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Abstract strategies in these games represent either controlleheof t

system or behaviors of the environment.

We consider the standard model of finite two-person  Most algorithms for stochastic games suffer from the
zero-sum stochastic games with signals. We are interest-same restriction: they are designed for games where play-
ed in the existence of almost-surely winning or positively ers can fully observe the state of the system (e.g. concur-
winning strategies, under reachability, safetfjdBi or co-  rent games [10, 9] and stochastic games with perfect infor-
Buchi winning objectives. We prove twoialitative deter-  mation [8, 14]). The full observation hypothesis can hin-
minacyresults. First, in a reachability game either player der interesting applications in controller synthesis. g
1 can achieve almost-surely the reachability objective, or systems in interaction with both a user and a controllet, ful
player 2 can ensure surely the complementary safety ob-| monitoring for the controller is hardly implementable in
jective, or both players have positively winning strategie practice and the user has very partial information about the
Second, in a Bchi game if playeil cannot achieve almost-  system. Recently, algorithms for games where one of the
surely the Bichi objective, then playe can ensure pos-  players has partial observation and her opponent s fully in
itively the complementary cotBhi objective. We prove  formed have been proposed [17, 6]. Here we consider the
that players only need strategies withite-memorywhose  general case where both players have partial observations.
sizes range from no memory at all to doubly-exponential | 1he present paper, we considgochastic games with
number of states, with matching lower bounds. Together gjynais that are a standard tool in game theory to model
Wlt.h the qughtatlve deter_m.macy r.esults, we also provige fi partial observation [23, 20, 18]. When playing a stochastic
point algorithms for deciding which player has an almost- ., 0 \yith signals, players cannot observe the actual state o
surely winning or a positively winning strategy and for com- e o2 me  nor the actions played by their opponent, but are
puting the finite memory strategy. Co_mplexny ranges from only informed via private signals they receive throughout
EXPTIME to 2EXPTIME with matching lower bounds, "oy - stochastic games with signals subsume standard

and better complexity can be achieved for some special CaSytochastic games [22], repeated games with incomplete in-

es where one of the players is better informed than her OP-¢ormation [1], games with imperfect monitoring [20], con-
ponent. current games [9] and deterministic games with imperfect
information on one side [17, 6]. Players make their deci-
] sions based upon the sequence of signals they receive: a
Introduction strategy is hence a mapping from finite sequences of private
signals to probability distributions over actions.

Numerous advances in algorithmics of stochastic games  From the algorithmic point of view, stochastic games
have recently been made [10, 9, 7, 5, 12, 14], motivated injth signals are considerably harder to deal with than s-
part by applicationin controller synthesis and verificatd  tochastic games with full observation. Whilaluesof the
open systems. Open systems can be viewed as two-playergtter games are computable [9, 5], simple questions like ‘i
games between the system and its environment. At eachnere a strategy for playdrwhich guarantees winning with
round of the game, both players independently and simul-prohability more thar ?” areundecidableven for restrict-
taneously choose actions and the two choices together withag ¢classes of stochastic games with signals [16]. For this
the current state of the game determine transition probabil reason, rather thaquantitativeproperties (i.e. questions
ities to the next state of the game. Properties of open sys-gpout values), we focus in the present papequoalitative
tems are modeled as objectives of the games [9, 13], anthroperties of stochastic games with signals.

*This work is supported by ANR-06-SETI DOTS. We study the following qualitative questions about s-




tochastic games with signals, equipped with reachability, No determinacy result was known for deterministic
safety, Buchi or co-Bichi objectives: games with imperfect information on one side. In [17, 6],
_ o algorithms are given for deciding whether the imperfectly
(i) Does playerl have analmost-surely winning strate-  informed player has an almost-surely winning strategy for
gy, i.e. a strategy which guarantees the objective to be gjichi (or reachability) objective but nothing can be in-
achieved with probabilityl, whatever the strategy of  ferred in case she has no such strategy. This open question
player2? is solved in the present paper, in the broader framework of

(i) Does player2 have apositively winning strategyi.e. ~ Stochastic games with signals.
a strategy which guarantees the opposite objective to  Our qualitative determinacy result (1) is a radical gener-
be achieved with strictly positive probability, whatever alization of the same result for concurrent games [9, Th.2],
the strategy of player? while proofs are very different. Interestingly, for coneur
rent games, qualitative determinacy holds for every omega-
Obviously, given an objective, properties (i) and (ii) catin regular objectives [9], while for games with signals we
hold simultaneously. For games with a reachability, safety show that it fails already for co-Biichi objectives. Inter-
or Biichi objective, we obtain the following results: estingly also, stochastic games with signals and a reacha-
bility objective have a value [19] but this value is not com-
putable [16], whereas it is computable for concurrent games
with omega-regular objectives [11]. The use of randomized
(2) Players only need strategies wfithite-memorywhose strategies is mandatory for achieving determinacy results
memory sizes range from no memory at all to doubly- this also holds for stochastic games without signals [2P, 10
exponential number of states. and even matrix games [24], which contrasts with [4, 17]

(3) Questions (i) and (ii) are decidable. We provide fix- where only deterministic stratfag|es.are considered. .
point algorithms for computing uniformly all initial Our results about randomized finite-memory strategies

states that satisfy (i) or (i), together with the corre- (2), s_tated in Theorem 2, are ei_ther brand new or ge_ngra_tlize
sponding finite-memory strategies. The complexity of Previous work. It was shown in [6] that for deterministic

the algorithms ranges froEXPTIME to 2EXPTIME. games where playéris perfectly informed, strategies with
a finite memory of exponential size are sufficient for player

These three results are detailed in Theorems 1, 2, 3 and 41 to achieve a Biichi objective almost-surely. We prove the
We prove that these results are tight and robust in severasame result holds for the whole class of stochastic games
aspects. Games with co-Bichi objectives are absent fromwith signals. Moreover we prove that for play®ea doubly-
these results, since they are neither qualitatively detexdh ~ exponential number of memory states is necessary and suf-
(see Fig. 3) nor decidable (as proven in [2]). ficient for achieving positively the complementary co-Biic

Our main resulf and the element of surprise, is that objective.
for winning positively a safety or co-Buchi objective, a  Concerning algorithmic results (3) (see details in Theo-
player needsa memory with a doubly-exponential num- rem 3 and 4) we show that our algorithms are optimal in
ber of states, and the corresponding decision problem isthe following meaning. First, we give a fix-point based al-
2EXPTIME-complete. This result departs from what was gorithm for deciding whether a player has an almost-surely
previously known [17, 6], where both the number of memo- winning strategy for a Biichi objective. In general, this al
ry states and the complexity are simply exponential. Thesegorithm is ZXPTIME. We show in Theorem 5 that this
results also reveal a nice property reachabilitygames,  problem is indeed RXPTIME-hard. However, in the re-
that Buchi games do not enjoy: Every initial state is either stricted setting of [6], it is already known that this prable
almost-surely winnindpr playerl, surely winningor play-  is only EXPTIME-complete. We show that our algorithm is
er2 or positively winningor both. also optimal with arEXPTIME complexity not only in the

Our results strengthen and generalize in several ways reSetting of [6] where playe2 has perfect information but al-
sults that were previously known for concurrent games [10, SO under weaker hypothesis: it is sufficient that playkas
9] and deterministic games with imperfect information more informatiorthan player. Our algorithm is alsd&X-
on one side [17, 6]. First, the framework of stochastic PTIME when player has full information (Proposition 2).
games with signals strictly encompasses all the settings!n both subcases, playmeeds only exponential memory.
of [17, 10, 9, 6]. In concurrent games there is no signaling  Part of our results have been concurrently obtained
structure at all, and in deterministic games with imperfec- in [21] whose contribution is weaker than our: no determi-
t information on one side [6] transitions are deterministic nacy resultis provided, nothing is said about strategied us
and player2 observes everything that happens in the game, by player2 nor the memory she needs, and the algorithm
including results of random choices of her opponent. provided is enumerative rather than fix-point based.

(1) Either property (i) holds or property (ii) holds; in othe
words these games agealitatively determined



The paper is organized as follows. In Section 1 we intro-

km,i(¢m+1),J(dm+1)) > 0. Aninfinite play is a sequence

duce partial observation games, in Section 2 we define thein (K CD)“ whose prefixes are finite plays.

notion of qualitative determinacy and we state our determi-
nacy result, in Section 3 we discuss the memory needed byD(K) x C* — D(I).

strategies. Section 4 is devoted to decidability questimls

Section 5 investigates the precise complexity of the génerawith probabilityo (4, ¢4, . . .,

problem as well as special cases.

1 Stochastic games with signals.

We consider the standard model of finite two-person
zero-sum stochastic games with signals [23, 20, 18]. Thes

A (behavioral) strategy of player is a mappingo :
If the initial distribution isé and
playerl has seen signals, ..., ¢, then she plays actioh
¢,)(i). Strategies for playe?
are defined symmetrically. In the usual way, an initial dis-
tribution 6 and two strategies andr define a probability
measuré’;’” on the set of infinite plays, equipped with the
o-algebra generated by cylinders.

We use random variablds,,, I,,, J,,, C,, andD,, to de-
note respectively the-th state, action of playdr, action of

layer2, signal of playefl and signal of playe?.

are stochastic games where players cannot observe the ac-

tual state of the game, nor the actions played by their op-

ponent, their only source of information are private signal

s they receive throughout the play. Stochastic games with
signals subsume standard stochastic games [22], repeate

games with incomplete information [1], games with im-
perfect monitoring [20] and games with imperfect informa-
tion [6].

Notations. Given a finite setl, we denote byD(K) =
{6 : K = [0,1] | >, 6(k) = 1} the set of probability
distributions onk and for a distributiony € D(K), we
denotesupp(d) = {k € K | 6(k) > 0} its support.

States, actions and signals. Two players called and2

Winning conditions. The goal of playerl is described
by a measurable eveiWVin called thewinning condition
Iglotivated by applications in logic and controller synthe-
sis [13], we are especially interestedréachability, safety,
Biichi and co-Bichi conditions These four winning condi-
tions use a subsét C K of target statesn their definition.
The reachability condition stipulates tHatshould be visit-
ed atleastoncdVin = {3n € N, K,, € T'}, the safety con-
dition is complementarWin = {Vn € N, K,, ¢ T}. For
the Biichi condition the set of target states has to be disite
infinitely often, Win = {Vm € N,3n > m, K, € T}, and
the co-Buchi condition is complementatyin = {3m €
NVn >m, K, ¢ T}.

have opposite goals and play for an infinite sequence ofAlmost-surely and positively winning strategies. When
steps, choosing actions and receiving signals. Players obplayer1 and?2 use strategies andr and the initial distri-
serve their own actions and signals but they cannot observebution isd, then played wins the game with probability:
the actual state of the game, nor the actions played and the

signals received by their opponent. We borrow notations
from[18]. Initially, the game is in a stafgy € K chosen ac-
cording to an initial distributiod € D(XK) known by both
players; the initial state i& with probabilityd (ko). Ateach
stepn € N, playersl and2 choose some actiong € I
andj, € J. They respectively receive signals € C
andd,, € D, and the game moves to a new statg ;.
This happens with probability(k,, 1, ¢, dn | knyin, jn)
given by fixed transition probabilities : K x [ x J —
D(K x C x D), known by both players. Formally a game
isatuple(K,1,J,C,D,p).

PST (Win) .

Playerl wants to maximize this probability, while play2r
wants to minimize it. The best situation for playids when
she has an almost-surely winning strategy.

Definition 1 (Almost-surely winning strategy). A strate-
gy o for player1 is almost-surely winningrom an initial
distribution if

V7, PST (Win) =1 . (1)

When such a strategy exists, bothd and its support
supp(d) are said to be almost-surely winning as well.

Plays and strategies. Players observe their own action- A less enjoyable situation for playéris when she only
s and the signals they receive. It is convenient to assumenas a positively winning strategy.

that the actioni player1 plays is encoded in the signal

¢ she receives, with the notation= i(c) (and symmet-
rically for player2). This way, plays can be describe
by sequences of states and signals for both players, with- !
out mentioning which actions were played. A finite play
is a sequencéko,cy,dy, ..., cn,dn,kn) € (KCD)*K
such that for every) < m < n, p(km+t1, Cm+t1s dmt1 |

Definition 2 (Positively winning strategy). A strategyo
d for player1 is positively winningfrom an initial distribution
V7, P3T (Win) > 0 . (2

When such a strategy exists, bothd and its support
supp(d) are said to be positively winning as well.



The worst situation for playet is when her opponen-
t has an almost-surely winning strategy which ensures
P$"" (Win) = 0 for all strategiess chosen by playet.
Symmetrically, a strategy for player2 is positively win-
ning if it guarantee&o,P{"" (Win) < 1. These notion-
s only depend on the support éfsince P{"" (Win)
Srerc 0(k) - PLT (Win).

Figure 1. When the initial state is chosen at
random between states 1 and 2, player 1 has
a strategy to reach t almost surely.

Consider the one-player game depicted on Fig. 1. The
objective of playei is to reach staté. The initial distribu-
tionis §(1) = §(2) = 3 andd(t) = 4(s) = 0. Playerl
plays with actiond = {a, g1, 92}, whereg; andg> mean
respectively ‘guess’ and ‘guess2’, while player2 plays
with actionsJ = {c} (that s, player 2 has no choice). Play-
erl receives signal€' = {a, 3, L} and player is ‘blind’,
she always receives the same sighat= { L}. Transitions
probabilities are represented in a quite natural way. When
the game is in staté, playerl playsa and player2 plays
¢, then playerl receives signak or L with probability%,
player2 receives signal. and the game stays in stateln
state2 when action of playet is a and action of playe?
is ¢, player1 cannot receive signal but instead she may
receive signaB. When ‘guessing the state’ i.e. playing ac-
tion g; in statej € {1, 2}, playerl wins the game if = j
(she guesses the correct state) and loses the gamé jf.
The star symbo# stands for any action. In this game, play-
er1 has a strategy to reac¢halmost surely. Her strategy is
to keep playing action as long as she keeps receiving sig-
nal L. The day playeil receives signad or 3, she plays
respectively actiory; or g». This strategy is almost-surely
winning because the probability for playketo receive sig-
nal L forever is0.

2 Qualitative Determinacy.

If an initial distribution is positively winning for player
then by definition it imotalmost-surely winning for his op-

ponent playe®. A natural question is whether the converse
implication holds.

Definition 3 (Qualitative determinacy). A winning con-
dition Win is qualitatively determinedf for every game
equipped withWin, every initial distribution is either
almost-surely winning for playéror positively winning for
player2.

Comparison with value determinacy. Qualitative deter-
minacyis similar to but different from the usual notion of
(value) determinacwhich refers to the existence ofialue
Actually both qualitative determinacy and value determina
cy are formally expressed by a quantifier inversion. On one
hand, qualitative determinacy rewrites as:

(Vo Ir P{" (Win) < 1) = (37 Vo PJ" (Win) < 1) .
On the other hand, the game has a value if:

sup inf PJ"" (Win) > inf sup P{"" (Win) .

Both the converse implication of the first equation and the
converse inequality of the second equation are obvious.

While value determinacys a classical notion in game
theory [15], to our knowledge the notion qtialitative de-
terminacyappeared only in the context of omega-regular
concurrent games [10, 9] and stochastic games with perfect
information [14].

Existence of an almost-surely winning strategy ensures
that the value of the game 1s but the converse is not true.
Actually it can even hold that play@rhas a positively win-
ning strategy while at the same time the value of the game
is 1. For example, consider the game depicted on Fig. 2,
which is a slight modification of Fig. 1 (only signals of
player1 and transitions probabilities differ). Playg&mas

1

Figure 2. A reachability game with value
where player 2 has a positively winning strat-

egy.



signals{«, 8} and similarly to the game on Fig 1, her goal
is to reach the target stateby guessing correctly whether
the initial state isl or 2. On one hand, player can guar-

antee a winning probability as close t@as she wants: she

playsa for along time and compares how often she received

signalsa andg. If signalsa were more frequent, then she
plays actiong;, otherwise she plays actign. Of course,
the longer playeil playsa’s the more accurate the predic-
tion will be. On the other hand, the only strategy available t
player2 (always playinge) is positively winning, because
any sequence of signals f, 5}* can be generated with
positive probability from both statdsand2.

Qualitative determinacy results. The first main result of
this paper is the qualitative determinacy of stochasticegam
with signals for the following winning objectives.

Theorem 1. Reachability, safety andiBhi games are qual-
itatively determined.

k%

ac *C
0w )
)

*

*d

Figure 3. Co-Bulichi games are not qualitative-
ly determined.

of player2 which playsd at that date. Although playéris
blind, obviously she can play such a strategy which requires
only counting time elapsed since the beginning of the play.
With probability arbitrarily close td, the game is in state

2 and playing ad puts the game back in state Playing
long sequences afs followed by ad, player2 can ensure
with probability arbitrarily close td that if playerl plays

While qualitative determinacy of safety games is not too according tas, the play will visit states and2 infinitely
hard to establish, proving determinacy of Biichi games is often, hence will be lost by player. This contradicts the
harder. Notice that the qualitative determinacy of Biichi eXistence of an almost-surely winning strategy for player

games implies the qualitative determinacy of reachability

On the other hand, playé@r does not have a positively

games, since any reachability game can be turned into arwinning strategy either. Fix a strategyfor player2 and

equivalent Buichi one by making all target states absorbing Suppose it is positively winning. Oneeis fixed, playerl
The proof of Theorem1is postponed to Section 4, where knows how Iong she should wait so that if actidbwas nev-

the determinacy result will be completed by a decidability er played by playe then there is arbitrarily small proba-

result: there are algorithms for computing which initiad-di
tributions are almost-surely winning for play&ror posi-
tively winning for player2. This is stated precisely in The-
orems 3 and 4.

bility that player2 will play d in the future. Playet playsa
for that duration. If playe® plays ad then the play reaches
statel and playerl wins, otherwise the play stays in state
t. In the latter case, playérplays actiorb. Playerl knows

A consequence of Theorem 1 is that in a reachability that with very high probability playe2 will play ¢ forever

game, every initial distribution is either almost-surelynw
ning for player1, surelywinning for player2, or positively

in the future, in that case the play stays in stagand player
1 wins. If playerl is very unlucky then playe2 will play d

winning for both players. Surely winning means that player again, but this occurs with small probability and then play-
2 has a strategy for preventing every finite play consistent €r1 can repeat the same process again and again. Similar
with  from visiting target states. examples can be used to prove that stochastic Biichi games

Biichi games do not share this nice feature because cowith signals do not have a value [19].

Buchi games are not qualitatively determined. An example

of a co-Buichi game which is not determined is represented3 Memory needed by strategies.

in Fig. 3. In this game, playdrobserves everything, player

2is bllind_(sh.e only opserves her own actions), and playerg {  Finite-
1's objective is to avoid statefrom some moment on. The
initial state ist.

On one hand, playet does not have an almost-surely
winning strategy for the co-Buchi objective. Fix a strateg
o for playerl and suppose it is almost-surely winning. To
win against the strategy where playgplaysc forever, with
probability1 o should eventually play & Otherwise, the
probability that the play stays in statds positive, ancdr
is not almost-surely winning, a contradiction. Singds
fixed there exists a date after which playehas played
with probability arbitrarily close td. Consider the strategy

memory strategies.

Since our ultimate goal are algorithmic results and con-
troller synthesis, we are especially interested in stiateg
that can be finitely described, like finite-memory strategie

Definition 4 (Finite-memory strategy). A finite-memory
strategyfor player1 is given by a finite sed/ called the
memory together with a strategic functien; : M —
D(I), an update functiompd,, : M x C — D(M), and
an initialization functioninity; : P(K) — D(M). The
memory sizds the cardinal ofd/.



In order to play with a finite-memory strategy, a play- analmost-surely winning strategy with finite-memBiX)
er proceeds as follows. She initializes the memory &b and update functiod8;. In the second case play2rhas a
initpr (L), whereL = supp(9) is the support of the initial  positively winning strategy with finite-memdR(P (K) x
distributiond. When the memory is in state € M, she K).
plays actioni with probabilityo s (m)(i) and after receiv-
ing signale, the new memory state s’ with probability The situation where a player needs the least memory is
upd ; (m, c)(m'). when she wants to win positively a reachability game. To
On one hand it is intuitively clear how to play with a do so, she uses a memoryless strategy consisting in playing
finite-memory strategy, on the other hand the behavioralrandomly any action.
strategy associated with a finite-memory strateggn be To win almost-surely games with reachability, safety and
quite complicated and requires the player to use infinite- Biichi objectives, it is sufficient for a player to remember
ly many different probability distributions to make random her belief. A canonical almost-surely winning strategy-con

choices (see discussions in [10, 9, 14]). sists in playing randomly any action which ensures the nex-
In the games we consider, the construction of finite- t belief to be almost-surely winnin§ Similar strategies
memory strategies is often based on the notiomelfef were used in [6]. These two results are not very surprising:

The belief of a player at some moment of the play is the setalthough they were not stated before as such, they can be
of states she thinks the game could possibly be in, accordingoroved using techniques similar to those used in [17, 6].
to the signals she received so far. The element of surprise is the amount of memory needed
for winning positively co-Biichi and safety games. In these
situations, itis still enough for playérto use a strategy with
finite-memory but, surprisingly perhaps, an exponentz si
memory is not enough. Instead doubly-exponential memory
is necessary as will be proved in the next subsection.
Doubly-exponential size memory is also sufficient. Ac-

Definition 5 (Belief). From an initial set of state& C K,
the belief of playet after receiving signat (hence playing
actioni(c)), is the set of statdssuch that there exists a state
lin L and a signald € D withp(k,c,d | 1,i(c),j(d)) > 0.
The belief of playet after receiving a sequence of signals

c1,...,cy, is defined inductively by: e " L
tually for winning positively, it is enough for player to
Bi(L,ci,-..,cn) =Bi(Bi(L,ci,. .. cno1),cn). make hypothesis about beliefs of playgrand to store in
her memory all pairgk, L) of possible current state and be-
Beliefs of playee are defined similarly. lief of her opponent. The update operator of the correspond-

ing finite-memory strategy uses numerous random choices

Ogr second main result is thf"‘t. for the quahtatwel_y de- so that the opponentis unable to predict future moves. More
termined games of Theorem 1, finite-memory strategies are

- details are available in the proof of Theorem 4.
sufficient for both players. The amount of memory needed P

by these finite-memory strategies is summarized in Table 1 . .
and detailed in Theorem 2. 3.2 Doubly-exponential memory is neces-

sary to win positively safety games.

Almost-surely | Positively

Re?chability be:?e: memtl)ryless We now show that a doubly-exponential memory is nec-
g?ceht.y Ezl!gf doubly-exp essary to win positively safety (and hence co-Biichi) games
tchi i

_ We construct, for each integera reachability game, whose
Co-Bchi doubly-exp number of state is polynomial inand such that playérhas
a positively winning strategy for her safety objective. Fhi
game, calledzuess_my_set,,, is described on Fig. 4. The
objective of player 2 is to stay away frotnwhile player 1
tries to reach.
Theorem 2 (Finite-memory is sufficient). Every reach- We prove that whenever play2uses a finite-memory s-
ability game is either won positively by playg&ror won trategy in the gamguess_my_set,, then the size of the mem-
surely by playeR. In the first case playing randomly any ory has to be doubly-exponential iny otherwise the safe-
action is a positively winning strategy for playgérand in ty objective of playeR may not be achieved with positive
the second case play2ihas a surely winning strategy with  probability. This is stated precisely later in Propositin
finite-memoryP (K) and update functioi$,. Prior to that, we briefly describe the gageess_my_set,,
Every Bichi game is either won almost-surely by player for fixedn € N.
1 or won positively by playe. In the first case player has

Table 1. Memory required by strategies.

2for reachability and safety games, we suppose without lbgemer-
1cf. [3] for a precise definition. ality that target states are absorbing.




In order to check that a s&t of sizen/2 is different from

Playerl chooses secretly a se the setX of sizen/2, we challenge player 1 to point out
X c{1,...,n} of size some elemeny € Y \ X. We ensure by construction that
* y € Y, forinstance by asking it when is given. This way,

if player 1 cheats, then she will givee X, leaving a pos-
itive probability thaty = z, in which case the game is sure
that player 1 is cheating and punishes player 1 by sending
her to states where she loses.

The second problem is to make sure that player 1 gen-

Player1 announces publicly |Playerl
%(;}2) sets different fromX [cheats

X found 3 erates an exponential number of pairwise different sets
Player2 hasi ( 72) tries X1, Xo, .. .,Xl( n) Notice that the game cannot recall
n 2\n/2
for finding X even one set. Instead, player 1 generates the sets in some

total order, denoted, and thus it suffices to check on-
X not found . . . L
ly one inequality each time a séf;, is given, namely
@’ * X; < X;41. Itis done in a similar but more involved way
as before, by remembering randomly two elementXpf
instead of one.
The last problem is to count up #o- (n72) with a loga-
rithmic number of bits. Again, we ask player 1 to increment

a counter, while remembering only one of the bits and pun-
ishing her if she increments the counter wrongly.

Figure 4. A game where player 2 needs a lot
of memory to stay away from target state  t¢.

Idea of the game. The gameguess_my_set,, is divided
into three parts. In the first part, player 1 generates a setProposition 1. Player 2 has a finite-memory strategy with

X ¢ {1,...,n} of size|X| = n/2. There are(,,) possi- 3 x 23'(:72) different memory states to win positively
bilities of such sets\. Player 2 is blind in this part and has  guess_my set,,.
no action to play. No finite-memory strategy of player 2 with less than

In the second part, player 1 announces by her actionsﬁ-(n%)
%(n%) (pairwise different) sets of size/2 which are dif-
ferent fromX. Player 2 has no action to play in that part, Proof. The first claim is quite straightforward. Playzre-
but she observes the actions of player 1 (and hence the setshembers in which part she is (3 different possibilities). In

announced by playdn. part 2, player remembers all the sets proposed by player
In the third part, playe can announce by her action (2%-(n"/2) possibilities). Between part 2 and part 3, player
upto3(,),) sets of size/2. Playerl observes actions of 9 jnverses her memory to remember the sets playeid
player2. If player2 succeeds in_finding the sat, the game not propose (stiIE%'(n"/z) possibilities). Then she propos-
restarts from s_cratch. Otherwise, the game goes to state es each of these sets, one by one, in part 3, deleting the set
and player 1 wIns. . . from her memory after she proposed it. Let us assume first
Itis worth noticing that in order to implement the game that playerl does not cheat and plays fair. Then all the sets

guess-my.set,, in a compact way, we allow player 1 to sizen/2 are proposed (since there &e3 - (,,) such

cheat, and rely on pr_obat_)llnle; to always have a c_hance tosets), that isX has been found and the game starts anoth-
catch player 1 cheating, in which case the game is sent to

the sink states. and plaverl loses. That is. plavet has er round without entering state Else, if playerl cheats

. player. ’ 1S, play at some point, then the probability to reach the sink state
to play following the rules without cheating else she cannot s is non zero. and blaver also winspositivelvher safet
win almost-surely her reachability objective. However we ' play P y y

: objective.
.do not nged o allow play@rto_cheat. Notice that player The second claim is not hard to show either. The strategy
is better informed than play@rin this game.

of player1 is to never cheat, which prevents the game from

) _ ) entering the sink state. In part 2, player 1 proposes the sets
Concise encoding. We now turn to a more formaldescrip-  x i a |exicographical way and uniformly at random. As-
tion of the gameguess.my set,,, to prove that it can be en-  gyme by contradiction that player 2 has a counter strategy
coded with a number of states polynomiakin There are . . 1.(,7) .

. with strictly less tharR2'\»/2/ states of memory that wins

three problems to be solved, that we sketch here. First, re- ositivelv the safetv obiective. Consider the end of part 2
membering sek in the state of the game would ask for an P y Y 00 ) b '

n
exponential number of states. Instead, we use a fairly stan-When player 1 has proposéz\d (n/2) sets. If there are less

dard technique: recall at random a single elemeswt X . thanﬁ'("nﬂ) states the memory of play&rcan be in, then

memory states wins positivedyess_my_set,, .



there exists a memory state, of player 2 and at least t- Theorem 4 (Deciding almost-sure winning in Buchi
wo setsA, B among thel - (;}2) sets proposed by player games). In a Biichi game each initial distributiod is ei-

1 such that the memory of player 2 aftéris m, with non ther almost-surely winning for player or positively win-
zero probability and the memory of player 2 affeiis m. ning for player2, and this depends only ampp(d) C K.
with non zero probability. NowA U B has strictly more ~ The corresponding partition 6?(K') is computable in time
thani - (n%) sets ofn/2 elements. Hence, there is a set 0(22°), whereG denotes the size of the description of the

X € AU B with a positive probability not to be proposed 9ame. The algorithm computes at the same time the finite-
by player 2 after memory state.. Without loss of gener- ~ memory strategies described in Theorem 2.

ality, we can assume thaf ¢ A (the other cas& ¢ B is
symmetrical). Now, for each round of the game, there is a
positive probability thak is the set in the memory of player
1, that player 1 proposed sets in which case player 2 has

a (small) probability not to propos& and then the game
goes ta, where playei wins. Player will thus eventually
reach the target state with probabilityhence a contradic-
tion. This achieves the proof that no finite-memory strategy

of player 2 with less thaa? (+/2) states of memory is pos-
itively winning.

Sketch of proofThe proof of Theorem 4 is based on the
following ideas.

First, suppose that froeveryinitial support playeil can
win the reachability objectivevith positive probability. S-
ince this positive probability can be bounded from below,
repeating the same strategy can ensure that Player 1 wins
the Buchi condition with probability. According to Theo-
rem 3, in the remaining case there exists a supparely
winning for player2 for her co-Biichi objective.

We prove that in case playércanforce the belief of
player 1 to be L someday with positive probability from
4 Decidability. another suppott’, thenL' is positively winning as well for
player2. This is hot completely obvious because in gener-

We turn now to the algorithms which compute the set al player2 cannot know exactlyvhenthe belief of player

of supports that are almost-surely or positively winning fo 1 iS - For winning positively from.’, player2 plays to-
various objectives. tally randomly until she guesses randomly that the belief

of player1 is L, at that moment she switches to a strategy
Theorem 3 (Deciding positive winning in reachability surely winning fromL. Such a strategy is far from being
games). In a reachability game each initial distribution optimal, because play@mlays randomly and in most cases
¢ is either positively winning for playet or surely win- she makes a wrong guess about the belief of playktow-
ning for player2, and this depends only empp(d) C K. ever player2 wins positively because there is a chance she
The corresponding partition & (K) is computable intime  is lucky and guesses correctly at the right moment the belief
O (G- 2%), whereG denotes the size of the description of of playerl.
the game. The algorithm computes at the same time the Playerl should surely avoid her belief to beor L' if
finite-memory strategies described in Theorem 2. she wants to win almost-surely. However, doing so player
. o ~ 1 may prevent the play from reaching target states, which
As often in algorithmics of game theory, the computation may create another positively winning support for plager
is achieved by a fix-point algorithm. and so on...
Using these ideas, we prove that the8gt C P(K) of
supports almost-surely winning for playerfor the Biichi
objective is the largest set of initial supports from where

Sketch of proofThe set of support€ C P(K) surely-
winning for player2 are characterized as the largest fix-
point of some monotonic operataé : P(P(K))
P(P(K)). The operato® associates witll C P(K) the () playerl has a strategy for winning positively the reach-

set of supportd, € £ that do not intersect target states and ability game while ensuring at the same time her belief
such that playe? has an action which ensures that her next to stay inL ..

belief is in £ as well, whatever action is chosen by player

and whatever signal play@rreceives. Fo C P(K), the Property {) can be reformulated as a reachability con-

value of ®(£) is computable in time linear ig and in the dition in a new game whose states are states of the original
description of the game, yielding the exponential complex- game augmented with beliefs of playkrkept hidden to
ity bound. O player2.
The fix-point characterization suggests the following al-

To decide whether playdr wins almost-surely a Buchi  gorithm for computing the set of supports positively win-
game, we provide an algorithm which runs in doubly- ning for player2: P(K)\L is the limit of the sequence
exponential time and uses the algorithm of Theorem 3 asf) = £j C Lo U LY C LoU L) C LU LIULY € ... C
a sub-procedure. LoU---U L =P(K)\Ls, Where



(a) from supports inC}, , player2 can surely guarantee M be anEXPSPACE alternating Turing machine, and
the safety objective, under the hypothesis that player be an input word of lengtlk. From M andw we build
beliefs stay outsid&’, a stochastic game with partial observation such that player
1 can achieve almost-surely a reachability objective if and
only if w is accepted byV. The idea of the game is that
player2 describes an execution d¥4 on w, that is, she
enumerates the tape contents of successive configurations.

The overall strategy of playex positively winning for Moreover she chooses the rule to apply when the state of
the co-Biichi objective consists in playing randomly for M is universal, whereas playeris responsible for choos-
some time until she decides to pick up randomly a bdlief ing the rule in existential states. When the Turing machine
of player1 in someL!. She forgets the signals she has re- reaches its final state, the play is won by playern this
ceived up to that moment and switches definitively to a strat- 9ame, if player really implements some execution .4
egy which guarantees (a). With positive probability, praye ©Onw, playerl has a surely winning strategy if and only if
2 is lucky enough to guess correctly the belief of playet IS accepted byM.

(b) from supports inC;, , player2 can ensure with pos-
itive probability the belief of played to be inL},
someday, under the same hypothesis.

the right moment, and future beliefs of playlewill stay in This reasoning holds under the assumption that player
L', in which case the co-Blichi condition holds and player effectively describes the execution 8fl on w consistent
2 wins. O with the rules chosen by both players. However, player

] ) could cheat when enumerating successive configurations of
Property} can be formulated by mean of a fix-point ac-  the execution. To prevent play2ifrom cheating, it would
cording to Theorem 3, hence the set of supports positively he convenient for the game to remember the tape contents,
winning for player2 can be expressed using two nested fix- ang check that in the next configuration, plageindeed
points. This should be useful for actually implementing the gpplied the chosen rule. However, the game can remem-
algorithm and for computing symbolic representations of per only a logarithmic number of bits, while the configura-

winning sets. tions have a number of bits exponentiakin Instead, we
ask playerl to pick any positiork of the tape, and to an-
5 Complexity and special cases. nounce it to the game (playrdoes not knowk), which is

described by a linear number of bits. The game keeps the

In this section we show that our algorithms are optimal letter at this position together with the previous and net«t |
regarding complexity. Furthermore, we show that these al-ter on the tape. This allows the game to compute the letter
gorithms enjoy better complexity in restricted cases, gen-atpositionk of thenextconfiguration. As playe describes
eralizing some known algorithms [17, 6] to more general the next configuration, playdrwill announce to the game
subcases, while keeping the same complexity. that positionk has been reached again. The game will thus

The special cases that we consider regard inclusion becheck that the letter player 2 gives is indeedThis way,
tween knowledges of players. To this end, we define thethe game has a positive probability to detect that playier
following notion. If at each moment of the game the belief cheating. If so, the game goes to a sink state which is win-
of playerz is included in the one of player, then playet: ning for playerl. To increase the probability for player
is said to have more information (or to be better informed) Of observing playe2 cheating, playet has the possibility
than p|ayery_ Itis in particu|ar the case when for every to restart the whole execution from the beginning whenev-
transition, the signal of playdrcontains the signal of play- € she wants. If playe? cheats infinitely often, player

er?. will detect it with probability one, and will win the game
almost-surely.
5.1 Lower bound. We now have to take into account that playecould

cheat: she could point a certain position of the tape costent

We prove here that the problem of knowing whether the at a given step, and point somewhere else in the next step.
initial support of a reachability game is almost-surely win  To avoid this kind of behaviour, a small piece of information
ning for playerl is 2EXPTIME-complete. The lower bound  about the position pointed by playeris kept secret in the
even holds when playéris more informed than playér state of the game. If playdris caught cheating, the game
goes to a sink state losing for player

This construction ensures that playehas an almost
sure winning strategy if and only i) is accepted by the
alternating Turing machind1. Note that in the game de-
Sketch of proofWe do a reduction from the membership Scribed above player does not have full information but
problem forEXPSPACE alternating Turing machines. Let has more information than player O

Theorem 5. In a reachability game, deciding whether play-
er 1 has an almost-surely winning strategy2EXPTIME-
hard, even if playet is more informed than playex.
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Technical Appendix

A Details for Section 3

We give here all the details for encoding the gagness_my_set,, with a game of polynomial size.
First, we describe how to ensure that a player does expadigntiany steps. We show this for a game
with one and a half player, that is one of the player has no nawedlable. This game can thus be
applied to any player.

A.1 Exponential number of steps

Lety; - - -y, be the binary encoding of a numbgexponential im (y,, being the parity of). Here
is a reachability game that the player needs to playhipsteps to surely win. Intuitively, the player
needs to enumerate one by one the successors of 0 until mgaghi- - y,, in order to win. Let say
x} -- -z}, is the binary encoding of the successor counteof counterz. In order to check that the
player does not cheat, the hif for a randomi is secretly remembered. It can be easily computed on
the fly reading; . . . z,,. Indeed;z} = x; iff there exists somé > i with z;, = 0.

Action a and signal coincide, ande {0, 1,2}, a € {0, 1} standing for the current hit;, anda = 2
standing for the fact that the player claims having reached

The state space is basically the following: b, j, ', ', )i j j'<n.c.2'ef0,13- The signification of
such a state is that the player will give bit, b, j are the check to make to the current number (checking
thatz; = b), ', j are the check to make to the successor f’, = v') , andc indicates whether there
is a carry (correcting’ in casec = 1 at the end of the current numbeér= n)). The initial distribution
is the uniform distribution or0, 0, &, 0, 1) (checking that the initial number generated is indégdf
the player playg, then ify; = b the game goes to the goal state, else it goes to a sinksstate

We haveP((i,b,5,b',j',¢),a,s) = 1if i = j anda # b. Else, ifi # n, P((i,b,5,0,j',¢),a, (i +
1,b,5,0,5 ¢ A a)) = % (the current bit will not be checked, and the carry is 1 if betland
a are 1), andP((i,b,5,b',j',¢),a,(i + 1,b,j,a,i,1)) = 1/2. At last, fori = n, we have
P((i,b,5,b',5',¢),a, (1,0 A c,j',a,1,1)) = 1 (the bit of the next number becomes the bit for the
current configuration, taking care of the cary Clearly, if the player does not play: steps of the
game, then it means she did not compute accurately the stcaOne step, hence it has a chance to
get caught and lose. That is, the probability to reach thégjate is not 1.

A.2 TImplementing guess.my set, with a polynomial size game.

We now turn to the formal definition gfuess_my_set,,, with a number of states polynomialin At
each time (but in state), player 1 can restart the game from the begining (but froarsthk state), we
will say that it performs another round of the game.

The first part of the game is fairly standard, it consists kirggplayer 1 (who wants to reach some
goal) for a setX of n/2 numbers below:. The states of the game are of the fofmi), wherez is
the number remembered by the system (hidden for both playerdi < n — 2 is the size ofX so
far. Player 1 actions and signals are the same, equf,ta.,n}, There is no action nor signal for
player 2. We have®((z, i), z,s) = 1 (player 1 is caught cheating by proposing again the same eumb
remembered by the system). For @l z, we haveP((z,i),y, (z,i + 1)) = 1/2 (the numbery
is accepted as new and the memaris not updated)P((x,),y, (y,i + 1) = 1/2 (the numbely is
accepted as new and the memory is updated y). If player1 playso0, it means that she has given
n/2 number, the system checks that the current state is inde@g2) and goes to the next part. If the
current state is ndtc, n/2), then it goes ta and player 1 looses.



The numberr in the memory of the system at the end of part 1 will be used antembered all
along this round of the game in the other parts. We turn nowécsecond part, where player 1 gives
% . (;}2) setsY differentto X. First, in order to be sure that every 3&she proposes is nevétr, player
1 is asked to give one numberin\ {z} (this number is not observed by player 2). Givingends the
game into the sink statefrom which player 1 loses. Since player 1 does not know whiat playing
any number inX is dangerous and ensures that the probability of the plashieg the sink state is
stricly positive, hence it cannot reach its goal almostlgufiéhe way the sets are announced by player 1
is the following. First, player 1 is asked whether number bibgs to the set it is annoucing (she plays
a if yes,a’ if not, anda” if it is and furthermore it is the biggest number which willasige compared
to the following set). Player 2 has no choice of action to pEye observation of player 1 and 2 is the
same as the action of player 1, that is player 2 is informeti@&ets announced by player 1.

Second, the game needs to ensure that each set is diffecerhak, it asks player 1 to generate the
sets in lexicographic order (if is given beforé’™, then there exists j € Y x Y’ such that < j and
forall k € X with k > i,k € X' andk # j), and to announce in its action what is the biggest number
of current set” which will be changed next time. The game remembgptus one numbej € Y with
j > i (if any) (it can be done with polynomial number of states)e fame checks whether the next set
Y’ containsj, plus a numbei’ € Y’ with i < i’ andi’ # j. Again, since player 1 does not know the
number;j chosen, if player 1 cheats and changes a nurhberi of Y, then there is always a chance
that the game remembers that number and catches playertingh@awhich case the game goes to the
sink states. To be sure that player 1 givés (n’/‘z) sets, she plays the game of section A.1 step by step,
advancing to the successor of the current counter only whesia is proposed. Furthermore, when
she has finished giving - (;}2) she goes to the third part.

The third part ressembles the second part: player 2 prop%os(agk) sets instead of player 1, and
player 1 observes these sets. For eacl’gatoposed by playe?, playerl has to give an event i \ YV’
(this is not observed by player 2). This is ensured in the sameas in part 2. Recall that Player 1 has
always a reset action to restart the game from step 1, bueigittk states. That is, ifY = X, player 1
can ends the round, and restart the game with a new setthe following round.

After each set proposed by player 2, the game of section Ararambs to its next step. Once there
has beer, - (n72) setsY proposed with the proof by Player 1 th&t # Y, then Player 1 goes to the
goal state and wins.

B Details for Section 4
B.1 Strategies with finite memory

Definition 6 (Behavioral strategy associated with a finite menory strategy). A strategy with finite
memory is described by a finite skt called the memory, a strategic functien; : M — D(I), an
update functiompd,, : M x C — M, an initialization functiorinit, : P(K) — M. The associated
behavioral strategy is defined by

a(0)(c1 - cn)(i) =

Z init a7 (supp(d))(mo) - upd s (mo, c1)(ma) - - - upd s (Mp—1, ¢n) (My) - oar (M) (0)

mo+ My EMnT1
B.2 Beliefs and the shifting lemma

When "shifting time” in proofs, we will use the followinghifting lemmaeither explicitely or im-
plicitely.



Lemma 1 (Shifting lemma). Let f : S — {0, 1} be the indicator function of a measurable event,
be an initial distribution andr andr two strategies. Then:

]P)g’T (f(Kl,Kz,. . ) =1 | Cl =C, D1 = d) = ]P)g;;‘rd (f(K(],Kl,. . ) = 1),

whereVk € K,éc.q(k) = P§7 (K1 =k | Ci =¢,D1 =d), oc(cacg---¢n) = 0(ccacs - cpy) and
Td(d2d3 R dn) = U(dd2d3 ce dn)

Proof. Using basic definitions, this holds whegrnis the indicator function of a union of cylinders, and
the class of events that satisfy this property is a monottassc O

We will use heavily the following properties of beliefs.

Proposition 3. Let o, 7 be strategies for playet and2 andd an initial distribution with supportL.
Then forn € N,
P (Kny1 € Bi(L,Ch,...,Cp)) =1 . (3

3

Moreover, letry be the strategy for playe? which plays every action uniformly at random. Then for
everyn € Nande; --- ¢, € C*, if P{7Y (C1 = ¢c1,...,C, = ¢,) > 0 then for every staté € K,

(]C (S Bl(L,Cl,...,Cn)) <~ (Pg’TU (Kn+1 = k,C’1 :Cl,...,cn = Cn) > O) . (4)

Consider the reachability, safetyjiBhi or co-Bichi condition, and supposeandé are almost-surely
winning for playerl. Then for every, € N and strategyr,

Py (Bi(L,Dy,...,D,)isa.s.w. for played) =1 . (5)

Proof. Easy from the definitions using the shifting lemma. Recallrsachability and safety games,
we suppose without loss of generality that target statealaserbing. The first statement says that the
current state is always in the belief of playlerThe second statement says that in case playdays
every action, then every state in the belief of playaes a possible current state. The third statement
says in case playdrplays with an almost-surely winning strategy, his beliefdd stay almost-surely
winning. This is because should be almost-surely winning againgtas well. O

B.3 Proof of Theorem 3

Theorem 3 (Deciding positive winning in reachability game}l In a reachability game each initial
distributiond is either positively winning for player or surely winning for playee, and this depends
only onsupp(4) C K. The corresponding partition &7 (K ) is computable in timé& (G - 2%), where

G denotes the size of the description of the game. The algodtmputes at the same time the finite-
memory strategies described in Theorem 2.

The proof is elementary. By inspection of the proof, one dataio bounds on time and probabilities
before reaching a target state, using the uniform memageategy ;. From an initial distribution
positively winning for the reachability objective, for eyestrategyr,

1 2
P77 (In < 2K K, e T) > <—> , 6
i (En < )2 Pl (©)

wherep is the smallest non-zero transition probability.



Proof. Let L, C P(K\T) be the greatest fix-point of the monotonic operabor P(P(K\T)) —
P(P(K\T)) defined by:

(L) ={L€L]|3Tjr € JNVde D,(j.=j(d) = Ba(L,d) €L},

in other words® (L) is the set of supports such that plagenas an actior, such that whatever signal
d she might receive (coherent wiflof course) her new belief will still be if. Leto g be the strategy
for player1 that plays randomly any action.

We are going to prove that:

(A) every supportinC. is surely winning for playeg,
(B) andor, is positively winning from any suppoft C K which is not in£..

We start with proving (A). For winning surely from any suppbre L., player2 uses the following
finite-memory strategy: if the current belief of playe? is L € L., then player2 chooses an action
jr such that whatever signdlplayer2 receives (withj(d) = j), her next beliel3y(L, d) will be in
L~ as well. By definition of® there always exists such an actifn and this defines a finite memory
strategy with memor¥ (K\T) and update operatdt;.

When playing with strategy, starting from a support id,, beliefs of playe® never intersect'.
According to 3 of Proposition 3, this guarantees the playeneisitsT', whatever strategy is used by
player1.

Conversely, we prove (B). Once the memoryless strategyor player1 is fixed, the game is a
one-player game where only playehas choices to make: it is enough to prove (B) in the spec&d ca
where the set of actions of playéris a singletonl = {i}. Let Lo = P(K\T) D L1 = ®(Ly) 2
Lo =®(Ly)...andL be the limit of this sequence, the greatest fixpoinbofVe prove that for any
supportL € P(K), if L ¢ L then:

L is positively winning for playei . (7

If LNT # (, (7) is obvious. For dealing with the case whére P(K\T), we define for every. € N,
K, = P(K\T)\L,, and we prove by induction on € N that for everyL € K, for every initial
distributiond, with supportL, for every strategy,

P;, 3m,2<m<n+1,K,e€T)>0. (8)

Forn = 0, (8) is obvious becaus€, = (. Suppose that for some e N, (8) holds for evenf. € K,,,
andletL € K,:. If L € K,, then by inductive hypothesis, (8) holds. Otherwise X,1\K, and
by definition of C,, 41,

L€ L\®(L,) - ©)

Letd, be an initial distribution with suppo#t andr a strategy for playe2. Let j be an action such that
7(6,)(j) > 0. According to (9), by definition o, there exists a signal € D such thatj = j(d) and
By(L,d) & L. If B2(L,d) N'T # § then according to Proposition B (K, € T') > 0. Otherwise
By(L,d) € P(K\T)\L, = K, hence distributiod;(k) = P, (K. = k| D1 = d) has its supportin
K. By inductive hypothesis,for every strategy]Pg; GmeN2<m<n+1,K, €T)>0hence
according to the shifting lemma and the definitio@fP; (Im € N3 <m <n+2,K,, € T) > 0,
which achieves the inductive step.

For computing the partition of supports between those pesjtwinning for playerl and those
surely winning for playee, it is enough to compute the largest fixpoint®f Since® is monotonic,
and each application of the operator can be computed in tivear in the size of the gamé&f and the
number of support2(<) the overall computation can be achieved in ti#@ . For computing strategy
7, itis enough to compute for eadhe L, an actionj;, which ensure®,(L,d) € L. O



B.4 Proof of Theorem 4

Theorem 4 (Deciding almost-sure winning in Blichi games)ln a Biichi game each initial distribution

4 is either almost-surely winning for play#ior positively winning for playe2, and this depends only on
supp(d) C K. The corresponding partition dP(K) is computable in timé)(22G), whereG denotes
the size of the description of the game. The algorithm coegpat the same time the finite-memory
strategies described in Theorem 2.

We start with formalizing what it means for playéro force her pessimistic beliefs to stay in a
certain set.

Definition 7. Let £L C P(K) be a set of supports. We say that playecan enforce her beliefs to
stay outsideC if player 1 has a strategy such that for every strategy of player2 and every initial
distributiond whose support is not i,

Py™ (Vn € N, Bi(L,Cy,...,Cp) € L) =1 . (10)
Equivalently, for every. & L, the set:
I(L) = {i € I suchthatvc € C, if i =i(c) thenBy(L,c) € L} ,
is not empty.

Proof. The equivalence is straightforward. In one directiongléie a strategy with the property above,
L ¢ L, ¢, adistribution with supporE andi an action such that(dé,)(7) > 0. Then according to (10),

i € Ir, hencely, is not empty. In the other direction, If, is not empty for every. ¢ £ then consider
the finite-memory strategy which consists in playing any action i, when the belief id.. Then by
definition of beliefs (10) holds. O

We need the notion of-games.

Definition 8 (£-games). Let £ be a set of supports such that playlecan enforce her beliefs to stay
outsideL. For every supporf ¢ L, let I(L) be the set of actions given by Definition 7. Thwgame
has same actions, transitions and signals than the origir@atial observation game, only the winning
condition changes: playelr wins if the play reaches a target state and moreover playdgoes not use
actions other thard;, whenever her pessimistic belieflis Formally given an initial distributiord with
supportL and two strategies andr the winning probability of playet is:

Py (3n, K, € T andVn, I, € I(Bi(L,C,...,Ch))).

Actually, winning positively anC-game amounts to winning positively a reachability gamésitite
spaceP(K) x K, as shown by the following lemma and its proof.

Proposition 4 (£-games).Let £ C P(K) be a set of supports such thais upward-closed and player
1 can enforce her pessimistic beliefs to stay outglde

(i) Inthe £-game, every support is either positively winning for ptayer surely winning for player
2. We denoteC” the set of supports that are not iand are surely winning for playet in the
L-game.

(i) SupposeL” is empty i.e. every support not i is positively for playerl in the £-game. Then
every support not irC is almost-surely winning for playdr, both in the£-game and also for the
Buchi objective. Moreover, the strategy for player1 which consists in chosing randomly any
action inI(L) when her belief id is almost-surely winning in thé-game.



(iii) SupposeL” is notempty. Then playe? has a strategy for winning surely theC-game from any
support inf”, andr has finite memorP ((P(K)\L) x K).

(iv) There is an algorithm running in time doubly-exponahtime in the size of7 for computingl”
and, in case (iii) holds, strategy.

The proof is based on Theorem 3.

Proof. We define a reachability game which is a synchronized proditte original game&= with
beliefs of playen, with a few modifications. this new reachability game is ded¢: .. The state space

is K x (P(K)\L)U{L}, where{_L} is a sink state, used for punishing plajterhenever he uses an
action not inI(L). Target states of/ are those whose first component is a target state of thelinitia
game(. Actions and signals of both players are the same &5 ifihe transition function is the product
of the transition function o7 (for the first component), together with the belief operdior(for the
second component), with one modification: whenever theeotistate i, L) and playerl plays an
actioni which is notinI (L), the next state i§_L }, and remaing_L } forever.

Applying Theorem 3 to the reachability gargg:, we get (i) and (iii). Property (i) holds because a
strategy for playet is positively winning in theC-game if and only if it is positively winning itz 2
and a strategy for playeXis surely winning in theC-game if and only if it is surely winning i .
Property (iii) holds according to Theorem 3, because the sjgace of7; is K x (P(K)\L) U {L}
and player can forget about staté because it is a sink state.

Computability of£” ando andr stated in (iv) is straightforward from Theorem 3 appliedtp.

Now we supposel” is empty and prove (ii). According to Theorem 3, any suppaoitin £ is
positively winning for playeil in G, and moreover the strategy; which consists in playing randomly
any action is positively winning for playdr. When the belief of playet is L, playing an action
which is notin(L) leads immediatly to a non-accepting sink state, henceeglyat; which consists
in playing randomly any action ifi(L) is positively winning as well, from any initial distributiovhose
supportis notin_.

To prove (ii) it is enough to show that for every initial distition § whose support is not ig,

o is almost-surely winning for playdrfromd . (11)

Note this is a consequence of (6), but we quickly reprove dt groving (11), we need to give an
upper bound on the time to wait before seeing a target stagestsivt with proving that for each ¢ £
there existsVy, € N such that for every strategy for every distributionj with supportL,

1
PI7 (3n < Ni, K, € T) > — . (12)
Ng

We suppose such aNj, does not exist and seek for a contradiction. Suppose foyeVehere exists
Tn andéy with supportL such that (12) does not hold. Without loss of generalitycsin is fixed
and property (12) only concerns the firgtsteps of the game, we can "de-randomize” strategynd
supposery is deterministic i.e.ry : D* — J. Without loss of generality, we can assume as well
thatdy converges to some distribution whose support is hecessarily includedinUsing Koenig’s
lemma, it is easy to build a strategy: D* — J such that for infinitely many,

a,T 1
Pi7(3n <N, Kn, €T) < N
Taking the limit whenV — oo, we get:

PS7 (In, K, € T) =0 .

Vi



this contradicts the fact that is positively winning fromL, because the support éfis included in
L ¢ £ and by hypothesig is upward closed heneapp(d) ¢ £ as well. This proves the existence of
Ny, such that (12) holds.

Now we can achieve the proof of (ii). L& = max{N, | L ¢ L}. Then for every strategy and
every distributiony whose support is not ig,

1

By (In < N K€1) > + (13)

Sinceo guarantees the belief of playeto stay outside, we can apply the shifting lemma and get:

Pie" (Vn <2N,K, ¢T) < (1-— %)2 ,

and by induction,
P{*"(IneNK, e€T)=1.

This holds for every strategyand every distributiod whose supportis notid. Sinces guarantees
the belief of playeil to stay outside, by induction using (4) we obtain
Pie" (3%n, K, €T) =1 .

This achievesto prove thay is almost-surely winning from any suppdrtgZ £ for the Biichi condition.
This proves (11) hence (ii). O

The following proposition provides a fix-point charactatipn of almost-surely winning supports
for player1.

Proposition 5 (Fix-point characterization of almost-surdy winning supports). Let£ C P(K) be a
set of supports. Suppose playeran enforce her beliefs to stay outsideThen,

(i) either every supporL ¢ L is almost-surely winning for playdrand her Bichi objective,
(i) or there exists a set of suppor¥ C P(K) and a strategy-* for player2 such that:

(a) £'is not empty and does not intersekt
(b) playerl can enforce her beliefs to stay outsideJ £,
(c) for every strategy and initial distributiond with supportinl’,

]Pg’T* (Vn > 2K7Kn €T | Vn:Bl(L:Ch"'7Cn) Q,C) >0 (14)

There exists an algorithm running in time doubly-exporegirti the size of7 for deciding which of
cases (i) or (ii) holds. In case (i) holds, the strategyfor player1 which consists in playing randomly
any action inI(L) when her belief isL. is almost-surely winning for the (Bhi objective. In case
(i) holds, the algorithm computes at the same tifiieand a finite memory strategy* with memory
P(L' x K)\{0} such that(14) holds.

Proof. Let £ be the set of supports surely winning for plagen the £L-game. Let be the memory-
less strategy for playeXplaying randomly any action. Let’ be the set of suppors such that, ¢ £
and,

Vo, P9 (In < 25, Bi(L,Cy,...,Cn) € L"UL) >0, (15)

wheredy, is the uniform distribution od.
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We start with proving that ifZ” is empty then case (i) of Proposition 5 holds. Since pldyean
enforce her beliefs to stay outside then£’ is empty as well. Moreover, according to (ii) of Proposi-
tion 4, every support not if is almost-surely winning for player for the Buichi condition, hence we
are in case (i) of Proposition 5.

Suppose now that” is notempty, Then we prove (ii)(a), (ii)(b) and (ii)(c) of Propten 5.

First (ii)(a) is obvious because sing€ C £, then’ is not empty either

Now we prove property (ii)(b) holds: playércan enforce his beliefs to stay outsides £'. There
existso such that (15) does not hold, and we can even suppdsg¢erministic, i.eo : P(K)xC* — I.
This strategyr guarantees the belief of playkto stay outsideC” U £ for the first2X steps os the game.
We can modifyo such that this holds for all steps of the game. For that, playmn use strategy’
which plays likes, and as soon as playgrhas twice the same belidf, she forgets every signal she
received between the two occurenced.aind keep playing witlr. Using (4) and the shifting lemma,
one proves that if playing’ there is positive probability that the belief of playleis in £” U £ someday
then there is positive probability that the belief of playeis in £” U £ someday and moreover all
beliefs of playerl are different up to that moment. Since there are at @8stlifferent beliefs, this
contradicts the definition of. Hences’ guarantees the belief of playkto stay outside” U £ forever.
As a consequence,; guarantees the belief of playkto stay outsid&’ as well forever, again this is an
application of (4) and the shifting lemma.

Description of the positively winning strategyr* for player 2. Itremains to prove (ii)(c). According
to (iii) of Proposition 4, there exists a strateglyfor player2 which is surely winning in the&C-game
from any supportin”.

We define a strategy* for player2 which guarantees (14) to hold. At each step, pl&trows a
coin. As long as the result is "tail”, then play2plays randomly any action: she keeps playing with
If the result is "head” then playeX picks randomly a suppoit € £” (actually she guesses the belief
of player1), forgets all her signals up to now and switches definititelgtrategyr’ with initial support
L.

Intuitively, what matters with strategy* is that the opponent play@rdoes not know whether he
faces strategy’ or strategyry, because everything is possible with strategy Formalizing this very
simple idea is a bit painful.

Let us prove that* guarantees property (14) to hold.

We start with proving for every strategyof player1 andé an initial distribution whose support is
in L € L', there exists a suppaft’ € £", N < 2K andec; ---cy € C* such that:

Vie L",§"() =P (K, =1,Ci =ci,...,Cn =¢cn) >0 . (16)
By definition of £’ and 7, there existsey,..., ey and a supportl” € L" such thatL” =

Bi(L,ci,...,en), N < 2K andP{™ (C1 = ¢1,...,Cp, = cn) > 0. Let, Then, according to (4),
Vi e L', Py (K, =1,C1 =c¢1,...,Cn =cn) > 0. Since by definition ofr*, there is positive
probability thatr plays likery up to stageV, then we get (16).

Now we can achieve the proof of (14). Sinceis surely winning in theC-game fromL"” € L", it

guarantees that:
Vo,P5T (Vn € NK, ¢T |VneNI, € I(Bi(L",C,...,Cp))) =1 .

There is positive probability that at stager* switches to strategy in initial stateL”. By definition of
beliefs,3, (L",C1,...,Cpn) = B1(L,c1,...,¢cn,Ch,...,Ch), hence according to (16) and the shifting
lemma,

Vo,P?" (Vn > N, K, € T,Cy---Cy =c¢;1---en | Yn > N, I, € [(By(L,Ch,...,Cn))) >0 .
17)
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According to the definition of I(L), for every o and n € N,
Py™ (B (L, Ch, ...y Crn,Cny1) € L I, ¢ I(B1(L,Ch,...,Cr))) > 0 and since there is posi-

3 3

tive probability thatr plays likery up to stage:, the same holds far, hence:

P37 (Vn e NI, € I(By(L,Ch,...,Cn)) | Vn € N, By (L,Cy,...,Co) € L) >0 .

3

This last equation together with (17) proves (14), whichi@abs to prove (ii)(c) of Proposition 5.

Description of the algorithm. To achieve the proof of Proposition 5, we have to describe thebly-
exponential algorithm. This algorithm is a fix-point algbm, actually there are two embedded fix-
points, since this algorithm uses twice as sub-procedbeeslgorithm provided by Theorem 3 on game
G defined in the proof of Proposition 4.

The algorithm of Proposition 4, property (iv) is used for qarting £”, ande or 7'.

In caseL” is empty, the algorithm simply outputs strategy described in (ii) of Proposition 5. In
caseL” is not empty, the algorithm computes the set of supp@rtgefined by (15), from which player
2 can force the belief of playdrto be in£"” U £ someday with positive probability. For computigg,
we have to fix strategyy in the game~ ;. and check whether play&ihas a strategy for avoiding surely
his beliefs to be inC’ U £, which can be done running the algorithm of Proposition Sveogame’ .
Remark we prove the bourdd can be replaced by in (15).

Once/’ has been computed, the algorithm outputs stratégyescribed above. O

The proof of Theorem 4 illustrates how to compose the variimite memory strategies of Proposi-
tion 5 to obtain a strategy for play2mhich is positively winning and has finite memd?(P (K) x K).

Proof of Theorem 4 According to Proposition 5, starting witf, = @, there exists a sequentg, £,
..., L}, of disjoint non-empty sets of supports such that for every n,
e if0 <m < Mthentl,, = LLU - -UL!

m—1

the corresponding finite memory strategy.

matches case (ii) of Proposition 5. We dennte

e L) matches case (i) of Proposition 5.

Then according to Proposition 5, the set of supports pejtiwinning for player2 is exactlyL,,,
and supports that are not ify, are almost-surely winning for playér This proves qualitative deter-
minacy.

The sequencéy, £}, ..., L is computable in doubly-exponential time, because eaclicappn of
Proposition 5 involves running the doubly exponentialdiaigorithm, and the length of the sequence
is at most doubly-exponential in the size of the game.

The only thing that remains to prove is the existence and coalyiity of a positively winning
strategyr™ for player2, with finite memoryP(P(K) x K). Strategyr consists in playing randomly
any action as long as a coin gives result "head”. When the givies result "tail”, then strategy™
chooses randomly an integér< m < M and a supporL € £, and switches to strategy,. Since
each strategy,, has memoryP(£!, x K)\{0} and thel!, are distincts, strategy™ has memory
P(P(K) x K) with § used as the initial memory state.

We prove thatrT is positively winning for playee from £,;. Leto be a strategy for playet,

L € Ly and$ an initial distribution with supporL. Letmg be the smallest index such that

]P)g"r*— (El’l’l S N;Bl(L:Ch'-':Cn) € ’Clm) >0



SinceL € Ly andLy = U, s £ the set in the definition ofng is non-empty anan, is well

defined. Letg € N andcy, ¢, ..., c,, € C™ suchthaBi(L,cy,...,cpn,) € L), and

]Pg’T+ (Cl = cl,...,CnO = Cno) >0 .

According to the definition of*, there is positive probability that™ plays randomly until stepg
hence according to (4), for every stédte By (L, cy,. .., ¢, ),

Pg’T+ (Cl =Cly.eny C’flo = Cng andKn = l) >0 (18)

According to the definition of + again, there is positive probability that switches to strategy,, at
instantng. SinceB:(L,ci,...,¢cy,) € L), hence according to (18) and to (14) of Proposition 5,

PP (V> 25 K, @ T | Vn > no, Bi(L,Ch,...,Cp) & Ling) >0 . (19)

By definition ofmg and sinceC,,,, = Ly U ---U L]

mo—1"
]P)g"r-'— (VTL (S N;Bl(L:Ch'-':Cn) gcmO) =1 ’

then together with (19),
P77 (¥n > 25 K, ¢ T) >0 ,

which proves that* is positively winning for the co-Buichi condition. O

C Details for Section 5
Proof of 2EXPTIME-hardness

We give here a more detailed proof for thEXPTIME-hardness of the problem of deciding whether
playerl has an almost-surely winning strategy in a reachability gam

Theorem 5. In a reachability game, deciding whether playiehas an almost-surely winning strategy
is 2EXPTIME-hard, even if playet is more informed than playex.

Proof. We reduce the membership problem for alternaixPSPACE Turing machines. LetM be
an EXPSPACE alternating Turing machine, amd be an input word of length. From M we build
a stochastic game with partial observation such that playan achieve almost-surely a reachability
objective if and only ifw is accepted byM. The idea of the game is that play®edescribes an execution
of M onw, thatis, she enumerates the tape contents of successfigwrations. Moreover she chooses
the rule to apply when the state 8 is universal, whereas playgiis responsible for choosing the rule
in existential states. When the Turing machine reachesits ftate, the play is won by playér In
this simple deterministic game, if play2really implements some execution.® onw, playerl has a
surely winning strategy if and only if) is accepted byM. Indeed, if all executions om reach the final
state of M, then whatever the choices play®makes in universal states, playlecan properly choose
rules to apply in existential states in order to reach a finafiguration of the Turing machine. On the
other hand, if some execution andoes not lead to the final state 84, player1 is not sure to reach a
final configuration and win the game.

This reasoning holds under the assumption that pl2agdfiectively describes the execution.é{ on
w consistent with the rules chosen by both players. Howevayep2 could cheat when enumerating
successive configurations of the execution. She would &tairce do so, i is indeed accepted byt



in order to have a chance not to lose the game. To preventriddyem cheating (or at least to prevent
her from cheating too often), it would be convenient for tlaeng to remember the tape contents, and
check that in the next configuration, playzmdeed applied the chosen rule. However, the game can
remember only a logarithmic number of bits, while the confégions have a number of bits exponential
in n. Instead, we ask playérto pick any positiork of the tape, and to announce it to the game (player
2 does not knowk), which is described by a linear number of bits. The game &dkep the letter at
this position together with the previous and next letterlemtpe. This allows the game to compute
the lettera at positionk of the nextconfiguration. As playe2 describes the next configuration, player
1 will annouce to the game that positidrhas been reached again. The game will thus check that the
letter player 2 gives is indeed This way, the game has a positive probability to detectpleter? is
cheating. If so, the game goes to a sink state which is winfanglayer1. To increase the probability
for player1 of observing playe® cheating, playet has the possibility to restart the whole execution
from the beginning whenever she wants. In particular, sHledeiso when an execution lasts longer
than22" steps. This way, if playe? cheats infinitely often, playelr will detect it with probability one,
and will win the game almost-surely. So far, we describedtardg@nistic game satisfying thatif is
accepted byM, player1 has a mixed strategy to reach her winning state almost swetywithout
cheating (that is, denonciating play®only if she was cheating).

We now have to take into account that playerould cheat: she could point a certain position of the
tape contents at a given step, and point somewhere elsenexhetep. To avoid this kind of behaviour,
or at least refrain it, a piece of information about the posipointed by playet is kept secret (to both
players) in the state of the game. More precisely, a bit obihary encoding of the letter position on
the tape, and the position of this bit itself is randomly glroamong the at most possible positions.

If player 1 is caught cheating (that is, if the bits at the position retnerad differ between both step),
the game goes to a sink state losing for playeihis way, when playet decides to cheat, there is a
positive probability that she loses the game. At this stégezgame is stochastic (a bit and a position
are remembered randomly in states of the game), plagees not have full information (she does not
know which bit is remembered in the state), but she has méoenvation than playe? (the latter does
not know what letter player decided to memorize). Moreover, the game satisfies thewolily w is
accepted by\ if and only if playerl has mixed winning strategy which ensures reaching a ga&l sta
almost surely.
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