
Foundations of Software Technology and Theoretical Computer Science (2011) Submission

Minimal Disclosure in Partially
Observable Markov Decision Processes

Nathalie Bertrand1, Blaise Genest2

1INRIA Rennes Bretagne Atlantique, France

2CNRS, UMI IPAL, joint with NUS and A*STAR/I2R, Singapore

ABSTRACT. For security and efficiency reasons, most systems do not give the users a full access to
their information. One key specification formalism for these systems are the so called Partially Ob-
servable Markov Decision Processes (POMDP for short), which have been extensively studied in several
research communities, among which AI and model-checking. In this paper we tackle the problem
of the minimal information a user needs at runtime to achieve a simple goal, modeled as reaching an
objective with probability one. More precisely, to achieve her goal, the user can at each step either
choose to use the partial information, or pay a fixed cost and receive the full information. The nat-
ural question is then to minimize the cost the user needs to fulfill her objective. This optimization
question gives rise to two different problems, whether we consider to minimize the worst case cost, or
the average cost. On the one hand, concerning the worst case cost, we show that efficient techniques
from the model checking community can be adapted to compute the optimal worst case cost and
give optimal strategies for the users. On the other hand, we show that the optimal average price (a
question typically considered in the AI community) cannot be computed in general, nor can it be
approximated in polynomial time even up to a large approximation factor.

1 Introduction
Partially Observable Markov Decision Processes (POMDP for short) form a powerful model
to describe systems where part of the information is not accessible at runtime by the user,
and where the effect of the user actions is randomized. Partial observation happens virtually
in every real life systems for various reasons, e.g. complexity, privacy or security. The usual
question is given the observation at runtime and the (offline) POMDP description of the
complete system, can a user achieve some goal or optimize some value?

In this paper, rather than considering that the partial information is rigidly fixed, we
aim at evaluating several observation schemes. In applications where partial observation
arises from complexity reasons, the system should provide at runtime the weakest observa-
tion which still allows to achieve a given goal, as it would also have the minimum cost of
deploiement. On the contrary, in the context of security, the objective is to design a secure
system preventing an attacker to achieve her goal, by giving her only partial access to the
state of the system. Knowing that the partial observation scheme may be vulnerable, one
may be extremely careful and analyze the additional information (obtained by punctually
attacking the partial observation) an attacker needs at runtime to achieve her felony.

We analyze in depth the simplest such framework to which many problems can be
reduced: The aim of the user is to reach with probability 1 a set Goal of states. We consider
only two alternatives of information: by default, the user gets a fixed partial information;

NOT FOR DISTRIBUTION

If requested, she can also obtain full information on the current state of the system. In
this framework, each execution is naturally assigned a “cost” – the number of times the full
information is requested – and the user always aims at minimizing this amount. Now, giving
a value to a strategy reaching Goal can be done in two different meaningful ways: either the
worst case cost the user can have to pay or the average cost she pays, while following this
strategy. For both options, the objective is to compute the optimal cost (among almost-
sure winning strategies) and if possible synthesize a family of strategies approximating this
optimal for smaller and smaller approximation factors.

A first contribution is to show that efficient model-checking techniques can be adapted
to compute the worse case cost. Furthermore, we design optimal strategies in such cases
and prove that strategies with finite memory, based on the set B of so-called (discrete) belief
states, are optimal. A belief state represents the set of states the system can be in after a
given sequence of actions and observations. First, we check in polynomial time that Goal
can be reached with probability 1 using req unrestrictedly. If it is not the case, the whole
procedure is pointless. Assuming Goal can be reached almost surely, we define a family of
generic strategies (σn

can)n∈N with memory state in B and which is almost-surely winning. To
improve the worst case cost of these strategies, we compute the set of states from which Goal

can be reached with probability 1 without ever requesting the full information, then the set
of states requesting the full information at most once, at most twice etc. The whole process
terminates in time polynomial in |B|, and gives associated strategies with finite memory B.
Of course, |B| is at worse exponential in the number of states of the POMDP. The memory-
size of these strategies, as well as the complexity of our algorithm are thus optimal since
deciding whether Goal can be reached almost-surely without any requests (a simple sub-
problem) is EXPTIME-complete and requires strategies with exponential memory [5]. We
illustrate the approach on a simple example for which we analyze the family of strategies,
and show that it is optimal also for average cost on this particular instance.

However, this optimality result for average cost in this simple example is far from being
generally true. Indeed, first of all, we prove that computing optimal average cost for a
POMDP under a reachability objective is undecidable. Even worse, it is undecidable to even
approximate it, whatever the approximation factor. At last, we give non approximability
factors exponential in the size of the system, and prove that there is no algorithm running
in polynomial time in the number of belief states to approximate the optimal average cost
within that factor, even over finite horizon, for which the undecidability result does not
hold.

Related work The POMDP model has been studied by at least two communities: first
by the Artificial Intelligence and Operational Research community where mostly the prob-
lem consists in optimizing a reward function. Here, the results are twofold. First, they
propose heuristics to obtain policies to get good rewards, using value iteration, drid-based
algorithms [8], strategy improvement [7], etc.; see for instance [11] for a survey. Also, they
analyze the complexity class in which such problem falls: It is undecidable in general to
compute or approximate the optimal reward [10], and it is NP-complete to do it in finite
horizon [9]. Compared to these works, we consider a particular cost function which cannot
be expressed as a reward, and our lower bound results needs only a polynomial number of

2

belief states.
More recently, the Model Checking community considered POMDP, where the ques-

tion was mainly qualitative (probability 1 or positive) over a navigational goal: reachability
or safety (avoiding to reach a state), once or repetedly. The problem of reachability with
probability 1 is the dual problem of safety with positive probability. These problems are
EXPTIME-complete in general [5] and PSPACE-complete when the user has no observation
at all [12, 3]. While visiting infinitely often a state almost-surely has the same complexity
as almost sure reachability, reaching infinitely often a state with positive probability is un-
decidable for POMDP [1]. Surprisingly, with a slight constraint on these infinitely many
visits, namely that the limit average number of times the goal is visited shall be positive,
this last problem is decidable [12]. More complex systems than POMDP have been consid-
ered, where two partially informed players have opposite objectives: the results on POMDP
mentionned above basically carry over [2]. More general winning conditions have also been
studied [4]. Up to our knowledge, only very recently both a particular numerical function
(energy) and navigational goal were considered [6].

2 Notations

Given S a finite set, let Dist(S) denote the set of distributions over S, that is functions d : S→
[0, 1] such that ∑s∈S d(s) = 1. The support of distribution d is defined as Supp(d) = {s ∈ S |
d(s) > 0}. If d is the Dirac distribution associated with s ∈ S (that is d(s) = 1 and d(t) = 0
for every t 6= s) we will abuse notation and simply write d = s.

DEFINITION 1.[(PO)MDP] A Markov decision process (MDP) is tuple (Q,Act, ∆) where
Q is a finite set of states, Act is a finite set of actions, and ∆ : Q × Act → Dist(Q) is the
transition function.

A partially observable MDP (POMDP) is a tupleM = (Q,Act, ∆,Part), where (Q,Act, ∆)
is an MDP, and Part is a partition of Q. Elements of Part are called observations.

Given a POMDP (Q,Act, ∆,Part) the underlying MDP (Q,Act, ∆) is alternatively called
the FOMDP, for Fully Observable MDP. Intuitively, in a POMDP, from state s, if action a is
chosen, the next state is t with probability ∆(s, a)(t) and the controller receives observation
O ∈ Part such that p ∈ O. Of course, any MDP can be seen as a POMDP by setting Part as
the set of all singletons sets. In the sequel, we always assume a fixed starting state s0 and
also distinguish a goal (set of) state(s) Goal. We assume for convenience that being in Goal is
observable, that is for all P ∈ Part, P ⊆ 2Goal ∩ P or P ⊆ 2Q\Goal.

An example of POMDP is given in Figure 1(a), where Part =
{
{1, 2, 3}, {Goal}, {4}

}
and the non-trivial set of the partition is represented by a grey area.

In this paper, given a POMDP (Q,Act, ∆,Part), we assume that the controller can per-
form an extra action req /∈ Act whose effect is to disclose the precise state of the FOMDP.
More precisely, the observation the controller receives after a request action req is {s} if the
current state is s ∈ Q. The set of possible observations, denoted O, thus consists of the
partition Part, together with Single = {{s} | s ∈ Q}. The probabilistic transition function
is extended to Act′ = Act ∪ {req} by defining ∆(s, req) as the Dirac distribution associated
with observation {s}. Our high-level aim is to design a strategy of chosing actions to play

3

1

2

3

Goal

4

a,1/3

a,1/3

a,1/3

a

a

b

c

c

b

(a) A simple POMDP

1 1,2,3

2

3

Goal

4

a

a

a

a b

c

c

b
req

req

req

b,c

b,c

(b) Corresponding graph of reachable beliefs

Figure 1: An example POMDP and its reachable belief state graph

based only on the sequence of actions played and observations received, such that the goal
can be reached. Notice that from s0 = 1, one needs to play a as no other choice is possible. A
possible outcome is to reach state 1 again, hence for any choice of actions, there will always
be a possibility to not reach Goal. Hence our aim is instead to ensure that Goal is reached,
unless being terribly unluky. Formally, we want that the set of paths reaching Goal is of
probability 1. We define now the probability space for G: the POMDP extended to Act′.

2.1 Belief States

Let (a1, O1) · · · (ai, Oi) ∈ (Act× Part ∪ {req} × Single)∗ be a sequence of actions played and
observations received. We define B(s0, (a1, O1) · · · (ai, Oi)) as the set of states s ∈ Q such that
for all 0 ≤ j ≤ i there exists tj with t0 = s0, ti = s, tj ∈ Oj and ∆(tj−1, aj)(tj) > 0. Intuitively
if actions a1 · · · ai have been played and observations O1 · · ·Oi were received, the set of pos-
sible states are exactly those in B(s0, (a1, O1) · · · (ai, Oi)). The set B(s0, (a1, O1) · · · (ai, Oi))
can be computed inductively:

B(s0, (a1, O1) · · · (ai, Oi)) = Oi ∩ {t | ∃s ∈ B(s0, (a1, O1) · · · (ai−1, Oi−1)), ∆(s, ai)(t) > 0}.

The set Path of possible finite paths consists in all ρ = (a1, O1) · · · (an, On) ∈ (Act×Part∪
{req}× Single)∗ such that B(s0, (a1, O1) · · · (an, On)) 6= ∅. Moreover, the set of reachable belief
states is defined by B = {B(s0, ρ) | ρ ∈ Path}. For the example POMDP of Figure 1(a) the
graph of reachable belief states is depicted in Figure 1(b). The number of belief states is at
worst exponential in the number of states, but often, it is not that big.

Given a finite path ρ, B(s0, ρ) only gives the set of states the POMDP can be after execut-
ing ρ, but the precise probability to be in each state is unknown. The distributions D(s0, ρ)
and D(s0, ρ, a) over states after a prefix of path (that is, ρ or ρa, with ρ ∈ Path and a ∈ Act′)
can be defined by induction. Assuming ρ = ρ′(a, O), and D(s0, ρ′) is known, D(s0, ρ′, a) is
defined by D(s0, ρ′, a)(s) = ∑t D(s0, ρ′)(t)×∆(t, a)(s). Then, taking the observation into ac-
count yields: D(s0, ρ)(s) = 0 if s /∈ O, else D(s0, ρ)(s) = D(s0, ρ′, a)(s)/ ∑s∈O D(s0, ρ′, a)(s).

Of course, the discrete belief after ρ can be recovered from the probabilistic belief:
B(s0, ρ) = Supp(D(s0, ρ)).

4

2.2 Strategy

A strategy σ : Path → Dist(Act′) for the controller is a function which associates with any
possible path a distribution over the extended set of actions Act′. Given a strategy σ, a possi-
ble path (a1, O1) · · · (an, On) ∈ Path is called a σ-path if ai+1 ∈ Supp

(
σ((a1, O1) · · · (ai, Oi))

)
for all i < n. When a fixed strategy σ is played, it is easy to define the probability that a
possible path occurs, as follows. First of all, if ρ = ρ′(a, O) is a σ-path, Pσ(ρ) = Pσ(ρ′) ·
σ(ρ′)(a) · ∑s∈O D(ρ′, a)(s), and P(ρ) = 1 if ρ is the empty path. Now, we can define the
probability of a run r = s0

a1−→ s1 · · ·
an−→ sn (every si is a state of the FOMDP) knowing

that ρ occured. Let ρ be the unique (POMDP) path associated with r, obtained by replacing
states with their associated observations. The probability of r assuming ρ is performed is
given by P(r | ρ) = ∏i≤n D(s0, ρi)(si), where ρi denotes the prefix of length i of ρ. Then
we let Pσ(r) = Pσ(ρ)×P(r | ρ). This probability measure on finite runs is extended in the
usual way to the sigma-algebra they generate, and it is well-known that LTL properties on
infinite runs are measurable for this measure [13]. The objective for the controller is to reach
the Goal state. Thus, strategy σ is almost-surely winning if Pσ(3Goal) = 1. Clearly enough,
if there is no almost-surely winning strategy in the FOMDP, then there will be none in the
extended POMDP either.

Problem statement To every strategy σ, two quantities can be associated: first of all, the
maximum number of requests actions σ takes, and second the expected number of requests
following σ. In this paper we thus tackle the two distinct problems of finding almost-surely
winning strategies which (1) minimize the worst-case cost, or (2) minimize the average cost.

3 Algorithms for the optimal worst case cost
Strategies are in general objects that do not have a finite presentation. In order to represent
them effectively, it is common to restrict to finite-memory strategies, that are weaker than
general strategies, but, as we will see, suffice when considering the optimal worst case cost
problem. A finite-memory strategy on finite memory set M is given as σ : M → Dist(Act′)
together with an update function: up : M× (Act× Part∪ {req} × Single)→ M.

3.1 Reaching Goal with probability 1

We first propose a family (σn
can)n∈N of strategies with finite memory B ⊆ 2Q the set of

reachable belief states. The memory is initialized to {s0}, where s0 is the initial state. The
update function is given by up(S, a, O) = O ∩ {t | ∃s ∈ S, ∆(s, ai)(t) > 0}. We extend it
inductively to a path ρ′ = ρ · (a, O) with up(S, ρ · (a, O)) = up(up(S, ρ), a, O) = T, and we
say that the path ρ′ reaches the memory state T. It is easy to see that the memory state M
reached after some possible path ρ is exactly B(s0, ρ).

Let n ∈ N. We now define how the strategy σn
can plays. First, we denote by LoseF ⊆ Q

the set of states s of the FOMDP associated with G such that there is no strategy in the
FOMDP reaching Goal with probability 1 from s. We then denote by Lose ⊆ 2Q the set of
belief states S such that S∩ LoseF 6= ∅. In the example of Figure 1(a), 4 is the only state of the
FOMDP from which there is no strategy reaching Goal almost-surely. In the reachable belief

5

graph of Figure 1(b), Lose is thus made of the single belief state {4}. Intuitively, any path
reaching a memory state in Lose cannot reach Goal with probability 1. It is easy to see that
if {s0} ∈ Lose, then there is no almost-surely winning strategy, since otherwise a strategy
in the FOMDP reproducing σ (which is possible since it has at least as much information)
would also reach Goal with probability 1.

Letting Win = B \ Lose the complementary set, we prove in the next theorem that under
strategy σn

can, Goal is reached almost-surely from any belief state of Win. We partition Win

in 3 sets: W0 = {S | S ⊆ Goal} wins directly, WN the needing belief states, and WU the non-
needing belief states. A state S is in WN whenever for all a ∈ Act, there exists O ∈ Part, such
that B(S, a, O) ∈ Lose. Intuitively, from a memory state in WN any almost-surely winning
strategy needs to perform a request action req, as every other action leaves a chance to reach
Lose. In the example of Figure 1(b), W0 only contains the belief state {Goal}, WN = ∅ (in
particular, actions a can be done safely from belief states {1} and {1, 2, 3}), and WU consists
of the other belief states {1}, {1, 2, 3}, {2}, {3}. Strategy σn

can is then defined by:
• If M ∈W0, then σn

can(M) = ∅,
• if M ∈WN , σn

can(M) = req,
• if M ∈ WU , σn

can(M) plays req with probability 1/n, and plays uniformly all actions
a ∈ Act such that for every observation O, up(M, a, O) /∈ Lose, and

• if M ∈ Lose, then σn
can(M) is the uniform distributions over all actions.

Furthermore, if M ∈ Single (that is, the actual state is known for sure), then we disallow σn
can

to perform a req as it would be useless. Notice that the only infinite σn
can-paths are exactly

those which never meet W0.

THEOREM 2. If {s0} ∈ Win, then Pσn
can(3Goal) = 1.

Notice that we can compute in polynomial time the set of losing state in the FOMDP,
and hence decide in polynomial time whether there exists an almost-surely strategy in G.

3.2 Optimizing for the worst case cost

Now that we know the set of belief states from which there is a strategy reaching Goal with
probability 1, we can tune the canonical strategies σn

can. To do so, we compute inductively
the set Sk of belief states from which one needs at most k actions req to win. The set S0 is
pretty easy to obtain, as the associated strategy cannot use any req.

Let G0 = (B,Act, δ0) be the belief MDP associated with the POMDP G, where each state
is a belief state, and δ0(B, a) is the uniform distribution over all belief states B′ such that
there exists a part P ∈ Part with B′ = P ∩ {t | ∃s ∈ B, ∆(s, a)(t) > 0}. Notice that requests
are not allowed in G0. The MDP G0 obtained from the POMDP in Figure 1(a) is very similar
to the graph of Figure 1(b), except that the 3 edges req have been deleted. Let us denote by
S0 the set of belief states from which there exists a strategy σ0 in G0 reaching W0 = 2Goal

almost-surely. The set S0 can be computed in time linear in the number |B| of states of
G0, thus at worse in time exponential in the size of G. Taking our example of Figure 1(a),
S0 =

{
{2}, {3}, {Goal}

}
. Indeed, {4} is a losing state, and {1} and {1, 2, 3} as well since

no req-action is allowed and playing b, c from {1, 2, 3} has a positive probability to lead to
{4}. Clearly, σ0 can be chosen positional, and on the example it is given by σ0({2}) = b and
σ0({3}) = c.

6

Now, the canonical strategy σn
can is improved by letting σn

can(B) = σ0(B) if B ∈ S0 \W0,
and leaving it unchanged otherwise. Under this new definition, σn

can is still almost-surely
reaching Goal, and from any B ∈ S0, σn

can never proposes a req-action anymore:

PROPOSITION 3. Assuming s0 ∈ Win, then: (i) σn
can is almost-surely winning, and (ii) for

every σn
can-path ρ = ρ1ρ2 with B(ρ1) ∈ S0, ρ2 contains no req.

Given a strategy σ, we say that B is a σ-belief state if there exists a σ-path ρ with B(ρ) = B.
We prove that S0 is optimal, in the following meaning:

PROPOSITION 4. Let σ be a strategy reaching Goal almost-surely from s0, and B /∈ S0 a
σ-belief state. Then there exists a σ-path ρ = ρ1ρ2 such that B(ρ1) = B and ρ2 contains a req.

PROOF. Let σ be an almost-surely winning strategy, and B a σ-belief state. Assume by
contradiction that for every σ-path ρ1ρ2 with B(ρ1) = B, ρ2 contains no req-action, and let
us prove that B ∈ S0. We design a strategy σ′ in the MDP G0 from B as follows. For each run
r = Ba1B1 · · · anBn in G0, let ρr = Oa1O1 · · · anOn be the associated possible path in G with
Bi ⊆ Oi for all i. The choice of Oi is unique, and it is always a part of Part since ai 6= req. We
let σ′(r) = σ(ρ1ρr). Now, it is easy to see that σ′ reaches Goal almost surely from B, since ρ1

is a finite σ-path and σ reaches Goal with probability 1. As a consequence, B ∈ S0.

We can now define the set S1 of belief states for which at most one req-action is needed
to reach Goal almost-surely. We let L1 be the set of belief state B such that for all s ∈ B,
{s} ∈ S0. Playing a request from a state in L1 obviously leads to some state in S0, from
which winning without request is possible. Clearly, L1 ∪ S0 ⊆ S1. In fact, S1 is the set of all
belief states from which there is a strategy to reach L1 ∪ S0 in G0 with probability one. S1
can be computed as follows:

1. Initialize a set X of belief states at B \ Lose,
2. Compute the set YX ⊆ B of belief states which can reach L1 ∪ S0 while staying in X,

using a smallest fixed point:
(a) initialize YX at L1 ∪ S0,
(b) add to YX all B ∈ X such that there exists a ∈ Act with Supp(δ0(B, a)) ⊆ X and

Supp(δ0(B, a)) ∩YX 6= ∅.
3. If X 6= YX then set X := YX and goto step 2 again, else set S1 = YX and quit.

The so-computed set S1 of belief states is the largest one such that from all belief states of S1
there is a strategy which allows to reach L1 ∪ S0 and which ensures to stay in S1. Now, we
improve once again the canonical strategy σn

can with,
• if B ∈ L1 \ S0, σn

can(B) = req,
• if B ∈ S1 \ (L1 ∪ S0), Supp(σn

can(B)) is the uniform distribution over the set of actions
a ∈ Act such that Supp(δ0(B, a)) ⊆ S1,

• otherwise, it is unchanged.
Notice that from S1 \ (L1 ∪ S0), always at least one action a ∈ Act satisfies δ0(B, a) ⊆ S1.

After this modification, σn
can still reaches Goal with probability 1 and from any B ∈

S1 \ S0, σn
can proposes at most one req-action:

PROPOSITION 5. Assuming s0 ∈ Win, then: (i) σn
can is almost-surely winning, and (ii) for

every σn
can-path ρ = ρ1ρ2 with B(ρ1) ∈ S1, ρ2 contains at most one req.

7

PROOF. (ii) is fairly easy to establish. Let ρ = ρ1ρ2 be a σn
can-path with B = B(ρ1) ∈ S1.

As ρ2 = B
a1−→ B1ρ′2 is a σn

can-path, the first action a1 ensures to stay in S1: more precisely, if
B ∈ L1, then B1 ∈ S0, if B ∈ S0, then B1 ∈ S0, and if B ∈ S1 \ (L1 ∪ S0) then B1 ∈ S1. Iterating
this argument, beliefs in ρ2 always belong to S1. In case L1 is never reached, request are
never performed. Otherwise, as soon as it reachs L1, a request is played, and the next belief
state is in S0 from which no request are proposed anymore, according to the Proposition 3.
Overall, (ii) is verified.

We now prove that from S1, L1 ∪ S0 is reached with probability 1, which proves that σn
can

reaches Goal with probability 1 thanks to Proposition 3. The only paths from S1 which does
not reach L1 ∪ S0 are those staying forever in S1 \ (L1 ∪ S0). We now prove that from every
state in S1, there is a σn

can-path reaching L1 ∪ S0, hence, a positive probability to reach L1 ∪ S0.
Together, these facts show that almost-surely L1 ∪ S0 will be reached from S1. Assume now
by contradiction that there is a state B ∈ S1 with B(ρ1) = B and such that for all σn

can-path
ρ = ρ1ρ2, we have B(ρ) /∈ L1 ∪ S0. Hence these paths ρ2 make no request. But this set of
ρ2 paths cover exactly the set of path from B which stay within S1. Considering the last
iteration of the construction of S1. As it is the last iteration, YX = X = S1 and B ∈ X. Now,
in the construction of YX, B can never be added to YX. Hence YX 6= X, a contradiction.

We prove that S1 is optimal, in the following sense:

PROPOSITION 6. Let σ be a strategy reaching Goal almost-surely from s0 and B /∈ S1 a σ-
belief state. Then there is a σ-path ρ = ρ1ρ2 with B(ρ1) = B and ρ2 contains at least two
req-actions.

We can easily construct in this way by induction the sets (Sk)k∈N of belief states requier-
ing at most k requests, until stabilization: SK+1 = SK, which happens at worse for K = |B|.
Computing each Si takes O(|B|2 × |Act|); overall, the procedure is in time O(|B|3 × |Act|).

This easily improves the strategy σn
can by allowing requests only when they are needed.

Then, denoting S∞ = 2Q \ SK, we have the following optimality result:

PROPOSITION 7. For every strategy σ reaching goal almost surely and every σ-belief states
B ∈ S∞, for all N ∈N, there exists a σ-path ρ = ρ1ρ2 with B(ρ1) = B and ρ2 contains at least
N req-actions.

In our example, notice that S1 = S0, and hence S∞ =
{
{1}, {1, 2, 3}

}
. Hence, the im-

proved canonical strategy in our running example is defined by: σn
can(1) = a, σn

can(2) =
b, σn

can(3) = c and σn
can({1, 2, 3}) assigns probability (n − 1)/n to action a and probability

1/n to req. We show now that the family of canonical strategies is, on this particular exam-
ple, also optimal for average cost! The proof is educational to understand that even with
a fixed strategy, computing the average cost in a POMDP is not easy as the set of possi-
ble stochastic belief states (precise distributions over states in the discrete belief states) is
potentially infinite.

Let n ∈ N and consider strategy σn
can. The game starts in state 1, and σn

can first decision
is to perform an a. After this action, the discrete belief state is {1, 2, 3} and the probability
to be in state 1 is 1/3. In the sequel, we denote by Ek the expected number of requests
following σn

can from {1, 2, 3}with probability 1/3k to be in state 1. Thanks to the observation
above, the expected number of requests for σn

can is exactly E1.
8

Assume now that the current belief state is {1, 2, 3} and the probability to be in state 1 is
1/3k. In this state, with probability 1/n, a request is performed, which discloses state 1 with
probability 1/3k; with probability (n− 1)/n, a is played, and the resulting state is {1, 2, 3}
with probability 1/3k+1 to be in state 1. As a consequence, Ek = 1

n

(
1 + 1

3k E1)
)
+ n−1

n Ek+1.
From there, we derive: E1 = 1 + 1

2n . Hence, the average number of req asked by σn
can is

smaller than 1 + 1
2n , for all n ∈ N. In fact, we can prove that this family of strategy is

optimal in the sense that no almost surely winning strategy can achieve an average number
of request of 1 or less on this particular example.

4 Hardness and undecidability results for the average cost
We turn now to a more general analysis of the strategies minimizing the average cost. Un-
fortunately, as we hinted before, this question is very hard to tackle. We show first that the
problem of the existence of a strategy with cost smaller than a fixed threshold is in general
undecidable, and that it is undecidable to approximate the optimal average cost. Moreover,
we give concrete approximation factor (with respect to the size of the POMDP) up to which
no optimal strategy can be computed with polynomial time algorithms. This obviously con-
trasts with the rather efficient algorithms we design in the previous section, which run in
time polynomial in |B|.

For a run r of G, we denote by val(r) the number of req in r. Let σ be a strategy reaching
Goal from s0 with probability 1. Then we denote by val(σ) the expected value of val(r), over
all the σ-runs. Notice that val(σ) < ∞ since σ is almost-surely winning.

DEFINITION 8. The value of G is val(G) = inf{val(σ) | σ almost-surely winning}, where
val(σ) denotes the expected number of requests under strategy σ.

We can now present our first negative result, namely that it is undecidable to compute
the exact minimum average cost val(G). This result should not be too surprising as opti-
mizing a cost function in a POMDP is undecidable [10]. However, our result is stronger and
harder to get, since our cost function is not arbitrary.

THEOREM 9. For all K > 0, it is undecidable to know whether val(G) ≤ K.

PROOF. Let ε ∈ (0, 1/2). Take a Probabilistic Finite Automaton P (a PFA for short, that is

P

ta tb sink

Goal

],1/2],1/2
a

b

a
b

Figure 2: Reduction to a variant of the emptiness problem for PFA

9

a POMDP with |Part| = 1) such that either there exists a word accepted with probability at
least 1− ε or all words are accepted with probability less than ε. It is undecidable to know
which case holds [10]. From P , we build a POMDP G, as illustrated on Figure 2 by adding
four new states. This reduction ensures the following: P accepts a word with probability
greater than 1− ε if and only if val(G) < ε

1−ε .

Actually, in the proof, we even show that if val(G) ≥ ε/(1− ε), then val(G) ≥ 1− ε.
That is, (ε/(1 − ε) + 1 − ε)/2 is the best approximation one can make for this family of
POMDP. The approximation factor is thus δ = (1/(1− ε)− ε)(1− ε)/2ε = (1− ε(1− ε))/2ε,
which converges to infinity as ε converges to 0. As a consequence:

COROLLARY 10. For any δ, it is undecidable to approximate val(G) with factor δ.

Notice however that for bigger δ, the non-approximation result uses bigger and big-
ger PFA (and thus POMDP). The following result establishes the relationship between the
number of states of the POMDP and the non-approximation factor.

THEOREM 11. Assuming that P 6= NP, for any polynomial time algorithm A, there exists
a POMDP G with at most 3n2 + n states and at most 9n2 + 8n reachable belief states, such
that A computes a strategy with value val on G with:
approximation factor: |val − val(G)|/val(G) ≥ 2n−1/n2 − 1, and
absolute approximation error: |val − val(G)| ≥ (2n−1/n− n− 2).

PROOF. The proof is by reduction from 3-SAT. Let ϕ be a Boolean formula in conjunctive
normal form with m clauses C1 · · ·Cm over k variables x1, · · · xk. We let n = k × m. We
also let ε = 1/2n. From ϕ, we derive a POMDP G such that ϕ is satisfiable if and only
val(G) ≤ 3nε. We recall that ϕ is satisfiable if and only if for every clause Ci, one can choose
one literal `i among the three literals of Ci such that for all i, j ≤ m, the choices of `i and `j
do not conflict.

The actions that can be played are any of the 2k literals {xi, xi | i ≤ k}, plus a dummy
action. The POMDP starts in the initial state init, where only the dummy action can be
fired, and with equal probability a variable xi, i ≤ k is chosen leading to state labeled (C1, i).
Intuitively, the POMDP will remember actions played concerning this variable xi and no
other. All states (C1, 1), · · · , (C1, k) belong to the same part of the partition and thus the
player does not know which variable is monitored.

From (C1, i), three actions are enabled, corresponding to the three literals in clause C1.
If the action played is xj, xj with j 6= i, then the next state is (C2, i) with probability 1− ε.
With probability ε/2 it is (C2, xi) and with probability ε/2 it is (C2, xi). Intuitively, with
small probability, the POMDP remembers wrongly that literal xi or xi has been chosen. If
the action played is xi, then the next state is (C2, xi) with probability 1 − ε, (C2, i) with
probability ε/2 and (C2, xi) with probability ε/2. At last, if the action played is xi, then
the next state is (C2, xi) with probability 1− ε, (C2, i) with probability ε/2 and (C2, xi) with
probability ε/2. Transitions from (C`, i) with ` < m and i ≤ k follow the same pattern.

Now, assume that the state is (C`, xi), that is the POMDP recalls (possibly wrongly) that
xi has been played before. If the action played is xi, then there is a conflict and the next state
is test, which is the gadget, similar to the one in the proof of Theorem 9 that forces the player
to perform a req-action in order not to lose, and then it reaches state ok. If the action played

10

is any other, then the next state is (C`+1, xi) with probability 1− ε, and (C`+1, xi) or (C`+1, i)
with probability ε/2 each. From state (C`, xi), the transitions are symmetric. At last, for the
last clause, from (Cm, xi), all the actions lead to ok except action xi which leads to the test
gadget.

This reduction ensures: there exists a strategy σ reaching ok with probability 1 and
such that val(σ) ≤ nε if and only if the formula ϕ is satisfiable. Assume that there is a
non conflicting choice of literals for every clause. Consider the strategy σ which chooses
to play accordingly to this choice of literal, and when in the test gadget performs a req.
With probability higher than 1− nε, the POMDP remembers accurately the choice of literal
xi by σ at each step (there are less than n steps). As this choice is not conflicting, under
this hypothesis, no req is played and ok is reached. Now, with probability less than nε,
the memory can be wrong at some point, and the worse case is to reach the test, in which
case a unique requests is made before reaching ok. Thus, val(σ) ≤ nε. For the reverse
implication, observe that under any strategy σ reaching ok with probability 1, there is at
least one conflicting variable (successive choices of literal xi and xi). As in the reduction
of Theorem 9 we assume without loss of generality that σ does not propose any req but
in test. With probability at least 1/n, the POMDP remembers the conflicting variable, and
with probability at least (1 − nε) the POMDP remembers accurately the first literal of xi
played, and then when xi is played, the POMDP goes to test where a req is played. Overall,
val(σ) ≥ (1/n− ε).

As SAT is NP-complete and assuming that P 6= NP, no polynomial time algorithm
can decide whether val(G) ≥ (1/n− ε) or val(G) ≤ nε. To keep the error factor as low as
possible, the safest is thus to play the average value, which proves the first item.

One can however notice that even if the approximation factor is large, the absolute gap
between an approximation and the real value is rather small (less than 1), which would not
be a huge concern in practice. We explain now how to keep the same factor while widening
the absolute gap using a small trick. The previous reduction is enriched as follows: from
state ok only the dummy action can be played, leading with probability ε to Goal, and with
probability 1− ε back to init. The probability to reach Goal after seeing init exactly i times
is ε(1− ε)i, that is the expected number of times init is seen is ∑i i · ε · (1− ε)i ∈ [2n − 2, 2n]
for n large enough. That is, if there is a non conflicting choice of literals, then val(G) ≤
n/2n · 2n = n. On the other hand, if all choice of 1 literal per clause is conflicting, then
val(G) ≥ (1/n− ε) · (2n − 2) ≥ 2n/n− 2. This concludes the proof.

Notice that the first item of our result holds for POMDP without loops, that is in par-
ticular for finite horizon POMDP (horizon ≤ n). Compared with other results on non ap-
proximability of optimal cost in (finite horizon) POMDP [9], our reduction does not rely on
the (at worse exponentially many) discrete belief states to encode the problem, but uses the
actual probability to be in a state. Indeed, the family of graph considered has a polynomial
number of reachable belief states (for which the algorithm of the previous section are effi-
cient). Actually, if we relax the constraint of a polynomial number of beliefs, the proof can
easily be simplified to obtain an infinite non approximability factor, since val(G) = 0 if and
only if the 3-SAT formula is satisfiable. It also proves that reasoning on beliefs is in some
sense mandatory.

11

5 Conclusion
In this paper we investigated the problem of minimizing requests for full information in a
POMDP in order to achieve a reachability objective with probability 1. On the one hand,
the optimal worst-case cost is in N ∪ {∞} and can be computed in polynomial time in the
number of discrete beliefs (that is, exponential time at worse), together with a finite memory
strategy that guarantees this optimal cost. On the other hand, the optimal average cost is
in R≥0 and can neither be computed nor approximated, and we provide large error factors
for which no polynomial-time algorithm can approximate the average optimal cost up to
that factor. In practice, despite the non-approximability result, quite accurate values can
be obtained for some POMDPs using heuristics [11]. Our model can be enriched to allow
several intermediate information levels, encoded by successive refinements of the partition,
and for which the techniques developped here will certainly be useful.

References
[1] C. Baier, N. Bertrand, and M. Grösser. On decision problems for probabilistic Büchi

automata. In FOSSACS ’08, volume 4962 of LNCS, pages 287–301. Springer, 2008.
[2] N. Bertrand, B. Genest, and H. Gimbert. Qualitative determinacy and decidability of

stochastic games with signals. In LICS ’09, pages 319–328. IEEE, 2009.
[3] R. Chadha, A. P. Sistla, and M. Viswanathan. Power of randomization in automata on

infinite strings. In CONCUR ’09, volume 5710 of LNCS, pages 229–243. Springer, 2009.
[4] K. Chatterjee and L. Doyen. The Complexity of Partial-Observation Parity Games. In

LPAR ’10 (Yogyakarta), LNCS 6397, pages 1–14, 2010.
[5] K. Chatterjee, L. Doyen, and T. A. Henzinger. Qualitative analysis of partially-

observable Markov decision processes. In MFCS ’10, volume 6281 of LNCS, pages
258–269. Springer, 2010.

[6] A. Degorre, L. Doyen, R. Gentilini, J.-F. Raskin, and S. Toruczyk. Energy and Mean-
Payoff Games with Imperfect Information. In CSL, LNCS 6247, pages 260–274, 2010.

[7] J. Fearnley. Exponential Lower Bounds for Policy Iteration. In ICALP ’10, volume 6199
of LNCS, pages 551–562. Springer, 2010.

[8] W. Lovejoy. Computationally feasible bounds for partially observed markov decision
processes. OR, 39:162–175, 1991.

[9] C. Lusena, J. Goldsmith, and M. Mundhenk. Nonapproximability results for partially
observable markov decision processes. JAIR, 14, 2001.

[10] O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic planning
and related stochastic optimization problems. Artificial Intelligence, 147(1-2):5–34, 2003.

[11] K. Murphy. A Survey of POMDP Solution Techniques. Technical report, 2000.
[12] M. Tracol. Recurrence and transience for finite probabilistic tables. TCS, 412(12-

14):1154–1168, 2011.
[13] M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In

FOCS ’85, pages 327–338. IEEE, 1985.

12

Technical appendix
This appendix collects details ommitted in the core of the paper.

Computation of val(σn
can)

Ek =
1
n
(
1 +

1
3k E1)

)
+

n− 1
n

Ek+1.

This equality, multiplied by
(
(n − 1)/n

)k−1, and added up with all equalities, for k ≥ 1
yields:

E1 =
1
n

∞

∑
k=1

(n− 1
n

)k−1(
1 +

1
3k E1

)
.

From which we compute:

E1 =
1
n

[∞

∑
k=1

(n− 1
n

)k−1
+ E1

∞

∑
k=1

(n− 1
n

)k−1 1
3k

]
=

1
n

[1
1− (n− 1)/n

+ E1
n

n− 1

∞

∑
k=1

(n− 1
3n

)k]
=

1
n

[1
1/n

+ E1
n

n− 1
(n− 1)/(3n)

1− (n− 1)/(3n)

]
=

1
n

[
n + E1

n
n− 1

n− 1
2n + 1

]
= 1 + E1

1
2n + 1

Solving this last equation, we obtain: E1 = 1 + 1
2n , and thus val(σn

can) = 1 + 1
2n . In fact, we

can prove that this family of strategies is optimal in the sense that no almost surely winning
strategy can achieve an average number of request of 1 or less on this particular example.
By contradiction, assume that such a strategy σ exists. It is easy to see that σ cannot use b
before using req, as there is a positive probability to be in state 1, 3, and playing b would lead
to the sink state 5, and σ cannot reach Goal with probability 1. The same applies for c. As b
or c is needed for reaching Goal, all path which reach Goal uses at least 1 request. Now, take
a smallest prefix of σ-path wich uses one req. This σ-path is necessarily of the form anreq,
for some n. This σ path has positive probability, and being in state 1 after this σ-path has
postiive probability. Hence playing req does not allow to win, and there is a σ-path which
plays a second req later. As the prefix of this path after the second req as postive probability
under σ to happen, val(σ) > 1.

Details for proof of Theorem 11. For the first item of the theorem, the reduction from 3-
SAT described in the core of the paper is illustrated on Figure 3. The second item requires
to repeat the behaviour, and the overview of the reduction is given in Figure 4.

I

init

C1,1 C1,i C1,k

C2,xi C2,i C1,xi

C3,xi C3,i C2,xi

...
...

...

Cm,xi Cm,i Cm,xi

ok

test

1/k
1/k

1/k

xi ,1−ε

xi∨xj∨xj,ε/2
xj∨xj, 1−ε

xi∨xi , ε/2

xi ,1−ε

xi∨xj∨xj,ε/2

1−ε

xi∨xj∨xj,

ε/2 ε/2 1−ε

xi∨xj∨xj,

ε/2ε/2

xi xi

xi ,xj,xj xi ,xj,xj
?

xi xi

Figure 3: Reduction from 3-SAT

init

ok

Goal

ε

1−ε

Figure 4: Bounding the absolute error in SAT reduction

II

