
CONTROLLING A POPULATION

NATHALIE BERTRAND, MIHEER DEWASKAR, BLAISE GENEST, HUGO GIMBERT,
AND ADWAIT AMIT GODBOLE

Univ Rennes, Inria & IRISA, France
e-mail address: nathalie.bertrand@inria.fr

University of North Carolina at Chapel Hill, USA
e-mail address: miheer@live.unc.edu

Univ Rennes, CNRS, IRISA, France
e-mail address: blaise.genest@irisa.fr

CNRS & LaBRI, France
e-mail address: hugo.gimbert@labri.fr

IIT Bombay, India
e-mail address: godbole15@gmail.com

Abstract. We introduce a new setting where a population of agents, each modelled by a
finite-state system, are controlled uniformly: the controller applies the same action to every
agent. The framework is largely inspired by the control of a biological system, namely
a population of yeasts, where the controller may only change the environment common
to all cells. We study a synchronisation problem for such populations: no matter how
individual agents react to the actions of the controller, the controller aims at driving
all agents synchronously to a target state. The agents are naturally represented by a
non-deterministic finite state automaton (NFA), the same for every agent, and the whole
system is encoded as a 2-player game. The first player (Controller) chooses actions, and the
second player (Agents) resolves non-determinism for each agent. The game with m agents
is called the m-population game. This gives rise to a parameterized control problem (where
control refers to 2 player games), namely the population control problem: can Controller
control the m-population game for all m ∈ N whatever Agents does?

In this paper, we prove that the population control problem is decidable, and it is a
EXPTIME-complete problem. As far as we know, this is one of the first results on the
control of parameterized systems. Our algorithm, which is not based on cut-off techniques,
produces winning strategies which are symbolic, that is, they do not need to count precisely
how the population is spread between states. The winning strategies produced by our
algorithm are optimal with respect to the synchronisation time: the maximal number of
steps before synchronisation of all agents in the target state is at most polynomial in the
number of agents m, and exponential in the size of the NFA. We also show that if there
is no winning strategy, then there is a population size M such that Controller wins the
m-population game if and only if m ≤M . Surprisingly, M can be doubly exponential in
the number of states of the NFA, with tight upper and lower bounds.

Key words and phrases: MANDATORY list of keywords.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© N. Bertrand, M. Dewaskar, B. Genest, H. Gimbert, and A.A. Godbole
Creative Commons

1

2 N. BERTRAND, M. DEWASKAR, B. GENEST, H. GIMBERT, AND A.A. GODBOLE

1. Introduction

Finite-state controllers, implemented by software, find applications in many different domains:
telecommunication, aeronautics, etc. Many theoretical studies from the model-checking
community showed that, in idealised settings, finite-state controllers suffice. Games are
an elegant formalism to model control problems [5]: players represent the controller and
the system; the precise setting (number of players, their abilities, and their observations)
depends on the context.

Recently, finite-state controllers have been used to control living organisms, such as a
population of yeasts [23]. In this application, microscopy is used to monitor the fluorescence
level of a population of yeasts, reflecting the concentration of some molecule, which differs
from cell to cell. Finite-state systems can model a discretisation of the population of
yeasts [23, 3]. The frequency and duration of injections of a sorbitol solution can be controlled,
being injected uniformly into a solution in which the yeast population is immerged. However,
the response of each cell to the osmotic stress induced by sorbitol varies, influencing the
concentration of the fluorescent molecule. The objective is to control the population to drive
it through a sequence of predetermined fluorescence states.

Taking inspiration from this biological control problem, we propose in this paper, an
idealised problem for the population of yeasts: the (perfectly-informed) controller aims at
leading synchronously all agents to a given fluorescence state. We introduce the m-population
game, where a population of m identical agents is controlled uniformly. Each agent is modeled
as a nondeterministic finite-state automaton (NFA), the same for each agent. The first
player, called Controller, applies the same action, a letter from the NFA alphabet, to every
agent. Its opponent, called Agents, chooses the reaction of each individual agent, that is
their successor state upon that action. These reactions can differ due to non-determinism.
The objective for Controller is to gather all agents synchronously in the target state, and
Agents seeks the opposite objective. Our idealised setting may not be entirely satisfactory,
yet it constitutes a first step towards more realistic formalisations of the yeast population
control problem.

Dealing with large populations explicitly is in general intractable due to the state-space
explosion problem. We therefore consider the associated symbolic parameterized control
problem, that requires to synchronise all agents, independently of the population size.
Interestingly, this population control problem does not fit traditional game frameworks from
the model-checking community. While parameterized verification received recently quite
some attention (see the related work below), to the best of our knowledge, our framework is
among the first ones in parameterized control.

Our results. We first show that considering an infinite population is not equivalent to
the parameterized control problem: there are simple cases where Controller cannot control
an infinite population but can control every finite population. Solving the ∞-population
game reduces to checking a reachability property on the support graph [21], which can be
easily done in PSPACE. On the other hand, solving the parameterized control problem
requires new proof techniques, data structures and algorithms.

We easily obtain that when the answer to the population control problem is negative,
there exists a population size M , called the cut-off, such that Controller wins the m-
population game if and only if m ≤M . Surprisingly, we obtain a lower-bound on the cut-off
doubly exponential in the number of states of the NFA. Exploiting this cut-off naively would
thus yield an inefficient algorithm of least doubly exponential time complexity.

CONTROLLING A POPULATION 3

Fortunately, developing new proof techniques (not based on cut-off), we manage to obtain
a better complexity: we prove the population control problem to be EXPTIME-complete.
As a byproduct, we obtain a doubly exponential upper-bound for the cut-off, matching the
lower-bound. Our techniques are based on a reduction to a parity game with exponentially
many states and a polynomial number of priorities. The constructed parity game, and
associated winning strategies, gives insight on the winning strategies of Controller in the
m-population games, for all values of m. Controller selects actions based on a polynomial
number of transfer graphs, describing the trajectory of agents before reaching a given state.
If Controller wins this parity game then he can uniformly apply his winning strategy to all
m-population games, just keeping track of these transfer graphs, independently of the exact
count in each state. If Agents wins the parity game then he also has a uniform winning
strategy in m-population games, for m large enough, which consists in splitting the agents
evenly among all transitions of the transfer graphs.

Last, we obtain that when the answer to the population control problem is positive, the
controller built by our algorithm takes at most a polynomial number of steps to synchronize
all agents in the winning state, where the polynomial is of order the number of agents power
the number of states of the NFA. We show that our algorithm is optimal, as there are
systems which require at least this order of steps to synchronize all agents.

Related work. Parameterized verification of systems with many identical components
started with the seminal work of German and Sistla in the early nineties [16], and received
recently quite some attention. The decidability and complexity of these problems typically
depend on the communication means, and on whether the system contains a leader (following
a different template) as exposed in the recent survey [13]. This framework has been extended
to timed automata templates [2, 1] and probabilistic systems with Markov decision processes
templates [7, 8]. Another line of work considers population protocols [4, 15]. Close in spirit,
are broadcast protocols [14], in which one action may move an arbitrary number of agents
from one state to another. Our model can be modeled as a subclass of broadcast protocols,
where broadcasts emissions are self loops at a unique state, and no other synchronisation
allowed. The parameterized reachability question considered for broadcast protocols is
trivial in our framework, while our parameterized control question would be undecidable
for broadcast protocols. In these different works, components interact directly, while in
our work, the interaction is indirect via the common action of the controller. Further, the
problems considered in related work are verification questions, and do not tackle the difficult
issue we address of synthesising a controller for all instances of a parameterized system.

There are very few contributions pertaining to parameterized games with more than one
player. The most related is [20], which proves decidability of control of mutual exclusion-like
protocols in the presence of an unbounded number of agents. Another contribution in that
domain is the one of broadcast networks of identical parity games [8]. However, the game
is used to solve a verification (reachability) question rather than a parametrized control
problem as in our case. Also the roles of the two players are quite different.

The winning condition we are considering is close to synchronising words. The original
synchronising word problem asks for the existence of a word w and a state q of a deterministic
finite state automaton, such that no matter the initial state s, reading w from s would
lead to state q (see [24] for a survey). Lately, synchronising words have been extended to
NFAs [21]. Compared to our settings, the author assumes a possibly infinite population
of agents. The setting is thus not parametrized, and a usual support arena suffices to
obtain a PSPACE algorithm. Synchronisation for probabilistic models [11, 12] have also

4 N. BERTRAND, M. DEWASKAR, B. GENEST, H. GIMBERT, AND A.A. GODBOLE

been considered: the population of agents is not finite nor discrete, but rather continuous,
represented as a distribution. The distribution evolves deterministically with the choice of
the controller (the probability mass is split according to the probabilities of the transitions),
while in our setting, each agent moves nondeterministically. In [11], the controller needs to
apply the same action whatever the state the agents are in (similarly to our setting), and
then the existence of a controller is undecidable. In [12], the controller can choose the action
depending on the state each agent is in (unlike our setting), and the existence of a controller
reaching uniformly a set of states is PSPACE-complete.

Last, our parameterized control problem can be encoded as a 2-player game on VASS [9],
with one counter per state of the NFA: the opponent gets to choose the population size
(a counter value), and the move of each agent corresponds to decrementing a counter and
incrementing another. Such a reduction yields a symmetrical game on VASS in which both
players are allowed to modify the counter values, in order to check that the other player did
not cheat. Symmetrical games on VASS are undecidable [9], and their asymmetric variant
(only one player is allowed to change the counter values) are decidable in 2EXPTIME [19],
thus with higher complexity than our specific parameterized control problem.

An extended abstract of this work appeared in the proceedings of the conference
CONCUR 2017. In comparison, we provide here full proofs of our results, and added more
intuitions and examples to better explain the various concepts introduced in this paper.
Regarding contributions, we augmented our results with the study of the maximal time to
synchronisation, for which we show that the controller built by our algorithm is optimal.

Outline. In Section 2 we define the population control problem and announce our
main results. Section 3 introduces the capacity game, and shows its equivalence with the
population control problem problem. Section 4 details the resolution of the capacity game
in EXPTIME, relying on a clever encoding into a parity game. It also proves a doubly
exponential bound on the cut-off. Section 5 studies the maximal time to synchronisation.
Section 6 provides matching lower bounds on the complexity and on the cut-off. The paper
ends with a discussion in Section 7.

2. The population control problem

2.1. The m-population game. A nondeterministic finite automaton (NFA for short) is
a tuple A = (Q,Σ, q0,∆) with Q a finite set of states, Σ a finite alphabet, q0 ∈ Q an
initial state, and ∆ ⊆ Q× Σ×Q the transition relation. We assume throughout the paper
that NFAs are complete, that is, ∀q ∈ Q, a ∈ Σ , ∃p ∈ Q : (q, a, p) ∈ ∆. In the following,
incomplete NFAs, especially in figures, have to be understood as completed with a sink
state.

For every integer m, we consider a system Am with m identical agents A1, . . . ,Am of
the NFA A. The system Am is itself an NFA (Qm,Σ, qm0 ,∆

m) defined as follows. Formally,
states of Am are called configurations, and they are tuples q = (q1, . . . , qm) ∈ Qm describing
the current state of each agent in the population. We use the shorthand q0[m], or simply q0

when m is clear from context, to denote the initial configuration (q0, . . . , q0) of Am. Given a
target state f ∈ Q, the f -synchronizing configuration is fm = (f, . . . , f) in which each agent
is in the target state.

The intuitive semantics of Am is that at each step, the same action from Σ applies to
all agents. The effect of the action however may not be uniform given the nondeterminism

CONTROLLING A POPULATION 5

q0

q1

q2

f
δ
δ

δ

δ

b

a

b
a

a, b a, b, δ

Figure 1: An example of NFA: The splitting gadget Asplit.

present in A: we have ((q1, . . . , qm), a, (q′1, . . . , q
′
m)) ∈ ∆m iff (qj , a, q

′
j) ∈ ∆ for all j ≤ m.

A (finite or infinite) play in Am is an alternating sequence of configurations and actions,
starting in the initial configuration: π = q0a0q1a1 · · · such that (qi, ai,qi+1) ∈ ∆m for all i.

This is the m-population game between Controller and Agents, where Controller chooses
the actions and Agents chooses how to resolve non-determinism. The objective for Controller
is to gather all agents synchronously in f while Agents seeks the opposite objective.

Our parameterized control problem asks whether Controller can win the m-population
game for every m ∈ N. A strategy of Controller in the m-population game is a function
mapping finite plays to actions, σ : (Qm × Σ)∗ ×Qm → Σ. A play π = q0a0q1a1q2 · · · is
said to respect σ, or is a play under σ, if it satisfies ai = σ(q0a0q1 · · ·qi) for all i ∈ N. A play
π = q0a0q1a1q2 · · · is winning if it hits the f -synchronizing configuration, that is qj = fm

for some j ∈ N. Controller wins the m-population game if he has a strategy such that all
plays under this strategy are winning. One can assume without loss of generality that f is a
sink state. If not, it suffices to add a new action leading tokens from f to the new target
sink state , and tokens from other states to a losing sink state /. The goal of this paper is
to study the following parameterized control problem:

Population control problem
Input: An NFA A = (Q, q0,Σ,∆) and a target state f ∈ Q.
Output: Yes iff for every integer m Controller wins the m-population game.

For a fixed m, the winner of the m-population game can be determined by solving the
underlying reachability game with |Q|m states, which is intractable for large values of m.
On the other hand, the answer to the population control problem gives the winner of the
m-population game for arbitrary large values of m. To obtain a decision procedure for this
parameterised problem, new data structures and algorithmic tools need to be developed,
much more elaborate than the standard algorithm solving reachability games.

Example 2.1. We illustrate the population control problem with the exampleAsplit on action
alphabet Σ = {a, b, δ} in Figure 1. Here, to represent a configuration q, we use a counting
abstraction, and identify q with the vector (n0, n1, n2, n3), where n0 is the number of agents
in state q0, etc, and n3 is the number of agents in f . Controller has a way to gather all agents
synchronously to f . We can give a symbolic representation of a memoryless winning strategy
σ: ∀k0, k1 > 0, ∀k2, k3 ≥ 0, σ(k0, 0, 0, k3) = δ, σ(0, k1, k2, k3) = a, σ(0, 0, k2, k3) = b. Under
this strategy indeed, the number of agents outside f decreases by at least one at every other

6 N. BERTRAND, M. DEWASKAR, B. GENEST, H. GIMBERT, AND A.A. GODBOLE

step. The properties of this example will be detailed later and play a part in proving a lower
bound (see Proposition 6.3).

Example 2.2. We provide another illustrating example, requiring a more involved strategy.
Consider the NFA from Figure 2, with Σ = {try, retry, top, bot, keep, restart}. This
NFA is again a positive instance of the population control problem. Yet, in contrast with the
previous example, there are unsafe moves for Controller. Indeed, after playing try from q0,
playing bot is losing if there are agents in q>, and playing top is losing if there are agents in
q⊥ (recall that unspecified transitions lead to a sink losing state). However, alternating try

and keep until either q⊥ becomes empty - allowing to play top or q> is empty - allowing to
play bot, and then restart, yields a configuration with less agents in q0, and at least one
in f . Continuing in the same way provides a winning strategy for Controller. This example
will be used again in Section 5, regarding the worst-case time to synchronisation.

q0

q>

q⊥

k

f
try
try

keep
top

keep

botrestart

Σ \ {restart}

Σ

Figure 2: A second example of NFA for the population control problem: Atime.

2.2. Parameterized control and cut-off. A first observation for the population control
problem is that q0[m], fm and Qm are stable under a permutation of coordinates. A
consequence is that the m-population game is also symmetric under permutation, and thus
the set of winning configurations is symmetric and the winning strategy can be chosen
uniformly from symmetric winning configurations. Therefore, if Controller wins the m-
population game then he has a positional winning strategy which only counts the number of
agents in each state of A (the counting abstraction used in Example 2.1).

Proposition 2.3. Let m ∈ N. If Controller wins the m-population game, then he wins the
m′-population game for every m′ ≤ m.

Proof. Let m ∈ N, and assume σ is a winning strategy for Controller in Am. For m′ ≤ m we
define σ′ as a strategy on Am′ , inductively on the length of finite plays. Initially, σ′ chooses
the same first action as σ: σ′(qm

′
0) = σ(qm0). We then arbitrarily choose that the missing

m−m′ agents would behave similarly as the first agent. This is indeed a possible move for the
adversary in Am. Then, for any finite play under σ′ in Am′ , say π′ = qm′

0 a0q
m′
1 a1q

m′
2 · · ·qm′

n ,
there must exist an extension π of π′ obtained by adding m−m′ agents, all behaving as the
first agent in Am′ , that is consistent with σ. Then, we let σ′(π′) = σ(π). Obviously, since σ

is winning in Am, σ′ is also winning in Am′ .

CONTROLLING A POPULATION 7

Hence, when the answer to the population control problem is negative, there exists a
cut-off, that is a value M ∈ N such that for every m < M , Controller has a winning strategy
in Am, and for every m ≥M , he has no winning strategy.

Example 2.4. To illustrate the notion of cut-off, consider the NFA on alphabet Σ = A∪{b}
from Figure 3. Here again, unspecified transitions lead to a sink losing state /.

Let us prove that the cut-off is M = |Q| − 2 in this case. On the one hand, for m < M ,
there is a winning strategy σm in Am to reach fm, in just two steps. It first plays b, and
because m < M , in the next configuration, there is at least one state qi such that no agent
is in qi. It then suffices to play ai to win. On the other hand, if m ≥M , there is no winning
strategy to synchronize in f , since after the first b, agents can be spread so that there is at
least one agent in each state qi. From there, Controller can either play action b and restart
the whole game, or play any action ai, leading at least one agent to the sink state /.

q0

q1

...

qM

f

b

b

b
A \ a1

A \ aM
b

A ∪ {b}

Figure 3: An NFA with a linear cut-off.

2.3. Main results. We are now in a position to state the contributions of this paper. Most
importantly, we establish the decidability and complexity of the population control problem,
with matching upper and lower bounds on complexity:

Theorem 2.5. The population control problem is EXPTIME-complete.

To prove Theorem 2.5, we proceed as follows. First, Theorem 3.7 states the equivalence
of the population control problem with an involved but non-parametric control problem,
called the capacity game. A simple yet suboptimal 2EXPTIME upper bound derives from
this equivalence. In Theorem 4.5, we reduce the capacity game to an exponential-size parity
game with polynomially many parities, yielding an EXPTIME upper bound. The matching
EXPTIME-hard lower bound is proved in Theorem 6.1.

For positive instances of the population control problem, our decision algorithm computes
a symbolic strategy σ, applicable to all instances Am, which, in particular, does not rely on
the number of agents in each state. This symbolic strategy requires exponential memory.
Further, it is optimal with respect to the synchronisation time, i.e. the maximal number of
steps before synchronisation, which is polynomial in the number of agents.

Theorem 2.6. The synchronisation time under the winning strategy σ is polynomial in the
number of agents (and exponential in the size of A). There is a family of NFA (An) with n

states, such that m
n−2
2 steps are needed by any strategy to synchronise m agents.

The upper bound is stated in Theorem 5.4, and the lower bound in Corollary 5.3.

For negative instances to the population control problem, the cut-off is at most doubly
exponential, which is asymptotically tight.

8 N. BERTRAND, M. DEWASKAR, B. GENEST, H. GIMBERT, AND A.A. GODBOLE

Theorem 2.7. In case the answer to the population control problem is negative, the cut-off

is at most ≤ 22
O(|Q|4)

. There is a family of NFA (An) of size O(n) and whose cut-off is 22
n

.

Concerning the cut-off, the upper bound derives from results of Theorem 4.5 (about
the size of Agents’ winning strategy) combined with Proposition 3.10. The lower bound is
stated in Proposition 6.3

3. The capacity game

The objective of this section is to show that the population control problem is equivalent to
solving a game called the capacity game. To introduce useful notations, we first recall the
population game with infinitely many agents, as studied in [21] (see also [22] p.81).

3.1. The ∞-population game. To study the ∞-population game, the behaviour of infin-
itely many agents is abstracted into supports which keep track of the set of states in which at
least one agent is. We thus introduce the support game, which relies on the notion of transfer
graphs. Formally, a transfer graph is a subset of Q×Q describing how agents are moved
during one step. The domain of a transfer graph G is Dom(G) = {q ∈ Q | ∃(q, r) ∈ G} and
its image is Im(G) = {r ∈ Q | ∃(q, r) ∈ G}. Given an NFA A = (Q,Σ, q0,∆) and a ∈ Σ, the
transfer graph G is compatible with a if for every edge (q, r) of G, (q, a, r) ∈ ∆. We write G
for the set of transfer graphs.

The support game of an NFA A is a two-player reachability game played by Controller
and Agents on the support arena as follows. States are supports, i.e., non-empty subsets of
Q and the play starts in {q0}. The goal support is {f}. From a support S, first Controller
chooses a letter a ∈ Σ, then Agents chooses a transfer graph G compatible with a and such
that Dom(G) = S, and the next support is Im(G). A play in the support arena is described

by the sequence ρ = S0
a1,G1−→ S1

a2,G2−→ . . . of supports and actions (letters and transfer graphs)
of the players. Here, Agents’ best strategy is to play the maximal graph possible, and we
obtain a PSPACE algorithm [21], and problem is PSPACE-complete:

Proposition 3.1. Controller wins the ∞-population game iff he wins the support game.

Proof. Let π = q0a1q1 . . .qn−1anqn . . . be an infinite (or a finite) play of the ∞-population
game: agent i ∈ N is in state qk[i] at step k. By only observing the support of the states
and the transfer graphs, we can project this play onto the support arena. More precisely,
denoting Sk = {qk[i] | i ∈ N} and Gk+1 = {(qk[i],qk+1[i]) | i ∈ N} for every k, we have

Φ(π) = S0
a1,G1−→ S1 · · ·Sn−1

an,Gn−→ Sn · · · is a valid play in the support arena.
Hence if Controller can win the support game with strategy σ, then Controller can use

the strategy σ ◦Φ in the ∞-population game. This is a winning strategy since the projection
in the support arena should eventually reach {f}.

On the other hand if Controller doesn’t have a winning strategy in the support game,
then by determinacy of reachability games, Agents has a strategy in the support game to
avoid reaching {f}. This strategy can be extended to a strategy in the ∞-population game
by sending infinitely many agents along each edge of the chosen transfer graph. This can
always be done because, inductively, there are infinitely many agents in each state.

CONTROLLING A POPULATION 9

Perhaps surprisingly, when it comes to finite populations, the support game cannot
be exploited to solve the population control problem. Indeed, Controller might win every
m-population game (with m <∞) and at the same time lose the ∞-population game. The
example from Figure 1 witnesses this situation. As already shown, Controller wins any
m-population game with m < ∞. However, Agents can win the ∞-population game by
splitting agents from q0 to both q1 and q2 each time Controller plays δ. This way, the
sequence of supports is {q0}{q1, q2}({q0, f}{q1, q2, f})∗, which never hits {f}.

3.2. Realisable plays. Plays of the m-population game (for m < ∞) can be abstracted
as plays in the support game, forgetting the identity of agents and keeping only track of
edges that are used by at least one agent. Formally, given a play π = q0a0q1a1q2 · · ·
of the m-population game, define for every integer n, Sn = {qn[i] | 1 ≤ i ≤ m} and

Gn+1 = {(qn[i],qn+1[i]) | 1 ≤ i ≤ m}. We denote Φm(π) the play S0
a1,G1−→ S1

a2,G2−→ . . . in the
support arena, called the projection of π.

Not every play in the support arena can be obtained by projection. This is the reason
for introducing the notion of realisable plays:

Definition 3.2 (Realisable plays). A play of the support game is realisable if there exists
m <∞ such that it is the projection by Φm of a play in the m-population game.

To characterise realisability, we introduce entries of accumulators:

Definition 3.3. Let ρ = S0
a1,G1−→ S1

a2,G2−→ . . . be a play in the support arena. An accumulator
of ρ is a sequence T = (Tj)j∈N such that for every integer j, Tj ⊆ Sj , and which is successor-
closed i.e., for every j ∈ N, (s ∈ Tj ∧ (s, t) ∈ Gj+1) =⇒ t ∈ Tj+1 . For every j ∈ N, an edge
(s, t) ∈ Gj+1 is an entry to T if s 6∈ Tj and t ∈ Tj+1; such an index j is called an entry time.

q0

q1

a a

a

a

•q0

•q1

•q0

•q1
G

•q0

•q1

•q0

•q1
H

0 1

G

•

•

•

•

2

•

•
H

3 4

•

•

•

•
G G

•

•
H

· · ·

Figure 4: An NFA, two transfer graphs, and a play with finite yet unbounded capacity.

Figure 4 illustrates the notions we just introduced: it contains an NFA (left), two
transfer graphs G and H (middle), and ρ = GHG2HG3 · · · a play in the support arena
(right). The grey zone is an accumulator defined by T0 = T1 = ∅, T2 = T3 = T4 = {q1} and
Tn = {q0, q1} for all n ≥ 5.

Definition 3.4 (Plays with finite and bounded capacity). A play has finite capacity if all
its accumulators have finitely many entries (or entry times), infinite capacity otherwise, and
bounded capacity if the number of entries (or entry times) of its accumulators is bounded.

10 N. BERTRAND, M. DEWASKAR, B. GENEST, H. GIMBERT, AND A.A. GODBOLE

Continuing with the example of Figure 4, entries of the accumulator are depicted in
red. The play ρ = GHG2HG3 · · · is not realisable in any m-population game, since at least
n agents are needed to realise n transfer graphs G in a row: at each G step, at least one
agent moves from q0 to q1, and no new agent enters q0. Moreover, let us argue that ρ has
unbounded capacity. A simple analysis shows that there are only two kinds of non-trivial
accumulators (Tj)j∈N depending on whether their first non-empty Tj is {q0} or {q1}. We
call these top and bottom accumulators, respectively. All accumulators have finitely many
entries, thus the play has finite capacity. However, for every n ∈ N there is a bottom
accumulator with 2n entries. Therefore, ρ has unbounded capacity, and it is not realisable.

We show that in general, realisability is equivalent to bounded capacity:

Lemma 3.5. A play is realisable iff it has bounded capacity.

Proof. Let ρ = S0
a1,G1−→ S1

a2,G2−→ · · · be a realisable play in the support arena and π =
q0a1q1a2q2 · · · a play in the m-population game for some m, such that Φm(π) = ρ. For any
accumulator T = (Tj)j∈N accumulator of ρ, let us show that T has less than m entries. For
every j ∈ N, we define nj =| {1 ≤ k ≤ m | qj(k) ∈ Tj} | as the number of agents in the
accumulator at index j. By definition of the projection, every edge (s, t) in Gj corresponds
to the move of at least one agent from state s in qj to state t in qj+1. Thus, since the
accumulator is successor-closed, the sequence (nj)j∈N is non-decreasing and it increases at
each entry time. The number of entry times is thus bounded by m the number of agents.

Conversely, assume that a play ρ = S0
a1,G1−→ S1

a2,G2−→ · · · has bounded capacity, and let
m be an upper bound on the number of entry times of its accumulators. Let us show that
ρ is the projection of a play π = q0a1q1a2q2 · · · in the (|S0||Q|m+1)-population game. In
the initial configuration q0, every state in S0 contains |Q|m+1 agents. Then, configuration
qn+1 is obtained from qn by spreading the agents evenly among all edges of Gn+1. As a
consequence, for every edge (s, t) ∈ Gn+1 at least a fraction 1

|Q| of the agents in state s

in qn moves to state t in qn+1. By induction, π = q0a1q1a2q2 · · · projects to some play

ρ′ = S′0
a1,G′1−→ S′1

a2,G′2−→ · · · such that for every n ∈ N, S′n ⊆ Sn and G′n ⊆ Gn. To prove that
ρ′ = ρ, we show that for every n ∈ N and state t ∈ Sn, at least |Q| agents are in state t in
qn. For that let (Uj)j∈{0...n} be the sequence of subsets of Q defined by Un = {t}, and for
0 < j < n,

Uj−1 = {s ∈ Q | ∃t′ ∈ Uj , (s, t
′) ∈ Gj} .

In particular, U0 = S0. Let (Tj)j∈N be the sequence of subsets of states defined by
Tj = Sj \ Uj if j ≤ n and Tj = Sj otherwise. Then (Tj)j∈N is an accumulator: if s 6∈ Uj

and (s, s′) ∈ Gj then s′ 6∈ Uj+1. As a consequence, (Tj)j∈N has at most m entry times,
thus, there are at most m indices j ∈ {0 . . . n− 1} such that some agents in the states of
Sj \ Tj = Uj in configuration qj may move to states of Tj+1 in configuration qj+1. In other
words, if we denote Mj the number of agents in the states of Uj in configuration qj then
there are at most m indices where the sequence (Mj)j∈{0...n} decreases. By definition of π,

even when Mj > Mj+1, at least a fraction 1
|Q| of the agents moves from Uj to Uj+1 along the

edges of Gj+1, thus Mj+1 ≥ Mj

|Q| . Finally, the number of agents Mn in state t in qn satisfies

Mn ≥ |S0||Q|m+1

|Q|m ≥ |Q|. Hence ρ and ρ′ coincide, so that ρ is realisable.

CONTROLLING A POPULATION 11

3.3. The capacity game. An idea to obtain a game on the support arena equivalent with
the population control problem is to make Agents lose whenever the play is not realisable,
i.e. whenever the play has unbounded capacity. One issue with (un)bounded capacity is
however that it is not a regular property for runs. Hence, it is not easy to use it as a
winning condition. On the contrary, finite capacity is a regular property. We thus relax
(un)bounded capacity by using (in)finite capacity and define the corresponding abstraction
of the population game:

Definition 3.6 (Capacity game). The capacity game is the game played on the support
arena, where Controller wins a play iff either the play reaches {f} or the play has infinite
capacity. A player wins the capacity game if he has a winning strategy in this game.

We show that this relaxation can be used to decide the population control problem.

Theorem 3.7. The answer to the population control problem is positive iff Controller wins
the capacity game.

This theorem is a direct corollary of the following propositions (3.8 - 3.10):

Proposition 3.8. Either Controller or Agents wins the capacity game, and the winner has
a winning strategy with finite memory.

Proof. Whether a play has infinite capacity can be verified by a non-deterministic Büchi
automaton of size 2|Q| on the alphabet of transfer graphs, which guesses an accumulator
on the fly and checks that it has infinitely many entries. This Büchi automaton can be
determinised into a parity automaton (e.g. using Safra’s construction) with state space M

of size O
(

22
|Q|
)

. The synchronized product of this deterministic parity automaton with

the support game produces a parity game which is equivalent with the capacity game, in
the sense that, up to unambigous synchronization with the deterministic automaton, plays
and strategies in both games are the same and the synchronization preserves winning plays
and strategies. Since parity games are determined and positional [25], either Controller
or Agents has a positional winning strategy in the parity game, thus either Controller or
Agents has a winning strategy with finite memory M in the capacity game.

Proposition 3.9. If Controller wins the capacity game, then Controller has a winning
strategy in the m-population game for all m.

Proof. Assuming that Controller wins the capacity game with a strategy σ, he can win
any m-population game, m < ∞, with the strategy σm = σ ◦ Φm. The projection Φm(π)
of every infinite play π respecting σm is realisable, thus Φm(π) has bounded, hence finite,
capacity (Lemma 3.5). Moreover Φm(π) respects σ, and since σ wins the capacity game,
Φm(π) reaches {f}. Thus π reaches fm and σm is winning.

We now prove the more challenging reverse implication. Recall by Proposition 3.8 that
if Agents has a winning strategy in the capacity game, then he has a finite-memory strategy.

Proposition 3.10. If Agents has a winning strategy in the capacity game using finite

memory M , then he has a winning strategy in the |Q|1+|M|·4
|Q|

-population game.

Proof. Let τ be a winning strategy for Agents in the capacity game with finite-memory M.

First we show that any play π = S0
a1,G1−→ S1

a2,G2−→ . . . compatible with τ should have capacity
(i.e. count of entry times of any of its accumulator) bounded by B = |M| × 4|Q|.

12 N. BERTRAND, M. DEWASKAR, B. GENEST, H. GIMBERT, AND A.A. GODBOLE

Let {Ti}i∈N be any accumulator of π. If there are two integers 0 ≤ i < j ≤ n such that
at times i and j:

• the memory state of τ coincide: mi = mj ;
• the supports coincide: Si = Sj ; and
• the supports in the accumulator T coincide: Ti = Tj .

then we show that there is no entry in the accumulator between indices i and j. The play
π∗ identical to π up to date i and which repeats ad infinitum the subplay of π between
times i and j, is consistent with τ , because mi = mj and Si = Sj . The corresponding
sequence of transfer graphs is G0, . . . , Gi−1(Gi, . . . , Gj−1)

ω, and T0, . . . , Ti−1(Ti . . . Tj−1)
ω

is a “periodic” accumulator of π∗. By periodicity, this accumulator has either no entry or
infinitely many entries after date i− 1. Since τ is winning, π∗ has finite capacity, thus the
periodic accumulator has no entry after date i − 1, and hence there are no entries in the
accumulator (Tj)j∈N between indices i and j.

Let I be the set of entry times for the accumulator (Tj)j∈N. According to the above,
for all pairs of distinct indices (i, j) in I, we have mi 6= mj ∨ Si 6= Sj ∨ Ti 6= Tj . As a
consequence,

|I| ≤ B = |M| · 4|Q| .
Now following the proof of Lemma 3.5, for m = |Q|B+1, Agents has a strategy τm in the

m-population game of following the transfer graphs suggested by τ . In other words, when it is

Agents’s turn to play in the m-population game, and the play so far π = q0
a1−→ q1 · · ·qn

an+1−→
is projected via Φm to a play ρ = S0

a1,G1−→ S1 · · ·Sn
an+1−→ in the capacity game, let Gn+1 = τ(ρ)

be the decision of Agents at this point in the capacity game. Then, to determine qn+1, τm
splits evenly the agents in qn along every edge of Gn+1. Since the capacity of ρ is bounded
by B, the argument in the proof of Lemma 3.5 shows that qn has at least |Q| agents in each
state and thus {(qn[i],qn+1[i]) | 1 ≤ i ≤ m} = Gn+1. This means that the projected play
Φm(πqn+1) continues to be consistent with τ and its support will never reach {f}. Thus
τm guarantees that not all agents will be in target state m simultaneously, and hence is a
winning strategy for Agents in the m-population game.

As consequence of Proposition 3.8, the population control problem can be decided by
explicitely computing the parity game and solving it, in 2EXPTIME. In the next section we
will improve this complexity bound to EXPTIME.

q0 f

q1

q2

q3

q4

a a

a ab b

b b

b

c

c

c

c

c

c

c

Figure 5: NFA where Controller needs memory to win the associated capacity game.

CONTROLLING A POPULATION 13

We conclude with an example showing that, in general, positional strategies are not
sufficient to win the capacity game. Consider the example of Figure 5, where the only
way for Controller to win is to reach a support without q2 and play c. With a memoryless
strategy, Controller cannot win the capacity game. There are only two memoryless strategies
from support S = {q1, q2, q3, q4}. If Controller only plays a from S, the support remains S
and the play has bounded capacity. If he only plays b’s from S, then Agents can split agents
from q3 to both q2, q4 and the play remains in support S, with bounded capacity. In both
cases, the play has finite capacity and Controller loses.

However, Controller can win the capacity game. His (finite-memory) winning strategy
σ consists in first playing c, and then playing alternatively a and b, until the support does
not contain {q2}, in which case he plays c to win. Two consecutive steps ab send q2 to q1,
q1 to q3, q3 to q3, and q4 to either q4 or q2. To prevent Controller from playing c and win,
Agents needs to spread from q4 to both q4 and q2 every time ab is played. Consider the
accumulator T defined by T2i = {q1, q2, q3} and T2i−1 = {q1, q2, q4} for every i > 0. It has
an infinite number of entries (from q4 to T2i). Hence Controller wins if this play is executed.
Else, Agents eventually keeps all agents from q4 in q4 when ab is played, implying the next
support does not contain q2. Strategy σ is thus a winning strategy for Controller.

4. Solving the capacity game in EXPTIME

To solve efficiently the capacity game, we build an equivalent exponential size parity game
with a polynomial number of parities. To do so, we enrich the support arena with a tracking
list responsible of checking whether the play has finite capacity. The tracking list is a list of
transfer graphs, which are used to detect certain patterns called leaks.

4.1. Leaking graphs. In order to detect whether a play ρ = S0
a1,G1−→ S1

a2,G2−→ . . . has
finite capacity, it is enough to detect leaking graphs (characterising entries of accumulators).
Further, leaking graphs have special separation properties which will allow us to track a
small number of graphs. For G,H two graphs, we denote (a, b) ∈ G ·H iff there exists z
with (a, z) ∈ G, and (z, b) ∈ H.

Definition 4.1 (Leaks and separations). Let G,H be two transfer graphs. We say that G
leaks at H if there exist states q, x, y with (q, y) ∈ G ·H, (x, y) ∈ H and (q, x) /∈ G. We say
that G separates a pair of states (r, t) if there exists q ∈ Q with (q, r) ∈ G and (q, t) 6∈ G.
Denote by Sep(G) the set of all pairs (r, t) which are separated by G.

•q
•x

•
•y

G H

•q
•t

•r

G

Figure 6: Left: G leaks at H; Right: G separates (r, t).

The tracking list will be composed of concatenated graphs tracking i of the form
G[i, j] = Gi+1 · · ·Gj relating Si with Sj : (si, sj) ∈ G[i, j] if there exists (sk)i<k<j with
(sk, sk+1) ∈ Gk+1 for all i ≤ k < j. Infinite capacity relates to leaks in the following way:

14 N. BERTRAND, M. DEWASKAR, B. GENEST, H. GIMBERT, AND A.A. GODBOLE

Lemma 4.2. A play has infinite capacity iff there exists an index i such that G[i, j] leaks
at Gj+1 for infinitely many indices j.

Proof. To prove the right-to-left implication, assume that there exists an index i such that
G[i, j] leaks at Gj+1 for an infinite number of indices j. As the number of states is finite, there
exists a state q with an infinite number of indices j such that we have some (xj , yj+1) ∈ Gj+1

with (q, yj+1) ∈ G[i, j+1], (q, xj) /∈ G[i, j]. The accumulator generated by Ti = {q} has an
infinite number of entries, and we are done with this direction.

i j j+1

•q •
•x •y

Gj+1G[i, j]

For the left-to-right implication, assume that there is an accumulator (Tj)j≥0 with an
infinite number of entries.
For X = (Xn)n∈N an accumulator, we denote |Xn| the number of states in Xn, and we define
the width of X as width(X) = lim supn |Xn|. We first prove the following property:

(†) If ∅ 6= Y ⊆ X and Z ⊆ X are two disjoint accumulators, then width(Z) < width(X).

Let us prove property (†). Let r be the minimal index s.t. Yr 6= ∅. Thus, for every n ≥ r,
Yn contains at least one vertex. Because Y and Z are disjoint, we derive |Zn|+ 1 ≤ |Xn|.
Taking the limsup of this inequality we obtain (†).

We pick X an accumulator of minimal width with infinitely many incoming edges. Let r
minimal such that Xr 6= ∅. Let v ∈ Xr. We denote Y v the smallest accumulator containing
v. We have Y v 6= ∅. Let us show that Y v has infinitely many incoming edges. Define
Y v ⊆ T v = (T v

n)n∈N the set of predecessors of vertices in Y v. We let Zn = Xn \ T v
n for all n.

We have Z = (Zn) is an accumulator, because T v is predecessor-closed and X is successor-
closed. Applying property (†) to 0 6= Y v ⊆ X and Z ⊆ X, we obtain width(Z) < width(X).
By width minimality of X among successor-closed sets with infinitely many incoming edges,
Z = X \ T v must have finitely many incoming edges only. Since X has infinitely many
incoming edges, then T v has infinitely many incoming edges. Thus there are infinitely many
edges connecting a vertex outside Y v to a vertex of Y v, so that Y v has infinitely many
incoming edges. We have just shown that G[r, j] leaks at infinitely many indices j.

Indices i such that G[i, j] leaks at Gj+1 for infinitely many indices j are said to leak
infinitely often. Note that if G separates (r, t), and r, t have a common successor in H, then
G leaks at H. To link leaks with separations, we consider for each index k, the pairs of states
that have a common successor, in possibly several steps, as expressed by the symmetric
relation Rk: (r, t) ∈ Rk iff there exists j ≥ k + 1 and y ∈ Q such that (r, y) ∈ G[k, j] and
(t, y) ∈ G[k, j].

Lemma 4.3. For i < n two indices, the following properties hold:

(1) If G[i, n] separates (r, t) ∈ Rn, then there exists m ≥ n such that G[i,m] leaks at Gm+1.
(2) If index i does not leak infinitely often, then the number of indices j such that G[i, j]

separates some (r, t) ∈ Rj is finite.
(3) If index i leaks infinitely often, then for all j > i, G[i, j] separates some (r, t) ∈ Rj.
(4) If i < j < n then Sep(G[i, n]) ⊆ Sep(G[j, n]).

CONTROLLING A POPULATION 15

Proof. We start with the proof of the first item. Assume that G[i, n] separates a pair
(r, t) ∈ Rn. Hence there exists q such that (q, r) ∈ G[i, n], (q, t) /∈ G[i, n]. Since (r, t) ∈ Rn,
there is an index k > n and a state y such that (r, y) ∈ G[n, k] and (t, y) ∈ G[n, k]. Hence,
there exists a path (tj)n≤j≤k with tn = t, tk = y, and (tj , tj+1) ∈ Gj+1 for all n ≤ j < k.
Moreover, there is a path from q to y because there are paths from q to r and from r to y.
Let ` ≤ k be the minimum index such that there is a path from q to t`. As there is no path
from q to tn = t, necessarily ` ≥ n + 1. Obviously, (t`−1, t`) ∈ G`, and by definition and
minimality of `, (q, t`−1) /∈ G[i, `− 1] and (q, t`) ∈ G[i, `]. That is, G[i, `− 1] leaks at G`.

Let us now prove the second item, using the first one. Assume that i does not leak
infinitely often, and towards a contradiction suppose that there are infinitely many j’s such
that G[i, j] separates some (r, t) ∈ Rj . To each of these separations, we can apply item 1.
to obtain infinitely many indices m such that G[i,m] leaks at Gm+1, a contradiction.

We now prove the third item. Since there are finitely many states in Q, there exists
q ∈ Q and an infinite set J of indices such that for every j ∈ J , (q, yj+1) ∈ G[i, j+1],
(q, xj) /∈ G[i, j], and (xj , yj+1) ∈ Gj+1 for some xj , yj+1. The path from q to yj+1 implies the
existence of yj with (q, yj) ∈ G[i, j], and (yj , yj+1) ∈ Gj+1. We have thus found separated
pairs (xj , yj) ∈ Rj for every j ∈ J . To exhibit separations at other indices k > j with k /∈ J ,
the natural idea is to consider predecessors of the xj ’s and yj ’s.

i k j j+1

•q •rk
•tk •xj

•
yj

• yj+1

G[i, k] G[k, j] Gj+1

We define sequences (rk, tk)k≥i inductively as follows. To define rk, we take a j ≥ k + 1
such that j ∈ J ; this is always possible as J is infinite. There exists a state rk such that
(q, rk) ∈ G[i, k] and (rk, yj) ∈ G[k, j].
Also, as xj belongs to Im(G[1, j]), there must exist a state tk such that (tk, xj) ∈ G[k, j].
Clearly, (q, tk) /∈ G[i, k], else (q, xj) ∈ G[i, j], which is not true. Last, yj+1 is a common
successor of tk and rk, that is (tk, yj+1) ∈ G[k, j + 1] and (rk, yj+1) ∈ G[k, j + 1]. Hence
G[i, k] separates (rk, tk) ∈ Rk.

For the last item, let (r, t) ∈ Sep(G[i, n]) and pick q ∈ Q such that (q, r) ∈ G[i, n]
but (q, t) /∈ G[i, n]. Since (q, r) ∈ G[i, n] there exists q′ ∈ Q so that (q, q′) ∈ G[i, j] and
(q′, r) ∈ G[j, n]. It also follows that (q′, t) /∈ G[j, n] since (q, q′) ∈ G[i, j] but (q, t) /∈ G[i, n].
Thus we have shown (r, t) ∈ Sep(G[j, n]).

4.2. The tracking list. Given a fixed index i, figuring out whether i is leaking or not can
be done using a deterministic automaton. However, when one wants to decide the existence
of some index that leaks, naively, one would have to keep track of runs starting from all
possible indices i ∈ N. The tracking list will allow us to track only quadratically many
indices at once. The tracking list exploits the relationship between leaks and separations. It
is a list of transfer graphs which altogether separate all possible pairs of states1, and are
sufficient to detect when leaks occur.

1It is sufficient to consider pairs in Rj . However, as Rj is not known a priori, we consider all pairs in Q2

16 N. BERTRAND, M. DEWASKAR, B. GENEST, H. GIMBERT, AND A.A. GODBOLE

By item (4) in Lemma 4.2, for any n, Sep(G[1, n]) ⊆ Sep(G[2, n]) ⊆ · · ·Sep(G[n, n]). The
exact tracking list Ln at step n is defined as a list of k ≤ |Q|2 graphs G[i1, n], · · · , G[ik, n],
where 1 ≤ i1 < i2 < · · · < ik ≤ n is the list of indices for which Sep(G[i−1, n]) 6= Sep(G[i, n])
(with the convention that Sep(G[0, n]) = ∅).

Consider the sequence of graphs in Figure 7, obtained from alternating try and retry

in the example from Figure 2 where Agents splits agents whenever possible.

0 1 2 3 4 5try try tryretry retry

G1 G2 G3 G4 G5

•q0 •q0 •q0

•q> •q> •q>

•q⊥ •q⊥ •q⊥
•
k

•
k

•
k

•
k

Figure 7: Sequence of graphs associated with a run.

Let us compute Sep(G[i, 5]) on that example for 0 ≤ i ≤ 4. The graph G[0, 5] = G1 · · ·G5

has the following edges: (q0, q>), (q0, q⊥), (q0, k), and thus Sep(G[0, 5]) = ∅. In compari-
son, Sep(G[1, 5]) = {(k, q>), (k, q⊥)} because (q⊥, k) is an edge of G[1, 5] and (q⊥, q>)
and (q⊥, q⊥) are not. Also, Sep(G[2, 5]) = {(k, q>), (k, q⊥)}. Finally Sep(G[3, 5]) =
Sep(G[4, 5]) = {(k, q>), (k, q⊥), (q>, k), (q⊥, k)}. Thus, L5 = (G[1, 5];G[3, 5]). Notice that
G[1, 5] = {(q>, q>), (q>, q⊥), (q>, k), (q⊥, k)} and G[3, 5] = {(q>, q>), (q>, q⊥), (q⊥, k), (k, k)}.

The exact tracking list Ln allows one to test for infinite leaks, but computing it with
polynomial memory seems hard. Instead, we propose to approximate the exact tracking
list into a list, namely the tracking list Ln, which needs only polynomial memory to be
computed, and which is sufficient for finding infinite leaks.

The tracking list Ln is also of the form {G[i1, n], G[i2, n], . . . G[ik, n]} where 0 ≤ i1 <
i2 . . . ik < n with ∅ 6= Sep(G[ir, n]) (Sep(G[ir+1, n]). It is is computed inductively in the
following way: L0 is the empty list. For n > 0, the list Ln is computed from Ln−1 and Gn

in three stages by the following update list algorithm:

(1) First, every graph G[i, n− 1] in the list Ln−1 is concatenated with Gn, yielding G[i, n].
(2) Second, Gn = G[n− 1, n] is added at the end of the list.
(3) Lastly, the list is filtered: a graph H is kept if and only if it separates a pair of states

(p, q) ∈ Q2 which is not separated by any graph that appears earlier in the list.2

Under this definition, Ln = {G[ij , n] | 1 ≤ j ≤ k, Sep(G[ij−1, n]) 6= Sep(G[ij , n])}, with the
convention that Sep(G[i0, n]) = ∅.

Notice that the tracking list Ln may differ from the exact tracking list Ln, as shown
with the example on Figure 8. We have L3 = (G[1, 3], G[2, 3]), as G[0, 3] = G1 · · ·G3

does not separate any pair of states, G[1, 3] = G2 · G3 separates (q1, q2) and G[2, 3] =
G3 separates (q1, q2) and (q2, q1). On the other hand, L3 = (G[2, 3]) 6= L3. Indeed,
L2 = L2 = (G[0, 2]) as G[0, 2] = G1 · G2 and G[1, 2] = G2 separate exactly the same
pairs (q1, q2); (q1, q3); (q2, q3); (q3, q2). Applying the update list algorithm, we obtain the

2This algorithm can be performed without knowning the indices (ij)j≤k, but just the graphs (G[ij , n])j≤k.

CONTROLLING A POPULATION 17

0 1 2 3

•q1 •q1 •q1 •q1

•q2 •q2 •q2 •q2
•q3 •q3G1 G2 G3

Figure 8: Example where the tracking list L3 differs from the exact tracking list L3.

intermediate list (G[0,3],G[2,3]) after stage 2. As G[0, 3] separates no pair of states, it is
filtered out in stage 3. We obtain L3 = (G[2, 3]) 6= L3.

Let Ln = {H1, · · · , H`} be the tracking list at step n. Each transfer graph Hr ∈ Ln is
of the form Hr = G[tr, n]. We say that r is the level of Hr, and tr the index tracked by Hr.
Observe that the lower the level of a graph in the list, the smaller the index it tracks.

When we consider the sequence of tracking lists (Ln)n∈N, for every index i, either it
eventually stops to be tracked or it is tracked forever from step i, i.e. for every n ≥ i,
G[i, n] is not filtered out from Ln. In the latter case, i is said to be remanent (it will never
disappear).

Lemma 4.4. A play has infinite capacity iff there exists an index i such that i is remanent
and leaks infinitely often.

Proof. Because of Lemma 4.2 we only need to show that if there is an index i that leaks
infinitely often, then there is an index which is remanent and leaks infinitely often.

Let i be the smallest index that leaks infinitely often. By Lemma 4.3 (2) there is
an N > i so that whenever j < i < N ≤ n, Sep(G[j, n]) ∩ Rn = ∅. Similarly, by
Lemma 4.3 (3), for every n > i, Sep(G[i, n]) ∩ Rn 6= ∅. Combined with Lemma 4.3
(4), this implies that there is some index j∗ ≥ i which is remanent. Indeed, let LN =
{G[i1, N], G[i2, N] . . . G[ik, N]} and let j∗ = min{ir | ir ≥ i}. Index j∗ exists because for
any ir < i, Sep(G[ir, N]) (Sep(G[i,N]) ⊆ Sep(G[N − 1, N]). The strict inequality arises
because Sep(G[ir, N])∩RN = ∅ but Sep(G[i,N])∩RN 6= ∅. By the same argument, for every
n ≥ N and ir < i, Sep(G[ir, n]) ∩ Rn = ∅ and Sep(G[j∗, n]) ∩ Rn ⊇ Sep(G[i, n]) ∩ Rn 6= ∅.
This shows that j∗ is remanent. By Lemma 4.3 (2), index j∗ also leaks infinitely often.

4.3. The parity game. We now describe a parity game PG, which extends the support
arena with on-the-fly computation of the tracking list.

Priorities. By convention, lowest priorities are the most important and the odd parity is
good for Controller, so Controller wins iff the lim inf of the priorities is odd. With each level
1 ≤ r ≤ |Q|2 of the tracking list are associated two priorities 2r (graph G[ir, n] non-remanent)
and 2r + 1 (graph G[ir, n] leaking), and on top of that are added priorities 1 (goal reached)
and 2|Q|2 + 2 (nothing), hence the set of all priorities is {1, . . . , 2|Q|2 + 2}.

When Agents chooses a transition labelled by a transfer graph G, the tracking list is
updated with G and the priority of the transition is determined as the smallest among:
priority 1 if the support {f} has ever been visited, priority 2r + 1 for the smallest r such

18 N. BERTRAND, M. DEWASKAR, B. GENEST, H. GIMBERT, AND A.A. GODBOLE

that Hr (from level r) leaks at G, priority 2r for the smallest level r where graph Hr was
removed from L, and in all other cases priority 2|Q|2 + 2.

States and transitions. G≤|Q|2 denotes the set of list of at most |Q|2 transfer graphs.

• States of PG form a subset of {0, 1} × 2Q × G≤|Q|2 , each state being of the form
(b, S,H1, . . . ,H`) with b ∈ {0, 1} a bit indicating whether the support {f} has been
seen, S the current support and (H1, . . . ,H`) the tracking list. The initial state is
(0, {q0}, ∅).
• Transitions in PG are all (b, S,H1, . . . ,H`)

p,a,G−→ (b′, S′, H ′1, . . . ,H
′
`′) where p is the priority,

and such that S
a,G−→ S′ is a transition of the support arena, and

(1) (H ′1, . . . ,H
′
`′) is the tracking list obtained by updating the tracking list (H1, . . . ,H`)

with G, as explained in subsection 4.2;
(2) if b = 1 or if S′ = {f}, then p = 1 and b′ = 1;
(3) otherwise b′ = 0. In order to compute the priority p, we let p′ be the smallest level

1 ≤ r ≤ ` such that Hr leaks at G and p′ = `+ 1 if there is no such level, and we also
let p′′ as the minimal level 1 ≤ r ≤ ` such that H ′r 6= Hr ·G and p′′ = `+ 1 if there is
no such level. Then p = min(2p′ + 1, 2p′′).

We are ready to state the main result of this paper, which yields an EXPTIME complexity
for the population control problem. This entails the first statement of Theorem 2.5, and
together with Proposition 3.10, also the first statement of Theorem 2.7.

Theorem 4.5. Controller wins the game PG if and only if Controller wins the capacity

game. Solving these games can be done in time O(2(1+|Q|+|Q|
4)(2|Q|2+2)). Strategies with 2|Q|

4

memory states are sufficient to both Controller and Agents.

Proof. The state space of parity game PG is the product of the set of supports with a
deterministic automaton computing the tracking list. There is a natural correspondence
between plays and strategies in the parity game PG and in the capacity game.

Controller can win the parity game PG in two ways: either the play visits the support
{f}, or the priority of the play is 2r + 1 for some level 1 ≤ r ≤ |Q|2. By design of PG, this
second possibility occurs iff r is remanent and leaks infinitely often. According to Lemma 4.4,
this occurs if and only if the corresponding play of the capacity game has infinite capacity.
Thus Controller wins PG iff he wins the capacity game.

In the parity game PG, there are at most 21+|Q|
(

2|Q|
2
)|Q|2

= 21+|Q|+|Q|
4

states and

2|Q|2 + 2 priorities, implying the complexity bound using state-of-the-art algorithms [18].
Actually the complexity is even quasi-polynomial according to the algorithms in [10]. Notice
however that this has little impact on the complexity of the population control problem, as
the number of priorities is logarithmic in the number of states of our parity game.

Further, it is well known that the winner of a parity game has a positional winning
strategy [18]. A positional winning strategy σ in the game PG corresponds to a finite-
memory winning strategy σ′ in the capacity game, whose memory states are the states of
PG. Actually in order to play σ′, it is enough to remember the tracking list, i.e. the third
component of the state space of PG. Indeed, the second component, in 2Q, is redundant
with the actual state of the capacity game and the bit in the first component is set to 1
when the play visits {f} but in this case the capacity game is won by Controller whatever is

played afterwards. Since there at most 2|Q|
4

different tracking lists, we get the upper bound
on the memory.

CONTROLLING A POPULATION 19

5. Number of steps before Synchronization

To be useful in the presence of many agents, the controller should be able to gather all
agents in the target state in a reasonable time (counted as the number of actions played
before synchronization). Convergence time logarithmic in the number of agents would be
extremely good. Polynomial time would be reasonable, while controller taking exponential
time would be mostly unusable because too slow. In this section, we will restrict ourselves
to controllable NFAs, that is positive instances of the population control problem.

5.1. Dependency with respect to the number of agents. We first show that there
are controllable NFAs for which Controller requires a quadratic number of steps (in the
number of agents) against the best strategy of Agents. Consider again the NFA Atime from
Figure 2 (see also Figure 9, left). Recall that Atime is controllable.

Lemma 5.1. For the NFA Atime, Controller requires Θ(m2) steps to win in the worst case.

Proof. A winning strategy σ for Controller is to play try followed by keep until only one of
q> or q⊥ is filled, in which case action top or bottom can be played to move the associated
agents to the target state.This will eventually happen, as the number of agents in q> and in
q⊥ is decreasing while the number of agents in state k increases upon (try;keep) and when
q⊥ is not empty. This is the strategy generated from our algorithm.

We now argue on the number of steps σ needed to send all agents to the target state.
Observe that the only non-deterministic action is try from state q0. Clearly enough,
regarding the number of steps before synchronisation, Agents’ best answer is to move one
agent in q⊥ and the remaining agents in q> upon each try action. Letting m be the number
of agents, the run associated with σ and the best counterstrategy for Agents is

(try; keep)m−1; bot; restart; (try; keep)m−2; bot; restart · · · try; keep; bot

and its size is
∑m−1

i=1 (2i+ 2)− 1 = O(m2). The system thus requires a quadratic number of
steps before synchronisation, and this is the worst case.

Notice that the above result only needs a fixed number of states, namely 6.

q0

q>

q⊥k

try

try

keep
top

keep

bot

restart

Σ \ {restart}

Σ m2-Gadget

Figure 9: NFA Atime on alphabet Σ and its abstraction into the gadget m2-Gadget.

20 N. BERTRAND, M. DEWASKAR, B. GENEST, H. GIMBERT, AND A.A. GODBOLE

5.2. Polynomial bound on the number of steps for synchronization. We now show
that we can build an NFA with n states such that the system requires order m0(n) steps
before synchronisation. For that, we turn the system Atime into a gadget, as shown on
Figure 9. This gagdet will be used in an inductive manner to obtain an NFA for which m0(n)

steps before synchronisation are required against the best strategy of Agents.
First, we construct an NFA which requires O(m4) steps before synchronisation. Essen-

tially we replace the edge from q0 to q> in the NFA Atime by the m2-Gadget to obtain the
NFA A4 on Figure 10. The alphabet Σ of actions of the m2-Gadget is a disjoint copy of the
alphabet Σ of actions of Atime. In particular, playing any action of Σ when any token is in
the m2-Gadget leads to the losing sink state /.

q0 m2-Gadget q>

q⊥k

f
try

try

keep

top

Σ

keep

bot

Σ

restart

Σ ∪ Σ \ {restart}

Σ ∪ Σ

Figure 10: The NFA A4 which requires Θ(m4) steps to synchronize all agents into the final
state. State q> is the output state of the m2-Gadget.

Consider the strategy of Agents which is to place 1 agent in q⊥ (resp. q⊥) and the rest
to q> (resp. q⊥) when action try (resp. try) is played. Relying on Lemma 5.1, any strategy
of Controller needs m2 steps to place 1 agent in k, then (m− 1)2 steps for the next agent,
etc. Thus, any strategy needs O(m3) steps to place 1 agent in the target state f . Finally,
any strategy needs O(m4) steps to place all the agents in the target state f . We thus obtain:

Lemma 5.2. For the NFA A4, Controller requires Θ(m4) steps to win in the worst case.

One can repeat this construction, nestig copies of the m2-Gadget. At each new gadget,
the number of states in the NFA increases by a constant amount, namely 4. The `-layered
NFA, consisting of `− 1 nested gadgets, has 4`+ 2 states and requires Θ(m2`) steps before
synchronisation. We thus derive the following upper-bound on the time to synchronisation:

Corollary 5.3. There exist NFAs with |Q| states such that m
|Q|−2

2 steps are required by any
strategy to synchronise m agents.

5.3. Optimality of the winning strategy. In this subsection, we show that the winning
strategy built by our algorithm is optimal, in the sense that it never requires more than

m|Q|
O(1)

steps to synchronize m agents. For A a controllable NFA, we write σA the winning
strategy built by our algorithm.

Theorem 5.4. For A with |Q| states, σA needs at most m|Q| × 2|Q|
4

steps to synchronise
m agents in the target state f .

CONTROLLING A POPULATION 21

To prove Theorem 5.4, an essential ingredient is the following:

Lemma 5.5. Let m be a memory state of σA, S 6= {f} a support and H a transfer graph
such that (i) (m, S) is reachable under σA, (ii) H is compatible with σA from (m, S), and
(iii) H is a loop around (m, S). Then, there exists a partition S = T]U such that H(U) ⊆ U
and H(T) ∩ U 6= ∅, where H(X) = {q ∈ S | ∃p ∈ X, (p, q) ∈ H}.

Intuitively, letting G a run according to σA reaching (m, S), the run GHω is also
according to σA. As σA is winning, GHω must be non realisable, that is GHω needs to
have an accumulator with an infinite number of entries. We prove in this lemma that for a
repeated graph H, there is a structural characterisation of accumulators with an infinite
number of entries: S can be partitioned into U] T , where U corresponds to a structural
accumulator, and there is one entry from T to U for each H.

Proof. As Controller is winning, the play GHω must have infinite capacity. By Lemma 4.2,
there exist an index i and an infinite sequence of indices j > i such that Hj−i leaks at H.
Because the same graph H is repeated, we can assume wlog that i = 0. As the number
of states is finite, there exists a triple (q, x, y) such that (q, y) ∈ Hj+1, (x, y) ∈ H and
(q, x) /∈ Hj for all j’s in an infinite set J of indices.

Let ` be the number of steps in G. We consider H atomic, that is, as if it is a single
step. For every state s ∈ S, define As = (As

n)n∈N the smallest accumulator with As
` = {s}.

If any state s ∈ S is such that s /∈ As
n for any n > `, then we are done as we can set

U =
⋃

n>`A
s
n, and T = S \U . Indeed, s /∈ U , and s has a successor in U (any state in As

`+1).
We can thus assume that s ∈

⋃
n>`A

s
n for all s ∈ S.

Let U =
⋃

n>`A
y
n =

⋃
n≥`A

y
n as y ∈

⋃
n>`A

y
n and Ay

` = {y}. Let T = S \ U . We will

show that this choice of (T,U) satisfies the condition of the statement. In particular, we
will show that x /∈ U , and as (x, y) ∈ H and y ∈ U , we are done.

Let kx, ky > 0 such that (x, x) ∈ Hkx , and (y, y) ∈ Hky . Let k = kx × ky. Partition J
into sets Jr = {j | j = r(mod k)}, for r < k. As J is infinite, one of Jr must be infinite.
Taking two indices j, j′ ∈ Jr, we have that j′ − j is a multiple of k. In particular, we have
(x, x) ∈ Hj′−j and (y, y) ∈ Hj′−j . We also know that (y, x) /∈ Hj′−j−1 as (q, x) /∈ Hj′ and
(q, y) ∈ Hj+1.

For any state s ∈ S, let width(s) = maxn(|As
n|). Easily, for all s ∈ U , width(s) ≤

width(y), as s can be reached by y, let say in v steps, and hence As
n ⊆ A

y
n+v. We now show

that width(x) > width(y), which implies that x /∈ U , and we are done. For all n, we have
Ay

n ⊆ Ax
n+1, as (x, y) ∈ H. Now, there are two indices j, j′ ∈ Jr such that j′ − j > n + 1,

as Jr is infinite. Let z such that (x, z) ∈ Hn+1 and (z, x) ∈ Hj′−j−n−1, which must exists

as (x, x) ∈ Hj′−j . As (y, x) /∈ Hj′−j−1, we have (y, z) /∈ Hn. That is, z ∈ Ax
n+1 \A

y
n. Thus,

|Ax
n+1| ≥ |A

y
n|+ 1, and thus width(x) > width(y).

We can now prove Theorem 5.4:

Proof. Assume by contradiction that there is a run consistent with σA lasting more than

m|Q| × 2|Q|
4

steps before synchronisation. Because there are no more than 2|Q|
4

different
memory states, there is one memory state m which is repeated at least m|Q| times. Let
us decompose the path as G1G2 · · ·Gm|Q| , such that Gi . . . Gj is a loop around m, for all

1 ≤ i < j ≤ m|Q|. We write S for the support associated with m.

22 N. BERTRAND, M. DEWASKAR, B. GENEST, H. GIMBERT, AND A.A. GODBOLE

By Lemma 5.5 applied with H = G1G2 · · ·Gm|Q| , there exists a partition S = T] U ,
such that H(U) ⊆ U and H(T) ∩ U 6= ∅. We define a sequence U1, . . . , Um|Q| of supports
inductively as follows:

• Um|Q| = U , and

• for i = m|Q| to i = 1, Ui−1 = {s ∈ S | Gi({s}) ⊆ Ui}.
We further write Ti = S \Ui. We have U ⊆ U0 (S, and Ui 6= ∅ as Gi(Ui−1) ⊆ Ui for all

i. In the same way, Ui 6= S for all i as otherwise we would have Um|Q| = S, a contradiction
with Um|Q| = U 6= S. Hence Ti 6= ∅ for all i.

Consider now the set K of indices i such that Gi(Ti−1) ∩ Ui 6= ∅. By Lemma 5.5, K
is nonempty. Moreover, since there are m agents, |K| < m, otherwise, T0 would contain
at least m more agents than Tm|Q| . Thus 1 ≤ |K| < m. Hence, there are two indices

i < j ∈ K that are far enough, i.e. such that j − i > m|Q|−1, with k /∈ K for all i < k < j.
Therefore, for every k between i and j, Gk(Tk−1) = Tk and Gk(Uk−1) = Uk: no agent is
transferred from (Tk)i≤k≤j to (Uk)i≤k≤j in the fragment Gi · · ·Gj . We say that (Tk)i≤k≤j
and (Uk)i≤k≤j do not communicate. In particular, we have 2 non-empty disjoint subsets
Ti, Ui of Q. We will inductively partition at each step at least one of the sequences into
2 non-communicating subsequences. Eventually, we obtain |Q| + 1 non-communicating
subsequences, and in particular |Q|+ 1 non-empty disjoint subsets of Q, a contradiction.

Applying Lemma 5.5 again on H ′ = Gi · · ·Gj yields a partition S′ = T ′]U ′. We define
in the same way U ′j = U ′ and inductively U ′k for k = j − 1, . . . , i. As above, there are

less than m indices i′ ∈ [i, j] such that Gi′(T
′
i′−1) ∩ Ui′ 6= ∅. We can thus find an interval

[i′, j′] ([i, j] such that j′− i′ > m|Q|−2 and (T ′k)i′≤k≤j′ and (U ′k)i′≤k≤j′ do not communicate.
To sum up, (any pair of) the four following sequences do not communicate together:

• (Tk ∩ T ′k)i′≤k≤j′ , (Tk ∩ U ′k)i′≤k≤j′ ,
• (Uk ∩ T ′k)i′≤k≤j′ and (Uk ∩ U ′k)i′≤k≤j′ .

For any of these four sequences (Xk)i′≤k≤j′ , if Xk 6= ∅ for some k, then Xk 6= ∅ for all k
(as these 4 sequences do not communicate together and they partition S), in which case we
say that the sequence is non-empty. Now some of these sequences may be empty. Yet, we
argue that at least 3 of them are non-empty.

Indeed, for at least one index i ≤ k < j, we have Gk(T ′k−1) ∩ U ′k 6= ∅. As there is no
communication between (Tk)i≤k≤j and (Uk)i≤k≤j , at least one of Tk, Uk, let say Tk, contains
at least one state from T ′k and one state from U ′k. Assuming |j′− i′| maximal, we can choose
k = i′ (else we have a contradiction with |j′ − i′| maximal, unless i′ = i, in which case
we can choose k = j′ + 1). That is, Ti′ ∩ T ′i′ 6= ∅ and Ti′ ∩ U ′i′ 6= ∅, and both sequences
are non-empty. Obviously at least one of Ui′ ∩ T ′i′ and Ui′ ∩ U ′i′ should be non-empty as
Ui′ = (Ui′ ∩ T ′i′) ∪ (Ui′ ∩ U ′i′) is nonempty, and this gives us the third non-empty sequence.
Hence, we have three non-empty sequences such that no pair of these sequences communicate
between i′ and j′.

We can iterate once more to obtain i′′ < j′′ with j′′ − i′′ > m|Q|−3, and four non-empty
sequences, such that no pair of these sequences communicate between i′′ and j′′. This is
because 1 non-empty sequence contains states from both U ′′ and T ′′, giving 2 non-empty
sequences, and the 2 other non-empty sequences gives at least 2 non-empty sequences.
Obviously, this operation can be made at most |Q| times, as it would result into |Q| + 1
non-empty and pairwise disjoint subsets of Q. We thus obtain a contradiction with the

number of steps being more than m|Q| × 2|Q|
4
.

CONTROLLING A POPULATION 23

6. Lower bounds

The proofs of Theorems 2.5 and 2.7 are concluded by the proofs of lower bounds.

Theorem 6.1. The population control problem is EXPTIME-hard.

Proof. We first prove PSPACE-hardness of the population control problem, reducing from
the halting problem for polynomial space Turing machines. We then extend the result
to obtain the EXPTIME-hardness, by reducing from the halting problem for polynomial
space alternating Turing machines. Let M = (S,Γ, T, s0, sf) be a Turing machine with
Γ = {0, 1} as tape alphabet. By assumption, there exists a polynomial P such that, on
initial configuration x ∈ {0, 1}n, M uses at most P (n) tape cells. A transition t ∈ T is
of the form t = (s, s′, b, b′, d), where s and s′ are, respectively, the source and the target
control states, b and b′ are, respectively, the symbols read from and written on the tape,
and d ∈ {←,→,−} indicates the move of the tape head. From M and x, we build an NFA
A = (Q,Σ, q0,∆) with a distinguished state Acc such that, M terminates in sf on input x
if and only if (A,Acc) is a positive instance of the population control problem.

Now we describe the states of NFA A. They are given by:

Q = Qcells ∪Qpos ∪Qcont ∪ {q0,Acc,/}
where

• Qcells =
⋃P (n)

i=1 {0i, 1i} are the states for the cells contents of M, one per bit and per
position;
• Qpos = {pi | 1 ≤ i ≤ P (n)} are the states for the position of tape head of M;
• Qcont = S are the states for the control state of M;
• q0 is the initial state of A, Acc is a sink winning state and / is a sink losing state.

A configuration of the turing machine, of the form (q, p, x) ∈ S × [P (n)]× {0, 1}P (n), can be
represented in Am by placing agents exactly in the state {q, p}∪ {0i | xi = 0}∪ {1i | xi = 1}.

With each transition t = (s, s′, b, b′, d) in the Turing machine and each position p of the
tape, we associate an action at,p in A, which simulates the effect of transition t when the
head position is p. For instance, Fig. 11 represents the transitions associated with action
at,k, for the transition t = (qi, qj , 0, 1,→) of the Turing Machine and position k on the tape.
Note that if agents are in the states representing a configuration of the turing machine, then
the only action Controller can take to avoid / is to play at,p where p is the current head
position and t is the next allowed transition. Moreover on doing this, the next state in Am

exactly represents the next configuration of the turing machine.
There are also a winning actions called check(Q′) for certain subsets Q′ ⊆ Q. Controller

should only play these when no agents are in Q′. One of them is for Q′ = Qcell \ {sf} which
can effectively only be played when the turing machine reaches sf , indicating that M has
accepted the input x. check(Q′) for other subsets Q′ are used to ensure that Agents sets up
the initial configuration of the turing machine correctly.

Let us now describe the transitions of A in more detail. The actions are

• Σ = Σtrans ∪ Σcheck ∪ {start}, with
– Σtrans = T × {1, . . . , P (n)}
– Σcheck =

{
check(Q′) | Q′ ∈

{
{0i, 1i}1≤i≤P (n), Qcont, Qcont \ {sf}, Qpos

}}
To describe the effect of actions from Σ, we use the following terminology: a state q ∈ Q

is called an α-sink for α ∈ Σ if ∆(q, α) = {q}, and it is a sink if it is an α-sink for every

24 N. BERTRAND, M. DEWASKAR, B. GENEST, H. GIMBERT, AND A.A. GODBOLE

/, losing state

qn · · · qj · · · qi · · · q1

P (n) · · · k + 1 k · · · 1

01 · · · 0k · · · 0P (n)

...
...

...

11 · · · 1k · · · 1P (n)

Head Positions

Control States

Tape
Symbols

Figure 11: Transitions associated with action at,k for t = (qi, qj , 0, 1,→).

α. Only the initial start action is nondeterministic: for every α ∈ Σ \ {start}, and every
q ∈ Q, ∆(q, α) is a singleton. A consequence is that in the games Am, the only decision
Player 2 makes is in the first step.

The two distinguished states Acc and / are sinks. Moreover, any state but q0 is a start-
sink. From the initial state q0, the effect of start aims at representing the initial configuration
of the Turing machine: ∆(q0, start) = {s0, p1} ∪ {0k | xk = 0 or k ≥ n} ∪ {1k | xk = 1}.
Then, the actions from Σtrans simulate transitions of the Turing machine. Precisely, the
effect of action α = ((ss, st, br, bw, d), i) ∈ Σtrans is deterministic and as follows:

• ∆(ss, α) = {st}

• ∆(pi, α) =

{pi+1} if i < P (n) and d =→
{pi−1} if i > 1 and d =←
{pi} otherwise;

• ∆(0i, α) =

{
{0i} if br = 0 and bw = 0

{1i} if br = 0 and bw = 1
∆(1i, α) =

{
{0i} if br = 1 and bw = 0

{1i} if br = 1 and bw = 1;

• ∆(0j , α) = 0j and ∆(1j , α) = 1j , for j 6= i;
• otherwise, ∆(q, α) = /.

Last, we described how actions from Σcheck let the system evolve. Let check(Q′) ∈ Σcheck

be a check action for set Q′ ⊆ Q. Then

• ∆(q, check(Q′)) =

{
/ if q ∈ Q′ ∪ {q0,/}
Acc otherwise.

We claim that this construction ensures the following equivalence:

Lemma 6.2. M halts on input x in qf if and only if (A,Acc) is a positive instance of the
sure-synchronization problem.

Proof. • case m ≤ P (n) + 1: not enough tokens for player 2 in the first step to cover all of
∆(q0, start); player 1 wins in the next step by selecting the adequate check action

CONTROLLING A POPULATION 25

• case m ≥ P (n) + 2: best move for player 2 in the first step is to cover all of ∆(q0, start);
afterwards, if player 1 does not mimick the execution of the Turing machine, some tokens
get stuck in /; thus the best strategy for player 1 is to mimick the execution of the Turing
machine; then, the machine halts if and only if all the tokens in Qcont converge to sf .
Now applying check(Qcont \ {sf}) moves all tokens to Acc.

We thus performed a PTIME reduction of the halting problem for polynomial space
Turing machines to the sure synchronization problem, which is therefore PSPACE-hard.

Now, in order to encode an alternating Turing machine, we assume that the control
states of M alternate between states of Controller and states of Agents. The NFA A is
extended with a state ,, a state C, which represents that Controller decides what tansition
to take, and one state qt per transition t of M, which will represent that Agents chooses to
play transition t as the next action. Assume first, that C contains at most an agent; we will
later explain how to impose this.

The NFA has an additional transition labelled init from q0 to C, and one transition
from C to every state qt labeled by at′,p, for every transition t and action at′,p. Intuitively,
whatever action at′,p is played by Controller, Agents can choose the next action to be
associated with t by placing the agent to state qt.

From state qt, only actions of the form at,p are allowed, leading back to C. That is,
actions at′,p with t′ 6= t lead from qt to the sink losing state /. This encodes that Controller
must follow the transition t chosen by Agents. To punish Agents in case the current tape
contents is not the one expected by the transition t = (s, s′, b, b′, d) he chooses, there are
checking actions checks and checkp,b enabled from state qt. Action checks leads from qt to
,, and also from s to /. Similarly, checkp,b for any position p and b ∈ {0, 1} leads from qt
to , and from any position state q 6= p to /, and from bp to /. In this way, Agents will not
move the token from C to an undesired qt. This ensures that Agents places the agents only
in a state qt which agrees with the configuration.

Last, there are transitions on action end from state ,, C and any of the qt’s to the
target state ,. Action end loops around the accepting state Acc associated with the Turing
machine, and it leads from any other state to /. Last, there is an action win, which leads
from , to ,, from Acc to ,, and from any other state to /. This action win may seem
unnecessary, but its purpose will appear clear in the following step. This whole construction
encodes, assuming that there is a single agent in C after the first transition, that Controller
can choose the transition from a Controller state ofM, and Agents can choose the transition
from an Agents state.

Let us now explain how to deal with the case where Agents places several agents in
state C on the initial action init, enabling the possibility to later send agents to several
qts simultaneously. With the current gadget, if there is an agent in qt1 and one in qt2, then
Controller would be stuck as playing at1,k would send the agent from qt2 to /, and vice-versa.
To handle this case, consider the gadget from Figure 12. We use an extra state s, actions
storet for each transition t, and action restart.

Action storet leads from qt to s, and loops on every other state. From all states except
, and / (in particular, s and every state associated with the Turing machine, including
Acc), action restart leads to q0. Last, the effects of end and win are extended as follow to
s: end loops on s, while win leads from s to /.

26 N. BERTRAND, M. DEWASKAR, B. GENEST, H. GIMBERT, AND A.A. GODBOLE

Assume that input x is not accepted by the alternating Turing machineM, and let m be
at least P (n) + 3. In the m-population game, Agents has a winning strategy placing initially
a single agent in state C. If Controller plays storet (for some t), either no agents are stored,
or the unique agent in C is moved to s. Playing end does not change the configuration, and
Controller cannot play win. Thus, there is no way to lead the agents encoding the Turing
machine configuration to ,. Playing restart moves all the agents back to the original
configuration q0. This shows that storet is useless to Controller and thus Agents wins as in
the previous case.

Conversely, assume that Controller has a strategy in M witnessing the acceptance of x.
If Agents never split, then Controller never plays any store actions and wins as in the previous
case. Otherwise, assume that Agents places at least two agents in C to eventually split them
to t1, . . . , tn. In this case, Controller can play the corresponding actions storet2 , . . . , storetn
moving all agents (but the ones in t1) in s, after which he plays his winning strategy from t1
resulting in sending at least one agent to ,. Then, Controller plays restart and proceeds
inductively with strictly less agents from q0, untill there is no agent in C, qt in which case
Controller plays win to win.

Surprisingly, the cut-off can be as high as doubly exponential in the size of the NFA.

Proposition 6.3. There exists a family of NFA (An)n∈N such that |An| = 2n+ 7, and for
M = 22

n+1 + n, there is no winning strategy in AM
n and there is one in AM−1

n .

Proof. Let n ∈ N. The NFA An we build is the disjoint union of two NFAs with different
properties, called Asplit and Acount,n. On the one hand, for Asplit, it requires Θ(logm) steps
for Controller to win the m-population game. On the other hand, Acount,n implements a
usual counter over n bits, such that Controller can avoid losing for O(2n) steps. In the
combined NFA An, we require that Controller win in Asplit and avoid losing in Acount,n. This

ensures that An has a cutoff of Θ(22
n
)

Recall Figure 1, which presents the splitting gadget Asplit. It has the following properties.
In Am

split with m ∈ N agents:

q0 C qt

s

,

/
win

win win

win

init

at′,p

at,p

restart

restart

end

end

restart

restart

storet

storet′

win

at,p, end

Figure 12: Gadget simulating a single agent in C.

CONTROLLING A POPULATION 27

(s1) Controller has a strategy to ensure win in 2 blog2mc+ 2 steps: Consider the fol-
lowing strategy of Controller.
• Play δ if there is atlest one agent in state q0. Otherwise,
• Play a if the number of agents in q1 is greater than in q2.
• Play b if the number of agents in q2 is greater than or same as in q1.

For this strategy, let us look at the number of agents in the state q0 and f respectively.
For instance, since the play starts from all agents in q0, the starting state has count
(m, 0) - there are m tokens in q0 and 0 in f . From a state with counts (k,m− k), after
two steps of this strategy (regardless of Agents’s play), we will end up in a state with
counts (l,m− l) for some l ≤ bk/2c. Hence within 2× blog2mc+ 2 steps starting from
the initial state, one will reach a state with counts (0,m) and the Controller wins.

(s2) No strategy of Controller can ensure a win in less than 2 blog2mc+ 2 steps:
The transition from q0 on δ is the only real choice Agents has to make. Assume that
Agents decides to send an equal number of agents (upto a difference of 1) to both q1 and
q2 from q0. Against this strategy of Agents, let α1, α2, . . . αk be the shortest sequence of
actions by Controller which lead all the agents into f .

We now show that k ≥ 2 × blog2mc + 2. Initally all agents are in q0. So by the
minimality of k we should have α1 = δ, α2 ∈ {a, b}, α3 = δ, . . . αk ∈ {a, b}, since other
actions will not change the state of the agents. For any i ∈ {1, 2, . . . k2}, after Controller

plays α2i, denote the number of agents in q0 and f by (li,m − li). Note li ≥ li−1−1
2 ,

since Agents sends equal number of agents from q0 to q1 and q2. Iterating this equation
for any j ∈ {1, 2, . . . k2} gives lj ≥ l0+1

2j
− 1, where l0 = m is the number of agents in

state q0 at the beginning. In particular this shows that k
2 > logm since l k

2
= 0. Hence

k ≥ 2× (blog2mc+ 1).

The gadget Acount,n, shown in Figure 13, represents a binary counter. For each i ∈
{1 . . . n}, it has states `i (meaning bit i is 0) and hi (meaning bit i is 1) and actions αi

(which sets the ith bit and resets the bits for j < i). The only real choice that Agents has in
this gadget is at the first step, and it is optimal for Agents to place agents in as many states
as possible – in particular when m ≥ n, placing one agent in each li for i ∈ {1 . . . n}.

After this, the play is completely determined by Controller’s actions. Actually, Controller
doesn’t have much choice when there is at least one agent is each li. Controller must simulate
an n-bit counter if it wants to prevent some agent from reaching /. More precisely, assume
inductively that all the agents are in the states given by bnbn−1 . . . b1 where bk ∈ {lk, hk}
(initially bi = li for each i). If bi = hi for each i, then any action αi will lead the agent in
state hi to /. Otherwise, let j be the smallest index such that bj = lj . Observe that αj is
the only action that doesn’t lead some agent to /; αi for i < j would lead the agent in hi to
/, while αi for i > j would lead the agent in lj to /. On playing αj , the agents now move
to the states bnbn−1 . . . bj−1hjlj−1 . . . l0 – which can be interpreted as the next number in a
binary counter.

This means that the gadget Acount,n has the following properties:

(c1) For any m, Controller has a strategy in the m-population game on Acount,n to avoid / for
2n steps by playing αi whenever the counter suffix from bit i is 01 · · · 1;

(c2) For m ≥ n, no strategy of Controller in Am
count,n can avoid / for more than 2n steps.

To construct An, the two gadgets Asplit and Acount,n are combined by adding a new
initial state, and an action labeled init leading from this new initial state to the initial

28 N. BERTRAND, M. DEWASKAR, B. GENEST, H. GIMBERT, AND A.A. GODBOLE

q0

li l1ln

hihn h1

· · · · · ·

/

αi

αi

{αj}j>i

{αj}j>i

{αj}j<i

{αj}j<i

α1, , αn

α1
αn

α1αn

α1, .., αn

{αj}j>1

{αj}j<n

{αj}j<n

{αj}j>1

Figure 13: The counting gadget Acount,n.

states of both NFAs. Actions for An are made up of pairs of actions, one for each gadget:
{a, b, δ} × {αi | 1 ≤ i ≤ n}. We further add an action ∗ which can be played from any state
of Acount,n except /, and only from f in Asplit, leading to the global target state ,.

Let M = 22
n+1 + n. We deduce that the cut-off is M − 1 as follows:

• For M agents, a winning strategy for Agents is to first split n tokens from the initial state
to the q0 of Acount,n, in order to fill each li with 1 token, and 22

n+1 tokens to the q0 of
Asplit. Then Agents splits evenly tokens between q1, q2 in Asplit. In this way, Controller
needs at least 2n + 1 steps to reach the final state of Asplit (s2), but Controller reachs /
after these 2n + 1 steps in Acount,n (c2).
• For M − 1 agents, Agents needs to use at least n tokens from the initial state to the q0 of
Acount,n, else Controller can win easily. But then there are less than 22

n+1 tokens in the
q0 of Asplit. And thus by (s1), Controller can reach f within 2n steps, after which he still
avoids / in Acount,n (c1). And then Controller sends all agents to , using ∗.

Thus, the family (An) of NFA exhibits a doubly exponential cut-off.

CONTROLLING A POPULATION 29

7. Discussion

Obtaining an EXPTIME algorithm for the control problem of a population of agents was
challenging. We also managed to prove a matching lower-bound. Further, the surprising
doubly exponential matching upper and lower bounds on the cut-off imply that the alternative
technique, checking that Controller wins all m-population game for m up to the cut-off, is
far from being efficient.

The idealised formalism we describe in this paper is not entirely satisfactory: for
instance, while each agent can move in a non-deterministic way, unrealistic behaviours can
happen, e.g. all agents synchronously taking infinitely often the same choice. An almost-sure
control problem in a probabilistic formalism should be studied, ruling out such extreme
behaviours. As the population is discrete, we may avoid the undecidability that holds for
distributions [11] and is inherited from the equivalence with probabilistic automata [17].
Abstracting continuous distributions by a discrete population of arbitrary size could thus
be seen as an approximation technique for undecidable formalisms such as probabilistic
automata.

Acknowledgement: We are grateful to Gregory Batt for fruitful discussions concerning
the biological setting. Thanks to Mahsa Shirmohammadi for interesting discussions. This
work was partially supported by ANR project STOCH-MC (ANR-13-BS02-0011-01), and by
DST/CEFIPRA/Inria Associated team EQUAVE.

References

[1] Parosh Abdulla, Giorgio Delzanno, Othmane Rezine, Arnaud Sangnier, and Riccardo Traverso. On the
verification of timed ad hoc networks. In Proceedings of Formats’11, volume 6919 of Lecture Notes in
Computer Science, pages 256–270. Springer, 2011.

[2] Parosh Abdulla and Bengt Jonsson. Model checking of systems with many identical timed processes.
Theoretical Computer Science, 290(1):241–263, 2003.

[3] S. Akshay, Blaise Genest, Bruno Karelovic, and Nikhil Vyas. On regularity of unary probabilistic
automata. In Proceedings of STACS’16, volume 47 of Leibniz International Proceedings in Informatics,
pages 8:1–8:14. Leibniz-Zentrum für Informatik, 2016.

[4] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation in
networks of passively mobile finite-state sensors. In Proceedings of PODC’04, pages 290–299. ACM, 2004.

[5] Andr Arnold, Aymeric Vincent, and Igor Walukiewicz. Games for synthesis of controllers with partial
observation. Theoretical Computer Science, 1(303):7–34, 2003.

[6] Nathalie Bertrand, Miheer Dewaskar, Blaise Genest, and Hugo Gimbert. Controlling a population.
Technical report. URL: https://hal.archives-ouvertes.fr/hal-01558029.

[7] Nathalie Bertrand and Paulin Fournier. Parameterized verification of many identical probabilistic timed
processes. In Proceedings of FSTTCS’13, volume 24 of Leibniz International Proceedings in Informatics,
pages 501–513. Leibniz-Zentrum für Informatik, 2013.

[8] Nathalie Bertrand, Paulin Fournier, and Arnaud Sangnier. Playing with probabilities in reconfigurable
broadcast networks. In Proceedings of FoSSaCS’14, volume 8412 of Lecture Notes in Computer Science,
pages 134–148. Springer, 2014.

[9] Tomás Brázdil, Petr Jančar, and Antońın Kučera. Reachability games on extended vector addition
systems with states. In Proceedings of ICALP’10, volume 6199 of Lecture Notes in Computer Science,
pages 478–489. Springer, 2010.

[10] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding parity
games in quasipolynomial time. In Proceedings of STOCS’17, pages 252–263. ACM, 2017.

[11] Laurent Doyen, Thierry Massart, and Mahsa Shirmohammadi. Infinite synchronizing words for proba-
bilistic automata (erratum). Technical report, CoRR abs/1206.0995, 2012.

https://hal.archives-ouvertes.fr/hal-01558029

30 N. BERTRAND, M. DEWASKAR, B. GENEST, H. GIMBERT, AND A.A. GODBOLE

[12] Laurent Doyen, Thierry Massart, and Mahsa Shirmohammadi. Limit synchronization in Markov decision
processes. In Proceedings of FoSSaCS’14, volume 8412 of Lecture Notes in Computer Science, pages
58–72. Springer, 2014.

[13] Javier Esparza. Keeping a crowd safe: On the complexity of parameterized verification (invited talk). In
Proceedings of STACS’14, volume 25 of Leibniz International Proceedings in Informatics, pages 1–10.
Leibniz-Zentrum für Informatik, 2014.

[14] Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of broadcast protocols. In Proceedings
of LICS’99, pages 352–359. IEEE Computer Society, 1999.

[15] Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar. Verification of population protocols.
In Proceedings of CONCUR’15, volume 42 of Leibniz International Proceedings in Informatics, pages
470–482. Leibniz-Zentrum für Informatik, 2015.

[16] Steven M. German and A. Prasad Sistla. Reasoning about systems with many processes. J. ACM,
39(3):675–735, 1992.

[17] Hugo Gimbert and Youssouf Oualhadj. Probabilistic automata on finite words: Decidable and undecidable
problems. In Proceedings of ICALP’10, volume 6199 of Lecture Notes in Computer Science, pages 527–538.
Springer, 2010.

[18] Marcin Jurdzinski. Small progress measures for solving parity games. In Proceedings of STACS’00,
volume 1770 of Lecture Notes in Computer Science, pages 290–301. Springer, 2000.

[19] Marcin Jurdziski, Ranko Lazi, and Sylvain Schmitz. Fixed-dimensional energy games are in pseudo
polynomial time. In Proceedings of ICALP’15, volume 9135 of Lecture Notes in Computer Science, pages
260–272. Springer, 2015.

[20] Panagiotis Kouvaros and Alessio Lomuscio. Parameterised Model Checking for Alternating-Time Tempo-
ral Logic. In Proceedings of ECAI’16, volume 285 of Frontiers in Artificial Intelligence and Applications,
pages 1230–1238. IOS Press, 2016.

[21] Pavel Martyugin. Computational complexity of certain problems related to carefully synchronizing words
for partial automata and directing words for nondeterministic automata. Theory of Computing Systems,
54(2):293–304, 2014.

[22] Mahsa Shirmohammadi. Qualitative analysis of synchronizing probabilistic systems. PhD thesis, ULB,
2014.

[23] Jannis Uhlendorf, Agns Miermont, Thierry Delaveau, Gilles Charvin, Franois Fages, Samuel Bottani,
Pascal Hersen, and Gregory Batt. In silico control of biomolecular processes. In Computational Methods
in Synthetic Biology, chapter 13, pages 277–285. Humana Press, Springer, 2015.

[24] Mikhail V. Volkov. Synchronizing automata and the Černý conjecture. In Proceedings of LATA’08,
volume 5196 of Lecture Notes in Computer Science, pages 11–27. Springer, 2008.

[25] Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite
trees. Theor. Comput. Sci., 200(1-2):135–183, 1998. URL: https://doi.org/10.1016/S0304-3975(98)
00009-7, doi:10.1016/S0304-3975(98)00009-7.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7
http://dx.doi.org/10.1016/S0304-3975(98)00009-7

	1. Introduction
	2. The population control problem
	2.1. The m-population game
	2.2. Parameterized control and cut-off
	2.3. Main results

	3. The capacity game
	3.1. The -population game
	3.2. Realisable plays
	3.3. The capacity game

	4. Solving the capacity game in EXPTIME
	4.1. Leaking graphs
	4.2. The tracking list
	4.3. The parity game

	5. Number of steps before Synchronization
	5.1. Dependency with respect to the number of agents
	5.2. Polynomial bound on the number of steps for synchronization
	5.3. Optimality of the winning strategy

	6. Lower bounds
	7. Discussion
	References

