TOWARDS A FRAMEWORK FOR EFFICIENT ANALYSIS OF MACRO-SCALE DYNAMICAL SYSTEMS:

DBNS FOR APPROXIMATING THE TEMPORAL DYNAMICS OF APOPTOSIS PATHWAY

Sucheendra K. Palaniappan SUMO Team, INRIA

GOAL: UNDERSTANDING MACROSCALE DYNAMICS OF APOPTOSIS PATHWAY

RECAP OF BLAISE'S SLIDES

ORGANISATION OF THIS TALK

- Dynamic Bayesian network (DBN) approximations of ODE Dynamics
 - How to build the DBN (Liu et.al 2011)
- DBN Approximation for the Apoptosis pathway
 - distinguishing features of the pathway
- Plan

DBN AS EFFICIENT APPROXIMATION OF ODE DYNAMICS

RECAP OF BLAISE'S SLIDES

DBN AS EFFICIENT APPROXIMATION OF ODE DYNAMICS

TOPIC OF THIS TALK

RECAP OF BLAISE'S SLIDES

ODE DYNAMICS

SINGLE TRAJECTORY
OF THE SYSTEM

ASSUMPTIONS

- The value domain of each species is discretized
- It is assumed that dynamics of the system is only observable at certain time points

STRUCTURE

- nodes -> Every variable of the mathematical model
- edges -> Dictated by the corresponding equation for each variable

$$\frac{dS}{dt} = -k_1.S.E + k_2.ES$$

$$\frac{dE}{dt} = -k_1.S.E + (k_2 + k_3).ES$$

$$\frac{dES}{dt} = k_1.S.E - (k_2 + k_3).ES$$

$$\frac{dP}{dt} = k_3.ES$$

STRUCTURE

- nodes -> Every variable of the mathematical model
- edges -> Dictated by the corresponding equation for each variable

LIU ET.AL-TCS2011

STRUCTURE

- nodes -> Every variable of the mathematical model
- edges -> Dictated by the corresponding equation for each variable

```
\frac{dS}{dt} = -k_1.S.E + k_2.ES
\frac{dE}{dt} = -k_1.S.E + (k_2 + k_3).ES
\frac{dE}{dt} = k_3.E.E - (k_3 + k_4).ES
\frac{dE}{dt} = k_3.E.S
```


LIU ET.AL-TCS2011

P(t)

3

2

0

$$\frac{dP}{dt} = k_3.ES$$

LIU ET.AL-TCS2011

ODE ANALYSIS = DBN INFERENCE

DBN OF APOPTOSIS PATHWAY : DISTINGUISHING FEATURES

- The pathway model is a hybrid model of both deterministic (ODE) and Stochastic components
- 58 Protein species + mRNA species (governed by stochastic equations)

DISTINGUISHING FEATURES:

- The parents of certain variables are large (leading to a correspondingly Large CPTs)
 - Use mutual information to restrict the number of parents
 - Introduce new intermediate pseudo-nodes with reduced in degree
 - production, degradation

DISTINGUISHING FEATURES:

- Separation of timescales
 - The structure of the DBN is based on the assumption that between the time steps the dependency of variables is dictated by their mathematical formalism
 - But, when considering larger time windows this may not be true the dependency between variables can be different

FINAL THOUGHTS

- Final goal is to have a minimalist and sufficient structure that captures all the interesting dynamics of the Apoptosis pathway
- First Steps ongoing
 - Building the DBN with only the protein's as DBN variables
 - For nodes with larger nodes, using mutual information to minimise the number of parents