
Minimal Observability for Transactional Hierarchical Ser vices
�

Debmalya Biswas and Blaise Genest,
IRISA/INRIA&CNRS, Campus de Beaulieu, 35042 Rennes Cedex,France

Abstract

For complex services, logging is an integral part of many
middleware aspects, especially, transactions and monitor-
ing. In the event of a failure, the log allows us to deduce the
cause of failure (diagnosis), recover by compensating the
logged actions (atomicity), etc. However, for heterogeneous
services, logging all the actions is often impracticable due
to privacy/security constraints. Also, logging is expensive
in terms of both time and space. Thus, we are interested
in determining the absolute minimal number of actions that
needs to be logged, to know with certainty the actual se-
quence of executed actions from any given partial log. This
problem happens to be NP-Complete. We consider complex
services represented as a hierarchy of services, and propose
a decomposition mechanism which dramatically decreases
the complexity (up to 2 exponentials). The decomposition
also works for distributed services.

1 Introduction

An interesting problem for complex systems is to deter-
mine a minimal set of actions that needs to be observable
such that a given property holds. Some of the properties
studied in literature of discrete event systems are normali-
ty [8], observability [7], state observability [11], diagnos-
ability [15], etc. Our system corresponds to a composite
(workflow) Web service. A Web service [1] refers to an on-
line service accessible via Internet standard protocols. A
composite service, composed of already existing (compo-
nent) services, combines the capabilities of its components
to provide a new service. A service schema which specifies
the execution order of its components, can be modeled as a
graph, performing actions on global variables. We do not
tackle here the modelization of a service as a graph, which
should be handled with care to yield a graph of reasonable
size (see [17] and example 1).

Our long-term objective is to provide a transactional
framework for (composite) Web services. A transaction

�

This work is supported by la Region Bretagne (CREATE ACTIVE-
DOC) and ANR-06-MDCA-005 DOCFLOW.

can be considered as a group of actions encapsulated by
the operations Begin and Commit/Abort, having the fol-
lowing properties: Atomicity (A), Consistency (C), Isola-
tion (I) and Durability (D). Here, we focus on the atom-
icity aspect, that is, either all the actions of a transaction
are executed or none. In the event of a failure, atomicity
is preserved by compensation [4, 16]. Compensation con-
sists of executing the compensating actions, corresponding
to each executed action of the failed process, in reverse or-
der of the original execution. Many advanced transactional
models have also been proposed, e.g. “semantic compen-
sation” [16] which do not require any knowledge of the
execution sequence. However, their application to more
autonomous systems like Web Services has been limited,
where the default compensation mechanism of the widely
used Business Process Execution Language (BPEL) is to
“execute the completed actions in reverse order”. Thus, for
compensation to be feasible, we need to reconstruct each
executed action or the complete history of any execution.
To achieve that, we maintain a log of the observable ac-
tions. In addition to the obvious space overhead of log-
ging, the complete log may not always be accessible. For a
composite service, the providers of its component services
are different. As such, their privacy/security constraints
may prevent them from exposing (part of) the logs corre-
sponding to the execution at their sites. Also, heterogene-
ity may lead to the logs being maintained in different for-
mats, rendering some of them incomprehensible. Existing
Web services specifications to provide transactional guar-
antees, such as WS-Coordination, WS-AtomicTransaction
and WS-BusinessActivity [18], are basically distributed a-
greement protocols which are based on the assumption that
“all state transitions are reliably recorded” and can be com-
pensated. Our approach is targeted towards a more hetero-
geneous environment where all transitions may not be ob-
servable. Hence, we want from a partial log of the observ-
able actions to know with certainty the actual sequence of
executed actions, to be able to compensate it.

Section 2 introduces the required formal preliminaries
including the precise problem statement. Clearly, we are
interested in logging the smallest number of actions possi-
ble. However, determining the minimal number of action-

1

s to log, such that any execution of a system is compens-
able, is NP-Complete. This is not very surprising, since the
closely related sensor selection problems [19, 10] are also
NP-Complete (see section 3). Also, the problem cannot be
approximated [13] in polynomial time, which means that
polynomial time algorithms cannot give a minimal set for
all graphs, and that for many graphs, the observable set pro-
duced would be much bigger than the minimal set.

A complex service is often constructed hierarchically
(see section 4), with some services at a high level corre-
sponding to many composite services at a lower level. Each
hierarchical level potentially describes the interactions at d-
ifferent level of abstraction, e.g., the top level may describe
the interactions between several providers, then the nex-
t level between services of a provider, and so on. Moreover,
components can be reused in a hierarchical system, giving a
compressed way to represent big systems. Hierarchical sys-
tems are often used for words [12], Finite State Machines
[2], and even trees [9]. For words, e.g., hierarchical struc-
tures correspond to the LZ compression [12]. We show in
section 5 how to use the hierarchical representation to com-
pute efficiently a minimal observable set of transitions. The
algorithm is not straightforward since the log of both mini-
mal sets of actions of different components is not necessar-
ily enough to recover the actual sequence of executed ac-
tions of the whole graph. One solution could be to resort
to function summarization, but then only an overapprox-
imation of the minimal set of actions would be obtained.
Nevertheless,we show that it suffices to run the algorithm
with slightly different parameters on each component. We
thus obtain a divide and conquer algorithm. We present a
theoretical complexity analysis which illustrates the benefit
of our method (up to two exponential better when using the
full hierarchical representation and one exponential better
by using the hierarchical representation even if components
are used only once, compared to flattening the hierarchical
graph), that is verified experimentally (section 7).

2 Preliminaries

Formally, we model a transactional service as a 4-tuple� � ����� � �� �� 	, where
���
 	

is a graph (� � � is
called a state and � � a transition) and

�� � � and
�� ��

are the initial and final states, respectively.
Our systems are thus graphs with a unique input and out-

put point, each node and arc corresponds to a state and tran-
sition, but we ignore the alphabet. We assume that the ser-
vice

�
does not have any unreachable states and that all

states can reach the final state
��

. For convenience, we al-
so assume that there are no outgoing edges from

��
and

no incoming edges to
��.1 We say that an execution se-

1Notice that we could deal with a service without these requirements,
but the proof would be more technical.

quence� � �� � � ��� � � � is a path of
�

if there exists
�� � � � � � �� � �

���
with

�� � ��������	 for all � � � � �.
A path is called initial if furthermore�� � ��. We denote
by � ��	 the set of initial paths in

�
. Finally, we denote

by �� � the size of
�

, that is, its number of transitions.
In general, for any execution�, we call observation pro-

jections the observation we have after� was executed (a se-
quence of actions, control points, data� � �). We say that an
observable projection� is uncertain if there exists two paths
having the same projection. The service

�
is execution se-

quence detectable iff none of its observable projections are
uncertain.

Definition 1 Let
�� �

be the set of observable transi-
tions. The observation projection Obs

� ! � � "# � ��
is the

morphism with Obs
��$� � � �$�	 � %� � � � %� with

%� � $� if$� � ��, and
%� � &

if $� � � ' ��, with
&

the empty word.

That is, Obs
���	 is the subsequence of� obtained by e-

liminating from� every occurrence of a tuple which is not
in
��

. With such an observation projection Obs
�

, the only
way of having execution sequence detectability is to have
every transition observable. Indeed, as soon as there exists
even one non-observable transition, the service is not exe-
cution sequence detectable. Else, let us take a path�� with
the last transition

� (� ��. Then, Obs
���� 	 �Obs

���	. A
usual way to overcome such a problem is to ask for certainty
only up to the last few events of the sequence [11]. Howev-
er, this workaround does not make sense in our framework
since if we cannot compensate the very last action, then we
cannot compensate any action at all. As such, we design
a new observation mechanism, where the last control point
reached before failure is monitored, even if the last action
is not logged. In practice, it means that every state that is
reached is monitored, and overwrite the previous state in a
special memory buffer.

Definition 2 Let
�

be a service,
�� �

. The observa-
tion projection Obslast� ! � � "# �� �� ��	

is the function
Obslast� ��	 � �Obs

���	��	 for all � � � ��	 ending in�.
We will stick with this definition of observability for the

rest of the paper. As mentioned before, we are interested in
logging as few transitions as possible.

Problem statement. Given an service
�

=
������ �� �� 	,

we call
��

an observable set of transitions if the service
is execution sequence detectable with Obslast� . We want to
determine a minimal observable set of transitions

�� �
.

The cardinality of such a minimal observable set
��

of a
service

�
is referred to as its observable size

�)��	 �
��� �. Notice that as is usual with decision and computation
algorithms, it is sufficient to have an algorithm which from
a service gives its observable size. That is, we can derive a

2

Initiate
Payment
Request

Currency
Type?

Finance
Director's
approval?

$

Order Citibank
Cheque

Order
American
Express

Cheque

Euro

Y

N

Update Accounts
Database

Deliver Cheque Terminate
Request

Get Supervisor's
Approval

Y

Get Team
Lead's

Approval

N
Student

?

Send by Courier

Hand Deliver

Geographic
Location?

Initiate
Delivery

Same campus

Different
campus Terminate

Delivery

Figure 1. Travel funds request workflow.

minimal observable set of the service based on knowledge
of its observable size in polynomial time.

Example 1 We consider in Fig. 1 a travel funds request ser-
vice, inspired by the workflow in [14]. It involves different
departments across organizations, and it is hierarchical in
that the deliver cheque service is hierarchically described.

We model the service using the service
� �

��� �� � �� �� 	, as shown in Fig. 2. Notice that this service
is a simplification, since for instance the choice between the
team leader or supervisor approvals is not represented. The
reason is that they are both associated with an empty com-
pensating transition, hence knowing which path was taken
here is not necessary to be able to perform recovery. How-
ever, it is necessary to know which bank issued the cheque in
order to be able to compensate it, by a “Cancel Last Amer-
ican Express (Citibank) Cheque”. Note that we do not ex-
clude the logging of data values (in some persistent storage)
required for compensation. For instance, if there wasn’t any
“Cancel Last Cheque” mechanism, then it would be needed
to log the amount and account number associated with the
’‘Update Accounts Database” transition. Recovery would
manually credit the amount of money written in the log to
the corresponding account. Obviously, we cannot save on
logging the data values, but we optimize the logging asso-
ciated with the path visited. Our experiments performed
on BPEL representations of some workflows reveal that one
transition out of five is logged (which is confirmed in section
7) and that data values logs are small compared to logging
the path.

Now, let
�� � ��� ��� ���� and a failure occurs while

processing��, that is, the cheque is not issued or deliv-
ered correctly. Then, Obslast� ��������		 � ��� � ��	 �
Obslast� ������
���		. Thus, we do not know if an Amer-
ican Express or Citibank cheque was processed. With� �� � ��� ��� ����, we have Obslast� ��������		 � ��� � ��	 �
Obslast� ������
���		 � ����� � ��	 �

Obslast� ������
��	 �

����� � �
	, and
� ��

is an observable set of transitions. Ev-
ery path from

�� to
��

uses at least one transition from
� ��

.

s2

s3

Initiate Funds

Request (e1)

Process $

(e2)

Process

Euros (e3)

Order American

Exp. Cheque (e5)

Order Citibank

Cheque (e6)

Update Accounts

Database (e7)

Send by courier

(e8)

s5 s0

Process Euros on
Finance Director's

Reject (e4) sf s4 s1

Hand deliver (e9)

Figure 2. Modelization of Fig. 1.

3 Problem Hardness

We first relate the problem of computing
�)��	

using
our definition of observable projections with other known
problems. We state now that computing the minimal ob-
servable set is equivalent to theuniconnected subgraph
problem, also called theminimal marker placement prob-
lem[10], in the meaning of the following proposition.

Proposition 1 Let
�

be a service and
��

a subset of tran-
sitions of

�
. Denote by

� �
the service

�
obtained by

deleting all transitions belonging to
��

. Then,
��

is an
observable set of

�
iff there does not exist a pair of paths�� � �� of

� �
with �� beginning and ending at the same

states as��.
To prove proposition 1, it suffices to prove that if there

does not exist a pair of paths�� � �� of
� �

with ��
beginning and ending at the same states as��, then from
any observable projection

�������	, we can reconstruct in
a unique way a path with Obslast� ��	 � �������	. The
converse is trivial. Indeed, it suffices to define the only
path �� of

� �
between��� and ���� for � � ��� � ���	����,

and � � � � � �� (we fix ��� � �� the initial state of
� �

,
and recall that���� is the last observed state). Then, the
path� � ������ ���	�� � � � �������	�� is the only path with�last� ��	 � �������	. The search for each path�� can be
made in linear time by a simple depth first search in

� �
.

The fact is that the marker placement problem is an NP-
Complete problem. The question is then to know if there
is a structural subclass of graphs which has a tractable al-
gorithm to give the minimal observable size. We know
from [10] that the minimal marker placement problem is
NP-Complete even for acyclic graphs. However, the proof
uses a graph with unbounded (in and out) degree. We show
that the problem is NP-Complete even if the graph is both
acyclic and the sum of its in and outdegree bounded by 3
(that is, indegree 2 and outdegree 1, or vice versa). The
core of the proof follows the same strategy as [10], but the

3

 (v,w)

.

.

.

(v,w)
v

w

v

w
.

.

.
.

.

Figure 3. FSM
�

.

encoding to get a unique starting and ending point is both
easier to understand and allows a lower in and outdegree.

Theorem 1 Let
�

be a service, and� a number. Knowing
whether

�)��	 � � is NP-Complete, even if the corre-
sponding graph is acyclic and the sum of in and outdegree
of every node bounded by 3.

Proof. Let
�

be a system. We reduce Vertex Cover to
the problem of finding a subset of transitions

��
of
�

, such
that, there are no two paths�� � �� beginning and ending
at the same nodes, and using no transitions of

��
.

Let us take anundirectedgraph
�� ��	

and a number
�. We want to know whether there is a subset

��
of

�
of size� � such that for all

�� ��	 � �
, at least one of� �� belongs to

��
. This problem is NP-complete even with�� ��	

of degree 3. The first FSM
�

we build has a state
space

� � ����� ������ where
�� � ��� � � � � �and�� � ��� � � � ��. Furthermore, for� �� � �

and� � �
,

we have transitions

1.
������	 � � iff � � � iff

��� ���	 � �
2.
������	 � � iff � � �

.

A graphical representation of
�

appears in Fig. 3.
Assume that there is a subset

��
of

�
of size � such

that for all
�� ��	 � �

, at least one of� �� belongs to
��

.
Then, defining

�� � �������	 � � � ���, we have that
there are no two paths�� � �� with �� and�� beginning
and ending at the same nodes, and not using transitions of��

. By contradiction, else we would have����� both from
some�� � �� to some�� � �� and not using transitions of��

. By definition of
��

, it means that for��, there exists
a node� � �, � � � such that� (� ��

. Similarly, for ��
with a node

�
. Since�� � ��, we have that� � �

; hence� � �� ��	 contradicts
��

is a vertex cover.
Conversely, assume that there is a set of transitions

��
of size � such that there do not exist two paths from and
to the same state without using

��
. We build the set of

nodes
�� � �� � ������	 � ��� � �� � ��� ������	 ���� � �� � ��� ��� ���	 � ���. Clearly, ��� � � ��� � � �.

We prove now that
�

is a vertex cover of
�� ��	

. Assume by
contradiction that there exists an edge� � �� ��	 such that� �� (� ��

. Then, we argue that�������� and��������
are two paths not using

��
, a contradiction.

However, so far, the graph defined is not a system s-
ince it has several states with indegree 0 (the

���	�	
),
and several states with outdegree 0 (the

���	�	
). More-
over, the indegree of states

���	�	� and the outdegree of
states

���	�	� can be 3 (the degree of the undirected graph�� ��	
). However, it is acyclic. For the degree, one can

safely transform any node�� with 3 ingoing transitions
from states������� by having two nodes������ with tran-
sitions

�������	� �������	� �������	 and
�����	. Hence all n-

odes have indegree at most 2. The same can be done for
outdegree. The size of the minimal observable set of transi-
tions will not change with such a transformation. Actually,
with such a technique, we could start from an undirected
graph of any degree.

Making the graph a system is a little more involved. We
use the graph� from Fig. 2. It then suffices to create a
balanced binary tree of transitions with root

��
such that

there are
�

leaves. This tree has
)���� �	nodes, that we add

to the system
�

we built from
�� ��	

. The root of the tree is
the unique initial node, and every leaf is connected to a node���	�	
 through a copy of graph�. The same is done for
nodes

���	�	
 connected through copies of� to a balanced
binary tree with root

��
the unique final state. This system

has
)��� � � �� �	 nodes, is acyclic and of total degree 3.

Now, it is easy to show that if the minimal vertex cover has
� vertices, then the minimal observable set of transitions is
of size� �� �� �. Indeed, there are

��� �copies of the graph
� each of which requires 2 observed transitions. Once these
transitions are observed, the two balanced trees are totally
disconnected from each other and from the first system we
had built (since every path from the initial to the final state
of the graph� uses one of the two observed transitions),
and hence we need to observe exactly� more transitions.
Notice that connecting directly the tree with

�
without using

� would not work since it would potentially connect
�� � ��

through two different paths
�� "# �� "# �� "# ��

and�� "# �� "# �� "# ��
, with ��� � �. �

This theorem does not mean that the problem is impos-
sible to solve, but that it cannot be solved for all possible
services. For instance, the complexity of the brute force
method which generates every subset of transitions and test-
s whether it is observable, is

)�����	
for a service

�
with�� � transitions. The question then is which structural prop-

erty makes the problem easier to solve and often holds for
(real life) composite services. We propose hierarchical ser-
vices as a candidate property.

4 Hierarchical Services

Hierarchical services provide an efficient way to mod-
el large and complex services by allowing a modu-
lar decomposition. We consider hierarchical services
where two transitions (supertransitions) can be further

4

refined into another service. A hierarchical service�
is a finite sequence�����������, where

�� �
���� ��� � ��� �� � � �� ����

��	� �� �� ��
��		 is defined as follows:

� ����� �	 is a finite graph,

� ��� and
���

are the initial and final states, respectively,

� � ���� �� � �
���&�are two supertransitions representing

services
���� ����� respectively, with�

������ 	 �.
For instance, the workflow in Fig. 1 can be described

by a hierarchical service�������, where
�� is made of

a initial and final state, and two transitions�� ��� from the
initial to the final state. The service

��
is very similar to

Fig. 2, except that there is a unique transition��� between�� and
��

instead of two. This is a supertransition
�� �� ��

��	
,

with
� �� � ��� and�

�� � �
, meaning that��� represents

��.
With each hierarchical service

�
, we associate an ordi-

nary service
 obtained by taking
��

, and recursively sub-
stituting each supertransition by the service it represents.
For example 1,
 is depicted in Fig. 2. Given a hierarchi-
cal service����,
� is a component of
�, if there is a
supertransition

��� 	 in
��

. We define the size�� �of a hi-
erarchical service

�
as the sum of the number of transitions

of its components
��

. Its diameter��� �� is the number of
transitions of
. The diameter��� �� of

�
can be expo-

nential in the size of
�

, because components can be reused
several times (for instance, a supertransition of

�� and two
supertransitions of

�
 can represent
���, in which case one

does not need to redefine
��� three times).

Now, let us define a hierarchical system
�

with two lev-
els. The top level

��
has two states, one initial and one

final, with two transitions
����� from the inital to the fi-

nal state. Transition
�� is a supertransition. It is not easy

to determine a minimal set of transitions for
�

. Consider
first that

�� describes a system
�� similar to

��
, that is t-

wo transitions
�� � �
 from the initial to the final state, but

without supertransitions. The set

� � ���� is a minimal

observable set of transitions for
��. Now, looking at

��
as a normal system (without supertransitions),

� � ����
is also a minimal observable set of transitions for

��
. We

have furthermore that

� �
� is a minimal observable set

of transitions for
�

.
However, if we take

� �� to be the system described in
Fig. 2 and the associated minimal observable set

 �� �� �� � ��� ��� ���� of transitions described in example 1,
then

� �
 �� is not minimal among the observable set of
transitions for

�
. The reason is that

 �� is already an observ-
able set of transitions, because all paths that pass through�� use at least one transition in

� ��
, so they can be differ-

entiated from the path
��

. That is, the fact that a subset of
transitions is a minimal observable set of transitions is glob-
al to the whole graph, not local.

5 Algorithm for Minimal Observability

We turn now to defining an algorithm which uses the hi-
erarchical structure of a complex service to compute the
minimal observable set. First, we need the following no-
tations. Given

��
, a path� is said to be an unobserved path

if it does not use any transition of
��

. For a service
�

and a set of transitions
��

of
�

, we define the following
predicates:

� � �����	 holds if there does not exist more than one
unobserved path between any two states

�� � �� � �
(
��

is an observable set of transitions).

� ������	 holds if (i) � �����	 holds, and (ii) there
does not exist an unobserved path from

�� to
��

.

� �� �����	 holds if (i) � �����	 holds, and (ii)
there do not exist states

��
,
�� � � such that (a) there

is an unobserved path from
�� to

��, (b) there is an
unobserved path from

��
to
��

, and (c) there is an un-
observed path from

��
to
��. We refer to such a com-

bination of nodes and edges as an unobserved reverse
cyclic pattern between

��
and

�� (within
�

) .

For instance, on Fig. 2 with
� �� � ��� ��� ����, � �� ��	

holds because
� ��

is observable,��� ��	
holds because ev-

ery path from
�� to

��
uses at least one transition of

� ��
,

but ��� ��	
does not hold since there exists three non ob-

servable paths:�
 from
�� to

��/ ���� from
�� to

��/ ���	��
from

�� to
��

.
By definition, �� �����	 � ������	 �

� �����	, since for all
�
, there always exists a path

from
�

to
�
. Let

& � � � � � ��. We define
Best

�����	 � � � �&��� �� ��� such that������	
holds, but not�������	 with

�� 	 �
, with the conven-

tion ������	 is always true. Informally, Best refers to
the best properties a given set of transitions can ensure, if
observed.

Proposition 2 Let � be a component of
�

, and
�����

be subsets of transitions of�, respectively such that
Best

�����	 � Best
�����	. Then, for all subset of tran-

sitions
��

of
� ' �, we have Best

����� � ��	 �
Best

����� � ��	.
Proof. Let � � ��� � ��� � ��� �� �	

, and Best
����� ���	 � �

. Let us assume that Best
����� � ��	 � &, that

is, there exists a pair of states
��� �� of

�
with unobserved

(for
�� ���) paths��, �� from

��
to
��, such that the states

traversed by�� and�� are disjoint, but for
��

and
��. We

show now that Best
����� � ��	 � &

.
If both �� and�� do not touch�, then Best

����� ���	 � &
. If both�� and�� belong to�, then� �����	does

5

 s0 . s0'

sf'

 (a)

. sf

s0. . sf

 (b)

s0''

 sf''

Figure 4. Computation of (a) ����	 and (b)
��� ��	.

not hold, which means� �����	 does not hold, implying
Best

����� � ��	 � &
.

If
��� �� � �� ' ��	 � ����� ��� �, and � � �� or ��

passes through�, then there exists an unobserved (for
��)

path from
��� to

���
(a subpath of�). Given this,������	

does not hold; which implies that������	 does not hold.
Hence, there exists an unobserved (for

��
) path from

��� to���
, and an unobservable (for

�� � ��
) path�� can be con-

structed from this path and�. As such, there are two dis-
joint paths unobservable for

�� � ��
between

��
and

��:
Best

����� � ��	 � &
.

If
��� �� � ��

, and� � �� or �� passes through�, then
there exists an unobserved reverse cyclic pattern (for

��)
between

��� and
���

. Given this,�� �����	 does not hold;
which implies that�� �����	 does not hold. Hence, there
exists an unobserved (for

��
) reverse cyclic pattern between��� and

���
, and an unobservable (for

�� ���
) path�� can be

constructed from this pattern and�. As such, there are two
disjoint paths unobservable for

�� � ��
between

��
and

��:
Best

����� � ��	 � &
.

The cases where
�� � �� ' ���� � ��� �, �� (� ��

, or both
����� pass through�, are not possible because then the
paths would meet in

��� and/or
���

.
Hence, Best

����� � ��	 � & ��
Best

����� ���	 � &
. By symmetry between

��
and

��, we have the
equivalence: Best

��������	 � �
iff Best

��������	 �
�
. Now, for all

� � ��� ���, we can enrich
�

to�� ��	with
Best

�����	 � �
iff Best

��� ��	���	 � �
. Applying it to�

, we get Best
����� � ��	 � Best

����� � ��	
.

The functions�� are given schematically in Figure 4,
where����	 =

����
,
���� , ���� , � ��	

: �
For

� � ��� �� ���, we define
����	 as a smallest sub-

set
��

of transitions of
�

such that������	 holds.
For a subset of transitions

of a component� of

�
,

we also denote by
� ���� ��	

a smallest set
��

such that�� � � �

and������	 holds. Every algorithm to

compute the minimal observable set of transitions is recur-
sive, taking the set of transitions considered observable as
input. It is easy to modify them to input in the beginning
not � but

, and disallowing to select any new transition-

s in �, such that they compute
� ���� ��	

, and they do it
faster than

����	 because they cannot choose among the

 s2 s1 s' f s' 0 s0 sf

Figure 5. service
� � ��

,
��, �� , � 	 having

component � � ���
,
���, ��� , � �	

.

transitions of�. As proved in proposition 2, the size of��
is constant for several

such that������
 	 � �

.
If �
 � � 	 �
 � with ������
 	 � ������
 �	, then
�� � � ��� ��	� 	 �� ���� ��	�. We can use this idea to com-
pute

�� ��	 in a compositional manner, for a service
�

having component�:

MinimalDecomposition(
���):

1. Compute a minimal set
�	 ��	 of transitions of�,
� � ��� �� ���.

2. Compute a minimal set
� ������� ��	

of transitions of�
,

� � ��� �� ���.

3. Output a set of smallest size among
� ������� ��	

.

For example, consider the service
�

having component
� in Fig. 5.

1. A minimal set
�� ��	 =

������ ��	� ���� ��� 	�,����	 =
����� � ��	� ��� � ��� 	�, and

��� ��	 =����� � ��	� ���� ��� 	� ���� ��	�.
2. The corresponding observable sets of

�
:� ������� ��	

=
����� � ��	, ���� ��� 	

,
��� � �� 	� of

size 3,
� ������� ��	

=
����� � ��	� ��� � ��� 	� of size 2,

and
� ��� ����� ��	

=
����� � ��	, ����� �� 	, ���� ��	� of

size 3.

3.
� ������� ��	

is a minimal observable set of
�

.

We can now state the main theorem of the paper.

Theorem 2 Let
� � ���	����

be a hierarchical service. It
is NP-complete in the size of

�
to compute

�)�
	. More-
over, it takes at most time

)������ ���� �	.
Proof. It suffices to compute a minimal set

�� ���	 of
transitions of

��
, for all � � � � ��� �� ���. These ac-

tions are performed from bottom of the hierarchy to top. To
compute

�� ���	 for a module
��

using
�� ���, � �� 	 �,

we use
��� ��� 	 and

���� ���	 which have already been
computed. Indeed, it suffices to compute a minimal set� ��� �������� ���������� ��	

of transitions of
�

, for all

6

valuations�� ����. Then, it suffices to output a set among� ��� �������� ���������� ��	
of minimal size. �

It is important to notice that since a service is in par-
ticular a hierarchical service (with hierarchy height of 1),
we know that the problem is at least NP-hard. However,
the complexity could be exponentially worse for hierarchi-
cal graphs, since a small hierarchical graph can represent an
exponentially bigger flat graph. We prove that this is not the
case. Moreover, we prove that the complexity is linear in the
number of components, and exponential only in the size of
each base component. That is, we prove that with a smart
algorithm, one can compute efficiently the absolute minimal
observable size even for huge hierarchical systems, as long
as each component is small enough. The best case com-
parison is with respect to a hierarchical service of diameter)���	

, having� base components of size
�

(each one be-
ing reused

����
times). The brute force non-compositional

method runs on
 and takes time
)����	

, while our method
takes

)��	, that is a doubly exponential improvement (one
exponential due to the reuse of components, and another
due to decomposition).

6 Folding Unfolded Structures

The problem is that the complex services to analyze is
not often given in a hierarchical way. Moreover, there is
no clear hierarchical descritpion of a service. Instead, we
explain here how to find or recover a hierarchical structure
from a flat service.

We present here a linear time (in the number of transi-
tions) algorithm to compute the smallest components� of
an FSM

�
knowing its starting and ending state, and an

initial transition from starting state.

Input. A service
�

=
��

,
��, �� , � 	, � =

��� ��	 � �
and � �.

Output. The smallest component� � ��� � �� �� �	
of�

with
� � � �

.
Initialization.

� �
=
�
,
�

=
�� �, �� � ��� ��� �.

1. Select a transition
� � � ����� ���	 � �

. If
��� � , then� � � � ����� � ���	 � ���� � ���	 � � ' � ��. If

��� � �
,

then
� � � � ����� � ���	 � ���� � ���	 � � ' � ��. Finally,� � �'�� ��, � � � � ���� ��, and

�� � �������� ����.
2. If

� � �, repeat step 1.

3. If
�� � �� � �� � ��	 � � � �� � �� � ��	

, then
return that a component between

�
and with respect

to
�

does not exist. Else, return�.

The above algorithm can be iteratively invoked to com-
pute the set

�� of all components of an FSM
�

. We now
give an algorithm to compute the largest component of

�
.

1. For a pair of components�,
� � ��, if � is a sub-

graph of
�

, delete�.

2. For a pair of components� � ��� � ��� � ��� �� �	
and� � ���� � ���� � ���� �� ��	

of
��, if

��� � ���� and
��� � ����

,
then create a new component� � ��� � ���

,
���, ��� ,� � � � ��	

. If � � �
, then delete� and

�
from

��,
and add� to

��.

3. Return the biggest� � ��.

Proposition 3 The biggest component of a system
�

is
computed in quadratic time using the above algorithm.

The procedure can thus be inductively called until there
is no more component in the graph, and then the hierarchical
structure of the graph is obtained.

7 Experimental Results

We tested our decomposition algorithm on hierarchical
graphs. First, we choose a number (between one and nine)
of base subcomponents in the graph. Then, we generate
each of them randomly by using theSynthetic DAG gen-
erationtool (http://www.loria.fr/˜suter/dags.html). We then
generate inductively a hierarchical graph having these base
subcomponents randomly using the same tool, by assign-
ing two edges to these components. There is no reuse of
components. For each value, we generate each hierarchi-
cal graph and each base subcomponent five times to com-
pute the mean values (because of variation in runtime and
observable size). We then unfold the hierarchical graphs
as (flat) graphs, whose size is linear in the number of base
components. We then run both a brute force algorithm and
our hierarchical algorithm on these graphs. We do not input
the hierarchical shape of the graph, instead the algorithm
finds the optimal decomposition. with the polynomial time
folding algotithm. Fig. 6(left) shows the times (in logarith-
mic scale) needed to compute a minimal observable set us-
ing brute force and our decomposition algorithm wrt. the
number of edges (which is linear wrt. the number of base
subcomponents).

0,01

0,1

1

10

100

1000

0 20 40 60 80 100

Number of edges (nbr. of subcomponents)

s
e

c
o

n
d

s
 (

lo
g

 s
c

a
le

)

Decomposition

Brute Force

mean decomp.

"mean brute"

5

7

9

11

13

15

17

19

21

23

25

0 20 40 60 80 100

number of edges

%
 o

f
lo

g
g

e
d

 e
d

g
e

s

values

mean values

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Figure 6. Execution time & observable size

7

Our decomposition algorithm is indeed linear time wrt.
the number of base subcomponents/number of edges (0.14s
for an average number of edges of 18 and 0.73s for an av-
erage number of edges of 108), while the brute force is ex-
ponential in the number of edges, already timing out at a
little over 40 edges. For 1 subcomponent, the overhead of
our method makes the decomposition slightly worse than
the brute force method. Fig. 6(right) shows the percentage
of edges needed to be logged among all the edges. Both al-
gorithms answer the same number on the same graphs but
there is a huge variation among graphs, from one edge needs
to be logged out of 4 to one edge out of 15. The mean value
seems to tend to one out of 6.

8 Distributed Services

We consider distributed services, given in the form of
product of two services

�
and�. We first on services hav-

ing no interaction between them (that is, one service cannot
write a global variable that is read or written by another ser-
vice). We explain later how to deal with interacting services
having a non interacting component.

The composition schema of such a composite service is
specified as a product of the FSM’s (corresponding to the
composition schema) of the component composite services
[3, 6]. Given services

� � ������� � ��� ���	 and� ���� � ��� � ��� ���	, �� � �� � �, we define their product� �� � ��������� � ������ �� 	with
� � �� ��� and

� � �� ���� � �� ����
where

��� is the set of self loop transitions
��� � ��	

for�� � ��, � � ���.
The observation and logging for each component service

are done locally. Hence, our decomposition method can-
not be applied on the product since choosing to observe a
transition in a component of the product might force it to
be observed in another as well (if the same component is
reused). Moreover, strict execution sequence detection is
not required, since not knowing the exact interleaving be-
tween two “equivalent paths” is not needed. More formal-
ly, two consecutive transitions

��
and

����
of a path� of� �� can commute if

��
is from

�
and

����
from �, or

vice versa. Two paths�� � �� of
� �� are equivalent

�� � ��, if �� � �� after a finite sequence of commuta-
tions on�� (or ��). We say that the product

� �� is
observation sequence detectable with the observation of

��
in
�

and
�� in � if for all paths����� of

� �� such
that Obs

��������� ���	 � Obs
��������� ���	, we have�� � ��. In

this case, compensation can be performed using any of the
equivalent (reversed) runs, this will result in the same con-
sistent state. We then have the following desirable property:

sf1

b

b

g g

(c)

c

c

g

s01s5
b

e

e

a

e

a h

h

 s1s02 s2s02

 s2
Pay by PayPal (b)

(a)

 s1

Pay by Credit Card (a)

s01 s3 Listen (e)

Process

Payment (c)

Search by Singer (d)

Terminate Session 1 (f)

sf2
Pay by Cheque (g)

(b)

 s4 s02 s5

Listen (e)

Terminate Session 2 (i)

Search by Track (h)

 s2s5
c

e h

 s1s5

d
e

d

a

 s3sf2

d
e

 s3s02

 s3s5

h

d

e

 sf1sf2

 sf1s5

 sf1s4

 sf1s02

 s2sf2 s1sf2

s01s4 s1s4 s2s4

g g

i i i i

f

f

f

f

e
h

c b

a

s01s02

i

 s3s4

 s01sf2

Figure 7. FSM’s (a)
�

(b) � (c)
� �� (dashed

arrows represent observable transitions).

Proposition 4 For a pair of non interacting FSM’s
�

and
�, and one of their respective minimal observable sets��� and

���
,
��� � ���

is a minimal observable set
of
� ��.

Now, let us consider the more general case where
�

and
� interact, but

�
has a component� that does not interact

with �. Then, one can decompose
�

into � and
� ' �,

and compute an observable set

�

of transitions of�. We
can choose the observations of� ���� to be one of the

�
.

Example 2 We consider FSM’s
� � ���

,
���, ���, ��	

(Fig. 7a) and� � ���, ���, ���, ��	 (Fig. 7b) represent-
ing e-services which allow searching and listening to songs
online [3]. The e-services allow different modes of payment
and searching for song files by singer/title. Their product� �� is shown in Fig. 7c. The FSM

�
contains a compo-

nent� � ��� � ��� � ���� �	
such that

� � � �� � �. Now, let
us consider minimal observable sets

��� =
�$� and

��� =���of� and
�'� ��, respectively. Then,

������� is a
minimal observable set of

� �� as shown in Fig. 7c (with
the dashed arrows representing observable transitions).

9 Discussion and Conclusion

We studied compensation under partial log visibility. To
the best of our knowledge, this problem has never been con-
sidered in the context of transactional services. We pro-
posed a framework which uses the hierarchical nature of

8

composite services, and gives an efficient algorithm to com-
pute the absolute minimum number of transitions to observe
in order to get compensability.

The algorithm we proposed considers only a subset of
the whole set of transitions. It is thus straightforward to ad-
d constraints, such as, a subset of transitions “can/cannot
be observed”. It is very useful since in practice, we have
to take into account privacy/security issues. The algorith-
m would then answer the absolute minimal observable set
among those satisfying the constraints. Also, the hierarchi-
cal decomposition allows to deal with dynamicity. Indeed,
if a service gets transformed (e.g., after the discovery/death
of a sub-service), obtaining a minimal observable set would
need recomputation, only at its level of the hierarchy (not
below), plusfew levels above (until the properties of a level
are unchanged). It also allows to describe more accurately
the details of a service which was considered atomic untill
now, in order to have feedback on where a service failed ex-
actly. We can also deal with distributed services, and with
systems which are not given in a hierarchical way (using
our folding algorithm).

References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.Web Ser-
vices: Concepts, Architecture and Applications. Springer
Verlag, ISBN: 3540440089, 2004.

[2] R. Alur and M. Yannakakis. Model checking of hierarchical
state machines.ACM TOPLAS, 23(3), pages 1–31, 2001.

[3] D. Berardi, D. Calvanese, G. Giacomo, M. Lenzerini, and
M. Mecella. Automatic composition of e-services that ex-
port their behavior.In ICSOC, pages 621–630, 2004.

[4] D. Biswas. Compensation in the world of web services com-
position. In SWSWPC, pages 69–80, 2004.

[5] X. Fu, T. Bultan, , and J. Su. Analysis of interacting bpel
web services.In WWW, pages 621–630, 2004.

[6] R. Kumar and V. Garg. Modeling and control of logical
discrete event systems.Kluwer, 1995.

[7] F. Lin and W. Wonham. On observability of discrete-event
systems.Information Sciences, 44(3), pages 173–198, 1988.

[8] M. Lohrey and S. Manneth. The complexity of tree automata
and xpath on grammar-compressed trees.Theoretical Com-
puter Science, 363(2), pages 196–210, 2006.

[9] S. Maheshwari. Traversal marker placement problems are
np-complete.Boulder University Research Report CU-CS-
092-76, 1976.

[10] C. Ozveren and A. Wilsky. Observability of discrete event
dynamical systems.IEEE Transactions on Automatic Con-
trol, 35(7), pages 797–806, 1990.

[11] W. Plandowski and W. Rytter. Complexity of language
recognition problems for compressed words.In Jewels are
Forever, Springer, pages 262–272, 1999.

[12] K. Rohloff and J. Schuppen. Approximating the minimal
cost sensor selection for discrete-event systems.JDEDS,
16(1), pages 143–170, 2006.

[13] W. Sadiq and M. Orlowska. Analyzing process models using
graph reduction techniques.Inf. Syst., 25(2), pages 117–134,
2000.

[14] M. Sampath, R. Sengupta, S. Lafortune, K. Sinaamohideen,
and D. Teneketzis. Diagnosability of discrete event system-
s. IEEE Transactions on Automatic Control, 40(9), pages
1555–1575, 1995.

[15] G. Weikum, A. Deacon, W. Schaad, and S. H. Open nest-
ed transactions in federated database systems.IEEE Data
Engineering Bulletin, 16(2), pages 4–7, 1993.

[16] A. Wombacher, P. Fankhauser, and E. Neuhold. Transform-
ing bpel into annotated deterministic finite state automata
for service discovery.In ICWS, pages 316–323, 2004.

[17] Web services transactions specifications.
http://www.ibm.com/developerworks/library/specification/ws-
tx.

[18] T. Yoo and S. Lafortune. Np-completeness of sensor se-
lection problems arising in partially observed discrete-event
systems. IEEE Transactions on Automatic Control, 35(7),
pages 797–806, 1990.

9

