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Abstract
In [5], Angluin et al. proved that population protocols compute exactly the predicates definable in
Presburger arithmetic (PA), the first-order theory of addition. As part of this result, they presented
a procedure that translates any formula ϕ of quantifier-free PA with remainder predicates (which
has the same expressive power as full PA) into a population protocol with 2O(poly(|ϕ|)) states that
computes ϕ. More precisely, the number of states of the protocol is exponential in both the bit
length of the largest coefficient in the formula, and the number of nodes of its syntax tree.

In this paper, we prove that every formula ϕ of quantifier-free PA with remainder predicates
is computable by a leaderless population protocol with O(poly(|ϕ|)) states. Our proof is based on
several new constructions, which may be of independent interest. Given a formula ϕ of quantifier-free
PA with remainder predicates, a first construction produces a succinct protocol (with O(|ϕ|3) leaders)
that computes ϕ; this completes the work initiated in [8], where we constructed such protocols for a
fragment of PA. For large enough inputs, we can get rid of these leaders. If the input is not large
enough, then it is small, and we design another construction producing a succinct protocol with one
leader that computes ϕ. Our last construction gets rid of this leader for small inputs.
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1 Introduction

Population protocols [3, 4] are a model of distributed computation by indistinguishable,
mobile finite-state agents, intensely investigated in recent years (see e.g. [2, 10]). Initially
introduced to model networks of passively mobile sensors, they have also been applied to the

https://orcid.org/0000-0003-2914-2734
mailto:michael.blondin@usherbrooke.ca
https://orcid.org/0000-0001-9862-4919
mailto:esparza@in.tum.de
https://orcid.org/0000-0002-5758-1876
mailto:blaise.genest@irisa.fr
https://orcid.org/0000-0002-3191-8098
mailto:helfrich@in.tum.de
https://orcid.org/0000-0001-5789-8091
mailto:jaax@in.tum.de


2 Succinct Population Protocols for Presburger Arithmetic

analysis of chemical reactions under the name of chemical reaction networks (see e.g. [16]).
In a population protocol, a collection of agents, called a population, randomly interact

in pairs to decide whether their initial configuration satisfies a given property, e.g. whether
there are initially more agents in some state A than in some state B. Since agents are
indistinguishable and finite-state, their configuration at any time moment is completely
characterized by the mapping that assigns to each state the number of agents that currently
populate it. A protocol is said to compute a predicate if for every initial configuration where
the predicate holds, the agents eventually reach consensus 1, and they eventually reach
consensus 0 otherwise.

In a seminal paper, Angluin et al. proved that population protocols compute exactly
the predicates definable in Presburger arithmetic (PA) [5]. As part of the result, for every
Presburger predicate Angluin et al. construct a leaderless protocol that computes it. The
construction uses the quantifier elimination procedure for PA: every Presburger formula ϕ
can be transformed into an equivalent boolean combination of threshold predicates of the form
α · x > β and remainder predicates of the form α · x ≡ β (mod m), where α is an integer
vector, and β,m are integers [13]. Slightly abusing language, we call the set of these boolean
combinations quantifier-free Presburger arithmetic (QFPA)1. Using that PA and QFPA have
the same expressive power, Angluin et al. first construct protocols for all threshold and
remainder predicates, and then show that the predicates computed by protocols are closed
under negation and conjunction.

The construction of [5] is simple and elegant, but it produces large protocols. Given a
formula ϕ of QFPA, let n be the number of bits of the largest coefficient of ϕ in absolute
value, and let m be the number of atomic formulas of ϕ, respectively. The number of states
of the protocols of [5] grows exponentially in both n and m. In terms of |ϕ| (defined as the
sum of the number of variables, n, and m) they have O(2poly(|ϕ|)) states. This raises the
question of whether succinct protocols with O(poly(|ϕ|)) states exist for every formula ϕ of
QFPA. We give an affirmative answer by proving that every formula of QFPA has a succinct
and leaderless protocol.

Succinct protocols are the state-complexity counterpart of fast protocols, defined as
protocols running in polylogarithmic parallel time in the size of the population. Angluin
et al. showed that every predicate has a fast protocol with a leader [6], but Alistarh et al.,
based on work by Doty and Soloveichik [9], proved that in the leaderless case some predicates
need linear parallel time [1]. Our result shows that, unlike for time complexity, succinct
protocols can be obtained for every QFPA formula in both the leaderless case and the case
with leaders.

The proof of our result overcomes a number of obstacles. Designing succinct leaderless
protocols is particularly hard for inputs with very few input agents, because there are less
resources to simulate leaders. So we produce two completely different families of protocols,
one for small inputs with O(|ϕ|3) agents, and a second for large inputs with Ω(|ϕ|3) agents,
and combine them appropriately.

Large inputs. The family for large inputs is based on our previous work [8]. However,
in order to obtain leaderless protocols we need a new succinct construction for boolean
combinations of atomic predicates. This obstacle is overcome by designing new protocols
for threshold and remainder predicates that work under reversible dynamic initialization.
Intuitively, agents are allowed to dynamically “enter” and “leave” the protocol through the

1 Remainder predicates cannot be directly expressed in Presburger arithmetic without quantifiers.
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initial states (dynamic initialization). Further, every interaction can be undone (reversibility),
until a certain condition is met, after which the protocol converges to the correct output for
the current input. We expect protocols with reversible dynamic initialization to prove useful
in other contexts, since they allow a protocol designer to cope with “wrong” non-deterministic
choices.

Small inputs. The family of protocols for small inputs is designed from scratch. We exploit
that there are few inputs of small size. So it becomes possible to design one protocol for each
possible size of the population, and combine them appropriately. Once the population size is
fixed, it is possible to design agents that check if they have interacted with all other agents.
This is used to simulate the concatenation operator of sequential programs, which allows for
boolean combinations and succinct evaluation of linear combinations.

Relation to previous work. In [8], we designed succinct protocols with leaders for systems
of linear equations. More precisely, we constructed a protocol with O((m+ k)(n+ logm))
states and O(m(n+logm)) leaders that computes a given predicate Ax ≥ c, where A ∈ Zm×k
and n is the number of bits of the largest entry in A and c, in absolute value. Representing
Ax ≥ c as a formula ϕ of QFPA, we obtain a protocol with O(|ϕ|2) states and O(|ϕ|2)
leaders that computes ϕ. However, in [8] no succinct protocols for formulas with remainder
predicates are given, and the paper makes extensive use of leaders.

Organization. Sections 2 and 3 introduce basic notation and definitions. Section 4 presents
the main result. Sections 5 and 6 present the constructions of the protocols for large and
small inputs, respectively. Section 7 presents conclusions. For space reasons, several proofs
are only sketched. Detailed proofs are given in the appendices of this paper.

2 Preliminaries

Notation. We write Z to denote the set of integers, N to denote the set of non negative
integers {0, 1, . . .}, [n] to denote {1, 2, . . . , n}, and NE to denote the set of all multisets
over E, i.e. unordered vectors with components labeled by E. The size of a multiset
v ∈ NE is defined as |v| def=

∑
e∈E v(e). The set of all multisets over E with size s ≥ 0 is

E〈s〉
def=
{
v ∈ NE : |v| = s

}
. We sometimes write multisets using set-like notation, e.g. Ha, 2·bI

denotes the multiset v such that v(a) = 1, v(b) = 2 and v(e) = 0 for every e ∈ E \ {a, b}.
The empty multiset HI is instead denoted 0 for readability. For every u,v ∈ NE , we write
u ≥ v if u(e) ≥ v(e) for every e ∈ E. Moreover, we write u + v to denote the multiset
w ∈ NE such that w(e) def= u(e) + v(e) for every e ∈ E. The multiset u � v is defined
analogously with − instead of +, provided that u ≥ v.
Presburger arithmetic. Presburger arithmetic (PA) is the first-order theory of N with
addition, i.e. FO(N,+). For example, the PA formula ψ(x, y, z) = ∃x′∃z′(x = x′ + x′) ∧ (y =
z+z′)∧¬(z′ = 0) states that x is even and that y > z. It is well-known that for every formula
of PA there is an equivalent formula of quantifier-free Presburger arithmetic (QFPA) [15],
the theory with syntax given by the grammar

ϕ(v) ::= a · v > b | a · v ≡c b | ϕ(v) ∧ ϕ(v) | ϕ(v) ∨ ϕ(v) | ¬ϕ(v)

where a ∈ ZX , b ∈ Z, c ∈ N≥2, and ≡c denotes equality modulo c. For example, the formula
ψ(x, y, z) above is equivalent to (x ≡2 0) ∧ (y − z ≥ 1). Throughout the paper, we refer to
any formula of QFPA, or the predicate NX → {0, 1} it denotes, as a predicate. Predicates of
the form a · v > b and a · v ≡c b are atomic, and they are called threshold and remainder
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predicates respectively. The max-norm ‖ϕ‖ of a predicate ϕ is the largest absolute value
among all coefficients occurring within ϕ. The length len(ϕ) of a predicate ϕ is the number
of boolean operators occurring within ϕ. The bit length of a predicate ϕ, over variables X, is
defined as |ϕ| def= len(ϕ) + log‖ϕ‖+ |X|. We lift these definitions to sets of predicates in the
natural way: given a finite set P of predicates, we define its size size(P ) as the number of
predicates in P , its length as len(P ) def=

∑
ϕ∈P len(ϕ), its norm as ‖P‖ def= max{‖ϕ‖ : ϕ ∈ P},

and its bit length as |P | def= size(P ) + len(P ) + log‖P‖+ |X|. Note that len(P ) = 0 iff P only
contains atomic predicates.

3 Population protocols

A population protocol is a tuple P = (Q,T, L,X, I,O) where
Q is a finite set whose elements are called states;
T ⊆ {(p, q) ∈ NQ × NQ : |p| = |q|} is a finite set of transitions containing the set
{(p,p) : p ∈ NQ, |p| = 2};
L ∈ NQ is the leader multiset;
X is a finite set whose elements are called input variables;
I : X → Q is the input mapping;
O : Q→ {0, 1,⊥} is the output mapping.

For readability, we often write t : p 7→ q to denote a transition t = (p, q). Given ∆ ≥ 2,
we say that t is ∆-way if |p| ≤ ∆.

In the standard syntax of population protocols T is a subset of N2×N2, and O : Q→ {0, 1}.
These differences are discussed at the end of this section.
Inputs and configurations. An input is a multiset v ∈ NX such that |v| ≥ 2, and a
configuration is a multiset C ∈ NQ such that |C| ≥ 2. Intuitively, a configuration represents
a population of agents where C(q) denotes the number of agents in state q. The initial
configuration Cv for input v is defined as Cv

def= L+ Hv(x) · I(x) : x ∈ XI.
The support and b-support of a configuration C are respectively defined as JCK def= {q ∈ Q :

C(q) > 0} and JCKb = {q ∈ JCK : O(q) = b}. The output of a configuration C is defined as
O(C) def= b if JCKb 6= ∅ and JCK¬b = ∅ for some b ∈ {0, 1}, and O(C) def= ⊥ otherwise. Loosely
speaking, if O(q) = ⊥ then agents in state q have no output, and a population has output
b ∈ {0, 1} if all agents with output have output b.
Executions. A transition t = (p, q) is enabled in a configuration C if C ≥ p, and disabled
otherwise. Because of our assumption on T , every configuration enables at least one transition.
If t is enabled in C, then it can be fired leading to configuration C ′ def= C � p+ q, which we
denote C t−→ C ′. For every set of transitions S, we write C S−→ C ′ if C t−→ C ′ for some t ∈ S.
We denote the reflexive and transitive closure of S−→ by S∗−−→. If S is the set of all transitions
of the protocol under consideration, then we simply write −→ and ∗−→.

An execution is a sequence of configurations σ = C0C1 · · · such that Ci −→ Ci+1 for every
i ∈ N. We write σi to denote configuration Ci. The output of an execution σ is defined
as follows. If there exist i ∈ N and b ∈ {0, 1} such that O(σi) = O(σi+1) = · · · = b, then
O(σ) def= b, and otherwise O(σ) def= ⊥.
Computations. An execution σ is fair if for every configuration D the following holds:

if |{i ∈ N : σi
∗−→ D}| is infinite, then |{i ∈ N : σi = D}| is infinite.

In other words, fairness ensures that an execution cannot avoid a configuration forever. We
say that a population protocol computes a predicate ϕ : NX → {0, 1} if for every v ∈ NX
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and every fair execution σ starting from Cv, it is the case that O(σ) = ϕ(v). Two protocols
are equivalent if they compute the same predicate. It is known that population protocols
compute precisely the Presburger-definable predicates [5, 11].

I Example 1. Let Pn = (Q,T,0, {x}, I, O) be the protocol where Q def= {0, 1, 2, 3, . . . , 2n},
I(x) def= 1, O(a) = 1 def⇐⇒ a = 2n, and T contains a transition, for each a, b ∈ Q, of the form
Ha, bI 7→ H0, a+ bI if a+ b < 2n, and Ha, bI 7→ H2n, 2nI if a+ b ≥ 2n. It is readily seen that Pn
computes ϕ(x) def= (x ≥ 2n). Intuitively, each agent stores a number, initially 1. When two
agents meet, one of them stores the sum of their values and the other one stores 0, with sums
capping at 2n. Once an agent reaches this cap, all agents eventually get converted to 2n.

Now, consider the protocol P ′n = (Q′, T ′,0, {x}, I ′, O′), where Q′ def= {0, 20, 21, . . . , 2n},
I ′(x) def= 20, O′(a) = 1 def⇐⇒ a = 2n, and T ′ contains a transition for each 0 ≤ i < n of the
form H2i, 2iI 7→ H0, 2i+1I, and a transition for each a ∈ Q′ of the form Ha, 2nI 7→ H2n, 2nI.
Using similar arguments as above, it follows that P ′n also computes ϕ, but more succinctly:
While Pn has 2n + 1 states, P ′n has only n+ 1 states.

Types of protocols. A protocol P = (Q,T, L,X, I,O) is
leaderless if |L| = 0, and has |L| leaders otherwise;
∆-way if all its transitions are ∆-way;
simple if there exist f, t ∈ Q such that O(f) = 0, O(t) = 1 and O(q) = ⊥ for every
q ∈ Q \ {f, t} (i.e., the output is determined by the number of agents in f and t.)

Protocols with leaders and leaderless protocols compute the same predicates [5]. Every ∆-way
protocol can be transformed into an equivalent 2-way protocol with a polynomial increase in
the number of transitions [8]. Finally, every protocol can be transformed into an equivalent
simple protocol with a polynomial increase in the number of states (see Appendix A).

4 Main result

The main result of this paper is the following theorem:

I Theorem 2. Every predicate ϕ of QFPA can be computed by a leaderless population
protocol P with O(poly(|ϕ|)) states. Moreover, P can be constructed in polynomial time.

To prove Theorem 2, we first provide a construction that uses ` ∈ O(|ϕ|3) leaders. If
there are at least |v| ≥ ` input agents v (large inputs), we will show how the protocol can
be made leaderless by having agents encode both their state and the state of some leader.
Otherwise, |v| < ` (small inputs), and we will resort to a special construction, with a single
leader, that only works for populations of bounded size. We will show how the leader can be
simulated collectively by the agents. Hence, we will construct succinct protocols computing
ϕ for large and small inputs, respectively. Formally, we prove:

I Lemma 3. Let ϕ be a predicate over variables X. There exist ` ∈ O(|ϕ|3) and leaderless
protocols P≥` and P<` with O(poly(|ϕ|)) states such that:
(a) P≥` computes predicate (|v| ≥ `)→ ϕ(v), and
(b) P<` computes predicate (|v| < `)→ ϕ(v).

Theorem 2 follows immediately from the lemma: it suffices to take the conjunction of
both protocols, which only yields a quadratic blow-up on the number of states, using the
classical product construction [3]. The rest of the paper is dedicated to proving Lemma 3.
Parts (a) and (b) are shown in Sections 5 and 6, respectively.

In the remainder of the paper, whenever we claim the existence of some protocol P, we
also claim polynomial-time constructibility of P without mentioning it explicitly.
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5 Succinct protocols for large populations

We show that, for every predicate ϕ, there exists a constant ` ∈ O(|ϕ|3) and a succinct
protocol P≥` computing (|v| ≥ `) → ϕ(v). Throughout this section, we say that n ∈ N is
large if n ≥ `, and that a protocol computes ϕ for large inputs if it computes (|v| ≥ `)→ ϕ(v).

We present the proof in a top-down manner, by means of a chain of statements of the
form “A← B, B ← C, C ← D, and D”. Roughly speaking, and using notions that will be
defined in the forthcoming subsections:

Section 5.1 introduces protocols with helpers, a special class of protocols with leaders.
The section shows: ϕ is computable for large inputs by a succinct leaderless protocol (A),
if it is computable for large inputs by a succinct protocol with helpers (B).
Section 5.2 defines protocols that simultaneously compute a set of predicates. The section
proves: (B) holds if the set P of atomic predicates occurring within ϕ is simultaneously
computable for large inputs by a succinct protocol with helpers (C).
Section 5.3 introduces protocols with reversible dynamic initialization. The section shows:
(C) holds if each atomic predicate of P is computable for large inputs by a succinct
protocol with helpers and reversible dynamic initialization (D).
Section 5.4 shows that (D) holds by exhibiting succinct protocols with helpers and
reversible dynamic initialization that compute atomic predicates for large inputs.

Detailed proofs and some formal definitions of this section are found in ??.

5.1 From protocols with helpers to leaderless protocols
Intuitively, a protocol with helpers is a protocol with leaders satisfying an additional property:
adding more leaders does not change the predicate computed by the protocol. Formally, let
P = (Q,T, L,X, I,O) be a population protocol computing a predicate ϕ. We say that P is a
protocol with helpers if for every L′ � L the protocol P ′ = (Q,T, L′, X, I,O) also computes
ϕ, where L′ � L def= ∀q ∈ Q : (L′(q) = L(q) = 0 ∨ L′(q) ≥ L(q) > 0). If |L| = `, then we say
that P is a protocol with ` helpers.

I Theorem 4. Let P = (Q,T, L,X, I,O) be a ∆-way population protocol with `-helpers
computing some predicate ϕ. There exists a 2-way leaderless population protocol with O(` ·
|X|+ (∆ · |T |+ |Q|)2) states that computes (|v| ≥ `)→ ϕ(v).

Proof sketch. By [8, Lemma 3], P can be transformed into a 2-way population protocol
(with helpers2) computing the same predicate ϕ, and with at most |Q|+ 3∆ · |T | states. Thus,
we assume P to be 2-way in the rest of the sketch.

For simplicity, assume X = {x} and L = H3 · q, 5 · q′I; that is, P has 8 helpers, and
initially 3 of them are in state q, and 5 are in q′. We describe a leaderless protocol P ′ that
simulates P for every input v such that |v| ≥ |L| = `. Intuitively, P ′ runs in two phases:

In the first phase each agent gets assigned a number between 1 and 8, ensuring that
each number is assigned to at least one agent (this is the point at which the condition
|v| ≥ ` is needed). At the end of the phase, each agent is in a state of the form (x, i),
meaning that the agent initially represented one unit of input for variable x, and that it
has been assigned number i. To achieve this, initially every agent is placed in state (x, 1).
Transitions are of the form H(x, i), (x, i)I 7→ H(x, i+ 1), (x, i)I for every 1 ≤ i ≤ 7. The

2 Lemma 3 of [8] deals with leaders and not the more specific case of helpers. Nonetheless, computation
under helpers is preserved as the input mapping of P remains unchanged in the proof of the lemma.
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transitions guarantee that all but one agent is promoted to (x, 2), all but one to (x, 3),
etc. In other words, one agent is “left behind” at each step.
In the second phase, an agent’s state is a multiset: agents in state (x, i) move to state
HI(x), qI if 1 ≤ i ≤ 3, and to state HI(x), q′I if 4 ≤ i ≤ 8. Intuitively, after this move
each agent has been assigned two jobs: simultaneously simulate a regular agent of P
starting at state x, and a helper of L starting at state q or q′. Since in the first phase
each number is assigned to at least one agent, P ′ has at least 3 agents simulating helpers
in state q, and at least 5 agents simulating helpers in state q′. There may be many more
helpers, but this is harmless, because, by definition, additional helpers do not change the
computed predicate.
The transitions of P ′ are designed according to this double role of the agents of P ′. More
precisely, for all multisets p, q,p′, q′ of size two, Hp, qI 7→ Hp′, q′I is a transition of P ′ iff
(p+ q) −→ (p′ + q′) in P. J

5.2 From multi-output protocols to protocols with helpers
A k-output population protocol is a tuple Q = (Q,T, L,X, I,O) where O : [k]×Q→ {0, 1,⊥}
and Qi

def= (Q,T, L,X, I,Oi) is a population protocol for every i ∈ [k], where Oi denotes the
mapping such that Oi(q)

def= O(i, q) for every q ∈ Q. Intuitively, since each Qi only differs
by its output mapping, Q can be seen as a single population protocol whose executions
have k outputs. More formally, Q computes a set of predicates P = {ϕ1, ϕ2, . . . , ϕk} if Qi
computes ϕi for every i ∈ [k]. Furthermore, we say that Q is simple if Qi is simple for
every i ∈ [k]. Whenever the number k is irrelevant, we use the term multi-output population
protocol instead of k-output population protocol.

I Proposition 5. Assume that every finite set A of atomic predicates is computed by some
|A|-way multi-output protocol with O(|A|3) helpers and states, and O(|A|5) transitions. Every
QFPA predicate ϕ is computed by some simple |ϕ|-way protocol with O(|ϕ|3) helpers and
states, and O(|ϕ|5) transitions.

Proof sketch. Consider a binary tree decomposing the boolean operations of ϕ. We design
a protocol for ϕ by induction on the height of the tree.

The case where the height is 0, and ϕ is atomic, is trivial. We sketch the induction
step for the case where the root is labeled with ∧, that is ϕ = ϕ1 ∧ ϕ2, the other cases
are similar. By induction hypothesis, we have simple protocols P1,P2 computing ϕ1, ϕ2,
respectively. Let tj , fj be the output states of Pj for j ∈ {1, 2} such that Oj(tj) = 1 and
Oj(fj) = 0. We add two new states t, f (the output states of the new protocol) and an
additional helper starting in state f. To compute ϕ1 ∧ϕ2 we add the following transitions for
every b1 ∈ {t1, f1}, b2 ∈ {t2, f2}, and b ∈ {t, f}: Hb1, b2, bI 7→ Hb1, b2, tI if b1 = t1 ∧ b2 = t2,
and Hb1, b2, bI 7→ Hb1, b2, fI otherwise. The additional helper computes the conjunction as
desired. J

5.3 From reversible dynamic initialization to multi-output protocols
Let P = {ϕ1, . . . , ϕk} be a set of k ≥ 2 atomic predicates of arity n ≥ 1 over a set
X = {x1, . . . , xn} of variables. We construct a multi-output protocol P for P of size
poly(|ϕ1|+ · · ·+ |ϕk|).

Let P1, . . . ,Pk be protocols for ϕ1, . . . , ϕk. Observe that P cannot be a “product protocol”
that executes P1, . . . ,Pk synchronously. Indeed, the states of such a P are tuples (q1, . . . , qk)
of states of P1, . . . ,Pk, and so P would have exponential size in k. Further, P cannot execute
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P1, . . . ,Pk asynchronously in parallel, because, given an input x ∈ Nn, it must dispatch k ·x
agents (x to the input states of each Pj), but it only has x. Such a P would need (k − 1)|x|
helpers, which is not possible, because a protocol of size poly(|ϕ1|+ · · ·+ |ϕk|) can only use
poly(|ϕ1|+ · · ·+ |ϕk|) helpers, whatever the input x.

The solution is to use a more sophisticated parallel asynchronous computation. Consider
two copies of inputs, denoted X = {x1, . . . , xn} and X = {x1, . . . , xn}. For each predicate
ϕ over X, consider predicate ϕ̃ over X ∪ X satisfying ϕ̃(x,x) = ϕ(kx + x) for every
(x,x) ∈ NX∪X . We obtain ϕ̃(x,x) = ϕ(x) whenever kx + x = x, e.g. for x := bx

k c and
x := xmod k. With this choice, P needs to dispatch a total of k (|x+ x|) ≤ |x|+n · (k− 1)2

agents to compute ϕ̃1(x,x), . . . , ϕ̃k(x,x). That is, n · (k − 1)2 helpers are sufficient to
compute P. Formally, we define ϕ̃ in the following way:

For ϕ(x) =
(

n∑
i=1

αixi > β

)
, we define ϕ̃(x,x) :=

(
n∑
i=1

(k · αi)xi + αixi > β

)

and similarly for modulo predicates. For instance, if ϕ(x1, x2) = 3x1 − 2x2 > 6 and k = 4,
then ϕ̃(x1, x1, x2, x2) = 12x1 + 3x1 − 8x2 − 2x2 > 6. As required, ϕ̃(x,x) = ϕ(kx+ x).

Let us now describe how the protocol P computes ϕ̃1(x,x), . . . , ϕ̃k(x,x). Let P̃1, . . . , P̃k
be protocols computing ϕ̃1, . . . , ϕ̃k. Let X = {x1, . . . , xn} be the input states of P, and let
xj

1, . . . , x
j
n and xj

1, . . . , x
j
n be the input states of P̃j for every 1 ≤ j ≤ k. Protocol P repeatedly

chooses an index 1 ≤ i ≤ n, and executes one of these two actions: (a) take k agents from
xi, and dispatch them to x1

i, . . . , x
k
i (one agent to each state); or (b) take one agent from xi

and (k − 1) helpers, and dispatch them to x1
i, . . . , x

k
i. The index and the action are chosen

nondeterministically. Notice that if for some input xi, all ` agents of xi are dispatched, then
kxj

i + xj
i = ` for all j. If all agents of xi are dispatched for every 1 ≤ i ≤ n, then we say that

the dispatch is correct.
The problem is that, because of the nondeterminism, the dispatch may or may not be

correct. Assume, e.g., that k = 5 and n = 1. Consider the input x1 = 17, and assume that
P has n · (k − 1)2 = 16 helpers. P may correctly dispatch x1 = b 17

5 c = 3 agents to each of
x1

1, . . . , x
1
5 and x1 = (17mod 5) = 2 to each of x1

1, . . . , x
1
5; this gives a total of (3 + 2) · 5 = 25

agents, consisting of the 17 agents for the input plus 8 helpers. However, it may also wrongly
dispatch 2 agents to each of x1

1, . . . , x
1
5 and 4 agents to each of x1

1, . . . , x
1
5, with a total of

(2 + 4) · 5 = 30 agents, consisting of 14 input agents plus 16 helpers. In the second case, each
Pj wrongly computes ϕ̃j(2, 4) = ϕj(2 · 5 + 4) = ϕj(14), instead of the correct value ϕj(17).

To solve this problem we ensure that P can always recall agents already dispatched to
P̃1, . . . , P̃k as long as the dispatch is not yet correct. This allows P to “try out” dispatches
until it dispatches correctly, which eventually happens by fairness. For this we design P so
that (i) the atomic protocols P̃1, . . . , P̃k can work with inputs agents that arrive over time
(dynamic initialization), and (ii) P̃1, . . . , P̃k can always return to their initial configuration
and send agents back to P, unless the dispatch is correct (reversibility). To ensure that
P stops redistributing after dispatching a correct distribution, it suffices to replace each
reversing transition p 7→ q by transitions p+ HxiI 7→ q + HxiI, one for each 1 ≤ i ≤ n: All
these transitions become disabled when x1, . . . , xn are not populated.

Reversible dynamic initialization. Let us now formally introduce the class of protocols
with reversible dynamic initialization that enjoys all properties needed for our construction.
A simple protocol with reversible dynamic initialization (RDI-protocol for short) is a tuple
P = (Q,T∞, T†, L,X, I,O), where P∞ = (Q,T∞, L,X, I,O) is a simple population protocol,
and T† is the set of transitions making the system reversible, called the RDI-transitions.
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Let T def= T∞ ∪ T†, and let In def= {inx : x ∈ X} and Out def= {outx : x ∈ X} be the sets of
input and output transitions, respectively, where inx

def= (0, HI(x)I) and outx
def= (HI(x)I,0). An

initialization sequence is a finite execution π ∈ (T ∪ In ∪ Out)∗ from the initial configuration
L′ with L′ � L. The effective input of π is the vector w such that w(x) def= |π|inx − |π|outx

for every x ∈ X. Intuitively, a RDI-protocol starts with helpers only, and is dynamically
initialized via the input and output transitions.

Let f, t ∈ Q be the unique states of P withO(f) = 0 andO(t) = 1. For every configuration
C, let [C] def= {C ′ : C ′(f) + C ′(t) = C(f) + C(t) and C ′(q) = C(q) for all q ∈ Q \ {f, t}}. In-
tuitively, all configurations C ′ ∈ [C] are equivalent to C in all but the output states.

An RDI-protocol is required to be reversible, that is for every initialization sequence π
with effective input w, and such that L′ π−→ C for some L′ � L, the following holds:

if C T∗−−→ D and D′ ∈ [D], then D′ T
∗

−−→ C ′ for some C ′ ∈ [C], and
C(I(x)) ≤ w(x) for all x ∈ X.

Intuitively, an RDI-protocol can never have more agents in an input state than the effective
number of agents it received via the input and output transitions. Further, an RDI-protocol
can always reverse all sequences that do not contain input or output transitions. This
reversal does not involve the states f and t, which have a special role as output states. Since
RDI-protocols have a default output, we need to ensure that the default output state is
populated when dynamic initialization ends, and reversal for f and t would prevent that.

An RDI-protocol P computes ϕ if for every initialization sequence π with effective input
w such that L′ π−→ C for some L′ � L, the standard population protocol P∞ computes ϕ(w)
from C (that is with T† disabled). Intuitively, if the dynamic initialization terminates, the
RDI-transitions T† become disabled, and then the resulting standard protocol P∞ converges
to the output corresponding to the dynamically initialized input.

I Theorem 6. Assume that for every atomic predicate ϕ, there exists a |ϕ|-way RDI-protocol
with O(|ϕ|) helpers, O(|ϕ|2) states and O(|ϕ|3) transitions that computes ϕ. For every finite
set P of atomic predicates, there exists a |P |-way simple multi-output protocol, with O(|P |3)
helpers and states, and O(|P |5) transitions, that computes P .

5.4 Atomic predicates under reversible dynamic initialization
Lastly, we show that atomic predicates are succinctly computable by RDI-protocols:

I Theorem 7. Every atomic predicate ϕ over variables X can be computed by a simple
|ϕ|-way population protocol with reversible dynamic initialization that has O(|ϕ|) helpers,
O(|ϕ|2) states, and O(|ϕ|3) transitions.

The protocols for arbitrary threshold and remainder predicates satisfying the conditions of
Theorem 7, and their correctness proofs, are given in Appendix B.4. Note that the threshold
protocol is very similar to the protocol for linear inequalities given in Section 6 of [8]. Thus,
as an example, we will instead describe how to handle the remainder predicate 5x− y ≡7 4.
Note, that the predicate can be rewritten as (5x+ 6y ≥ 4 (mod 7))∧ (5x+ 6y 6≥ 5 (mod 7)).
As we can handle negations and conjunctions separately in Section 5.2, we will now explain
the protocol for ϕ def= 5x + 6y ≥ 4 (mod 7). The protocol is partially depicted in Figure 1
using Petri net conventions for the graphical representation.

The protocol has an input state x for each variable x ∈ X, output states f and t, a neutral
state 0, and numerical states of the form +2i for every 0 ≤ i ≤ n, where n is the smallest
number such that 2n > ‖ϕ‖. Initially, (at least) one helper is set to f and (at least) 2n
helpers set to 0. In order to compute 5x+ 6y ≥ 4 (mod 7) for x := r and y := s, we initially
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Figure 1 Partial representation of the protocol computing 5x + 6y ≥ 4 (mod 7) as a Petri net,
where places (circles), transitions (squares) and tokens (smaller filled circles) represent respectively
states, transitions and agents. Non-helper agents remember their input variable (labeled here within
tokens). The depicted configuration is obtained from input x = 2, y = 1 by firing the bottom
leftmost transition (dark blue).

place r and s agents in the states x and y, i.e., the agents in state x encode the number r in
unary, and similarly for y. The blue transitions on the left of Figure 1 “convert” each agents
in input states to a binary representation of their corresponding coefficient. In our example,
agents in state x are converted to a(x) = 5 = 01012 by putting one agent in 4 and another
one in 1. Since two agents are needed to encode 5, the transition “recruits” one helper from
state 0. Observe that, since the inputs can be arbitrarily large, but a protocol can only
use a constant number of helpers, the protocol must reuse helpers in order to convert all
agents in input states. This happens as follows. If two agents are in the same power of
two, say +2i, then one of them can be “promoted” to +2i+1, while the other one moves to
state 0, “liberating” one helper. This allows the agents to represent the overall value of all
converted agents in the most efficient representation. That is, from any configuration, one
can always reach a configuration where there is at most one agent in each place 20, . . . , 2n−1,
there are at most the number of agents converted from input places in place 2n, and hence
there are at least n agents in place 0, thus ready to convert some agent from the input place.
Similar to promotions, “demotions” to smaller powers of two can also happen. Thus, the
agents effectively shift through all possible binary representations of the overall value of
all converted agents. The ≡7 transition in Figure 1 allows 3 agents in states 4, 2 and 1
to “cancel out” by moving to state 0, and it moves the output helper to f. Furthermore,
there are RDI-transitions that allow to revert the effects of conversion and cancel transitions.
These are not shown in Figure 1.

We have to show that this protocol computes ϕ under reversible dynamic initialization.
First note, that while dynamic initialization has not terminated, all transitions have a
corresponding reverse transition. Thus, it is always possible to return to wrong initial
configurations. However, reversing the conversion transitions can create more agents in input
states than the protocol effectively received. To forbid this, each input agent is “tagged” with
its variable (see tokens in Figure 1). Therefore, in order to reverse a conversion transitions,
the original input agent is needed. This implies, that the protocol is reversible.

Next, we need to argue that the protocol without the RDI-transitions computes ϕ
once the dynamic initialization has terminated. The agents will shift through the binary
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representations of the overall value. Because of fairness, the ≡7 transition will eventually
reduce the overall value to at most 6. There is a ≥ 4-transition which detects the case where
the final value is at least 4 and moves the output helper from f to state t. Notice that
whenever transition ≡7 occurs, we reset the output by moving the output helper to state f.

6 Succinct protocols for small populations

We show that for every predicate ϕ and constant ` = O(|ϕ|3), there exists a succinct protocol
P<` that computes the predicate (|v| < `)→ ϕ(v). In this case, we say that P<` computes
ϕ for small inputs. Further, we say that a number n ∈ N (resp. an input v) is small with
respect to ϕ if n ≤ ` (resp. |v| ≤ `). We present the proof strategy in a top-down manner.

Section 6.1 proves: There is a succinct leaderless protocol P that computes ϕ for small
inputs (A), if for every small n some succinct protocol Pn computes ϕ for all inputs of
size n (B). Intuitively, constructing a succinct protocol for all small inputs reduces to the
simpler problem of constructing a succinct protocol for all small inputs of a fixed size.
Section 6.2 introduces halting protocols. It shows: There is a succinct protocol that
computes ϕ for inputs of size n, if for every atomic predicate ψ of ϕ some halting succinct
protocol computes ψ for inputs of size n (C). Thus, constructing protocols for arbitrary
predicates reduces to constructing halting protocols for atomic predicates.
Section 6.3 proves (C). Given a threshold or remainder predicate ϕ and a small n, it
shows how to construct a succinct halting protocol that computes ϕ for inputs of size n.

Detailed proofs for this section can be found in ??.

6.1 From fixed-sized protocols with one leader to leaderless protocols
We now define when a population protocol computes a predicate for inputs of a fixed size.
Intuitively, it should compute the correct value for every initial configurations of this size; for
inputs of other sizes, the protocol may converge to the wrong result, or may not converge.

I Definition 8. Let ϕ be a predicate and let i ≥ 2. A protocol P computes ϕ for inputs of
size i, denoted “P computes (ϕ | i)”, if for every input v of size i, every fair execution of P
starting at Cv stabilizes to ϕ(v).

We show that if, for each small number i, some succinct protocol computes (ϕ | i), then
there is a single succinct protocol that computes ϕ for all small inputs.

I Theorem 9. Let ϕ be a predicate over a set of variables X, and let ` ∈ N. Assume that for
every i ∈ {2, 3, . . . , `−1}, there exists a protocol with at most one leader and at most m states
that computes (ϕ | i). Then, there is a leaderless population protocol with O(`4 ·m2 · |X|3)
states that computes (x < `)→ ϕ(x).

Proof sketch. Fix a predicate ϕ and ` ∈ N. For every 2 ≤ i < `, let Pi be a protocol
computing (ϕ | i). We describe the protocol P = (Q,T,X, I,O) that computes (x ≥
`) ∨ ϕ(x) ≡ (x < `)→ ϕ(x). The input mapping I is the identity. During the computation,
agents never forget their initial state – that is, all successor states of an agent are annotated
with their initial state. The protocol initially performs a leader election. Each provisional
leader stores how many agents it has “knocked out” during the leader election in a counter
from 0 to `− 1. After increasing the counter to a given value i < `, it resets the state of i
agents and itself to the corresponding initial state of Pi+1, annotated with X, and initiates a
simulation of Pi+1. When the counter of an agent reaches `− 1, the agent knows that the
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population size must be ≥ `, and turns the population into a permanent 1-consensus. Now,
if the population size i is smaller than `, then eventually a leader gets elected who resets the
population to the initial population of Pi. Since Pi computes (ϕ | i), the simulation of Pi
eventually yields the correct output. J

6.2 Computing boolean combinations of predicates for fixed-size inputs
We want to produce a population protocol P for a boolean combination ϕ of atomic predicates
(ϕi)i∈[k] for which we have population protocols (Pi)i∈[k]. As in Section 5.3, we cannot use a
standard “product protocol” that executes P1, . . . ,Pk synchronously because the number of
states would be exponential in k. Instead, we want to simulate the concatenation of (Pi)i∈[k].
However, this is only possible if for all i ∈ [k], the executions of Pi eventually “halt”, i.e.
some agents are eventually certain that the output of the protocol will not change anymore,
which is not the case in general population protocols. For this reason we restrict our attention
to “halting” protocols.

I Definition 10. Let P be a simple protocol with output states f and t. We say that P is a
halting protocol if every configuration C reachable from an initial configuration satisfies:

C(f) = 0 ∨ C(t) = 0,
C
∗−→ C ′ ∧ C(q) > 0⇒ C ′(q) > 0 for every q ∈ {f, t} and every configuration C ′.

Intuitively, a halting protocol is a simple protocol in which states f and t behave like
“final states”: If an agent reaches q ∈ {f, t}, then the agent stays in q forever. In other words,
the protocol reaches consensus 0 (resp. 1) iff an agent ever reaches f (resp. t).

I Theorem 11. Let k, i ∈ N. Let ϕ be a boolean combination of atomic predicates (ϕj)j∈[k].
Assume that for every j ∈ [k], there is a simple halting protocol Pj = (Qj , Lj , X, Tj , Ij , Oj)
with one leader computing (ϕj | i). Then there exists a simple halting protocol P that
computes (ϕ | i), with one leader and O (|X| · (len(ϕ) + |Q1|+ . . .+ |Qk|)) states.

Proof sketch. We only sketch the construction for ϕ = ϕ1 ∧ ϕ2. The main intuition is
that, since P1 and P2 are halting, we can construct a protocol that, given an input v, first
simulates P1 on v, and, after P1 halts, either halts if P1 converges to 0, or simulates P2 on
v if P1 converges to 1. Each agent remembers in its state the input variable it corresponds
to, in order to simulate P2 on v. J

6.3 Computing atomic predicates for fixed-size inputs
We describe a halting protocol that computes a given threshold predicate for fixed-size inputs.

I Theorem 12. Let ϕ(x,y) def= α · x − β · y > 0. For every i ∈ N, there exists a halting
protocol with one leader and O(i2(|ϕ|+ log i)3) states that computes (ϕ | i).

We first describe a sequential algorithm Greater-Sum(x, y), that for every input x,y satisfying
|x| + |y| = i decides whether α · x − β · y > 0 holds. Then we simulate Greater-Sum by
means of a halting protocol with i agents.

Since each agent can only have O(log i+ log |ϕ|) bits of memory (the logarithm of the
number of states), Greater-Sum must use at most O(i · (log i + log |ϕ|)) bits of memory,
otherwise it cannot be simulated by the agents. Because of this requirement, Greater-Sum
cannot just compute, store, and then compare α · x and β · y; this uses too much memory.

Greater-Sum calls procedures Probe1(j) and Probe2(j) that return the j-th bits of αx
and βy, respectively, where j = 1 is the most significant bit. Since |x| ≤ i, and the
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largest constant in α is at most ||ϕ||, we have α · x ≤ i · ||ϕ||, and so α · x has at most
m

def= |ϕ|+ blog(i)c+ 1 bits, and the same holds for βy. So we have 1 ≤ j ≤ m. Let us first
describe Greater-Sum, and then Probe1(j); the procedure Probe2(j) is similar.

Greater-Sum(x, y) loops through j = 1, . . . ,m. For each j, it calls Probe1(j) and Probe2(j).
If Probe1(j) > Probe2(j), then it answers ϕ(x,y) = 1, otherwise it moves to j + 1. If
Greater-Sum reaches the end of the loop, then it answers ϕ(x,y) = 0. Observe that
Greater-Sum only needs to store the current value of j and the bits returned by Probe1(j)
and Probe2(j). Since j ≤ m, Greater-Sum only needs O(log(|ϕ|+ log i)) bits of memory.

Probe1(j) uses a decreasing counter k = m, . . . , j to successively compute the bits b1(k)
of α · x, starting at the least significant bit. To compute b1(k), the procedure stores the
carry ck ≤ i of the computation of b1(k + 1); it then computes the sum sk := ck +α(k) · x
(where α(k) is the k-th vector of bits of α), and sets bk := sk mod 2 and ck−1 := sk ÷ 2. The
procedure needs O(log(|ϕ|+ log i)) bits of memory for counter k, log(i) + 1 bits for encoding
sk, and O(log(i)) bits for encoding ck. So it only uses O(log(|ϕ|+ log i)) bits of memory.

Let us now simulate Greater-Sum(x, y) by a halting protocol with one leader agent.
Intuitively, the protocol proceeds in rounds corresponding to the counter k. The leader
stores in its state the value j and the current values of the program counter, of counter k,
and of variables bk, sk, and ck. The crucial part is the implementation of the instruction
sk := ck +α(k) · x of Probe1(j). In each round, the leader adds input agents one by one. As
the protocol only needs to work for populations with i agents, it is possible for each agent to
know if it already interacted with the leader in this round, and for the leader to count the
number of agents it has interacted with this round, until it reaches i to start the next round.

7 Conclusion and further work

We have proved that every predicate ϕ of quantifier-free Presburger arithmetic (QFPA)
is computed by a leaderless protocol with poly(|ϕ|) states. Further, the protocol can be
computed in polynomial time. The number of states of previous constructions was exponential
both in the bit-length of the coefficients of ϕ, and in the number of occurrences of boolean
connectives. Since QFPA and PA have the same expressive power, every computable predicate
has a succinct leaderless protocol. This result completes the work initiated in [8], which also
constructed succinct protocols, but only for some predicates, and with the help of leaders.

It is known that protocols with leaders can be exponentially faster than leaderless protocols.
Indeed, every QFPA predicate is computed by a protocol with leaders whose expected time
to consensus is polylogarithmic in the number of agents [6], while every leaderless protocol
for the majority predicate needs at least linear time in the number of agents [1]. Our result
shows that, if there is also an exponential gap in state-complexity, then it must be because
some family of predicates have protocols with leaders of logarithmic size, while all leaderless
families need polynomially many states. The existence of such a family is an open problem.

The question of whether protocols with poly(|ϕ|) states exist for every PA formula ϕ,
possibly with quantifiers, also remains open. However, it is easy to prove (see Appendix D)
that no algorithm for the construction of protocols from PA formulas runs in time 2p(n) for
any polynomial p:

I Theorem 13. For every polynomial p, every algorithm that accepts a formula ϕ of PA as
input, and returns a population protocol computing ϕ, runs in time 2ω(p(|ϕ|)).

Therefore, if PA also has succinct protocols, then they are very hard to find.
Our succinct protocols for QFPA have slow convergence (in the usual parallel time model,

see e.g. [2]), since they often rely on exhaustive exploration of a number of alternatives, until
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the right one is eventually hit. The question of whether every QFPA predicate has a succinct
and fast protocol is very challenging, and we leave it open for future research.
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A Equivalence of simple and standard population protocols

Recall that a simple population protocol (SPP), has two unique states f, t ∈ Q with outputs
O(f) = 0 and O(t) = 1 and all other states q have output O(q) = ⊥.

In the standard definition of population protocols used in the literature, all states q have
an output O(q) ∈ {0, 1}. In this section we call such a protocol a full output population
protocols (FOPP). In a FOPP, a configuration C is a consensus configuration if O(p) = O(q)
for every p, q ∈ JCK. If C is a consensus configuration, then its output O(C) is the unique
output of its states, otherwise it is ⊥. An execution σ = C0C1 · · · stabilizes to b ∈ {0, 1}
if O(Ci) = O(Ci+1) = · · · = b for some i ∈ N. The output of σ is O(σ) = b if it stabilizes
to b, and O(σ) = ⊥ otherwise. A consensus configuration C is stable if every configuration
C ′ reachable from C is a consensus configuration such that O(C ′) = O(C). It is easy to see
that a fair execution of a FOPP stabilizes to b ∈ {0, 1} if and only if it contains a stable
configuration whose output is b.

A FOPP P computes a predicate ϕ : NX → {0, 1} if for every v ∈ NX every fair execution
σ starting from Cv stabilizes to ϕ(v).

In the rest of the section we show that every FOPP has an equivalent SPP, and vice
versa. Both translations have linear blow-up.
FOPP → SPP. Let P = (Q,T, L,X, I,O) be a FOPP computing a predicate ϕ. We obtain
a SPP protocol P ′ by adding two output states {f, t} to P , plus a new state ⊥. The output
function of P ′ is the mapping O′ : q 7→ (0 if q = f else 1 if q = t else ⊥). The set L′ of
leaders of P ′ is obtained by adding one leader to L, initially in state ⊥. Finally, the set T ′ of
transitions is obtained by adding to T , for all b ∈ {f, t,⊥}, a transition Hq, bI 7→ Hq, fI for
every state q ∈ Q such that O(q) = 0 and a transition Hq, bI 7→ Hq, tI for every state q ∈ Q
such that O(q) = 1.

We show that P ′ also computes ϕ. Let C ′0C ′1 · · · be a fair execution of P ′ from C ′0.
Projecting it onto the set of states of P yields a fair execution of P. Since P computes ϕ,
the execution outputs some b ∈ {0, 1}. Assume that b = 0 (the case b = 1 is symmetric). Let
i ∈ N such that the output of every state populated by Cj is b for every j ≥ i. Now, no
matter the state populated by the additional leader in Cj (which is one of {f, t,⊥}), the
transition Hq, bI 7→ Hq, fI is enabled for every state q such that Cj(q) = 0. By fairness, the
leader will thus eventually move to state f and it will be stuck there, and P ′ outputs 0 as
well.

SPP → FOPP. Let P = (Q,T, L,X, I,O) be an SPP with output states f, t ∈ Q computing
a predicate ϕ. Let P ′ be the FOPP with two disjoint copies Q0, Q1 of Q as states. For a ∈ Q,
let ab denote the copy of a in Qb, for b ∈ {0, 1}. We define O′(q) = b for all q ∈ Qb. The set
T ′ of transitions is the following. First, for every transition Hx, yI 7→ Hz, uI of T , the set T ′
contains a transition Hxb, ycI 7→ Hzd, ueI for every b, c, d, e ∈ {0, 1} such that if b = c then
d = e = b = c. Further, T ′ also contains a set T ′′ of transitions consisting of Hf1I 7→ Hf0I,
Ht0I 7→ Ht1I, Ha1, f0I 7→ Ha0, f0I and Ha0, t1I 7→ Ha1, t1I for every a ∈ Q.

The input mapping and leader multiset of P ′ are the “0” copies of the input mapping
and leader multiset of P . Hence, for any input v the initial configuration C ′v of P ′ is the “0”
copy of the initial configuration Cv in P.

We show that P ′ also computes ϕ. Let C ′0C ′1 · · · be a fair execution of P ′ from C ′0.
For every i ∈ N, let Ci = π(C ′i), where π is the mapping defined by π(qb) = b for every
qb ∈ Q0∪Q1. It is easy to see that C0C1 · · · is a fair execution of P , with possible repetitions
Ci = Ci+1 when the transition from C ′i to C ′i+1 is in T ′′. Hence C0C1 · · · eventually stabilizes
to an output b. Assume that b = 0 (the case b = 1 is symmetric). By fairness, because of the
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transitions Hf1I 7→ Hf0I, and Ha1, f0I 7→ Ha0, f0I, the execution C ′0C ′1 · · · eventually reaches,
and gets trapped in, configurations of NQ0 . So the execution also stabilizes to the output 0.

B Proofs of Section 5: Protocols for large populations

B.1 Proof of Theorem 4
I Theorem 4. Let P = (Q,T, L,X, I,O) be a ∆-way population protocol with `-helpers
computing some predicate ϕ. There exists a 2-way leaderless population protocol with O(` ·
|X|+ (∆ · |T |+ |Q|)2) states that computes (|v| ≥ `)→ ϕ(v).

We first define a leaderless protocol P, introduce some auxiliary definitions and proposi-
tions, and finally prove that P computes (|v| ≥ `)→ ϕ(v).
The protocol P. As mentioned in the main text, by [8, Lemma 3], P can be transformed into
a 2-way population protocol (with helpers) also computing ϕ, and with at most |Q|+ 3λ · |T |
states, where λ def= max{|p| : (p, q) ∈ T}. Thus, we assume that P is 2-way in the rest of this
section, implicitly keeping in mind the polynomial increase in the number of states.

Let h1, h2, . . . , h` ∈ Q be the helpers of P in some arbitrary but fixed order. For
example, if L = {p, 3 · q}, then we can have h1 = p, h2 = q, h3 = q and h4 = q. Let
P def= (Q,T ,0, X, I,O) be the population protocol such that:

Q
def= (X × [`]) ∪Q〈2〉,

T
def= T count ∪ T init ∪ T simul,

I
def= x 7→ (x, 1),

O
def=
{

(x, i) 7→ 1 for every (x, i) ∈ X × [`],
q 7→ O(q) for every q ∈ Q〈2〉,

where
T count is the set consisting of the following transitions:

H(x, i), (y, i)I 7→ H(x, i+ 1), (y, i)I for every x, y ∈ X and i < `,

T init is the set consisting of the following transitions:

H(x, `), (y, i)I 7→ H(I(x), h`), (I(y), hi)I for every x, y ∈ X and i ≤ `,

Hq, (y, i)I 7→ Hq, (I(y), hi)I for every y ∈ X, i ≤ `, and q ∈ Q〈2〉,

Tsimul is the consisting of the following transitions:

Hp, qI 7→ Hp′, q′I for every p, q,p′, q′ ∈ Q〈2〉 such that (p+ q) −→ (p′ + q′) in P.

Auxiliary definitions and propositions. The intended behavior of P is to first fire T count,
then T init, and then T simul. Although P may fire sequences not respecting this order, there
always exist an equivalent sequence respecting the order, in the following sense:

I Proposition 14. For every configurations C and D such that C ∗−→ D, there exist x ∈ T ∗count,
y ∈ T ∗init and z ∈ T

∗
simul such that C xyz−−→ D.

Proof. Let w ∈ T ∗ be such that C w−→ D. The sequence xyz is simply obtained by reordering
the transitions of w. Firability of xyz follows from inspection of T . J
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Observe that firing T count, until no further possible, counts the number of agents up to `:

I Proposition 15. Let C and D be configurations such that C is initial, C T
∗
count−−−→ D and

T count is disabled in D. We have JDK ∩ (X × {j}) 6= ∅ ⇐⇒ |C| ≥ j for every j ∈ [`].

Proof. Let Pj
def= X × {j} for every j ∈ [`]. For every configuration E, let pos(E) def= {j ∈

[`] : C(Pj) > 0}. We define a relation ≺ on configurations:

E ≺ E′ def⇐⇒ pos(E′) = pos(E) ∨ pos(E′) = pos(E) ∪ {max(pos(E)) + 1}.

Observe that E Tcount−−−−→ E′ implies E ≺ E′. Consequently, since pos(C) = {1}, we have
pos(D) = {1, 2, . . . ,m} for some m ∈ [`]. To complete the proof, it suffices to show that
m = min(|C|, `).

Clearly, m ≤ min(|D|, `) = min(|C|, `) holds. Let us show that m ≥ min(|C|, `). If
m = `, then we are done. Therefore, assume m < `. Since T count is disabled in D,
we have D(Pi) = 1 for every 1 ≤ i ≤ m and D(Pi) = 0 for every m < i ≤ `. Thus,
m = |D| = |C| ≥ min(|C|, `). J

For every configuration C of P, let Ĉ be the configuration of P obtained by “projecting”
C onto Q, i.e. the configuration such that

Ĉ(p) def=
∑

q∈Q〈2〉
q(p) · C(q) for every p ∈ Q.

We extend this notation to executions, i.e., to sequences of configurations. The following
correspondence follows immediately from the definitions:

I Proposition 16. For every (fair) execution σ of P, σ̂ is a (fair) execution of P.

Main proof. We prove that P computes ϕ.

Proof of Theorem 4. Let v ∈ NX and let σ be a fair execution of P from Cv. Observe that,
by definition of T , the number of transitions from T \ T simul occurring along σ must be
finite. Let i ∈ N be some index such that T \ T simul is disabled in σj for every j ≥ i. By
Proposition 14, there exist x ∈ T ∗count, y ∈ T

∗
init, z ∈ T

∗
simul, and configurations C and D

such that σ0
x−→ C

y−→ D
z−→ σi. By Proposition 15, the following holds for every j ∈ [`]:

JCK ∩ (X × {j}) 6= ∅ ⇐⇒ |v| ≥ j. (1)

Let us now show that O(σ) is as expected, by making a case distinction on whether |v| ≥ `.

Case |v| < `. By (1), we have C(x, `) = 0 for every x ∈ X. Thus, we have y = z = ε since no
transition of T init ∪ T simul is enabled in C. This implies that C = σi = σi+1 = · · · ∈ X × [`].
Hence, O(σ) = O(C) = 1 which is the expected output.

Case |v| ≥ `. By (1), C(x, `) > 0 for some x ∈ X. Thus, fairness enforces sequence y to convert
every agent from states X × [`] to states Q〈2〉. Thus, we have D ≥ Hh1, h2, . . . , h`I by (1),
which implies D ∈ (L′ � L) + Cv for some L′ � L, and consequently σi, σi+1, . . . ∈ NQ

〈2〉
.

Let m def= |z| and let D0, D1, . . . , Dm be the configurations such that D = D0 −→ D1 −→
· · · −→ Dm = σi. Let π def= D0D1 · · ·Dm · σ. By fairness of σ and by Proposition 16, π̂ is a
fair execution of P, which implies that O(π̂) = ϕ(v). Therefore, we have O(π) = ϕ(v) by
definition of O. Since σ and π share a common (infinite) suffix, we have O(σ) = O(π), which
completes the proof. J
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B.2 Proof of Proposition 5

I Proposition 5. Assume that every finite set A of atomic predicates is computed by some
|A|-way multi-output protocol with O(|A|3) helpers and states, and O(|A|5) transitions. Every
QFPA predicate ϕ is computed by some simple |ϕ|-way protocol with O(|ϕ|3) helpers and
states, and O(|ϕ|5) transitions.

Proof. Let atomic(P ) be the set of atomic predicates in P . Consider a forest of binary trees of
boolean operations encoding ϕ (negations have only one child), with atomic predicates at the
leaves. There are at most len(ϕ) + size(ϕ) nodes in that forest (roots correspond to different
predicates of ϕ). Consider the set P ′ made of every predicate corresponding to nodes of the
forest. We call such P ′ a full set of predicates. We have size(P ′) ≤ len(ϕ) + size(ϕ) ≤ |ϕ|,
‖P ′‖ = ‖ϕ‖ and len(P ′) ≤ len(ϕ)2 ≤ |ϕ|2. We prove by induction on len(P ′) that every full
P ′ is computed by some multi-output population protocol with O(len(P ′) + |atomic(P ′)|5)
helpers, states and transitions.

If len(P ′) = 0, then each predicate is atomic, and the claim is true by hypothesis.
Let P ′ be a full set with len(P ′) = k > 0, and assume that the claim holds for every full

set P ′′ with len(P ′′) < k. Let ϕ ∈ P ′ with len(ϕ) maximal. Let us consider the case where
ϕ = ψ ∧ ψ′ for some predicates ψ,ψ′. The case of disjunction and negation are handled
similarly. Let P ′′ def= P ′ \{ϕ}. Note that len(P ′′) < len(P ′), and that P ′′ is full because len(ϕ)
is maximal. Thus, by induction hypothesis, we obtain a simple multi-output population
protocol P ′′ = (Q,T, L,X, I,O) that computes P ′′. Assume w.l.o.g. that the indices of O
associated to ψ and ψ′ are |P | and |P |+ 1 respectively. Let q0, q1, r0, r1 ∈ Q be the unique
states such that O|P |(qb) = b and O|P |+1(rb) = b for b ∈ {0, 1}. These states exist since P ′′
is simple. Let P ′ = (Q′, T ′, L′, X ′, I ′, O′) be the multi-output protocol such that:

Q′
def= Q ∪ {o0, o1},

T ′
def= T ∪ {(Hqa, rb, o¬cI, Hqa, rb, ocI) : a, b, c ∈ {0, 1}, a ∧ b = c},

L′
def= L+ Ho0I,

I ′
def= I,

O′i
def=
{
Oi for every 1 ≤ i < |P |,
q 7→ (b if q = ob else ⊥) for i = |P |.

We claim that P ′ computes P ′. Note that P ′ behaves exactly as P on Q. This implies that
P ′ computes each predicate of P ′ \ {ϕ}. Thus, it suffices to show that it also computes ϕ.
Let σ be a fair execution of P ′ starting from some initial configuration Cv. Since P is simple
and computes both ψ and ψ′, there exists i ∈ N such that for every j ≥ i:

σj(qψ(v)) > 0, σj(rψ′(v)) > 0 and σj(q¬ψ(v)) = σj(r¬ψ′(v)) = 0.

Thus, by fairness, there exists i′ ≥ i such that σj(oψ(v)∧ψ′(v)) > 0 and σj(o¬(ψ(v)∧ψ′(v))) = 0
for every j ≥ i′. This implies that O|P |(σ) = ψ(v) ∧ ψ′(v) = ϕ(v).

Concerning the number of states and helpers, the protocol P ′ uses two states plus the
states of P ′′, and one helper plus the helpers of P ′′, which ends the proof by induction as
atomic(P ′′) = atomic(P ′) = atomic(P ).

In terms of |ϕ|, we obtain a protocol with O(len(ϕ) + |atomic(ϕ)|5) = O(|ϕ|5) helpers,
states and transitions. J
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B.3 Proof of Theorem 6
I Theorem 6. Assume that for every atomic predicate ϕ, there exists a |ϕ|-way RDI-protocol
with O(|ϕ|) helpers, O(|ϕ|2) states and O(|ϕ|3) transitions that computes ϕ. For every finite
set P of atomic predicates, there exists a |P |-way simple multi-output protocol, with O(|P |3)
helpers and states, and O(|P |5) transitions, that computes P .

Let P = {ϕ1, ϕ2, . . . , ϕk}. For every i ∈ [k], let Pi = (Qi, T∞i, T†i, Li, X ∪X, Ii, Oi) be
the simple RDI-protocol with helpers computing ϕ̃i. Recall that each Pi has two input
variables x and x for each input variable x ∈ X. Recall further that the transitions of T†i
are called RDI-transitions.

We first define a simple multi-output protocol P. Then we introduce some auxiliary
definitions and propositions, and finally we prove that P computes P .
Notations. For every RDI-transition t = (p, q) and for every x ∈ X, let tx be the transition
defined as tx def= (p+HxI, q+HxI). In other words, tx has the same effect as t, but is “guarded”
by X, i.e., it can only occur if some agent is in state x. We say that tx is a guarded transition.
Given a set U of transitions, we define the sets Ug of guarded transitions and U−1 of guarded
reversal transitions as:

Ug def= {tx : t ∈ U, x ∈ X} and U−1 def= {(q,p) : (p, q) ∈ Ug}.

The protocol. The k-output population protocol with helpers P = (Q,T, L,X, I,O) is
defined as follows:

Q
def= X ∪H ∪Q1 ∪Q2 ∪ · · · ∪Qk, where H

def= {hx : x ∈ X}.
Intuitively, X are the input states, H are auxiliary states used to distribute agents to the
atomic protocols, and Q1, . . . , Qk are the states of the atomic protocols themselves.

T
def= S ∪ S−1 ∪ (T∞1 ∪ T∞2 ∪ · · · ∪ T∞k) ∪ (T†1 ∪ T†2 ∪ · · · ∪ T†k)g, where

S
def= {sx, sx : x ∈ X} and

sx
def= Hk · xI 7→ HIi(x) : i ∈ [k]I,

sx
def= Hx, (k − 1) · hI 7→ HIi(x) : i ∈ [k]I.

Intuitively, the transitions of S allow P to distribute agents to P1, . . . ,Pk. Transition sx
collects k agents from the input state of P for x, and sends one agent to each of the input
states of P1, . . . ,Pk for x. Similarly, sx collects one agent from x and (k − 1) helpers,
and sends one agent to each of the input places of P1, . . . ,Pk for x.
Transitions of S−1 allow P to collect agents back if they were not distributed properly.
They are guarded to ensure that the agents are not collected when the distribution is
correct.
The rest of the transitions are the transitions of P1, . . . ,Pk, with an additional guard on
the transitions of T†1, . . . , T†k. The guards ensure that P1, . . . ,Pk stop returning agents
to the input states once the correct distribution is achieved.
L

def= H(k − 1)2 · hx : x ∈ XI + L1 + L2 + · · ·+ Lk.
The helpers of P are those of P1, . . . ,Pk, plus (k − 1)2 helpers for each input variable.
I

def= x 7→ x.
The output mapping for ϕi is given by O(i, q) def= (Oi(q) if q ∈ Qi else ⊥).

Auxiliary definitions and propositions.
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For every i ∈ [k] and every configuration C ∈ NQ of P , let Ci ∈ NQi be the configuration
of Pi such that Ci(q) def= C(q) for every q ∈ Qi.
For every i ∈ [k] and every sequence w ∈ T ∗, let wi be the projection of w onto the
transitions of S ∪ S−1 ∪ T∞i ∪ (T†i)g.

For every w ∈ T ∗, let w ∈ ZX∪X be the vector such that for every x ∈ X:

w(x) def= |w|sx
−

∑
t∈{sx}g

|w|t, w(x) def= |w|s
x
−

∑
t∈{s

x
}g

|w|t.

In other words, w records the difference between the number of occurrences of transition
sx and its guarded reversals, for each variable x, and similarly for sx.
Observe that the set of input variables of P is X, while the set of input variables of Pi is
X ∪X. Given v ∈ NX and w ∈ N(X∪X), we let v ≡ w denote that v(x) = k ·w(x)+w(x)
for every x ∈ X.

Let us prove the following observations on the executions of P:

I Proposition 17. Let v ∈ NX , L̂ � L and Ĉv
def= L̂+ {v(x) · x : x ∈ X}. Let Ĉv

w−→ C be a
finite execution of P. We have:
1. There exists an initialization sequence from Ĉiv to Ci in Pi with effective input w ≥ 0.
2. If C(X) = 0, then v ≡ w.
3. There exists a configuration D such that C ∗−→ D and D(X) = 0.

Proof.
1. Let i ∈ [k]. The only transitions that change the number of agents over the states of

Qi are those of S ∪ S−1 ∪ T∞i ∪ (T†i)g. Transitions S ∪ S−1 have the same effect as
the transitions of In and Out. Transitions T∞i ∪ T†i form precisely the set of transitions
of Pi, and the effects of the transitions of T†i and (T†i)g coincide. Moreover, we have
Ĉiv = L̂i � Li = Li. Therefore, wi yields an initialization sequence of Pi from Ĉiv to Ci
with effective input w. Since Pi is an RDI-protocol, Ci(Ii(x)) ≤ w(x) holds for every
x ∈ X ∪X. Hence, we must have w ≥ 0 as a configuration cannot hold any negative
amount of agents.

2. An induction on |w| shows that C(x) = v(x)− k ·w(x)−w(x) for every x ∈ X. Thus, if
C(X) = 0, then v(x) = k ·w(x) +w(x) for every x ∈ X. Hence, since w ≥ 0 by (1), we
have v ≡ w.

3. For every configuration A of P, let [A] def= {B : Bi ∈
[
Ai
]
} for every i ∈ [k]}. Note that:

A(X) = B(X) for every B ∈ [A] . (2)

Let Cj
tj−→ Cj+1 be jth step of Ĉv

w−→ C. For every Dj+1 ∈ [Cj+1], we construct a
sequence wj ∈ T ∗ such that Dj+1

wj−−→ Dj for some Dj ∈ [Cj ]. In other words, we show
how to reverse tj , up to a possible redistribution of the output agents. The validity of
the main claim follows by (2) and a straightforward induction. We may assume without
loss of generality that Cj+1(X) > 0, as otherwise the main claim would already be
satisfied. Since Cj+1(X) > 0, guarded transitions of P are equivalent to their unguarded
counterparts, i.e. a transition u is enabled at Cj+1 if and only if ug is enabled at Cj+1.
Thus, we may reverse tj as follows:

If tj ∈ S, then we pick wj ∈ S−1 as the guarded reversal of tj ;
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If tj ∈ S−1, then we pick wj ∈ S as the counterpart transition of tj ;
If tj ∈ T∞i ∪ T†i for some i ∈ [k], then we proceed as follows. By (1), there is an
initialization sequence from Ĉiv to Ci in Pi with effective input w. Moreover,

Ci
∗−→ Cij

tj−→ Cij+1 in Pi.

Hence, since Pi is an RDI-protocol, there exists wj ∈ (T∞i∪T†i)∗ such thatDi
j+1

wj−−→ E

in Pi for some E ∈
[
Cij
]
. Thus, we have Dj+1

wj−−→ Dj in P for some Dj ∈ [Cj ]. J

Main proof. We proceed to prove that P indeed computes {ϕ1, ϕ2, . . . , ϕk}.

Proof of Theorem 6. Let v ∈ NX , L̂ � L, and let σ be a fair execution of P starting from
Ĉv

def= L̂+ {v(x) · I(x) : x ∈ X}. By Proposition 18 (3) and by fairness, there exists j ∈ N
such that σj(X) = 0. By definition of T , if X is emptied, then it remains permanently
emptied, as none of the guarded reversals can be fired. Thus, we have:

σj(X) = σj+1(X) = · · · = 0. (3)

Let σ̂ def= σijσ
i
j+1 · · · . Consider protocol Pi for some i, and let w be the effective input of

the initialization sequence σ̂i of Pi. By (3), σ̂i only contains transitions of T∞i, and is
consequently a fair execution of protocol P∞i. By hypothesis, and by definition of RDI-
protocols, P∞i computes ϕ̃i. Hence, we have Oi(σ̂i) = ϕ̃i(w). We are done since, by
Proposition 18 (2), we have v ≡ w, which implies ϕi(v) = ϕ̃i(w). J

B.4 Proof of Theorem 7
I Theorem 7. Every atomic predicate ϕ over variables X can be computed by a simple
|ϕ|-way population protocol with reversible dynamic initialization that has O(|ϕ|) helpers,
O(|ϕ|2) states, and O(|ϕ|3) transitions.

In Section B.4.1 we describe the protocol for threshold predicates, and prove its correctness.
Section B.4.2 does the same for remainder predicates.

B.4.1 Threshold protocols
Let us fix a threshold predicate ϕ over variables X. Without loss of generality3, we have
ϕ(v) = a · v ≥ b where a ∈ ZX and b > 0. We construct a simple population protocol Pthr
that computes ϕ under reversible dynamic initialization, and prove its correctness.
Notations. Let n be the smallest number such that 2n > ‖ϕ‖. Let P def= {+2i,−2i : 0 ≤
i ≤ n}, Z def= {0}, N def= P ∪ Z and B def= {f, t}, where P , Z, N and B respectively stand for
“Powers of two”, “Zero”, “Numerical values” and “Boolean values”. For every set S and
every x ∈ X, let Sx

def= {qx : q ∈ S} and SX
def= S ∪

⋃
x∈X Sx.

For every d ∈ N, let bits(d) denote the unique set J ⊆ N such that d =
∑
j∈J 2j , e.g.

bits(13) = bits(11012) = {3, 2, 0}. The canonical representation of an integer d ∈ Z is the
multiset rep(d) defined as follows:

3 If b ≤ 0, then we can instead consider the equivalent predicate ¬(−a · v ≥ −b + 1), construct a protocol
for −a · v ≥ −b + 1 and handle the negation separately in Section 5.2.
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rep(d) def=


H+2i : i ∈ bits(d)I if d > 0,
H−2i : i ∈ bits(|d|)I if d < 0,
H0I if d = 0.

The protocol. The RDI-protocol Pthr = (Q,T∞, T†, L,X, I,O) is defined as follows:
Q

def= X ∪NX ∪B.
Intuitively, the states of X are the “ports” through which the agents for each variable
enter and exit the protocol.
I

def= x 7→ x.
That is, the initial state for variable x is x.
L

def= H2n · 0, fI.
So, we have 2n helpers in state 0, and one helper in state f, i.e., initially the protocol
assumes that the predicate does not hold.
O(q) def= q 7→ (0 if q = f else 1 if q = t else ⊥).
That is, the output of the protocol is completely determined by the number of agents in
states t and f

T∞ is the following set of (“permanent”) transitions:

addx : Hx, |rep(a(x))| · 0I 7→ H0xI + rep(a(x)) for all x ∈ X,
up◦i : H◦2i, ◦2iI 7→ H◦2i+1, 0I for all 0 ≤ i < n and ◦ ∈ {+,−},

down◦i : H◦2i, 0I 7→ H◦2i−1, ◦2i−1I for all 0 < i ≤ n and ◦ ∈ {+,−},
canceli,q : H+2i,−2i, qI 7→ H0, 0, fI for all 0 ≤ i ≤ n and q ∈ B,
swapxp,q : Hp, qxI 7→ Hpx, qI for all p, q ∈ N and x ∈ X,

equal : rep(b) + HfI 7→ rep(b) + HtI,

false : Hf, tI 7→ Hf, fI.

Intuitively, addx converts an agent which arrived via port x into the canonical repres-
entation of a(x). Transitions of the form up◦i , down◦i and canceli,q allow the protocol to
change the representation of a value, without changing the value itself. Transition equal
allows the protocol to detect that the current value of a · x, for the current input x, is at
least b, which moves a helper from state f to t.
Finally, T† is the following set of RDI-transitions:

add−1
x,q : H0x, qI+ rep(a(x)) 7→ Hx, f, |rep(a(x))| · 0I for all x ∈ X and q ∈ B,

cancel−1
i,q : H0, 0, qI 7→ H+2i,−2i, fI for all 0 ≤ i ≤ n and q ∈ B,

reset : HtI 7→ HfI.

The first two transitions are needed to reverse the changes of add and cancel transitions
while the dynamic initialization is not finished. Both types of transitions reset the output
of the protocol by leaving an agent in the default output state f. The reset transition
resets the output by moving agents from t to f.

Let P∞ = (Q,T∞, L,X, I,O). Let T def= T∞∪T†. For the sake of readability, we will sometimes
omit the subscripts and superscripts from transitions names when they are irrelevant, e.g. “a
swap transition is enabled” instead of “there exist p, q ∈ N and x ∈ X such that swapxp,q is
enabled”.
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Size. Note that Pthr has |Q| = |X|+|NX |+|B| = |X|+(2n+3)·(|X|+1)+2 ∈ O(log‖ϕ‖·|X|)
states and |L| = 2n + 1 ∈ O(log‖ϕ‖) helpers. Moreover, since families of transitions are
parameterized by X, B, N or N2, and {+,−}, there are O(|N |2 · |X|) = O(log2‖ϕ‖ · |X|) ⊆
O(|ϕ|3) transitions. Finally, each transition uses at mostO(|rep(‖ϕ‖)|) = O(log‖ϕ‖) ⊆ O(|ϕ|)
states.

Auxiliary definitions and observations. Before proving that Pthr works as intended, let
us first introduce auxiliary definitions. Let val : Q → N be the function that associates a
value to each state as follows:

val(0) = val(f) = val(t) def= 0,

val(x) def= a(x) for every x ∈ X,

val(◦2i) def= ◦2i for every 0 ≤ i ≤ n and ◦ ∈ {+,−},

val(qx) def= val(q) for every q ∈ N and x ∈ X.

So, for example, for the predicate 3x − 4y ≥ 2 we have val(x) = 3 and val(y) = −4. For
every configuration C and every set of states S ⊆ Q, let

valS(C) def=
∑
q∈S

val(q) · C(q).

In particular, let val(C) def= valQ(C). Intuitively, C can be seen as an encoding of the value
val(C). The following properties, relating values and configurations, can be derived from the
above definitions:

I Proposition 18. For every initialization sequence π with effective input w such that
L′

π−→ C for some L′ � L, the following holds:
1. val(C) = a ·w,
2. |C| = C(N) + C(B) + |w|,
3. C(N) ≥ L(N) and C(B) ≥ L(B),
4. C(Nx) + C(x) = w(x) for every x ∈ X.

In particular, (2) states that the number of agents is always equal to the number of helpers
plus the net amount of agents that dynamically entered the population.
Auxiliary propositions. We say that a configuration C is clean if the following holds for
every p, q ∈ PX :

If val(p) + val(q) = 0, then C(p) = 0 or C(q) = 0.
For example, a configuration with agents in +2i

x and −2i
y is not clean, since val(+2i

x)+
val(−2i

y) = 0. Intuitively, no pair of agents can cancel in a clean configuration.

If val(p) = val(q) and val(p) 6∈ {−2n,+2n}, then C({p, q}) ≤ 1.
For example, a configuration with two agents in +2i

x, where i < n, is not clean. Intuitively,
in a clean configuration no agent can be promoted to a higher power of 2.

We show that any configuration can be cleaned using only permanent transitions. This
implies that once the dynamic initialization has terminated, every fair execution visits clean
configurations infinitely often.

I Proposition 19. For every initialization sequence π such that L′ π−→ C for some L′ � L,
there exists a clean configuration D such that C T∗∞−−→ D.
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Proof. If C is clean, then we pick D def= C. Otherwise, at least one of the following holds:
(a) C(p) > 0, C(q) > 0 and val(p) + val(q) = 0 for some p, q ∈ PX ;
(b) C({p, q}) ≥ 2 for some p, q ∈ PX such that val(p), val(q) 6∈ {−2n,+2n}.

We claim there exists a configuration C ′ such that C T∗∞−−→ C ′ and C(PX) > C ′(PX). Let
us show that if the claim is true then the result holds. If C ′ is clean, then we are done.
Otherwise, this process is repeated until a clean configuration D has been reached. The
process terminates as the number of agents in PX cannot become negative.

Let us now prove the claim. Suppose (a) holds. By Proposition 19 (3), we have
C(N) ≥ L(N) ≥ 2 and hence it is possible to consecutively fire at least two swap transitions.
Note that they do not change the amount of agents in PX . For this reason, we may
assume without loss of generality that p = +2i and q = −2i for some 0 ≤ i ≤ n. By
Proposition 19 (3), we have C(B) ≥ L(B) > 0. Thus, there exists r ∈ B such that C(r) > 0.
Therefore, firing transition canceli,r decreases C(PX) by two.

Similarly, if case (b) holds, then we may assume without loss of generality that C(◦2i) ≥ 2
for some 0 ≤ i < n and ◦ ∈ {+,−}. Thus, firing transition up◦i decreases C(PX) by one. J

We now bound the number of agents in states from X ∪ PX in a clean configuration.

I Proposition 20. For every initialization sequence π with effective input w such that
L′

π−→ C for some L′ � L, if C is clean, then C(X) + C(PX) ≤ |w|+ n.

Proof. Let S◦2n
def= {q ∈ PX : val(q) = ◦2n} for both ◦ ∈ {+,−}. Since C is clean, we have

C(S◦2n) = 0 for some ◦ ∈ {+,−}. Let us consider the case where ◦ = −. The other case is
proven analogously.

Let u ∈ NX be such that u(x) def= C(x) for every x ∈ X. Note that |u| = C(X), and that
u ≤ w by Proposition 19 (4). Since C is clean, we have C(PX \ S+2n) ≤ n. Thus, it suffices
to show that C(S+2n) ≤ |w| − |u|. Suppose this is not the case. This yields a contradiction:

valPX
(C) > 2n · C(S+2n)− 2n (since C is clean)
≥ 2n · (|w| − |u|+ 1)− 2n (by assumption)
= 2n · (|w| − |u|)
≥ a · (w − u) (since 2n > ‖a‖ and w ≥ u)
= a ·w − a · u
= val(C)− valX(C) (by Prop. 19 (1) and def. of u)
= valPX

(C) (by def. of val) J

The following corollary shows that the number of agents in state 0 can always be increased
back to at least n. This will later be useful in arguing that the number of agents in X can
eventually be decreased to zero.

I Corollary 21. For every initialization sequence π with effective input w such that L′ π−→ C

for some L′ � L, there exists a clean configuration D such that C T∗∞−−→ D and D(0) ≥ n.

Proof. By Proposition 20, there exists a clean configuration C ′ such that C π′∈T∗∞−−−−→ C ′. Let
us first prove that C ′(ZX) ≥ n. Note that ππ′ is an initialization sequence with effective
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input w such that L′ ππ
′

−−→ C ′. Thus:

C ′(ZX) = |C ′| − C ′(X)− C ′(PX)− C ′(B) (by def. of Q)
= (C ′(N) + C ′(B) + |w|)− C ′(X)− C ′(PX)− C ′(B) (by Prop. 19 (2))
≥ (L(N) + C ′(B) + |w|)− C ′(X)− C ′(PX)− C ′(B) (by Prop. 19 (3))
≥ (L(N) + C ′(B) + |w|)− (|w|+ n)− C ′(B) (by Prop. 21)
= L(N)− n
≥ n (by def. of L)

Now, by Proposition 19 (3), we have C ′(N) ≥ L(N) ≥ n. Thus, using swap transitions, we
can swap n agents from ZX to 0. This way, we obtain a configuration D such that C ′ T

∗
∞−−→ D

and D(0) ≥ n. We are done since swap transitions preserve cleanness. J

For every configuration C, let

val+(C) def=
∑
q∈PX

val(q)>0

val(q) · C(q), val−(C) def=
∑
q∈PX

val(q)<0

val(q) · C(q).

We now show that, once dynamic initialization has terminated, fair executions stabilize to
configurations of a certain “normal form”.

I Proposition 22. For every initialization sequence π with effective input w such that
L′

π−→ C for some L′ � L and for every fair execution σ of P∞ starting from C, there exist
i ∈ N, m+ ≥ 0 and m− ≤ 0 such that:
1. σi(X) = σi+1(X) = · · · = 0,
2. val◦(σi) = val◦(σi+1) = · · · = m◦ for both ◦ ∈ {+,−},
3. m+ = 0 ∨m− = 0.

Proof. For the sake of contradiction, assume there exist infinitely many indices j such that
σj(X) > 0. Let j ∈ N be such an index. By Corollary 22, there exists a configuration Cj
such that σj

T∗∞−−→ Cj and Cj(0) ≥ n. Hence, there exists x ∈ X such that transition addx
is enabled in Cj . Since this holds for infinitely many indices and since X is finite, fairness
implies that some add transition can be enabled infinitely often and hence occurs infinitely
often along σ. This is impossible since the number of agents in X cannot be increased by
any transition in T∞, and thus would eventually drop below zero. Therefore, there exists
h ∈ N such that σh(X) = σh+1(X) = · · · = 0.

Since X is permanently empty from index h, the add transitions are permanently disabled.
No other transition in T∞ can increase the absolute value of val◦ for any ◦ ∈ {+,−}. Thus,
we have |val◦(σh)| ≥ |val◦(σh+1)| ≥ · · · for both ◦ ∈ {+,−}. Therefore, there exist i ≥ h,
m+ ≥ 0 and m− ≤ 0 such that

val+(σi) = val+(σi+1) = · · · = m+, (4)
val−(σi) = val−(σi+1) = · · · = m−. (5)

It remains to show that m+ = 0 or m− = 0. For the sake of contradiction, suppose this is
not the case. For every j ≥ i, Corollary 22 yields a configuration Cj such that σj

T∗∞−−→ Cj and
Cj(0) ≥ n. Thus, by fairness, there exist infinitely many indices j ≥ i such that σj(0) ≥ n.
Let j be such an index. Let 0 ≤ d, d′ ≤ n be the largest indices for which there exist states
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q, q′ ∈ PX such that σj(q) > 0, σj(q′) > 0, val(q) = 2d and val(q′) = −2d′ . Note that these
indices exist because m+ 6= 0 and m− 6= 0.

Assume without loss of generality that d ≥ d′, as the other case is symmetric. By
Proposition 19 (3), there exists r ∈ B such that C(r) > 0. Since Cj(0) ≥ n ≥ d − d′, the
sequence of transitions down+

d , down+
d−1, . . . , down+

d′+1 can be fired from Cj . From there, we
can fire canceld′,r which leads to a configuration Dj such that |val◦(Dj)| < |m◦| for both
◦ ∈ {+,−}. Since there are infinitely many such indices j, fairness implies that some such
configuration Dj occurs (infinitely often) along σ, which contradicts both (4) and (5). J

Main proof. We are now ready to prove that Pthr works as intended.

I Theorem 23. Pthr computes ϕ with helpers and under reversible dynamic initialization.

Proof. We first show that Pthr is input reversible, and then that it correctly computes ϕ.

Input reversibility. Let π be an initialization sequence with effective inputw such that L′ π−→ C

for some L′ � L. By Proposition 19 (4), we have C(I(x)) = C(x) = w(x)− C(Nx) ≤ w(x)
for every x ∈ X, which proves the first required property.

For every configuration C, let false(C) def= D where D(t) def= 0, D(f) def= C(t) + C(f) and
D(q) def= C(q) for every q ∈ Q \ {f, t}. Observe that for every configuration C, the following
holds:

C
resetC(t)

−−−−−→ false(C) and false(C) ∈ [C]. (6)

It remains to show that if C π.∈T∗−−−−→ D and D′ ∈ [D], then D′ π/∈T∗−−−−→ C ′ for some C ′ ∈ [C].
By (6), it is enough to argue that false(D) T∗−−→ false(C).

Let Ci
ti−→ Ci+1 be the ith step of π.. We argue that false(Ci+1) t′i−→ false(Ci) for some

t′i ∈ T ∪ {ε}. By induction, this implies false(D) T∗−−→ false(C) as desired. If ti is an equal,
false or reset transition, then we already have false(Ci+1) = false(Ci). Otherwise we revert
the step as follows, where “s 7→ u” indicates that if ti = s, then we reverse it with t′i = u:

addx 7→ add−1
x,f for every x ∈ X,

add−1
x,q 7→ addx for every x ∈ X and q ∈ B,

up◦i 7→ down◦i+1 for every 0 ≤ i < n and ◦ ∈ {+,−},
down◦i 7→ up◦i−1 for every 0 < i ≤ n and ◦ ∈ {+,−},

canceli,q 7→ cancel−1
i,f for every 0 ≤ i ≤ n and q ∈ B,

cancel−1
i,q 7→ canceli,f for every 0 ≤ i ≤ n and q ∈ B,

swapxp,q 7→ swapxq,p for every p, q ∈ N and x ∈ X.

Note that t′i is not the exact reverse transition of ti, as it may differ over B. Indeed, t′i may
require an agent in state f, which may not have been produced by ti. However, this is not
an issue since, by definition of false and by Proposition 19 (3), we have:

false(Ci+1)(f) = Ci+1(B) ≥ L(B) > 0.

Thus, we have false(Ci+1) t′i−→ false(Ci) as desired, which completes the proof.

Correctness. Let π be an initialization sequence with effective input w such that L′ π−→ C for
some L′ � L. Let σ be a fair execution of P∞ starting from C. By Proposition 23, there
exist i ∈ N, m+ ≥ 0 and m− ≤ 0 such that:
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(a) σi(X) = σi+1(X) = · · · = 0,
(b) val◦(σi) = val◦(σi+1) = · · · = m◦ for both ◦ ∈ {+,−},
(c) m+ = 0 ∨m− = 0.

First, let us show that O(σ) ∈ {0, 1}. We make a case distinction on whether m+ ≥ b.

Case m+ ≥ b. We show that O(σ) = 1. Note that m+ ≥ b > 0 which implies that m− = 0.
Thus, by (b), no cancel transition is enabled in σj for every j ≥ i. Thus, it suffices to show
that σj(f) = 0 for some j ≥ i. For the sake of contradiction, suppose this is not the case. Let
j ≥ i be such that σj(f) > 0. We claim that σj can reach some configuration Dj enabling
transition equal, i.e. larger or equal to rep(b). This claim, together with fairness, yields a
contradiction since this transition can move all agents in state f to state t.

Let us prove the claim. By Corollary 22, we have σj
T∗∞−−→ Cj where Cj(0) ≥ n. Note that

val+(Cj) = val+(σj). If val+(Cj) = b, then, by cleanness, Cj contains precisely the binary
representation of b, and hence Cj ≥ rep(b). Thus, assume val+(Cj) > b. Let 0 ≤ d ≤ n be
the largest exponent for which there exists a state q ∈ PX such that Cj(q) > 0, val(q) = 2d
and d 6∈ bits(b). Since Cj(0) ≥ n ≥ d, the sequence of transitions down+

d · down+
d−1 · · · down+

1
can be fired from Cj , which yields a configuration Dj ≥ rep(b).

Case m+ < b. We show that O(σ) = 0. First note that equal is disabled in σj for every j ≥ i,
as otherwise we would have σj ≥ rep(b) which implies that m+ = val+(σ′j) ≥ b. Thus, it
suffices to show that there are infinitely many indices j such that σj(f) > 0. Indeed, if this
is the case, then, by fairness, false permanently moves all agents in state t to state f.

For the sake of contradiction, suppose the claim does not hold. Let σ′ def= πσ. Let j ∈ N
be the largest index such that σ′j(f) > 0. Note that this configuration exists as σ′0 = L′ � L
and L(f) > 0. The only transition that reduces the number of agents in f is equal. Thus,
σ′j

equal−−−→ σ′j+1 and val+(σ′j) ≥ b. As finally, m+ < b, some cancel or add−1 transition must
be fired in σ′j′ for some j′ > j. In both cases there is afterwards an agent in state f. This
contradicts the maximality of j.

We are done proving O(σ) ∈ {0, 1}. It remains to argue that O(σ) = ϕ(w). We have:

a ·w = val(σi) (by Prop. 19 (1))
= val+(σi) + val−(σi) (by (a))
= m+ +m−. (by (b))

Recall that m+ ≥ 0, m− ≤ 0 and (m+ = 0 ∨m− = 0). If a · w ≥ b, then we must have
m+ ≥ b > 0 and m− = 0. Therefore, the first case above holds, and hence O(σ) = 1, which
is correct. If a ·w < b, then we must have m+ < b. Therefore, the second case above holds,
and hence O(σ) = 0, which is also correct. J

B.4.2 Remainder protocols

This section describes a family of protocols with helpers computing remainder predicates
under reversible dynamic initialization. The construction, its correctness proof and its
intermediary propositions are similar to those presented in Appendix B.4.1 for the case of
threshold predicates. For completeness, we repeat and adapt them in full details.

Let us fix a remainder predicate ϕ over variables X. Let ϕ(v) def= a · v ≡m b where
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a ∈ ZX and m ∈ N≥2 and b ∈ Z. Without loss of generality4, we may assume 0 ≤ b < m

and 0 ≤ a(x) < m for each x ∈ X.

Instead of directly constructing a protocol for ϕ(v), we rewrite the predicate. This yields
a different but equivalent predicate ϕ′(v):

ϕ′(v) def=
{
a · v 6≥ 1 (mod m) if b = 0,
a · v ≥ b (mod m) ∧ a · v 6≥ b+ 1 (mod m) if b > 0.

As we can handle negations and conjunctions separately in Section 5.2, it is enough to
describe a protocol for the predicate ϕ(v) def= a · v ≥ b (mod m) where a ∈ NX , m ∈ N≥2,
0 < b < m and 0 ≤ a(x) < m for each x ∈ X.

We construct a simple population protocol Prem with helpers that computes ϕ under
reversible dynamic initialization, and prove its correctness.

Notation. Let n be the smallest number such that 2n > ‖ϕ‖. Let P def= {2i : 0 ≤ i ≤ n},
Z

def= {0}, N def= P ∪Z and B def= {f, t}, where P , Z, N and B respectively stand for “Powers
of two”, “Zero”, “Numerical values” and “Boolean values”. For every set S and every x ∈ X,
let Sx

def= {qx : q ∈ S} and SX
def= S ∪

⋃
x∈X Sx.

For every d ∈ N, let bits(d) denote the unique set J ⊆ N such that d =
∑
j∈J 2j , e.g.

bits(13) = bits(11012) = {3, 2, 0}. The canonical representation of an integer d ∈ Z is the
multiset rep(d) defined as follows:

rep(d) def=
{
H2i : i ∈ bits(d)I if d > 0,
H0I if d = 0.

The protocol. The RDI-protocol Prem = (Q,T∞, T†, L,X, I,O) is defined as follows:

Q
def= X ∪NX ∪B.

Intuitively, the states of X are the “ports” through which the agents for each variable
enter and exit the protocol.

I
def= x 7→ x.

That is, the initial state for variable x is x.

L
def= H2n · 0, fI.

So, we have 2n helpers in state 0, and one helper in state f, i.e., initially the protocol
assumes that the predicate does not hold.

O(q) def= q 7→ (0 if q = f else 1 if q = t else ⊥).
That is, the output of the protocol is completely determined by the number of agents in
states t and f

4 If this is not the case for some coefficient a(x), then we can replace it by a(x) mod m, which yields an
equivalent predicate.
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T∞ is the following set of (“permanent”) transitions:

addx : Hx, |rep(a(x))| · 0I 7→ H0xI + rep(a(x)) for every x ∈ X,
upi : H2i, 2iI 7→ H2i+1, 0I for every 0 ≤ i < n,

downi : H2i, 0I 7→ H2i−1, 2i−1I for every 0 < i ≤ n,
moduloq : rep(b) + HqI 7→ rep(b) + HfI for every q ∈ B,
swapxp,q : Hp, qxI 7→ Hpx, qI for every p, q ∈ N and x ∈ X,

equal : rep(b) + HfI 7→ rep(b) + HtI,

false : Hf, tI 7→ Hf, fI.

Intuitively, addx converts an agent which arrived via port x into the canonical repres-
entation of a(x). Transitions of the form upi, downi allow the protocol to change the
representation of a value, without changing the value itself. The modulo transition reduces
the overall value by m. Transition equal allows the protocol to detect that the current
value is at least b, which moves a helper from state f to t.
Finally, T† is the following set of RDI-transitions:

add−1
x,q : H0x, qI + rep(a(x)) 7→ Hx, f, |rep(a(x))| · 0I for every x ∈ X and q ∈ B,

modulo−1
q : rep(b) + HqI 7→ rep(b) + HfI for every q ∈ B,

reset : HtI 7→ HfI.

The first two transitions are needed to reverse the changes of add and modulo transitions
while the dynamic initialization is not finished. Both types of transitions reset the output
of the protocol by leaving an agent in the default output state f. The reset transition
resets the output by moving agents from t to f.

Let P∞ = (Q,T∞, L,X, I,O). Let T def= T∞∪T†. For the sake of readability, we will sometimes
omit the subscripts and superscripts from transitions names when they are irrelevant, e.g. “a
swap transition is enabled” instead of “there exist p, q ∈ N and x ∈ X such that swapxp,q is
enabled”.

Size. Note that Prem has |Q| = |X|+|NX |+|B| = |X|+(n+2)·(|X|+1)+2 = O(log‖ϕ‖·|X|)
states and |L| = 2n + 1 = O(log‖ϕ‖) helpers. Moreover, since families of transitions are
parameterized by X, B and N or N2, there are O(|N |2 · |X|) = O(log2‖ϕ‖ · |X|) ⊆ O(|ϕ|3)
transitions. Finally, each transition uses at most O(|rep(‖ϕ‖)|) = O(log‖ϕ‖) ⊆ O(|ϕ|) states.

Auxiliary definitions and observations. Before proving that Prem works as intended,
let us first introduce auxiliary definitions. Let val : Q→ N be the function that associates a
value to each state as follows:

val(0) = val(f) = val(t) def= 0,

val(x) def= a(x) for every x ∈ X,

val(2i) def= 2i for every 0 ≤ i ≤ n,

val(qx) def= val(q) for every q ∈ N and x ∈ X.

So, for example, for the predicate 5x+ 6y ≥ 4 (mod m) we have val(x) = 5 and val(y) = 6.
For every configuration C and set of states S ⊆ Q, let

valS(C) def=
∑
q∈S

val(q) · C(q).
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In particular, let val(C) def= valQ(C). Intuitively, C can be seen as an encoding of the value
val(C). The following properties, relating values and configurations, can be derived from the
above definitions:

I Proposition 24. For every initialization sequence π with effective input w such that
L′

π−→ C for some L′ � L, the following holds:
1. val(C) ≡m a ·w,
2. val(C) ≤ a ·w,
3. |C| = C(N) + C(B) + |w|,
4. C(N) ≥ L(N) and C(B) ≥ L(B),
5. C(Nx) + C(x) = w(x) for every x ∈ X.

Auxiliary propositions. We say that a configuration C is clean if for every p, q ∈ PX
with val(p) = val(q) and val(p) 6= 2n, it holds that C({p, q}) ≤ 1. Intuitively, in a clean
configuration no agent can be promoted to a higher power of 2.

We show that any configuration can be cleaned using only permanent transitions. This
implies that once the dynamic initialization has terminated, every fair execution visits clean
configurations infinitely often.

I Proposition 25. For every initialization sequence π such that L′ π−→ C for some L′ � L,
there exists a clean configuration D such that C T∗∞−−→ D.

Proof. If C is clean, then we pick D def= C. Otherwise, we claim there exists a configuration
C ′ such that C ∗−→ C ′ and C(PX) > C ′(PX). If C ′ is clean, then we are done. Otherwise,
this process is repeated until a clean configuration D has been reached. This must terminate
as the number of agents in PX cannot become negative.

Let us prove the claim. If C is not clean, then C({p, q}) ≥ 2 for some p, q ∈ PX such
that val(p) = val(q) and val(p) 6= 2n. By Proposition 25 (4), we have C(N) ≥ L(N) ≥ 2
and hence it is possible to consecutively fire at least two swap transitions. Note that they
do not change the amount of agents in PX . For this reason, we may assume without loss
of generality that p = q = 2i for some 0 ≤ i ≤ n. Therefore, firing transition upi decreases
C(PX) by one. J

We now bound the number of agents in states from X ∪ PX in a clean configuration.

I Proposition 26. For every initialization sequence π with effective input w such that
L′

π−→ C for some L′ � L, if C is clean, then C(X) + C(PX) ≤ |w|+ n.

Proof. Let S2n
def= {q ∈ PX : val(q) = 2n}. Let u ∈ NX be such that u(x) def= C(x) for every

x ∈ X. Note that |u| = C(X), and that u ≤ w by Proposition 25 (5). Since C is clean, we
have C(PX \ S2n) ≤ n. Thus, it suffices to show that C(S2n) ≤ |w| − |u|. Suppose this is
not the case. This yields a contradiction:

valPX
(C) ≥ 2n · C(S2n)

> 2n · (|w| − |u|) (by assumption)
≥ a · (w − u) (since 2n > ‖a‖ and w ≥ u)
= a ·w − a · u
≥ val(C)− valX(C) (by Prop. 25 (2) and def. of u)
= valPX

(C) (by def. of val) J
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The following corollary shows that the number of agents in state 0 can always be increased
back to at least n. This will later be useful in arguing that the number of agents in X can
eventually be decreased to zero.

I Corollary 27. For every initialization sequence π with effective input w such that L′ π−→ C

for some L′ � L, there exists a clean configuration D such that C T∗∞−−→ D and D(0) ≥ n.

Proof. By Proposition 26, there exist a clean configuration C ′ such that C π′∈T∗∞−−−−→ C ′. Let
us first prove that C ′(ZX) ≥ n. Note that ππ′ is an initialization sequence with effective
input w such that L ππ′−−→ C ′. Thus:

C ′(ZX) = |C ′| − C ′(X)− C ′(PX)− C ′(B) (by def. of Q)
= (C ′(N) + C ′(B) + |w|)− C ′(X)− C ′(PX)− C ′(B) (by Prop. 25 (3))
≥ (L(N) + C ′(B) + |w|)− C ′(X)− C ′(PX)− C ′(B) (by Prop. 25 (4))
≥ (L(N) + C ′(B) + |w|)− (|w|+ n)− C ′(B) (by Prop. 27)
= L(N)− n
≥ n (by def. of L)

Now, by Proposition 25 (4), we have C ′(N) ≥ L(N) ≥ n. Thus, using swap transitions, we
can swap n agents from ZX to 0. This way, we obtain a configuration D such that C ′ T

∗
∞−−→ D

and D(0) ≥ n. We are done since swap transitions preserve cleanness. J

We now show that, once dynamic initialization has terminated, fair executions stabilize to
configurations of a certain “normal form”.

I Proposition 28. For every initialization sequence π with effective input w such that
L′

π−→ C for some L′ � L and for every fair execution σ of P∞ starting from C, there exist
i ∈ N, r ≥ 0 such that
1. σi(X) = σi+1(X) = · · · = 0,
2. val(σi) = val(σi+1) = · · · = r < m.

Proof. For the sake of contradiction, assume there exist infinitely many indices j such that
σj(X) > 0. Let j ∈ N be such an index. By Corollary 28, there exists a configuration Cj
such that σj

T∗∞−−→ Cj and Cj(0) ≥ n. Hence, there exists x ∈ X such that transition addx
is enabled in Cj . Since this holds for infinitely many indices and since X is finite, fairness
implies that some add transition can be enabled infinitely often and hence occurs infinitely
often along σ. This is impossible since the number of agents in X cannot be increased by
any transition in T∞, and thus would eventually drop below zero. Therefore, there exists
h ∈ N such that σh(X) = σh+1(X) = · · · = 0.

Transitions modulot and modulof reduce the value of a configuration by m > 0. add
transitions are disabled in every configuration val(σi) with i ≥ h and all other transitions
in T∞ do not change the value of a configuration. Moreover, the value of a configuration is
always non-negative. Thus, there exist i ≥ h, r ≥ 0 such that val(σi) = val(σi+1) = · · · = r.

For the sake of contradiction, assume that r ≥ m. As the execution is infinite but there
are only finitely many different configurations for a fixed number of agents, there exists a
configuration D with D(X) = 0 and val(D) = r that occurs infinitely often in σ. We claim
that D can reach a configuration that enables a modulo transition. This claim, together with
fairness, yields a contradiction because the overall value would drop below r.
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Let us prove the claim. By Corollary 28, we have D ∗−→ D′ where D′ is clean and
D′(0) ≥ n. Furthermore, D′(X) = 0 as D(X) = 0 and the number of agents in X cannot be
increased. By Proposition 25 (4), we have D′(B) ≥ L(B) = 1. Thus, it suffices to show that
D′

T∗∞−−→ D′′ for some D′′ ≥ rep(m).
If val(D′) = m, then D′ contains precisely the binary representation of m, because D′ is

clean and D′(X) = 0. Hence, D′ ≥ rep(m). Thus, assume val(D′) > m. Let 0 ≤ d ≤ n be
the largest exponent for which there exists a state q ∈ PX such that D(q) > 0, val(q) = 2d
and d 6∈ bits(m). Since D′(0) ≥ n ≥ d, the sequence of transitions downd · downd−1 · · · down1
can be fired from D′, which yields a configuration D′′ ≥ rep(m). J

Main proof. We are now ready to prove that Prem works as intended.

I Theorem 29. Prem computes ϕ under reversible dynamic initialization.

Proof. We first show that Prem is input reversible, and then that it correctly computes ϕ.

Input reversibility. Let π be an initialization sequence with effective inputw such that L′ π−→ C

for some L′ � L. By Proposition 25 (5), we have C(I(x)) = C(x) = w(x)− C(Nx) ≤ w(x)
for every x ∈ X, which proves the first required property.

For every configuration C, let false(C) def= D where D(t) def= 0, D(f) def= C(t) + C(f) and
D(q) def= C(q) for every q ∈ Q \ {f, t}. Observe that for every configuration C, the following
holds:

C
resetC(t)

−−−−−→ false(C) and false(C) ∈ [C]. (7)

It remains to show that if C π.∈T∗−−−−→ D and D′ ∈ [D], then D′ π/∈T∗−−−−→ C ′ for some C ′ ∈ [C].
By 7, it is enough to argue that false(D) T∗−−→ false(C).

Let Ci
ti−→ Ci+1 be the ith step of π.. We argue that false(Ci+1) t′i−→ false(Ci) for some

t′i ∈ T ∪ {ε}. By induction, this implies false(D) T∗−−→ false(C) as desired. If ti is an equal,
false or reset transition, then we already have false(Ci+1) = false(Ci). Otherwise we revert
the step as follows, where “s 7→ u” indicates that if ti = s, then we reverse it with t′i = u:

addx 7→ add−1
x,f for every x ∈ X,

add−1
x,q 7→ addx for every x ∈ X and q ∈ B,
upi 7→ downi+1 for every 0 ≤ i < n,

downi 7→ upi−1 for every 0 < i ≤ n,
moduloq 7→ modulo−1

f for every q ∈ B,
modulo−1

q 7→ modulof for every q ∈ B,
swapxp,q 7→ swapxq,p for every p, q ∈ N and x ∈ X.

Note that t′i is not the exact reverse transition of ti, as it may differ over B. Indeed, t′i may
require an agent in state f, which may not have been produced by ti. However, this is not
an issue since, by definition of false and by Proposition 19 (3), we have:

false(Ci+1)(f) = Ci+1(B) ≥ L(B) > 0.

Thus, we have false(Ci+1) t′i−→ false(Ci) as desired, which completes the proof.

Correctness. Let π be an initialization sequence with effective input w such that L′ π−→ C for
some L′ � L. Let σ be a fair execution of P∞ starting from C. By Proposition 29, there
exist i ∈ N, r ≥ 0 such that:
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(a) σi(X) = σi+1(X) = · · · = 0,
(b) val(σi) = val(σi+1) = · · · = r < m.

Let us first show that O(σ) ∈ {0, 1}. We make a case distinction on whether v ≥ b.

Case r ≥ b. We show that O(σ) = 1. Note that r < m. The modulo transitions reduce the
overall value by m. As the value of a configuration is never negative, no modulo transition
can be fired again. Thus, it suffices to show that σj(f) = 0 for some j ≥ i. If σi(f) = 0 then
we are done. For the sake of contradiction, suppose this is not the case. As σ is infinite
but there are only finitely many different configurations for a fixed number of agents, there
exists a configuration D that occurs infinitely often in σ such that D(X) = 0, val(D) = r

and D(f) > 0. We claim that D can reach a configuration that enables the transition equal.
This claim, together with fairness, yields a contradiction because equal can move all agents
form state f to state t.

Let us prove the claim. By Corollary 28, we have D T∗∞−−→ D′ where D′ is clean and
D′(0) ≥ n. Furthermore, D′(X) = 0 as D(X) = 0 and the number of agents in X cannot
be increased by transitions in T∞. We show that D′ ∗−→ D′′ for some D′′ ≥ rep(m). If
val(D′) = m, then D′ contains precisely the binary representation of m, because D′ is clean
and D′(X) = 0. Hence, D′ ≥ rep(m). Thus, assume val(D′) > m. Let 0 ≤ d ≤ n be the
largest exponent for which there exists a state q ∈ PX such that D(q) > 0, val(q) = 2d and
d 6∈ bits(m). Since D′(0) ≥ n ≥ d, the sequence of transitions downd · downd−1 · · · down1 can
be fired from D′, which yields a configuration D′′ ≥ rep(m). If D′′(f) = 0, then the claim
holds because the only transition that reduces the number of agents in state f is transition
equal. If D′′(f) > 0, then the claim holds because D′′ enables equal.

Case r < b. We show that O(σ) = 0. First note that equal is disabled in σj for every j ≥ i,
as otherwise we would have σj ≥ rep(b) which implies that r = val(σj) ≥ b. Thus, it suffices
to show that there are infinitely many indices j such that σj(f) > 0. Indeed, if this is the
case, then, by fairness, false permanently moves all agents in state t to state f.

For the sake of contradiction, suppose the claim does not hold. Let σ′ def= πσ. Let j ∈ N
be the largest index such that σ′j(f) > 0. Note that this configuration exists as σ′0 = L′ � L
and L(f) > 0. The only transition that reduces the number of agents in f is equal. Thus,
σ′j

equal−−−→ σ′j+1 and val(σ′j) ≥ b. As finally, r < b, some modulo or add−1 transition must be
fired in σ′j′ for some j′ > j. In both cases there is afterwards an agent in state f. This
contradicts the maximality of j.

We are done proving O(σ) ∈ {0, 1}. It remains to argue that O(σ) = ϕ(w). We have
m > r = val(σi) ≡m a ·w by Proposition 25 (1). If a ·w ≥ b (mod m), then r ≥ b and hence
O(σ) = 1, which is correct. If a ·w < b (mod m), then r < b and hence O(σ) = 0, which is
also correct. J

C Proofs of Section 6: Protocols for small populations

C.1 Proof of Theorem 9
I Theorem 9. Let ϕ be a predicate over a set of variables X, and let ` ∈ N. Assume that for
every i ∈ {2, 3, . . . , `−1}, there exists a protocol with at most one leader and at most m states
that computes (ϕ | i). Then, there is a leaderless population protocol with O(`4 ·m2 · |X|3)
states that computes (x < `)→ ϕ(x).

The proof proceeds in two steps. Lemma 31 shows that, under the assumptions of the
proposition, there is a protocol with one leader computing ϕ for all small populations. Lemma
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35 shows how to transform this protocol into a leaderless one. The bound on the number of
states follows directly from the composition of the bounds given in the lemmas.

I Lemma 30. Let ϕ be a predicate over a set of variables X and let ` ∈ N. Assume that
for every i ∈ {2, 3, . . . , `− 1}, there exists a protocol with at most one leader and at most m
states that computes (ϕ | i). Then there exists a protocol with one leader and O(` ·m · |X|)
states that computes x < `→ ϕ(x).

Proof. Let P1,P2, . . . ,P` be such that each Pi computes (ϕ | i). Without loss of gen-
erality, assume the states of the Pi to be pairwise disjoint. We construct a protocol
P = (Q,T, L,X, I,O) with one leader and O(` ·m · |X|) states that computes x ≤ `→ ϕ(x).
Intuitively, the protocol P works as follows: the leader stores a lower-bound estimate of
the current population size. When the leader meets a new agent it has not met, the leader
increments its estimate. Whenever the estimate changes to some value i, the leader resets i
agents in the population to initial of Pi and lets the agents simulate the computation of Pi.
When the estimate reaches `, the leader knows that the precondition |X| < ` is not satisfied,
and it converts every agent to >, a state that converts any other state to >, thus yielding a
stable 1-consensus. The agents’ states are annotated with their initial input, which allows
the leader to reset states to the correct value.
States and associated mappings. Let Qi

def= X × QPi for every i ∈ [`], where QPi

denotes the states of Pi. The leader assumes a state from the leader states defined as
QL

def= {0, 1, . . . , `} × {0, 1}. The states of P are defined as:

Q
def= X ∪ (X × (Q1 ∪ . . . ∪Q`−1)) ∪ {>} ∪QL.

For the size of the protocol we thus have

|Q| = |X|+ |(X × (Q1 ∪ . . . ∪Q`−1))|+ 1 + |QL| ≤ |X|+ |X| ·m · l + 1 + 2 · `,

which is in O(` ·m · |X|).
We set the leader multiset to:

L
def= H(0, 0)I.

The input mapping I is defined as the identity function. The output mapping is given by:

O(x) def= 0 for every x ∈ X,

O((x, q)) def= OPi(q) for every i ∈ [`] and every (x, q) ∈ Qi,

O((i, b)) def= b for every (i, b) ∈ QL,

O(>) def= 1.

Transitions. The set of transitions T of P is given by T def= T> ∪ Tsim ∪ Tincr where T>, Tsim,
and Tincr are defined as follows.

T> contains precisely the transitions:

true : H>, qI 7→ H>,>I for every q ∈ Q,
threshold : H(`, b), qI 7→ H>,>I for every b ∈ {0, 1}, q ∈ Q.

Intuitively, T> contains transitions that ensure stabilization to 1 if |X| < ` is not satisfied:
threshold initiates converting everyone to > as soon as the threshold ` is reached in the
leader agent. The transitions true then convert everyone to >.
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Tsim is given by
⋃
i∈[`] Tsimi , and Tsimi contains precisely the following transitions for every

x, y ∈ X and every t : (Hq, rI, Hq′, r′I) ∈ TPi :

sim : H(x, q), (y, r)I 7→ H(x, q′), (y, r′)I

Intuitively, the transitions in Tsimi simulate the transitions of the individual protocols Pi
in P.
Tconv contains precisely the following transitions for every x ∈ X:

incri : Hx, (i, b)I 7→ H(x, IPi+1(x)), (i+ 1, b)I for every i ∈ [1, `− 1], b ∈ {0, 1},
convi : H(x, q), (i, b)I 7→ H(x, IPi(x)), (i, b)I for every i ∈ [1, `− 1], q 6∈ Qi,
booli : H(x, q), (i, b)I 7→ H(x, q), (i, O(q))I for every i ∈ [1, `− 1], q ∈ Qi.

Intuitively, the transitions in Tconv implement interactions with the leader whose role is
to convert every agent to the current protocol: incri and convi take care of converting
agents to the next protocol, while the transitions booli convert the leader’s opinion to
the opinion of the current protocol.

Correctness. Before we prove correctness of P, we state without proof some propositions
that follow by inspection of the transitions of P:

I Proposition 31. For every C,C ′ ∈ NQ, the following invariant holds: If C −→ C ′, then
C ′(>) ≥ C(>).

I Proposition 32. Let v ∈ NX . In every fair run σ of P starting in Cv, the transition convi
is taken precisely once in σ for every i ≤ max(|v|, `).

I Proposition 33. In every fair run σ of P such that σk((i, 0)) + σk((i, 1)) = 1 for all but
finitely many indices k, we have for all but finitely many indices k that σk(q) = 0 for every
q ∈ Q \ (Ql ∪ (X ×Qi)).

We now prove correctness of P. Let v ∈ NX and let σ be a fair execution of P starting
in Cv. We consider two cases: |v| ≥ ` and |v| < `.

Let us first consider the case |v| ≥ `. If |v| ≥ `, then by fairness of σ and Proposition 33
we have that the transitions incri are fired ` times in σ, and thus there is some j such that
σj((`, b)) > 0 for some b ∈ {0, 1}. By fairness of σ and by construction of T , we then have
that σj

true−−→ σj+1 and σj+1(>) > 0 for some j, and by Proposition 32 true is fired infinitely
often in σ, and thus σ stabilizes to a configuration where every agent is in state >. Thus, if
|v| ≥ `, then P stabilizes to output 1.

Now consider the case |v| = m < `. By fairness and Proposition 33, the transitions incri
are fired m times in σ, until every agent leaves its initial state. Let j be the largest index
such that σj

incrm−1−−−−−→ σm. Since the transitions incri are the only transitions that change
the first component of the leader, we have σk((m, 1)) = 1 or σk((m, 0)) = 1 for every k > j.
From this, Proposition 34 and fairness of σ, we have that eventually all non-leader agents
are in a state from X ×Qm. The transitions Tsim then guarantee by fairness of σ that the
non-leader agents stabilize to the output of Pm, while the transition boolm ensures that the
leader agent stabilizes to the same output, and thus, since by assumption Pm stabilizes to
ϕ(v) if |v| = m, and |v| = m holds by assumption, we have O(σ) = ϕ(v). This completes
the proof. J

The following lemma shows how to get rid of the leaders in halting protocols.
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I Lemma 34. Let ` ∈ N. For every protocol P = (Q,T, L,X, I,O) with leaders that computes
some predicate ϕ, there exists a leaderless protocol P ′ with O(|Q||L|+1 · |X| · `2) states that
computes (|x| < `)→ ϕ(x).

Proof. Let P = (Q,T, L,X, I,O) be a protocol, with |L| leaders in states Hl1, . . . , l|L|I = L,
that computes some predicate ϕ. We construct a leaderless protocol P ′ = (Q′, T ′, X, I ′, O′),
with O(|Q||L|+1 · |X| · `2) states, that computes ϕ(x) ∨ (|x| > `), which is equivalent to the
desired predicate (|x| < `)→ ϕ(x).

The |L| leaders are simulated by one agent we refer to as leader agent. The leader agent
is determined by a leader election. In general, the agents cannot know when the leader agent
is finally elected, and so agents cannot wait for the leader election to be finished before
starting their computation. However, as long as the population is sufficiently small, the
leader agent may count the population size and reset the population to initial before starting
the computation.

The leader agent simulates both the |L| leaders plus an additional regular agent in
a multi-leader state. Multi-leader states are defined as QL

def=
(
Q|L| × [`]× [`]×X ×Q

)
.

Multi-leader states contain a representation of the states of the |L| leaders, plus meta-
data needed for additional bookkeeping: The leader agent stores a lower-bound estimate
of the population size and a number that indicates how many agents need to be reset
to initial. The estimate of the population size indicates how many agents need to be
reset after the leader agent has been elected, while resetting agents to initial ensures that
the computation starts from a sane configuration. In the case where the estimate of the
population size exceeds `, the leader agent moves to state > that converts everyone to true,
thereby ensuring stabilization to consensus 1. Multi-leader states are thus tuples of the form
l = (leader1, . . . leader|L|, popsize, resetcounter, init, q) ∈ QL where:

leaderi is the current state of the ith leader simulated by the leader agent (where
1 ≤ i ≤ |L|),
popsize ∈ [`] is a counter for the population size,
resetcounter ∈ [`] counts how many agents have been reset,
init ∈ X stores the initial input of the regular agent simulated by the leader agent,
q ∈ Q stores the current state of the regular agent represented by the leader agent.

For every l ∈ QL, we denote by l[attr := x] the state l′ that is identical to l, except that
l′(attr) = x. For example, l[popsize := 10] denotes the state l′ that is identical to l, except
that l′(popsize) = 10.

States. The set of states is

Q′
def= QL ∪ (X ×Q× {frozen, active}) ∪ {>}.

An agent is thus either:
a leader in a multi-leader state of QL;
a leader or non-leader in state >, which converts every agent to >; or
a non-leader in a state of the form (x, q, s) with s ∈ {frozen, active}. The value of x is
the initial input the agent came from, and it never changes. The value of q represents the
current state of the agent from the original protocol. The value of s determines whether
the agent can interact with other non-leader agents: If s = frozen, then the agent is
“frozen” and cannot interact, otherwise it can interact freely with other agents.
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Inputs. For every x ∈ X, we set the input mapping to:

I ′(x) def=
(
l1, . . . , l|L|, 1, 1, x, I(x)

)
.

So initially every agent is a leader agent.
Outputs. We set the opinions of the states to:

O′(l) def= O(l(q)) for every l ∈ QL,

O′((i, q, x)) def= O(q) for every (i, q, x) ∈ I ×Q× {active, frozen},

O′(>) def= 1.

Election of the leader agent. For every l, l′ ∈ QL s.t. max(l(popsize), l′(popsize)) < `,
we add the following transition to T ′ :

Hl, l′I 7→ H(l1, . . . , l|L|, l(popsize)+l′(popsize), 1, l(init), l(init)), (l′(init), I(l′(init)), frozen)I.

This implements a leader election; by fairness, one leader agent eventually remains.
Initiating conversion to >. For every l, l′ ∈ QL s.t. max(l(popsize), l′(popsize)) = `,
we add the following transition to T ′:

Hl, l′I 7→ H>,>I.

This transition ensures that if the population size is at least `, then all agents are eventually
converted to >, thus yielding a stable 1-consensus.
Conversion to 1-consensus. For every q ∈ Q′, we add the following transition to T ′:

H>, qI 7→ H>,>I.

This transition ensures that all agents eventually move to to > when one agent reaches >.
Interactions with leaders. For every l ∈ QL s.t. l(popsize) = l(resetcounter), every
x ∈ X and every r ∈ Q, we add the following transitions to T ′:

Hl, (x, r, active)I 7→ Hl[q := q′], (x, r′, active)I for every Hl(q), rI 7→ Hq′, r′I ∈ T,

Hl, (x, r, active)I 7→ Hl[leaderi := l′], (x, r′, active)I for every 1 ≤ i ≤ |L| :
Hl(leaderi), rI 7→ Hl′, r′I ∈ T.

This simulates interactions with leaders.
Interactions among regular agents. For every (x, q), (y, r) ∈ X ×Q such that Hq, rI 7→
Hq′, r′I ∈ T for some q′, r′, we add the following transition to T ′:

H(x, q, active), (y, r, active)I 7→ H(x, q′, active), (y, r′, active)I.

This simulates interactions between non-leader agents.
Freezing agents. For every l ∈ QL such that l(resetcounter) < l(popsize), and every
(x, q) ∈ X ×Q, we add the following transitions to T ′:

Hl, (x, q, active)I 7→ Hl[resetcounter := 1], (x, I(x), frozen)I,

Hl, (x, q, frozen)I 7→ Hl[resetcounter := l(resetcounter) + 1], (x, q, active)I.
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These transitions take care of freezing/activating agents and resetting agents to initial.
Intuitively, the leader agent resets active agents by resetting their states to initial while
simultaneously freezing them. Thus the following invariant is maintained: whenever an agent
is frozen, it is in its initial state. The reset counter indicates how many frozen agents need to
be activated: If the counter equals i, then l(popsize)− i agents must be activated. Ideally,
the leader agents resets the population by first freezing all agents, one after another, and then
activating each agent one by one. Of course, this order of steps cannot be guaranteed, but if it
is is violated, then by fairness l(resetcounter) is eventually set to 1, and freezing/resetting
is reinitiated. J

C.2 Proof of Theorem 11
I Theorem 11. Let k, i ∈ N. Let ϕ be a boolean combination of atomic predicates (ϕj)j∈[k].
Assume that for every j ∈ [k], there is a simple halting protocol Pj = (Qj , Lj , X, Tj , Ij , Oj)
with one leader computing (ϕj | i). Then there exists a simple halting protocol P that
computes (ϕ | i), with one leader and O (|X| · (len(ϕ) + |Q1|+ . . .+ |Qk|)) states.

Proof. Without loss of generality, we assume that the state sets of P1, . . . ,Pk are pairwise
disjoint. For every j ∈ [k], let fj and tj denote the output states of protocol Pj . Further let
lj be the initial leader state of protocol Pj , i.e. HljI = Lj .

Remember that our final protocol P should evaluate the outcomes of the individual
protocols in succession. To this end, we enrich all states of Q1 ∪ . . . ∪ Qk with a tag in
Ytag

def= X ∪ {�}. Intuitively, each agent is “tagged” with the input variable it corresponds to
or with � if it was the leader. This way, when a protocol Pj halts, one can rewind to the
initial configuration and start the next protocol Pj+1.

Formally, for a given protocol Pj , the tagged protocol PYj is (QYj , LYj , X, TYj , IYj , OYj )
where

QYj
def= Y ×Qj ,

LYj
def= H(�, lj)I,

TYj
def= {H(x, q), (y, r)I 7→ H(x, q′), (y, r′)I | Hq, rI 7→ Hq′, r′I ∈ Tj},

IYj (x) def= (x, Ij(x)) for every x ∈ X,

OYj ((x, q)) def= Oj(q) for every (x, q) ∈ QYj .

Notice that PYj is no longer simple, because we will have multiple states (x, fj) with
output 0 and (x, tj) with output 1, one per x ∈ Ytag. We will say that the intermediate
tagged protocols PYj are tagged-simple. However, it is easy to recover a simple halting
protocol from a tagged-simple halting protocol: we can add two states f, t and transitions
H(x, f)I 7→ HfI and H(x, t)I 7→ HtI for all x ∈ Ytag. It thus suffices to show how to combine
the individual tagged-simple protocols to a tagged-simple protocol of appropriate size.

We show by induction on len(ϕ): for every boolean combination of ϕ of atomic predicates
ϕ1, . . . , ϕk, there exists a tagged-simple halting protocol P ′ with O(|X| · (len(ϕ) + |Q1| +
· · ·+ |Qk|)) states and one leader that computes (ϕ | i). By the previous remark, the claim
entails the theorem to be shown.

The case len(ϕ) = 0 is trivial, since ϕ is computed by PYj for some j if len(ϕ) = 0 holds.
For the induction, consider ϕ = ϕ1 ⊕ ϕ2 for ⊕ ∈ {∧,∨}, and assume the existence of tagged-
simple protocols P ′1,P ′2 that satisfy the claim for ϕ1 and ϕ2, respectively. We construct a
protocol P⊕ = (Q,T, L,X, I,O) that computes (ϕ | i) as follows.



M. Blondin, J. Esparza, B. Genest, M. Helfrich, and S. Jaax 39

States and associated mappings. We define states of P⊕ as:

Q
def= (Q′1 ∪Q′2) ∪ {(x, f), (x, t) | x ∈ Ytag}.

The leader multiset corresponds to the tagged leader multiset of P ′1:

L
def= H(�, l1)I.

The output mapping is given by O((x, f)) def= 0, O((x, t)) def= 1 for every x ∈ Y , and O(q) def= ⊥
for every other q ∈ Q. The input mapping is defined as I(x) def= I ′1(x) for every x ∈ X.

Transitions. The set of transitions is T = T ′1 ] T ′2 ] T ′, where T ′ is constructed as follows:
For every (x, q) ∈ Q′1, (y, r) ∈ Q′2, we add the following transitions to T ′:

H(x, q), (y, r)I 7→
{
HI ′2(x), (y, r)I if x 6= �
H(x, l′2), (y, r)I if x = �

These transitions make sure that once at least one agent is promoted to a state in the
higher protocol P ′2, all agents eventually simulate the execution of protocol P ′2.

Moreover, we add the following transitions to T ′: for every x ∈ Ytag, depending on the
operator ⊕:

If ⊕ = ∧, we add the following transitions for each x ∈ Ytag:

H(x, f′j)I 7→ H(x, f)I for every j ∈ {1, 2},

H(x, t′1)I 7→
{
HI ′2(x)I if x 6= �
H(x, l′2)I if x = �

,

H(x, t′2)I 7→ H(x, t)I.

If ⊕ = ∨, we add the following transitions for each x ∈ Ytag:

H(x, t′j)I 7→ H(x, t)I for every j ∈ {1, 2},

H(x, f′1)I 7→
{
HI ′2(x)I if x 6= �
H(x, l′2)I if x = �

,

H(x, f′2)I 7→ H(x, f)I.

These transitions ensure that once an output state is reached in the simulation of a given
protocol, then either its output is returned as final output (in the case where ⊕ = ∨ and
output of the protocol is 1, or ⊕ = ∧ and output of the protocol is 0), or the simulation of
the second protocol is initiated, until its output is returned, and P satisfies the claim by
induction hypothesis. Note that each inductive call adds 2|Ytag| states, which results in the
bound given in our theorem. J

C.3 Proof of Theorem 12
We consider only the case ϕ(x,y) def= α · x − β · y > 0; the general case > c ∈ Z is easily
adapted from there. We explain later how to adapt the proof to handle remainders predicate
ϕ(x) def= (α · x ≡m b) with m ∈ N and 0 ≤ b ≤ m.

I Theorem 12. Let ϕ(x,y) def= α · x − β · y > 0. For every i ∈ N, there exists a halting
protocol with one leader and O(i2(|ϕ|+ log i)3) states that computes (ϕ | i).
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Input: Finite Multiset Z ∈ NN,
bit position j ∈ [m]

Output: jth bit of
∑
Z

1: procedure Probe(Z, j)
2: val← 0
3: for pos = 1 to j do
4: val← val div 2
5: for all z ∈ Z do
6: val← val + bin(z)pos

7: end for
8: end for
9: return val mod 2

10: end procedure

Input: Finite multisets X, Y ∈ NN

Output: boolean (
∑
X >

∑
Y )

1: procedure Greater-Sum(X, Y )
2: for tgt = m to 1 do
3: valX ← PROBE(X, tgt)
4: valY ← PROBE(Y, tgt)
5: if valX 6= valY then
6: return valX > valY
7: end if
8: end for
9: return false

10: end procedure

Figure 2 Procedure Probe(Z, j) probes the jth bit of the sum of the elements of Z ∈ NN. It
implements a binary adder, but instead of storing the result of the addition, it only keeps the carry
in variable val when moving from one bit position to the next.
Procedure Greater-Sum(X, Y ) compares the sums of the elements of X, Y ∈ NN. It probes the
bits of the two sums, starting with the most-significant bit, until it finds the first position at which
the bits of the two sums differ. If there is no such position, the sums are equal and the algorithm
returns false.

Proof. Let A def= {αj : j ∈ {1, . . . , |α|}} and B
def= {βj : j ∈ {1, . . . , |β|}}. Let m be the

maximal bit length of any number in the set {x1 + . . .+xn : xj ∈ A}∪{y1 + . . .+yn : yj ∈ B}.
Note that m ∈ O

(
log
(
i · 2|ϕ|

))
= O(|ϕ|+ log i). For any a < 2m, we write bin(a) to denote

the least-significant-bit-first binary representation of a, padded to length m with leading 0s.
Whenever bin(a) = bmbm−1 . . . b1, we write bin(a)j to denote bj for every j ∈ [m].

Consider the sequential algorithm Greater-Sum(X,Y ) shown in Figure 2. We have
α ·x−β ·y > 0 iff Greater-Sum(A,B) returns true. So it suffices to exhibit a protocol that
simulates the execution of Greater-Sum(A,B) for inputs of size i. Intuitively, the protocol
has a leader that executes the procedure. The leader stores the values of the variables defined
in Greater-Sum. Regular agents store the input and one additional bit that indicates
whether the leader has met the agent in the current round. The leader can set and unset this
bit, which permits the implementation of a for all loop: the leader stores how many agent it
has met in the current iteration of the loop. Whenever the leader encounters an agent whose
bit is set to 0, it flips the bit to 1, increments its counter, and performs the variable updates
defined in the body of the loop. When the counter value reaches i, the leader knows that
the current iteration of the loop is complete. The leader then unsets all bits of the regular
agents while decrementing its counter agent by agent, before starting the next iteration of
the loop when the counter value reaches zero.

We now define the protocol P = (Q,L, T, I,O) formally.
States. Let Q def= Q′ ∪QL where Q′ def= (A∪B)×{0, 1} is the set of states for regular agents,
and {f, t} ⊆ QL is a set of leader states yet to be specified.

The leader multiset L contains exactly one leader. Unless the leader is in one of the
output states {f, t}, it stores the following values:

tgt ∈ [m] : the target bit position to be probed; corresponds to the loop counter tgt in
line 2 of Procedure Greater-Sum.
pos ∈ [m]: the current bit position; corresponds to the loop counter pos in line 3 of
Procedure Probe.
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met ∈ {0, . . . , i− 1}: the number of agents the leader has met in the current round. This
is needed for the implementation of the forall loop in Procedure Probe.
reset ∈ {0, 1}: indicates whether the bit flag of each regular agent should be reset.
valZ ∈ [i · m] for every Z ∈ {X,Y }: storage for sum of bits from binary represent-
ations of numbers in A and B, respectively; corresponds to valX valY in Procedure
Greater-Sum, and val in Procedure Probe.

Initially, the variables of the leader are set as follows: tgt = m, pos = 1, met = 0, reset =
0, valX = valY = 0. Note that this corresponds to the initial values of the variables in the
procedures probe and Greater-Sum. Thus, we set:

QL
def= [m]× [m]× {0, . . . , i− 1} × {0, 1} × [i ·m],

L
def= H(m, 1, 0, 0, 0, 0)I.

Size. The number of states is |Q| = |Q′|+ |QL| = 2 ∗ |A ∪B|+ 2m3i2 ∈ O(i2(|ϕ|+ log i)3).
Input and output mappings. We define the input mapping I as:

I(xj)
def= (αi, 0) for every 1 ≤ j ≤ |α|,

I(yj)
def= (βi, 0) for every 1 ≤ j ≤ |β|.

The output mapping O is defined as:

O(f) def= 0,

O(t) def= 1,

O(q) def= ⊥ for every q ∈ Q \ {f, t}.

Transitions. For a state q = (γ, b) ∈ Q′, let q(γ) denote γ and let q(b) denote b.
To implement resetting the bit flag of the regular agents, we add the following transitions

for every q ∈ Q′ and l ∈ QL where q(b) = 1 and l(reset) = 1:

Hq, lI 7→ Hq[b := 0], l[met := (l(met)+1 mod (i−1)); reset := min(1, (l(met)+1) mod i)]I.

We now define the remaining transitions for the execution of procedure Greater-Sum.
Let q ∈ Q′ and l ∈ QL \ {f, t}. Let us first establish some abbreviations.

Let:

Z
def=
{
X if q(γ) ∈ A,
Y if q(γ) ∈ B.

Further let lincr
def= l[valZ := l(valZ) + bin(q(γ))pos]. Intuitively, lincr represents the update

to the leader state that results from the incrementation in line 6 of Procedure probe.
Whenever q(b) = 0 and l(reset) = 0, we add the following transitions:

Hq, lI 7→ Hq[b := 1], l′I

where l′ is specified in Table 1. J

Remainder. Consider now a predicate ϕ(x) def= (α · x ≡m b) withm ∈ N and 0 ≤ b ≤ m. We
show that for every i ∈ N, there exists a halting protocol with one leader and O (poly(|ϕ|+ i))
states that computes (ϕ | i).
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Conditions satisfied by l Value of l′ Corresponds to

l(met) < i− 1 lincr[met := l(met) + 1]
Line 6 of Pro-
cedure probe.

l(met) = i− 1
l(pos) < l(tgt)

lincr[valX := valX div 2;
valY := valY div 2;
pos := l(pos) + 1;
met := 0;
reset := 1]

Continuation
of for loop
in line 4 of
Procedure
probe.

l(met) = i− 1,

l(pos) = l(tgt),
lincr(valX) 6= lincr(valY )

t if lincr(valX) > lincr(valY ),
f otherwise.

Return state-
ment in line
6 of Procedure
Greater-Sum.

l(met) = i− 1,

l(pos) = l(tgt) > 1,

lincr(valX) = lincr(valY ).

l[tgt := l(tgt)− 1;
pos = 1;
met = 0;
reset = 1]

Continuation
of the for loop
in Procedure
Greater-Sum

Other f

Return state-
ment in line
9 of Procedure
Greater-Sum.

Table 1 Transitions of the protocol implementing Greater-Sum.

The protocol in which a leader interacts with every other agent, storing in its state the
value of α · v′ mod m, where v′ is the vector of the agents it has already interacted with,
does not work: For m ∈ Θ(|ϕ|), which can be the case, this requires O(2|ϕ|) states. So we
proceed in a different way.

I Theorem 35. Let ϕ(x) def= (α · x ≡m b) with b,m ∈ N, 0 ≤ b < m and α ∈ Z|X|. For every
i ∈ N, there exists a halting protocol with one leader and O

(
|X| · i3(|ϕ|+ log i)3)

)
states that

computes (ϕ | i).

Proof. Let α′ def= (α(1) modm, . . . ,α(|X|) modm). Since α · x ≡m α′ · x, setting ϕ′(x) def=
(α′ · x ≡m b) yields ϕ(x) = ϕ′(x) for every input x. Consider an input x of size i. We have
α′ · x ≤ m · i, hence ϕ′(x) = 1 iff α′ · x ∈ {b,m+ b, . . . , (i− 1)m+ b}, and consequently:

ϕ(x) ≡ ϕ′(x) ≡
i−1∨
j=0

(α′ · x = j ·m+ b) ,
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which is a disjunction of i threshold predicates ϕ′1, · · · , ϕ′i. For every j ∈ [i] it holds:

|ϕ′j | ∈ O
(
log‖ϕ′j‖+ len(ϕ′j) + |X|

)
⊆ O (log(‖ϕ‖ · i) + len(ϕ) + |X|)
= O (log i+ log‖ϕ‖+ len(ϕ) + |X|)
= O (log i+ |ϕ|)

By Lemma 11 there is a protocol Pj computing (ϕ′j | i) with

O
(
i2(|ϕ′j |+ log i)3)

∈ O
(
i2(|ϕ|+ 2 log i)3)

∈ O
(
i2(|ϕ|+ log i)3)

states. By Theorem 12, (ϕ′ | i) can be computed by a protocol with

O
(
|X| · (i+ i · (i2(|ϕ|+ log i)3))

)
∈ O

(
|X| · i3(|ϕ|+ log i)3)

states. J

D Proof of Theorem 13

I Theorem 13. For every polynomial p, every algorithm that accepts a formula ϕ of PA as
input, and returns a population protocol computing ϕ, runs in time 2ω(p(|ϕ|)).

Proof. We show that if such an algorithm runs in time 2p(n) for some polynomial p, then the
validity problem for PA formulas is in EXPTIME, contradicting the fact that its complexity
lies between 2-NEXP and 2-EXPSPACE [7, 12]. Recall that the validity problem for PA
formulas asks whether a given sentence, i.e., a formula without free variables, is true or false.

Let ϕ be a sentence of PA, and let n def= |ϕ|. Consider the formula ψ(x) def= (x ≥ 2) ∧ ϕ
(notice that the smallest possible size of a population is 2). Clearly, ϕ is valid iff ψ(2) holds.
Assume there exists an algorithm that on input ψ executes at most f(n) steps and outputs a
population protocol P that computes ψ. Clearly, P has at most O(f(n)) states, and ϕ is
valid iff P computes 1 for input x = 2.

Let C be the initial configuration of P for input x = 2. A configuration of P with two
agents can be stored in space O(log f(n)), and so C, and every configuration reachable from
it, can be stored using O(log f(n)) space. Protocol P computes 1 from C iff there exists a
configuration C ′ such that:
(i) C ∗−→ C ′,
(ii) C ′ has output 1,
(iii) for every configuration C ′′, if C ′ ∗−→ C ′′, then C ′′ ∗−→ C ′.

Observe that (i)-(iii) can be expressed in FO(TC), i.e. first-order logic with transitive-
closure. By Immermann’s theorem, deciding (i)-(iii) belongs to NSPACE(log f(n)) [14], and
so it can be solved in O(f(n)k) deterministic time for some k ≥ 1. Consequently, if there
exists a polynomial p such that f ∈ O(2p(n)), then the validity of ϕ can be decided in time
2O(p(n)), and so the validity problem for PA is in EXPTIME. The latter is impossible by the
time hierarchy theorem. J
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