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Abstract

For complex services, logging is an integral part of many
middleware aspects, especially, transactions and monitor-
ing. In the event of a failure, the log allows us to deduce the
cause of failure (diagnosis), recover by compensating the
logged actions (atomicity), etc. However, for heterogeneous
services, logging all the actions is often impracticable due
to privacy/security constraints. Also, logging is expensive
in terms of both time and space. Thus, we are interested
in determining the absolute minimal number of actions that
needs to be logged, to know with certainty the actual se-
quence of executed actions from any given partial log. This
problem happens to be NP-Complete. We propose a decom-
position framework in order to use a divide and conquer
algorithm. This method dramatically decreases the com-
plexity for hierarchical services (up to 2 exponentials) and
can also be used in distributed services.

1 Introduction

An interesting problem for complex systems is to deter-
mine a minimal set of actions that needs to be observable
such that a given property holds. Some of the properties s-
tudied in literature of discrete event systems are normality
[11], observability [10], state observability [14], diagnos-
ability [18], etc. Our system corresponds to a (composite)
Web service. A Web service [1] refers to an online service
accessible via Internet standard protocols. A composite ser-
vice, composed of already existing (component) services,
combines the capabilities of its components to provide a
new service. A service schema which specifies the execu-
tion order of its components, can be modeled as a Finite
State Machine (FSM), performing actions on global vari-
ables. We do not tackle here the transformation of a service
into a FSM, which should be handled with care to yield a
FSM of reasonable size (see [19] and example 1).

Our long-term objective is to provide a transactional
framework for (composite) Web services. A transaction
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can be considered as a group of actions encapsulated by
the operations Begin and Commit/Abort, having the follow-
ing properties: Atomicity (A), Consistency (C), Isolation(I)
and Durability (D). Here, we focus on the atomicity aspect,
that is, either all the actions of a transaction are executed
or none. In the event of a failure, atomicity is preserved
by compensation [4]. Compensation consists of executing
the compensating actions, corresponding to each executed
action of the failed process, in reverse order of the original
execution. Thus, for compensation to be feasible, we need
to reconstruct each executed action or the complete history
of any execution. To achieve that, we maintain a log of ob-
servable actions. In addition to the obvious space overhead
of logging (in our testing, about 4 times smaller), the com-
plete log may not always be accessible. For a composite
service, the providers of its component services are differ-
ent. As such, their privacy/security constraints may prevent
them from exposing (part of) the logs corresponding to the
execution at their sites. Also, heterogeneity may lead to the
logs being maintained in different formats, rendering some
of them incomprehensible. Hence, we want from such a
partial log to know with certainty the actual sequence of ex-
ecuted actions, to be able to compensate it.

Section 2 introduces the required formal preliminaries
including the precise problem statement. Clearly, we are
interested in logging the smallest number of actions possi-
ble. However, it appears that determining the minimal num-
ber of actions to log, such that any execution of a system is
compensable, is NP-Complete. This is not very surprising,
since determining the minimal number of actions needed to
achieve a property is usually NP-Complete, e.g., for sen-
sor selections [20, 13]. What is more surprising is that it
is NP-Complete even with strong restrictions on the graph
(see section 3). Also, the problem cannot be approximated
[16] in polynomial time.

In order to compute the minimal number of actions to log
in large systems, we develop a decomposition framework.
Intuitively, the algorithm we propose in section 4, first de-
composes the FSM into smaller components. The problem
is that even if the components are simple (with only one
input and output), the union of the minimal sets of actions
of different components is not necessarily an observable set
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of actions for the original FSM. One solution could be to
resort to function summarization, but then only an overap-
proximation of the needed set of actions is obtained. Nev-
ertheless,we show that it suffices to run the algorithm with
slightly different parameters on each component, a number
of times which depends only on the number of inputs and
outputs of the components (section 5.2). That is, a fixed
number of times for simple components (or for components
with few inputs and outputs). We thus obtain a divide and
conquer algorithm. We present a complexity analysis using
the brute force method on each component which illustrates
the benefit of our method, but we can use any other algorith-
m to compute the minimal observability, as [8]. Preliminary
experiments (section 4.1) reveal that simple decompositions
usually do not allow for better scaling forrandomly gener-
atedgraphs. However, our algorithm decomposes very ef-
ficiently thereal-life examples we found into small simple
components. Our implementations and examples are avail-
able athttp://www.crans.org/˜genest/dns/.

Interestingly, our algorithm can be used for distributed
systems (section 5.3), and also in large graphs with a small
compressed representation, as shown in section 5.1. We use
the standard hierarchical system to depict this compressed
representation, as is often used for words [15], Finite State
Machines [2], and even trees [12]. For words, e.g., hier-
archical structures correspond to the LZ compression [15].
Here, the complexity can be up to two exponentials better
using our decomposition method than without.

2 Preliminaries

Formally, we model a transactional service as a finite s-
tate machine, that is, a 4-tuple

� � ����� � �� �� 	, where:


 �
is the finite set of states,


 �� and
��

are the initial and final states, respectively,


 � � � ��
is the (partial) transition relation.

We describe our FSMs as graphs with a unique input and
output point, each node and arc corresponds to a state and
transition, but we ignore the alphabet. We assume that the
service

�
does not have any unreachable states and that al-

l states can reach the final state
��

. For convenience, we
also assume that there are no outgoing edges from

��
and

no incoming edges to
��. 1 We say that an execution se-

quence � �� � � ��� � � �
is a path of

�
if there exists�� � � � � � �� � ����

with
�� � ��������	 for all � � � � �.

A path is called initial if furthermore�� � ��. We denote
by � ��	

the set of initial paths in
�

. Finally, we denote
by �� � the size of

�
, that is, its number of states.

1Notice that we could deal with a service without these requirements,
but the proof would be more technical.

In general, for any execution, we call observation pro-
jections the the observation we have afterwas executed (a
sequence of actions, control points, data� � � ). We say that
an observable projection� is uncertain if there exists two
paths having the same projection. The FSM

�
is execution

sequence detectable iff none of its observable projections
are uncertain.

Definition 1 For an FSM
�

, let
� � �

be the set of
observable transitions. The observation projection Obs

 !
� � "# � � 

is the morphism with Obs
 �$	 � $ if $ � � 

,
and Obs

 �$	 � %
if $ � � & � 

, with
%

the empty word.

That is, Obs
 �	 is the subsequence of obtained by e-

liminating from  every occurence of a tuple which is not
in
� 

. With such an observation projection Obs
 

, the only
way of having execution sequence detectability is to have
every transition observable. Indeed, as soon as there exists
even one non-observable transition, the service is not exe-
cution sequence detectable. Else, let us take a path� with
the last transition

� '� � 
. Then, Obs

 �� 	 � Obs
 �	. A

usual way to overcome such a problem is to ask for certainty
only up to the last few events of the sequence [14]. How-
ever, this turnaround does not make sense in our framework
since if we cannot compensate the very last action, then we
cannot compensate any action at all. As such, we design
a new observation mechanism, where the last control point
reached before failure is monitored, even if the last action
is not logged. In practice, it means that every state that is
reached is monitored, and overstack the previous state in a
special memory buffer.

Definition 2 Let
�

be an FSM,
� � �

. The observa-
tion projection Obslast ! � � "# �� � ��	

is the function
Obslast �	 � �

Obs
 �	��	 for all  � � ��	

ending in�.
We will stick with this definition of observability for the

rest of the paper. As mentioned before, we are interested in
logging as few transitions as possible.

Problem statement. Given an FSM
�

=
������ �� �� 	,

we call
� 

an observable set of transitions if the service
is execution sequence detectable with Obslast 

. We want to
determine a minimal observable set of transitions

� � �
.

The cardinality of such a minimal observable set
� 

of
an FSM

�
is referred to as its observable size

�(��	 �
�� �. Notice that as is usual with decision and computation
algorithms, it is sufficient to have an algorithm which from
an FSM gives its observable size. That is, we can derive a
minimal observable set of the FSM based on knowledge of
its observable size in polynomial time.
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Figure 1. Travel funds request workflow.

Example 1 We consider in Fig. 1 a travel funds request ser-
vice, inspired by the workflow in [17]. It involves different
departments across organizations.

We model the service using the FSM
� � ��� �� � �� �� 	

representation, as shown in Fig. 2. Notice that this FS-
M is a simplification of the service, since for instance the
choice between the team leader or supervisor approvals is
not represented. The reason is that they are both associat-
ed with an empty compensating transition, hence knowing
which path was taken here is not necessary to be able to
perform recovery. However, it is necessary to know which
bank issued the cheque in order to able to compensate it, by
a “Cancel Last American Express (Citibank) Cheque”. It is
also possible to handle data being written to the database.
For instance, if there is no “Cancel Last Cheque” mecha-
nism, it is possible to force the transition “Update Accounts
Database” to be observable, which would lead to the exact
amount of the cheque being written to the log, and recovery
would manually credit the amount of money written in the
log to the corresponding account.

Now, let
� � ��� ���� and a failure occurs while

processing��, that is, the cheque is not issued or deliv-
ered correctly. Then, Obslast ���������	 � ��� � ��	 �
Obslast ������	�
��	. Thus, we do not know if an Amer-
ican Express or Citibank cheque was processed. With� � � ��� ��
�, we have Obslast ���������	 � ��� � ��	 and
Obslast ������	�
��	 =

����
 � ��	, and
� � 

is an observable
set of transitions. Notice that every path from

�� to
��

uses� � 
.
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Figure 2. FSM representation of Fig. 1.

3 A Difficult Problem

We first relate the problem of computing
�(��	

using
our definition of observable projections with other known
problems. We state now that computing the minimal ob-
servable set is equivalent to theuniconnected subgraph
problem, also called theminimal marker placement prob-
lem[13], in the meaning of the following proposition.

Proposition 1 Let
�

be an FSM and
� 

a subset of transi-
tions of

�
. Denote by

� �
the FSM

�
obtained by deleting

all transitions belonging to
� 

. Then,
� 

is an observable
set of

�
iff there does not exist a pair of paths� �� � of� �

with � beginning and ending at the same states as�.
To prove the proposition 1, it suffices to prove that if

there does not exist a pair of paths� �� � of
� �

with �
beginning and ending at the same states as�, then from
any observable projection

�������	, we can reconstruct in
a unique way a path with Obslast �	 � �������	. The
converse is trivial. Indeed, it suffices to define the only
path � of

� �
between��� and ���� for � � ��� � ���	���,

and � � � � � �� (we fix ��� � �� the initial state of
� �

,
and recall that���� is the last observed state). Then, the
path � ����� ���	� � � � �������	� is the only path with�last �	 � �������	. The search for each path� can be
made in linear time by a simple depth first search in

� �
.

The fact is that the marker placement problem is an NP-
Complete problem. The question is then to know if there
is a structural subclass of graphs which has a tractable al-
gorithm to give the minimal observable size. We know
from [13] that the minimal marker placement problem is
NP-Complete even for acyclic graphs. However, the proof
uses a graph with unbounded (in and out) degree. We show
that the problem is NP-Complete even if the graph is both
acyclic and the sum of its in and outdegree bounded by 3
(that is, indegree 2 and outdegree 1, or vice versa). The
core of the proof follows the same strategy as [13], but the
encoding to get a unique starting and ending point is both
easier to understand and allows a lower in and outdegree.

Theorem 1 Let
�

be an FSM, and� a number. Knowing
whether

�(��	 � � is NP-Complete, even if the corre-
sponding graph is acyclic and the sum of in and outdegree
of every node bounded by 3.

Proof. Let
�

be a system. We reduce Vertex Cover to
the problem of finding a subset of transitions

� 
of
�

, such
that, there are no two paths� �� � beginning and ending
at the same nodes, and using no transitions of

� 
.

Let us take anundirectedgraph
�� ��	

and a number
�. We want to know whether there is a subset

� 
of

�
of size � � such that for all

�� ��	 � �
, at least one of� �� belongs to

� 
. This problem is NP-complete even with
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Figure 3. FSM
�

.

�� ��	
of degree 3. The first FSM

�
we build has a state

space
� � ����� ������ where

�� � ��� � � � � �and�� � ��� � � � ��. Furthermore, for� �� � �
and� � �

,
we have transitions

1.
������	 � � iff � � � iff

��� ���	 � �

2.
������	 � �

iff � � �
.

A graphical representation of
�

appears in Fig. 3.
Assume that there is a subset

� 
of

�
of size � such

that for all
�� ��	 � �

, at least one of� �� belongs to
� 

.
Then, defining

� � �������	 � � � � �, we have that
there are no two paths� �� � with � and� beginning
and ending at the same nodes, and not using transitions of� 

. By contradiction, else we would have��� both from
some�� � ��

to some�� � �� and not using transitions of� 
. By definition of

� 
, it means that for�, there exists

a node� � �, � � � such that� '� � 
. Similarly, for �

with a node
�

. Since� �� �, we have that� �� �
; hence� � �� ��	 contradicts

� 
is a vertex cover.

Conversely, assume that there is a set of transitions
� 

of size � such that there do not exist two paths from and
to the same state without using

� 
. We build the set of

nodes
� � �� � ������	 � � � � �� � ��� ������	 �� � � �� � ��� ��� ���	 � � �. Clearly, �� � � �� � � �.

We prove now that
�

is a vertex cover of
�� ��	

. Assume by
contradiction that there exists an edge� � �� ��	 such that� �� '� � 

. Then, we argue that�������� and��������
are two paths not using

� 
, a contradiction.

However, so far, the graph defined is not a system s-
ince it has several states with indegree 0 (the

���	���),
and several states with outdegree 0 (the

���	���). More-
over, the indegree of states

���	��� and the outdegree of
states

���	��� can be 3 (the degree of the undirected graph�� ��	
). However, it is acyclic. For the degree, one can

safely transform any node�� with 3 ingoing transitions
from states�������� by having two nodes������ with tran-
sitions

�������	� �������	� �������	 and
������	. Hence all n-

odes have indegree at most 2. The same can be done for
outdegree. The size of the minimal observable set of transi-
tions will not change with such a transformation. Actually,
with such a technique, we could start from an undirected
graph of any degree.

Making the graph a system is a little more involved. We
use the graph	 from Fig. 2. It then suffices to create a
balanced binary tree of transitions with root

��
such that

there are
�

leaves. This tree has
(�
�� �	nodes, that we add

to the system
�

we built from
�� ��	

. The root of the tree is
the unique initial node, and every leaf is connected to a node���	��� through a copy of graph	. The same is done for
nodes

���	��� connected through copies of	 to a balanced
binary tree with root

��
the unique final state. This system

has
(��� � � �� �	 nodes, is acyclic and of total degree 3.

Now, it is easy to show that if the minimal vertex cover has
� vertices, then the minimal observable set of transitions is
of size� �� �� �. Indeed, there are


�� �copies of the graph
	 each of which requires 2 observed transitions. Once these
transitions are observed, the two balanced trees are totally
disconnected from each other and from the first system we
had built (since every path from the initial to the final state
of the graph	 uses one of the two observed transitions),
and hence we need to observe exactly� more transitions.
Notice that connecting directly the tree with

�
without using

	 would not work since it would potentially connect
�� � ��

through two different paths
�� "# �� "# �� "# ��

and�� "# �� "# �� "# ��
, with ��� � �

. 
This theorem does not mean that the problem is impossi-

ble to solve, but that it can be solved for small enough ser-
vices only. For instance, the complexity of the brute force
method which generates every subset of transitions and test-
s whether it is observable, is

(�
���	
for a service

�
with

�� � transitions. The question is: how can we reduce the
time taken to compute

�(
for bigger services? It also im-

plies that a structural restriction of an FSM
�

which has
a tractable algorithm to compute

�(��	
is at least very

complicated to find.

4 Simple Decomposition of Graphs

The idea we use is that of divide and conquer: we would
like to decompose the given graph into two parts, and com-
pute

�(
independently on each part. Since the best known

algorithm takes exponential time (adding even one node to a
graph can make the algorithm twice as slow), even an unfair
decomposition is good enough. However, obtaining such an
algorithm is non-trivial, since the fact that a subset of tran-
sitions is observable is global to the whole graph, not local.

Here, we consider simple components of an FSM
�

,
that is, components which have only one entry and one
exit point. Notice that simple components often occur in
the control flow graphs generated by software programs, as
control flow graphs of individual functions. For instance,���� �� � �� � �	� form a simple component of the FSM in
Fig. 2. Anyway, we will relax this condition in section 5.2.
Formally, we call� � ��� � ��� � ��� �� �	

a simple compo-
nent of

� � ����� � �� �� 	 when
�� � �

,
� � � �

, and
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�� � � & ��
, �� � ��

, we have
��� ��	 � �

or
��� � �	 � �

implies�� � ����� ��� �.
First, we need the following additional notations. Given� 
, a path is said to be an unobserved path if it does not

use any transitions of
� 

. For a service
�

and a set of
transitions

� 
of
�

, we define the following predicates:

 �� ���� 	

holds if there does not exist more than one
unobserved path between any two states

�� �� �� � �
(
� 

is an observable set of transitions).


 ������ 	
holds if (i) �� ���� 	

holds, and (ii) there
does not exist an unobserved path from

�� to
��

.


 ��� ���� 	
holds if (i) �� ���� 	

holds, and (ii)
there do not exist states

��
,
�� � �

such that (a) there
is an unobserved path from

�� to
��, (b) there is an un-

observed path from
��

to
��

, and (c) there is an unob-
served path from

��
to
��. We refer to such a combina-

tion of nodes and edges (e.g., Fig. 2) as an unobserved
reverse cyclic pattern between

��
and

�� (within
�

) .

By definition, ��� ���� 	 � ������ 	 �
�� ���� 	

, since for all
�
, there always exists a path

from
�

to
�
. Let

% � � � � � ��. We define
Best

���� 	 � � � �%��� �� ��� such that������ 	
holds, but not������� 	

with
�� � �

, with the conven-
tion ������ 	

is always true. Informally, Best refers to
the best properties a given set of transitions can ensure, if
observed.

Proposition 2 Let � be a simple component of
�

, and����� be subsets of transitions of�, respectively such
that Best

�����	 �
Best

�����	. Then, for all subset of
transitions

� 
of

� & �, we have Best
���� � ��	 �

Best
���� � ��	.

Proof. Let � � ��� � ��� � ��� �� �	
, and Best

���� ���	 � �
. Let us assume that Best

���� � ��	 � %
, that

is, there exists a pair of states
��� �� of

�
with unobserved

(for
� ���) paths�, � from

��
to
��, such that the states

traversed by� and� are disjoint, but for
��

and
��. We

show now that Best
���� � ��	 � %

.
If both � and� do not touch�, then Best

���� ���	 � %
. If both� and� belong to�, then�� �����	does

not hold, which means�� �����	 does not hold, implying
Best

���� � ��	 � %
.

If
��� �� � �� & ��	 � ����� ��� �, and  � � or �

passes through�, then there exists an unobserved (for
��)

path from
��� to

���
(a subpath of). Given this,�������	

does not hold; which implies that�������	 does not hold.
Hence, there exists an unobserved (for

��
) path from

��� to���
, and an unobservable (for

� � ��
) path� can be con-

structed from this path and. As such, there are two dis-
joint paths unobservable for

� � ��
between

��
and

��:
Best

���� � ��	 � %
.

  s0  . s0'  
  
sf'  

 (a) 

. sf 

s0. . sf 

 (b) 

s0''  
 

 sf''  

Figure 4. Computation of (a) 	���	
and (b)

	�� ��	
.

If
��� �� � ��

, and � � or � passes through�, then
there exists an unobserved reverse cyclic pattern (for

��)
between

��� and
���

. Given this,��� �����	 does not hold;
which implies that��� �����	 does not hold. Hence, there
exists an unobserved (for

��
) reverse cyclic pattern between��� and

���
, and an unobservable (for

� ���
) path� can be

constructed from this pattern and. As such, there are two
disjoint paths unobservable for

� � ��
between

��
and

��:
Best

���� � ��	 � %
.

The cases where
�� � �� & ���� � ��� �, �� '� ��

, or both��� pass through�, are not possible because then the
paths would meet in

��� and/or
���

.
Hence, Best

���� � ��	 � % ��
Best

���� ���	 � %
. By symmetry between

��
and

��, we have the
equivalence: Best

���� ���	 
 �
iff Best

���� ���	 

�
. Now, for all

� � ��� ���, we can enrich
�

to	���	
with

Best
���� 	 
 �

iff Best
�	���	�� 	 
 �

. Applying it to�
, we get Best

���� � ��	 � Best
���� � ��	

.
The functions	� are given schematically in Figure 4,

where	� ��	
=
����

,
���� , ���� , � ��	

: 
For

� � ��� �� ���, we define
����	

as a smallest subset� 
of transitions of

�
such that������ 	

holds. For a
subset of transitions� of a component� of

�
, we also de-

note by
� ��� ��	

a smallest set
� 

such that
� � � � �

and�� ���� 	
holds. As far as we know, every algorithm

to compute the minimal observable set of transitions is re-
cursive, taking the set of transitions considered observable
as input. It is easy to modify them to input in the beginning
not � but � , and disallowing to select any new transition-
s in �, such that they compute

� ��� ��	
, and they do it

faster than
����	

because they cannot choose among the
transitions of�. As proved in proposition 2, the size of� 

is constant for several� such that�������� 	 � �
.

If �� � � � �� � with �������� 	 � �������� �	
, then

�� � � �� ��	� � �� ��� ��	�. We can use this idea to com-
pute

�� ��	
in a compositional manner, for a service

�
having simple component�:

MinimalDecomposition(
���):

1. Compute a minimal set
�� ��	 of transitions of�,�� � ��� �� ���.

2. Compute a minimal set
� ������� ��	

of transitions of�
, for all y.
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Figure 5. FSM
� � ��

,
��, �� , � 	 having sim-

ple component � � ���
,
���, ��� , � �	

.

3. Output a set of smallest size among
� ������� ��	

.

For example, consider the FSM
�

having simple com-
ponent� in Fig. 5.

1. A minimal set
����	 =

����� � ��	� ���� ��� 	�,����	 =
����� � ��	� ��� � ��� 	�, and

��� ��	 =����� � ��	� ���� ��� 	� ���� ��	�.
2. The corresponding observable sets of

�
:� ������� ��	

=
����� � ��	, ���� ��� 	

,
��� � �� 	� of

size 3,
� ������� ��	

=
����� � ��	� ��� � ��� 	� of size 2,

and
� ��� ����� ��	

=
����� � ��	, ����� �� 	, ���� ��	� of

size 3.

3.
� ������� ��	

is a minimal observable set of
�

.

Theorem 2 Given � a simple component of
�

,
MinimalDecomposition(

���) returns a minimal
observable set of transitions of

�
in time at most(�
�� � � 
������ �	

.

Proof. First, the brute force algorithm for com-
puting

�� ��	 � �� �	� ��		 takes
(�
�� �	

time, and

takes
(�
������ �	

for computing
� ������� ��	

. Note that
heuristics [8] or Sat solvers could be used instead of the
brute force method.

For all
� � ��� �� ���, � ������� ��	

is an observable
set of transitions by definition, but not necessarily minimal.
Let

� � � ���
be a minimal observable set of transitions

with
��

the transitions of
�

in � and
� � � &��

. Let
� �

���������	. Then, ��� ��	� � ���	�. Moreover, applying
proposition 2, we get Best

���� � ��	 �
Best

���� �
�� ��		 
 �

, that is, �� ������� ��	� � �� �� ��� ��	� �
�� � � ��� � � �� �. By definition of

� ������� ��	
, it is

an observable set of transitions, and by minimality of
�

, we
get �� ������� ��	� � �� �. Hence, one of the sets computed
by MinimalDecomposition is a minimal observable set.


Finally, it remains to explain how to find simple compo-

nents of an FSM. We present here a linear time (in the num-
ber of transitions) algorithm to compute the smallest simple
components� of an FSM

�
knowing its starting and end-

ing state, and an initial transition from starting state.

Input. A service
�

=
��

,
��, �� , � 	, � =

��� ��	 � �
and

� � �
.

Output. The smallest simple component� �
��� � ����� �	

of
�

with
� � � �

.
Initialization.

� �
=
�
,
�

=
�� �, �� � ��� �����.

1. Select a transition
� � � ����� ���	 � �

. If
��� �� �

, then� � � � ����� � ���	 � ���� � ���	 � � & � ��. If
��� �� �

,
then

� � � � ����� � ���	 � ���� � ���	 � � & � ��. Finally,� � �&�� ��, � � � � ���� ��, and
�� � �������� ����.

2. If
� �� �, repeat step 1.

3. If
�� �� ����� � ��	� �� �� �� ��� � ��	

, then return
that a simple component between

�
and

�
with respect

to
�

does not exist. Else, return�.

The above algorithm can be iteratively invoked to com-
pute the set

�� of all simple components of an FSM
�

.
We now give an algorithm to compute the largest simple
component of

�
.

1. For a pair of components�,
� � ��, if � is a sub-

graph of
�

, delete�.

2. For a pair of components� � ��� � ��� � ��� �� �	
and� � ���� � ���� � ���� �� ��	

of
��, if

��� � ���� and
��� � ����

,
then create a new component	 � ��� � ���

,
���, ��� ,� � � � ��	

. If 	 �� �
, then delete� and

�
from

��,
and add	 to

��.

3. Return the biggest� � ��.

��� 	
��������� �������

We tested our decomposition algorithm on acyclic graph-
s randomly generated, using theSynthetic DAG genera-
tion tool (http://www.loria.fr/˜suter/dags.html), with 512M-
B heap memory. Usually, the graphs randomly generated
look very unnatural, and as expected, there are really few
simple components in the graph. Moreover, very big com-
ponents (with about 85% of edges) remains non decompos-
able. Our algorithm finds these components within seconds,
which allows a speed up of about four times. Unfortunate-
ly, it does not change the exponential scaling. The algorithm
runs out of memory at around 23 edges (instead of around
20 edges without decomposition).

Random graphs generated using the parameter ”-regular�
” (
� � ��
), that is the distribution of tasks between the d-

ifferent levels is fairly regular, look more natural. For them,
our algorithm finds non trivial components. For instance,
for a system with 31 edges, the biggest undecomposable
component has only 18 edges. The algorithm finds an ob-
servable set of 7 transitions in 3 seconds when decomposi-
tion is used, instead of 4 minutes. Without the decomposi-
tion method, the algorithm runs out of memory at about 21
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edges, while it runs out of memory at about 33 edges with
the decomposition algorithm. Using an optimized algorith-
m instead of brute force would allow a much better scaling
in both cases.

We found several workflows in the literature, that we au-
tomatically transformed into graphs. For instance, we mod-
eled the workflow from [5] using 12 nodes and 26 edges
(seehttp://www.crans.org/˜genest/dns/). Without the de-
composition method, the brute force method goes out of
memory. Our algorithm decomposes the graph within one
second. Component�� is found. In component��, compo-
nent�� is found and so on until component���. Our algo-
rithm then uses the brute force method on��� and�� &����
(we denote by�� the original graph). Since��� has 1 edge,
and�� "���� has 3 edges for� � � � � and else 1 edge,
the brute force algorithm was very efficient, finishing also
within one second. We found that the minimal observable
set of transitions has 15 edges. Moreover, logging every ac-
tion of this workflow takes around 1 MB, while it takes 200
KB to log a minimal observable set of transitions.

5 More General Services

We overcome the limitations of the previous method in
this section, namely by allowing several components, with
more than one entry and exit state, and distributed systems.

��� ���������� �������

The decomposition into a simple component can be ex-
tended with the component being in turn decomposed and
so on. Even better, if a component is used several times (as
is the case for large composite services), it does not need to
be recomputed several times. In order to formalize such a
framework, we turn to hierarchical services.

Hierarchical services provide an efficient way to mod-
el large and complex services by allowing a modular de-
composition of the problem space. In particular, we con-
sider hierarchical services where two transitions (super-
transitions) can be further refined into an FSM. A hier-
archical FSM� is a finite sequence	��
������

, where�� � ���� ��� � ��� �� � � �� ������	� ��
�� ����		 is defined as fol-

lows:

 ��

is the finite set of states,


 ��� and
���

are the initial and final states, respectively,


 � � � �� ���
are the transitions,


 � ���� �� � � ���%�are two supertransitions representing
services

��� ���� respectively, with�
������ � �.

With each hierarchical FSM�, we associate an ordinary
FSM� obtained by taking

��
, and recursively substituting

�

�
� �� �

H
�

Figure 6. Hierarchical representation of pro-
grams with no goto statements

each supertransition by the FSM it represents. We define
the size of a hierarchical FSM� as the sum of the num-
ber of transitions of its components

��
. Its diameter is the

number of transitions of�. The size� can be logarithmic
in the diameter of�. Applying dynamic programing with
Theroem 2 as base case leads to the following result:

Theorem 3 Let� � ���	���
be a hierarchical FSM. It is

NP-complete in the size of� to compute
�(��	

. More-
over, it takes at most time

(����� 
�� �	.
Proof. It suffices to compute a minimal set

�� ���	
of

transitions of
��

, for all � � � � ��� �� ���. These ac-
tions are performed from bottom of the hierarchy to top. To
compute

�� ���	 for a module
��

using
�� ���, � �� � �,

we use
��� ��� 	 and

���� ���	 which have already been
computed. Indeed, it suffices to compute a minimal set� ��� �������� ���������� ��	

of transitions of
�

, for all
valuations�� ����. Then, it suffices to output a set among� ��� �������� ���������� ��	

of minimal size. 
The best case comparison is with respect to a hierarchical

service of diameter
(�
�	

, using� components of size


.

The brute force non-compositional method run on� takes
time

(�
�� 	
, while our method takes

(��	, that is a doubly
exponential improvement (one exponential due to the reuse
of components, and another due to decomposition).

In addition to reducing the problem space, another mo-
tivation for considering hierarchical systems is to study
systems having desirable properties. For instance, let us
consider programs where goto statements (or interleaving
branches) are not allowed. Such a hierarchical system
representation� � 	����


is given in Fig. 6. Then,�(��	 � � ��(��	, where� is the number of times
� occurs in�. Basically, for� � ��� � ��� � ��� �� �	

, if there
exists� paths (with no interleaving amongst them) from��� to

���
, then

�(��	 � � " �. Given this, to compute�(��	
, for each occurrence of� in � � ����� � �� �� 	;

we can collapse� and make a recursive call to compute�(��� & �� � ���� � ��� �	. The structure guarantees that at
the termination of such a recursive invocation,� � �.
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��� ������
 ��������������

The previous results are quite encouraging, but not total-
ly satisfactory as simple decompositions may not be enough
to reduce the size of the components. Indeed, using compo-
nents with several entry and exit states (complex decompo-
sition) help reducing further the size of the components.

Assume that a service
� � ��

,
��� � � � � � ���� ,��� � � � � � ���� , � 	 has a set� of � � �� � �� port states,

consisting of�� input states
����	���� and �� output states���� 	����. Let

� 
be a set of transitions of

�
. We define�

���
predicates�� ���� 	

, ����� ���� 	
for all ����� � � .


 �� ���� 	
holds if there does not exist more than one

unobserved path between any two states
�� �� �� � �

(
� 

is an observable set of transitions).


 if �� is an input and�� an output,����� ���� 	
holds

if (i) �� ���� 	
holds, and (ii) there does not exist an

unobserved path from�� to ��.

 if �� is an output and�� an input,����� ���� 	

holds
if (i) �� ���� 	

holds, and (ii) there do not exist states��
,
�� � �

such that (a) there is an unobserved path
from �� to

��, (b) there is an unobserved path from
��

to ��, and (c) there is an unobserved path from
��

to��.

 if ����� are two inputs,����� ���� 	

holds if (i)�� ���� 	
holds, and (ii) there does not exist a state

�
in
�

with unobserved paths from both�� and�� to
�
.


 if ����� are two outputs,����� ���� 	
holds if (i)�� ���� 	

holds, and (ii) there does not exist a state
�

in
�

with unobserved paths from
�

to both�� and��.
Notice that some predicates imply others, as����� �

��� �� for two inputs or outputs, and����� �� ��� ��
for �� output and�� input. However, we do not have a total
order between predicates. That is, we define Best

���� 	 !
� � # ��� �� as a function with Best

���� 	������	 � �
iff ����� ���� 	

. We can then extend the proof of propo-
sition 2 to obtain the following porposition (proof omitted
because of lack of space):

Proposition 3 Let � be a component of
�

, and
�����

be subsets of transitions of�, respectively such that
Best

�����	 � Best
�����	. Then, for all subset of tran-

sitions
� 

of
� & �, we have Best

���� � ��	 �
Best

���� � ��	.
We can use the above theorem to compute a minimal ob-

servable set for an FSM
�

having component� as follows:

MinimalDecomposition-Complex(
���):

1. Compute a minimal set
�� ��	 of transitions of�, for

all valuation� ! � � # ��� ��.
2. Compute a minimal set

� �� ����� ��	
of transitions of�

, for all v.

3. Output a set of smallest size among
� �� ����� ��	

.

It allows to extend the previous result on simple com-
ponents, for instance for hierarchical services, where each
component uses at most� ports:

Theorem 4 Let � 
 �. It is NP-complete in the size of a
hierarchical service� � ���	���

using at most� ports to
compute

�(��	
, with � fixed. Moreover, it takes time at

most
(�
��� ���� 
�� �	.

Proof. Let us consider a hierarchical system���	����� �. The time complexity comes directly from
Proposition 3 and the same dynamic programing algorith-
m as Theorem 3. It suffices to compute a minimal set�� ���	 of transitions of��, for all valuation� ! � � #
��� ��. We call

�
the set of valuations. These action-

s are performed from bottom of the hierarchy to top. To
compute

�� ���	 for a module�� using�� ���, � �� � �,
we use

��� ��� 	 and
���� ���	 which have already been

computed. Indeed, it suffices to compute a minimal set� ��� �������� ���������� ��	
of transitions of

�
, for all

valuations�� ����. Then, it suffices to output a set of minimal
size among the

� ��� �������� ���������� ��	
computed.

Let us turn now to the NP-complete proof. The NP-hard
part follows from the NP-hardness in the non hierarchical
case. We give a proof that can be checked in polynomial
time, which proves the NP inclusion.

A proof that
�(��	 � � is given by �
�� data

� ����	 � �� ��� ����	, where� is a subset of transitions of
��, and�� ���� two valuations. The proof is correct if we
have:


 ��	����� � �	 � �, where
��	� is defined inductively

as
��	�����	 � �� �� ��	��� ���	� ��	�������	, where

� ����	 � �� ��� ����	 and�� uses components�� and
��,


 for all ���, if � ����	 � �� ��� ����	, then deleting from
�� transitions of� , the resulting graph has property��
assuming that the two supertransitions have properties��� and���� respectively. We say that a graph have
properties�� when��
 is true whenever��� � �	 � �.

Indeed, if we have such a proof, then we can choose an
observable alphabet for

�����	 of size
��	�����	, and so

on until an alphabet of
��	����� � �	

. The correctness of
such a proof can be checked in Polynomial time.

Assume that
�(��	 � �. It remains to prove that there

exists such a proof. Let�� � � � be an observable alphabet
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of �. Then on each component� of � which corresponds
to some��, we can compute Best

���� ��	 � �. We do
the same with its subcomponent���, Best

���� ��	 � ��
Best

�� �� ��	 � ���. Then we input in the proof� ����	 ��� �������� ��� ����	.
The problem is that there are many components� cor-

responding to��, and several can have the same best prop-
erties�. We fill the entry with some component� having
the smallest

� ��. The reason why we can do it is given by
proposition 3, that is we can replace any set of transitions
by another one, provided we keep the same best properties.
Taking the smallest ensure that the proof will show an al-
phabet of size at most�� �.

If there are some empty inputs, e.g., component�� for
which we never find Best

��� �� ��	 � ���� �		, then it is
irrelevant, and hence useless in the proof. 

A simple rule of thumb to know whether it is worth ap-
plying our technique on a component is when it has a high
number of transitions with respect to the square of the num-
ber of its ports. In order to find components having few
ports, one can use heuristics on graph partitioning [9].

��� ���������� �������

We consider distributed services, given in the form of
product of two services

�
and�. We first on services hav-

ing no interaction between them (that is, one service cannot
write a global variable that is read or written by another ser-
vice). We explain later how to deal with interacting services
having a non interacting component.

The composition schema of such a composite service is
specified as a product of the FSM’s (corresponding to the
composition schema) of the component composite services
[3, 6]. Given services

� � ������� � ��� ���	 and� �
��� � ��� � ��� ���	, �� � �� � �, we define their product� �� � ��������� � ������ �� 	with

� � �� ��� and

� � �� ���� � �� ����
where

��� is the set of self loop transitions
��� � ��	

for�� � ��, � � ��
.
The observation and logging for each component service

are done locally. Hence, our decomposition method can-
not be applied on the product since choosing to observe a
transition in a component of the product might force it to
be observed in another as well (if the same component is
reused). Moreover, strict execution sequence detection is
not required, since not knowing the exact interleaving be-
tween two “equivalent paths” is not needed. More formal-
ly, two consecutive transitions

��
and

����
of a path of� �� can commute if

��
is from

�
and

����
from �, or

vice versa. Two paths� �� � of
� �� are equivalent� � �, if � � � after a finite sequence of commuta-

tions on� (or �). We say that the product
� �� is
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Figure 7. FSM’s (a)
�

(b) � (c)
� �� (dashed

arrows represent observable transitions).

observation sequence detectable with the observation of
��

in
�

and
�� in � if for all paths��� of

� �� such
that Obs�	
������ ��	 � Obs�	
������ ��	, we have� � �. In
this case, compensation can be performed using any of the
equivalent (reversed) runs, this will result in the same con-
sistent state. We then have the following desirable property:

Proposition 4 For a pair of non interacting FSM’s
�

and
�, and one of their respective minimal observable sets� � and

� �
,
� � � � �

is a minimal observable set
of
� ��.

Now, let us consider the more general case where
�

and
� interact, but

�
has a component� that does not interact

with �. Then, one can decompose
�

into � and
� & �,

and compute an observable set�� of transitions of�. We
can choose the observations of� ���� to be one of the��.
Example 2 We consider FSM’s

� � ���
,
���, ���, ��	

(Fig. 7a) and� � ���, ���, ���, ��	 (Fig. 7b) represent-
ing e-services which allow searching and listening to songs
online [3]. The e-services allow different modes of payment
and searching for song files by singer/title. Their product� �� is shown in Fig. 7c. The FSM

�
contains a simple

component� � ��� � ��� � ���� �	
such that

� � � �� � �.
Now, let us consider minimal observable sets

� � =
�$�

and
� � =

��� of � and
� & � ��, respectively. Then,� � � � � is a minimal observable set of

� �� as shown
in Fig. 7c (with the dashed arrows representing observable
transitions).

9



6 Conclusion

We studied compensation under partial log visibility. To
the best of our knowledge, this problem has never been con-
sidered in the context of transactional services. With respect
to (federated) multi-databases, the problem is analogous to
designing a global concurrency control protocol in the ab-
sence of complete information of the conflicts at different
sites [7]. Here, we take the alternate approach and try to
determine the absolute minimal set of actions that needs to
be logged such that the service is always compensable (ex-
ecution sequence detectable). We give a general divide and
conquer framework which works on complex hierarchical
distributed systems, and gives the absolute minimum num-
ber of transition to observe in order to get observability. It
provides good complexity results (up to two exponential-
s better than the brute force method). As future work, we
are investigating fast algorithms which give an approximat-
ed size of the minimal observable set of transitions. That is,
they give an observable set of transitions, but it may not be
minimal. Notice that our decomposition algorithm could be
used to improve accuracy (decrease the size) in this approx-
imated framework.
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