width of

tree decompositions of G. For a tree decomposition of width K of a graph G, without loss

of generality, we assume that each bag is given by a sequence of vertices of length K + 1,

v0 . . . vK , with possible repetitions, i.e. possibly vi = vj for some i 6= j (tree decompositions

in this form are sometimes called ordered tree decompositions).

◮ Theorem 7. ([19, 6]) If G ∈ GK , then G has a tree decomposition with both depth and

width bounded by K.
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Now we describe how to encode labeled graphs by trees using tree decompositions.

Let G = (V,E, ℓ) ∈ GK be a ΣG-labeled graph, and T = 〈U,F, r, θ〉 be a tree decomposi-

tion of G with width K and depth at most K. Remember that each θ(u) is represented as

a sequence of exactly K + 1 vertices, and [K + 1] = {0, . . . ,K}. Define

ΣG,K := (ΣG)K+1 × 2[K+1]2 × 2[K+1]2 × 2[K+1]2

.

We transform T = 〈U,F, r, θ〉 into a ΣG,K-labeled tree T ′ = (U,F, r, η), which encodes

in a uniform way the information about G (including edge relations and vertex labels).

η : U → ΣG,K is defined as follows. Let θ(u) = v0 . . . vK , then η(u) = (ℓ(v0) . . . ℓ(vK), λ),

where λ = (λ1, λ2, λ3),

λ1 = {(i, j) | 0 ≤ i, j ≤ K, vi = vj},
λ2 = {(i, j) | 0 ≤ i, j ≤ K, {vi, vj} ∈ E},
If u = r, then λ3 = ∅, otherwise let u′ be the parent of u in T and θ(u′) = v′0 · · · v′K , then

λ3 = {(i, j) | 0 ≤ i, j ≤ K, v′i = vj}.

The encoding of labeled graphs into labeled trees establishes a connection between the

wqo ≤ of labeled trees and the induced subgraph relation (⊑) of labeled graphs.

◮ Proposition 8. Let G1, G2 be two ΣG-labeled graphs with tree-width bounded by K, and

T1, T2 be two tree decompositions of width K of resp. G1, G2, then the two ΣG,K-labeled

trees T ′1, T
′
2 obtained from T1, T2 satisfy that: If T ′1 ≤ T ′2, then G1 ⊑ G2.

Now we are ready to show that � is a wqo for TB,K . Let T0, T1, . . . be an infinite

sequence of data trees from TB,K . Consider the infinite sequence of ΣG,K-labeled trees

T ′0, T
′
1, . . . obtained from the tree decompositions (with width K and depth at most K) of

graphs Gℓ(T0), Gℓ(T1), . . . . Then there are i, j : i < j such that T ′i ≤ T ′j , because ≤ is a wqo

for labeled trees of depth at most K. So Gℓ(Ti) ⊑ Gℓ(Tj) from Proposition 8, and Ti � Tj
from Proposition 6. We thus prove following theorem.

◮ Theorem 9. � is a well-quasi-ordering over TB,K .

5 Verification of temporal properties

Until now we considered only two properties for static analysis: pattern reachability and

termination. (Non-)reachability of a DTP can be expressed easily in Tree-LTL [5], which

corresponds roughly to linear time temporal logics where atomic propositions are DTPs4.

We show in this section that allowing for runs of unbounded length makes the validation of

(even very simple) Tree-LTL properties undecidable, even without data:

◮ Theorem 10. It is undecidable whether a positive-bounded DTPRS satisfies a Tree-LTL

formula Fϕ, where ϕ is a positive Boolean combination of DTPs. This holds already without

data.

The proof of Theorem 10 is by a reduction from the halting problem of two-counter

machines. The idea is to simulate a two-counter machine by a positive bounded DTPRS

ignoring the zero-tests, and describe them by a Tree-LTL formula Fϕ. The proof relies on

the universal semantics of Tree-LTL, requiring that every run of the DTPRS satisfies the

formula.

4 Such formulas use actually free variables in patterns, which are then quantified universally. This is
consistent with the approach of testing whether a model satisfies the negation of a formula.
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If the existential semantics of Tree-LTL formulas is used instead, i.e. requiring that

there is a run of the DTPRS satisfying a given Tree-LTL formula, then the problem is still

undecidable if negations are available, since the negation of Fϕ in the universal semantics is

G¬ϕ in the existential semantics. If negations are also forbidden, then we get decidability:

◮ Proposition 11. It is decidable whether a positive-bounded DTPRS satisfies a given positive

existential Tree-LTL formula defined by the following rules,

ϕ ::= true | false | P | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | Xϕ1 | ϕ1Uϕ2,

where P is a DTP.

6 Type-checking DTPRS

This section shows that it can be checked statically whether DTP rules preserve the static

invariant ∆ = (τ, inv) consisting of a DTD τ and a data invariant inv.

Recall that in the definition of DTPRS, if T
R−→ T ′, then it is required that T ′ |= ∆.

Here we drop this requirement and consider the following type-checking problem.

DTPRS Type-checking: Given a DTPRS (R,∆) with a non-recursive DTD5, decide

whether for each T, T ′ and each DTP rule R such that T |= ∆ and T
R−→ T ′, it holds that

T ′ |= ∆.

◮ Theorem 12. DTPRS type-checking is Co-NexpTime-complete.

The upper bound of Theorem 12 is shown by a small model argument. The lower bound

follows from [8], that shows that satisfiability of DTPs on depth-bounded data trees relative

to a DTD is NexpTime-hard.

7 Bounded model-checking DTPRS

In this section we consider bounded model-checking for DTPRS: Given a DTPRS (R,∆)

with a non-recursive DTD 6, a set of initial trees Init, a DTP P and a bound N (encoded

in unary) we ask whether there is some T0 satisfying Init and some T s.t. P matches T and

T0
≤N−→ T . We have the following result:

◮ Theorem 13. Bounded model-checking for DTPRS is NexpTime-complete.

Theorem 13 can be extended to bounded model-checking Tree-LTL properties. Bounded

model-checking of a Tree-LTL formula ϕ with a bound N is the problem checking whether a

counter-example for ϕ can be obtained in at most N rewriting steps. For instance, bounded

model-checking for G¬P with a bound N is to check whether the DTP P can be reached in

≤ N steps.

The proof of Theorem 13 follows the similar line as the proof of Co-2NexpTime com-

pleteness of model-checking Tree-LTL properties over recursion-free GAXML ([5]): The

upper-bound is shown by a (exponential) small-model property, and the lower-bound is

shown by a simulation of the computations of NexpTime-Turing machines. The gap between

5 If the DTD is recursive, then the problem is undecidable, since the satisfiability of Boolean combinations
of DTPs over a recursive DTD is undecidable [8].

6 The recursive DTD will quickly lead to undecidability, as argued for the type-checking problem.
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the NexpTime complexity above and the Co-2NexpTime complexity in [5] is essentially due

to the unary encoding of the bound N for bounded model checking.
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A The simulation of GAXML by DTPRS

DTPRS resembles Guarded Active XML (GAXML) [5], and extends GAXML by allowing

more flexible modification of XML documents, namely arbitrary relabeling and deletion.

To illustrate how GAXML is simulated by DTPRS, we first recall the salient features of

GAXML in the following.

GAXML incorporates into XML documents embedded function calls, whose call and

return are guarded by a Boolean combination of tree patterns. In GAXML, function calls

can be internal or external. More specifically, a GAXML system is a tuple (Φint,Φext,∆),

where Φint,Φext are respectively a set of internal and external function calls, and ∆ specifies

the static constraints, including a DTD and a Boolean combination of DTPs (data invariant).

An internal function f includes four components,

a call guard which is a Boolean combination of (relative) DTPs,

an argument query which is a (relative) DTP query,

a return guard which is a Boolean combination of DTPs rooted at af ,

the return query which is a DTP query rooted at af .

External functions are similar to internal functions, except that the return guard and

the return query are missing, thus external functions may return an arbitrary forest that is

consistent with the static invariant ∆. A (internal or external) function f can be continuous

or non-continuous, in the sense that if it is non-continuous, a call to f is deleted once the

result is returned, otherwise, the call is kept after the result is returned, so f can be called

again.

The call of an internal function f at a node n (labeled by !f) in GAXML goes as follows:

If the call guard G is satisfied, then the argument query Q is evaluated. The evalua-

tion result of Q is a tree Tf with the root labeled by af , stored temporarily into a

workspace, and the node n is relabeled into ?f .

Here is how a call of an internal function f can be modeled in DTPRS: The associated

DTP rule (see Figure 4) has the same guard G, the set of queries Q = {Q}, F = {F1, F2},
and χ maps the !f -node to F2 and the WS-node to F1. Applying the DTP rule amounts to

evaluating Q to get the arguments of the call, writing them into the workspace WS, creating

a fresh identifier X that it copied both below WS and below the node with the function call

(aka return address for f), and renaming !f by ?f .

root

!fren?f append(F2)

self

L

WS append(F1)

f

Q

F1

X
X

F2

Figure 4 The DTP rule for the call of an internal function

After a function f is called, the function calls embedded in the tree Tf in the workspace

can be called before the return of f .

The return of an internal function f at a node n (n is labeled by ?f) in GAXML goes

as follows:

If the return guard G is satisfied over Tf in the workspace, then evaluate the return

query Q of f on Tf , and add the resulting forest as a sibling of the node n, remove

Tf from the workspace, and relabel n by !f if f is continuous, otherwise remove n.
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Here is how a return of a continuous internal function f can be simulated in DTPRS.

The associated DTP rule (see Figure 5) has the same guardG, the set of queriesQ = {Q},
F = {F}, and χ maps the node labeled append with F . This DTP rule locates where Tf is

in the workspace WS using X , evaluates the return query Q to get the return of the call,

puts the result of the Q as a sibling of ?f , deletes the associated data in the workspace, as

well as the identifier X , and renames ?f by !f .

root

∗ append(F )

?f ren!fself

X del

L

WS

f del

X del

Q

F

Figure 5 The DTP rule for the return of a continuous internal function

The rules for other kinds of functions are similar.

B The library example

A library system consists of a collection of books and a collection of readers. Each book and

each reader have a unique identifier. The system includes the following five functionalities.

1. The reader can borrow at most 5 books from the library.

2. The reader can return the borrowed books to the library.

3. A new book can be registered into the library.

4. A new reader can register in the library and a new account with a unique identifier will

be created.

5. The account of a reader can be deleted, if all the books borrowed by a reader have been

returned (namely, the capacity is 5).

library

book

bid

123456

available

book

bid

826312

rid

M2036

lent

reader

rid

M2036

capacity

4

Figure 6 A document for the library system: The reader M2036 borrows a book with identifier

826312 from the library, and has capacity 4, namely he or she is able to borrow at most 4 other

books.

Notice that here for simplicity, we do not include the other information (e.g. names)

about books and readers, neither put a bound (e.g. one month) on the time between

borrowing and return of books. But the example presented here can be easily extended to

take these into consideration.

The DTD of the library system is illustrated in Figure 6. Note that the capacity levels

{0, 1, 2, 3, 4, 5} are treated as the tags in Σ, instead of the data values in D.

In the following, we present the DTPRS rules corresponding to the five functionalities.
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1. There are five DTP rules borrow-i (i = 1, 2, 3, 4, 5) for a reader with capacity i to borrow

a book from the library. The rule borrow-5 is illustrated in Figure 7, including the

locator L and the F = {F}: The state of the node “book” is renamed from “available”

to “lent”, a tree F containing the identifier of the reader is appended as its subtree, and

the capacity of the reader is decreased by renaming 5 into 4. The other borrow rules can

be defined similarly.

library

bookappend(F )

availablerenlent

L

reader

rid

X

capacity

5 ren4

ridF

X

Figure 7 The rule borrow-5

2. There are five DTP rules return-i (i = 0, 1, 2, 3, 4) for a reader with capacity i to return

a book to the library. The rule return-4 is illustrated in Figure 8: “lent” is renamed into

“available”, the rid subtree is deleted, and the capacity of the reader is increased. The

other return rules can be defined similarly.

library

book

rid del

X del

lentrenavailable

reader

rid

X

capacity

4 ren5

Figure 8 The rule return-4

3. The DTP rule new-book (see Figure 9) adds a new book into the library, generating a

unique identifier for it.

libraryL append(F )

book

bid

X

F

available

Figure 9 The rule new-book

4. The rule new-reader (see Figure 10) adds a new reader into the library, generating a

unique identifier for it.

5. The rule del-reader (see Figure 11) checks whether the capacity of a reader is 5, if so, it

deletes the account of the reader.

The initial document tree for the library system is a data tree containing no books and

no readers. The books and readers can be added one by one into the library by DTP rules

new-book and new-reader.

The library example is a positive bounded DTPRS with the length of simple paths

bounded by 7: A longest path is for instance: library - book - rid - M2036 - rid - reader -

capacity - 4. Moreover, this holds even when the restriction that each reader can borrow at

most a bounded number of books is dropped.
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libraryL append(F )

reader

rid

X

F

capacity

5

Figure 10 The rule new-reader

library

reader del

capacity del

5 del

Figure 11 The rule del-reader

C MailOrder example

This section includes an example to model a MailOrder system for Play.com in DTPRS.

For simplicity, we present only what happens on the Play.com peer, although we could

also model client peers, bank peers etc. The Play.com example can be compared with the

MailOrder example in [5]. Syntactically, GAXML uses guards and queries. Most of the time,

guards and queries are very simple and can be encoded in the locator of DTP rules. In this

case, we omit the self label in our rules. Unlike MailOrder example in [5], we can express

deletion with DTPRS, and thus model the selection of the products in the cart (adding and

deleting products), and also handle an inventory (how many items of a product remain -

each time an item is added to a cart, it is also deleted from the inventory). More importantly,

compared with the recursion-free decidable restriction of GAXML, we are able to represent

the process of many customers ordering many different products in our decidable fragment.

On the Play.com peer, there are a product catalog, a customer catalog, a set of carts and

a set of orders. The inventory is encoded in the product catalog: If there are three items of

a product in the inventory, then there are three tokens as children of the product. Each cart

is associated with a customer (at first anonymous, and he can later login in as a registered

member). The cart is first in the select mode, which allows the associated customer to

add/delete products. Then the customer can check out, the cart gathers the different prices

for the products into a bill, and goes into the payment mode. When the customer pays, a

corresponding order is created with a receipt, the customer is disconnected and the cart is

deleted.

A simple example of a document of Play.com is illustrated in Figure 12. We represent a

data value only when it is used by at least two different nodes.

Some key rewriting rules are described in the following. We only describe nontrivial

components in these rules.

An anonymous customer can connect to Play.com with the rule create-cart (Figure 13).

An anonymous customer can login as a registered member with the rule login (Figure

14). As the customer peer is not modeled, we do not handle the check of a password,

although it would not be a problem to do so in our framework.

The rule Add-Product (Figure 15) checks the cart is in select mode and adds a new
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Play.com

CCatalog

Customer

CId Name

Blaise

EMail

Cart

log

CId

products

PId PId

9221

select

PCatalog

Product

PId Name Price token

Figure 12 A document of the Play.com system, where the registered customer Blaise has two

items of the same product in his cart, with PId 9221. There is one additional product with PId

9221 left (there remains one token).

Play.com

L

append(F )

CartF

nolog

CId

X

Products select

Figure 13 The rule create-cart

Play.com

Customer

CId

X

L

Cartappend(F )

nolog del

logF

CId

X

Figure 14 The rule login
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product into the cart (and deletes a token from the inventory).

Play.com

Cart

productsappend(F ) select

L

product

PId

X

token del

PId

F

X

Figure 15 The rule Add-Product

The rule Delete-Product (Figure 16) deletes a product from the cart (and puts the token

back).

Play.com

Cart

PId del

X del

select

L

productappend(F )

PId

X

token

F

Figure 16 The rule Delete-Product

The rule Check-out(Figure 17) checks whether the cart is nonempty and retrieves the

prices of products in the cart into a bill through a query. It changes the mode of the

cart from select to payment. Here Q = body  Y with body illustrated in the figure.

Play.com

Cart

PId

append(F )self

selectrenpayment

L

Bill

Q

F

Play.com

Cartself

PId

X

body

Product

Price

Y

PId

X

Figure 17 The rule Check-Out

The customer can pay with the rule Pay (Figure 18), and a corresponding order is created.

For simplicity, it disconnects the customer, and transforms the cart into an order. The

order contains the customer ID, an order ID (a fresh unique identifier), and the total

price (sum of the prices of each items). As we model prices by data values and we do

not use any arithmetics, the total price is a fresh data value. The only important thing

is that this data value Total is the same as the one registered in the bank account, which

we could check for equality (although we do not explicitly model the bank here). The

order does not recall the individual PId of products since there will be no more products

to put back in the inventory (and anyway the product can be later removed from the

catalog).

The rule Add-member (Figure 19) allows a customer to register as a member.

We do not specify the following rules here, which are easy to come up with: shipped, delivered,

add product to catalog etc.

The Play.com example satisfies the first 2 conditions of the positive-bounded DTPRS.

However, in general, the third condition is not satisfied. PIds can create a long path: a cart
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Play.com

Cart

log rencust products del

append(F ) renOrder

paymentrenpaid Bill del

L

Receipt

OId

X

F

Total

Y

Figure 18 The rule Pay

Play.com

CCatalogappend(F )

L Customer

CId

X

Name

Y

F

EMail

Z

Figure 19 The rule Add-member

can be linked to a product, linked to another cart linked to another products etc. So the

number of carts or the number of products needs to be bounded (unless a cart can contain at

most one product). On the other hand, Name and Total are fresh data values, they cannot

be used as links. At last, CId can be used in different carts and orders, but as a cart or

order is associated to a unique customer, it cannot create long paths. More formally, if the

system can handle only C active carts at a time (but the number of orders is unlimited),

then the system has simple paths bounded by 12C + 7. If there are at most D different

products in the catalog, then the system has simple paths bounded by 12D + 7. Finally, if

each customer can have only one active cart at a time (but she can have many orders), and

each cart has at most one product, then the system has simple paths bounded by 14.

D Proofs in Section 3

Proposition 1 . Both pattern reachability and termination for DTPRS (R,∆) are undeci-

dable whenever one of the following holds:

1. the DTD in ∆ is recursive,

2. either guards in R or the invariant ∆ contain negated DTPs.

The above result holds even without data.

Proof. In both cases we encode a 2-counter machine with counters C1, C2. In the first one,

a configuration (q, n1, n2) ∈ Q × N × N is encoded by a tree with root labeled q and two

subtrees, one of the form an1a$, and the other of the form bn2b$. E.g. a zero test on the

first counter corresponds to checking that the root has a child labeled a$. Decrementing the

first counter in state q (and going to state q′) is done using the DTP rule (without data)

illustrated in Figure 20.

With non-recursive DTDs we can encode a configuration (q, n1, n2) by a tree of depth

one, with root labeled by q, and n1 (n2, resp.) leaves labeled by a (b, resp.). The zero

test is now done using a negative guard (e.g. "no a-leaf") or a negative invariant. In the

latter case we split a transition in 2 steps: first we relabel the root by a transition from that

state; second, we perform the corresponding rewriting as before. The invariant states that
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q renq′

a rena$

a$ del

Figure 20 DTP rule for a transition in which the first counter is decremented

whenever the root is labeled by a transition corresponding to a zero test of counter C1 (resp.

C2), the tree has no a-leaf (resp. b-leaf). ◭

Theorem 2. Both pattern reachability and termination are undecidable for DTPRS (R,∆)

such that (1) the DTD in ∆ is non-recursive and (2) all DTPs from guards in R and the

invariant in ∆ are positive.

Proof. We reduce Post correspondence problem (PCP) first to pattern reachability. We

may assume that our PCP instance (ui, vi)1≤i≤n is such that the following holds for every

non-empty sequence i1, . . . , ik of indices:

Either U = ui1 · · ·uik , V = vi1 · · · vik are incomparable, or V is a prefix of U . In the

latter case we call (U, V ) a partial solution.

If (U, V ) and (Uui, V vi) are partial solutions and U 6= V , then either Uui = V vi or V vi
is a prefix of U .

Every solution starts with with the pair (u1, v1) and ends with (un, vn).

It is not hard to verify that the usual Turing machine reduction to PCP satisfies the restric-

tions above.

A partial solution (U, V ) with U = a1 · · · an, V = a1 · · · am−1 will be represented by the

data tree in Figure 21. In this data tree the leaves are labeled by data di, with di 6= dj
for all i 6= j. Moreover, notice that the last position has the special marker $, and the first

position in U \ V has the special marker #.

root

a1

d0 d1

a2

d1 d2

. . . am, #

dm−1 dm

. . . an, $

dn−1 dn

Figure 21 data tree for the reduction of PCP to DTPRS

With each PCP pair (ui, vi), i < n, we associate DTPRS rules Ri = 〈L,G,Q,F , χ〉. For

simplicity we describe below the locator L and the forest F for (ui, vi) = (aba, bb) (the guard

G and the query set Q are both empty):

We need a rule Ri (see Figure 22) for each pair of tags c, d ∈ Σ (these are the tags at

positions n and m+ 2 in the example with |vi| = 2). Notice that variable X6 occurs in both

L and F (aba), whereas X7, X8, X9 will take fresh (and mutually distinct) values.

The pair (un, vn) has similar rules, except that we will not append any forest to the root,

but rename the root with a special marker
√

. The initial tree T0 is defined as expected,
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root

b,#

X1

renb

X2

b

X2 X3

L append(F (aba))

c

X3

renc,#

X4

d, $

X5

rend

X6

F (aba)

a

X6 X7

b

X7 X8

a, $

X8 X9

Figure 22 The rule Ri

from (u1, v1). The PCP instance has a solution iff we can reach a data tree with root label√
. Notice that all guards and the invariant are empty.

For termination we can modify the above proof in order to ensure that executions that

do not correspond to partial solutions, are infinite. More precisely, if U, V as above is a

partial solution, but Uui, V vi is not, then we use a DTP rule associated with (ui, vi) that

forces an infinite execution. In this way, termination will hold iff the PCP instance has a

solution. ◭

E Proofs in Section 4

E.1 Proof of Proposition 5

Proposition 5. Let T1, T
′
1, T2 ∈ TB,K , T1

R−→ T2 for some R ∈ R, and T1 � T ′1. Then

there exists T ′2 ∈ TB,K such that T ′1
R−→ T ′2 and T2 � T ′2.

Proof. Let R = 〈L,G,Q,F , χ〉. Taking an injective mapping φ : T1 → T ′1 preserving the

root, parent-child relation, tag, and data (in)equality relation, and an injective matching

ψ : L → T1 satisfying the data constraint cond of L, we have an injective matching φ ◦ ψ :

L → T ′1 which respects the parent-child, tags and data (in)equality relation. Hence cond

is satisfied by φ ◦ ψ too. As G is positive, if G is true at T1 w.r.t. φ, then it is true at

T ′1 w.r.t. φ ◦ ψ as well. Applying the rule R to T ′1 w.r.t. φ ◦ ψ, we get a tree T ′2 such that

T2 � T ′2. As both the DTD and the data invariant in ∆ are positive and T2 fulfills ∆, so

does T ′2. Thus T ′1
R−→ T ′2. ◭

E.2 Additional computability conditions for (TB,K ,−→,�)

First consider pattern reachability. To get the decidability of this problem, from Theorem 3.6

in [13], we need to show that (TB,K ,−→,�) has effective pred-basis. A WSTS (S,−→,�) has

effective pred-basis if there exists an algorithm that computes for any state s ∈ S the finite

basis pb(s) of the upward closed set ↑ Pred(↑ s). Here, ↑ I = {s′ ∈ S | ∃s ∈ I s.t. s � s′}
denotes the upward closure of I w.r.t. �, and Pred(I) = {s ∈ S | ∃t ∈ I, s −→ t} the set of

immediate predecessors of states in I. A basis of an upward-closed set I is a minimal set Ib

such that I =
⋃

x∈Ib ↑ x. Recall that whenever � is a wqo, the basis Ib of an upward closed

set I is finite.

◮ Proposition 14. (TB,K ,−→,�) has effective pred-basis.

Proof. It is sufficient to consider min(Pred(↑ T )), the set of minimal elements w.r.t. � in

Pred(↑ T ), for each tree T ∈ TB,K .

Fix a rule R = 〈L,G,Q,F , χ〉 with

L = 〈VL, EL, rootL, ℓL, τL, condL, ℓ′L〉
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such that ℓ′L attaches additional labels {append, rena, del}, Q = {Q1, . . . , Qm} (Qi =

bodyi  head i), and F = {F1, . . . , Fn}.
Let T1 = 〈V1, E1, root1, ℓ1〉 ∈ min(Pred(↑ T )), then

∃T ′ such that T1
R−→ T ′ with respect to some φ : L → T1 and T � T ′ via some

ψ : T → T ′. (∗)

In the following, we show that the size of T1 (number of nodes) is bounded by the

following constant (we actually show even more, by exhibiting T1 satisfying ∆):

B2 ((|Σ|+ 1) max(∆))
B
(

|L|+ |G|+ |T |max
i
|Qi|

)

,

where max(∆) is the maximum integer used in the definition of DTD in ∆, and max
i
|Qi| is

the maximum size (the sum of the size of the body and the head) of DTPQs in Q.

Thus a finite basis, which is a finite subset of min(Pred(↑ T )), is computable.

Let T ′ = 〈V ′, E′, root′, ℓ′〉. Then V ′ consists of four disjoint subsets,

V ′1 = {φ(v) | v ∈ VL, v not labeled by del},
V ′2 = node−1(V ′1 ), where node−1(V ′1 ) is the set of nodes w ∈ V1 \ φ(VL) such that the

lowest ancestor of w in φ(VL) is in V ′1 .

V ′3 contains distinct copies of Fj , excluding the leaves labeled by those Qi,

V ′4 contains distinct copies of the nodes of the forest Qi(T1), one for each node labeled

by Qi in each copy of Fj .

The node set of T1 consists of V ′1 , V ′2 , V3 = {φ(v) | v ∈ VL, v labeled by del}, and

V4 = node−1(V3).

Now we consider an upper bound on the size of T1 that are sufficient to allow T1 satisfying

(∗),
To guarantee the matching φ from L to T1:

The nodes in V ′1 ∪ V3 = φ(VL) and all their ancestors in T1 are sufficient.

Note that in L, ancestor relations || may occur, so the inclusion of the ancestors of nodes

in V ′1 ∪ V3 = φ(VL) is necessary.

Size: B|φ(VL)| = B|L|;
To witness that G is satisfied over T1 w.r.t. φ:

G is a positive Boolean combination of DTPs. To witness the satisfaction of each DTP

Pi in G, we need keep a matching φi from Pi to T1 and all the ancestors of nodes of

φi(Pi) in T1.

Size: B|G|;
To guarantee that T � T ′:

Keep (V ′1 ∪ V ′2) ∩ ψ(VT ) and all their ancestors in T1,

At most |T | instantiations of head i on T1 by matchings from bodyi to T1 w.r.t. φ

are sufficient. The ancestors of all the nodes of T1 in these instantiations should be

preserved as well.

Size: B|T |+B|T ||bodyi| ≤ B|T |max
i
|Qi|.

Finally, to satisfy the DTD in ∆, T1 should be completed into a data tree of size at most

(c.f. [5])

B · (|(Σ|+ 1) max(∆))B |T1|.
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Thus a sufficient upper bound for the size of T1 is

B2 ((|Σ|+ 1) max(∆))B
(

|L|+ |G|+ |T |max
i
|Qi|

)

.

◭

A solution for reachability of a given DTP P from an initial set of data trees Init is

obtained by backward exploration: we start with I0 as the set of data trees matching P and

satisfying ∆. Then compute iteratively the upward closed sets In+1 = In ∪ (Pred(In) ∩∆)

by representing each set through its finite basis. Since the sequence In is increasing by

construction, and since � is a wqo, the sequence must be finite and termination can be

effectively tested (c.f. Lemma 2.4 in [13]). If In = In+1 then it suffices to check whether

In∩Init = ∅. Notice that we did not impose any restriction on the set Init of the initial trees.

We need to test the existence of a data tree from TB,K satisfying an (arbitrary) Boolean

combination on DTPs and an (arbitrary) DTD. This problem is in general undecidable [8],

but becomes decidable in the special case where trees are of bounded depth [8]. Here we

need to talk in addition about trees from TB,K , but we can apply the same proof ideas as

in [8] in order to infer decidability.

Now consider the termination problem. From Theorem 4.6 in [13], to show the deci-

dability of termination problem from a single initial tree T0, it is sufficient to show that

(T ∗R(T0),−→,�) has effective Succ, i.e. for each T ∈ T ∗R(T0), the set Succ(T ) := {T ′ | T −→
T ′} is computable. Then we can compute the finite reachability tree starting with T0: we

compute trees T s.t. T0
∗−→ T and we stop whenever we find T � T ′ along some branch.

It is not hard to see that Succ(T ) contains only a finite number of equivalence classes

induced by the quasi-order �. Since the DTPRS (R,∆) is not able to distinguish bet-

ween two distinct data trees belonging to the same equivalence class, by selecting one data

tree from each equivalence class, we can get a finite representation of Succ(T ), therefore,

(T ∗R(T0),−→,�) has effective Succ.

E.3 Tree decompositions

Theorem 7. ([19, 6]) If G ∈ GK , then G has a tree decomposition with both depth and

width bounded by K.

Proof. Let G = (V,E, ℓ) ∈ GK and T = 〈V,ET , r〉 be a depth-first-search tree of G with

r ∈ V as the root. Then T is of depth at most K. For each v ∈ V , let θ(v) be the union of

{v} and the set of all ancestors of v in T , then 〈V,ET , r, θ〉 is a tree decomposition of G of

depth at most K and width at most K. ◭

As a matter of fact, the converse of Theorem 7 holds as well.

◮ Proposition 15. If G has a tree decomposition of width ≤ A and depth ≤ B, then the

length of any simple path of G is bounded by (A+ 2)B +
∑

1≤i≤B(A+ 2)i.

Proof. Let G = (V,E) and T = 〈W,F, r, θ〉 be a tree decomposition of G of width at most

A and depth at most B.

Let P = v1 · · · vn be a path in G, and w1 · · ·wn be a trace of P in T such that vi ∈ θ(wi),
wi = wi+1 or there is a path in T from wi to wi+1 such that for each w 6= wi+1 on the path,

vi ∈ θ(w).
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Because all bags are of size at most A+ 1, each bag can only occur at most A+ 1 times

on the sequence w1 · · ·wn.

Let B0 be the minimal depth of wi’s. Then there is only one bag at depth B0, say w,

occurring on the sequence w1 · · ·wn.

Let wi1 , · · · , wil (l ≤ A + 1, ij < ij+1) be all the occurrences of w on the sequence

w1 · · ·wn. Then all the bags on each sub sequence wij+1wij+2 · · ·wij+1−1 is at depth no less

than B0 + 1. By induction hypothesis, each subsequence wij+1wij+2 · · ·wij+1−1 is of length

at most

(A+ 2)B−B0−1 +
∑

1≤i≤B−B0−1

(A+ 2)i,

thus

n ≤ l + (l + 1)

(

(A+ 2)B−B0−1 +
∑

1≤i≤B−B0−1

(A+ 2)i

)

≤ (A+ 2)

(

1 + (A+ 2)B−1 +
∑

1≤i≤B−1

(A+ 2)i

)

= (A+ 2)B +
∑

1≤i≤B

(A+ 2)i.

◭

So generally speaking, for a class of graphs, all simple paths are length-bounded for each

graph in the class iff there is a tree decomposition of bounded depth and width for each

graph in the class.

E.4 Well-quasi-ordering of data trees

Proposition 8. Let G1, G2 be two ΣG-labeled graphs with tree-width bounded by K, and

T1, T2 be two tree decompositions of width K of resp. G1, G2, then the two ΣG,K-labeled

trees T ′1, T
′
2 obtained from T1, T2 satisfy that: If T ′1 ≤ T ′2, then G1 ⊑ G2.

Proof. Let Gi = (Vi, Ei, ℓi), Ti = 〈Ui, Fi, ri, θi〉 and T ′i = 〈Ui, Fi, ri, ηi〉(i = 1, 2). Suppose

that T ′1 ≤ T ′2. Then there is an injective mapping φ from U1 to U2 preserving the root, the

parent-child relation and the node-labels.

Define an injective mapping π : V1 → V2 as follows:

For v ∈ V1, select some u ∈ U1 such that θ1(u) = v0 . . . vK and v = vi for some i.

Writing θ2(φ(u)) = v′0 . . . v
′
K , we let π(v) = v′i.

First we show that π does not depend upon the choice of i such that v = vi, neither on

the choice of u ∈ U1 such that v ∈ θ1(u). The former holds because η1(u) = η2(φ(u)) (and

in particular the component λ1 is preserved), hence if vi = vj , then we also have v′i = v′j .

For the latter, notice that the λ3 component of η1(u) = η2(φ(u)) is preserved, hence the

choice of u or of its father is irrelevant. Now, the set {u ∈ U1 | v ∈ θ1(u)} is a connected

subgraph of T1 by definition of tree decomposition, hence π does not depend upon the choice

of u ∈ U1.

Now we show that π is injective. Let v2 be a vertex of G2. Because of the preservation

of λ1, no two different vertices v, v′ of G1 with v, v′ ∈ θ(u) can satisfy π(v) = π(v′) = v2.

Because of the preservation of λ3, no two different vertices v, v′ with v ∈ θ(u) and v′ ∈ θ(u′)
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with u father of u′ can satisfy π(v) = π(v′) = v2. Again, as the set {u ∈ U1 | v2 ∈ θ(u)} is a

connected subgraph of T2, it means that π is injective.

We finish the proof by showing that π preserves the node-labels and edge relations.

Node-label preservation: Suppose π(v) = v′. Then there exists some u ∈ U1 such that

θ1(u) = v0 · · · vk, v = vi for some i, θ2(φ(u)) = v′0 · · · v′k, and v′ = v′i. Since η1(u) = η2(φ(u)),

ℓ1(v0) . . . ℓ1(vk) = ℓ2(v′0) . . . ℓ2(v′k), it follows that ℓ1(v) = ℓ1(vi) = ℓ2(v′i) = ℓ2(v′).

Edge relation preservation: We show that {v, w} ∈ E1 iff {π(v), π(w)} ∈ E2 for any

v, w ∈ V1.

If {v, w} ∈ E1, there exists u ∈ U1 such that θ1(u) = v0 · · · vk, v = vi and w = vj for

some i, j. So (i, j) ∈ λ2(u) in T ′1. Then (i, j) ∈ λ2(φ(u)). Let θ2(φ(u)) = v′0 · · · v′k, then

{v′i, v′j} ∈ E2. Consequently {π(v), π(w)} = {v′i, v′j} ∈ E2.

If {π(v), π(w)} ∈ E2, then there exists u′ ∈ U2 such that π(v), π(w) ∈ θ2(u′). Without

loss of generality, we can choose u′ at minimal depth such that π(v), π(w) ∈ θ2(u′). It means

that for instance, the father u′′ of u′ satisfies π(v) /∈ θ2(u′′). Since U ′2 = {u′′′ ∈ U2 | π(v) ∈
θ2(u′′′)} is connected, it means that U ′2 is entirely contained in the subtree rooted at u′. By

contradiction, if there does not exist u ∈ U1 such that φ(u) = u′, then φ(U1) ∩ U ′2 = ∅. On

the other hand, according to the definition of π, there is u ∈ U1 such that v ∈ θ1(u) and

π(v) ∈ θ2(φ(u)). So φ(u) ∈ φ(U1) ∩ U ′2, a contradiction. Thus there is u ∈ U1 such that

u′ = φ(u). Let θ1(u) = v0 . . . vk and θ2(u′) = v′0 . . . v
′
k, by injectivity of π, we have π(v) = v′i,

π(w) = v′j , v = vi, w = wj for some i, j. Then (i, j) ∈ λ2(u′) = λ2(u), which proves that

{v, w} is an edge of G1. ◭

F Proofs in Section 5

At first, we briefly recall the syntax and semantics of Tree-LTL defined in [5]. In fact we

will only consider a fragment of Tree-LTL defined in [5], namely Tree-LTL formulas without

free variables, defined by the following rules,

ϕ := P | ϕ1 ∨ ϕ2 | ¬ϕ1 | Xϕ1 | ϕ1Uϕ2,

where P is a DTP.

Intuitively, Tree-LTL is just the extension of LTL to data trees by replacing atomic

propositions with DTPs.

The semantics of Tree-LTL formulas are defined universally: Given a DTPRS (R,∆, Init)
and a Tree-LTL formula ϕ, (R,∆, Init) is said to satisfy ϕ iff every run of (R,∆, Init)
satisfies ϕ.

Symmetrically, the semantics of Tree-LTL can be defined existentially, namely, a DTPRS

satisfies a Tree-LTL formula iff there exists a run of the DTPRS satisfying the formula. We

call the Tree-LTL with existential semantics as existential Tree-LTL.

Theorem 10. It is undecidable whether a positive-bounded DTPRS satisfies a Tree-LTL

formula Fϕ, where ϕ is a positive Boolean combination of DTPs. This holds even without

data.

Proof. We show this by a reduction from the halting problem of two-counter machines.

Let M = (Q,Σ,∆, q0, H) be a two-counter machine such that

Q = {q0, . . . , qm},
Σ: input alphabet,

q0: the initial state,
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H ⊆ Q: the halting states,

∆ ⊆ Q×Σ×{= 0, 6= 0, ∗}×{= 0, 6= 0, ∗}×Q×{+1,−1, ·}×{+1,−1, ·}, where ∗ means

the condition is unspecified, and · means the action is unspecified.

Without loss of generality, it can be assumed that M is deterministic in the following

sense,

for any configuration (q, . . . )which is reachable from the initial configuration, (q0, . . . ),

it holds that either q ∈ H , or else there is a unique transition in ∆ which can be

applied to yield another configuration.

The general idea is to simulate M by a positive bounded DTPRS ignoring the zero-tests,

and describe the zero-tests in a Tree-LTL formula Fϕ.

Recall that the semantics of Tree-LTL defined in [5] is universal, namely, a DTPRS

satisfies a Tree-LTL formula ψ if all the runs in the DTPRS satisfy ψ.

Since the halting problem for the two-counter machines with the empty input string

is undecidable, the input can be ignored in the reduction and it can be assumed that the

transitions ∆ of M is of the form

∆ ⊆ Q× {= 0, 6= 0, ∗} × {= 0, 6= 0, ∗} ×Q× {+1,−1, ·} × {+1,−1, ·}.

Moreover, let ∆ = {δ1, · · · , δn}.

Now we define a positive bounded DTPRS (DTD,R, Init) and a Tree-LTL formula Fϕ

such that

(DTD,R, Init) |= Fϕ iff M halts on the empty string ε.

The DTD is illustrated in Figure 23.

root

tryi q C1

$

C2

$

Figure 23 DTD

Recall that DTD is required to be positive in positive bounded DTPRS, so what we can

do is to guarantee that there is at least one child of the root labeled by q, etc. It follows

that the tree in which there are two children of the root labeled by q, q′ respectively satisfies

also the DTD.

The Init is a Boolean combination of tree patterns describing a tree corresponding to

the state q0 and the initial values for the two counters in M . Recall that in the definition

of positive bounded TPRS, it is not required that Init is positive.

Take the transition δi = (q,= 0, 6= 0, q′,+1,−1) as an example, we illustrate how to

simulate the transitions of M by TPRS rules in R.

The transition δi = (q,= 0, 6= 0, q′,+1,−1) is simulated by two rules, Tryi verifying the

conditions of δi, and Transi enforcing the actions of δi.
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root

q renqtry

append(F )

C2

$

Figure 24 Rule Tryi

Tryi is illustrated in Figure 24, where F is the tree with a single node labeled by tryi,

and the node labeled by q is renamed as qtry in order to avoid repeated application of Tryi.

Note that the zero test for the first counter is forgotten in the definition of Tryi.

Transi is illustrated in Figure 25, the node tryi is deleted, qtry is renamed as q′, C1 is

increased (add a tree F , a single node labeled by $), and C2 is decreased (remove one $).

root

tryi del qtry renq′ C1 append(F ) C2

$ del

Figure 25 Rule Transi

Note that the DTPRS defined above does not use data, thus in fact a TPRS.

For each reachable configuration ofM , before halting, there is a unique transition enabled.

However, for the TPRS (DTD,R, Init) defined above, there may be several rules enabled

at the same time. For instance, if there are one rule δi = (q,= 0, 6= 0, . . . ) and another rule

δj = (q, 6= 0, 6= 0, . . . ), and there is at least one child ($) for both node C1 and node C2

in the current data tree, then both the rule Tryi and Tryj are enabled according to the

definition. However, only one of the transitions (Tryj in the example) corresponds to the

valid transition in M , all the others (Tryi in the example) are cheating.

The Tree-LTL formula Fϕ satisfies that ϕ is a disjunction of tree patterns Pqh (qh ∈ H)

and Pcheati , where Pqh is a tree pattern specifying that the state qh is reached, and Pcheati
(see Figure 26) is a tree pattern specifying that the TPRS is cheating, in the sense that the

rule Tryi has been applied (so the transition δi = (q,= 0, 6= 0, q′,+1,−1) of M is simulated),

but the node C1 has at least one child (the counter C1 has nonzero value). Pcheatj can be

defined similarly for the other transitions δj in M .

root

tryi C1

$

Figure 26 Pattern Pcheati

A run in TPRS (DTD,R, Init) is either a cheating run or a valid run corresponding to
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the unique run of M .

Recall that the two-counter machine M is assumed to either halt, i.e. reach a state in

H , or always have a unique transition enabled, thus have an unique infinite run. Since the

TPRS (DTD,R, Init) simulates M by ignoring zero tests, it follows that the TPRS satisfies

Fϕ iff each run of the TPRS is either cheating or a valid halting run (i.e. reaching in a state

qh ∈ H). Consequently, the TPRS (DTD,R, Init) satisfies Fϕ iff M halts.

◭

Proposition 11. It is decidable whether a positive-bounded DTPRS satisfies a given positive

existential Tree-LTL formula defined by the following rules,

ϕ := true | false | P | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | Xϕ1 | ϕ1Uϕ2,

where P is a DTP.

Proof. Let (R,∆) be a given positive-bounded DTPRS.

It has been shown in Section 4 that (TB,K ,−→,�) is a well-structured transition system.

The proof goes as follows:

A fragment of modal µ-calculus with DTPs as atomic propositions, called existential

positive modal tree µ-calculus (denoted as Tree-L∃,+µ ), is first defined.

Then the existential positive Tree-LTL is shown subsumed by this fragment.

Finally, for each Tree-L∃,+µ sentence ϕ, the set of data trees satisfying ϕ is shown upward-

closed and a finite basis can be effectively computed.

The existential positive modal tree µ-calculus (Tree-L∃,+µ ) formulas are defined by the

following rules,

ϕ := true | false | P | Z | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ⋄ϕ1 | µZ.ϕ1(Z),

where P is a data tree pattern and ϕ1(Z) is a Tree-L∃,+µ formula containing the free

variable Z.

A Tree-L∃,+µ sentence is a Tree-L∃,+µ formula containing no free variables. Let T (ϕ) be

the set of data trees in TB,K satisfying ϕ.

Similar to the translation of LTL with existential semantics to existential positive modal

µ-calculus (c.f. [?]), the following result can be shown.

◮ Lemma 16. From each positive Tree-LTL formula with existential semantics, an equivalent

Tree-L∃,+µ sentence can be constructed effectively.

◮ Lemma 17. Let ϕ(Y1, · · · , Yn) be a Tree-L∃,+µ formula containing the set of free variables

Y1, . . . , Yn, and T1, . . . , Tn ⊆ TB,K be a sequence of upward-closed sets of data trees with

finite basis resp. F1, . . . , Fn. Then T (ϕ(T1, . . . , Tn)) is upward-closed and a finite basis of it

can be computed effectively from F1, . . . , Fn.

Proof. The proof is by a induction of the structure of Tree-L∃,+µ formulas.

It is easy to show this for atomic formulas.

The cases of disjunctions and conjunctions follow from the fact that upward-closed sets

are closed under union and intersection.

Suppose ϕ = ⋄ϕ1. Then T (ϕ) = Pred(T (ϕ1)). By induction hypothesis, T (ϕ1) is

upward-closed and a finite basis of it has been effectively computed. The upward-closeness



Blaise Genest, Anca Muscholl, and Zhilin Wu 29

of T (ϕ) and the effectiveness of its finite basis then follow from the fact that (TB,K ,−→,�)

is a well-structured transition system.

Now consider the situation that ϕ = µZ.ϕ1(Z, Y1, . . . , Yn).

First set Z0 = ∅, then compute a finite basis of Z1 = ϕ1(Z0, T1, . . . , Tn), which can be

done according to the induction hypothesis.

Similarly, compute a finite basis of Z2 = ϕ(Z1, T1, . . . , Tn), and so on.

Because Z0 ⊆ Z1 ⊆ Z2 ⊆ · · · , and each Zi is upward-closed, it follows that there is i

such that Zi = Zi+1, since � is a wqo over TB,K (c.f. Lemma 2.4 in [13]). Such a Zi is

exactly T (µZ.ϕ(Z, T1, . . . , Tn)). ◭

From the above two lemmas, it follows that given a positive Tree-LTL formula ϕ (with

existential semantics), the set of data trees in TB,K satisfying ϕ is upward-closed and a finite

basis of it can be effectively constructed.

The decidability of verification of Tree-LTL formula ϕ over the postive-bounded DTPRS

(R,∆, Init) then follows from the decidability of the satisfiability of Boolean combinations

of DTPs over (unordered) data trees of bounded depth with respect to a DTD ([8]). ◭

G Proofs in Section 6

Theorem 12. DTPRS type-checking is Co-NexpTime-complete.

We first show how to decide in NexpTime the existence of data trees T, T ′ and DTP rule

R such that T |= ∆, T
R−→ T ′, but T ′ 6|= ∆.

Recall that the DTD τ is defined by rules a → ψ, where ψ is a Boolean combination

of the inequalities of the form |b| ≥ k. Let B be maximum depth of trees satisfying τ and

max(∆) be the maximal integer k occurring in the inequalities b ≥ k of τ .

At first, it is not hard to show the following result.

◮ Lemma 18 (Completion w.r.t. τ). Let T, T1 be data trees such that T |= ∆, T1 � T and

T1 |= inv. Then there exists T ′1 with T1 � T ′1 � T , |T ′1| = O(|T1|(max(∆)|Σ|)B+1) and

T ′1 |= ∆.

◮ Lemma 19. Assume that there exist a data tree T |= ∆, a DTP rule R = 〈L,G,Q,F , χ〉 ∈
R and a data tree T ′ such that T

R−→ T ′ and T ′ 6|= τ . Then there exists such a tree T of

size at most

B

(

|inv|+ |L|+ |G|+ |L|(max(∆) + 1)|Σ|max
F∈F
|F |max
Q∈Q
|Q|
)

(max(∆)|Σ|)B+1.

Proof. We show how to get T1 � T and T ′1 � T ′ with T1
R−→ T ′1, T ′1 6|= τ and T1 |= ∆ has

size bounded as in the statement of the lemma. The tree T1 is defined in such a way that it

satisfies the same DTPs from inv and G, as T does. Let us denote this set of DTPs by P .

For each P ∈ P , the satisfaction of P in T is witnessed by a matching ϕP from P to T .

Witness T |= inv and T |= G: The set of nodes in the image of ϕP and their ancestors

in T , size O(B(|inv|+ |G|)).
Witness of the (injective) matching ϕL from L to T : The set of nodes in the image of

ϕL and their ancestors in T , size O(B|L|).
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Witness of the evaluation of a query on T : suppose Q = body  head is a DTPQ labeling

some node in a forest of F . Note that at most (max(∆)+1)|Σ| copies of head are needed

to witness T ′ 6|= τ .

There are at most |L|max
F∈F
|F | possible queries that might be evaluated when applying R

to T . Each evaluation requires at most (max(∆) + 1)|Σ| copies of head-trees. Thus the

overall size of witnesses in T is

O(|L|(max(∆) + 1)|Σ|(max
F∈F
|F |)(Bmax

Q∈Q
|Q|)).

The sum of the sizes of all those witnesses is at most

B

(

|inv|+ |L|+ |G|+ |L|(max(∆) + 1)|Σ|max
F∈F
|F |max
Q∈Q
|Q|
)

.

Finally, the witness-tree should be completed with respect to T and τ , in order to satisfy

the DTD, which gives by Lemma 18 the claimed bound.

◭

◮ Lemma 20. Assume that there exists a data tree T |= ∆, a DTP rule R = 〈L,G,Q,F , χ〉 ∈
R and T

R−→ T ′ such that T ′ 6|= inv. Then there exists such a tree T of size at most

B

(

2|inv|+ |L|+ |G|+ |inv| · |L|max
F∈F
|F |max
Q∈Q
|Q|
)

(max(∆)|Σ|)B+1.

Proof. The proof is similar to Lemma 19. We look for some T1 � T , and T ′1 � T ′, such that

T1 |= ∆, but T ′1 6|= inv. The only difference is that we need to witness in T ′ some DTPs for

the negation of inv. This yields the claimed upper bound.

◭

We show the lower bound now. From [8], we know that depth-bounded satisfiability of

Boolean combinations of DTPs with respect to a DTD (with depth as part of the input) is

NexpTime-hard.

Let ϕ be a Boolean combination of DTPs and τ a DTD. The DTPRS (R,∆) is defined

as follows: ∆ consists of τ and the static data invariant ϕ. There is a single rule R which

relabels the root of the data tree to a label r such that r does not occur in τ . Then ϕ is

satisfiable w.r.t. τ iff there are T, T ′ such that T |= ∆, T
R−→ T ′ and T ′ 6|= ∆.

H Proofs in Section 7

Theorem 13. Bounded model-checking for DTPRS is NexpTime-complete.

Proof. The proof is similar to the proof that checking Tree-LTL properties over recursion-

free GAXML systems is Co-2NexpTime-complete [5].

First consider upper bound.

The upper bound for model-checking of recursion-free GAXML in [5] was shown by

establishing a double exponential small model property.

By a similar argument, an exponential small model property can be obtained for the boun-

ded model-checking over DTPRS. The exponentiation, instead of double-exponentiation, fol-

lows from the fact that in bounded model-checking, the length bound N is given by unary

encoding, thus of polynomial size, while for the recursion-free GAXML, the length of runs

is exponential over the size of the GAXML system.
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The lower bound is adapted from the Co-2NexpTime lower bound proof for model-

checking of recursion-free GAXML. We only recall the rough idea here.

The main ingredient of the proof is to create/check lists of length 2n. This is done using

data values, similarly as in the proof of Theorem 2. A “list” of length k corresponds to a tree

of depth 2, where each node at depth one has 2 children, with distinct data values di, di+1.

If each data value di occurs twice (except for d1 and dk+1, which occur only once) we get a

linear order, i.e. a list. Using n queries we can compute n steps of transitive closure and thus

verify that k = 2n. Obviously, this suffices for encoding a (2n × 2n) tableau representing a

computation of a 2n-time bounded TM. Details are fairly easy to complete. ◭
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