Products of Message Sequence Charts *

Philippe Darondeau, Blaise Genest, and Loic Hélouét

IRISA, campus de Beaulieu, F-35042 Rennes Cedex

Abstract An effective way to assemble partial views of a distributed
system is to compute their product. Given two Message Sequence Graphs,
we address the problem of computing a Message Sequence Graph that
generates the product of their languages, when possible. Since all MSCs
generated by a Message Sequence Graph G may be run within fixed
bounds on the message channels (that is, G is existentially bounded),
a subproblem is to decide whether the considered product is existen-
tially bounded. We show that this question is undecidable, but turns
co-NP-complete in the restricted case where all synchronizations belong
to the same process. This is the first positive result on the decision of
existential boundedness. We propose sufficient conditions under which a
Message Sequence Graph representing the product can be constructed.

1 Introduction

Scenario languages, and in particular Message Sequence Charts (MSCs) have
met a considerable interest over the last decade in both academia and industry.
MSCs allow for the compact description of distributed systems executions, and
their visual aspect made them popular in the engineering community. Our ex-
perience with industry (France-Telecom) showed us that MSCs are most often
used there together with extensions such as optional parts (that is choice) and
(weak) concatenation, while iteration is left implicit. (Compositional) Message
Sequence Graphs ((C)MSC-graphs) is the academic framework in which choice,
weak concatenation and iteration of MSCs are formalized. For a recent survey
of Message Sequence Graphs, we refer the reader to [6,9]. A challenging problem
is to automatically implement MSC-languages (that is, sets of MSCs) given by
(C)MSC-graphs. Apart from the restricted case of Local Choice (C)MSC-graphs
[8,7], this problem has received no satisfactory solution, since either deadlocks
arise from the implementation [14,4], or implementation may exhibit unspecified
behaviors [2]. A further challenge is to help designing (C)MSC-graphs for com-
plex systems, while keeping analysis and implementability decidable. Systems
often result from assembling modules, reflecting different aspects. A possible
way to help the modular modeling of systems into (C)MSC-graphs is thus to
provide a product operator. A first attempt in this direction is [10], where the
amalgamation allows the designer to merge 2 nodes of 2 MSG-graphs but not
their paths. We feel that a more flexible operation, defined on MSC languages
and therefore independent from MSC block decompositions, is needed.

* Work supported by France Telecom R&D (CRE CO2) and ANR project DOTS.

2 Philippe Darondeau, Blaise Genest, and Loic Hélouét

Shuffling the linearizations of the languages of two (C)MSC-graphs is not the
right product. On the one hand, such shuffling kills existential bounds [11], i.e.,
there is no upper bound on the size of the message channels within which all
MSCs in the shuffled language can be run. Existential bounds are an important
feature of (safe C)MSC-graphs which allow their analysis. On the other hand, two
states of the (C)MSC-graphs (one for each module) may represent incompatible
aspects. Hence, one needs some synchronization to control the product opera-
tion, in order to avoid incompatibilities and non existentially bounded behaviors.
Control may be introduced with synchronization points: one module waits at a
synchronization point until the other module reaches a compatible synchroniza-
tion point, and then both can proceed. Synchronizations may be defined either
per process or per state of the (C)MSC-graphs. State oriented synchronization
conflicts with weak concatenation since it means that all processes of the same
module pass simultaneously the synchronization barrier, which diverges strongly
from the semantics of (C)MSC-graphs. Second, it harms implementability, since
state-synchronized products of implementable (C)MSC-graphs may not be im-
plementable. We therefore choose to define synchronizations per processes, by
means of shared local events identified by names common to both MSCs. For-
mally, we define thus a mixed product of MSCs that amounts to shuffling their
respective events on each process, simultaneously and independently, except for
the shared events that are not interleaved but coalesced. One appealing property
of this definition of product is that the product of two implementable (C)MSC-
graphs is also implementable (albeit with possible deadlocks), since it suffices to
take the product of the implementations processwise, coalescing shared events.

In order to be represented as a (safe C)MSC-graph, an MSC language needs
to be existentially bounded. So far, no algorithm is known to check the exis-
tential boundedness of an MSC language in a non-trivial case (e.g., existential
boundedness is undecidable even for deterministic deadlock-free Communicating
Finite State Machines, see http://perso.crans.org/ genest/GKMO07.pdf). This is
the challenging problem studied in this paper. We show that checking existential
boundedness of the product of two (safe C)MSC-graphs is in general undecid-
able, as one expects. Surprisingly, if all shared events (synchronizations) belong
to the same process, then this question becomes decidable. Once a product is
known to be existentially bounded, results [12,4] on representative linearizations
can be used. Namely, languages of MSCs defined by the globally cooperative
subclass of safe CMSC-graphs have regular sets of linearizations, where the reg-
ular representations can be computed from the CMSC-graphs and conversely.
Thus, given two globally cooperative CMSC-graphs such that their product is
existentially bounded, this product can be represented with a globally cooper-
ative CMSC-graph. The authors of [4] ignore the contents of messages in the
definition of MSCs. We consider messages with contents, and adapt the FIFO
requirement of [4] to both weak ([2,13]) and strong FIFO ([1]). We recast the
correspondence established in [4] into these different frameworks, and compare
the complexity and decidability of these two semantics.

Products of Message Sequence Charts 3

The paper is organized as follows. Section 2 recalls the background of MSCs
and MSC-graphs. Section 3 introduces the product of MSC-languages. Sec-
tion 4 recalls the definition of existential channel bounds for MSC-languages.
It is shown in Sections 5 and 6 that one can, in general, not check the existen-
tial boundedness of the product of two existentially bounded MSC-languages,
whereas this problem is co-NP-complete (weak FIFO) or PSPACE (strong FIFO)
when the synchronizations are attached to a single process. Section 7 defines for
that special case an operation of product on CMSC-graphs.

2 Background

To begin with, we recall the usual definition of compositional Message Sequence
Charts (CMSCs for short), which describe executions of communication pro-
tocols, and of CMSC-graphs, which are generators of CMSC sets. Let P, M,
and A be fixed finite sets of processes, messages and actions, respectively. Pro-
cesses may perform send events S, receive events R and internal events 7.
That is, the set of types of events of an MSC is £ = SUR UZ where S =
{pla(m)|p.q € P,p # q¢gm € M}R = {p?q(m)|p,q € P,p # q;m € M},
and Z = {p(a)|p € P,a € A}. For each p € P, we let £, = S, UR, U Z,, where
Sp, Rp, and Z,, are the restrictions of S, R, and Z, respectively, to the considered
process p (e.g., p?q(m) € Sp). We define now MSCs over €.

Definition 1. A compositional Message Sequence Chart M is a tuple M =
(E’ A, Hs (<P)P€P) where

- E is a finite set of events, with types \(e) given by a labeling map \: E — &,
~ for each p € P, <, is a total order on E, = X' (&,),

- : E — E is a partially defined, injective mapping,

—if u(er) = e then A(e1) = plqg(m) and A(e2) = q7?p(m) for some p,q and m,
— [weak FIFO] if e1 <, €}, Me1) = A(e}) = plqg(m) and p(e)) is defined, then
pler) <q p(el) (in particular, p(eq) is defined).

— the union < of Upep <p and U.cr {(e, n(€))} is an acyclic relation.

~ M is an MSC if the partial map p is a bijection between A1 (S) and A1 (R).

Def. 1 extends the original definition of [5] (see also [4]) by considering mes-
sages with non trivial contents. There are then two alternatives to the FIFO con-
dition. Strong FIFO requires that e; <, €}, A(e1) = plq(m), Ale}) = plq(m')
and p(e}) defined entail p(er) <4 w(e}), ie., there is a single channel from p
to gq. The weak FIFO requirement used in Def. 1 means that there are as many
FIFO channels from p to ¢ as there are types of events p!q(m). In general,
there are undecidable problems in the strong FIFO semantics, as weak realiz-
ability [1], which are decidable in the weak FIFO semantics [13]. Anyway, all
(un)decidability results established in this paper hold for both FIFO semantics,
even though complexity depends on the semantics used.

Given a CMSC X = (E, A\, i, (<p)pep), let <x be the reflexive and transitive
closure of the relation < from Def. 1. A linear extension of X is an enumeration
of E compatible with <x. A linearization of X is the image of a linear extension
of X under the map A : E — £ (hence it is a word of £*). Let Lin(X) denote the

4 Philippe Darondeau, Blaise Genest, and Loic Hélouét

set of linearizations of X. For a set X’ of CMSCs, let Lin(X') denote the union of
Lin(X) for all X € X. Linearizations can be defined more abstractly as follows:

Definition 2. Let Lin C E* be the set of all words w such that for all p,q and m,
the number of occurrences q? p(m) is at most equal to the number of occurrences
plg(m) in every prefit v of w, and both numbers are equal for v = w. In the
strong FIFO setting, we furthermore require the equality of contents of the i-th
emission from p to q and of the i-th reception on q from p.

Any linearization w of an MSC belongs to Lin (it may not be the case for a
CMSC). Conversely, because of weak or strong FIFO, a word w = ¢€; ... €, € Lin
is the linearization of a unique MSC, Msc(w) = ({1,...,n}, A\, p, (<p)), with:

- Ai) =€ and i <p jifi <j and €,¢; € &,
— p(i) = j if the letter ¢; = p!q(m) occurs k times in € ...¢; and the letter
€; = q?p(m) occurs k times in € ...¢; for some p,q,m, k.

Definition 3. Two words w,w' € Lin are equivalent (notation w = w') if
Msc(w) and Msc(w') are isomorphic. For any language £ C Lin, we write
L] ={w|w=w,w € L}. Alanguage L C Lin(X) is a representative set for
a set X if LN Lin(X) £ O for all X € X, or equivalently, if [L] = Lin(X).

We deduce the following properties. For any MSC X, Lin(X) is an equiva-
lence class in Lin. For any MSC X and for any w € Lin, w € Lin(X) if and only
if X is isomorphic to Msc(w). A similar property does not hold for arbitrary
CMSCs. For instance, (p!q(m)) (g?p(m)) (¢?p(m)) belongs to Lin(X) for two
different CMSCs X, where the emission is matched by p either with the first or
with the second reception.

Client Server Client Server Client Server Client Server
Login /l Search /i
o L
\. 0K \. *Contont

L

> »
1/ sync ¢ 'rﬁ‘ sync ¢

NOK

Figurel. Identification Scenario G1. Figure2. Searching Scenario Gs.

We define the concatenation X; - X5 of two CMSCs X; = (E', X', ", (<0)pep)
as the set of CMSCs X = (E' W E?, \' W A2, p, (<p)pep) such that:
- pN(E'x EY) = p! and <, N(E* x E*) =<} fori € {1,2} and p € P,
~ec E?>and e<x e entail e’ € E? for all e, e’ € E' & E2.

Products of Message Sequence Charts 5

We let X; - X5 be the union of X - X, for all X; € &;, i € {1,2}. We can now
give a description of sets of MSCs with rational operations.

Definition 4. A CMSC-graph is a tuple G = (V,—, A, V°, V) where (V,—
) is a finite graph, VO,V C V are the subsets of initial and final vertices,
respectively, and A maps each vertex v to a CMSC A(v). We define L(G) as the

set of all MSCs in A(vg) - A(v1) - ... - A(vy) where vg,v1 ...,v, is a path in G
from some initial vertez vg € VO to some final vertex v,, € V. The CMSC-graph
G is safe if any such set A(vg) - ... - A(v,) contains at least one MSC.

Intuitively, the semantics of CMSC-graphs is defined using the concatenation
of the CMSCs labeling the vertices met along the paths in these graphs. Notice
that A(vg) - ... - A(vn) may contain an arbitrary number of CMSCs, but at
most one of these CMSCs is an MSC. An example of a non-safe CMSC-graph
is G = (V,—,4,{vo},{vs}) where V = {vg,vs}, vo = vy, the CMSC A(vp)
has a single event labeled with ¢?p(m), and the CMSC A(vy) has a single
event labeled with p!q(m). Indeed the two events cannot be matched by p in
A(vg) - A(vy). Notice that this is a XCMSG [12]. The reason why we do not
allow XCMSGs is that safe XCMSGs are not necessarily existentially bounded,
hence the Mazurkiewicz trace coding needed for the results of [4] that we use for
Theorem 3 fails. Fig. 1 and 2 show two (C)MSC-graphs. Their nodes are labeled
with MSCs. Concatenating OK and the local event sync gives an MSC with 3
events. The reception of OK and the event sync are unordered (in Gp). On the
contrary, the event sync and the reception of Void are ordered (in G2).

A safe CMSC-graph G may always be expanded into a safe atomic CMSC-
graph G', that is a graph in which each node is labeled with a single event, such
that £(G) = L(G"). In the following, every safe CMSC-graph is assumed to be
atomic. The expansion yields, by the way, a regular representative set for £L(G).

3 Product of MSC-languages

In order to master the complexity of distributed system descriptions, it is desir-
able to have at one’s disposal a composition operation that allows us to weave
different aspects of a system. When system aspects are CMSC-graphs with dis-
joint sets of processes, the concatenation of their MSC-languages can be used
to this effect. Else, some parallel composition with synchronization capabilities
is needed. We propose here to shuffle the events of the two MSC-graphs per
process, except for the common events that serve to the synchronization. We
require that all common events are internal events. Formally, what we define
is an extension of the mized product of words. The intersection with a regular
language could be used in place of the synchronizations to control the shuffle,
but this would not change significantly the results of this paper. However, syn-
chronizing on messages could change the results, as we can encode shared events
using shared messages, but not the other way around.

First, we recall the definition of the mized product Ly || L2 of two languages
Ly, Ly of words (see [3]), defined on two alphabets Xy, X5 not necessarily disjoint.

6 Philippe Darondeau, Blaise Genest, and Loic Hélouét

Let ¥ = X, UX5. Fori=1,21let m; : ¥* — X¥ be the unique monoid morphism
such that 7;(0) = o for 0 € X; and m;(0) = €, otherwise. Then Ly || Ly = {w |
mi(w) € L;,i = {1,2}} is the set of all words w € X* with respective projections
mi(w) in L;. E.g., {ab} || {cad} = {cabd, cadb} (a is the synchronizing action).

Definition 5. For i = {1,2}, let X; be an MSC-language over some E', such
that x € EL1 N E? implies x = p(a) for some p,a. The mixed product X || X is
Msc ((Lin(Xy) || Lin(X2)) N Lin) and it is an MSC-language over E1 U % .

The mixed product operation serves to compose the languages of two CMSC-
graphs that share only internal events, as is the case for the CMSC-graphs G, G>
of Fig. 1,2. The synchronization sync ensures that in any MSC in £(G1) || L(G2),
the server never answers a search request from the client unless the client is
logged in. Thus, synchronizations serve to avoid mixing incompatible fragments
of the two CMSC-graphs. When a set X’ is a singleton X = {X}, we abusively
write X ||) instead of {X} || V. Note that even though X; and X, are MSCs,
X1 || X2 may contain more than one MSC. Under weak FIFO semantics, mixing
all linearizations pairwise yields all and only linearizations of a product of MSCs.
However, the product of two linearizations of strong FIFO MSCs may contain
words that are not linearizations of strong FIFO MSCs. Intersecting with Lin
allows us to keep only linearizations of (strong FIFO) MSCs.

Proposition 1. Lin(X; || X2) = (Lin(Xy) || Lin(X2)) N Lin.

Proof. By definition, X; || X2 = Msc(Lin(X1) || Lin(Xs)) = Msce(Lin(Xy) ||
Lin(Xs) N Lin). Notice that Msc(w) is undefined for w ¢ Lin. Moreover,
Lin(Xy) || Lin(X2) N Lin C Lin(X; || X2), because Lin(X) is an equivalence
class. Now let w € Lin(X) and X € Msc(Lin(X1) || Lin(X2)) for some X; € X;
(1 = 1,2). Again, using the properties of Lin(X), we know that X = Msc (w).
Therefore, w € Lin(X1) || Lin(X2) by Lemma 1 (see below). O

Lemma 1. (Lin(Xy) || Lin(X2)) N Lin is closed under = (see Def. 3).

Proof. Let w € Lin(X1) || Lin(X2) N Lin. We want to show that for any w'
in Lin (Def. 2), if Msc(w) and Msc (w') are isomorphic, then w' € Lin(Xy) ||
Lin(Xz). Let w = €1 ...€,. (From Def. 2, w' = €] ...€), and there exists a
bijection f : {1,...,n} — {1,...,n} suF:h that ¢; = le(i)‘ For j = 1,2 let
El={ill1<i<nAe¢ € &}and BV = {i|]1 <i < nA¢€ € &}, then
f restricts and co-restricts to bijections f; : E/ — E", hence Msc(m;(w))
and Msc(mj(w’)) are isomorphic for j = 1,2 (where m;(w) and 7;(w’) are the
respective projections of w and w' on 7). Therefore, 7;(w') € Lin(X;) for
j=1,2and w' € Lin(Xy) || Lin(Xa). 0

However, {X;} || {X2} may be larger than M sc (w; || ws) for fixed represen-
tations wy € Lin(X;) and wy € Lin(X>). This situation is illustrated with

wi = (p'q(ma)) (¢7p(ma)) (p'q(ma)) (¢7p(ma)),

wi = (plq(m1))? (q?p(m1))?,

Products of Message Sequence Charts 7

(m2)) (q'p(m2)) (p? q (m2)),
?q(m2))?,
q!p(m2))* (p?q(m2))* (¢7p(m1))*.
and X1 = Msc(wr) = Msc(w)), Xo = Msc(ws) = Msc(wh) , X3 = Msc(ws).
There is no synchronization. Now X3 € Msc(w) || w}), but X3 ¢ Msc(wy || w2).
This observation shows that products must be handled with care. Indeed, an
advantage of CMSC-graphs is to represent large sets of linearizations with small
subsets of representatives. However, w; is a representative for X1, ws is for X,
but w; || wa is not a set of representatives for X; || Xo.

4 Bounds for MSCs and Products.

We review in this section ways of classifying CMSC-graphs based on bounds
for communication channels, and we examine how these bounds behave under
product of CMSC-languages. We focus on MSC-languages with regular represen-
tative sets. As indicated earlier, a regular representative set for the language of
a safe CMSC-graph GG may be obtained by expanding G into an atomic CMSC-
graph G'. As observed in [12], it follows from a pumping lemma that whenever
L C Lin is a regular representative set for some X, the words in £ are uniformly
B-bounded, for some B > 0, as defined hereafter. First, the definition of a chan-
nel depends on the semantics. In the weak FIFO setting, a channel is a triple
p,q € P,m € M, and plg(m) is an emission (¢7p(m) is a reception) on this
channel. In the strong FIFO setting, a channel is a pair p,q € P, and plg(m) is
an emission (¢?p(m’') is a reception) on this channel for any m,m’ € M. A word
w € £* is B-bounded if, for any prefix v of w and any channel ¢, the number of
emissions on ¢ in v exceeds the number of receptions on ¢ in v by at most B.

A MSC X is V-B-bounded if every linearization w € Lin(X) is B-bounded. A
MSC X is 3-B-bounded if some linearization w € Lin(X) is B-bounded. A set of
MSCs X is 3-B-bounded if all MSCs X € X are 3-B-bounded; X is existentially
bounded if it is 3-B-bounded for some B. Let Lin®(X) denote the set of B-
bounded words w in Lin(X). Clearly, any X with a regular representative set
is existentially B-bounded for some B, but it may not be V-B-bounded for
any B. Conversely, when an MSC-language X is 3-B-bounded, Ez'nB(X) is a
representative set for X', but it is not necessarily a regular language.

Proposition 2. Lin® (X, || Xy) = (Lin®(Xy) || Lin® (X)) N Lin®.

The above result shows that the mixed product behaves nicely with respect
to bounded linearizations. If A} and A5 are V-B-bounded, then Lin(X;) =
Ez'nB(Xi), and using Prop. 1, their product is also V-B-bounded. However, it
may occur that both &} and &> are 3-B-bounded but their mixed product
is not existentially bounded. For instance, for all j, let X{ be the MSC with
j messages m; from p to ¢ and Xg be the MSC with j messages mo from
¢ to p. All these MSCs are 3-1-bounded since (plg(mi)q?p(m1))! € Lin(X7)
is 1-bounded. Define &y = {X{ | 7 > 0} and X, = {XJ | j > 0}, thus

8 Philippe Darondeau, Blaise Genest, and Loic Hélouét

Xy, Xy are 3-1-bounded, but X; || X is not IF-B-bounded for any B since
Msc(plq(m1)B(q'p(ms)p?q(ms))Bq?p(my)B) € & || Xs, but it is not I-(B — 1)-
bounded.

Definition 6. Given an MSC X = (E, \, i1, (<p)per) and a non-negative inte-
ger B, let Revp be the binary relation on E such that e Revg e’ if and only if,
for some channel ¢, e is the i-th reception on channel ¢ and €' is the i + B-th
emission on channel c. We also define Revsp = Up'>pRevp:.

Proposition 3 (lemma 2 in [11]). A MSC X is 3-B-bounded if and only if
the relation < U Revp is acyclic, if and only if the relation < U Revsp is acyclic.

If X is 3-B-bounded then X is 3-B’-bounded for all B’ > B, because
Revp is included in the least order relation containing Revp and U,cp <p-
For instance, in Msc(p'q(m1)® (¢'p(ms) p?q(m2))? q?p(m1)?) let (a;, b;) denote
the i-th pair of events (plg(mi),q?p(m1)) and (c¢;,d;) the i-th pair of events
(q'p(m2),p?q(m2)), then ap <, di Rev(p_1)cp <, b1 Rev(p_1)ap is a cycle.

5 Monitored product of MSC-languages

It is important to analyze formally MSC-languages, since following paths in
MSC-graphs does not help grasping all the generated scenarios. Most often, in
decidable cases [7,16], the analysis of an MSC-language X' amounts to check
either the membership of a given MSC X, or whether Lin(X) has an empty
intersection with a regular language L (representing the complement of a desired
property). In the case of a product language X} || X2, membership can be checked
using the projections, since X € X; || A5 if and only if m;(X) € &; fori =1,2.
However, in order to analyse regular properties of £(G1) || £(G2), one often
needs computing a safe CMSC-graph G such that £(G) = £(G1) || £(G2). In
particular, one needs an existential bound B for the product. Unfortunately, the
theorem below shows that one cannot decide whether such G exists when G4
and (G5 share events on two processes or more.

Theorem 1. Let G1,Gs be two (safe C)MSC-graphs. It is undecidable whether
L(G1) || L(G2) is existentially bounded, in both weak and strong FIFO semantics.

Proof. We show that the Post correspondence problem may be reduced to the
above decision problem. Given two finite lists of words w1, ..., u, and wy,...,w,
on some alphabet X' with at least two symbols, the problem is to decide whether
Uiy Wiy -+« Usy, = Wiy Wi, ... w5, for some non-empty sequence of indices iy - - - ig.
This problem is known to be undecidable for n > 7. Given an instance of the
Post correspondence problem, i.e., two lists of words uy,...,u, and wy,...,w,
on X, consider the two MSC-graphs G; = (V,—, A1, VO, V) and G5 = (V,—
, Ao, VO, V), with the same underlying graph (V,—,V° V7), constructed as
follows (G is partially shown in Fig. 3).

Products of Message Sequence Charts 9

Figure3.

Define V' = {vg,v1,...,0n,vpt1} with VO = {1} and VI = {v,11}. Let
vo — Vi, V; = vj, and v; = vppq for all 4,5 € {1,...,n} (where possibly i = j).
Finally let v,,41 = vnt1-

For each v € V', A;(v) is a finite MSC over P; = {p,q}, A1 = {1,...,n}UX,
My = {my,m}}. Actionsi € {1,...,n} represent indices of pairs of words (u;, v;)
and they occur on process p. Actions o € X represent letters of words u; and they
occur on process ¢. Let A;(vg) be the empty MSC. For ¢ € {1,...,n}, let A;(v;)
be the MSC with plg(m;) followed by p(i) on process p and with ¢7?p(m;) followed
by the sequence ¢(0;1) q(0i2) ...q(0i4,), representing u; = 041 04 2...0:4;, ol
process ¢. Finally let A1 (v,41) be the MSC with the events plg(m}) and ¢?p(m})
on processes p and g, respectively.

For each v € V', A3(v) is a finite MSC over P> = {p,r,q}, A2 ={1,...,njUX,
Ms = {ma,my,m4}. For i = 0,...,n, As(v;) is defined alike A;(v;) but now
replacing the message plg(mi),q?p(m1) with two messages plr(ma),r?p(ma),
rlg(my), ¢?r(m%) and u; with w;. A3(vp41) is the MSC with the events p?q(m4)
and ¢!p(m}) on processes p and ¢, respectively.

For i = 1,2 let X; = £(G;), then Lin'(X;) is a regular representative set for
X;. If the Post correspondence problem has no solution, then X || X is empty,
hence it is existentially bounded. In the converse case, X; || X> contains for all
B some MSC including a crossing of B messages m) by B messages mj, hence
it is not existentially bounded. O

The proof of Theorem 1 is inspired by the proof that £(G1) N L(G2) = 0
is undecidable for generic MSC-graphs G1,G> [15]. Theorem 1 motivates the
introduction of a monitor process mp and a monitored product in which all
synchronizations are (internal) events located on the monitor process. The mon-
itored product X1 ||mp X2 of sets Xy and Ay on monitor process mp € P is
defined only if S€ = {mp(a) € £' N £?}. For instance, in the monitored prod-
uct £(G1) |lmp £(G2) of the CMSC-graphs of Fig. 1 and Fig. 2, we can choose

10 Philippe Darondeau, Blaise Genest, and Loic Hélouét

mp = server and S = {mp(sync)}. The adequacy of the monitored product
to weave aspects of a distributed system is confirmed by the following theorem,
which holds for both strong and weak FIFO semantics. We conjecture that the
problem is PSPACE-complete in the strong FIFO case.

Theorem 2. Given two safe CMSC-graphs G1,G4, one can decide whether the
monitored product of L(G1) and L(G2) is I-bounded. The problem is co-NP-
complete and in PSPACE for weak and strong FIFO semantics respectively.

The next section sketches a proof for this theorem. Notice that the proof is
trivial in the case where G1,G2 have disjoint sets of processes except for mp.
Then, £(G1) |lmp £(G2) is existentially bounded (with the bound given by the
maximum of the minimal existential bounds of £(G;) and L(G2)).

6 Checking Existential Boundedness

We prove Theorem 2 in two stages. First, we show that if the monitored product
L(G1) |lmp £(G2) is existentially bounded, then this property holds for a ’small’
bound with respect to the size of G; and G>.

Proposition 4. Given two safe CMSC-graphs G1 and Gs, the MSC-language
L(G1) |lmp L£(G2) is existentially bounded if and only if it is existentially B*-
bounded (resp. B®-bounded) for weak (resp. strong) FIFO semantics, where BY =
2K1B', B® = 2K,K3B', |G, is the number of events in G;, B' = (2|P| +2)? x
(1G1+ 1) x (1Ga| + 1), K1 = [P|+ (IP)?/2x (M| x [Gr|+ [Ma] x Ga))2,
Kz = 4EPP(G1| + |Gsll) + (4E|[P? + 2)QIP| + [P/2G)| + [Gal))? and
K3 = (|G1| + |Ga|)/P! x 38(1G1[+]G2l+2)*x(IP)°

Then we show that one can check whether the monitored product of £(G1)
and £(G3) is 3-B-bounded, using the bounds B, B® of Prop. 4. Notice that B*
written in binary is of size polynomial in |G1| + |Ga4].

Proposition 5. Given two safe CMSC-graphs G1,G2> and an integer B, it is
co-NP-complete (resp. PSPACE) to decide whether L(G1) |lmp £(G2) is 3-B-
bounded, for weak (resp. strong) FIFO semantics. The PSPACE result holds
also when B is written in binary.

% Graph representation of monitored products

These two results are obtained using special representations for MSCs con-
structed by monitored product. Let X € X; |lmp X2 then Jw € Lin: X =
Mse(w) and 7;(w) = w; € Lin(X;). The MSC X is determined up to isomor-
phism by its projections on processes, because of FIFO. More precisely, for each
p € P, mp(w) € mp(wy) || mp(wsz). Moreover, for p = mp, mp(w;y) and mp(ws)
have the same projection on SE. Therefore the projection (E,, <,) of X on each

process p may be seen as an interleaving of (E,, <)) and (E7, <?) where the

Products of Message Sequence Charts 11

mp

. %

Figure4. X € X' ||mp X? and the corresponding relations —' U —7, <>

A
-

synchronized pairs of events e; € E,,, and e; € E7, with labels in S are coa-
lesced. Let +— C B, x E2 be the relation comprising synchronized pairs of
events. For each p € P, let =, C E> x E} (resp. =7 C E} x E?) be the relation
comprising ordered pairs of events es ey (resp. e e2) switching from Ez to E})
(resp. B} to E2) in the interleaved sequence (E,, <p). The MSC X may now be
represented by the juxtaposition of X; and X, interlinked with +— and with
the relations —) and — for all p € P. The result is a graph, that we denote
Xi|.,2, With set of nodes E' U E?. Conversely, any acyclic graph connecting X;
and X, with relations —>§) and <— represents a non-empty set of weak FIFO
MSCs X. We say that the transitive closure <) of < —)2, and — is com-
patible with strong FIFO if there do not exist two messages (s,r), (s',r') on the
same channel ¢ such that s < s’ and ' < r. There may be several such MSCs
if for some p the relation =, U =2 U <} U <7 is not a total order on E,.
Otherwise, the original MSC X may be reconstructed from Xy, - as follows: E
is the quotient of E' U E? by the equivalence relation «+— and <=<| |g. For
an illustration, see Fig. 4 where the edges of the graph represent the relations
<!, pi, ¢ (dashed) and —} (dotted). The graph is compatible with strong
FIFO. A unique MSC X can be reconstructed from it, depicted on the right of
the figure. More formally, we can state the following lemma:

Lemma 2. Let Gy and G5 be safe and atomic CMSC-graphs and B an integer.
Then L(G1) |lmp £(G2) is 3-B-bounded if and only if, for any synchronized pair
of MSCs X € L(G1) and Xy € L(G2) with respective sets of events E' and E?,
there is no subset {e1,...,e,} C E' U E? with at most two events in E}, U Eg
for each process p € P such that:

1. for all j, (€j,€(j+1) mod n) belongs to one of the relations <!, Revg, or
E; ng_i fori=1o0r2andpeP,

2. there is no proper cycle in {ey,..., ey} w.r.t. the transitive closure lmp Of
the relation <! U <? U <— U — where +— is the synchronizing relation
among coalesced events, and e — €' if e = e; € E;; and €' = €(j11) mod n €
E3~" for some j € {1,...n}, i€ {1,2} andp € P,

12 Philippe Darondeau, Blaise Genest, and Loic Hélouét

3. in the strong FIFO case, < is compatible with strong FIFO.

The proofs of Prop. 4 and 5 are based on synchronized paths and Lemma 3.
A synchronized path afB --- B,y of G1,G2 is a sequence of pairs of paths a =
(a',a?), Bi = (B}, 82),7 = (v%,7?), where o BF - - - BE~F is a path of Gy, 7se(at)
= nse(a?), mse(B}) = mse(B?) and 7se (') = wse(y?). Furthermore, F is a
loop of Gy, for all ¢, k. Lemma 3 claims that if n is sufficiently large, there exists a
synchronized loop of p; which has no contribution to the ordering between events
in p; and py. This loop can thus be removed or iterated without compromising
acyclicity, and is compatible with strong FIFO if needed.

Lemma 3. Let G1 and G2 be safe and atomic CMSC-graphs, K be an integer
and (a',a?) (B, B7) - Bk B2) (7', 7?) be a synchronized path of G1,G>. Let —
be a partial order on a set E of n < 2|P| events of a' Ua? U~ U~? compatible
with the order of the synchronized path. For all j > i > 1,4 > 0, we denote by
<f,j the relation on (a17a2)(6%5ﬂ%) T [(zlaﬂf) T (]176]2)]£ U (6}(;ﬂ%{)(71772)
generated by the synchronizations and the relation —.

— For alli,j,i,7, <}7j:<},’j,, denoted <, and this relation is a partial order.

— Let K1, K,, K3 be the constants of Prop. 4.

— If K > K, then there exists i such that for all z,y € o' Ua®> Ut U~? and
1 >0, we have x <fl y iff x <y (in particular, <fz is a partial order).

— If K > KyK3 and < is compatible with strong FIFO, then there exist i,]
such that <f’j is an order compatible with strong FIFO, for all | > 0.

% General outline of the proof for Prop. J

Let X € L(G1) |lmp £(G2), thus X may be represented in product form
by Xij,,2 = (X1, Xo, «—, (=%) ;E,Q) Suppose that X is not 3-B-bounded for
some B = 2KB'. By Prop. 3, < URev>pg has a cycle in X.We have Revl 5 U
RerZB C Revsp C 1%61)123/2 U Rev;B/T Therefore, the union of «— and the
relations <?, ReviZKB,, and —)é for i = 1,2 has a cycle ej es... e, with e; # ey
for j # k. We let e,,4+1 = e;. One can assume that ej es...e,, contains no
synchronization event with shared label and at most two events on each pro-
cess p (Lemma 5.5 in [4]), hence m < 2|P|. Furthermore, there is at least one
pair of events (e;,eji1) in Revfg]_, w.lo.g. e Revg, ey, with By > KB'. No-
tice that (ej---ep) is also a cycle for the union of «—, <!, Revl . p,, and
—% N(ej,ej11)j<m for i = 1,2, that is we need to consider only a linear number
of pairs in —1. We construct MSCs X{ € £(G1), X3 € £(G) embedding X1, X,
via ¢ : X; — X such that ¢(eq) ¢(e2) ... ¢(en) is a cycle for ¢p(Revskp)U <x7,
where (X', <x) is the oriented graph obtained by connecting X and X} with
«— and ¢(—=%) N (P(e;), d(ej41))j<m- More precisely, X{, X} are such that
o(e1) Rev12231+1 ¢(e2) and e; Rev}éj ej+1 = ¢(ej) RevgB]_ ¢(ejy1) for j # 1 and
Bj > KB'. As soon as <x: is a partial order (compatible with strong FIFO if
needed), Prop. 4 follows by induction and by applying Lemma 2.

Products of Message Sequence Charts 13

% Sketch of the induction step

For i = 1,2 let p; be the generating path for X; in the (safe and) atomic
CMSC-graph G;. Let e; Rev}Bl ey with By > KB', where eq es ... ey, is the con-
sidered cycle in the union of the relations <’, Revl yp,, =) (i = 1,2), with
m < (2|P]). Thus there exists a channel ¢, such that e; is a reception event on ¢
and e5 is an emission event on ¢. As B; > KB’, at least KB’ — 1 emission events
on ¢ preceding e; in X; are matched by u' with reception events on ¢ following
e1in X;. At least KB’ —1/|G1] of these emission events originate from the same
vertex v of Gq. As (KB'—1)/|G1| > (2|P]+1)? x (|G2| +1) x K and m < 2|P|,
the path p; may be written as UVW such that:

— any event from X; in the cycle e; ...e,, originates from the path prefix U
or from the path suffix W,

— V=ovWVvVav... vV for some k > (2|P| +1) x (|G2] +1) x K,

— €7 and e originate from occurrences of vertices in U and W, respectively. The
reason is that we can always expand a safe CMSC graph G into an atomic
CMSC graph, whose paths give a set of regular representatives bounded
by some B < |G|/2. This also applies to the safe CMSC-graph G;, and
k > K > |G1|: e1 cannot be generated in the path after V).

Since the shared events are on only one process mp, path ps may be written
in a similar form U'v, V{'Vy ... VW' such that Uv and U'vy, resp. Vjv and V},
resp. W and W' synchronize on shared events (notice that if X, Y have no shared
events, then they indeed synchronize). Define inductively for ¢ > 1,v; is the last
node of path V; if the path is nonempty, else v; = v;_1 (V] = € acts as an (empty)
self loop on v;_1). As k > (2|P|+1) |G2| x K and m < (2|P]), there must exist a
strictly increasing sequence of indices j; ... jx such that vj, =v;, = ... =vj, is
the same vertex (of G2) and no event (from X5) in the cycle e; ... ey, originates
from VJ ...V} . Then we let:

1 _ . 2 __ ! ! !
—a =UvViv... Vv, «a —Ufu1V1...Vj171

= By =V Vv and i = V) VL
— ' =Vjeqv...W,and 7* = Vieqr - W

Choose a fixed h € {1,...,K}. As GGy is a safe CMSC-graph, the path
Bl (BE)Bi+2.. . gLy, defines an MSC X|. The MSC X; embeds into X}
with the following ¢ : X; < X| mapping events of X; generated from o'/} - - -
B _1 B}, respectively from S}, ... Bp~", to similar events of X|, then e <! €’ in
X entails ¢(e)<' ¢(e’) in X| (whereas the converse implication needs not hold).
Since e; € ay,es € 1, and there is the same positive number of emission and
reception event on every channel in the loop 3}, of the safe CMSC-graph Gy, we
have ¢(e1) Revl,p, ¢(es). Let ej Reviy eji1. As er,...,en do not occur in V,

forl1<h<K,

e;j and ej1 occur in ol or v, As B; > B/2 > |G1], and p; is a path in the safe
and atomic CMSC-graph G, e; must occur before e;j;;. Therefore, we cannot
have e; in v* and €41 in a'. That is, either e;, e;41 are both in a; or v, or e; is
in ay and ej11 in 4. In the two first cases, we easily have ¢(e;) Rev’;Bj o(ej+1)

14 Philippe Darondeau, Blaise Genest, and Loic Hélouét

in X7. It is also the case in the latter case, in view of requirements of the def-
inition of concatenation, which ensures that if s is the matching emission of e;
and 7 is the matching reception of e;11, then ¢(s), ¢(r) are the matching event
of ¢(e;), ¢(ej+1). The situation is analogous for the second component MSC X,
and we let ¢ : Xo — XJ be the map that embeds X» into the MSC generated
from the path o?f7 --- (87)P1+2 ... g2.42

Let (X', <x+) be the directed graph formed by connecting X and X} with
relation <— plus edges (¢(e;), ¢(ej41)) for all j < m such that e; -5 e;;q for
some i € {1,2} and p € P. By construction, ¢(e1)p(ez) ... ¢p(en) is a cycle of <x-
U Revy g, with ¢(e1)]%61)12]31_1_1 ¢(e2) and e; Revy eji1 = ¢(e;) Revsp; ¢lejr1)
for pairs (ej,ej11) in Revp; with j # 1. In order to validate the inductive proof
of Prop. 4, it remains to show that one can choose h € {1,..., K} such that the
associated graph X' is acyclic (up to short circuits e <— ¢’), and if needed is
compatible with strong FIFO.

The graph formed by connecting X{ and X} with +— is acyclic because «—
concerns only one process mp. Hence without loss of generality, we can write any
cyclein X' in the form ¢(e})g(es) ... g(e},) with {ef,--- e}, } CE ={e1---em},
and where Vj, e5; — ey, and (¢(e5;11), #(e5;,2)) belongs to the reflexive and
transitive closure of the union of <y, <x; and <—. In particular, any e} belongs
either to a!,a?,v! or 42. Lemma 3 (that we prove below) claims that one can
choose h € {1,..., K} such that — N(ej, ej+1)j<m does not conflict with the
reflexive and transitive closure of the union of < x1, <xy and <— (that is we
cannot have (e,e') in this transitive closure and e’ — e). Therefore, for the
considered h, (X', <x/) is an acyclic graph, compatible with strong FIFO if
needed.

% Proof of Lemma 8 in the weak FIFO setting.

Let (a',a?)(B1.B3) - (Bk,. B%,)(v",7?) be a synchronized path of G1,Go.
We are interested in the order relation between events in al,a?,v! and 72. As
(1 is safe and atomic, and all factors ﬂ; are loops in GGy, for all p,q € P and
m € My, the number of emission events p!q (m) in excess over reception events
q?p(m)in o' - B} ... B} does not depend on j for 0 < j < K;. Let N(p,q,m)
denote this number. Analogously, the number of reception events ¢7p(m) in
excess over emission events plq(m) in 8} - 8j,, ...7" does not depend on j for
1<j < K;+1, and it is equal to N(p,q,m), since G is safe (hence X; is an
MSC). Moreover N(p,q,m) < (|G1]/2). Similar remarks apply to Gs.

For all 0 < j < n < Kj, the dependence relation O(j,n) between the events
from (alva2)(:8%a ,8%) U (]1'7176]2'71) and from (ﬂ’}t-i—l’ :872L+1) T (IB}Q) 6%1)(71772)
induced from (8}, 53)--- (85, 67) may therefore be represented as a relation on
partially ordered sets of generic events A and A’ as follows. Let A be the set of
events (p,i) and (p,q,m,l) for all p,qg € P, i € {1,2}, m € My UM, and I <
N(p,q,m). The event (p, i) stands for the last event on process p in a’f3} - - - ;71,
and the events (p,q,m,1) < --- < (p,q,m, N(p,q,m)) stand for the N(p,q,m)
last emissions plg(m). We also let (p,q,m,l) < (p,i) for all p,q,m,l with m a
message type from component i, but (p,q,m,l) and (p,q’,m’,1") are unordered

Products of Message Sequence Charts 15

as soon as q # ¢’ or m # m'. Similarly, let A’ be the partially ordered set of
events (p,1)" and (p,q,m, 1), where (p,)’ stands for the first event on process p in
o'B -+ By, and the events (p,q,m,1) < --- < (p,q,m, N(p,q,m))" stand for
the N (p, q, m) first receptions ¢?p(m). In the same way, we let (p,i)’ < (p,q,m,1)’
for all p,q, m,l with m a message type from component i.

For 0 < j <n < Ky, let O(j,n) be the binary relation on A x A’ such that
(6,0") € O(j,n) if the event § from A is smaller than the event ¢’ from A’ in
A(B},B7)-- .- (B, Bn) A" In order to complete establish the proof of Lemma. 3,
it suffices now to show that:

- O(1,h—1) = 0O(1,h) for some h < K,
— O@,n) =0(,1) o O +1,n) for j <1 < n, where O(j,1) o O(l + 1,n) means
O,)oId o O(l + 1,n) with Id' : A" - A: Id' (') = e.

These relations entail O(1, K1) = O(1,h—1)oO(h, K1) = O(1,h) o O(h, K3).
Therefore, for any pair of two component CMSCs Y, Z, the order between the
events from Y and Z is the same in Y - (8{,57) -+ (B, ,Bk,) - Z as in Y -
(ﬂ%aﬂ%) T (6[11717612171) : (6/1175121)) (ﬂ}lzaﬁlzl) . (ﬂ]11+176[21+1) T (ﬂ}(17/3%(1) - Z. This
establishes the claim at the end of the induction step in the proof of Prop. 4.

The relation O(j,n) = O(j,1)oO(l+1,n) is obvious, once it has been noticed
that an event p!q(m) emitted but not received in (8}, 55)... (8}, 5}) is linked
with a matching q ? p(m) received but not emitted in (8}, 57,,) ... (8%, 52) by
plg(m) < (p,q,m,i) and (p,q,m,i) < q?p(m) for some i < N(p,q,m). Finally,
forall j < k, O(1,7) C O(1, k), and the maximal length of an increasing chain of
binary relations on A x A’ containing Id’ is strictly bounded by K1 = |A||A!]| <
[2|P|+ (|P])?/2 x (|My] x |G1| + |Mz| x |G2|)]?. Therefore, O(1,h—1) = O(1,h)
for some h < Kj.

% Proof of Lemma 8 in the Strong FIFO case.

Let X;, X, be the MSCs generated from the paths a'f} --- Bk, g, 7" and
P By
[3}(3(1.71)“ .. Bh,i» 3 = 1,2, and denote by 8; = (8i', 5;?) the sequence of syn-
chronized loops (6}(3(1._1)_'_1, ﬂf(g(i_l)_i_l) -+ (Bkyi> Bieys)- Adapting the proof of
the weak FIFO case, there exists at most (2|P| + (|P|)?/2 x (|G1| + |G=|))?
synchronized loops (8})ier such that O(1,i — 1) # O(1,4). By monotonicity
of O(1,7), we can iterate (or delete) any subsequence of synchronized loops
(8L, B2)---(Bt,3?) of B without affecting O(1,4, whenever O(1,i—1) = O(1,1).

Let £ >0 and i > 1, and X, X} be the MSCs generated from a!f] - - - (3})*
e 6}{21{371 and o2 --- (B2)¢-- ‘5%{21(372 respectively. Assume that the result-
ing order < on (X7, X5) is not compatible with strong FIFO. As X| and X} are
strong FIFO, there exists p(s) = r on some channel ¢ in X| and u(s’) = r' on the
same channel ¢ in X}, such that e.g. s < s’ and r' < r. There may or not exist
e,el e Ewiths<e<e <s orr <e<e <r.E.g., assume that there exists
ei,ej € B with s <e; <e; <s'. Let s} be the first emission of X4 on ¢ such that
ej < sh, and s be the last emission of X| on ¢ such that s» < e;, and denote

respectively. We make packets of K3 consecutive loops ng =

16 Philippe Darondeau, Blaise Genest, and Loic Hélouét

by 72,4 their matching receptions. We have so < e; < e; < s,. We also have
s < s9 and s, < §', and since X, X} are strong FIFO, we have ry < r' < r < ra.
That is, the messages (s2,72); (s5,75) show that X' is not strong FIFO. We call
f a critical event of X ||mp X4 if f is the first (resp. or last) emission or re-
ception events of its component on its channel after (resp. before) every e; € E.
That is, if there exist matching messages (s,7), (s',r') and events e, e’ € E with
r"<rands<e<e <s;ors<s andr <e <e <r, then we can choose
s,r, s, 7" in the set of critical events and in the set of events matching critical
events. We call (s,r) a critical message if e € {s,r} is critical, and we call it the
critical message associated with e. If we iterate or delete a synchronized loop
while keeping the same critical messages, and their events are ordered in the
same way, then since the original order (without loop iteration) is compatible
with strong FIFO, there does not exist critical messages (s,r), (s',7') and events
e, e Ewithr <rands<e<e <ssors<s andr <e<e <r;thatis
there does not exist messages (s,7), (s',r') and events e, e’ € E with ' < r and
s<e<e <sjors<s andr' <e<e <r. There are at most 2|E| x |P|?
critical events. If O(1,i—1) = O(1,14) (that is 8; does not create new order with
respect to events in a',a?), iterating the synchronized loop 3! does not change
the first event of each type after any distinguished event e € E. In the same way,
it O(i, K2 K3) = O(i+1, K3 K3), then iterating the synchronized loop 3} does not
change the last event of each type before any distinguished event e € E. Adapting
the proof for weak FIFO, there may be at most 2(2|P|+ (|P|)?/2x (|G1|+ |G=2|))?
loops with either O(i, K3 K3) # O(i + 1, K2 K3) or O(1,i — 1) # O(1,14). If one
wants that iterating] does not change the critical message associated with f,
seeing that there are at most (|G| + |G2]|) loops containing a send and a receive
on the channel of f between f and its matching event, one should exclude at
most 2|E||P|*(|G1| + |G2|) other loops. At last, if one wants that iterating S
does not change the ordering between the critical events or their matchings, one
should exclude at most 4| E| x |P|>(2|P|+ (|P])?/2x (|G1|+ |G=]|))? other loops.
On the whole, one excludes less than K5 loops.

Thus, if K = K»K3, we can find a synchronized loop S} made of K3 loops
Brs(i—1)+1 - - Bixs that can be iterated (or deleted) without affecting the or-
der between the events of E and such that there does not exist two messages
(s,7),(s',r") and events e, e’ € E with ' <r and s <e<e' < s';0r s < s and
r’ < e <e' <r. We assume without loss of generality that ¢ = 1, that is 5] can
be iterated in such a way. The above reasoning does not suffice to establish the
lemma since synchronization on shared events taken alone may create incompat-
ibility of < with strong FIFO. In order to establish Lemma 3, it suffices now to
show that for any synchronized path (o', ?)(81, 67) - - - (Bk,, Bxk,) (7", 7*) and
relation — on (o' U~') x (a? U+?) compatible with strong FIFO, if C(< 2|P|?)
channels (p, ¢,) are used in the loops (6], 57) - - - (B, B%k,) and D(C) = ((|G1]+
|Ga|) x 31/3(1G11+1G2)* C*+[P|(|Ga|+]G2])|CP < K3, then there exists i < j < K3
such that for any ¢ > 0, the synchronized path (at,a?)(8%, 8%)---[(8}, B?) - - -
(B}, BN -+ (B, » Bk,) (7", 7?) together with the relation — is compatible with
strong FIFO. We establish this fact by induction on C'. Remember that incom-

Products of Message Sequence Charts 17

patibility with strong FIFO may result only from synchronizations on shared
events of [(3;,57) -~ (B}, 87)]-

Assume that no channel is used in 8], then D(0) = 1, and any choice of i, j is
right. Else, assume that C' +1 channels are used. If we can find D(C) consecutive
synchronized loops (8}, 8?) - (i1+D(C’)’6i2+D(C)) which do not use one of the
channels, then we can apply the inductive step. Otherwise, seeing that D(C +
1) > D(C) x (|G1] + |Ga|) x 3AHPIIC1+G2D(C+1)+(1G1I+G2D*(C+1)” | we consider
the 32/PI(IG11+]G2)(C+1)+(|G1l+IG2)*(C+D* ¢ongecutive synchronized loops B =
(Bix ey (GGl Pixnyxiai+ean) Bliryxnieyxen+ical) -1
ﬂ(2i+1)><D(C)><(|G1|+\G2|)—1)‘ In each loop (37;, we thus find at least (|G1| + |G2])
messages sent and received on every channel used. Since N(p,q) < |G1| + |G|,
no message sent before 5”; is received after 87,1 1.

Let j < K35. Every unmatched reception r of the synchronized loop (”;, ﬂ”?)
is represented as (p, ¢, k, 1) if it is the [-th unmatched reception on channel (p, q)
and component k € {1,2}. Let G = {(p,q,k,1),(p, k) | p,g € P,k € {1,2},1 <

(IG1| +1G2|)}. For g € G and z an event of (87}, 87%), we let g < z if either

— g = (p,k) and there exists y in (8”},3”3) on process p and component k
such that y < z,

— Or g = (p,q,k,1) and z is after (for <) the I-th unmatched reception on
channel (p, ¢) and component k.

In the same way, we define x = (p,q,k,l) if x is this unmatched recep-
tion, and = < (p,q, k,l) if = is before (for <) this unmatched reception. We
define two other relations OS;,0S;}, on G x {(p,q,k,1)}. Let OS; (p,q,k,1)
iff z < (p,q,k,1). Moreover, let x OS; (p, g, k,1) iff there exists a message (s,r)
sent and received in (57}, ”3) on channel (p,q) and component 3 — k such
that * < s and 7 < (p,q, k,[). Notice that OS; C OS;. There are less than
32PIG1I+|G2D(C+1)+(G1l+]G2)*(C+1)* poggible relations (05, 0S'), so among the
32‘7)‘(‘Gl|+‘G2|)(C+1)+(‘G1|+‘G2D2(C+1)2 loops’ there are two loops B”ia B”j-l-l with
(08;,08]) = (0Sj11,08). Now, the synchronized sequence (o', a®) (51, 577)
(BB (BB - (B ey B b)) (7, 72) with relation —,
is compatible with strong FIFO.

If it was otherwise, there would exist a pair of messages (s1,71), (S2,72) on the
same channel p, g such that s <’ s’ and r' <’ r, where we denote by <’ the order
induced from <', <? —, ¢ when the loop (8”},8"7)---(87],53) is iterated
£ > 0 times. Let < denote the order in the original path, without iteration.
Since by construction the non compatibility with strong FIFO can come only
from synchronizations, it means that the orders s <’ ', 7' <’ r follow the paths,
that is r is in a copy of 37;, and s in the copy of 37 ; immediately before this copy
of 37; (else the two messages (s,r),(s',7’) would belong to the same loop £}/,
and < would not be compatible with strong FIFO). That is, r is an unmatched
reception, say (p, q,1,1). The choices for s’,r’ are either:

— &' is in the copy of 8”7 and 7’ is in the copy of 3”;. Then r' is an unmatched
reception, let say (p,q,2,k). Then we have (p,q,2,k)OS;(p,q,1,1), that is

18 Philippe Darondeau, Blaise Genest, and Loic Hélouét

(p,q,2,k)08;4+1(p,q,1,1), and we reach a contradiction as s < s’ and < is
not compatible with strong FIFO, a contradiction.

— both s, are in the copy of 5 ;, then there exists ' < z in f;, y < 7 in §;
with y € G and either z and y are matching emission and reception or are
on the same process, then yOS;(p, ¢, 1,1), that is yOS;11(p, ¢, 1,1), that is
r' precedes the reception (p,q,1,1) of (8”7}, ,,5",,) and we have < is not
compatible with strong FIFO, a contradiction.

— both s',r" are in the copy of 57;, and then there exists s < z in §;, y < s
in 3; with y € GG, and either 2 and y are matching emission and reception
or are on the same process, and ' < r in §;. Then yOS](p,q,1,1), that is
yOS’ . 1(p,q,1,1), that is < is not compatible with strong FIFO, a contra-
diction.

% General outline of the proof for Prop. 5

In order to conclude that £(G1) ||mp £(G2) is not 3-B-bounded, one should
search for MSCs Xy € £(G1), X2 € L(G2), and X € (Xi |lmp X2) such that
<x URevp contains a cycle. We claim that there cannot exist any function
f :IN = IN, possibly depending on G; and G5 but not depending on X; nor on
Xs, such that X when it exists can be found in the set Msc(Lin?®) (X1 |lmp
X5)). An illustration is given in Fig. 5: for all n, X} and X, are 3-1-bounded,
X" € (X7 |lmp X2) is not 3-1-bounded, and Y™ € Msc(Lin™ (X7 |lmp X2))
is 3-1-bounded. Linearizations of products of MSCs are therefore of little help:
X1 |lmp X2 must be analyzed as a set of graphs even though X; and X, are
defined by paths p; and ps in G; and G5, hence by linearizations.

Xr Xo
@ Syn
n =

— @Syl

Figure5. Two MSCs Y™, X™ in the monitored product of X7 and X»

In the weak FIFO setting, we use a small model property. Assume that the
product of £L(G1) and £L(G2) is not existentially B¥ bounded. We apply Lemma 2

Products of Message Sequence Charts 19

to obtain a synchronized pair of paths pi, p2 of G1,G9, with a set E of at most
2|P| events, and a relation —€ E x E which creates a cycle with <! URev,,.
By contradiction, assume that the minimal size of such a synchronized path
(p1,p2) (that is its number of transitions) is larger than ((4|P|B* + 1)K, B’,
then it contains (4|P|B" + 1) K; synchronized pairs of loops. Applying Lemma 3
with ¢ = 0, we know that there are 4|P|B" + 1 loops which can be individually
deleted without changing the order on E. There are at most 2|P|B* messages
which can affect the Rev. relation, hence 4|P|BY loops which contain some
emission or reception of such messages. Therefore, one synchronized pair of loops
can be deleted without changing the order on E nor the Rev,, relations, which
contradicts the minimality of p;, po. To obtain a co-NP algorithm, it suffices to
guess a path of G; and a path of G2 of size polynomial, to guess 2|P| events,
and to check in polynomial time that there is no cycle in <! U <2 U < U =,
where there is a cycle in <! U <? U +» U — URev},,. Notice that we cannot do
the same in the strong FIFO setting, since the exponential bound B® would lead
to a co-NEXPTIME algorithm. Instead, we construct a finite automaton, whose
language is empty iff the product is existentially B® bounded. Each state can be
described in polynomial space w.r.t. |G1]|,|G2| and ||B?|| = log,(B?) written in
binary. We present the construction first in the weak FIFO case since it gives a
deterministic algorithm.

% Construction of the automaton for Prop. 5 in the weak FIFO setting.

Since G; and G are safe and atomic, the difference between the number
of events plq(m) and ¢?p(m) varies between 0 and |G;|/2 along any path of
G;. Relying on this crucial property, we construct a finite non deterministic
state machine that explores all synchronized pairs of paths p1, p2 in G; and G,
selects on the fly a set E of at most 2 X [P| events e ...e,, constructs on FE
a binary relation —C U; U, (E} x E3~) such that the transitive closure < of
<! U <? U ¢ U — is acyclic, and keeps in each state the relations < and
Revy, on the current set E. Notice that if Revp # Revly; U Rev; as is the case
in strong FIFO, then we may not compute Revp precisely. However, computing
Revy and Revy suffices because Revi; U Revl; C Revp C Revp j, U Revp . A
state is final if and only if a cycle is found in (E,< URev}) at this state. By
Lemma 2 and Prop. 4, £(G1) |lmp £(G2) is not 3-bounded if and only if some
reachable state is final. The statement of Theorem 2 follows therefore from the
finiteness of the construction.

Each state s of the non-deterministic automaton should contain at least:

1. a pair of vertices (v1,vs) reached from the initial vertices of Gy, G2 by syn-
chronized paths p1, p2 such that final vertices of G, G2 may be reached by
synchronized continuations of these paths,

2. the set £ = {ey,...,e,} of distinguished events that have been selected
among all those generated by p1, p2,

3. the restrictions on E of the relations < and Revl;.

20 Philippe Darondeau, Blaise Genest, and Loic Hélouét

The states of the machine should provide enough information to update (E, <
, Rev’y) when constructing new states from existing states. Assume that a pair of
vertices (v1,v2) has been reached by synchronized path (p1, p2) and the current
state is (vy,v2, E, <, Revl,...) where E = {ey,...,e,}. A new state may result
from taking an edge v; — v} in Gy, or an edge vo — v} in G, or two edges
vy — v} and vy — v} if v] and v} have the same label in SE. In the last case,
two synchronized events are generated from v and v} on the two copies of the
monitor process. Emissions and receptions generated from G; or Gy may be
inserted or not in the set of distinguished events E = {ey,...,e,}. Local events,
and in particular synchronized events, will never be inserted in this set: they
cannot belong to a cycle {ej,...,e,} since the conditions in Lemma 2 forbid to
have three events in F on the same process.

Recall that < is the transitive closure of the union of <!, <2, +—, and —
where relation — is defined on E while relations <!, <2, and +— are defined on
supersets of E, namely E', E? and E' U E? where E' denotes the collection of
all events generated from path p; in G;. Also note that <!, <2, +— are totally
determined by paths p;, po whereas — is not. Suppose e.g. that an edge vi — v
has been taken in G; and one wants to insert the new event €' generated from
v} into the set of distinguished events {e1,...,e,}. Possibly e < €’ for some e
in {e1,...,e,} , because e = foRyf1...Ryfr = € for some events fi... fr_1
outside {ey,...,e,} and corresponding relations R; in {<', <? +—}. For each
distinguished event e € E, the current state of the non-deterministic machine
should therefore display the set Op(e) of all pairs (p, k) such that e < €' will
hold whenever a new event €’ is generated from G; on process p.

Now, these sets Op(e) must in turn be updated whenever new events are
generated by moving from v; to v{ or from vy to vh or both. There may be three
reasons for an update: i) relation +— increases as a result of a synchronized
move, ii) relation — increases because the event generated from v} is selected
for insertion into F, and there is already in F a distinguished event generated
on the same process p from G3_;, i) the newly generated event is a reception.

Consider case (iii). For any event e generated from G; on process p, as soon
as some message m € M; sent after e from process p to process ¢ is received,
(g,1) should be inserted in Op(e). In order to update Op(e) at the right time,
one should know from the current machine state, for each process ¢ and for
each message m € M;, how many events p!q(m), up to and including the
first instance after e, have not yet been matched by reception ¢ 7 p(m). For
each channel ¢ = (p,m,q), let Og(e)(c) denote this number (this notation for
channels is not ambiguous since M; and M, are disjoint sets). Things work as
follows. When a distinguished event e generated from G; on process p is inserted
in E, Op(e) is initialized with (p, k). At the first time an emission p!q (m) with
m € M, is generated after e in p;, the counter Og(e)(c) is set to the number
of messages stored in the channel ¢ = (p, m, ¢), including the message produced
by this emission. Og(e)(c) is decreased by one each time ¢ receives m from p.
When Og(e)(p,m,q) reaches 0, (q,i) is inserted into Op(e). Similar counters

Products of Message Sequence Charts 21

Os(e)(¢’',m’,r") are maintained for all processes ¢’ and content m' € M; (j =1
or 2) such that (¢',j) € Op(e).

For case (i), the update is simple: (mp,1) is inserted into sets Op(e) that
contained only (mp,2) and conversely. Case (i) is a little more delicate. Let
e’ = ent1 be the new event inserted into E, and let e be the event already
present in E such that e resp. ¢’ are on the same process p of G; resp. Gs_;.
Both orientations e — €’ or e/ — e are a priori possible. Updating < with e — €’
cannot ever introduce circularity in <. In contrast, updating < with ¢/ — e
might result in circularity. Circularity of relation < must be avoided by explicit
checking.

It remains to consider the updating of relation Revy on E. Assume that
e and €' are two distinguished events in E and eRevie’, hence e and €' are
labeled with ¢ ? p (m) and with p!q (m), respectively. The event e may have been
generated before e’ but the converse is also possible. Therefore, for detecting at
run time that eRevie’, one must anticipate on these two events. The right
time for predicting eRevie’ is when generating the emission f to be matched
by the reception e, i.e., the B-th event p!q(m) before e’ (the event f needs
not be selected for insertion into E). One needs two counters R,(c) and Rs(c)
for channel ¢ = (p, m, q), initialized just after generating f. R,(c) is initialized
with the number of messages stored in channel ¢ immediately after f. Rs(c) is
initialized with the value B. R.(c) and Rs(c) are decreased by one each time
a reception ¢ ? p (m), resp. an emission p!q(m) is generated. The event e, resp.
the event €', is inserted into E when R, (c), resp. Rs(c), reaches the value 0. The
relation eReviye’ is recorded in the current state when e and e’ have been both
inserted into E.

Whenever Revi, or < is updated, if some cycle appears in < U Revk, the
current state is declared final, and the construction of new states is stopped,
with the diagnostic that £(G1) |lmp £(G2) is not 3-B-bounded. Otherwise, the
construction is pursued until no new state can appear, which must occur sooner
or later since the information contained in (vq,vq, F, <, Revg, Op,Og, R, Ry)
is bounded (for all channels ¢, Os(e)(c) and R,(c) are uniformly bounded by
K =maz(|Gil,|G2])/2).

A pseudo-algorithmic description of the construction is given hereafter. Let
Ch denote the set of channels (p,m,q), where p,q € P and m € M; U M..
For each channel ¢ = (p,m,q), let head(c) = p and tail(c) = q. Let P; and
P2 be two disjoint copies of P, with (p,1) € Py and (p,2) € P, for all p € P.
E = {1,...,n} stands for the set of distinguished events, hence n’ := n + 1
means the insertion of a new event in F, and for convenience, we let n’ denote
this new event. Finally, K = maz(|G1|,|G2])/2.

A state is a tuple s = (vy,va, count,n, P,rev, <, O, R) as follows:

— v; is a vertex of the CMSC-graph G; (i = 1,2),
— count : Ch — {0,--- , K} counts the messages stored in each channel,
— n < 2.|/P| counts the distinguished events,

22 Philippe Darondeau, Blaise Genest, and Loic Hélouét

— P : E — P UP, indicates for each distinguished event on what process and
from which component G; or G5 it was generated,

— < C E x FE is an order relation,

— rev: EUCh — EUCHh is a partial function interpreted as follows: rev(c) = ¢
for ¢ = (p,m,q) means that two events e and e’ such that eRevge’ are
expected at both ends of channel ¢, rev(e) = ¢ means that an event e’ such
that eRevpe' is expected on p, etc...

— O:e— (Op(e),0s(e)) where e € E, Op(e) C Py UP, and Og(e) : Ch —
{0,1,--- , K, +o0},

— R:c— (Ry(c),Rs(c)) where c € Ch, R,(c) € {0,---, K, +oc} and O;(c) €
{0’ ---, B, +OO},

The components of the initial state are the vertices v?, v9 and +o00, 0 or § for
all the rest. A new state s’ = (v}, v}, count’,n', P',rev’, <', O’ R') is constructed
from s = (vy, v, count,n, P,rev,<,O,R) if and only if it may be produced by
the following pseudo-algorithm (by default z' = z for all state components z):

1. choose edges of CMSC-graphs
v; >;v;in Gy fori =1ori=2.
If the label of v; does not belong to SE, vi_; = vs_;.
Otherwise, vs_; —3—; v4_; such that v} and v}_; have the same label;
for each e € E such that (mp,1) or (mp,2) belongs to Op(e), Op(e) =
Op(e) U {(mp, 1), (mp,2)}.
If no synchronized paths from v}, v} can reach final vertices in Gy, G>, no
new state s’ is produced.

2. if v} is an emission on channel ¢ = (p,m,q)
count'(c) = count(c) +1,n' =norn' =n+1.
O%(e)(c) = min(Os(e)(c), count'(c)) for every e € E such that (head(c), j) €
Op(e) for j =1 or 2 (with head(p,m,q) = p and tail(p,m,q) = q).
Let R(c) = (R, Rs). R'(¢) = (Ry, Rs — 1) (with 0-1=0).
If R(c) = (400, +00) then R'(c) = (+00, +00) or R'(c) = (count'(c), B) and
rev'(c) = c.
If R, = 1 then n’ = n 4+ 1 and according to the case: if rev(c) = ¢ then
rev'(c) = n’, else rev’(e) = n' for the (unique) e € E such that rev(e) = c.
Finally, if n' = n 4+ 1 then P'(n') =i and O%(n') = {(p,9)}.

3. if v} is a reception on channel c(p,m,q)
count'(c) = count(c) —1,n" =norn' =n+1.
O%5(e)(c) = Os(e)(c) — 1 for every e € E such that (head(c),j) € Op(e) for
j=1lor2.
Let R(c) = (R, Rs). R'(c) = (Ry — 1, Rs) (with 0-1=0).
If R, =1 then n’ = n+ 1 and according to the case: if rev(c) = ¢ then
rev'(n') = ¢, else rev’(n’) = e for the (unique) e € E such that rev(c) = e.
For every e € E, if Og(e)(c) =1 and O%(e)(c) = 0 then
O%p(e) = Op(e) U {tail(c),i}

Products of Message Sequence Charts 23
Finally, if n’ = n + 1 then P'(n') =i and O%(n') = {(¢.%)}.
4. if v} or v} and vi_; are internal events. In this case, s’ = s.

5. update <

If ' = n there is nothing to do. Assume n' = n + 1 and P'(n') = (p,i). If
there are already two events e in E with P(e) = (p,i) or (p,3 — i), no new
state s’ is generated. Otherwise, let e <’ n' for all events e € E such that
(p,i) € Op(e). If there is one event e in E such that P(e) = (p,3 — 1) and
(p,i) ¢ Op(e) then let

— either e <’ n'

— or n' <’ e if this does not create circularity
Close transitively <’. Add O%(e) to O'b(e') whenever e <’ €. For every
channel ¢ and event e € E, replace O%(e)(c) with the least defined value of
O%5(e")(c) for e <" €.
Check <' Urev' for non circularity before generating s’.

% Proof of Prop. 5 in the Strong FIFO settings

In the Strong FIFO case, as we compute Rev’; and not Revp, we consider
{(p,q,1)/p,q € P,i € {1,2}} as the set of channels. We also consider (p, i) as the
set of processes. Notice that count(c) is still a number and not a word, since the
next reception on ¢ from p on any path of a safe CMSC-graph always matches
the first unmatched emission on p to g. Thus, the number rev(p,q,i) that we
compute is exactly Rev’(p, q).

Compared to weak FIFO, we have to check that the product MSC which
is generated and the set of distinguished events F are compatible with strong
FIFO. We now show that it suffices to consider a polynomial number of events
F and the order between them, such that if the restriction of the order to F' is
compatible with strong FIFO, then the order is compatible with strong FIFO.
By contradiction, since both Gy and G2 are assumed to be strong FIFO, assume
that there are two messages, (s,r) on channel (p,q,1) and (s’,r') on channel
(p,q,2), with s < §',r' < r imposed by < U —.

Assume that at the time when 7 is seen on the path, we have the two relations
s < s',r' < r. It means that at that time, s = s was an unmatched emission,
and we denote 7o = r. We also have r' < x < ry with P(z) = P(re). Taking
rh, the last receive of type A(r') such that there exists y with r} <y < ry and
P(y) = P(r3), and s} its matching emission, we have s; = s < s' < s} since Ga
is strong FIFO and ' < rl. That is, (s2,72), (s, ry) is a proof that the order is
not compatible with strong FIFO.

There must be two event e;,e; € F with e; — e; such that for instance
s < e; and e; < s'. Now, consider the last emission s, before e; of type A(s) and
the first emission s after e; of type A(s’). Thus, s < s, and s < s’. Since Gy
and G are strong FIFO, the receptions ro, 75 matching so, s satisfy r < ro and
rh, < r', hence (s2,72) and (s}, 7)) contradicts strong FIFO.

24 Philippe Darondeau, Blaise Genest, and Loic Hélouét

Therefore, it suffices to consider at each state the set F' of events that are
either the first of their type after some e; € E, or the last of their type before
some e; € E or before any event of some process p, or their matching events of
the above events, or unmatched emissions. This set is of polynomial size. The
automaton guesses whether an event belong to F' at its creation. Keeping a
polynomial size information, the automaton can check that no guess was wrong
on the current path.

% Co-NP-completeness reduction

We prove the co-NP hardness of the problem of deciding either the existential-
boundedness or the existential- B-boundedness of the product of languages of two
MSC-graphs. We do not use the contents of the messages, hence the reduction
holds for both weak and strong FIFO semantics. Let ¢ be a 3-CNF-SAT instance,
with n variables and m clauses. This formula is true iff for each clause, one can
choose a literal of the clause to be true, and no conflict occurs on a variable (one
cannot choose a literal and its opposite being true). Let B > m + 1. We build
two MSC-graphs G1 and G5 on processes {p,q,r,p;,p; | 1 < i < n} such that
G4 |lmp G2 is 3-B-bounded iff ¢ is non satisfiable. We let mp = p.

Figure6. MSC M; and MSC-graph G»

Graph (; is made of one node, both initial and final. The node is labeled by
MSC My, which is a synchronization action a on process p, then a message from
p to r, then a message from r to q. For graph G the initial node is labeled with
B+1 messages from p to g. Then G5 has a succession of m choices between three
nodes a;, b;, ¢;, © < m. Then the final node of G5 is labeled by the synchronization
event a on process p. Informally, the m choices correspond to the m clauses, and
a;, b;, c; correspond to the choice of the first, second and third literal true in the
i-th clause. That is, if the first literal in the i-th clause is v;, then a; is labeled by
a message from ¢ to p; and a message from p} to p. If the first literal in the i-th
clause is —w;, then a; is labeled by a message from ¢ to p; and a message from
p;j to p. Any MSC from G corresponds to some choice of literal true in each of
the clauses and vice versa. Assume that two choices of literals are conflicting,
that is we choose v; for clause i and —w; for clause 4'. If ¢ < 4, then all the
receptions on ¢ from p (in G2) are before a, through the sequence of messages
g to p; and p; to p. If i/ < 4, then we have a sequence of messages ¢ to p; and
p;. to p, implying the same dependency. If it is the case, the two messages in G

Products of Message Sequence Charts 25

cannot mix with the B messages from p to ¢ in G2, and the MSC obtained is
existentially K-bounded, for every K > 1.

On the other hand, if no two choices conflict (¢ is satisfiable), there is no
dependency between the receive on ¢ from p and a, hence the first message from
p to ¢ (in G2) can be received after the reception of the message from r to ¢
(in G1), hence after the synchronization a, hence after the emission of the last
message from p to ¢ (in G2), and the MSC is not existentially B bounded. In
order to show the hardness of checking existential-boundedness, it suffices to
replace the MSCs labeling the initial node of G5 by a self loop with a message
from p to g.

7 CMSC-graph representation of a Monitored Product

In the case where £(G1) |lmp £(G2) is F-bounded, one may wish to compute
a safe CMSC-graph representation of this MSC-language, which can be input
to existing tools for analyzing MSC-graphs (MSCan, SOFAT...). For this pur-
pose, we use the results from [4], where a syntax-semantics correspondence is
established between globally cooperative CMSC-graphs [7], and MSC-languages
X with regular representative sets Lin®(X) for some B > 0.

Definition 7. G = (V, —, A,V° V) is a globally cooperative CMSC-graph if
-G is a safe CMSC-graph, and

— for any circuit vy ...v, in G, all CMSCs in the set A(vy) - ... - A(vy) have
connected communication graphs.

The communication graph induced by X = (E, A\, (<p)pep) is the undi-
rected graph (Q,E) with the set of vertices @ = {p € P|(Je € E) Ae) €
SpUR,} and with the set of edges E = {{p,q}| (3e1,e2 € E) (Im € M) A(ey) =
pla(m) A Aez) = q?p(m)}.

Notice that the MSC-graph from Fig. 3 is globally cooperative. Thus, bound-
edness of the product of £(G1) and £(G2) stays undecidable even when both
G1, G4 are globally cooperative (Theorem 1). Quite remarkably, £L(G1)NL(G2) =
() is decidable as soon as G; or G5 is globally cooperative [7].

Theorem 3. Let X be a set of MSCs. The following are equivalent:

- X = L(G) for some globally cooperative CMSC-graph G,

- Ez'nB(X) is a regular representative set for X for sufficiently large B > 0.
Moreover, B and a finite automaton recognizing Ez'nB(X) can be computed ef-
fectively from G. Conversely, G can be computed effectively from L’inB(X).

The statement of Theorem 3 is the same as (a fragment of) the main theorem
of [4]. However, we consider in this paper messages with contents, while [4] does
not. Instead of proving Theorem 3 from scratch, we derive it from [4]. The
strong FIFO case comes directly from the proof of [4]. For weak FIFO, we use
a translation from sets of weak FIFO MSCs to sets of FIFO MSCs with exactly
one (type of) message m (hence they embed in weak FIFO MSCs). In few words,

26 Philippe Darondeau, Blaise Genest, and Loic Hélouét

the translation adds as many processes as types of messages per channel, and
it preserves the existential boundedness of sets of MSCs, although the bound
B may grow to 3B. Once this translation is defined, the proof of Theorem 3 is
almost immediate.

Theorem 4 ([4]). Let X be a set of MSCs. Provided that M contains ezactly
one message and there are no internal events, the following assertions are equiv-
alent:

- X = L(G) for some globally cooperative CMSC-graph G,

- Ez'nB(X) is a regular representative set for X for sufficiently large B > 0.
Moreover, B and a finite automaton recognizing Ez'nB(X) can be computed ef-
fectively from G. Conversely, G can be computed effectively from L’inB(X).

We show that Theorem 4 extends to the case where M is a finite set of
messages, and that it also stays valid when internal events are added.

Given finite sets P, M, and A (of processes, messages, and internal actions,
respectively), let X = (E, A, i, (<p)pep) be a CMSC. We will transform X into
a CMSC X' over a larger set of processes P’ such that X' is a pure CMSC
according to the following definition.

Definition 8. A CMSC is pure if it has no internal events and all messages
have an empty content (that can therefore be omitted).

Definition 9. Let P’ be the union of P and the sets {p(a)|p € P,a € A},
{p'a(m)|p,a € P,p # ¢, m € M} and {q?p(m)|p,q € P,p # ¢, m € M}.
Define X' = (E", N, p',(<},)pep) as the (pure) CMSC with components as
follows (see Fig. 7).

— Each internal event e € E with label p(a) is replaced in E' by four events e,
e', €', €. The events e and € belong to the process p, and e is the immediate
predecessor of € according to <j,. The events ' and e" belong to the process
p(a), and €' is the immediate predecessor of €' according to <;)(a). Moreover,

we let p'(e) = €' and p'(e") =€, hence the labels of these events are respectively
XN(©) = p!(p(a), N(e)=@(@)?p, N =)l N@© =p?pa).
— Each emission e € E with label plq(m) is replaced in E' by three events
e, €', e". The event e belongs to the process p. The events €' and €' belong
to the process p'q(m), and €' is the immediate predecessor of € according to
<;!q(m). Moreover, we let pu'(e) = €', hence X'(e) = p!(plq(m)) and N(e') =
(814 (m)) 7). We let N(e") = (p'q (m))! (a7 p (m)).

— Each reception e € E with label p?q(m) is replaced in E' by three events
e, €', e". The event e belongs to the process p. The events €' and €' belong
to the process p?q(m), and €' is the immediate predecessor of € according to
<;?q(m). Moreover, we let u'(e") = e, hence N'(e") = (p?q(m))!p and N (e) =
p?(p?q(m)). Welet N'(e') = (p?q(m))?(plq(m)).

— For any e1,es € E, we let p'(ef) = €} if u(er) = ez in X.

= Finally, for any p' € P', two events of the process p' are in the relation <}, if
they have been derived respectively from two events in E in the relation <, for

some p € {P}.

lg(m)

(p'a(m))

Products of Message Sequence Charts

| P ! p
3 Igm) ¢ e 3 (M) ¢ e
p(a) unmatched send p!q(m) unmatched receive p?g(m)
| ey [¢ | ¢} Actp(m)
p | L i@mmy) | Apm) £
& p plo(m) | p p2(m)
p q
= 2 2p(m)
matched send p!q(m) and receive g?p(m)
el €L
(g2p(m))
Aq?p(m))
P pla(m) q?p(m) q

Figure7. Transforming CMSCs into pure CMSCs

28 Philippe Darondeau, Blaise Genest, and Loic Hélouét

Any potential circuit in the relation <’ (induced from p' and <, for all

p' € P') must result from some circuit in the similar relation < in X, hence X’
is a CMSC. Clearly, X’ is a MSC if and only if X is an MSC. Moreover, in this
case, the bounded representations of X and X’ may be set in correspondence as
follows.
— Lin®(X") is representative of {X'} if and only if Lin®*?(X) is representative
of {X}.
— the B-bounded representations of X’ rewrite onto the 3B-bounded represen-
tations of X through the following simplification rules:

L p!(p(a)) = p(a)

2. pl(p'q(m)) — plq(m)

3. p?(p?q(m)) — p?q(m)

4. all other labels are rewritten to €.

Given a CMSC-graph G = (V, =, A, V°, V), define now G’ = (V, —, A", VO, V1)
with X (v) = (A(v))’ for all vertices v. Then G’ is a CMSC-graph, and clearly,
G' is globally cooperative if and only if G is globally cooperative. We are ready
to prove that Theorem 4 extends to sets X' of possibly impure MSCs.

The rest of the section is the proof of Theorem 3.

* Suppose X = L(G) for some globally cooperative CMSC-graph G.

Let G’ be defined as above, and let X’ = L(G'). As G’ is globally cooperative,
by Theorem 4, for some B > 0, Lin®(X") is a regular representative set for
X'. The image of Lin”(X’) under the simplification rules is the set of all 3B-
bounded representations of MSCs X in X'. As the image of a regular set under
an alphabetic morphism, this set is regular, and it is a representative set, for X,
since for each X € X, Lin*P(X) is representative of {X}.

% Suppose /Jin?’B(X) is a reqular representative set for X for some B > 0.

Consider the MSC language X' = {X'| X € &A'}.
Lemma 4. Lin®(X") is a representative set for X'

Proof. Suppose for contradiction that some MSC X' € X’ has no B-bounded
representation. Let X' = (E', X', p', (<},)peps). By Prop. 3, there is a cycle in
the relation <’ U Rev’;. Consider a minimal cycle. As X' has been produced from
X = (B, A\, (<p)pep) in X as defined in Def. 9, this cycle may be decomposed
into the two types of segments (of length 6) which are depicted in Fig. 8 (the
fat right-to-left arrows are occurrences of Revs).

It should be clear that whenever €] to eg are joined by a cascade of Revy as
shown in the right part of this figure, the inverse images of e} and e in E (under
the embedding of E into E') are joined by Revp: (in X) for some B’ > 3B.
Therefore, the cycle in the relation <’ U Revl induces a cycle in the similar
relation < U Revp: (in X) for some B’ > 3B. This enters in contradiction with
the assumption that £in®B(X) is a regular representative set for X O

Products of Message Sequence Charts 29

\

Y

P plg(m) q?p(m) a p pq(m) a2p(m) a

Figure8.

Lemma 5. Lin®(X") is a regular language.

Proof. Let & = X(E'), then Lin®(X") is the set of all words w' € (£')* for
which the following requirements are fulfilled:

— the inverse image of w’ under the simplification rules belongs to Lin*?(X),

— for any p', ¢’ € P’, the projection of w' on {(p'!¢’), (¢’ ?p’)}* is a B-bounded
MSC representation,

— for any p € P and a € A, the projection of w' along the process p (resp.
p(a)) belongs to the language (af + &'\ {a,5})* where a = (p!p(a)) and
B = (p?p(a)) (resp. a = (p(a) ?p) and 8 = (p(a)!p),

— for any p,q € P and m € M, the projection of w’ along the process p!q(m)
(resp. p? g (m)) is in the language (af + &'\ {a, 8})* where a = (p!q(m))?p
and 8 = (plq(m))!(¢?p(m)) (respectively, where a = (p?q(m))?(q!p(m))
and 8 = (p?q(m))!p.

As an intersection of regular languages, Lin®(X") is therefore regular. O

In view of Lemmas 4 and 5, and by Theorem 4, X’ = L(H) for some globally
cooperative CMSC-graph H = (V,—, A', V°, V). One can easily produce from
H a CMSC-graph G = (V,—, A,V V/) such that X' = {X'|X € L(G)}. It
suffices, for each vertex v, to let A(v) = U(A'(v)) where U(X') is constructed
from X' as follows:

— suppress all processes not in P,

— suppress all events labeled p? (p(a)),

— apply the simplification rules to the remaining events,

— set u(e;) = eq for each ordered pair of events e; and e, matching the pattern
at bottom of Fig. 7.

Note that for any MSC X, U(X') = X up to isomorphism of MSCs, hence

30 Philippe Darondeau, Blaise Genest, and Loic Hélouét
()" : X — X' is injective on MSCs. Therefore, X = L(G).

It remains to show that G is globally cooperative. Let vg, vy ...v, be a path
in G from some initial vertex vy € V° to some final vertex v,, € V/. As H is
globally cooperative, there is one MSC Y in A'(vg) - ... - A'(vy). It is readily ver-
ified that U(Y") is an MSC and that U(Y") belongs to U(A'(vg)) - ... - U(A'(vn)).
Therefore, G is safe. Now let v ...v, be a circuit in G (hence in H) and let YV’
be a CMSC in the set A'(v1) - ... - A'(vy).

— As L(H) = X', the label (p!q(m))?p, resp. (¢?p(m))!q, occurs in Y if and
only if the label (p!q(m))!(q?p(m)), resp. (¢?p(m)? (p!q(m)), occurs in Y.

— As H is globally cooperative and from the first condition in Def. 7, whenever
some label p!(p!q(m)), or (p!q(m))!(q?p(m)), or (¢?p(m))!q occurs in Y,
some corresponding label (p!q(m))?p, or (¢?p(m)? (plq(m)), or ¢? (¢? p(m))
occurs in Y, and vice versa.

— Therefore, whenever p!(p!q(m)) or ¢?(g?p(m)) occurs in Y, both occur in
Y and {p,p'a(m)}, {pa(m),q?p(m)}, and {g?p(m),q} are edges of the com-
munication graph of Y.

Thus for any CMSC X in the set UA'(vy) - ... - UA'(vy), plq(m) occurs in X
if and only ¢?p(m) occurs in X, and since the communication graph of YV is
connected, the communication graph of X is connected. Therefore, G is globally
cooperative.

* Completion of the proof of Theorem 3

We have established heretofore the main part of Theorem 3, namely the equiv-
alence of the two assertions. Now given a globally cooperative CMSC-graph G,
if B and Lin®(X') are an existential bound and a regular representative set
for X' = £(G"), then 3B and the image of Lin®(X’) under the simplification
rules are respectively an existential bound and a regular representative set for
X = £(G). Finally, the proof that G' can be computed from Lin*P(X) is a
remake of a similar proof for pure CMSCs and CMSC-graphs. [

Now let G1,G> be two globally cooperative CMSC-graphs. If £(G1) ||mp
L(G>) is I-bounded, then this MSC-language is 3-B-bounded, for B € {B*, B¥}
as defined in Prop. 4. Therefore, Lin® (£(G1) ||mp £(G2)) is a representative set
for £(G1) lmp £(G2). By Prop. 2, Lin® (£(G1) llup £(G2)) = £in® (£(G1)) lhnp
Lin®(L(Gy))NLin®. Since both G, G are globally cooperative, both Lin® (£(G1))
and Lin® (L(G)) are regular and effectively computable. Since the shuffle of reg-
ular language is regular, we get the following.

Theorem 5. Let G1,G> be two globally cooperative CMSC-graphs such that
L(G1) |lmp L£(G2) is I-bounded. Then one can effectively compute a globally co-
operative CMSC-graph G with L(G) = L(G1) |lmp L£(G2). Moreover, G is of size
at most exponential and doubly exponential in the size of |G1|,|G2|, respectively
with weak and strong FIFO.

Products of Message Sequence Charts 31

8 Conclusion

We presented a framework to work with the controlled products of distributed
components, granted that synchronizations are operated on a single monitor pro-
cess, and components are given as globally cooperative CMSC-graphs. Namely,
one can test whether the monitored product of components can be represented
as a globally cooperative CMSC-graph. In that case, a complete analysis of the
product system can be performed with existing tools. We analyze the problem
in both weak and strong FIFO contexts. Weak FIFO enjoys a better complex-
ity, while strong FIFO allows us to use non-synchronized actions with common
names on different components (it suffices to rename the actions according to
components, perform the product, and then rename the actions back). A di-
rection for future work is to propose guidelines and tools for modeling product
systems with one monitor process.

References

1. R. Alur, K. Etessami, and M. Yannakakis. Realizability and Verification of MSC
Graphs. In ICALP’01, LNCS 2076, 797-808, 2001.

2. B. Caillaud, P. Darondeau, L. Hélouét, and G. Lesventes. HMSCs as Partial Spec-
ifications ... with PNs as Completions. In Modeling and Verification of Parallel
Processes, LNCS 2067, 125-152, 2001.

3. C. Duboc. Mixed Product and Asynchronous Automata. Theoretical Computer
Science 48(3): 183-199, 1986.

4. B. Genest, D. Kuske, and A. Muscholl. A Kleene Theorem and Model Checking
for a Class of Communicating Automata. Inf. Comput., 204(6):920-956, 2006.

5. E. Gunter, A. Muscholl, and D. Peled. Compositional Message Sequence Charts.
STTT 5(1): 78-89, 2003 and in TACAS’01, LNCS 2031, 496-511, 2001.

6. B. Genest, A. Muscholl, and D. Peled. Message Sequence Charts. In Lectures on
Concurrency and Petri Nets, LNCS 3098, 537-558, 2004.

7. B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state High-level MSCs:
Model-checking and Realizability. JCSS 72(4): 617-647, 2006 and in ICALP’02,
LNCS 2380, 657-668, 2002.

8. L. Hélouét and C. Jard. Conditions for synthesis of communicating automata from
HMSCs. In FMICS’00, 203-224, 2000.

9. J.G. Henriksen, M. Mukund, K.N. Kumar, M.A. Sohoni, and P.S. Thiagarajan. A
theory of regular MSC languages. Inf. Comput. 202(1): 1-38, 2005.

10. J. Klein, B. Caillaud, and L. Hélouét. Merging scenarios. In FMICS’04, 209-226,
2004.

11. M. Lohrey and A. Muscholl. Bounded MSC communication. Inf. Comput. 189(2):
160-181, 2004.

12. P. Madhusudan and B. Meenakshi. Beyond Message Sequence Graphs. In
FSTTCS 01, LNCS 2245, 256-267, 2001.

13. R. Morin. Recognizable Sets of Message Sequence Charts. In STACS’02, LNCS
2285, 523-534, 2002.

14. M. Mukund, K.N. Kumar, and M.A. Sohoni. Bounded time-stamping in message-
passing systems. T'C'S 290(1): 221-239, 2003.

15. A. Muscholl, D. Peled, and Z. Su. Deciding properties of Message Sequence Charts.
In FOSSACS’98, LNCS 1378, 226-242, 1998.

16. A. Muscholl and D. Peled. Message Sequence Graphs and Decision Problems on
Mazurkiewicz Traces. In MF(CS’99, LNCS 1672, 81-91, 1999.

