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2 Université de Mons, Mons, Belgium

3 CNRS, Team SUMO, UMR IRISA, Rennes, France

Abstract. We consider reachability objectives on an extension of
stochastic timed automata (STA) with nondeterminism. Decision
stochastic timed automata (DSTA) are Markov decision processes based
on timed automata where delays are chosen randomly and choices be-
tween enabled edges are nondeterministic. Given a reachability objective,
the value 1 problem asks whether a target can be reached with proba-
bility arbitrary close to 1. Simple examples show that the value can be
1 and yet no strategy ensures reaching the target with probability 1. In
this paper, we prove that, the value 1 problem is decidable for single
clock DSTA by non-trivial reduction to a simple almost-sure reachabil-
ity problem on a finite Markov decision process. The ε-optimal strategies
are involved: although the precise probability distributions do not change
the winning nature of a state, they impact in a crucial way the timings
at which ε-optimal strategies must change their decisions.

1 Introduction

Stochastic timed automata (STA) were originally defined in [2,3] as a proba-
bilistic semantics for timed automata, with the motivation to rule out ‘unreal-
istic’ paths in timed automata, and therefore alleviate some drawbacks of the
mathematical model such as infinite precision of the clocks and instantaneous
events. Of course, STA also form a new stochastic timed model, interesting on
its own. Informally, the semantics of a stochastic timed automaton consists of
an infinite-state infinitely-branching Markov chain whose underlying graph is
the timed transition system associated with a timed automaton. The transitions
between states are governed by the following: first, a delay is sampled randomly
among possible delays, and second, an enabled transition is chosen randomly
among enabled ones.
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Several models combining dense-time, continuous probabilities, and nonde-
terminism have been studied [7,8,11] and most result focus on qualitative ques-
tions, such as deciding the existence of a strategy ensuring a reachability objec-
tive with probability 1 (see the related work section).

A model that extends stochastic timed automata with nondeterminism was
defined in [5]: the delays are random, but the choice between enabled transi-
tions is nondeterministic. For this model, optimal strategies always exist for the
time-bounded reachability problem. Yet, a simple example also shows that opti-
mal strategies do not always exist for the reachability problem: there might be
strategies to ensure a probability arbitrary close to 1 to reach a target location,
and no strategy achieving probability 1.

More generally, the value 1 problem asks whether for every ε > 0 there exists
a strategy ensuring a given objective with probability at least 1 − ε. It can be
defined in various game-like contexts, ranging from probabilistic finite automata
(PFA) to concurrent games. In most models where the agent has full information,
the value 1 problem coincides with the almost-sure problem, that is, whether
there exists a strategy to ensure a given objective with probability 1. For partial
observation models however, the value 1 problem and the almost-sure problem
often differ: for concurrent games, both are decidable [12,9], whereas the value 1
problem is undecidable for PFA [14], and decidable only for subclasses [13,10].

In this paper, we consider a probabilistic and nondeterministic version of
stochastic timed automata, called decision stochastic timed automata (DSTA),
in which delays are random but edges are selected by the player. Contrary to
most existing frameworks on stochastic and timed models, we do not assume
the distributions over delays to be exponential. We consider (time-unbounded)
reachability objectives on DSTA with a single clock. The restriction to 1-clock
DSTA derives from the fact that even for purely stochastic models without
decisions (i.e. STA), the decidability of the almost-sure reachability problem is
open, for models with at least two clocks. Using the classical region abstraction
we show that the existence of an almost-surely winning strategy is decidable for
reachability objectives on 1-clock DSTA. Interestingly, in our context, the value
1 problem does not coincide with the almost-sure problem, although the agent
has full information. The main contribution of the paper is then to prove that the
value 1 problem is decidable too. To do so, we build an ad hoc abstraction based
on a refinement of regions, and reduce to an almost-sure reachability question in
the derived finite-state Markov decision process (MDP). The correctness proof is
complex, and ε-optimal strategies are involved: first they are not uniform within
a region as actions they dictate depend on the comparison of the precise clock
value with some cutpoint. Second, and more surprisingly, these cutpoints cannot
be chosen uniformly over the set of regions.

Related work

In stochastic timed games [7], locations are partitioned into locations owned by
three players, a reachability player (who has a time-bounded reachability ob-
jective), a safety player (who has the opposite objective), and an environment
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player (who makes random moves). In a location of the reachability or safety
player, the respective player decides both the sojourn time and the edge to fire,
whereas in the environment’s locations, the delay as well as the edge are cho-
sen randomly. For this model, it was shown that, assuming there is a single
player and the underlying timed automaton has only one clock, the existence
of a strategy for a reachability goal almost-surely (resp. with positive proba-
bility) is PTIME-complete (resp. NLOGSPACE-complete). For two-player games,
quantitative questions are undecidable. Simple examples show that even for one
player and 1-clock timed automata, the value 1 and probability 1 problems differ.
This is due to strict inequalities in guards, that prevent the player to choose an
optimal delay. We believe that our proof techniques can be adapted to solve the
value 1 problem in 1-player stochastic timed games over 1-clock timed automata.

In stochastic real-time games [8], environment nodes (in which the behaviour
is similar to continuous time Markov decision processes (CTMDPs)) and control
nodes (where players choose a distribution over actions) induce a probability dis-
tribution on runs. The objective for player 0 is to maximise the probability that
a run satisfies a specification given by a deterministic timed automaton (DTA).
The main result states that if player 0 has an almost-sure winning strategy, then
she also has a simple one which can be described by a DTA.

Markovian timed automata (MTA) consist in an extension of timed automata
with exponentially distributed sojourn time. Optimal probabilities can be ap-
proximated for time-(un)bounded reachability properties in MTA [11].

2 Definitions and problem statement

2.1 Timed automata

Timed automata [1] were introduced in the early nineties. We recall the definition
and semantics of one-clock timed automata. Given a clock x, a guard is a finite
conjunction of expressions of the form x ∼ c where c ∈ N is an integer, and ∼
is one of the symbols {<,≤,=,≥, >}. We denote by G(x) the set of guards over
clock x. Often, for g ∈ G(x) a guard and t a clock value, we will write t ∈ g to
express that t satisfies the constraints expressed in g.

Definition 1. A one-clock timed automaton is a tuple (L, `0, E, I) such that: L
is a finite set of locations, `0 ∈ L is the initial location, E ⊆ L×G(x)× 2{x}×L
is a finite set of edges, and I : L→ G(x) assigns an invariant to each location.

In the following, we assume all timed automata to be well-formed : for every lo-
cation ` ∈ L, I(`) =

S
(`,g,a,r,`′)∈E g, that is, the invariant in a location coincides

with the union of the guards on its outgoing edges. This implies in particular
that the union of guards outgoing a location is an interval.

The semantics of a one-clock timed automaton (L, `0, E, I) is a timed tran-
sition system T = (S, s0, δ) where S = L× R≥0, s0 = (`0, 0) and the transition
function δ ⊆ S × (R≥0 ∪ E)× S is composed of

– Delay transitions:
�
(`, t), τ, (`, t+ τ)

�
∈ δ whenever [t, t+ τ ] ⊆ I(`)
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– Discrete transitions:
�
(`, t), e, (`′, t′)

�
∈ δ as soon as the edge e = (`, g, r, `′) ∈

E satisfies t ∈ g and if r = {x}, t′ = 0 else t′ = t.

When convenient, we will use the alternative notations (`, t)
τ−→ (`, t + τ) and

(`, t)
e−→ (`′, t′). Edge e is said enabled in state s = (`, t), whenever there exists

s′ ∈ S such that s
e−→ s′.

2.2 Decision stochastic timed automata

We now introduce the concept of decision stochastic timed automaton (DSTA).
Roughly speaking, a decision stochastic timed automaton is a one-clock timed
automaton equipped with probability distributions over delays. The semantics
of DSTA is provided by an infinite-state MDP, in the spirit of [5].

In the following, given X ⊆ R≥0, we denote by Dist(X) the set of probability
distributions on X.

Definition 2. A decision stochastic timed automaton is a tuple A =
(L, `0, E, I, µ) where (L, `0, E, I) is a one-clock timed automaton and µ = (µ`,t)
is a family of distributions, one for each state (`, t) ∈ L × R≥0, and such that
µ`,t ∈ Dist(I(`) ∩ [t,+∞[).

Intuitively, for every state (`, t) ∈ S, for every interval I ⊆ R≥0, µ`,t(I) is the
probability that from (`, t) a delay d0, such that t+ d0 ∈ I, is chosen by µ.

We make some reasonable assumptions on the distributions. For every loca-
tion `, the function must satisfy the following sanity conditions:

(c1) for every t ∈ I(`), and any non-punctual interval I ⊆ I(`) ∩ [t,+∞[,
µ`,t(I) > 0; also if [t,+∞[∩I(`) 6= {t}, then for any a ∈ R≥0, µ`,t({a}) = 0;

(c2) for every t < t′ ∈ I(`), and I ⊆ [t′,+∞[, µ`,t(I) ≤ µ`,t′(I);
(c3) if |I(`)| =∞, then for every t, t′ ∈ I(`), for every a, b ∈ R≥0, µ`,t([t+a, t+

b]) = µ`,t′(t
′ + a, t′ + b);

if |I(`)| < ∞, and m = sup{t | t ∈ I(`)}, then for every t, t′ ∈ I(`), for
every a, b ∈ R≥0, µ`,t(t+ a

m−t , t+ b
m−t ) = µ`,t′(t

′ + a
m−t′ , t

′ + b
m−t′ ).

Let us comment on these conditions. First, (c1) states that the distributions are
equivalent to the Lebesgue measure: they do not assign 0 measure to interval
with non-empty interior, and do not assign positive probability to points. Then,
(c2) is a monotonicity condition: the higher the clock value, the more likely a
fixed interval is to be sampled. Last, with (c3) one assumes that distributions
depend only on the location, not on the precise clock value. More precisely, in
case the invariant is not bounded, the distributions should be equal in all states;
and if the invariant is bounded, they should coincide up to normalisation. It is
important to notice the classical exponential and uniform distributions satisfy
these three hypotheses.

Notice that stochastic timed automata (STA) [2,3] and DSTA share the
same syntax, and only differ in their semantics: STA are interpreted as purely
stochastic system whereas DSTA are interpreted as stochastic and nondetermin-
istic systems. Let A be a decision stochastic timed automaton. Its semantics is
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given in terms of an infinite state MDP (or equivalently a 1-1/2 player game),
based on the timed transition system T of the underlying timed automaton.
The set of states is composed of two copies S2 and S3 of S: stochastic states
S3 = {〈s〉 | s ∈ S} and player states S2 = {[s] | s ∈ S}. The transitions are of
the form:

– stochastic transition: 〈s〉 τ−→ [s′] if (s, τ, s′) ∈ δ;
– player transition: [s]

e−→ 〈s′〉 if (s, e, s′) ∈ δ.

The result of each transition is thus deterministic. However stochastic transi-
tions are not played in an arbitrary way, but follow the family of probability
distributions (µ`,t). Precisely, for I ⊆ R≥0 an interval, the probability from 〈`, t〉
to reach a clock value in I is given by P(〈`, t〉 τ−→ [`, t′] ∧ t′ ∈ I) = µ`,t(I).

Decisions of the nondeterministic player are specified through the notion
of strategy. A history is a finite path in the MDP, ending in a player state:
〈s0〉

τ0−→ [s′0]
e0−→ 〈s1〉

τ1−→ [s′1] · · · 〈sn〉
τn−→ [s′n]. The set of all histories is denoted

Hist. A strategy dictates the decision in states of S2, given the history so far.
Formally, a strategy is a function σ : Hist → E such that σ(〈s0〉

τ0−→ [s′0]
e0−→

〈s1〉
τ1−→ [s′1] · · · 〈sn〉

τn−→ [s′n]) is enabled in s′n.
As pointed out in [16] in the context of continuous-time Markov decision

processes, not all strategies are meaningful. The same phenomenon appears for
DSTA, and in the following we thus restrict to so-called measurable strategies
that induce measurable sets of runs for reachability objectives.

For a fixed measurable strategy σ, and an initial state s0 ∈ S3 ∪ S2, the
decision stochastic timed automaton A gives rise to a stochastic process. For a

measurable event E , we write PAσ
�
s0 |= E

�
for the probability of E starting from

s0 and under strategy σ. Given a target set F ⊆ S3∪S2 in the DSTA, the event
3F , denotes the set of paths that eventually visit F .

2.3 Problem definition

Let A be a decision stochastic timed automaton, Goal ⊆ L and s ∈ S2 ∪S3. We
define F = {〈`, t〉 | ` ∈ Goal}. The value of s, with respect to the objective Goal,
is the supremum, over all strategies, of the probability from s to reach F .

Definition 3. The value of state s is valA(s) = supσ PAσ
�
s |= 3F

�
.

The value 1 problem asks, given a decision stochastic timed automaton A, a
target set Goal ⊆ L and an initial state s ∈ S2 ∪ S3, whether valA(s) = 1.
F is said limit-surely reachable from s if valA(s) = 1.

Notice that this definition is different from the almost-sure reachability problem,

which asks whether there exists a strategy σ such that PAσ
�
s |= 3F

�
= 1. From a

state with value 1, for every ε, there exists a strategy achieving probability 1− ε
to reach F , yet it does not imply that some strategy realises the objective with
probability 1. For finite-state Markov decision processes, and in many simple
frameworks, value 1 and probability 1 coincide. However, this is untrue for DSTA,
as shown in the example below.
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`0

x ≤ 1

unif

`1

exp(1) ,

/

e2

e3, x ≥ 1

e4 , x ≤ 1

e1, x := 0

e5

e6

Fig. 1. A simple example of decision stochastic timed automaton.

Example 1. Figure 1 shows a basic example of a DSTA, where the distributions
µ are uniform in `0 and exponential with rate 1 in location `1. The smiley
location is limit-surely reachable from the initial location `0 with clock value 0.
Indeed, the idea, in order to ensure a high probability 1− ε to reach the target
is to loop on `0 until a player state [`0, 1 − τ ] is reached (this happens almost
surely) for a small τ , and then to move to location `1. Now, the probability
from 〈`1, 1 − τ〉 to reach the target converges to 1 as τ converges to 0. Yet, no
strategy can ensure to reach the target with probability 1. This is thus a simple
example where limit-sure reachability and almost-sure reachability differ. Such
phenomena are not due to invariants, and already occur in DSTA where only
exponential distributions are allowed. Indeed, one can adapt the above example
and consider an exponential distribution in `0, while transferring the invariant
x ≤ 1 to the guard of e2.

2.4 Limit corner-point MDP

As an extension of timed automata, DSTA have infinitely many states, because of
continuous time. The usual technique to deal with this issue for timed automata,
is to resort to the region abstraction [1], which we recall here. For one-clock
timed automata, the number of regions is linear [15]: they all are intervals,
either punctual {c}, open and bounded (c, d), or open and unbounded (c,+∞),
for c, d ∈ N.

We write R for the set of such regions, and r denotes a typical element of R.
Beyond these classical regions, we will use pointed regions, similar to the

notion introduced for the corner-point abstraction by [6]: every bounded open
region (c, d) is duplicated into (c, d) and (c, d), with the intuitive meaning of
being close to the left limit, or to the right limit of the interval. Other regions
(unbounded or punctual) are kept as is. When a timed automaton is fixed, R
denotes the set of pointed regions, with r a typical element, and it is partitioned
into: Rright (resp. Rleft) for the set of pointed regions of the form (c, d) (resp.
(c, d)), and Rplain for punctual regions or the unbounded region. Pointed regions
are equipped with a natural total order <; for example {0} < (0, 1) < (0, 1).
We say that pointed region r′ is a successor of r if r < r′. The immediate open
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successor of r is the least region r′, for the order <, that is different from r and
open. The set of all successors of a region r is denoted −→r . A pointed region r′ is
said negligible with respect to location ` and region r, if r′ ∈ −→r , r′ is punctual
and I(`) ∩ −→r is not.

We now define the limit corner-point MDP associated with a DSTA.

Definition 4. Given A = (L, `0, E, I, µ) a DSTA, its limit corner-point MDP
is Acp = (S, s0,Act, ∆), where

– S = S2 ∪ S3 is partitioned into player states and stochastic states:
S2 = {[`, r] | ` ∈ L, r ∈ R} and S3 = {〈`, r〉 | ` ∈ L, r ∈ R};

– s0 = 〈`0, {0}〉;
– Act = E ∪ E limit, where E limit is a copy of E;
– ∆ consists of the following transitions:
• 〈`, r〉 τ−→ [`, r′] as soon as r′ ≥ r and r′ is not negligible w.r.t. `, and the

probabilities are uniform over all τ -successors;
• [`, r]

e−→ 〈`′, {0}〉 as soon as e = (`, g, {x}, `′) ∈ E, and r |= g;

• [`, r]
e−→ 〈`′, r〉 as soon as e = (`, g, ∅, `′) ∈ E, and r |= g;

• [`, r]
elimit

−−→ 〈`′, r′〉 as soon as r ∈ Rright, e = (`, g, ∅, `′) ∈ E, r |= g, r′ is
the immediate open successor of r, and r′ |= I(`′).

With the exception of limit-edges, the definition of the limit corner-point MDP
is natural since it mimics the behaviour of the DSTA, at the region level and
abstracting precise probabilities. Limit-edges are particular to the value 1 prob-
lem. Roughly speaking, they offer the player, from region [`, r], the possibility to
play as if the clock value was arbitrarily close to the right border of r, therefore
as if it was in r′ the immediate open successor of r. In particular, there cannot
be two consecutive transitions starting with a limit edge and staying in the same

pointed region [`, r]
elimit

−−→ τ−→ [`′, r].

Example 2. Let us illustrate Definition 4 on the example of Fig. 2 below. Its limit
corner-point MDP is represented in Fig. 3. For readability reasons we only rep-
resented states with left-pointed region for (1, 2), since the behaviour is exactly
the same from right-pointed regions.

`0 `1 `2

,

/
e0, x < 1
x := 0

e1, 0 < x < 1

e2, 1 < x < 2
x := 0

e3, 0 < x < 1 e4,
0 < x < 1

e5 , 1 ≤ x < 2

Fig. 2. The first illustrating example.
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`0, (0, 1)

`0, (0, 1)

`1, (1, 2)

`1, (0, 1)

`1, (0, 1)

`2, (1, 2)

`2, (0, 1)

`2, (0, 1)

`0, 0

`1, (0, 1)

`1, (1, 2)

`1, (0, 1)

`2, (0, 1)

`2, (1, 2)

`2, (0, 1)

,
/

e1

e1

elimit
1

e3

e3

elimit
3

e4

e4

e5
e2

e0

e0

Fig. 3. The limit corner-point MDP for the example from Fig. 2.

We let F = {[`, r] | ` ∈ Goal} in the rest of the paper. Acp is a finite MDP,
and one can define strategies in the usual way. In the following, for s a state of

Acp, and F ⊆ S we write PAcp
max(s |= 3F) for the maximum probability, over all

strategies, to reach F from s.

Last, we introduce some notations: First, for any region r ∈ R, we define
•r ∈ Rleft ∪Rplain (resp. r• ∈ Rright ∪Rplain) with: •(c, d) = (c, d) (resp. (c, d)• =
(c, d)), •{c} = {c} = {c}• and •(c,+∞) = (c,+∞) = (c,+∞)•. Now, given
t ∈ R≥0, rleft(t) (resp. rright(t)) represents the left (resp. right) pointed region t
belongs to: if t ∈ r, then rleft(t) = •r (resp. rright(t) = r•).

3 Main results

We now state the main results of our paper. We start with an expected result:

Proposition 1. The almost-sure reachability problem is decidable in PTIME for
DSTA.

Proposition 1 is not a consequence of the decidability result in [7]. Although our
model of DSTA can be encoded into the stochastic timed games of [7], the naive
encoding requires an additional clock, in order to prevent players from letting
time elapse. Since their decidability result applies only to stochastic timed games
with a single clock, this simple reduction is of no help here. We believe their
techniques can be adapted though. An alternative, which we take here, is to use
the region abstraction, in order to solve the almost sure reachability problem.
Details are provided Section 5.

As value 1 and probability 1 do not coincide for DSTA, the following theorem
is non trivial, and is the main contribution of this paper.

Theorem 1. The value 1 problem is decidable in PTIME for DSTA.

To obtain Theorem 1, we reduce the value 1 problem for DSTA to the almost-sure
reachability problem in the limit corner-point abstraction.
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Proposition 2. Let A be a decision stochastic timed automaton, Acp its limit
corner point abstraction, and ` ∈ L a location, and t ∈ R≥0 a clock value. Then

valA([`, t]) = 1 ⇐⇒ PAcp
max([`, rleft(t)]) |= 3F) = 1 and

valA(〈`, t〉) = 1 ⇐⇒ PAcp
max(〈`, rleft(t)〉) |= 3F) = 1 .

Example 3. Let us illustrate the result of Proposition 2 on the example of Fig. 2,
whose limit corner-point MDP is represented on Fig. 3. Bold edges give a win-
ning strategy in the MDP for the almost-sure reachability of the smiley state.
According to Proposition 2, the set of states with value 1 for the target , in the
stochastic timed automaton, is thus (`0, [0, 1))∪(`1, [1, 2))∪(`2, [1, 2)). (Here, we
use brackets as a short-cut, rather than square brackets or angle brackets, not to
distinguish stochastic and player states.) Intuitively, an ε-optimal strategy from
〈`0, 0〉 to reach , is the following: stay in `0 until a large clock value is sampled,
then move to `1; if then the sampled clock value is above 1, move back to `0 and
iterate the same process, otherwise, proceed to `2; finally, reach , or / from `2
depending on the last sampled clock value.

Theorem 1 is a consequence of Proposition 2. To obtain a polynomial-time
algorithm, one exploits that for 1-clock decision stochastic timed automaton,
the number of regions, and thus the number of states in the limit corner-point
MDP is linear [15], and almost-sure reachability properties can be checked in
polynomial-time for finite MDP.

In order to show Proposition 2 we proceed in two steps: first, we prove it
for player states [`, t] ∈ S2. This suffices to prove it as well for stochastic states
〈`, t〉 ∈ S3 thanks to the structure of the limit corner-point MDP. Given Acp,
we write W ⊆ S for the set of states from which there exists an almost-sure
winning strategy for the reachability objective. We now detail what having left
and/or right pointed region winning in the limit corner-point MDP abstraction
implies:

Proposition 3. Let r ∈ R be a region and ` ∈ L a location.

– If [`, •r] ∈ W, then [`, r•] ∈ W.
– If [`, •r] ∈ W, then for every t ∈ r, valA([`, t]) = 1;
– Else, if [`, r•] ∈ W, then for every t ∈ r, valA([`, t]) < 1;
– Else, there exists ε > 0 such that for every t ∈ r, valA([`, t]) ≤ 1− ε.

The first item is a simple observation: for every location ` and region r ∈ R, any
winning strategy from [`, •r] can be mimicked from [`, r•], and is also winning
from there. Section 4 is devoted to the rest of the proof of Proposition 3.

Proposition 3 suffices to prove Proposition 2, in the case of player states.
Indeed, the second item (whose proof is in Section 4.2) shows the right-to-left
implication of Proposition 2, and the third and fourth items show the other
implication by contraposition (the proof is in Section 4.1). Remark that we can
be more specific in the third case and state: when [`, •r] /∈ W and [`, r•] ∈ W,
then supt∈r valA([`, t]) = 1. This explains the difference between the third and
fourth items.
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Before moving to the proofs, we show an example where ε-optimal strategies
need to be conceptually complex: the cutpoint inside regions where the strategy
changes decision cannot be chosen independently of the location.

`0 `1 `2 `3

,/

e1, x ≤ 1 e2, 1 ≤ x ≤ 2

x := 0

e3, x ≤ 1

e4
, x

≤ 1e
5 , x ≤

1

e7, x ≤ 1

e6, 1 ≤ x ≤ 2
e0, x ≤ 1

Fig. 4. An example where non-uniform strategies are needed.

Consider the example from Fig. 4, where the implicit probability distributions
over delays are all uniformly distributed. Decisions can only be taken in locations
`0 and `2, where transitions with overlapping guards are possible. Intuitively,
from `0 to reach ,, transition e1 needs to be taken, with a risk that once `1
is reached, transition e5 is triggered. Let t0 be the cutpoint in `0 such that if
t0 < t < 1, the player decides to take e1 from (`0, t). In the same way, let
t2 ∈ (0, 1) be the cutpoint in `2 such that if t2 < t < 1, the player decides to
take e3 from (`2, t). To reach a contradiction, we assume t0 = t2, and write τ
for this value. From [`2, t] with 1 − τ < t < 1, a simple calculation shows that
the probability to lose is pTlose(`2, t) = (1− t)/(2− t). Also, from [`0, t], the losing
probability is lower bounded by the probability to lose in two steps, directly
from `1, hence pTlose(`0, t) ≥ (1 − t)/(2 − t). Moreover, pTwin(`0, t) ≤ pTwin(`1, t) ≤
(1− t)pTwin(`3, t) ≤ (1− t). Hence, pTlose(`0, t) > pTwin(`0, t)/2 for all t > 1− τ , that
is PT (〈`0, t〉 |= 3F ) < 2/3. This shows that F is not limit-surely reachable under
simple strategies, defined by constant mappings. Yet, the ,-state is limit-surely
reachable from [`0, 0]. However, to achieve this, t0 needs to be set to a much
lower value than t2, e.g. t2 = τ and t0 = τ2.

4 Deciding the value 1 problem

The goal of this section is to provide a proof of Proposition 3 (and thus of
Proposition 2 and of Theorem 1). For the sake of completeness, we recall the
algorithm to compute the set of states of an MDP from which there exists a
strategy to reach a target set F almost-surely (see e.g. [4]). We denote byW the
winning states for this objective, and W2 the subset of winning player states.
The algorithm that computes W computes at the same time for every player
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state w ∈ W2, the largest set of safe actions Safe(w), i.e. the set of all actions
that ensure staying in W.

– Initially: L = ∅, and for every s ∈ S2, Safe(s) = {e ∈ E ∪ E limit | ∃s e−→ s′}.
– Perform steps 1 and 2 until convergence.
• Step 1: Move to L every [`, r] from which there is no path to F via states

in S \ L only.

• Step 2: Remove from Safe([`, r]) any e such that if [`, r]
e−→ 〈`′, r′〉, there

exists [`′, r′′] ∈ L with 〈`′, r′〉 → [`′, r′′].
Move to L every [`, r] such that Safe([`, r]) = ∅.

– Return (W = S \ L,Safe).

The rest of the section is organised as follows. Subsection 4.1 establishes the
third and fourth items of Proposition 3: states whose left region is not winning
in the limit corner-point MDP, do not have value 1 in the decision stochastic
timed automaton. Then, Subsection 4.2 shows its second item: states whose left
region is winning in the limit corner-point MDP do have value 1 in the decision
stochastic timed automaton.

4.1 Non limit-surely winning states

We first aim at showing the right-to-left implication in Proposition 2, by contra-

position: PAcp
max((`, rleft(t)) |= 3F) < 1 implies valA([`, t]) < 1. This corresponds

to proving the third and fourth items of Proposition 3.

Lemma 1. Let ` ∈ L be a location and r ∈ R a region.

– If [`, r•] ∈ L, then there exists ε`,r > 0 such that for every t ∈ r, valA([`, t]) ≤
1− ε`,r;

– If [`, •r] ∈ L, then for every t ∈ r, there exists ε`,t > 0 such that valA([`, t]) ≤
1− ε`,t; Moreover, one can pick non-increasing values for the ε`,t’s, that is,
ε`,t ≤ ε`,t′ as soon as t ≥ t′.

Proof (Sketch). The proof is by induction on the moment in the MDP algorithm
at which [`, r] has been moved to L. We thus define ∅ = L0 ⊆ L1 ⊆ · · · Ln = L
to describe the evolution of L during time with |Li| = i. Notice that this decom-
position is finer than steps (this is important for step 2 of the MDP algorithm).

We show one important subcase here. Assume [`, (a, b)] ∈ L because of step
2. Every transition e in the DSTA are associated with a transition e in the
MDP which leads from [`, (a, b)] to 〈`′, r′〉, and there exists 〈`′, r′〉 τ−→ [`′, r′′]
with [`′, r′′] ∈ Li. The hardest case is when r′′ = r′ = r = (a, b). Other cases
are actually easier to treat and lead to a uniform bound ε over t. Let ν`,t =
µ`,t(t, (t+ b)/2) for every t ∈ (a, b). Observe that ν`,t > 0 and is non increasing
with t ∈ (a, b), by assumption (c3) on the measure functions µ. We then set
ε`,te = ν`,t · ε`′,(t+b)/2 > 0 for all t ∈ (a, b). Note that ε`,te depends upon t. Last,

we define ε`,t = mine ε
`,t
e , the minimum over all transitions e outgoing from

[`, t]. So defined, ε`,t is positive and non increasing because ν`,t and ε′`′,(t+b)/2
are positive and non increasing. ut
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4.2 Limit-surely winning states

We now prove that PAcp
max((`, rleft(t)) |= 3F) = 1 implies valA([`, t]) = 1. This

amounts to show the second item of Proposition 3.

Covering forest and golden paths. Let A be a decision stochastic timed
automaton, and Acp the associated limit corner-point MDP. From the almost
sure winning set of states and actions (W,Safe) of Acp, we extract a covering
forest whose roots are elements of F . Each edge of the forest from a player
state w ∈ W2 to its unique parent is a transition of Acp, labelled with action
sel(w) ∈ Safe(w). Globally, for every w ∈ W2, the unique path to a root of the
forest w′n ∈ F is a path in Acp: there are w1 · · ·wn ∈ W2 and w′1 · · ·w′n ∈ W3
with

w
sel(w)−−−−→ w′

τ−→ w1
sel(w1)−−−−−→ w′1 · · ·wn+1

sel(wn)−−−−−→ w′n ,

and such a path is called a golden path in the following. Notice that many edges
emanating from stochastic states do not appear in this forest. They may lead
to states that are further from F . The intuition is that this forest represents
the ideal situation. Even if it is not guaranteed to take these ideal edges from
stochastic states, there is a chance to follow the forest towards F , and we will
show it is sufficient.

Example 4. Fig. 5 represents the covering forest, here a tree, on our running
example from Fig. 2. Remark here that e0 is selected in [`0, (0, 1)] and e1 in
[`0, (0, 1)]. The fact that they differ reflects that the decision for an optimal
strategy should not be uniform within region (0, 1) in location `0.

`1, (1, 2)

`0, (0, 1)

`0, (0, 1) `1, (0, 1) `2, (1, 2)`0, 0 `1, (0, 1) `2, (1, 2) ,
e0

e2

e1 elimit
3 e5

Fig. 5. The covering forest on our running example.

Assume now that F is almost-surely reachable from (`, rleft(t)) in the limit
corner-point Acp, and let us exhibit a family of ε-optimal strategies, showing
that F is limit-surely reachable from 〈`, t〉 in A. More precisely, these ε-optimal
strategies are positional but not region uniform: for every location ` and bounded
open region r = (c, d), there can be a cut-point c + τ ∈ (c, d) such that the
decisions in the left part of r, (c, c+τ) and in its right part (c+τ, d) differ, but are
uniform over each of these sub-intervals. These cut-points can be defined through
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a mapping T : L × R → R≥0. When T is fixed, we write leftT (`, r) for the sub-
region of (`, r), to the left of its cutpoint T (`, r). Similarly, rightT (`, r) denotes
the states to the right of the cutpoint. For t ∈ r, we write rT ([`, t]) = [`, rleft(t)]
if t ∈ leftT (`, r), and rT ([`, t]) = [`, rright(t)] if t ∈ rightT (`, r). We will abuse the
notation and call a path s1 · · · sn in the DSTA A a golden path if for (`i, ri) the
golden path associated with rT (s1), we have rT (s2i+1) = [`2i+1, r2i+1] for all i
(if a limit edge is played, it is not possible to agree on the stochastic state).

Based on the covering forest of selected actions, we build a family of strategies
(σT )T :L×R→R≥0

, parametrised by a cutpoint function T : L × R → R≥0: if
s ∈ leftT (`, (c, d)), then σT (s) = sel((`, (c, d))), else s ∈ rightT (`, (c, d)) and
σT (s) = sel((`, (c, d))). In short, when T is fixed, σT (s) = sel(rT (s)). Since
limit edges do not exist in the DSTA, by σT (s) = elimit, we implicitly mean
σT (s) = e, where e ∈ E is the unique edge associated with elimit ∈ E limit.

We define the following subset of states in the DSTA A: Swin = {[`, t] ∈ S2 |
[`, rleft(t)] ∈ W}. We show that all states in Swin have value 1 for the reachability

objective in A. Further, Sright
T = {[`, t] ∈ S2 | rT ([`, t]) = [`, rright(t)] ∈ W} is the

set of states belonging to the right-part (as specified by the cut-point function

T ) of limit winning bounded open regions; Note that Sright
T and Swin are not

necessarily disjoint. Our objective is to show that for every ε > 0, there exists a
mapping T such that, from any state s ∈ Swin, the probability to reach F under
σT is at least 1− ε.

Lemma 2. For every s ∈ Swin, PAσT
(s |= 3(F ∪ Sright

T )) = 1.

When the mapping T is fixed, we let JWKT = {s | rT (s) ∈ W}, that is, states
whose pointed-region (relatively to T ) is winning in the limit corner point. Notice

that JWKT = Sright
T ∪ Swin. We show that the probability to leave JWKT can be

made arbitrarily small.

Lemma 3. For every ε > 0, there exists a function T : L×R→ R≥0 such that,
writing © for the next-step operator, for every s ∈ JWKT

– if σT (s) ∈ E limit then PsσT
(©JWKT ) ≥ 1− ε,

– else PsσT
(©JWKT ) = 1.

Taking a limit edge in the limit corner-point MDP is the only case where
a losing state can be reached in the concrete DSTA. However, staying in the
current region when the decision in the abstraction was a limit-edge may not
necessarily lead to a losing state. Actually, limit-edges are not always the best
choice: the only way to reach F might be to stay in the current region (and
therefore avoid limit-edges) even if the probability to stay there is very small.
This is illustrated on the example from Fig. 3 in which from [`0, (0, 1)], in order
to eventually reach F , one should pick e1 rather than elimit

1 .
We now explain that the probability to follow the covering forest towards

F , although small, will be arbitrarily bigger than the probability to follow the
forest until reaching a losing state.
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Given T a mapping assigning cut-points to each bounded open region, and [`, t]
a player state in JWKT , we write pTwin(`, t) for the probability, from [`, t] and
under σT , to execute a golden path (which therefore reach F ). Also, pTlose(`, t)
is the probability to execute a golden path until a losing state in S \ JWKT is
reached. If from a stochastic state, a golden path is not executed, and yet L is
not immediately reached either (this corresponds to behaviours not “counted”
in pTlose and pTwin), then a winning region will be reached, possibly further away
from F .

Lemma 4. For every ε > 0, there exists a function T : L×R→ R≥0 such that
for every [`, t] ∈ JWKT

pTwin(`, t) · ε ≥ pTlose(`, t) .

Given a tolerance ε, the proof of Lemma 4 details how to define a mapping,
denoted T (ε) to make the dependency explicit, under which the probability
to reach F by progressing in the covering forest is arbitrarily bigger than the
probability to reach a losing state. The definition of T (ε) is non trivial and is
done by induction on the distance to F in the covering forest. Recall that once a
cut-point mapping T is fixed, the strategy σT is perfectly defined. It now remains
to justify that, the strategies (σT (ε)) form a family of limit-sure strategies.

Lemma 5. For every s ∈ Swin, PAσT (ε)
(s |= 3F ) ≥ 1− ε.

Proof. Let ε > 0, T (ε) : L × R → (0, 1) the mapping as defined in Lemma 4,
and σT (ε) the corresponding strategy. To establish Lemma 5 we provide a lower
bound on the probability, under σT (ε) to reach F from winning states.

To do so, we consider the set X of runs under σT (ε) that stay forever in
JWKT \ F . Such runs never reach the target, and also stay away from the losing
states. We will show that PAσT (ε)

(s |= X) = 0. To do so, we again partition X into

three categories: X1 gathers runs with infinitely many resets; X2 consists of runs
with finitely many resets and ending in the unbounded clock region (M,∞); and
X3 is the set of runs with finitely many resets eventually staying in a bounded
region (c, d).
Let us first consider X1. Runs in X1 necessarily visit some some state (`0, 0)
infinitely often. Since, at each visit of (`0, 0), there is a strictly positive prob-
ability to execute a golden path and thus reach F , we reach a contradiction.
Thus PAσT (ε)

(s |= X1) = 0. We now consider runs in X2, that ultimately stay in

the unbounded region. As explained earlier, almost surely F will be reached, a
contradiction: PAσT (ε)

(s |= X2) = 0.

Last, for runs inX3, that ultimately stay in a bounded region (c, d), the reasoning
is exactly the same as for runs of X2. Thus, PAσT (ε)

(s |= X3) = 0.

We now exploit Lemma 4 to conclude. Since almost all runs leave JWKT \F ,
it must be that either a losing states or F is reached, and it suffices to compare
the probabilities in each case. Thanks to Lemma 4, for all states in JWKT , it is
much more likely to reach F than to reach a losing state. More precisely,

pTwin(`, t)

pTwin(`, t) + pTlose(`, t)
≥ pTwin(`, t)

pTwin(`, t) + pTwin(`, t) · ε
≥ 1

1 + ε
≥ 1− ε .
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As a consequence PAσT (ε)
(s |= 3F ) ≥ (1− ε). ut

This ends the proof of the left-to-right implication in Proposition 2.

5 Deciding the probability 1 problem

If one wants to solve the probability 1 problem, rather than the more difficult
value 1 problem, it suffices to consider the region MDP AR. This MDP AR
is equivalent to the fragment of Acp restricted to left and plain regions, and
hence without limit edges. As for the value 1 problem, the decidability of the
probability 1 problem is given thanks to the following reduction:

Lemma 6. Let A be a decision stochastic timed automaton, AR its region MDP,
r ∈ R a region, and ` ∈ L a location and t ∈ R≥0 a clock value with t ∈ r. Then

∃σ, PAσ ([`, t] |= 3F ) = 1 ⇐⇒ PAR
max([`, r] |= 3F) = 1 and

∃σ, PAσ (〈`, t〉 |= 3F ) = 1 ⇐⇒ PAR
max(〈`, r〉 |= 3F) = 1 .

Proof. The proof is not different for player and stochastic states, so we treat
them indistinctly, and use brackets in place of square or angle brackets.

Let (`, t) with t ∈ R, be a state of A such that PAR
max((`, r) |= 3F) < 1. One

can easily adapt the inductive proof of Lemma 1, showing that if (`, r) is losing
in the MDP AR, then for every t ∈ r, there exists ε`,t with PAσ ((`, t) |= 3F ) <
1− ε`,t whatever the strategy σ.
For the other implication, it suffices to mimic faithfully in A the positional win-
ning strategy σAR

from AR. For every (`, r) a winning state in the region MDP
AR, for every t ∈ r, we let σ(`, t) = σAR

(`, r). Now that the strategy is fixed, we
recover the purely probabilistic framework of Stochastic Timed Automata, and
can apply the results of [3] to conclude that PAσ ((`, t) |= 3F ) = 1. Alternatively,
partitioning runs into three categories, as we did for the proofs of Lemmas 2 and
5, allows one to conclude that σ is almost-surely winning in A. ut

Lemma 6, and precisely its right-to-left implication, does not hold in DSTA with
at least two clocks. We emphasise here again that the decomposition of runs we
use is only valid for 1-clock timed automata.

As an immediate consequence, we obtain the decidability in PTIME of the
probability 1 problem for reachability objectives in DSTA (see Proposition 1).

6 Conclusion

This paper shows the decidability in PTIME of the probability 1 and value 1
problems for reachability objectives on an extension of 1-clock timed automata
with random delays, and in which edges are chosen according to a strategy. It
would be natural to allow for more general objectives (e.g. Büchi or parity).
We could also investigate the extension of our framework to 2 players, taking
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decisions in turn or concurrently. Moving to more quantitative questions, such as
computing the value would probably require a finer abstraction than the limit
corner-point MDP. Last, the class of 1-clock DSTA can seem restrictive, and
it is definitely a challenge to tackle already stochastic timed automata without
decisions, for which the almost-sure model checking of reachability properties is
still open.
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