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Abstract. Nowadays, almost every system is connected, which raises
new security questions, such as “can we deduce some confidential in-
formation from observing the system”. It is thus important to verify
that the system is opaque, for different notions of opacity. In this pa-
per, we consider a quantitative notion of opacity: to be useful, systems
usually need to leak some information - hence the question is not “can
some information be deduced”, but “is it the case that only a limited
amount of information is leaked”. We quantify the degree of opacity in
terms of probabilities of deducing some information, and we thus natu-
rally model the system as a stochastic system, namely Interval Labelled
Markov chains (also called Interval Hidden Markov Models), where prob-
abilities do not need to be known exactly.

In this paper, we study weighted degrees, averaging the information
leaked over all runs of the system, as well as the worst case degree,
considering the observation revealing the most information about the
system. We show that one cannot compute exactly nor approximate the
worst-case degree in general, while computing exactly the average degree
is easy. We show that one cannot compute exactly more refined weighted
degrees, but one can approximate them, unlike the worst-case degree. Fi-
nally, we provide the exact complexity of deciding qualitative worst-case
degree, i.e. whether it is positive or 1, with complexities ranging from
NLOGSPACE to EXPTIME-complete.

1 Introduction

In our connected world, privacy concerns are becoming prominent. It is thus
important to analyze different key concepts to measure information leakages.
Very precise semantical notions have been developed, such as information flow
(e.g. [10]). However, no general techniques exist yet to automatically compute
information flow over a whole system beyond a particular finite run. On the
other hand, syntactical notions, less precise but more easily computable, have
also emerged, such as opacity in partially observable systems [17], based on a
notion of secret and non-secret runs: a system is opaque when all secret runs
are observationally equivalent with non-secret runs. It is decidable in PSPACE



whether a system is opaque [19], and one can also try to control the system to
make it opaque [12].

This notion of opacity is purely qualitative. This is quite restrictive for two
reasons. First, it is possible that a system is not opaque, but extremely few
runs allows an attacker to obtain information, which could be perfectly fine
for non-critical systems. Second, it is possible that a system is opaque using
this qualitative definition, while an attacker could know that an observation
corresponds to a secret run with very high probability, because equivalent non-
secret runs could have a negligible probability to happen.

To handle the first issue, [20, 4] considered probabilistic systems and proposed
to quantify the number of secret runs which are not observationally equivalent
with non-secret runs. To compute it, they add a 0/1 signal to each observation
(opaque or not), and count the probability to obtain non-opaque observations.

In this paper, we handle the second issue by quantifying the opacity degree at
the level of each observation, comparing the probabilities of non-secret runs and
of all runs corresponding to this observation. We then consider two problems:
compute the worst possible opacity degree among all observations, or compute
an average opacity degree by weighting observations with their probabilities
and their degree. We show that the worst-case degree cannot be computed, and
cannot even be approximated, by reducing an unapproximable problem on PFAs
[16]. This contrasts with the average degree, which can be computed in PTIME.

Our main results concern cases between these two extremes: First, we con-
sider weighted opacity degree giving more information than a pure average de-
gree, by setting any threshold θ of probability under which a run is considered
opaque: if the ratio between secret runs and all runs having a given observa-
tion is less than θ, then we consider the observation opaque. Otherwise, we
weight its non opacity w.r.t. the threshold θ. We show that it is undecidable to
compute this threshold degree exactly. However, we provide several results to
ε-approximate the threshold degree, either with high confidence or full certainty
(albeit with higher complexities). Then we show that qualitative worst-case de-
gree is decidable (is the worst case degree > 0? is it = 1?), and provide the exact
complexities. Further, because it is in practice hard to know the probabilities of
all transitions, we introduce for the first time Interval Labelled Markov Chains,
inspired by Interval MC and Labelled MC. We develop techniques to handle
intervals in this partially-observable setting: for most problems, the blow-up in
the precise complexity is limited wrt plain Labelled Markov Chains.

1.1 Related work

Opacity degrees have been considered in different frameworks [4, 3, 5]. The first
difference is that they study these notions for Markov Decision Processes (MDP)
while we consider Interval Labeled Markov Chains (ILMC). While ILMCs can
be encoded as MDPs, the encoding needs a uncountable number of actions (one
for each choice of probabilities), hence complexities cannot be directly related. In
[4], Bérard and co-authors define restrictive probability of opacity similar to our
opacity degree. They do not provide (un)decidability result on computing the
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opacity degree of a system (except for the trivial case where the number of runs is
bounded). The main focus of [3, 5] is disclosure, which is dual with opacity. There,
one wants to know whether all words discloses fully the secret, while worst-case
opacity asks whether there exists a word which discloses fully the secret. We
do not consider disclosure in this paper. Concerning opacity degree, in [3], the
authors mention an opacity degree similar to our weighted opacity degree, and
prove an undecidability result on the existence of an observation with a given
opacity degree, similar to the first half of our Proposition 1. As they do not
consider approximability, they did not study the problem further, which we do in
Section 5. Last [5] (Corollary 11) obtain easily the decidability of whether there
exists a system for which no observation has an opacity degree 0 (qualitative
opacity degree). This is related to our Theorem 4, where we provide much more
precise result by providing tight complexity bounds (PSPACE-complete and
EXPTIME-complete depending on the semantics of ILMCs, better than using
the generic construction of [5]). Compared with this particular case, we provide
tight results concerning the other qualitative cases as well (Theorem 3,5,6).

2 Preliminaries and Background

2.1 Labelled Markov Chain

Let Q be a finite set of states. A probability distribution over Q is a function
µ : S −→ [0, 1] such that

∑
q∈Q µ(q) = 1. Let Dist(Q) be the set of distributions

over Q. The support of µ is support(µ) = {s ∈ Q|µ(q) > 0}.
A labelled (discrete-time) Markov Chain (LMC for short) over finite alphabet

Σ is a tuple A = (S,M, µ0) with S its set of states, µ0 its initial distribution,
and M : S ×Σ × S → [0, 1], such that for all s,

∑
a∈Σ,s′∈SM(s, a, s′) = 1.

q1 qsecret

qnon-secretq0

a, 0.3
$, 0.5

$, 0.2 $, 1b, 0.4

a, 0.6 $, 1

Fig. 1: Example of an LMC

We will model secret runs by using a secret state qsecret, and non-secret runs
by using a non-secret state qnon-secret, as usual [19]. As we need to quantify over
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runs, we do not want to count a run several times. [20] solves this by only consid-
ering runs of the same size. This is not possible in our context where we want to
weight a degree over all runs. Instead, we consider that runs eventually stop, and
only quantify over stopped runs. If a run stops in qsecret, it is secret, and otherwise
it stops in qnon-secret and it is non-secret. Further, the last action before stopping
is labelled by the special symbol $, such that stopping is observable. To obtain an
LMC, we will formally allow $ to loop over these states: M(qsecret, $, qsecret) = 1
and M(qnon-secret, $, qnon-secret) = 1. We will never consider runs past the first $.

A path of (S,M, µ0) is a sequence ρ = s0a1s1 · · · ansn in S(Σ × S)∗, where
µ0(s0) > 0 and for all 1 ≤ i < n, M(si−1, ai, si) > 0. The path is final if an = $
(and thus sn ∈ {qsecret, qnon-secret}). Given any path ρ, s−(ρ) represents the initial
state of the path, s+(ρ) represents the final state of the path. The observation
associated with ρ is obs(ρ) = a1a2a3....an ∈ Σ∗. We say that w ∈ Σ∗ is an
observation if there exists a path ρ associated with w. The language of an LMC
A is defined as the set of observations L(A) = {w ∈ Σ∗ | ∃ final ρ, obs(ρ) = w}.

For a path ρ, we define its probability as P(ρ) = µ(s0)·
∏n−1
i=1 M(si, ai+1, si+1).

We define the probability of an observation w ∈ Σ∗ as P(w) =
∑
ρ|obs(ρ)=w P(ρ)

i.e. the sum of the probabilities over all paths such that obs(ρ) = w. We write PAµ0

to denote probability in A with initial distribution µ0, and use PAs for µ0(s) =
1. We define Psecret(w) =

∑
ρ|obs(ρ)=w,s+(ρ)=qsecret

P(ρ) and Pnon-secret(w) =∑
ρ|obs(ρ)=w,s+(ρ)=qnon-secret

P(ρ) i.e. the probability to observe w and end up

in qsecret and qnon-secret respectively. We also define Pstop(w) = Pnon-secret(w) +
Psecret(w). We assume that from each state s ∈ S, there exists a path from s to
qnon-secret or to qsecret, because path should stop with probability 1. As the num-
ber of states is finite, this ensures that the probability to eventually reach qsecret
or qnon-secret is one, that is all paths eventually terminate with probability 1.

Example 1. Figure 1 shows an LMC. The initial distribution µ0 is such that
µ0(q0) = 1. An example of a path is ρ = q0bq1$qsecret, with probability P(ρ) =
0.4 · 0.5 = 0.2. Its observation is b$, with P(b$) = 0.4 · (0.5 + 0.2) = 0.28. So
Psecret(b$) = 0.2 and Pnon-secret(b$) = 0.08.

3 Degree of Opacity

The notion of opacity focuses on characterizing the information flow from the
system to an external observer and aims at determining whether a given system
secret behavior (i.e., a subset of the behaviors of the system that is considered
critical) is kept opaque to outsiders [21]: Given an LMC A = (S,M, µ0), we
say that A is opaque if for all path ρ s.t. s+(ρ) = qsecret, there is a path ρ′ s.t.
obs(ρ′) = obs(ρ) and s+(ρ′) = qnon-secret. Consider Figure 2: the LMC on the left
(a) is opaque, while the LMC on the right (b) is not opaque, because observation
b$ can lead to both qsecret and qnon-secret.

It is usually hard to make a system totally opaque, unless its functional
part is severely impaired. Most of the time, the practical question is not: can
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q1 qsecret

qnon-secretq0

a, 0.3

$, 0.5

$, 0.2

$, 1

b, 0.4

a, 0.6 $, 1

(a) Opaque LMC

q1 qsecret

qnon-secretq0

a, 0.5

$, 0.5

$, 1

b, 0.4

b, 0.3
$, 0.3

$, 1

(b) Non-opaque LMC

Fig. 2: Two LMCs: LMC in (a) is opaque, while LMC in (b) is not.

the system leak some information, but rather how much information does the
system leak. We will thus be considering the opacity degree of an observation
as a measure about the opacity of a system, with a definition very similar to
restrictive probability of opacity from [4], and of ε-disclosure in [3].

Definition 1. Let A = (S,M, µ0) be an LMC. We define the opacity degree of
an observation w as dA(w) = PAnon-secret(w)/PAstop(w) for PAstop(w) > 0, and 1
otherwise. We define the average opacity degree of A as

davg(A) =
∑
w∈Σ∗

PAstop(w) · dA(w).

We start with a negative result, regarding ”worst-case” opacity, whose first
part has been shown in [3] (Theorem 3):

Proposition 1. It is undecidable to know, given α ∈ (0, 1) and an LMC A,
whether for all observation w, dA(w) ≥ α [3]. Further, one cannot even approx-
imate dworst(A) = infw∈Σ∗ dA(w).

Proof. (Sketch of.) The proof of undecidability is quite standard (see the ap-
pendix and [3]), reducing the emptiness problem in Rabin’s probabilistic finite
automaton (PFA) (defined in the appendix) to our problem.

To prove that dworst(A) is not approximable, we show in the appendix that
the following problem on LMCs is undecidable: Given ε > 0 and an LMC A
such that either (1) dworst(A) < ε, or (2) d(w$) > 1 − ε for all observations
w$. Deciding which case holds is undecidable, that is, one cannot approximate
dworst(A). We prove this by reducing from the same problem on PFAs, which is
undecidable [22]. ut

This contrasts with the positive result regarding average opacity:

Proposition 2. davg(A) can be computed in polynomial time for an LMC A.

Proof. We have dA(w) = Pnon-secret(w)/Pstop(w). Thus davg =
∑
w Pnon-secret(w)

as Pnon-secret(w) > 0 implies that w ends with $, and thus Pstop(w) = P(w): this
is equal to the probability to reach state qnon-secret. Computing this probability
can be done in PTIME [2]. ut
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Our paper will thus focus inbetween these two extreme cases: For worst-case
opacity, we will consider the qualitative cases, that is the cases with α = 0, 1.

On the other hand, we will also go beyond average opacity: while the average
opacity degree is an interesting value, many very different situations can result
in the same average: all paths can have the same opacity degree, or a small
proportion of paths can have much smaller opacity degree than others. Consider
the case where 10% of paths have much smaller opacity degree: while the overall
average opacity degree is high, it means that the system is not opaque in a
tangible number of cases (10%).

In order to quantify opacity in a finer way, we will resort to weighted threshold
degree, considering paths that have opacity smaller than θ, weighted by the
difference of opacity with θ. A sensible choice is to take θ being e.g. the average
opacity, allowing to quantify the weighted average over paths with opacity degree
lower than this average.

Definition 2. Let θ ∈ (0, 1) and A be an LMC. We define the weighted θ-
threshold degree as dθ(A) =

∑
w PA(w) · (θ −min(dA(w), θ)).

For an observation w, we will denote dθ(w) = θ − min(dA(w), θ). That is,
dθ counts only observations w for which the opacity degree is lower than θ: the
further away below θ, the more w contributes to the threshold degree, and this
contribution is weighted by the probability to see w.

4 Interval Labelled Markov Chains

4.1 Definition and semantics

In general, it is hard to know exactly the probabilities of all the transitions in
the system. To model this uncertainty, we introduce Interval LMCs, inspired
by Interval Markov Chains and Labelled Markov Chains, where transitions are
associated with intervals rather than precise probabilities. We denote by I the
set of closed intervals [u, v] included in [0, 1], i.e. with 0 ≤ u ≤ v ≤ 1.

Definition 3. An Interval Labelled Markov Chains (ILMC) on finite alphabet
Σ is a tuple A = (S, δ, µ0) with S the set of states, δ : S × Σ × S → I is the
transition function associating an interval to each transition.

Given a state s ∈ S, we say that a distribution µ : Σ × S −→ [0, 1] is
an assignment for s if µ(a, s′) ∈ δ(s, a, s′) for all a ∈ Σ, s′ ∈ S. For δ : S ×
Σ × S → I, we denote δ−, δ+ : S × Σ × S → [0, 1] such that δ(s, a, s′) =
[δ−(s, a, s′), δ+(s, a, s′)] for all s, a, s′. Note that an assignment for state s ∈ S
only exists iff

∑
s′∈S,a∈Σ δ

−(s, a, s′) ≤ 1 ≤
∑
s′∈S,a∈Σ δ

+(s, a, s′). The ILMC is
well-formed if there exists at least one assignment for each state. In the following,
we will consider that all ILMCs are well-formed. For instance, the ILMC in Figure
3 is well-formed: For state q3, the following µ1, µ2 are assignments: µ1(a, q4) = 1

2
and µ1(a, q5) = 1

2 , but also e.g. µ2(a, q4) = 0 and µ2(a, q5) = 1.
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q0 q1 q2 qnon-secret

q3 q4

q5 qsecret

a, [ 1
2
, 1
2
] a, [1, 1] $, [1, 1]

a, [ 1
2
, 1
2
]

$, [1, 1]

a, [0, 1
2
]

b, [ 1
2
, 1
2
]

$, [ 1
2
, 1
2
]

a, [ 1
2
, 1]

$, [1, 1]
$, [1, 1]

Fig. 3: An ILMC with 8 states.

Two semantics exist for ILMCs, namely Uncertain Markov Chain(UMC) and
Interval Markov Decision Process(IMDP): the difference is whether the assign-
ment is fixed for each state, or whether they can depend upon the path reaching
the state. Let A = (S, δ, µ0) be an ILMC.

The UMC semantics of A is the set UMC(A) of LMCs A = (S,M, µ0) s.t.
for all s ∈ S, we have M(s, a, s′) ∈ δ(s, a, s′).

The IMDP semantics of A is the set IMDP(A) of (infinite-state) LMCs A =
(S × (Σ × S)∗,M, µ0) where states are finite paths in A, and such that for
all ρ reaching s ∈ S, for all s′ ∈ S, we have M(ρ, a, ρ a s′) ∈ δ(s, a, s′) and
M(ρ, a, ρ′) = 0 if ρ′ is not of the form ρ a s. The name IMDP comes from the
fact that probabilities depend upon the history, similarly as schedulers in MDPs
(see appendix or [2]).

We require that for all A ∈ UMC(A) (resp. A ∈ IMDP(A)), for all states s
of A, there is probability 1 to reach {qsecret, qnon-secret} from s.

Example 2. Consider the ILMC A in Figure 3. Let A ∈ UMC(A), and let p =
MA(q3, a, q4). There are two cases: either p > 0 or p = 0. If p = 0, then the
only stopping observation is w = aa$, and we have d(w) = 1

2 . Otherwise, p > 0,
and the set of stopping observation is a(ab)∗a$. For all w ∈ a(ab)∗a$, we have
Pnon-secret(w) > 0, and thus d(w) > 0.

Now, consider A ∈ IMDP(A), such that the first time q3 is seen, transi-
tion (q3, a, q4) is assigned probability 1

2 (formally, MA(q0aq3, a, q0aq3aq4) = 1
2 ),

and every other time, (q3, a, q4) is assigned 0. We have Psecret(aaba$) > 0 but
PAnon-secret(aaba$) = 0. Thus, dA(aaba$) = 0.

It is easy to see that both semantics encompass any LMC A = (S,M, µ0): it
suffices to set δ(t) = [M(t),M(t)] for each transition t. We obtain UMC(A) =
IMDP(A) = {A}. Thus, the complexity of computing the opacity degree for
ILMCs is at least as hard as for LMCs. In particular, it is undecidable to compute
the worst-case opacity degree of an ILMC, and it even cannot be approximated.
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Hence we turn to the qualitative questions on opacity degree: is it the case that
dA(w) = 1 for all w? is it the case that dA(w) > 0 for all w? For both semantics,
we have two ways to look at the ILMC: either we have an uncertain model of the
system, and we ask the question for all LMCs A in the semantics. The second way
to look at ILMCs is as a specification, and the actual implementation, chosen by
the designer, could be any LMC A in the semantics. In this case, the question
becomes: does there exists an A in the semantics ensuring a given property.

Concerning the average opacity degree, standard algorithms [11] computing
the optimal probability to reach a set of states in interval Markov chains yield:

Proposition 3. Computing minA∈IMDP(A) davg(A) = minA∈UMC(A) davg(A) and
maxA∈IMDP(A) davg(A) = maxA∈UMC(A) davg(A) can be done in PTIME.

In the following, we will focus on computing infA∈ LMC(A) dθ(A) and
supA∈ LMC(A) dθ(A), considering dθ instead of the average opacity degree davg.

4.2 Uniform reachability set for ILMCs

In this subsection we give a construction which will be used in Theorems 2, 4, 6 to
handle ILMCs. Let A be an ILMC. Let F ⊆ S be a subset of states. We want to
compute the set X(F ) = {s | ∀A ∈ LMC(A), there exists a path from s to F}
of states from which F can be reached in allA ∈ LMC(A), for LMC ∈ {UMC,IMDP}.

Lemma 1. Given a set F , one can compute X(F ) in PTIME.

In particular, X(F ) does not depend upon the choice of the semantics.

Proof. We initialize X0 = F . We then compute inductively Xi+1 from Xi:

– We look for a state s ∈ S \Xi such that, either there is a transition t from s
to Xi with δ−(t) > 0, or the sum of δ+(t′) over transition from s to S \Xi

is p < 1. In both cases, we set Xi+1 = Xi ∪ {s}.
– If we cannot find such a state s, then we return X(F ) = Xi.
– The process ends after at most |S| iterations (the construction can be done

in PTIME, but not in NLOGSPACE).

At the end of the algorithm, we have for all s ∈ X(F ), for all A ∈ LMC(A),
there is a path from s to F in A. On the other hand, there is a A ∈ LMC(A)
such that for all s /∈ X(F ), there is no path from s to F .

Let i with Xi = X(F ). For the second part, it is easy to build an LMC A =
(S,M, µ0) ∈ UMC(A) (and thus also in IMDP(A)) such that for all s ∈ S \X,
for all t ∈ X, M(s, a, t) = 0. By construction, we can set all transitions from s to
Xi to 0, and we have the sum of δ+(t′) over transition from s to S \Xi = S \X
is p ≥ 1. In particular, we can set an assignment from s staying in S \ X and
respecting the requirement of A.

We prove the first part by induction of the minimal i such that s ∈ Xi. First,
the assertion is trivial for s ∈ X0 = F . Inductively assuming it is true for all
s ∈ Xi, for any A ∈ LMC(A), taking s ∈ Xi+1 \Xi, either there is a transition
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(s, a, s′) with s′ ∈ Xi and δ−(s, a, s′) > 0 and M(s, a, s′) ≥ δ−(s, a, s′) > 0 and
we have the proof. Otherwise, we have the sum of δ+(t′) over transition from s
to S \Xi = S \X is p < 1, which means that the assignment in A must have a
s′ ∈ Xi with M(s, a, s′) > 0. ut

5 Approximating the weighted θ-threshold degree

As explained in Section 3, weighted θ-threshold degrees allows us to quantify
opacity in a more tractable way than worst-case degree which is non approx-
imable. Further, considering several values of θ allows us to understand precisely
the amount of runs in a particular opacity degree range.

We show that while one cannot compute exactly the weighted θ-threshold
degree for 0 < θ < 1, one can approximate its value as close as desired. We
can approximate the weighted θ-threshold degree very efficiently with high con-
fidence, and we can also approximate it with total certainty, although not as
efficiently.

To do so, we first prove that considering runs of size at most k, for k not so
large, suffices to approximate the weighted θ-threshold degree, because almost
all of these runs are stopped.

Lemma 2. Let A be an LMC, and let ε > 0. Then there exists k such that
P(Σ>k ∩ L(A)) ≤ ε.

Proof. By hypothesis, ∀s ∈ S, ∃ρs, s−(ρs) = s, s+(ρs) ∈ {qsecret, qnon-secret}. Let
ns < ∞ be the length of ρs and ps = P(ρs) < ∞ be the probability of ρs. Let
n = maxs∈S ns, and p = mins∈S ps. We use max and not sup as there is only
a finite number of states in S. Hence n < ∞ is finite and p > 0. Hence the
probability not to stop after n steps is at most 1− p, whatever the initial state.
These non-stopping paths end in some s ∈ S, and hence after 2n steps, there is
probability at most (1−p)2 to be non-stopping. By a trivial induction, we obtain
probability (1− p)k′ to be non-stopping after k′ · n steps. As 0 < 1− p < 1, we
have (1 − p)k′ −→

k′→+∞
0. Hence there exists k′ such that (1 − p)k′ < ε, and we

deduce that with k = k′n, P(Σ>k ∩ L(A)) ≤ ε. ut

This lemma allows us to approximate accurately the weighted degree by
considering the finite set of runs of size at most k.

Theorem 1. Input: an LMC A = (S,M, µ0), 0 < θ < 1 and λ ∈ [0, 1],

1. Knowing whether dθ(A) > λ is undecidable. However,
2. Given an error bound ε > 0, and a high confidence value δ < 1, one can

compute a value γ such that P (|dθ(A) − γ| ≤ ε) ≥ δ in polynomial time

O(|A| log(1/(1−δ))ε2 ).
3. Given an error bound ε > 0, it is possible to compute a value γ such that
|dθ(A)− λ| ≤ ε in PSPACE in |A| and |ε|.
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Proof. First, point 1) can be reduced with the undecidability in Prop. 1: Given
α > 0, for all observation w of A, we have that dA(w) ≥ α iff dα(A) = 0. Hence
dα(A) = 0 is undecidable, as well as its complementary dα(A) > 0 (i.e. taking
θ = α and λ = 0).

For point 2), we approximate the average of the probability distribution of
dθ values on words conditionally to a length bound on these words. We also
prove that this average is close to the average of the probability distribution of
dθ values on all words. This is inspired by a similar result from [23].

Let Y≤k : (Σ≤k ∩ L(A)) → [0, 1] be the random variable associated to the
values of dθ of words of length smaller than k (the k of lemma 2) and Y be the
one associated to the value of dθ for all words. We have dθ(A) = E(Y ). Next, we
will show that E(Y ) is close to E(Y≤k) and that we can approximate Y≤k. The
interest of Y≤k is that its samples will have a polynomial length.

We have that E(Y ) = (
∑
w∈Σ≤k∩L(A) PA(w)dθ(w))/(P(Σ≤k ∩ L(A))) and

E(Y≤k) =
∑
w∈Σ≤k∩L(A) PA(w)dθ(w) +

∑
w∈Σ>k∩L(A) PA(w)dθ(w). Then,

|E(Y )− E(Y≤k)| ≤ |
∑

w∈Σ≤k∩L(A)

PA(w)dθ(w)|(1− 1/(P(Σ≤k ∩ L(A))))

+|
∑

w∈Σ>k∩L(A)

PA(w)dθ(w)|

≤ (1− 1/(P(Σ≤k ∩ L(A))) + ε

≤ 3ε

Let X1, . . . , Xn be independent random variables following the same law as
Y≤k and X =

∑n
i=1Xi. Then, for all i, we have that 0 ≤ X ≤ 1 and we denote

µ = E(X) = n ·E(Y≤k) and γ = X/n. Applying Chernoff’s inequality, we obtain
that for all τ > 0

P (X ≥ µ(1 + τ)) ≤ e
−2τ2µ2

n

P (X ≥ µ(1− τ)) ≤ e
−τ2µ2
n

Thus, P (γ ≥ E(Y≤k)+µτ/n) ≤ e
−2τ2µ2

n and by denoting ε = µτ/n, we obtain

P (γ ≥ E(Y≤k) + ε) ≤ e−2nε
2

. Similarly, we obtain that P (γ ≥ E(Y≤k) − ε) ≤
e−nε

2

.
So, the probability that the γ diverges from E(Y≤k) by more than ε is smaller

than 2e−nε
2

. In order to have confidence δ, we can take n ≥ log( 2
(1−δ) )ε

−2.

By combining these two results, we obtain that with n ≥ log( 2
(1−δ) )ε

−2 sam-

ples, P(|γ − E(Y )| ≤ 4ε) ≥ δ.

For point 3), we sketch the proof: we now explain how to approximate dθ(A)
using Lemma 2, inspired by [13]. We have dθ(A) =

∑
w P(w) · dθ(w). We apply

Lemma 2 above to obtain a k. We have dθ =
∑
w∈(L(A)∩Σ≤k) P(w) · dθ(w) +∑

w∈(L(A)∩Σ>k) P(w) · dθ(w). We can compute in EXPTIME the first term, and
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ignore the second term, as it is smaller than ε. While we cannot compute the
first term in PSPACE, we can approximate it in PSPACE using Ladner’s result
[15]. This is sufficient to conclude (see appendix). ut

We now show that we can approximate in the same way minA∈LMC(A)(dθ(A))
and maxA∈LMC(A)(dθ(A)) for LMC ∈ {UMC,IMDP}. That is, one can approx-
imate the degree for all 4 cases of ILMCs. We proceed in the same way as
for LMCs: we prove that there exists a constant k, uniform over all LMCs in
UMC(A) and IMDP(A), after which almost all runs are stopped, using Lemma 1.

Lemma 3. Let A be an ILMC. Let ε > 0. Then there exists K such that ∀A ∈
LMC(A),P(Σ>K ∩ L(A)) ≤ ε, for LMC ∈ {UMC,IMDP}.

Proof. We use Lemma 1 with F = {qsecret, qnon-secret}, and obtain the set X(F )
of states from which F can be reached in every LMC A ∈ LMC(A). By definition
of ILMCs, we should have X(F ) = S. During the inductive construction of
Lemma 1, we compute for each state s ∈ Xi a probability ps > 0 such that for
all A ∈ LMC(A), we have that the probability to reach {qsecret, qnon-secret} from
s is at least ps. We initialize ps = 1 for s ∈ X0 = {qs, qns}. We then compute
inductively ps in s ∈ Xi+1 from ps for s ∈ Xi: When a state s is added to
Xi+1, either we have a transition t from s to Xi with δ−(t) > 0, and we set
ps = δ−(t) minx∈Xi px, or the sum of δ+(t′) over transition from s to S \Xi is
p < 1, and we set ps = (1− p) minx∈Xi px.

Hence for all s ∈ S, we have ps > 0. In particular, for all A, there is proba-
bility at least mins∈S ps > 0 to terminate in at most |S| steps. From there, we
conclude similarly as in the proof of Lemma 2. ut

We can now state an approximability result for ILMCs. Notice that we do
not state the case with high confidence as we do not see how to improve the
complexity better than with full certainty in the case of ILMCs:

Theorem 2. Given an ILMC A = (S, δ, µ0), and a constant ε > 0, one can
compute in EXPTIME a number λmin ∈ [0, 1] such that |minA∈LMC(A)(dθ(A))−
λmin| ≤ ε. Also, one can compute in EXPSPACE a number λmax ∈ [0, 1] such
that |maxA∈LMC(A)(dθ(A))− λmax| ≤ ε, for LMC ∈ {UMC,IMDP}.

Proof (Sketch of.). We prove Theorem 2 using Lemma 3. Let contribA(w) =
max(0, θPAstop(w)−PAnon-secret(w)). Then

∑
w∈Σ≤K contribA(w) ≤ dθ(A) ≤

∑
w∈Σ≤K

contribA(w) + ε. We can compute minA∈LMC(A)(
∑
w∈Σ≤K contribA(w)) using

linear optimization with an exponential number of variables. We can compute
maxA∈LMC(A) (

∑
w∈Σ≤K contribA(w)) using the first order theory of reals (see

appendix).

6 Qualitative worst-case opacity degree

Our results concerning qualitative worst-case opacity are summed-up in the table
of Figure 4. We prove decidability for all the variant considered, and exhibit their
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Model dA(w) > 0 for all w ∈ Σ∗ dA(w) = 1 for all w ∈ Σ∗

LMC A PSPACE-Complete (Thm. 3) LOGSPACE (Thm. 5)

∀A ∈ UMC(A) PSPACE-Complete (Thm. 3) LOGSPACE (Thm. 5)

∀A ∈ IMDP(A) PSPACE-Complete (Thm. 3) LOGSPACE (Thm. 5)

∃A ∈ UMC(A) PSPACE-Complete (Thm. 4) P-Complete (Thm. 6)

∃A ∈ IMDP(A) EXPTIME-Complete (Thm. 4) P-Complete (Thm. 6)

Fig. 4: Exact complexity for qualitative Worst-case Opacity. Notice that the de-
cidability of cases handled by Theorem 4 can be derived from [5].

exact complexities. Interestingly, checking whether opacity holds no matter the
system following an interval LMCs (∀A ∈ UMC(A) or IMDP(A)) is not more
complex than checking it when the LMC is entirely known. Further, it is usually
slightly more complex (EXPTIME-complete instead of PSPACE-complete, or
P-complete instead of LOGSPACE) when trying to synthesize one opaque LMC
satisfying an ILMC specification (∃A ∈ UMC(A) or IMDP(A)), except for one
case where it is not harder (∃A ∈ UMC(A), dA(w) > 0 for all w ∈ Σ∗). We
provide proofs here for the most interesting results, in particular Theorem 4
showing this discrepancy between the UMC and the IMDP semantics. The other
proofs can be found in the appendix.

No run fully reveals whether it is secret Consider now opacity with the
meaning that no run fully reveals whether it is secret. This question is harder
than a plain reachability question, as we wonder whether for all observation w,
Psecret(w) > 0 implies Pnon-secret(w) > 0. For that, we need to follow the set of
states reachable with the same observation. Let w ∈ Σ∗. The belief associated
with w is B(w) = {s | s0 →w s}. The deterministic belief automaton associated
with A is B = (2S , T, B0), where B0 = {q | µ0(q) > 0} and (S, a, S′) ∈ T
iff S′ = {q′ | ∃q ∈ S,M(q, a, q′) > 0}. The question whether there exists an
observation w with Pnon-secret(w) = 0 and Psecret(w) > 0 (i.e. a run revealing
the secret) is equivalent with the existence of a belief B of B reachable from B0

containing qsecret but not qnon-secret.

Theorem 3. Given one LMC A, testing whether dA(w) > 0 for all w ∈ Σ∗ is
PSPACE-complete. For an ILMC A, testing dA(w) > 0 for all w ∈ Σ∗ and for
all A ∈ IMDP(A) or A ∈ UMC(A) is also PSPACE-complete.

Proof (Sketch of.). For an LMC, checking for the existence of a belief containing
qsecret but not qnon-secret can be performed on the fly in PSPACE. We obtain the
hardness by reduction from the language equality of two automata.

For ILMCs under the UMC semantics, we can guess the non-zero transitions
such that one can reach qsecret but not qnon-secret. For ILMC under the IMDP
semantics, this is not possible as there are too many possible LMCs in IMDP(A).
However, as the choice of transition can be different between different path, one
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can guess directly a path in any LMC of IMDP(A) that reaches qsecret but not
qnon-secret in PSPACE. ut

When considering the synthesis problem, it becomes harder for ILMCs viewed
as a specification with the IMDP semantics, namely EXPTIME-complete rather
than PSPACE-complete. Notice that decidability (but not the exact complexity,
nor the fact that complexity is different between UMC and IMDP semantics)
is known from [5]. Their Corollary 11 states that it is decidable whether there
exists a MDP for which no observation has an opacity degree 0 (qualitative
opacity degree). It could be tempting to believe that our result is related with
the EXPTIME-completeness result of Theorem 15 from [5]. The hardness result
in our proof is actually much stronger: first, the synthesis in [5] is done based
on the observation, but not on the exact run, while the LMC we synthesized
from an ILMC knows the exact run. Although we seem to be in a much less
complex setting, we show that the complexity of both problems is actually the
same. Another point is that to obtain decidability, [5] needs to restrict to finite
memory controllers, which is not necessary in our setting. Notice that without
finite memory, opacity is undecidable in the setting of [5] (point 2) of Theorem
13 from [5]).

Theorem 4. Given an ILMC A, testing whether there exists A ∈ UMC(A) such
that dA(w) > 0 for all w ∈ Σ∗ is PSPACE-complete, while testing whether there
exists A ∈ IMDP(A) such that dA(w) > 0 for all w ∈ Σ∗ is EXPTIME-complete.

Proof. Under the UMC semantics, the proof is similar as in Theorem 3: we can
guess the support of transitions of an LMC A ∈ UMC(A) in PSPACE, and check
in PSPACE whether dA(w) > 0 for all w ∈ Σ∗. PSPACE-hardness comes from
the result on LMCs in Theorem 3.

We now turn to the IMDP semantics: We prove that this problem is EXPTIME-
complete. We first show that it is in EXPTIME. We consider the non-deterministic
belief automaton B′ associated with ILMC A, representing all possible choices
of synthesis. It differs from B on the (non-deterministic) transition relation ∆′:

– For B,B′ ∈ 2S , a ∈ Σ, we have (B, a,B′) ∈ ∆′ if and only if there exists
a σ : S × Σ 7→ Dist(S) with σ(s, a, s′) ∈ δ(s, a, s′) for all s, a, s′ such that
B′ = {s′ ∈ S | ∃s ∈ B, σ(s, a, s′) > 0} (notice that as this is the ILMC
semantics, the next step needs not use the same scheduler σ).

We want to know whether it is possible to avoid belief {qsecret}. For that,
we use Lemma 1 on the non-deterministic belief automaton B′ (which is of
exponential size), using F = {qsecret}. It allows to compute X(F ) in EXPTIME,
the set of beliefs such that F is unavoidable. If B0 ∈ X(F ), then we know that
there is no A ∈ IMDP(A) such that dA(w) > 0 for all w ∈ Σ∗. Otherwise, there
is an A ∈ IMDP(A) such that dA(w) > 0 for all w ∈ Σ∗, choosing an LMC
following the choices avoiding F = {qsecret}.

Last, we prove that this problem is EXPTIME-hard, by reducing the problem
of sure winning in a two player game over a polynomial space alternating Turing
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machine (ATM), which is an ALT-PSPACE by definition, which is equal to EXP-
TIME [9]. An alternating Turing machine is a tupleM = (S, q0, g, Σi, Σt, ∆, F )
where :-

– S is a finite set of control states;

– q0 ∈ S is the initial control state;

– g : S → {∨,∧};
– Σi = {0, 1} is the input alphabet;

– Σt = {0, 1, 2} is the tape alphabet and 2 is the blank symbol;

– ∆ ⊆ S ×Σt × S ×Σt × {−1, 1} where -1(1) denotes left and right direction
respectively is a transition relation;

– F ⊆ S is the set of accepting states

Without loss of generality, we make the hypothesis that the initial control
state of the machine is a ∨-state and that transitions link ∨-state to ∧-state
and vice versa. Player 1 selects the transition from ∨−state to ∧−state while
player 2 selects the transition from ∧−state to ∨−state. The main problem is
to encode the tape: encoding it explicitly would result an exponential number
of states. Instead, the ILMC asks the observation to tell him the symbol. For
each observation which does not correspond to the tape symbol, the ILMC as
a chance to catch it, sending to state qnon-secret. Hence, it only needs to handle
the correct observation. Given an ATM with with a tape of size k, we define the
ILMC A = (S′, δ, µ0) over alphabet ∆ ]Σ ] {$} by the following steps:-

– S′ contains the following two types of states: the first type is of the form
{(i, q, a, l), (j, b)} ∈ S′ where 1 ≤ i ≤ n denotes the position in the input,
q ∈ S denotes the current state control state, a ∈ Σt denotes the tape symbol
at position i, l ∈ {∨,∧} denotes whether player 1 or player 2 has to select
next move, 1 ≤ j ≤ n, b ∈ Σt which is an information stored meaning that
the j symbol of the tape is a b.

The second type is of the form {(i, q, l), (j, b)} ∈ S′ where all variables have
the same meaning, but we don’t have letter a ∈ Σt,

– S′ also contains special states qsecret, qnon-secret, qcheat,

– For all i ≤ k, we have µ0({(1, q0, 2,∨), (i, 2)} = 1/k, i.e. we start with an
empty input tape made of 2’s.

The transition function is defined as follows:

– For q ∈ F final, we have δ({(i, q, a, l), (j, b)}, $, qsecret) = [1, 1] for all i, a, l, j, b.

– From qcheat, we have δ(qcheat, a, qcheat) = [0.3, 0.3] for all a ∈ {0, 1, 2}, and
δ(qcheat, $, qnon-secret) = [0.1, 0.1].

– For all state of the form s = {(i, q, op), (j, b)} with op ∈ {∨,∧}, we have
δ(s, a, qcheat) = [1/3, 1/3] for j = i but a 6= b, and δ(s, a, {(i, q, a, op), (j, b)}) =
[1/3, 1/3] in any other case (remember there are only 3 possible tape symbols
a = 0, 1, 2),

14



– For all state of the form s = {(i, q, a,∨), (j, b)}, for all transition t = (q, a, p, c, k) ∈
∆ of the Turing machine, we have both δ(s, t, {(i + k, p,∧), (j, b)}) = [0, 1]
(keep the previous information (j, b)), and δ(s, t, {(i+k, p,∧), (i, c)}) = [0, 1]
(keep the new information that symbol c is at the i-th position of the
tape). Player ∨ can choose a particular transition t by choosing an A where
δ(s, t′, {(i + k, p,∧), (j, b)}) = 0 for all t′ 6= t, and it will allow the two
transition labeled by t with probability 1/2 each,

– For all state of the form s = {(i, q, a,∧), (j, b)}, for all transition t = (q, a, p, c, k) ∈
∆ of the Turing machine, we have δ(s, t, {(i+ k, p,∧), (j, b)}) = [ 1

2n ,
1
2n ] and

δ(s, t, {(i + k, p,∧), (i, c)}) = [ 1
2n ,

1
2n ], where n is the number of transitions

from s. Player ∨ needs to accommodate all possible choices for t.

Notice that observations w with P (w) > 0 are of the form w = τ1a1τ2a2 · · · ,
where transition τi, i odd chosen by ∨ then τi, i even chosen by ∧ alternates with
observations ai describing the current tape symbol.

Assume that there is a strategy σ for player ∨ such for all choice from nodes ∧,
we can avoid reaching final states F in the alternating Turing machine. Let A ∈
IMDP(A) be the LMC associated with this strategy. Let w = τ1a1τ2a2 · · · an
observation with PA(w) > 0. Consider τ1τ2 · · · following the strategy σ avoiding
F . Consider b1, . . . the sequence of symbol on the tape at the position of the
head when we follow τ1τ2 · · · . Assume that an = bn for all n: by definition, this
observation w will avoid F , and thus Ps(w) = 0 and dA(w) = 1 > 0. Now,
consider the first symbol an 6= bn, and let i the head position after τ1, . . . , τn:
there is probability p > 0 to reach state {(i, q, op), (bn, i)} after τ1a1τ2a2 · · · τn,
and thus when an is observed, we have probability > 0 to reach qcheat. From
there, there will be probability > 0 to reach qnon-secret no matter the observation,
and in particular dA(w) > 0. Hence for all observation w, we have dA(w) > 0.

On the other hand, assume that there is a strategy τ from ∧ to reach F
(the game is determined, so such a strategy exists if there is no strategy for
∨). Take any A ∈ ILMC(A), and any maximal observation w = τ1a1τ2a2 · · ·
corresponding to strategy τ and A, with ai following the sequence τ1τ2, · · · . For
this observation, we have probability 0 to reach qcheat and hence probability 0
to reach qnon-secret. However, as τ1τ2, · · · eventually reaches F , observation w
eventually reaches qsecret, and dA(w) = 0. That is, for all A ∈ ILMC(A), we
have dA(w) = 0 for some w ∈ Σ∗. ut

This is interesting since it shows that in this case, dealing with the IMDP
semantics is harder than dealing with the UMC semantics. This contrasts with
model checking, where model checking the UMC semantics is harder than model
checking the IMDP semantics [11]. Notice that the decidability of these cases
have been shown for MDPs in [5].

Total opacity The situation is quite similar when asking when the system is
totally opaque: dA(w) = 1 for all w. However, the complexity does not change
when we consider the ILMC as a specification under the UMC semantics.
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Theorem 5. Given an LMC A, testing whether dA(w) = 1 for all w ∈ Σ∗ can
be done in NLOGSPACE. For an ILMC A, checking whether dA(w) = 1 for all
w ∈ Σ∗ and for all A ∈ LMC(A) is LOGSPACE, for LMC ∈ {UMC, IMDP}.

Proof. dA(w) = 1 for all w ∈ Σ∗ is equivalent with qsecret not being reachable.
For an LMC A, we thus just need to use a standard graph reachability algorithm,
which is NLOGSPACE. For ILMCs, there is no difference between the UMC and
the IMDP semantics as we need to handle a reachability objective (positional
strategies are sufficient to win reachability objectives in MDPs [2]).

Now, when we view an ILMC as describing an uncertain system, it suffices
to consider an LMC Amax = (S,M, µ0) such that for all transitions t of A
with δ+(t) > 0, M(t) > 0. Then dA(w) = 1 for all w ∈ Σ∗, A ∈ LMC(A) iff
d(Amax)(w) = 1 for all w ∈ Σ∗, which can be done in NLOGSPACE.

However, if one considers an ILMC as a specification to choose from, the
complexity becomes slightly higher:

Theorem 6. Given an ILMC A, testing whether there exists A ∈ UMC(A) or
A ∈ IMDP(A) such that dA(w) = 1 for all w ∈ Σ∗ is PTIME-complete.

Proof. We use Lemma 1 on F = {qsecret} to compute the set X(F ) of states
which can reach qsecret in all LMCs A ∈ LMC(A). We let Init={s | µ0(s) > 0}.
We have that there exists A ∈ LMC(A) with dA(w) = 1 for all w ∈ Σ∗ iff
Init∩X(F ) = ∅. We prove the PTIME-completeness by reduction with safety
in MDP (is there a strategy avoiding a set of state), which is PTIME-complete
[7], [14].

7 Conclusion

Opacity degrees allow one to understand how much information a system can
disclose through observable events: we show that weighted degrees are easier
to compute than worst-case degrees, as they can be ε-approximated with high
confidence in polynomial time, while worst case degrees cannot be approximated.

To handle model uncertainties, we defined and studied Interval Labelled
Markov Chains, for the first time as far as we know. We provided methods
to handle them in a complexity close to but sometimes slightly higher than the
complexity for LMCs. We did not find an exponential gap, except in one case
(approximating the weighted degree for an ILMC seen as a specification). In this
partially observable setting, there can be differences between the UMC and the
IMDP semantics: our most interesting result in the respect of ILMCs is to show
that checking whether one can design an LMC not totally revealing and respect-
ing an ILMC specification is EXPTIME-complete for the IMDP semantics, while
it is PSPACE-complete for the UMC semantics.
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Appendix

Definitions of MDPs and PFAs

We introduce here Markov Decision Processes (MDPs) [2], to explain the relation
with IMDP semantics, and because they are used in some lower bounds.

An MDP A on finite alphabet Σ is a tuple A = (S, (Ma)a∈Σ , µ0) with S a
set of states, µ0 an initial distribution, Ma : S × S → [0, 1] for each a ∈ Σ, such
that for all a, for all s,

∑
s′Ma(s, s′) = 1.

MDPs are fully observable: the semantic of an MDP is the set of schedulers
σ : S × (Σ × S)∗ → Dist(Σ) telling which distribution over letters is chosen
according to the path from the initial to the current state.

For comparison, the IMDP semantics of an ILMC can be described by MDP
with either an infinite number of actions (alphabet), or with the same alphabet,
but some restrictions on the Distribution being chosen.

While MDPs are fully observable (we know the sequence of states visited),
Rabin’s Probabilistic Finite Automata (PFAs) is the same model as MDPs, but
interpreted as having no information at all about the states. That is, the seman-
tics is given as the set of schedulers σ : N→ Dist(Σ), where the choice of actions
can only differ based on the number of actions played so far. Given a distribu-
tion σ1 over letters, we associate the Markov Chain Mσ1

=
∑
a∈Σ σ1(a)Ma.

We associate to a scheduler σ the sequence of Markov chain Mσ
1 , . . . , with

Mσ
i = Mσ(i) . . .Mσ(1). An important question is to know given a scheduler σ

and a number n of steps what is the probability to be in F from µ0 following n
steps of scheduler σ, that is Pn(σ) =

∑
s∈S,t∈F µ0(s)Mσ

i [t].

Proofs in Section 3

Proposition 1. It is undecidable to know, given α ∈ (0, 1) and an LMC A,
whether for all observation w, dA(w) ≥ α [3]. Further, one cannot even approx-
imate dworst(A) = infw∈Σ∗ dA(w).

Proof. We want to know whether there exists an observation w such that d(w) <
α. We prove that this problem is undecidable by reducing emptiness problem in
a Rabin’s probabilistic finite automaton to our problem.

Emptiness Problem :- Given a PFA H = (Q,Σ, s0, (Ma)a∈Σ , F ), and a con-
stant α with 0 < α < 1, the emptiness problem asks whether there exists
a finite number of distributions σ1, . . . , σn a number n ∈ N and a scheduler
σ : N → Distrib(Σ) such that Pn(σ) ≥ α. If this exists, then there is a pure
strategy σ, which can be written as a word w of size n being the sequnence of
choices in Σ being made. In that case, we will write PH(w) = Pnσ (w). It is thus
also undecidable to know whether there exists w such that PH(w) ≥ θ.

Let H = (S,Σ, µ0, (Ma)a∈Σ , F ) be a PFA. We can assume without loss of
generality that it is complete. We build LMC A = (S′,M, µ0) over Σ′ = Σ]{$}
as follows:

– We have S′ = S ] {qs} ] {qns},
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– For s, s′ ∈ S, a ∈ Σ, we define M(s, a, s′) = Ma[s,s′]/(|Σ|+ 1),
– For s ∈ F, we define M(s, $, qns) = 1/|Σ|+ 1),
– For s ∈ S′ \ F , we define M(s, $, qs) = 1/(|Σ|+ 1),
– For M(qs, $, qs) = 1,M(qns, $, qns) = 1.

We have for all s ∈ S′,
∑
a∈Σ′,s′∈S′M(s, a, s′) = 1, and there is a path to

qsecret, qnon-secret (playing just one letter). We represent the probability of a word
w (seen as a sequence of actions chosen) with respect to PFA H as PH(w) and
the probability of w (seen as an observation) with respect to LMC A as PA(w).

Let w ∈ Σ∗. We have easily PAnon-secret(w$) = PH(w)/(|Σ| + 1)|w|+1 and
PAsecret(w$) = (1− PH(w))/(|Σ|+ 1)|w|+1. Hence, PA(w$) = 1/(|Σ|+ 1)|w|+1.

That is, d(w$) = PAnon-secret(w$)/PA(w$) = (PH(w)·(1/(|Σ|+1)|w|+1))/1/(|Σ|+
1)|w|+1 = PH(w). In particular, d(w$) < α iff PH(w) < α. Hence, we obtain the
undecidability of dworse(A) ≥ α.Similar result can be found in [22].

Further, we can show that it is unapproximable by using the following unde-
cidable problem on PFAs [16]: Given 0 < ε < 1 and a PFA H for which one of
the two cases hold :
(1) there is some strategy in the PFA such that the probability to accept is lower
than ε, or
(2) for all strategy, the probability to accept is at least 1− ε.
Decide whether case (1) holds.

Given a PFA H = (S,Σ, s0, (Ma)a∈Σ , F ) we construct the same LMC A as
above. As derived above, ∀w ∈ Σ∗, PH(w) = ds(w$) so either
(1) ∃w, d(w$) < ε, or (2) ∀w, d(w$) ≥ 1− ε

We cannot decide which case holds else we could decide which case hold for
hte PFA, a contradiction. In particular, if we could approximate dworst(A), we
could approximate minw∈Σ∗P

H(w) = dworst(A), which cannot be. ut

Proofs in Section 5

We start by proving the proof of point 3) of Theorem 1 (recalled below), which
was only sketched before.

Theorem 1. Input: an LMC A = (S,M, µ0), 0 < θ < 1 and λ ∈ [0, 1],

1. Knowing whether dθ(A) > λ is undecidable. However,
2. Given an error bound ε > 0, and a high confidence value δ < 1, one can

compute a value γ such that P (|dθ(A) − γ| ≤ ε) ≥ δ in polynomial time

O(|A| log(1/(1−δ))ε2 ).
3. Given an error bound ε > 0, it is possible to compute a value γ such that
|dθ(A)− λ| ≤ ε in PSPACE in |A| and |ε|.

Proof. We have dθ(A) =
∑
w Pstop(w) · dθ(w). We apply Lemma 1 and obtain

a number k of steps after which almost all runs are stopped. We have dθ =∑
w∈(L(A)∩Σ≤k) Pstop(w) ·dθ(w) +

∑
w∈(L(A)∩Σ>k) Pstop(w) ·dθ(w). Consider the

two terms separately:
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We can compute the first term λ =
∑
w∈(L(A)∩Σ≤k) Pstop(w) ·dθ(w) by calcu-

lating the sum over all the possible words satisfying these conditions: we can do
this in EXPTIME as there are at most an exponential number of such runs wrt
the size of the LMC. The second term is trivially non-negative. Also, by choice
of k and because 0 ≤ dθ(w) ≤ 1, we have that 0 ≤

∑
w∈(L(A)∩Σ>k) Pstop(w) ·

dθ(w) ≤ ε. We thus have 0 ≤ dθ(A)− λ ≤ ε.

We now turn to the PSPACE complexity result: First, notice that Pstop(w)
cannot be written with polynomially many bits for w ∈ Σk. The trick is to
approximate Pstop(w) using floating-point arithmetic with small relative error:

P̃stop(w) ∈ [Pstop(w)(1 − α),Pstop(w)(1 + α)] for small α > 0. We compute

similarly an approximation ˜Pnon-secret(w) of Pnon-secret(w), for all w ∈ Σ≤k. We

now show that from there, we can compute a good approximation d̃(w) of d(w),

and then a good approximation d̃θ(A) =
∑
P̃stop(w) ·max(0, θ − d̃(w)).

We define d̃(w) =
˜Pnon-secret(w)

P̃stop(w)
∈ [
Pnon-secret(w)(1− α)

Pstop(w)(1 + α)
,
Pnon-secret(w)(1 + α)

Pstop(w)(1− α)
].

Hence θ − d̃(w) ∈ [θ − Pnon-secret(w)(1 + α)

Pstop(w)(1− α)
, θ − Pnon-secret(w)(1− α)

Pstop(w)(1 + α)
]

Let us compare max(0, θ−d(w)) and max(0, θ− d̃(w)). There are three cases:

– if θ < d(w)
(1− α)

(1 + α)
, then max(0, θ − d(w)) = 0 = max(0, θ − d̃(w)).

– If θ > d(w)
(1 + α)

(1− α)
, then |dθ(w)−d̃θ(w)| ≤ θ−d(w)−(1−α)(θ−d(w)

1 + α

1− α
).

Hence, |dθ(w)− d̃θ(w)| ≤ (θ + d(w)) · α ≤ 2α.

– Otherwise, d(w)
(1 + α)

(1− α)
≤ θ ≤ d(w)

(1− α)

(1 + α)
. Thus, |dθ(w) − d̃θ(w)| ≤ |(1 +

α) · (d(w)
1 + α

1− α
− d(w)

1− α
1 + α

)| ≤ d(w)
4α

1− α
≤ 8α.

So given an ε > 0, 0 < θ < 1 we select α such that 8α ≤ ε, which implies that
|dθ(A) − d̃θ(A)| ≤

∑
w P(w) · |dθ(w) − d̃θ(w)| ≤ ε

∑
w P(w) ≤ ε. We know by

Ladner’s result [15] on counting that we can perform λ = d̃θ(A) in polynomial
space (sum over polynomial number of bits), which makes the overall problem
solvable in PSPACE. ut

Let A be an ILMC. Let F a subset of states. We define X(F ) = {s | ∀A ∈
LMC(A), there exists a path from s to F} of states from which F can be reached

in all A ∈ LMC(A), for LMC ∈ {UMC,IMDP}.
We now turn to the case of ILMCs.

Theorem 2. Given an ILMC A = (S, δ, µ0), and a constant ε > 0, we can
compute in EXPTIME a number λmin ∈ [0, 1] such that |minA∈LMC(A)(dθ(A))−
λmin| ≤ ε. Also, we can compute in EXPSPACE a number λmax ∈ [0, 1] such
that |maxA∈LMC(A)(dθ(A))− λmax| ≤ ε, for LMC ∈ {UMC,IMDP}.

21



Proof. The idea is to consider
∑
w∈Σ≤K contribA(w) ≤ dθ(A) ≤

∑
w∈Σ≤K

contribA(w) + ε, where contribA(w) = θPAstop(w) − PAnon-secret(w) or 0 if this
is negative.

First, remark that dθ(A) =
∑
w(θPstop(w)−min(Pnon-secret(w), θP(w)). For

all w, the contribution from w is thus either contrib(w) = θPstop(w)−Pnon-secret(w)
or 0, and it is smaller than Pstop(w).

We have
∑
w∈Σ≤K contrib(w) ≤ dθ(A) ≤

∑
w∈Σ≤K contrib(w) + ε. It thus

suffices to compute λmin = minA∈IMDP(A)

∑
w∈Σ≤K contrib(w) to obtain a de-

sired number ε-close to the minimal value.
For that, we use the following linear optimization program:

– variables: contrib(w) for all w ∈ Σ≤K and µ(s, n) for all s ∈ S and n ≤ K.
– constraints: for all s, n, µ(s, n) should be a valid assignment ie with µ((s, n), a, (s′, n+

1)) ∈ δ(s, a, s′) and
∑
a,s′ µ((s, n), a, (s′, n + 1)) = 1. We denote by A the

associated LMC.
– further, for all w ∈ Σ≤K , we need to have contrib(w) ≥ 0 and

contrib(w) ≥ θ
∑

path ρ labelled w PAstop(ρ)−
∑

path ρ to non-secret labelled w PAstop(ρ)
– Objective: minimize

∑
w∈Σ≤K contrib(w).

Notice that when the minimum is reached, we have either contrib(w) =
θ
∑

path ρ labelled w PAstop(ρ)−
∑

path ρ to non-secret labelled w PAstop(ρ) or 0. This gives
us an EXPTIME algorithm.

This is not true for max. Instead of using linear programming, we rely
on the existential theory of real to compute λmax = maxA∈IMDP(A)

∑
w∈Σ≤K

contrib(w). This gives us an EXPSPACE algorithm. ut

Proofs in Section 6

Proofs for no run fully reveals whether it is secret

Theorem 3. Given one LMC A, testing whether dA(w) > 0 for all w ∈ Σ∗ is
PSPACE-complete. For an ILMC A, testing dA(w) > 0 for all w ∈ Σ∗ and for
all A ∈ IMDP(A) or A ∈ UMC(A) is also PSPACE-complete.

Proof. We start by considering an LMC A = (S,M, µ0).
First we will prove that the problem is in PSPACE. The problem to know

whether dA(w) > 0 for all w ∈ Σ∗ is equivalent with there does not exist an
observation w with Pnon-secret(w) = 0 and Psecret(w) > 0. The algorithm is
classical, see e.g. [21]: it suffices to consider the deterministic belief automaton
associated with A, namely B = (2S , T, B0), where B0 = {q | µ0(q) > 0} and
(S, a, S′) ∈ T iff S′ = {q′ | ∃q ∈ S,M(q, a, q′) > 0}. We have that there exists w
with Pnon-secret(w) = 0 and Psecret(w) > 0 iff one can reach a belief B containing
qsecret but not qnon-secret from B0. This is a reachability question in a graph with
an exponential number of nodes, i.e. it can be done in PSPACE.

We now prove that this problem is PSPACE-Hard. For that, we reduce the
PSPACE-Hard Problem of inclusion of language of two automaton, similar to
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the proof of theorem 14 in [1]. Given two automata for Ai = (Si, Σ, s
i
0, ∆

i, Fi)
for i = 1, 2, we know that checking whether L(A1) ⊆ L(A2) is a PSPACE-Hard
problem. We construct an LMC A = (S1 ] S2 ] {qsecret} ] {qnon-secret},M, µ0)
over alphabet Σ ] {$} with:

– µ0(s10) = 0.5, µ0(s20) = 0.5
– For all a ∈ Σ, M(s, a, s′) > 0 iff (s, a, s′) ∈ ∆1 or (s, a, s′) ∈ ∆2

– M(s, $, qsecret) > 0 iff s ∈ F1

– M(s, $, qnon-secret) > 0 iff s ∈ F2

– M(qsecret, $, qsecret) = 1,M(qnon-secret, $, qnon-secret) = 1

Now we claim that dA(w) > 0 for all w ∈ Σ∗ iff L(B1) ⊆ L(B2). Indeed,
there is some w such that dA(w) = 0, iff w ∈ L(A1) but w /∈ L(A2), i.e. iff
L(B1) 6⊆ L(B2). Hence the problem is PSPACE-Complete.

We now consider an ILMC A, viewed as an uncertain model. We first consider
the UMC semantics of A. As shown above, the support of the transitions is
important, but the actual > 0 probability of each > 0 transition does not matter.
We can thus guess in PSPACE the support of the transitions of an UMC A, check
that A ∈ UMC(A), and then use the above PSPACE algorithm to check whether
dworst(A) = 0. We thus obtain a PSPACE algorithm. The PSPACE-hardness
follows from the hardness on LMCs.

We now consider the IMDP semantics of A: The PSPACE-hardness follows
from the PSPACE-hardness for LMCs. We now prove that one can check whether
there exists A ∈ IMDP(A) and w ∈ Σ∗ with dA(w) = 0, which is the opposite of
our problem. We conclude as co-PSPACE=PSPACE by Immerman-Szelepcsenyi
theorem [14].

As transitions do not only depend upon the action, but also on the whole
history, we cannot encode a choice of support of transition with a polynomial
number of bits. Hence we cannot reason as for the UMC semantics. Instead,
we will guess on the fly the transitions. Thus, 2 states with different history
may not have the same set of transitions, but that is exactly what is allowed
in the IMDP semantics. To represent that, we build a non-deterministic belief
automaton B′ = (2S , ∆,B0) on alphabet Σ where 2S represents the set of states,
B0 the initial state, and ∆ the set of transitions corresponding to the ILMC
A = (S,Σ, µ0, δ) as follows :-

– B0 = {s ∈ S|µ0(s) > 0}
– For B,B′ ∈ 2S , a ∈ Σ, we have (B, a,B′) ∈ ∆′ if and only if there exists

a σ : S × Σ 7→ Dist(S) with σ(s, a, s′) ∈ δ(s, a, s′) for all s, a, s′ such that
B′ = {s′ ∈ S | ∃s ∈ B, σ(s, a, s′) > 0}.

In Fig. 5, we give the belief automaton B corresponding to the ILMC of
Fig. 3. The two non-deterministic transitions are reading a from either node
{q1, q3} or {q3}, corresponding to M(q3, a, q4) = 0 and M(q3, a, q4) > 0.

We have that there exists A ∈ IMDP(A) and w ∈ Σ∗ with dA(w) = 0 iff
there is a path from B0 to {qsecret} in B. This can be tested in PSPACE, as the
non-deterministic belief automaton has an exponential number of states.
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{q0} {q1, q3} {q2, q5}

{qsecret, qnon-secret}{q2, q4, q5}

{q3} {q4, q5}{q5}

{qsecret}

a a

$

$

a

b

a

b

a

$

$

$

$

Fig. 5: Non-deterministic belief automaton for the ILMC in figure 3

Indeed, assume that there exists an LMCA ∈ IMDP(A) such that ∃w, dA(w) =
0. That is, the path labeled by w in the deterministic belief automaton associ-
ated with A from B0 leads to {qsecret}. By construction, we will find such a path
in the non-deterministic belief automaton associated with the ILMC A.

On the other hand, if there is a path ρ to {qsecret} in the non-deterministic
belief automaton associated with the ILMC A, then one can build an LMC A ∈
IMDP(A) such that dA(w) = 0: it suffices to choose any sequence of assignments
according to ρ. ut
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Proofs for total opacity

Theorem 5. Given an LMC A, testing whether dA(w) = 1 for all w ∈ Σ∗ can
be done in NLOGSPACE. For an ILMC A, checking whether dA(w) = 1 for all
w ∈ Σ∗ and for all A ∈ LMC(A) is LOGSPACE, for LMC ∈ {UMC, IMDP}.

Proof. Let A be an LMC. dA(w) = 1 for all w is equivalent to the non-existence
of w such that PAs (w$) > 0, that is state qsecret is not reachable. This can be
checked in NLOGSPACE.

For ILMCs, there is no difference between the UMC and the IMDP semantics
as we need to handle a reachability objective (positional strategies are sufficient
to win reachability objectives in MDPs [2]). Without restriction, we can thus
consider the UMC semantics. We rely on the following lemmas.

Lemma 5. Let A = (S, δ, µ0) be an ILMC and A1 = (S,M1, µ0), A2 = (S,M2, µ0) ∈
UMC(A). Let A = (S,M, µ0) such that for all s, s′ ∈ S, a ∈ Σ, M(s, a, s′) =
(M1(s, a, s′) +M2(s, a, s′))/2. Then A ∈ UMC(A).

Proof. For all s, s′ ∈ S and a ∈ Σ, M(s, a, s′) ∈ [M1(s, a, s′),M2(s, a, s′)] (or
[M2(s, a, s′),M1(s, a, s′)]) and thus M(s, a, s′) ∈ δ(s, a, s′). ut

Notice that the edges of A are the union of the edges of A1 and A2.

Lemma 6. Let A = (S, δ, µ0) be an ILMC under the UMC semantic such that
UMC(A) is non-empty. There exists an LMC A ∈ UMC(A) such that for
all s, s′ ∈ S, a ∈ Σ, ∃A′ = (S,M ′, µ0) ∈ UMC(A) and M ′(s, a, s′) > 0 ⇔
M(s, a, s′) > 0.

That is, the support of A is the maximal wrt inclusion of edges.

Proof. Let us suppose there is no such A. Let A1, A2 ∈ UMC(A) such that their
supports are maximal wrt inclusion of edges and different. By lemma 5, there is
an A such that the support of A the union of those of A1 and A2. Thus, there
were not maximal, hence a contradiction. ut

Thus, if there exists an LMC such that qsecret is reachable, then qsecret is
reachable in A containing all the possible edges. Hence, the problem of deciding
if dworst(A) = 1 is equivalent to decide if qsecret is reachable in that A, hence the
complexity.

ut
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Theorem 6. Given an ILMC A, testing whether there exists A ∈ UMC(A) or
A ∈ IMDP(A) such that dA(w) = 1 for all w ∈ Σ∗ is PTIME-complete.

Proof. As for Theorem 5, there is no difference between the UMC and the IMDP
semantics for this case. In order to prove the PTIME completeness, we first give
an algorithm that answers the problem for the UMC semantics (and thus for
the IMDP semantics), and then show that the total opacity problem for UMCs
is P-hard.

We use Lemma 1 with F = {qsecret} to compute the set X(F ) of states which
can reach qsecret in all LMCs A ∈ LMC(A). We let Init={s | µ0(s) > 0}. There
exists an A ∈ LMC(A) and some w with Psecret(w) > 0 iff Init ∩X(F ) 6= ∅, by
definition of X(F ). By contraposition, there exists A ∈ LMC(A) with dA(w) = 1
for all w ∈ Σ∗ iff Init ∩X(F ) = ∅.

Hardness: Now we prove that this problem is PTIME-hard:

Lemma 7. Given an ILMC A, testing whether there exists A ∈UMC(A) such
that dA(w) = 1 for all w ∈ Σ∗ is PTIME-hard.

Proof. The proof is a reduction from the reachability problem over MDPs, which
is known to be P-complete [7, 14]. Given a complete MDP M = (S,Σ, µ0, ∆), a
target T ⊆ S we construct the ILMC B = (Q,Σ ] {$}, µ0, δ) as follows:

– Q = S ∪ {(s, a) ∈ S ×Σ} ∪ {qs, qns},
– ∀s ∈ T, δ(s, $, qs) = [1, 1],
– ∀s ∈ S \ T, δ(s, $, qns) = [0.1, 0.1],
– ∀s ∈ S \ T, a ∈ Σ, δ(s, ε, (s, a))) = [0, 0.9],
– ∀s, s′ ∈ S, a ∈ Σ, δ((s, a), a, s′) = [∆(s, a, s′), ∆(s, a, s′)],
– δ(qs, $, qs) = [1, 1] and δ(qns, $, qns) = [1, 1],
– for any other s, s′ and a ∈ Σ δ(s, a, s′) = [0, 0].

Remember that if there is a strategy σ′ such that Pσ′(Reach(T )) = 0,
then there is a memoryless strategy σ such that Pσ(Reach(T )) = 0. Let σ
be such a memoryless strategy. Then let be the LMC A ∈ UMC(B) with ∀s,
δ(s, ε, (s, a))) = 0.9 if a = σ(s) and 0 else. It is easy to see that in A, qs is not
reachable as T is not either, and thus dA(w) = 1 for all w ∈ Σ∗.

Conversely, let us suppose there exists A′ ∈ UMC(B) such that dA′(w) = 1
for all w ∈ Σ∗. Then, there exists A ∈ UMC(B) such that dA(w) = 1 for all
w ∈ Σ∗ with for all s, a, δ(s, ε, (s, a))) equals either 0 or 0.9: removing edges will
not enable reachability of qs. Then, let σ be such that a = σ(s) iff δ(s, ε, (s, a))) =
0.9. Then Pσ(Reach(T )) = 0. ut
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