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Abstract

We consider the standard model of finite two-person
zero-sum stochastic games with signals. We are interest-
ed in the existence of almost-surely winning or positively
winning strategies, under reachability, safety, Büchi or co-
Büchi winning objectives. We prove twoqualitative deter-
minacyresults. First, in a reachability game either player�

can achieve almost-surely the reachability objective, or
player � can ensure surely the complementary safety ob-
jective, or both players have positively winning strategies.
Second, in a B̈uchi game if player

�
cannot achieve almost-

surely the B̈uchi objective, then player� can ensure pos-
itively the complementary co-Büchi objective. We prove
that players only need strategies withfinite-memory, whose
sizes range from no memory at all to doubly-exponential
number of states, with matching lower bounds. Together
with the qualitative determinacy results, we also provide fix-
point algorithms for deciding which player has an almost-
surely winning or a positively winning strategy and for com-
puting the finite memory strategy. Complexity ranges from
EXPTIME to �EXPTIME with matching lower bounds,
and better complexity can be achieved for some special cas-
es where one of the players is better informed than her op-
ponent.

Introduction

Numerous advances in algorithmics of stochastic games
have recently been made [10, 9, 7, 5, 12, 14], motivated in
part by application in controller synthesis and verification of
open systems. Open systems can be viewed as two-players
games between the system and its environment. At each
round of the game, both players independently and simul-
taneously choose actions and the two choices together with
the current state of the game determine transition probabil-
ities to the next state of the game. Properties of open sys-
tems are modeled as objectives of the games [9, 13], and

�
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strategies in these games represent either controllers of the
system or behaviors of the environment.

Most algorithms for stochastic games suffer from the
same restriction: they are designed for games where play-
ers can fully observe the state of the system (e.g. concur-
rent games [10, 9] and stochastic games with perfect infor-
mation [8, 14]). The full observation hypothesis can hin-
der interesting applications in controller synthesis. In many
systems in interaction with both a user and a controller, ful-
l monitoring for the controller is hardly implementable in
practice and the user has very partial information about the
system. Recently, algorithms for games where one of the
players has partial observation and her opponent is fully in-
formed have been proposed [17, 6]. Here we consider the
general case where both players have partial observations.

In the present paper, we considerstochastic games with
signals, that are a standard tool in game theory to model
partial observation [23, 20, 18]. When playing a stochastic
game with signals, players cannot observe the actual state of
the game, nor the actions played by their opponent, but are
only informed via private signals they receive throughout
the play. Stochastic games with signals subsume standard
stochastic games [22], repeated games with incomplete in-
formation [1], games with imperfect monitoring [20], con-
current games [9] and deterministic games with imperfect
information on one side [17, 6]. Players make their deci-
sions based upon the sequence of signals they receive: a
strategy is hence a mapping from finite sequences of private
signals to probability distributions over actions.

From the algorithmic point of view, stochastic games
with signals are considerably harder to deal with than s-
tochastic games with full observation. Whilevaluesof the
latter games are computable [9, 5], simple questions like ‘is
there a strategy for player

�
which guarantees winning with

probability more than
�
�?’ areundecidableeven for restrict-

ed classes of stochastic games with signals [16]. For this
reason, rather thanquantitativeproperties (i.e. questions
about values), we focus in the present paper onqualitative
properties of stochastic games with signals.

We study the following qualitative questions about s-
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tochastic games with signals, equipped with reachability,
safety, Büchi or co-Büchi objectives:

(i) Does player
�

have analmost-surely winning strate-
gy, i.e. a strategy which guarantees the objective to be
achieved with probability

�
, whatever the strategy of

player�?

(ii) Does player� have apositively winning strategy, i.e.
a strategy which guarantees the opposite objective to
be achieved with strictly positive probability, whatever
the strategy of player

�
?

Obviously, given an objective, properties (i) and (ii) cannot
hold simultaneously. For games with a reachability, safety
or Büchi objective, we obtain the following results:

(1) Either property (i) holds or property (ii) holds; in other
words these games arequalitatively determined.

(2) Players only need strategies withfinite-memory, whose
memory sizes range from no memory at all to doubly-
exponential number of states.

(3) Questions (i) and (ii) are decidable. We provide fix-
point algorithms for computing uniformly all initial
states that satisfy (i) or (ii), together with the corre-
sponding finite-memory strategies. The complexity of
the algorithms ranges fromEXPTIME to 2EXPTIME.

These three results are detailed in Theorems 1, 2, 3 and 4.
We prove that these results are tight and robust in several
aspects. Games with co-Büchi objectives are absent from
these results, since they are neither qualitatively determined
(see Fig. 3) nor decidable (as proven in [2]).

Our main result, and the element of surprise, is that
for winning positively a safety or co-Büchi objective, a
player needsa memory with a doubly-exponential num-
ber of states, and the corresponding decision problem is
2EXPTIME-complete. This result departs from what was
previously known [17, 6], where both the number of memo-
ry states and the complexity are simply exponential. These
results also reveal a nice property ofreachability games,
that Büchi games do not enjoy: Every initial state is either
almost-surely winningfor player

�
, surely winningfor play-

er � or positively winningfor both.

Our results strengthen and generalize in several ways re-
sults that were previously known for concurrent games [10,
9] and deterministic games with imperfect information
on one side [17, 6]. First, the framework of stochastic
games with signals strictly encompasses all the settings
of [17, 10, 9, 6]. In concurrent games there is no signaling
structure at all, and in deterministic games with imperfec-
t information on one side [6] transitions are deterministic
and player� observes everything that happens in the game,
including results of random choices of her opponent.

No determinacy result was known for deterministic
games with imperfect information on one side. In [17, 6],
algorithms are given for deciding whether the imperfectly
informed player has an almost-surely winning strategy for
a Büchi (or reachability) objective but nothing can be in-
ferred in case she has no such strategy. This open question
is solved in the present paper, in the broader framework of
stochastic games with signals.

Our qualitative determinacy result (1) is a radical gener-
alization of the same result for concurrent games [9, Th.2],
while proofs are very different. Interestingly, for concur-
rent games, qualitative determinacy holds for every omega-
regular objectives [9], while for games with signals we
show that it fails already for co-Büchi objectives. Inter-
estingly also, stochastic games with signals and a reacha-
bility objective have a value [19] but this value is not com-
putable [16], whereas it is computable for concurrent games
with omega-regular objectives [11]. The use of randomized
strategies is mandatory for achieving determinacy results,
this also holds for stochastic games without signals [22, 10]
and even matrix games [24], which contrasts with [4, 17]
where only deterministic strategies are considered.

Our results about randomized finite-memory strategies
(2), stated in Theorem 2, are either brand new or generalize
previous work. It was shown in [6] that for deterministic
games where player� is perfectly informed, strategies with
a finite memory of exponential size are sufficient for player�

to achieve a Büchi objective almost-surely. We prove the
same result holds for the whole class of stochastic games
with signals. Moreover we prove that for player� a doubly-
exponential number of memory states is necessary and suf-
ficient for achieving positively the complementary co-Büchi
objective.

Concerning algorithmic results (3) (see details in Theo-
rem 3 and 4) we show that our algorithms are optimal in
the following meaning. First, we give a fix-point based al-
gorithm for deciding whether a player has an almost-surely
winning strategy for a Büchi objective. In general, this al-
gorithm is 2EXPTIME. We show in Theorem 5 that this
problem is indeed 2EXPTIME-hard. However, in the re-
stricted setting of [6], it is already known that this problem
is onlyEXPTIME-complete. We show that our algorithm is
also optimal with anEXPTIME complexity not only in the
setting of [6] where player� has perfect information but al-
so under weaker hypothesis: it is sufficient that player� has
more informationthan player

�
. Our algorithm is alsoEX-

PTIME when player
�

has full information (Proposition 2).
In both subcases, player� needs only exponential memory.

Part of our results have been concurrently obtained
in [21] whose contribution is weaker than our: no determi-
nacy result is provided, nothing is said about strategies used
by player� nor the memory she needs, and the algorithm
provided is enumerative rather than fix-point based.
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The paper is organized as follows. In Section 1 we intro-
duce partial observation games, in Section 2 we define the
notion of qualitative determinacy and we state our determi-
nacy result, in Section 3 we discuss the memory needed by
strategies. Section 4 is devoted to decidability questionsand
Section 5 investigates the precise complexity of the general
problem as well as special cases.

1 Stochastic games with signals.

We consider the standard model of finite two-person
zero-sum stochastic games with signals [23, 20, 18]. These
are stochastic games where players cannot observe the ac-
tual state of the game, nor the actions played by their op-
ponent, their only source of information are private signal-
s they receive throughout the play. Stochastic games with
signals subsume standard stochastic games [22], repeated
games with incomplete information [1], games with im-
perfect monitoring [20] and games with imperfect informa-
tion [6].

Notations. Given a finite set�, we denote by���� ��� � � � 	
� �� 
 �� ���� � ��
the set of probability

distributions on� and for a distribution
� � ����, we

denote������� � �� � � 
 ���� � 
� its support.

States, actions and signals. Two players called
�

and �
have opposite goals and play for an infinite sequence of
steps, choosing actions and receiving signals. Players ob-
serve their own actions and signals but they cannot observe
the actual state of the game, nor the actions played and the
signals received by their opponent. We borrow notations
from [18]. Initially, the game is in a state

�� � � chosen ac-
cording to an initial distribution

� � ���� known by both
players; the initial state is

�� with probability
�����. At each

step� � �
, players

�
and � choose some actions�� � �

and �� � �
. They respectively receive signals�� �  

and !� � "
, and the game moves to a new state

��#�.
This happens with probability$���#�� ���!� 
 ��� ������
given by fixed transition probabilities$ � � % � % � �
��� % %"�, known by both players. Formally a game
is a tuple���� � �� �"�$�.
Plays and strategies. Players observe their own action-
s and the signals they receive. It is convenient to assume
that the action� player

�
plays is encoded in the signal

� she receives, with the notation� � ���� (and symmet-
rically for player �). This way, plays can be described
by sequences of states and signals for both players, with-
out mentioning which actions were played. A finite play
is a sequence��� � ��� !� � & & & � ���!����� � �� "�'�
such that for every


 ( ) * �, $��+#�� �+#�� !+#� 


�+����+#���� �!+#��� � 
. An infinite play is a sequence
in �� "�, whose prefixes are finite plays.

A (behavioral) strategy of player
�

is a mapping- �
���� % ' � ����. If the initial distribution is

�
and

player
�

has seen signals��� & & & � �� then she plays action�
with probability-��� ��� & & & � ������. Strategies for player�
are defined symmetrically. In the usual way, an initial dis-
tribution

�
and two strategies- and. define a probability

measure/0123 on the set of infinite plays, equipped with the
--algebra generated by cylinders.

We use random variables������ ��� � and
"� to de-

note respectively the�-th state, action of player
�
, action of

player�, signal of player
�

and signal of player�.

Winning conditions. The goal of player
�

is described
by a measurable event456 called thewinning condition.
Motivated by applications in logic and controller synthe-
sis [13], we are especially interested inreachability, safety,
Büchi and co-B̈uchi conditions. These four winning condi-
tions use a subset7 8� of target statesin their definition.
The reachability condition stipulates that7 should be visit-
ed at least once,456 � �9� � ���� � 7 �, the safety con-
dition is complementary456 � �:� � ���� ;� 7 �. For
the Büchi condition the set of target states has to be visited
infinitely often,456 � �:) � ��9� < )��� � 7 �, and
the co-Büchi condition is complementary456 � �9) �
��:� <)��� ;� 7 �.
Almost-surely and positively winning strategies. When
player

�
and� use strategies- and. and the initial distri-

bution is
�
, then player

�
wins the game with probability:

/0123 �456� &
Player

�
wants to maximize this probability, while player�

wants to minimize it. The best situation for player
�

is when
she has an almost-surely winning strategy.

Definition 1 (Almost-surely winning strategy). A strate-
gy - for player

�
is almost-surely winningfrom an initial

distribution
�

if
:. �/0123 �456� � � &

(1)

When such a strategy- exists, both
�

and its support
������� are said to be almost-surely winning as well.

A less enjoyable situation for player
�

is when she only
has a positively winning strategy.

Definition 2 (Positively winning strategy). A strategy-
for player

�
is positively winningfrom an initial distribution�

if :. �/0123 �456� � 
 & (2)

When such a strategy- exists, both
�

and its support
������� are said to be positively winning as well.
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The worst situation for player
�

is when her opponen-
t has an almost-surely winning strategy. , which ensures
/0123 �456� � 


for all strategies- chosen by player
�
.

Symmetrically, a strategy. for player� is positively win-
ning if it guarantees

:-�/0123 �456� * �
. These notion-

s only depend on the support of
�

since /0123 �456� ����� ���� �/012�� �456�.

���

�
���

�
���

�
��

�
���

�
���

	




��

��

���

���

���

���

Figure 1. When the initial state is chosen at
random between states

�
and �, player

�
has

a strategy to reach



almost surely.

Consider the one-player game depicted on Fig. 1. The
objective of player

�
is to reach state



. The initial distribu-

tion is
���� � ���� � �

� and
��
� � ��	� � 


. Player
�

plays with actions
� � ���������, where�� and�� mean

respectively ‘guess
�
’ and ‘guess�’, while player � plays

with actions
� � ��� (that is, player 2 has no choice). Play-

er
�

receives signals
 � ���� ��� and player� is ‘blind’,

she always receives the same signal
" � ���. Transitions

probabilities are represented in a quite natural way. When
the game is in state

�
, player

�
plays� and player� plays

�, then player
�

receives signal� or � with probability
�
� ,

player� receives signal� and the game stays in state
�
. In

state� when action of player
�

is � and action of player�
is �, player

�
cannot receive signal� but instead she may

receive signal�. When ‘guessing the state’ i.e. playing ac-
tion �� in state� � �����, player

�
wins the game if� � �

(she guesses the correct state) and loses the game if� ;� �.
The star symbol� stands for any action. In this game, play-
er

�
has a strategy to reach



almost surely. Her strategy is

to keep playing action� as long as she keeps receiving sig-
nal �. The day player

�
receives signal� or �, she plays

respectively action�� or ��. This strategy is almost-surely
winning because the probability for player

�
to receive sig-

nal� forever is


.

2 Qualitative Determinacy.

If an initial distribution is positively winning for player
�

then by definition it isnotalmost-surely winning for his op-

ponent player�. A natural question is whether the converse
implication holds.

Definition 3 (Qualitative determinacy). A winning con-
dition 456 is qualitatively determinedif for every game
equipped with456, every initial distribution is either
almost-surely winning for player

�
or positively winning for

player�.

Comparison with value determinacy. Qualitative deter-
minacyis similar to but different from the usual notion of
(value) determinacywhich refers to the existence of avalue.
Actually both qualitative determinacy and value determina-
cy are formally expressed by a quantifier inversion. On one
hand, qualitative determinacy rewrites as:

�:- 9. /0123 �456� * �� �
 �9. :- /0123 �456� * �� &

On the other hand, the game has a value if:

���
0
56�2 /0123 �456� < 56�2 ���0

/0123 �456� &

Both the converse implication of the first equation and the
converse inequality of the second equation are obvious.

While value determinacyis a classical notion in game
theory [15], to our knowledge the notion ofqualitative de-
terminacyappeared only in the context of omega-regular
concurrent games [10, 9] and stochastic games with perfect
information [14].

Existence of an almost-surely winning strategy ensures
that the value of the game is

�
, but the converse is not true.

Actually it can even hold that player� has a positively win-
ning strategy while at the same time the value of the game
is

�
. For example, consider the game depicted on Fig. 2,

which is a slight modification of Fig. 1 (only signals of
player

�
and transitions probabilities differ). Player

�
has

���

����

����

�
��

����

����

	




��

��

���

���

���

���

Figure 2. A reachability game with value
�

where player � has a positively winning strat-
egy.
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signals
����� and similarly to the game on Fig 1, her goal

is to reach the target state



by guessing correctly whether
the initial state is

�
or �. On one hand, player

�
can guar-

antee a winning probability as close to
�

as she wants: she
plays� for a long time and compares how often she received
signals� and�. If signals� were more frequent, then she
plays action��, otherwise she plays action��. Of course,
the longer player

�
plays�’s the more accurate the predic-

tion will be. On the other hand, the only strategy available to
player� (always playing�) is positively winning, because
any sequence of signals in

�����' can be generated with
positive probability from both states

�
and�.

Qualitative determinacy results. The first main result of
this paper is the qualitative determinacy of stochastic games
with signals for the following winning objectives.

Theorem 1. Reachability, safety and B̈uchi games are qual-
itatively determined.

While qualitative determinacy of safety games is not too
hard to establish, proving determinacy of Büchi games is
harder. Notice that the qualitative determinacy of Büchi
games implies the qualitative determinacy of reachability
games, since any reachability game can be turned into an
equivalent Büchi one by making all target states absorbing.

The proof of Theorem 1 is postponed to Section 4, where
the determinacy result will be completed by a decidability
result: there are algorithms for computing which initial dis-
tributions are almost-surely winning for player

�
or posi-

tively winning for player�. This is stated precisely in The-
orems 3 and 4.

A consequence of Theorem 1 is that in a reachability
game, every initial distribution is either almost-surely win-
ning for player

�
, surelywinning for player�, or positively

winning for both players. Surely winning means that player
� has a strategy. for preventing every finite play consistent
with . from visiting target states.

Büchi games do not share this nice feature because co-
Büchi games are not qualitatively determined. An example
of a co-Büchi game which is not determined is represented
in Fig. 3. In this game, player

�
observes everything, player

� is blind (she only observes her own actions), and player�
’s objective is to avoid state



from some moment on. The

initial state is


.

On one hand, player
�

does not have an almost-surely
winning strategy for the co-Büchi objective. Fix a strategy
- for player

�
and suppose it is almost-surely winning. To

win against the strategy where player� plays� forever, with
probability

� - should eventually play a�. Otherwise, the
probability that the play stays in state



is positive, and-

is not almost-surely winning, a contradiction. Since- is
fixed there exists a date after which player

�
has played�

with probability arbitrarily close to
�
. Consider the strategy

� 
 �
�!

��
�!

�� ����

Figure 3. Co-Büchi games are not qualitative-
ly determined.

of player� which plays! at that date. Although player� is
blind, obviously she can play such a strategy which requires
only counting time elapsed since the beginning of the play.
With probability arbitrarily close to

�
, the game is in state

� and playing a! puts the game back in state


. Playing

long sequences of�’s followed by a!, player� can ensure
with probability arbitrarily close to

�
that if player

�
plays

according to-, the play will visit states



and � infinitely
often, hence will be lost by player

�
. This contradicts the

existence of an almost-surely winning strategy for player
�
.

On the other hand, player� does not have a positively
winning strategy either. Fix a strategy. for player � and
suppose it is positively winning. Once. is fixed, player

�

knows how long she should wait so that if action!was nev-
er played by player� then there is arbitrarily small proba-
bility that player�will play ! in the future. Player

�
plays�

for that duration. If player� plays a! then the play reaches
state

�
and player

�
wins, otherwise the play stays in state


. In the latter case, player
�

plays action�. Player
�

knows
that with very high probability player� will play � forever
in the future, in that case the play stays in state� and player�

wins. If player
�

is very unlucky then player� will play !
again, but this occurs with small probability and then play-
er

�
can repeat the same process again and again. Similar

examples can be used to prove that stochastic Büchi games
with signals do not have a value [19].

3 Memory needed by strategies.

��� ������	
�
��
 �����������

Since our ultimate goal are algorithmic results and con-
troller synthesis, we are especially interested in strategies
that can be finitely described, like finite-memory strategies.

Definition 4 (Finite-memory strategy). A finite-memory
strategyfor player

�
is given by a finite set� called the

memory together with a strategic function-� � � �
����, an update function���� � � % � ����, and
an initialization function565�� � � ��� � ����. The
memory sizeis the cardinal of�.
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In order to play with a finite-memory strategy, a play-
er proceeds as follows. She initializes the memory of- to
565�� ���, where

� � ������� is the support of the initial
distribution

�
. When the memory is in state

) � �, she
plays action� with probability-� �)���� and after receiv-
ing signal�, the new memory state is

)�
with probability���� �)����)��.

On one hand it is intuitively clear how to play with a
finite-memory strategy, on the other hand the behavioral
strategy associated with a finite-memory strategy1 can be
quite complicated and requires the player to use infinite-
ly many different probability distributions to make random
choices (see discussions in [10, 9, 14]).

In the games we consider, the construction of finite-
memory strategies is often based on the notion ofbelief.
The belief of a player at some moment of the play is the set
of states she thinks the game could possibly be in, according
to the signals she received so far.

Definition 5 (Belief). From an initial set of states
� 8 �,

the belief of player
�

after receiving signal� (hence playing
action����), is the set of states

�
such that there exists a state�

in
�

and a signal! � " with $�����! 
 �� ������ �!�� � 
.
The belief of player

�
after receiving a sequence of signals

��� & & & � �� is defined inductively by:

����� ��� & & & � ��� � �������� ��� & & & � ������ ���&
Beliefs of player� are defined similarly.

Our second main result is that for the qualitatively de-
termined games of Theorem 1, finite-memory strategies are
sufficient for both players. The amount of memory needed
by these finite-memory strategies is summarized in Table 1
and detailed in Theorem 2.

Almost-surely Positively
Reachability belief memoryless
Safety belief doubly-exp
Büchi belief
Co-Büchi doubly-exp

Table 1. Memory required by strategies.

Theorem 2 (Finite-memory is sufficient). Every reach-
ability game is either won positively by player

�
or won

surely by player�. In the first case playing randomly any
action is a positively winning strategy for player

�
and in

the second case player� has a surely winning strategy with
finite-memory

� ��� and update function
��.

Every B̈uchi game is either won almost-surely by player�
or won positively by player�. In the first case player

�
has

1cf. [3] for a precise definition.

an almost-surely winning strategy with finite-memory
� ���

and update function
��. In the second case player� has a

positively winning strategy with finite-memory
� �� ��� %

��.
The situation where a player needs the least memory is

when she wants to win positively a reachability game. To
do so, she uses a memoryless strategy consisting in playing
randomly any action.

To win almost-surely games with reachability, safety and
Büchi objectives, it is sufficient for a player to remember
her belief. A canonical almost-surely winning strategy con-
sists in playing randomly any action which ensures the nex-
t belief to be almost-surely winning2. Similar strategies
were used in [6]. These two results are not very surprising:
although they were not stated before as such, they can be
proved using techniques similar to those used in [17, 6].

The element of surprise is the amount of memory needed
for winning positively co-Büchi and safety games. In these
situations, it is still enough for player

�
to use a strategy with

finite-memory but, surprisingly perhaps, an exponential size
memory is not enough. Instead doubly-exponentialmemory
is necessary as will be proved in the next subsection.

Doubly-exponential size memory is also sufficient. Ac-
tually for winning positively, it is enough for player

�
to

make hypothesis about beliefs of player�, and to store in
her memory all pairs����� of possible current state and be-
lief of her opponent. The update operator of the correspond-
ing finite-memory strategy uses numerous random choices
so that the opponent is unable to predict future moves. More
details are available in the proof of Theorem 4.

��� ����	
	�
��������	 
�
��
 �� �����	
���
 �� 
�� ��������	
 �����
 ��
���

We now show that a doubly-exponential memory is nec-
essary to win positively safety (and hence co-Büchi) games.
We construct, for each integer�, a reachability game, whose
number of state is polynomial in�and such that player�has
a positively winning strategy for her safety objective. This
game, called����� �� ����, is described on Fig. 4. The
objective of player 2 is to stay away from



, while player 1

tries to reach


.

We prove that whenever player� uses a finite-memory s-
trategy in the game����� �� ���� then the size of the mem-
ory has to be doubly-exponential in�, otherwise the safe-
ty objective of player� may not be achieved with positive
probability. This is stated precisely later in Proposition1.
Prior to that, we briefly describe the game����� �� ����
for fixed� � �.

2for reachability and safety games, we suppose without loss of gener-
ality that target states are absorbing.
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 �

Player
�

chooses secretly a set� � ��� & & & ��� of size ��

Player
�

announces publicly�
� � ����� sets different from

�

Player� has
�
� � ����� tries

for finding
�

Player
�

cheats

�
not found

�
found

Figure 4. A game where player � needs a lot
of memory to stay away from target state



.

Idea of the game. The game����� �� ���� is divided
into three parts. In the first part, player 1 generates a set� � ��� & & & ��� of size


� 
 � ���. There are� ����� possi-
bilities of such sets

�
. Player 2 is blind in this part and has

no action to play.
In the second part, player 1 announces by her actions�

� � ����� (pairwise different) sets of size��� which are dif-
ferent from

�
. Player 2 has no action to play in that part,

but she observes the actions of player 1 (and hence the sets
announced by player

�
).

In the third part, player� can announce by her action
up to

�
� � ����� sets of size���. Player

�
observes actions of

player�. If player� succeeds in finding the set
�

, the game
restarts from scratch. Otherwise, the game goes to state



and player 1 wins.

It is worth noticing that in order to implement the game
����� �� ���� in a compact way, we allow player 1 to
cheat, and rely on probabilities to always have a chance to
catch player 1 cheating, in which case the game is sent to
the sink state	, and player

�
loses. That is, player

�
has

to play following the rules without cheating else she cannot
win almost-surely her reachability objective. However we
do not need to allow player� to cheat. Notice that player

�

is better informed than player� in this game.

Concise encoding. We now turn to a more formal descrip-
tion of the game����� �� ����, to prove that it can be en-
coded with a number of states polynomial in�. There are
three problems to be solved, that we sketch here. First, re-
membering set

�
in the state of the game would ask for an

exponential number of states. Instead, we use a fairly stan-
dard technique: recall at random a single element� � �

.

In order to check that a set� of size��� is different from
the set

�
of size���, we challenge player 1 to point out

some element	 � � 
�. We ensure by construction that
	 � � , for instance by asking it when� is given. This way,
if player 1 cheats, then she will give	 � �

, leaving a pos-
itive probability that	 � �, in which case the game is sure
that player 1 is cheating and punishes player 1 by sending
her to state	 where she loses.

The second problem is to make sure that player 1 gen-
erates an exponential number of pairwise different sets����� � & & & ���� � 

���. Notice that the game cannot recall

even one set. Instead, player 1 generates the sets in some
total order, denoted

*
, and thus it suffices to check on-

ly one inequality each time a set
��#� is given, namely�� * ��#�. It is done in a similar but more involved way

as before, by remembering randomly two elements of
��

instead of one.
The last problem is to count up to

�
� � � ����� with a loga-

rithmic number of bits. Again, we ask player 1 to increment
a counter, while remembering only one of the bits and pun-
ishing her if she increments the counter wrongly.

Proposition 1. Player 2 has a finite-memory strategy with� % �
�� �� 

��� different memory states to win positively

����� �� ����.
No finite-memory strategy of player 2 with less than

�
�� �� 

��� memory states wins positively����� �� ����.

Proof. The first claim is quite straightforward. Player� re-
members in which part she is (3 different possibilities). In
part 2, player� remembers all the sets proposed by player
�

(�
�� �� 

��� possibilities). Between part 2 and part 3, player

� inverses her memory to remember the sets player
�

did

not propose (still�
�� �� 

��� possibilities). Then she propos-

es each of these sets, one by one, in part 3, deleting the set
from her memory after she proposed it. Let us assume first
that player

�
does not cheat and plays fair. Then all the sets

of size��� are proposed (since there are� �
�
� � � ����� such

sets), that is
�

has been found and the game starts anoth-
er round without entering state



. Else, if player

�
cheats

at some point, then the probability to reach the sink state	 is non zero, and player� also winspositivelyher safety
objective.

The second claim is not hard to show either. The strategy
of player

�
is to never cheat, which prevents the game from

entering the sink state. In part 2, player 1 proposes the sets�
in a lexicographical way and uniformly at random. As-

sume by contradiction that player 2 has a counter strategy

with strictly less than�
�� �� 

��� states of memory that wins

positively the safety objective. Consider the end of part 2,
when player 1 has proposed

�
� � � ����� sets. If there are less

than�
�� �� 

��� states the memory of player� can be in, then

7



there exists a memory state
)
' of player 2 and at least t-

wo sets��� among the
�
� � � ����� sets proposed by player

1 such that the memory of player 2 after� is
)
' with non

zero probability and the memory of player 2 after
�

is
)
'

with non zero probability. Now,� � � has strictly more
than

�
� � � ����� sets of��� elements. Hence, there is a set� � � � � with a positive probability not to be proposed

by player 2 after memory state
)
'. Without loss of gener-

ality, we can assume that
� �� � (the other case

� �� � is
symmetrical). Now, for each round of the game, there is a
positive probability that

�
is the set in the memory of player

1, that player 1 proposed sets�, in which case player 2 has
a (small) probability not to propose

�
and then the game

goes to


, where player

�
wins. Player

�
will thus eventually

reach the target state with probability
�
, hence a contradic-

tion. This achieves the proof that no finite-memory strategy

of player 2 with less than�
�� �� 

��� states of memory is pos-

itively winning.

4 Decidability.

We turn now to the algorithms which compute the set
of supports that are almost-surely or positively winning for
various objectives.

Theorem 3 (Deciding positive winning in reachability
games). In a reachability game each initial distribution�

is either positively winning for player
�

or surely win-
ning for player�, and this depends only on������� 8 �.
The corresponding partition of

� ��� is computable in time� �� � �
��, where

�
denotes the size of the description of

the game. The algorithm computes at the same time the
finite-memory strategies described in Theorem 2.

As often in algorithmics of game theory, the computation
is achieved by a fix-point algorithm.

Sketch of proof.The set of supports� 8 � ��� surely-
winning for player� are characterized as the largest fix-
point of some monotonic operator� � � �� ���� �� �� ����. The operator� associates with� 8 � ��� the
set of supports

� � � that do not intersect target states and
such that player� has an action which ensures that her next
belief is in� as well, whatever action is chosen by player

�

and whatever signal player� receives. For� 8 � ���, the
value of���� is computable in time linear in� and in the
description of the game, yielding the exponential complex-
ity bound.

To decide whether player
�

wins almost-surely a Büchi
game, we provide an algorithm which runs in doubly-
exponential time and uses the algorithm of Theorem 3 as
a sub-procedure.

Theorem 4 (Deciding almost-sure winning in Büchi
games). In a Büchi game each initial distribution

�
is ei-

ther almost-surely winning for player
�

or positively win-
ning for player�, and this depends only on������� 8 �.
The corresponding partition of

� ��� is computable in time������, where
�

denotes the size of the description of the
game. The algorithm computes at the same time the finite-
memory strategies described in Theorem 2.

Sketch of proof.The proof of Theorem 4 is based on the
following ideas.

First, suppose that fromeveryinitial support player
�

can
win the reachability objectivewith positive probability. S-
ince this positive probability can be bounded from below,
repeating the same strategy can ensure that Player 1 wins
the Büchi condition with probability

�
. According to Theo-

rem 3, in the remaining case there exists a support
�

surely
winning for player� for her co-Büchi objective.

We prove that in case player� can force the belief of
player

�
to be

�
someday with positive probability from

another support
��

, then
��

is positively winning as well for
player�. This is not completely obvious because in gener-
al player� cannot know exactlywhenthe belief of player�

is
�

. For winning positively from
��

, player� plays to-
tally randomly until she guesses randomly that the belief
of player

�
is
�

, at that moment she switches to a strategy
surely winning from

�
. Such a strategy is far from being

optimal, because player� plays randomly and in most cases
she makes a wrong guess about the belief of player

�
. How-

ever player� wins positively because there is a chance she
is lucky and guesses correctly at the right moment the belief
of player

�
.

Player
�

should surely avoid her belief to be
�

or
��

if
she wants to win almost-surely. However, doing so player�

may prevent the play from reaching target states, which
may create another positively winning support for player�,
and so on...

Using these ideas, we prove that the set�� 8 � ��� of
supports almost-surely winning for player

�
for the Büchi

objective is the largest set of initial supports from where

(	) player
�

has a strategy for winning positively the reach-
ability game while ensuring at the same time her belief
to stay in��.

Property (	) can be reformulated as a reachability con-
dition in a new game whose states are states of the original
game augmented with beliefs of player

�
, kept hidden to

player�.
The fix-point characterization suggests the following al-

gorithm for computing the set of supports positively win-
ning for player�:

� ���
�� is the limit of the sequence
 � ��� � ��� � ���� � ��� � ��� � ��� � ��� � ���� � & & & �
��� � � � �� ��+ � � ���
��, where

8



(a) from supports in����#� player � can surely guarantee
the safety objective, under the hypothesis that player

�

beliefs stay outside���,
(b) from supports in���#� player � can ensure with pos-

itive probability the belief of player
�

to be in����#�
someday, under the same hypothesis.

The overall strategy of player� positively winning for
the co-Büchi objective consists in playing randomly for
some time until she decides to pick up randomly a belief

�

of player
�

in some���� . She forgets the signals she has re-
ceived up to that moment and switches definitively to a strat-
egy which guarantees (a). With positive probability, player
� is lucky enough to guess correctly the belief of player

�
at

the right moment, and future beliefs of player
�

will stay in
���, in which case the co-Büchi condition holds and player
� wins.

Property	 can be formulated by mean of a fix-point ac-
cording to Theorem 3, hence the set of supports positively
winning for player� can be expressed using two nested fix-
points. This should be useful for actually implementing the
algorithm and for computing symbolic representations of
winning sets.

5 Complexity and special cases.

In this section we show that our algorithms are optimal
regarding complexity. Furthermore, we show that these al-
gorithms enjoy better complexity in restricted cases, gen-
eralizing some known algorithms [17, 6] to more general
subcases, while keeping the same complexity.

The special cases that we consider regard inclusion be-
tween knowledges of players. To this end, we define the
following notion. If at each moment of the game the belief
of player� is included in the one of player	, then player�
is said to have more information (or to be better informed)
than player	. It is in particular the case when for every
transition, the signal of player

�
contains the signal of play-

er �.

��� ��
�� ������

We prove here that the problem of knowing whether the
initial support of a reachability game is almost-surely win-
ning for player

�
is �EXPTIME-complete. The lower bound

even holds when player
�

is more informed than player�.

Theorem 5. In a reachability game, deciding whether play-
er

�
has an almost-surely winning strategy is�EXPTIME-

hard, even if player
�

is more informed than player�.

Sketch of proof.We do a reduction from the membership
problem forEXPSPACE alternating Turing machines. Let

�
be anEXPSPACE alternating Turing machine, and�

be an input word of length�. From
�

and� we build
a stochastic game with partial observation such that player�

can achieve almost-surely a reachability objective if and
only if � is accepted by

�
. The idea of the game is that

player � describes an execution of
�

on �, that is, she
enumerates the tape contents of successive configurations.
Moreover she chooses the rule to apply when the state of
�

is universal, whereas player
�

is responsible for choos-
ing the rule in existential states. When the Turing machine
reaches its final state, the play is won by player

�
. In this

game, if player� really implements some execution of
�

on�, player
�

has a surely winning strategy if and only if
� is accepted by

�
.

This reasoning holds under the assumption that player�
effectively describes the execution of

�
on � consistent

with the rules chosen by both players. However, player�
could cheat when enumerating successive configurations of
the execution. To prevent player� from cheating, it would
be convenient for the game to remember the tape contents,
and check that in the next configuration, player� indeed
applied the chosen rule. However, the game can remem-
ber only a logarithmic number of bits, while the configura-
tions have a number of bits exponential in�. Instead, we
ask player

�
to pick any position

�
of the tape, and to an-

nounce it to the game (player� does not know
�
), which is

described by a linear number of bits. The game keeps the
letter at this position together with the previous and next let-
ter on the tape. This allows the game to compute the letter�
at position

�
of thenextconfiguration. As player�describes

the next configuration, player
�

will announce to the game
that position

�
has been reached again. The game will thus

check that the letter player 2 gives is indeed�. This way,
the game has a positive probability to detect that player� is
cheating. If so, the game goes to a sink state which is win-
ning for player

�
. To increase the probability for player

�

of observing player� cheating, player
�

has the possibility
to restart the whole execution from the beginning whenev-
er she wants. If player� cheats infinitely often, player

�

will detect it with probability one, and will win the game
almost-surely.

We now have to take into account that player
�

could
cheat: she could point a certain position of the tape contents
at a given step, and point somewhere else in the next step.
To avoid this kind of behaviour, a small piece of information
about the position pointed by player

�
is kept secret in the

state of the game. If player
�

is caught cheating, the game
goes to a sink state losing for player

�
.

This construction ensures that player
�

has an almost
sure winning strategy if and only if� is accepted by the
alternating Turing machine

�
. Note that in the game de-

scribed above player
�

does not have full information but
has more information than player�.

9



��� ������	 ������

A first straightforward result is that in a safety game
where player

�
has full information, deciding whether she

has an almost-surely winning strategy is inPTIME.
Now, consider a Büchi game. In general, as shown in

the previous section, deciding whether the game is almost-
surely winning for player

�
is �EXPTIME-complete. How-

ever, it is already known that when player 2 has a full ob-
servation of the game the problem isEXPTIME-complete
only [6]. We show that our algorithm keeps the sameEX-
PTIME upper-bound even in the more general case where
player� is more informed than player

�
, as well as in the

case where player
�

fully observes the state of the game.

Proposition 2. In a Büchi game where either player�
has more information than player

�
or player

�
has com-

plete observation, deciding whether player
�

has an almost-
surely winning strategy or not (in which case player 2 has
a positively winning strategy) can be done in exponential
time.

Sketch of proof.In both cases, player� needs only expo-
nential memory because if player� has more information,
there is always auniquebelief of player

�
compatible with

her signals, and in case player
�

has complete observation
her belief is always a singleton set.

Note that the latter proposition does not hold when play-
er

�
has more information than player�. Indeed in the game

from the proof of Theorem 5, player
�

does have more in-
formation than player� (but she does not have full informa-
tion).

6 Conclusion.

We considered stochastic games with signals and estab-
lished two determinacy results. First, a reachability game
is either almost-surely winning for player

�
, surely winning

for player� or positively winning for both players. Second,
a Büchi game is either almost-surely winning for player

�

or positively winning for player�. We gave algorithms for
deciding in doubly-exponential time which case holds and
for computing winning strategies with finite memory.

The question ‘does player
�

have a strategy for winning
positively a Büchi game?’ is undecidable [2], even when
player

�
is blind and alone. An interesting research direc-

tion is to design subclasses of stochastic games with signals
for which the problem is decidable.
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Technical Appendix
A Details for Section 3

We give here all the details for encoding the game����� �� ���� with a game of polynomial size.
First, we describe how to ensure that a player does exponentially many steps. We show this for a game
with one and a half player, that is one of the player has no moveavailable. This game can thus be
applied to any player.

��� �
��������	 ��
��� �� �����

Let 	� � � �	� be the binary encoding of a number	 exponential in� (	� being the parity of�). Here
is a reachability game that the player needs to play for�	 steps to surely win. Intuitively, the player
needs to enumerate one by one the successors of 0 until reaching 	� � � �	� in order to win. Let say
��� � � ���� is the binary encoding of the successor counter�� of counter�. In order to check that the
player does not cheat, the bit��� for a random� is secretly remembered. It can be easily computed on
the fly reading�� & & &��. Indeed,��� � �� iff there exists some

� � � with �� � 
.
Action � and signal coincide, and� � �
� ����, � � �
� ��standing for the current bit��, and� � �

standing for the fact that the player claims having reached�.
The state space is basically the following:��� ��� � �� �� � � ���1�1����1�1�����1��. The signification of

such a state is that the player will give bit��, ��� are the check to make to the current number (checking
that�� � �), �� �� � are the check to make to the successor of� (���� � ��) , and� indicates whether there
is a carry (correcting�� in case� � �

at the end of the current number (� � �)). The initial distribution
is the uniform distribution on�
�
� ��
� �� (checking that the initial number generated is indeed



). If

the player plays�, then if	� � � the game goes to the goal state, else it goes to a sink state	.
We have� ���� ��� � �� �� � � �����s� � �

if � � � and� ;� �. Else, if � ;� �, � ���� ��� � �� �� � � ����� �� 	�� ��� � �� �� � � � 
 ��� � �
� (the current bit will not be checked, and the carry is 1 if both� and� are 1), and� ���� ��� � �� �� � � ����� �� 	 �� ��� ��� �� ��� � ���. At last, for � � �, we have

� ���� ��� � �� �� � � ����� ��� �� 
 ��� � ��� �� ��� � �
(the bit of the next number becomes the bit for the

current configuration, taking care of the carry�). Clearly, if the player does not play	� steps of the
game, then it means she did not compute accurately the successor at one step, hence it has a chance to
get caught and lose. That is, the probability to reach the goal state is not 1.

��� �
�	�
������
����� �� ���� 
��� � ��	
��
��	 ��
� ��
��

We now turn to the formal definition of����� �� ����, with a number of states polynomial in�. At
each time (but in state	), player 1 can restart the game from the begining (but from the sink state), we
will say that it performs another round of the game.

The first part of the game is fairly standard, it consists in asking player 1 (who wants to reach some
goal) for a set

�
of ��� numbers below�. The states of the game are of the form��� ��, where� is

the number remembered by the system (hidden for both players), and� ( � � � is the size of
�

so
far. Player 1 actions and signals are the same, equal to

�
� & & & ���, There is no action nor signal for
player 2. We have� ���� �����	� � �

(player 1 is caught cheating by proposing again the same number
remembered by the system). For all	 ;� �, we have� ���� ���	 � ��� � 	 ��� � ��� (the number	
is accepted as new and the memory� is not updated),� ���� ���	 � �	 � � 	 �� � ��� (the number	 is
accepted as new and the memory is updated� �� 	). If player

�
plays



, it means that she has given

��� number, the system checks that the current state is indeed������� and goes to the next part. If the
current state is not�������, then it goes to	 and player 1 looses.

i



The number� in the memory of the system at the end of part 1 will be used and remembered all
along this round of the game in the other parts. We turn now to the second part, where player 1 gives�
� � � ����� sets� different to

�
. First, in order to be sure that every set� she proposes is never

�
, player

1 is asked to give one number in� 
 ��� (this number is not observed by player 2). Giving� sends the
game into the sink state	 from which player 1 loses. Since player 1 does not know what� is, playing
any number in

�
is dangerous and ensures that the probability of the play reaching the sink state	 is

stricly positive, hence it cannot reach its goal almost surely. The way the sets are announced by player 1
is the following. First, player 1 is asked whether number 1 belongs to the set it is annoucing (she plays� if yes, �� if not, and��� if it is and furthermore it is the biggest number which will change compared
to the following set). Player 2 has no choice of action to play. The observation of player 1 and 2 is the
same as the action of player 1, that is player 2 is informed of the sets announced by player 1.

Second, the game needs to ensure that each set is different. For that, it asks player 1 to generate the
sets in lexicographic order (if� is given before� �, then there exists��� � � %� � such that� * � and
for all

� ��
with

� � �, � �� �
and

� ;� �), and to announce in its action what is the biggest number�
of current set� which will be changed next time. The game remembers�, plus one number� � � with
� � � (if any) (it can be done with polynomial number of states). The game checks whether the next set
� � contains�, plus a number�� � � � with � * �� and�� ;� �. Again, since player 1 does not know the
number� chosen, if player 1 cheats and changes a number

� � � of � , then there is always a chance
that the game remembers that number and catches player 1 cheating, in which case the game goes to the
sink state	. To be sure that player 1 gives

�
� � � ����� sets, she plays the game of section A.1 step by step,

advancing to the successor of the current counter only when aset� is proposed. Furthermore, when
she has finished giving

�
� � � �����, she goes to the third part.

The third part ressembles the second part: player 2 proposes
�
� � � ����� sets instead of player 1, and

player 1 observes these sets. For each set� proposed by player�, player
�

has to give an event in
� 
�

(this is not observed by player 2). This is ensured in the sameway as in part 2. Recall that Player 1 has
always a reset action to restart the game from step 1, but in the sink state	. That is, if� ��

, player 1
can ends the round, and restart the game with a new set

�
in the following round.

After each set proposed by player 2, the game of section A.1 advances to its next step. Once there
has been

�
� � � ����� sets� proposed with the proof by Player 1 that

� ;� � , then Player 1 goes to the
goal state



and wins.

B Details for Section 4
��� ���������� 
��� ����� 
�
��


Definition 6 (Behavioral strategy associated with a finite memory strategy). A strategy with finite
memory is described by a finite set� called the memory, a strategic function-� � � � ����, an
update function���� �� % ��, an initialization function565�� �� ��� ��. The associated
behavioral strategy is defined by

-������ � � ������� �
�

+� ���+
��
��
565�� ����������)�� ����� �)������)�� � � ����� �)���� ����)�� �-� �)�����

��� ��	���� ��� ��� �������� 	�

�

When ”shifting time” in proofs, we will use the followingshifting lemma, either explicitely or im-
plicitely.
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Lemma 1 (Shifting lemma). Let � � �, � �
� ��
be the indicator function of a measurable event,

�
be an initial distribution and- and. two strategies. Then:

/0123 �� ������ � & & &� � � 
  � � ��"� � !� � /0�12�3�� �� ������� & & &� � �� �

where
:� � �������� � /0123 ��� � � 
  � � ��"� � !�, -������ � � ���� � -������ � � ���� and

.��!�!� � � �!�� � -�!!�!� � � �!��.
Proof. Using basic definitions, this holds when� is the indicator function of a union of cylinders, and
the class of events that satisfy this property is a monotone class.

We will use heavily the following properties of beliefs.

Proposition 3. Let -�. be strategies for player
�

and � and
�

an initial distribution with support
�

.
Then for� � �,

/0123 ���#� � ����� �� & & & � ��� � � &
(3)

Moreover, let.� be the strategy for player� which plays every action uniformly at random. Then for
every� � � and�� � � ��� �  ', if /012�3 � � � ��� & & & � � � ��� � 
 then for every state

� � �,

�� � ����� ��� & & & � ���� �
 �/012�3 ���#� � �� � � �� � & & & � � � ��� � 
� &
(4)

Consider the reachability, safety, Büchi or co-B̈uchi condition, and suppose- and
�

are almost-surely
winning for player

�
. Then for every� � � and strategy. ,

/0123 ������"�� & & & �"�� is a.s.w. for player
�� � � &

(5)

Proof. Easy from the definitions using the shifting lemma. Recall for reachability and safety games,
we suppose without loss of generality that target states areabsorbing. The first statement says that the
current state is always in the belief of player

�
. The second statement says that in case player� plays

every action, then every state in the belief of player
�

is a possible current state. The third statement
says in case player

�
plays with an almost-surely winning strategy, his belief should stay almost-surely

winning. This is because- should be almost-surely winning against.� as well.

��� 	���� �� 
�����
 �

Theorem 3 (Deciding positive winning in reachability games). In a reachability game each initial
distribution

�
is either positively winning for player

�
or surely winning for player�, and this depends

only on������� 8 �. The corresponding partition of
� ��� is computable in time

� �� � �
��, where�

denotes the size of the description of the game. The algorithm computes at the same time the finite-
memory strategies described in Theorem 2.

The proof is elementary. By inspection of the proof, one can obtain bounds on time and probabilities
before reaching a target state, using the uniform memoryless strategy-�. From an initial distribution
positively winning for the reachability objective, for every strategy. ,

/0� 123 �9� ( �
� ��� � 7 � <

� �

$ 
 � 
�
�
 �

(6)

where$ is the smallest non-zero transition probability.

iii



Proof. Let �� 8 � ��
7 � be the greatest fix-point of the monotonic operator� � � �� ��
7 �� �� �� ��
7 �� defined by:

���� � �� � � 
 9�� � ��:! � "� ��� � � �!�� �
 ����� !� � �� �
in other words���� is the set of supports such that player� has an action�, such that whatever signal
! she might receive (coherent with� of course) her new belief will still be in�. Let -� be the strategy
for player

�
that plays randomly any action.

We are going to prove that:

(A) every support in�� is surely winning for player�,

(B) and-� is positively winning from any support
� 8� which is not in��.

We start with proving (A). For winning surely from any support
� � ��, player�uses the following

finite-memory strategy. : if the current belief of player� is
� � �� then player� chooses an action

�� such that whatever signal! player� receives (with� �!� � ��), her next belief
����� !� will be in

�� as well. By definition of� there always exists such an action��, and this defines a finite memory
strategy with memory

� ��
7 � and update operator
��.

When playing with strategy. , starting from a support in��, beliefs of player� never intersect7 .
According to 3 of Proposition 3, this guarantees the play never visits7 , whatever strategy is used by
player

�
.

Conversely, we prove (B). Once the memoryless strategy-� for player
�

is fixed, the game is a
one-player game where only player� has choices to make: it is enough to prove (B) in the special case
where the set of actions of player

�
is a singleton

� � ���. Let �� � � ��
7 � � �� � ����� �
�� � ����� & & & and�� be the limit of this sequence, the greatest fixpoint of�. We prove that for any
support

� � � ���, if
� ;� �� then:

�
is positively winning for player

� &
(7)

If
��7 ;� 


, (7) is obvious. For dealing with the case where
� � � ��
7 �, we define for every� � �,�� � � ��
7 �
��, and we prove by induction on� � �
that for every

� � ��, for every initial
distribution

�
� with support

�
, for every strategy. ,
/23� �9)�� () ( � 	 ���+ � 7 � � 
 & (8)

For� � 
, (8) is obvious because
�� � 


. Suppose that for some� � �, (8) holds for every
� � ��,

and let
� � ��#�. If

� � �� then by inductive hypothesis, (8) holds. Otherwise
� � ��#�
�� and

by definition of
��#�, � � ��
����� & (9)

Let
�
� be an initial distribution with support

�
and. a strategy for player�. Let � be an action such that

. ������ � � 
. According to (9), by definition of�, there exists a signal! � " such that� � � �!� and����� !� ;� ��. If
����� !� � 7 ;� 


then according to Proposition 3,/23� ��� � 7 � � 

. Otherwise����� !� � � ��
7 �
�� � �� hence distribution

����� � /23� ��� � � 
 "� � !� has its support in
��. By inductive hypothesis,for every strategy. �, /2 �3� �9) � ��� () (� 	 ���+ � 7 � � 
 hence
according to the shifting lemma and the definition of

��
, /23 �9) � ��� () ( � 	 �

��+ � 7 � � 
,
which achieves the inductive step.

For computing the partition of supports between those positively winning for player
�

and those
surely winning for player�, it is enough to compute the largest fixpoint of�. Since� is monotonic,
and each application of the operator can be computed in time linear in the size of the game (

�
) and the

number of supports (�
�

) the overall computation can be achieved in time
�
�
�

. For computing strategy
. , it is enough to compute for each

� � �� an action�� which ensures
����� !� � ��.
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��� 	���� �� 
�����
 �

Theorem 4 (Deciding almost-sure winning in Büchi games).In a Büchi game each initial distribution�
is either almost-surely winning for player

�
or positively winning for player�, and this depends only on

������� 8 �. The corresponding partition of
� ��� is computable in time

������, where
�

denotes
the size of the description of the game. The algorithm computes at the same time the finite-memory
strategies described in Theorem 2.

We start with formalizing what it means for player
�

to force her pessimistic beliefs to stay in a
certain set.

Definition 7. Let � 8 � ��� be a set of supports. We say that player
�

can enforce her beliefs to
stay outside� if player

�
has a strategy- such that for every strategy. of player� and every initial

distribution
�

whose support is not in�,

/0123 �:� � ���� ��� �� & & & � �� ;� �� � � &
(10)

Equivalently, for every
� ;� �, the set:

� ��� � �� � � such that
:� �  � if � � ���� then

����� �� ;� �� �
is not empty.

Proof. The equivalence is straightforward. In one direction, let- be a strategy with the property above,� ;� �,
�
� a distribution with support

�
and� an action such that-������� � 
. Then according to (10),

� � �� hence
�
� is not empty. In the other direction, if

�
� is not empty for every

� ;� � then consider
the finite-memory strategy- which consists in playing any action in

�
� when the belief is

�
. Then by

definition of beliefs (10) holds.

We need the notion of�-games.

Definition 8 (�-games). Let � be a set of supports such that player
�

can enforce her beliefs to stay
outside�. For every support

� ;� �, let
� ��� be the set of actions given by Definition 7. The�-game

has same actions, transitions and signals than the originalpartial observation game, only the winning
condition changes: player

�
wins if the play reaches a target state and moreover player

�
does not use

actions other than
�
� whenever her pessimistic belief is

�
. Formally given an initial distribution

�
with

support
�

and two strategies- and. the winning probability of player
�

is:

/0123 �9���� � 7 and
:���� � � ������ �� & & & � ���� &

Actually, winning positively an�-game amounts to winning positively a reachability game with state
space

� ��� %�, as shown by the following lemma and its proof.

Proposition 4 (�-games).Let� 8� ��� be a set of supports such that� is upward-closed and player�
can enforce her pessimistic beliefs to stay outside�.

(i) In the�-game, every support is either positively winning for player
�

or surely winning for player
�. We denote��� the set of supports that are not in� and are surely winning for player� in the
�-game.

(ii) Suppose��� is empty i.e. every support not in� is positively for player
�

in the�-game. Then
every support not in� is almost-surely winning for player

�
, both in the�-game and also for the

Büchi objective. Moreover, the strategy-� for player
�

which consists in chosing randomly any
action in

� ���when her belief is
�

is almost-surely winning in the�-game.
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(iii) Suppose��� is not empty. Then player� has a strategy. for winning surely the�-game from any
support in���, and. has finite memory

� ��� ���
�� %��.
(iv) There is an algorithm running in time doubly-exponential time in the size of

�
for computing���

and, in case (iii) holds, strategy. .
The proof is based on Theorem 3.

Proof. We define a reachability game which is a synchronized productof the original game
�

with
beliefs of player

�
, with a few modifications. this new reachability game is denoted

�
�. The state space

is� % �� ���
�� � ���, where
��� is a sink state, used for punishing player

�
whenever he uses an

action not in
� ���. Target states of

�
� are those whose first component is a target state of the initial

game
�

. Actions and signals of both players are the same as in
�

. The transition function is the product
of the transition function of

�
(for the first component), together with the belief operator

�� (for the
second component), with one modification: whenever the current state is����� and player

�
plays an

action� which is not in
� ���, the next state is

���, and remains
��� forever.

Applying Theorem 3 to the reachability game
�
�, we get (i) and (iii). Property (i) holds because a

strategy for player
�

is positively winning in the�-game if and only if it is positively winning in
�
�

and a strategy for player� is surely winning in the�-game if and only if it is surely winning in
�
�.

Property (iii) holds according to Theorem 3, because the state space of
�
� is � % �� ���
�� � ���

and player� can forget about state� because it is a sink state.
Computability of��� and- and. stated in (iv) is straightforward from Theorem 3 applied to

�
�.

Now we suppose��� is empty and prove (ii). According to Theorem 3, any support not in � is
positively winning for player

�
in
�
� and moreover the strategy-� which consists in playing randomly

any action is positively winning for player
�
. When the belief of player

�
is
�

, playing an action�
which is not in

� ��� leads immediatly to a non-accepting sink state, hence strategy-� which consists
in playing randomly any action in

� ��� is positively winning as well, from any initial distribution whose
support is not in�.

To prove (ii) it is enough to show that for every initial distribution
�

whose support is not in�,

-� is almost-surely winning for player
�

from
� &

(11)

Note this is a consequence of (6), but we quickly reprove it. For proving (11), we need to give an
upper bound on the time to wait before seeing a target state. We start with proving that for each

� ;� �
there exists�� � � such that for every strategy. , for every distribution

�
with support

�
,

/0123 �9� (�� ��� � 7 � <
�

��
&

(12)

We suppose such an�� does not exist and seek for a contradiction. Suppose for every � there exists
.� and

�� with support
�

such that (12) does not hold. Without loss of generality, since - is fixed
and property (12) only concerns the first� steps of the game, we can ”de-randomize” strategy.� and
suppose.� is deterministic i.e..� � "' � �

. Without loss of generality, we can assume as well
that

�� converges to some distribution
�
, whose support is necessarily included in

�
. Using Koenig’s

lemma, it is easy to build a strategy. � "' � �
such that for infinitely many�,

/0123� �9� (� ��� � 7 � *
�

�
&

Taking the limit when� ��, we get:

/0123 �9���� � 7 � � 
 &
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this contradicts the fact that- is positively winning from
�

, because the support of
�

is included in� ;� � and by hypothesis� is upward closed hence������� ;� � as well. This proves the existence of
�� such that (12) holds.

Now we can achieve the proof of (ii). Let� � ���
��� 
 � ;� ��. Then for every strategy. and

every distribution
�

whose support is not in�,

/0123 �9� (� ��� � 7 � <
�

�
&

(13)

Since-� guarantees the belief of player
�

to stay outside�, we can apply the shifting lemma and get:

/0�123 �:� ( �� ��� ;� 7 � ( ���
�

� �
� �

and by induction,
/0� 123 �9� � ���� � 7 � � � &

This holds for every strategy. and every distribution
�

whose support is not in�. Since-� guarantees
the belief of player

�
to stay outside�, by induction using (4) we obtain

/0�123 �9����� � 7 � � � &

This achieves to prove that-� is almost-surely winning from any support
� ;� � for the Büchi condition.

This proves (11) hence (ii).

The following proposition provides a fix-point characterization of almost-surely winning supports
for player

�
.

Proposition 5 (Fix-point characterization of almost-surely winning supports). Let� 8� ��� be a
set of supports. Suppose player

�
can enforce her beliefs to stay outside�. Then,

(i) either every support
� ;� � is almost-surely winning for player

�
and her B̈uchi objective,

(ii) or there exists a set of supports�� 8� ��� and a strategy. ' for player� such that:

(a) �� is not empty and does not intersect�,

(b) player
�

can enforce her beliefs to stay outside� � ��,
(c) for every strategy- and initial distribution

�
with support in��,

/012�3 �:� < �
� ��� ;� 7 
 :������� � � & & & � �� ;� �� � 
 & (14)

There exists an algorithm running in time doubly-exponential in the size of
�

for deciding which of
cases (i) or (ii) holds. In case (i) holds, the strategy-� for player

�
which consists in playing randomly

any action in
� ��� when her belief is

�
is almost-surely winning for the B̈uchi objective. In case

(ii) holds, the algorithm computes at the same time�� and a finite memory strategy. ' with memory� ��� %��
�
�such that(14)holds.

Proof. Let ��� be the set of supports surely winning for player� in the�-game. Let.� be the memory-
less strategy for player� playing randomly any action. Let�� be the set of supports

�
such that

� ;� �
and, :-�/012�3� �9� ( �

� ������ � � & & & � �� � ��� ��� � 
 � (15)

where
�
� is the uniform distribution on

�
.
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We start with proving that if��� is empty then case (i) of Proposition 5 holds. Since player
�

can
enforce her beliefs to stay outside�, then�� is empty as well. Moreover, according to (ii) of Proposi-
tion 4, every support not in� is almost-surely winning for player

�
for the Büchi condition, hence we

are in case (i) of Proposition 5.

Suppose now that��� is not empty, Then we prove (ii)(a), (ii)(b) and (ii)(c) of Proposition 5.
First (ii)(a) is obvious because since��� 8 ��, then�� is not empty either
Now we prove property (ii)(b) holds: player

�
can enforce his beliefs to stay outside� � ��. There

exists- such that (15) does not hold, and we can even suppose- deterministic, i.e.- �� ���% ' � �
.

This strategy- guarantees the belief of player
�

to stay outside����� for the first�
�

steps os the game.
We can modify- such that this holds for all steps of the game. For that, player

�
can use strategy-�

which plays like-, and as soon as player
�

has twice the same belief
�

, she forgets every signal she
received between the two occurences of

�
and keep playing with-. Using (4) and the shifting lemma,

one proves that if playing-� there is positive probability that the belief of player
�

is in���� someday
then there is positive probability that the belief of player

�
is in �� � � someday and moreover all

beliefs of player
�

are different up to that moment. Since there are at most�
�

different beliefs, this
contradicts the definition of-. Hence-� guarantees the belief of player

�
to stay outside����� forever.

As a consequence,-� guarantees the belief of player
�

to stay outside�� as well forever, again this is an
application of (4) and the shifting lemma.

Description of the positively winning strategy. ' for player �. It remains to prove (ii)(c). According
to (iii) of Proposition 4, there exists a strategy. � for player� which is surely winning in the�-game
from any support in���.

We define a strategy. ' for player� which guarantees (14) to hold. At each step, player� throws a
coin. As long as the result is ”tail”, then player� plays randomly any action: she keeps playing with.�.
If the result is ”head” then player� picks randomly a support

� � ��� (actually she guesses the belief
of player

�
), forgets all her signals up to now and switches definitivelyto strategy. � with initial support�

.
Intuitively, what matters with strategy. ' is that the opponent player

�
does not know whether he

faces strategy. � or strategy.�, because everything is possible with strategy.�. Formalizing this very
simple idea is a bit painful.

Let us prove that. ' guarantees property (14) to hold.
We start with proving for every strategy- of player

�
and

�
an initial distribution whose support is

in
� � ��, there exists a support

��� � ���, � ( �
�

and�� � � ��� �  ' such that::� � ��� � ��� ��� � /012�3 ��� � �� � � ��� & & & � � � �� � � 
 & (16)

By definition of �� and .�, there exists��� & & & � �� and a support
��� � ��� such that

��� ������ ��� & & & � �� �, � ( �
�

and/012�3 � � � �� � & & & � � � �� � � 

. Let, Then, according to (4),:� � ��� �/012�3 ��� � �� � � ��� & & & � � � �� � � 


. Since by definition of. ', there is positive
probability that. plays like.� up to stage�, then we get (16).

Now we can achieve the proof of (14). Since. � is surely winning in the�-game from
��� � ���, it

guarantees that:
:-�/012 �3�� �:� � ���� ;� 7 
 :� � ���� � � ������� � � � & & & � ���� � � &

There is positive probability that at stage�, . ' switches to strategy. � in initial state
���

. By definition of
beliefs,

������ � � � & & & � �� � ����� ��� & & & � �� � � � & & & � ��, hence according to (16) and the shifting
lemma,:-�/012�3 �:� <� ��� ;� 7 � � � � � � � �� � � ��� 
 :� <� � �� � � ������ � � & & & � ���� � 
 &

(17)
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According to the definition of
� ���, for every - and � � �

,
/012�3 ������ �� & & & � �� �#�� � � 
 �� ;� � ������ �� & & & � ���� � 


and since there is posi-
tive probability that. plays like.� up to stage�, the same holds for. , hence:

/012�3 �:� � ���� � � ������ �� & & & � ��� 
 :� � ���� ��� �� & & & � �� ;� �� � 
 &

This last equation together with (17) proves (14), which achieves to prove (ii)(c) of Proposition 5.

Description of the algorithm. To achieve the proof of Proposition 5, we have to describe thedoubly-
exponential algorithm. This algorithm is a fix-point algorithm, actually there are two embedded fix-
points, since this algorithm uses twice as sub-procedures the algorithm provided by Theorem 3 on game�
� defined in the proof of Proposition 4.
The algorithm of Proposition 4, property (iv) is used for computing���, and- or . �.
In case��� is empty, the algorithm simply outputs strategy-� described in (ii) of Proposition 5. In

case��� is not empty, the algorithm computes the set of supports�� defined by (15), from which player
� can force the belief of player

�
to be in��� �� someday with positive probability. For computing��,

we have to fix strategy.� in the game
�
� and check whether player

�
has a strategy for avoiding surely

his beliefs to be in�� � �, which can be done running the algorithm of Proposition 5 to the game
�
�.

Remark we prove the bound�
�

can be replaced by
�

in (15).
Once�� has been computed, the algorithm outputs strategy. ' described above.

The proof of Theorem 4 illustrates how to compose the variousfinite memory strategies of Proposi-
tion 5 to obtain a strategy for player�which is positively winning and has finite memory

� �� ���%��.
Proof of Theorem 4.According to Proposition 5, starting with�� � 


, there exists a sequence��� �����& & & ���� of disjoint non-empty sets of supports such that for every
) (�,

� if

 ( ) * � then�+ � ��� � � � � � ��+��, matches case (ii) of Proposition 5. We denote.+

the corresponding finite memory strategy.

� �� matches case (i) of Proposition 5.

Then according to Proposition 5, the set of supports positively winning for player� is exactly�� ,
and supports that are not in�� are almost-surely winning for player

�
. This proves qualitative deter-

minacy.
The sequence��� ���� � & & & ���� is computable in doubly-exponential time, because each application of

Proposition 5 involves running the doubly exponential-time algorithm, and the length of the sequence
is at most doubly-exponential in the size of the game.

The only thing that remains to prove is the existence and computability of a positively winning
strategy.# for player�, with finite memory

� �� ��� %��. Strategy. consists in playing randomly
any action as long as a coin gives result ”head”. When the coingives result ”tail”, then strategy.#
chooses randomly an integer


 ( ) * � and a support
� � ��+ and switches to strategy.+. Since

each strategy.+ has memory
� ���+ %��
�
� and the��+ are distincts, strategy.# has memory� �� ��� %��with



used as the initial memory state.

We prove that.# is positively winning for player� from �� . Let - be a strategy for player
�
,� � �� and

�
an initial distribution with support

�
. Let

)� be the smallest index
)

such that

/012�3 �9� � ���� ��� �� & & & � �� � ��+� � 
 &
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Since
� � �� and�� � �+�� ��+, the set in the definition of

)� is non-empty and
)� is well

defined. Let�� � � and��� �� � & & & � ��� �  �� such that
����� ��� & & & � ���� � ��+� and

/012�3 � � � ��� & & & � �� � ��� � � 
 &
According to the definition of.#, there is positive probability that.# plays randomly until step��
hence according to (4), for every state

� � ����� ��� & & & � ��� �,
/012�3 � � � ��� & & & � �� � ��� and�� � �� � 
 & (18)

According to the definition of.# again, there is positive probability that.# switches to strategy.+� at
instant��. Since

����� ��� & & & � ��� � � ���� hence according to (18) and to (14) of Proposition 5,

/012�3 �:� < �
� ��� ;� 7 
 :� < �������� �� & & & � �� ;� �+�� � 
 & (19)

By definition of
)� and since�+� � ��� � � � �� ��+���,

/012�3 �:� � ���� ��� �� & & & � �� ;� �+�� � � �
then together with (19),

/012�3 �:� < �
� ��� ;� 7 � � 
 �

which proves that.# is positively winning for the co-Büchi condition.

C Details for Section 5	���� �� �EXPTIME	��������

We give here a more detailed proof for the 2EXPTIME-hardness of the problem of deciding whether
player

�
has an almost-surely winning strategy in a reachability game.

Theorem 5. In a reachability game, deciding whether player
�

has an almost-surely winning strategy
is 2EXPTIME-hard, even if player

�
is more informed than player�.

Proof. We reduce the membership problem for alternatingEXPSPACE Turing machines. Let
�

be
anEXPSPACE alternating Turing machine, amd� be an input word of length�. From

�
we build

a stochastic game with partial observation such that player
�

can achieve almost-surely a reachability
objective if and only if� is accepted by

�
. The idea of the game is that player�describes an execution

of
�

on�, that is, she enumerates the tape contents of successive configurations. Moreover she chooses
the rule to apply when the state of

�
is universal, whereas player

�
is responsible for choosing the rule

in existential states. When the Turing machine reaches its final state, the play is won by player
�
. In

this simple deterministic game, if player� really implements some execution of
�

on�, player
�

has a
surely winning strategy if and only if� is accepted by

�
. Indeed, if all executions on� reach the final

state of
�

, then whatever the choices player� makes in universal states, player
�

can properly choose
rules to apply in existential states in order to reach a final configuration of the Turing machine. On the
other hand, if some execution on� does not lead to the final state of

�
, player

�
is not sure to reach a

final configuration and win the game.
This reasoning holds under the assumption that player� effectively describes the execution of

�
on

� consistent with the rules chosen by both players. However, player � could cheat when enumerating
successive configurations of the execution. She would for instance do so, if� is indeed accepted by

�
,

x



in order to have a chance not to lose the game. To prevent player � from cheating (or at least to prevent
her from cheating too often), it would be convenient for the game to remember the tape contents, and
check that in the next configuration, player� indeed applied the chosen rule. However, the game can
remember only a logarithmic number of bits, while the configurations have a number of bits exponential
in �. Instead, we ask player

�
to pick any position

�
of the tape, and to announce it to the game (player

� does not know
�
), which is described by a linear number of bits. The game keeps the the letter at

this position together with the previous and next letter on the tape. This allows the game to compute
the letter� at position

�
of thenextconfiguration. As player� describes the next configuration, player

1 will annouce to the game that position
�

has been reached again. The game will thus check that the
letter player 2 gives is indeed�. This way, the game has a positive probability to detect thatplayer� is
cheating. If so, the game goes to a sink state which is winningfor player

�
. To increase the probability

for player
�

of observing player� cheating, player
�

has the possibility to restart the whole execution
from the beginning whenever she wants. In particular, she will do so when an execution lasts longer
than�

�
 steps. This way, if player� cheats infinitely often, player
�

will detect it with probability one,
and will win the game almost-surely. So far, we described a deterministic game satisfying that if� is
accepted by

�
, player

�
has a mixed strategy to reach her winning state almost surely, and without

cheating (that is, denonciating player� only if she was cheating).
We now have to take into account that player

�
could cheat: she could point a certain position of the

tape contents at a given step, and point somewhere else in thenext step. To avoid this kind of behaviour,
or at least refrain it, a piece of information about the position pointed by player

�
is kept secret (to both

players) in the state of the game. More precisely, a bit of thebinary encoding of the letter position on
the tape, and the position of this bit itself is randomly chosen among the at most� possible positions.
If player

�
is caught cheating (that is, if the bits at the position remembered differ between both step),

the game goes to a sink state losing for player
�
. This way, when player

�
decides to cheat, there is a

positive probability that she loses the game. At this stage,the game is stochastic (a bit and a position
are remembered randomly in states of the game), player

�
does not have full information (she does not

know which bit is remembered in the state), but she has more information than player� (the latter does
not know what letter player

�
decided to memorize). Moreover, the game satisfies the following: � is

accepted by
�

if and only if player
�

has mixed winning strategy which ensures reaching a goal state
almost surely.

xi


