
Symbolically Bounding the Drift in
Time-Constrained MSC Graphs?

S. Akshay1, Blaise Genest1,2, Löıc Hélouët1, and Shaofa Yang3

1 IRISA, INRIA Rennes - ENS Cachan Bretagne - CNRS, France
2 CNRS, UMI IPAL joint with NUS and A*STAR/I2R, Singapore

3 SIAT, Chinese Academy of Sciences, China
{akshay,bgenest}@irisa.fr, loic.helouet@inria.fr, sf.yang@siat.ac.cn

Abstract. Verifying systems involving both time and concurrency rapidly
leads to undecidability, and requires restrictions to become effective. This
paper addresses the emptiness problem for time-constrained MSC-Graphs
(TC-MSC graphs for short), that is, checking whether there is a timed
execution compatible with a TC-MSC graph specification. This problem
is known to be undecidable in general [11], and decidable for some regular
specifications [11]. We establish decidability of the emptiness problem
under the condition that, for a given K, no path of the TC-MSC graph
forces any node to take more than K time units to complete. We prove
that this condition can be effectively checked. The proofs use a novel
symbolic representation for runs, where time constraints are encoded as a
system of inequalities. This allows us to handle non-regular specifications
and improve efficiency w.r.t. using interleaved representations.

1 Introduction

In a distributed system, several processes interact to implement a protocol.
One way to describe these interactions is through scenarios, formalized using
Message Sequence Charts (MSCs) [13]. MSCs describe finite interactions among
agents that communicate asynchronously. A protocol is described by allowing
choices and repetition of these MSCs. To specify these main characteristics while
abstracting away details of implementation, the formal methods community often
considers MSC graphs, which are directed graphs whose nodes are labeled by
MSCs. Protocol specifications also include timing requirements for messages as
well as descriptions of how to recover from timeouts. To specify how time and
concurrency influence each other, MSCs and MSC graphs have been generalized to
time-constrained MSCs (TC-MSCs) and time-constrained MSC graphs (TC-MSC
graphs) [2]. The timing information is captured by adding timing constraints
between pairs of events, and transitions have additional timing constraints.

We consider decidability issues for TC-MSC graphs. This is a challenging task
due to the presence of both time and concurrency. First, the set of executions
of a TC-MSC graph is not regular in general. Even checking whether there
exists a timed execution that is consistent with all the constraints of a model

? funded by the French Consulate at Guangzhou, ANR IMPRO, and the DST project.

is non-trivial. This question, called the emptiness problem, is undecidable for
TC-MSC graphs in general [11]. However, it is decidable for (sequential) timed
automata [4]. Extending decidability results to distributed systems has been done
in two particular and limited settings. In the first setting [15, 10], clocks are local
to a process, and so, one cannot specify time taken by a communication (message
or synchronization). This limitation makes the specification formalism very weak.
The second setting can relate clocks from different processes and specify how long
a communication takes, but the specifications can only exhibit regular behaviors
[2, 3, 7, 8, 18], which is a significant restriction in a concurrent setting where even
the simple producer-consumer protocol is not regular. To obtain regularity (and
hence decidability), these papers restrict the concurrency in a structural way, for
instance considering only locally synchronized (see [16, 5, 12]) MSC graphs (in [2,
3]) or only safe Petri Nets (in [7, 8]). In [1], the language is restricted to being
representable by a regular set, using both K-drift-boundedness — that we use in
this paper and define below — and a restriction on Zeno behaviors. Decidability
of checking K-drift-boundedness was however left open. Last, the procedures for
TC-MSC graphs in [2, 3, 11, 1] construct an interleaved timed automaton, leading
to a combinatorial explosion. This could be seen as going against the spirit of
MSCs, which try to avoid interleavings. Further, the approaches in [2, 3, 11, 18, 1]
add another blow-up in complexity through the use of zone construction [4].

In this paper, we prove a novel decidability result for timed concurrent systems
with global clocks having a possibly non-regular set of behaviors. We investigate
the emptiness problem for TC-MSC graphs, and prove it to be decidable in
the setting where a TC-MSC graph is prohibited from forcing any TC-MSC
appearing along one of its paths to take an arbitrarily long amount of time to
complete. More precisely, for a given integer K, for any path ρ of a TC-MSC
graph, if there exists at least one execution of ρ, then we require that there exists
one in which the occurrence times of any two events from the same TC-MSC
differ by at most K. Such a TC-MSC graph is said to be K-drift-bounded [1]. We
further show that given K, one can effectively test whether a TC-MSC graph G is
K-drift-bounded. Both results are established without constructing an interleaved
timed automaton or relying on the seminal result on decidability of emptiness of
timed automata [4], avoiding both state space explosions. Instead, we translate
the set of time constraints of a path into a symbolic profile, in the form of a
system of inequalities. We show how to manipulate this system symbolically using
Fourier-Motzkin elimination [9]. We approximate symbolic profiles by a bounded
system of inequalities whose coefficients are integers in [−K ′,K ′] for some integer
K ′ depending on G and K. This does not hinder checking consistency of K-drift-
bounded TC-MSC graphs. This forms the cornerstone of our decidability results,
as finite state automata can keep track of bounded systems of inequalities.

The paper is organized as follows: Section 2 recalls basic definitions. Section
3 discusses drift-boundedness and its relevance. Section 4 shows how to check
emptiness for K-drift-bounded TC-MSC graphs and Section 5 shows that checking
K-drift-boundedness is decidable, for a given K. Omitted proofs are available in
the appendix.

2

2 Preliminaries

Let R≥0 denote the set of non-negative reals, N the set of integers and I the
collection of open and closed intervals with end points in N as well as intervals of
the form [c,∞), (c,∞), where c ∈ N. Throughout this paper, we fix a finite set P
of processes and let p, q range over P . Let Σ = {p!q, p?q | p, q ∈ P, p 6= q} be the
communication alphabet. The letter p!q represents p sending a message to q, while
p?q signifies p receiving a message sent by q. We define the map loc : Σ → P
via loc(p!q) = p = loc(p?q), and call loc(a) the location of a. We define Message
Sequence Charts (MSCs) and time-constrained MSCs (TC-MSCs) as usual. We
do not require FIFO ordering among messages.

Definition 1. An MSC is a tuple (E, (<p)p∈P , µ, λ). The set of events is E
and λ : E→Σ labels events with letters. For each p, <p is a total order over
Ep = {e ∈ E | loc(λ(e)) = p}. The message function µ ⊆ ES ×ER is a bijection,
such that f = µ(e) implies λ(e) = p!q, λ(f) = q?p for some p, q ∈ P, with
ES = {e ∈ E | ∃p, q ∈ P, λ(e) = p!q} and ER = {f ∈ E | ∃p, q ∈ P, λ(f) = q?p}.
We require that the transitive closure ≤ of l =

⋃
p∈P <p ∪µ is a partial order.

The relation ≤ reflects causal ordering of events. We will write e < f when
e ≤ f and e 6= f . Notice that Ep has a unique <p-maximal event (respectively,
minimal event), which we refer to as the last (respectively, first) event of E on p.

Definition 2. A TC-MSC is a tuple (E, (<p)p∈P , µ, λ, δ) where (E, (<p)p∈P , µ, λ)
is an MSC and δ is a function associating an interval δ(e, e′) ∈ I to each el e′.

For each pair of events e l e′, the interval δ(e, e′) constrains the range in
which the difference between the occurrence time of e′ and the occurrence time
of e can lie. For clarity, we shall refer to occurrence times as dates. A TC-MSC
T defines a collection of MSCs with dates such that the relative differences of
dates fulfill the constraints asserted in T .

Definition 3. Let T = (E, (<p)p∈P , µ, λ, δ) be a TC-MSC. A dated MSC gener-
ated by T is a tuple (E, (<p)p∈P , µ, λ, d) where d : E → R+ is such that for each
el e′, d(e′)− d(e) is in the interval δ(e, e′).

We denote by L(T) the set of dated MSCs generated by T . To capture infinite
collections of TC-MSCs, we define TC-MSC graphs as in [2, 11], which are finite
graphs whose nodes are labeled by TC-MSCs. Each path ρ of a TC-MSC graph G
induces a TC-MSC by concatenating TC-MSCs labeling nodes of ρ. Transitions of
G are labeled by interval constraints, one for each process, that act as constraints
on the timing between the last and first event of each process in consecutive
nodes of ρ.

Definition 4. A TC-MSC graph is a structure G = (N, T , Λ, nin , Nfi ,−→, ∆)
where N is a finite non-empty set of nodes, T a finite set of TC-MSCs, Λ : N → T
labels each node with a TC-MSC, nin is the initial node, Nfi the set of final
nodes, −→⊆ N ×N is the transition relation, and ∆ is a labeling function which
associates an interval ∆p(n→n′) ∈ I to each transition n→n′ and each process
p, such that ∆p(n→n′) = [0,∞) if Λ(n) or Λ(n′) has no event on process p.

3

n1

p q r s

[0, 3]

n2

q r
[3, 6)

((2,∞)q, [0, 0]r)

([1, 3]p, [0, 1]q, [0, 1]r, [0, 1]s)

p q r s

[0, 3]

[0, 3]

[3, 6)

[1, 3] [0, 1]

(2,∞)

[0, 1]

[0, 0]

[0, 1]

T1

p q r s

0

2

3

4

7

1

2

2

2

3 M1

Fig. 1. A TC-MSC graph G1, a TC-MSC T1 and a dated MSC M1 ∈ L(G1).

A path ρ of the TC-MSC graph G is a sequence n0n1 . . . n` such that n0 = nin

and ni→ni+1 for i = 0, . . . , `− 1. The path ρ is said to be final if n` ∈ Nfi . For
each n→n′, the concatenation of TC-MSCs Λ(n), Λ(n′) is defined with respect
to ∆(n→n′), and is denoted Λ(n) ◦ Λ(n′). Roughly speaking, this consists of
putting Λ(n′) after Λ(n) and for every process p, attaching to the pair (ep, fp) the
constraint ∆p(n→n′), for ep the last event of Λ(n) on process p and fp the first
event of Λ(n′) on p. Formally, let Λ(n) = (E, (<p)p∈P , µ, λ, δ), Λ(n′) = (E′, (<′p
)p∈P , µ

′, λ′, δ′). Then Λ(n) ◦ Λ(n′) = (E′′, (<′′p)p∈P , µ
′′, λ′′, δ′′) where E′′ is the

disjoint union of E and E′, <′′p is the transitive closure of the union of <p, <
′
p

and Ep×E′p, and λ′′ is given by: λ′′(e) = λ(e) for e ∈ E, λ′′(e) = λ′(e) for e ∈ E′.
We also set µ′′(e) = µ(e) when µ(e) is defined, and µ′′(e) = µ′(e) when µ′(e) is
defined. At last, δ′′ is given by: δ′′(e, f) = δ(e, f) for el f , δ′′(e, f) = δ′(e, f) for
el′ f . For each p, if both Ep and E′p are nonempty, we set δ′′(ep, fp) = ∆p(n→n′)
for ep the last event of Ep and fp the first event of E′p.

We emphasize that by definition, ∆p(n→n′) = [0,∞) if Ep or E′p is empty. It
follows that for n→n′→n′′, (Λ(n) ◦ Λ(n′)) ◦ Λ(n′′) is the same as Λ(n) ◦ (Λ(n′) ◦
Λ(n′′)). Thus, we unambiguously define the TC-MSC T ρ induced by a path
ρ = n0 . . . n` of G to be Λ(n0) ◦ . . . ◦ Λ(n`). A path ρ of G is called consistent
if L(T ρ) 6= ∅. From now on, we will speak interchangeably of a node n and its
associated TC-MSC Λ(n). We write L(G) for the union of L(T ρ), ρ ranging
over final paths of G. We call a dated MSC in L(G) a timed execution of G. An
example of a TC-MSC graph G1 is in Figure 1. The TC-MSC T1 is induced by
path n1 ·n1 ·n2 of G1, i.e., T1 = Tn1·n1·n2 . Further, M1 is a dated MSC generated
by T1. As n2 is final, M1 ∈ L(G1).

The emptiness problem for TC-MSC graphs is: given a TC-MSC graph G,
determine whether L(G) = ∅, that is, whether it has no consistent and final path.
This is a fundamental verification problem that must be addressed. Indeed, a
TC-MSC graph with an empty language should be considered ill-specified and
such an exception should be caught at an early stage of design. In [11], it is
shown that this problem is undecidable in general, and decidable for some regular
specifications. We show in the following that checking emptiness for TC-MSC
graphs is decidable under an arguably mild restriction on time constraints which
does not impose regularity. Furthermore, we will show that one can test whether
a given TC-MSC graph satisfies this condition.

4

3 Drift-Boundedness

In this section we define our mild restriction, namely drift-boundedness. Let
us fix a TC-MSC graph G. Let ρ = n0 . . . n` be a consistent path of G and
M = (E, (<p)p∈P , µ, λ, d) be a dated MSC generated by T ρ. For an integer K,
we say that M is a K-drift-bounded dated MSC of ρ iff for each i = 0, . . . , `,
for any two events e, e′ in Λ(ni), it is the case that |d(e) − d(e′)| ≤ K. We
say that ρ is K-drift-bounded iff there exists a K-drift-bounded dated MSC in
L(T ρ). We emphasize that L(T ρ) may also contain dated MSCs which are not
K-drift-bounded. We say that G is K-drift-bounded iff every consistent (but
not necessarily final) path of G is K-drift-bounded. In other words, for each
consistent path ρ, we can find a dated MSC in L(T ρ) such that the difference
between the dates of any two events from the same instance of a node is at most
K. Notice that we can have L(G) = ∅ even though G is K-drift-bounded. In fact,
G is vacuously K-drift-bounded for any K if it has no consistent path.

As an example, consider the TC-MSC graph G1 from Figure 1. G1 is 3-drift-
bounded since in every timed execution, we can be sure that all events in node
n1 or n2 can be completed within a delay of 3 time units. But if we change the
constraints on the loop on n1 from ([0, 1]r, [0, 1]s) to ([4, 5]r, [1, 2]s) then for any
integer K, G1 is not K-drift-bounded. Note that G1 is not locally synchronized
(as defined in [16, 5], and lifted in [3] to a timed setting). In fact, we can simulate
the producer-consumer protocol and obtain non-regular behaviors. Thus, this
example cannot be handled by the decidability result in [3].

We believe that drift-boundedness is a practical notion. Interpreting a node
of a TC-MSC graph as a phase or a transaction of a distributed protocol, we
expect any scenario labeling the node to be executable in a bounded time, say
K. A protocol specified as a TC-MSC graph that is not K-drift-bounded should
thus be considered as ill-formed. Indeed, while a TC-MSC graph specification is
usually incomplete (as it abstracts away some events and constraints used in the
actual implementation), if it is not K-drift-bounded, then every implementation
of this specification will not be K-drift-bounded either.

3.1 The main results

We can now state our main results. The first result establishes the decidability of
the emptiness problem for K-drift-bounded TC-MSC graphs.

Theorem 1. Let K ∈ N and G be a K-drift-bounded TC-MSC graph. Then
checking whether L(G) is empty is decidable in PSPACE.

We next show that the drift-boundedness hypothesis of Theorem 1 can be
effectively checked, giving rise to an effective decidability procedure.

Theorem 2. Let K ∈ N and G be a TC-MSC graph. Then checking whether G
is K-drift-bounded is decidable in PSPACE.

We can show that the decidability result in Theorem 2 is in fact at the bound-
ary of undecidability. Recall that the definition of K-drift-bounded considers

5

every path of a TC-MSC graph, including paths that cannot be extended to
consistent final paths. Instead, if we consider the problem of checking whether
every consistent final path of a TC-MSC graph is K-drift-bounded, this turns
out to be undecidable. We assume K fixed for the next proposition.

Proposition 1. It is undecidable, given a TC-MSC graph G, to determine
whether every consistent final path of G is K-drift-bounded.

Proof. The proof is by a reduction from the emptiness problem of TC-MSC
graphs, shown undecidable in [11]. Let G be a TC-MSC graph. We construct
another TC-MSC graph G′ from G such that there does not exist a consistent
final path of G iff every consistent final path of G′ is K-drift-bounded, which
shows the result. G′ is obtained from G with the following modifications. Firstly,
add a new node nnew and for every final state nf of G, add a transition (nf , nnew).
Secondly, define the set of final nodes of G′ to be the singleton set {nnew}. Thirdly,
nnew is labeled with a TC-MSC consisting of a single message (e, f) from p to
q. The time constraint on (e, f) is [K + 1,K + 1]. Lastly, for every final state
nf of G and every process, the time constraint of transition (nf , nnew) is [0,∞).
If there does not exist a consistent final path of G, then there does not exist a
consistent final path of G′, and it is vacuously true that every consistent final
path of G′ is K-drift-bounded. On the other hand, assume that there exists
some consistent final path ρ of G. Then ρ · nnew is a consistent final path of G′

(timing of a consistent dated MSC of ρ can be easily extended). But it is not
K-drift-bounded because of the constraint [K + 1,K + 1] on the last node nnew

of the path, which impose e, f to be K + 1 time units away. Hence not every
consistent final path of G′ is K-drift-bounded. ut

Next, we introduce full TC-MSC graphs and show that any TC-MSC graph
can be transformed into a full TC-MSC graph, while preserving consistency
and drift-boundedness of paths. This enables us to check both the emptiness
of a K-drift-bounded TC-MSC graph G, and the K-drift-boundedness of any
TC-MSC graph G, by working with a full TC-MSC graph constructed from G.

3.2 Full TC-MSC Graphs

We call a TC-MSC graph G full if each node of G has at least one event on
each process p ∈ P . We will now show how to “augment” a TC-MSC graph G to
obtain a full TC-MSC graph Ĝ by adding “dummy events” to nodes of G. For
notational convenience, we assume that TC-MSCs may contain internal events.
We denote by p(int) the label of such an internal event on process p ∈ P.

Given G = (N, T , Λ, nin , Nfi ,−→, ∆), the augmented graph of G is defined as

Ĝ = (N, T̂ , Λ̂, nin , Nfi ,−→, ∆) differing only in the labeling set of “augmented”
TC-MSCs and the labeling function assigning nodes to them. More precisely,
any TC-MSC T = (E, (<p)p∈P , µ, λ, δ) in T is replaced by the TC-MSC T̂ =

(E′, (<p)p∈P , µ, λ
′, δ) in T̂ where E′ is obtained from E by adding a new event

ep with λ(ep) = p(int) for each process p such that Ep = ∅. Every <p and δ are

6

unchanged, so ep is an isolated point in the partial order ≤. Such events ep will
be called dummy events. Events already in Λ(n) will be called concrete events.
Note that ∆(n→m) is unchanged for each transition n→m. In particular, recall
that for each transition (n,m) in G, if either n or m has no concrete event on p,

then ∆p(n,m) = [0,∞). For each Λ(n) = T , we set Λ̂(n) = T̂ . Obviously, Ĝ is
full for any G.

Let H be any full TC-MSC graph with events partitioned as dummy or
concrete. That is, in every TC-MSC labeling a node of H, there is a mapping
from the set of events to {dummy, concrete}. For instance, Ĝ is such a full
TC-MSC graph. Let Y ≤ Y ′ ∈ N. Now, for a path ρ = n0 . . . n` of H, we say that
a dated MSC M = (E, (<p)p∈P , µ, λ, d) generated by T ρ is (Y, Y ′)-drift-bounded
if for each i = 0, . . . , `, for any two events e, f in the TC-MSC Λ(ni), we have:
(i) if both e and f are concrete events, then |d(e)− d(f)| ≤ Y ; (ii) if one or both
of e, f are dummy events, then |d(e)− d(f)| ≤ Y ′. We say that a consistent path
ρ of H is (Y, Y ′)-drift-bounded if there exists a (Y, Y ′)-drift-bounded dated MSC
generated by ρ. At last, H is (Y, Y ′)-drift-bounded if all its consistent paths are.

Proposition 2. For a TC-MSC graph G, a path ρ of G and K ∈ N, (i) ρ is

consistent in G iff ρ̂ is consistent in Ĝ, (ii) ρ is K-drift-bounded in G iff ρ̂ is

(K, K̂)-drift-bounded in Ĝ, with K̂ = (|P| − 1) ·K.

Hence, we are able to restrict to full TC-MSC graphs when checking for
emptiness using (i), and when checking for K-drift boundedness using (ii):

Corollary 1. Given a TC-MSC graph G, (i) L(G) 6= ∅ iff L(Ĝ) 6= ∅, and (ii) G

is K-drift-bounded iff Ĝ is (K, K̂)-drift-bounded, where K̂ = (|P| − 1) ·K.

4 Emptiness for K-Drift-Bounded TC-MSC Graphs

We now prove Theorem 1. We assume G to be a K-drift-bounded TC-MSC graph.
By Corollary 1, we can build Ĝ, a (K, K̂)-drift-bounded full TC-MSC graph

with L(Ĝ) 6= ∅ iff L(G) 6= ∅. It then suffices to check the emptiness of a finite

automaton that accepts the set of (K, K̂)-drift-bounded final paths of Ĝ.
Let H be a full TC-MSC graph, with events partitioned as dummy or concrete.

To avoid clutter, we assume that constraints in H are only of the form [a, b] and
[a,∞). Extending proofs to handle other constraints is straightforward and all
statements hold in general, but additional notations are needed to remember
whether each inequality is strict or not. We first describe intuitively the key
ingredients of the proof, which will be developed in the rest of this section.

– First, we observe that checking consistency of a path ρ of H, i.e., L(T ρ) 6= ∅, is
equivalent to checking for the existence of a solution to a system of inequalities
over (real-valued) variables xe depicting the dates of events e of T ρ.

– Next, we show that checking whether a dated MSC can be extended by a
node by assigning appropriate dates to events of this node can be done with
information only on the relative difference of dates of the last event of the

7

dated MSC on each process. This motivates us to associate a symbolic profile
PF (ρ) to each path ρ. A symbolic profile is a system of inequalities whose
solutions correspond to the dates of final events of dated MSCs generated by
T ρ, and vice versa. In particular, PF (ρ) has a solution iff ρ is consistent.

– We remark that constants appearing in symbolic profiles can be chosen as
integers. Restricting constants to be within [−K̂, K̂] does not exclude any

consistent (K, K̂)-drift-bounded path of H. We can then represent with a

finite automaton the set of consistent (K, K̂)-drift-bounded paths of H.

Systems of inequalities and Fourier-Motzkin elimination. We first fix
basic terminologies for systems of difference inequalities. Let X be a finite
nonempty set of real-valued variables. A (difference) inequality is an inequality
of the form x− y ≤ a, where x, y are two different variables in X.

Definition 5. A system of (difference) inequalities φ over X is ∧(x,y)∈R x− y ≤
axy where R ⊆ X × X is an irreflexive relation. We say that φ has integral
coefficients whenever axy is a (possibly negative) integer for all (x, y) ∈ R.

From now on, we assume that the system is simplified, that is, for each
x, y ∈ X, there is at most one inequality of the form x− y ≤ a. This involves no
loss of generality as x− y ≤ a ∧ x− y ≤ a′ is equivalent with x− y ≤ min(a, a′).
If x− y ≤ a appears in φ, we say that φ contains an edge (x, y), and the weight
of this edge is a. We say that two systems φ, ψ of inequalities are equivalent when
φ has a solution (in the real domain) iff ψ has a solution (in the real domain).

A key idea is to propagate constraints concerning variables in a subset Y (X
on variables in X \ Y , and then safely remove variables in Y while keeping an
equivalent system. This is done using the Fourier-Motzkin elimination method
(see extended version, or [9, 14]).

For F ⊆ X, let φ|F denote the (unique) system of inequalities over variables
F obtained by performing Fourier-Motzkin elimination of variables in X \ F
following a fixed order. We have that φ and φ|F are equivalent. If φ has integral
coefficients, then so does φ|F .

Symbolic Profiles. Let T ρ = (E, (<p), µ, λ, δ) be the TC-MSC associated with
some path ρ = n0 . . . n` of H. We denote by xe a R≥0-valued variable, standing
for the date of event e ∈ E, and let XE = {xe | e ∈ E}. We associate path ρ
with a system of linear inequalities Φ(ρ) with integral coefficients as follows:

Definition 6. The system Φ(ρ) associated with ρ is the smallest system of
inequalities over the set of variables XE

such that, for any e, f ∈ E with el f ,

– if δ(e, f) = [L,U], then Φ(ρ) contains both xf − xe ≤ U and xe − xf ≤ −L;
– if δ(e, f) = [L,∞), then Φ(ρ) contains xe − xf ≤ −L.

We easily have that ρ is consistent iff Φ(ρ) has a solution. Let ep be the
last event of T ρ on p, for each process p. Let Elast be the set {ep | p ∈ P}.

8

= Tn1·n1 ,

p q r s

[0, 3]

[0, 3]

[1, 3] [0, 1] [0, 1] [0, 1] φ(n1 · n1)|Xlast
=

xq − xp ≤ 3
xp − xq ≤ 0
xr − xs ≤ 0

Fig. 2. The TC-MSC induced by path n1 · n1 of G1 and its profile

Using Fourier-Motzkin elimination of variables X ′ = {xe | e /∈ Elast}, we obtain a
system Φ(ρ)|Xlast over variables Xlast = {xe | e ∈ Elast}, with integral coefficients,
equivalent with Φ(ρ). Once simplified, this system has at most |P|2 inequalities
with integral coefficients. We encode this system as a symbolic profile.

Definition 7. A symbolic profile σ is a function from P × P to Z ∪ {∞}. We
denote by PF the (infinite) set of all profiles.

Notice that symbolic profiles are syntactically similar to Difference Bounded
Matrices (DBMs) [6] over |P| clocks. However, unlike a DBM, a symbolic profile
may not correspond to a timed linearization, and the update function (defined
below) is very different when compared to DBMs.

Let φ be a system of inequalities with integral coefficients over Xlast = {xp |
p ∈ P}. We define the symbolic profile PF (φ) induced by φ as PF (φ)[p, q] = apq
if xp − xq ≤ apq belongs to φ, and PF (φ)[p, q] = ∞ otherwise. Intuitively,
PF (φ)[p, q] = ∞ means that there is no inequality of the form xp − xq ≤ apq
in φ. We abusively use PF (φ) as a system of inequalities in the following, and
denote xp for xep . For a path ρ, we denote PF (ρ) = PF ((Φ(ρ))|Xlast). We say
that a symbolic profile σ ∈ PF is satisfiable if it has a solution. It is easy to
check whether PF (ρ) is satisfiable, either by using Fourier-Motzkin elimination
till reaching a trivial equation, or by using Shostak characterisation [17].

Proposition 3. PF (ρ) is satisfiable iff ρ is consistent.

As an example, consider the TC-MSC Tn1·n1 in Figure 2, generated by path
n1 ·n1 of G1 from Figure 1. Let eij denote the ith event on process j and E be the
set of events of Tn1·n1 . We obtain Φ(n1 ·n1) to be the set of inequalities over X =
{xe | e ∈ E}, where for instance the inequations xe2p−xe1p ≤ 3 and xe1p−xe2p ≤ −1

capture the timing constraint [1, 3] between e1p and e2p. Now eliminating variables
xe1p , xe1q , xe1r , xe1s results in a set of equations on Xlast = {xe2p , xe2q , xe2r , xe2s} =

{xp, xq, xr, xs} as shown. E.g., PF (n1 · n1))[p, q] = min(3,−1 + 3 + 1) = 3 and
PF (n1 · n1))[s, r] =∞. This system of inequalities has many solutions.

Bounded profiles. Notice that the set of symbolic profiles as defined above is
not finite in general (the coefficients range over Z), and so, it cannot be recorded
by a finite state automaton. Instead, we use the finite set of L-bounded profiles,
where L ∈ N is some integer.

Definition 8. For L ∈ N, a L-bounded profile σ is a function from P × P to
Z ∩ [−L,L]. We denote by PFL the set of L-bounded profiles.

9

Let Y ≤ Y ′ ∈ N. Notice that the set PFY ′ is finite. We denote by ΦY,Y ′(ρ)
the system of inequalities obtained from Φ(ρ) by the following modification: for
each i = 0, . . . , `, for any two different events e, f in the same node n of ρ, if Φ(ρ)
contains xe − xf ≤ ae,f , then replace it by xe − xf ≤ min(ae,f , Y) if both e, f
are concrete, and by xe − xf ≤ min(ae,f , Y

′) otherwise (that is if at least one of
e or f is dummy); if Φ(ρ) does not have an edge (e, f), then add the inequality
xe − xf ≤ Y if both e, f are concrete, and xe − xf ≤ Y ′ otherwise. Clearly, ρ is
consistent and (Y, Y ′)-drift-bounded iff ΦY,Y ′(ρ) has a solution. If ΦY,Y ′(ρ) has a
solution, we set PFY,Y ′(ρ) = PF (ΦY,Y ′(ρ)|Xlast). In a full TC-MSC graph H, by
definition of ΦY,Y ′(ρ), we have PFY,Y ′(ρ) ∈ PFY ′ . If ΦY,Y ′(ρ) has no solution,
it is possible that PF (ΦY,Y ′(ρ)|Xlast) /∈ PFY ′ . In this case, we set PFY,Y ′(ρ) to
be a particular profile ⊥ ∈ PFY ′ without solution, e.g. ⊥[p, q] = 0,⊥[q, p] = −1
(which would require 1 ≤ xp − xq ≤ 0).

Proposition 4. Let ρ be a path of a full TC-MSC graph H. Then PFY,Y ′(ρ) ∈
PFY ′ , and PFY,Y ′(ρ) is satisfiable iff ρ is consistent and (Y, Y ′)-drift-bounded.

Notice that PFY,Y ′(ρ) cannot be obtained from PF (ρ). An intuitive (but
wrong) idea would be to set PFY,Y ′(ρ)[p, q] = Y ′ for all PF (ρ)[p, q] > Y ′ and
else PFY,Y ′(ρ)[p, q] = PF (ρ)[p, q]. However, setting PFY,Y ′(ρ)[p, q] = Y ′ for all
PF (ρ)[p, q] > Y ′ only constrains the dates of the last events on each process.
So, the bound Y ′ in ΦY,Y ′(ρ) must be imposed for every node of ρ, and these
constraints on past nodes can have implications for the profile of ρ.

We now explain how to compute PFY,Y ′(ρ) in an inductive way, by defining

an extension function θn
−→n
Y,Y ′ : PFY ′→PFY ′ for all transitions n−→n. For

σ ∈ PFY ′ and a transition n− → n, we define the profile θn
−→n
Y,Y ′ (σ) as follows:

– Form the system Ψ = ψσ∧ψn−→n∧ψn over X = {xp | p ∈ P}∪{xe | e ∈ En}
(xp represents the date of process p in σ, En the events of Tn), where:

• ψσ consists of xp − xq ≤ σ[p, q] for every p, q ∈ P, such that σ[p, q] 6=∞.

• ψn−→n contains, for each p with ∆p(n
−→n) = [L,U], two inequalities

xp − xfp ≤ −L and xfp − xp ≤ U , where fp is the first event of n on p.
For each p with ∆p(n

−→n) = [L,∞), ψn−→n contains xp − xfp ≤ −L.

• ψn is ΦY,Y ′(n), the system associated with the singleton path n.

– Perform Fourier-Motzkin elimination on Ψ to remove all variables but {xêp}p∈P
where êp is the last event of ρ ·n on p. Denote by Π the resulting system (after

simplification) of inequalities over {xêp | p ∈ P}. Set θn
−→n
Y,Y ′ (σ) = PF (Π).

If at any stage of Fourier-Motzkin elimination, the system is not satisfiable,
then set θn

−→n
Y,Y ′ (σ) to be the un-satisfiable profile ⊥ ∈ PFY ′ .

Lemma 1. For a path ρ ending in n− and a transition n−→n, we have that
PFY,Y ′(ρ · n) and θn

−→n
Y,Y ′ (PFY,Y ′(ρ)) have the same set of solutions.

Construction of a Symbolic Automaton. We now construct a symbolic
automaton A(H) accepting the final (Y, Y ′)-drift-bounded paths of H.

10

Proposition 5. Let H be a full TC-MSC graph with |H| nodes. Then there

exists an automaton A(H) with at most |H| × (2 · Y ′ + 1)|P|
2

states, such that
L(A(H)) 6= ∅ iff H has a (consistent) final (Y, Y ′)-drift-bounded path.

Proof (sketch). The states of A(H) are pairs (n, σ), with n a state of H and
σ ∈ PFY ′ . The initial state is (nin ,PFY,Y ′(nin)). A state (n, σ) is final if n is
final, and σ is satisfiable. There is a transition labeled by n′ from (n, σ) to (n′, σ′)
iff both σ, σ′ are satisfiable, there is a transition from n to n′, and σ′ = θn→n

′

Y,Y ′ (σ).
The proof now follows from Lemma 1 and Proposition 4. ut

The proof of Theorem 1 follows from this: as every path of Ĝ is (K, K̂)-drift-

bounded, taking H = Ĝ, Y = K,Y ′ = K̂ implies L(A(Ĝ)) 6= ∅ iff L(Ĝ) 6= ∅ (iff

L(G) 6= ∅ by Corollary 1). Now, checking that L(A(Ĝ)) 6= ∅ is decidable in space
logarithmic in |G|,K and polynomial in |P|.

Compared with [3], which builds an automaton accepting every timed lineariza-
tions of a regular TC-MSC graph, we end up with a much smaller automaton in
the worst case (exponential in |P|2 instead of exponential in |G| for [3]). Further,
being symbolic, we believe that the worst case is seldom reached, contrary to
constructions based on zones of timed automata [3, 1, 2, 18]. Indeed, consider a
path ρ made of one node, labeled by a TC-MSC with one event ep for every
p ∈ P, and without constraints, hence allowing events to occur at any date.
Without symbolic encoding, this path would give rise to |2K||P| configurations
of the form (xp)p∈P , with xp ∈ {0, (0, 1), 1, · · · ,K} the clock associated with ep.
Our solution only memorizes the unique symbolic profile PFK,K̂(ρ) such that

∀p, q ∈ P, PFK,K̂(ρ)[p, q] = K̂, meaning that −K̂ ≤ xp − xq ≤ K̂ for all p, q.

5 Checking K-Drift-Boundedness of TC-MSC Graphs

The construction of automaton A(Ĝ) in Section 4 allows to decide the emptiness

of L(Ĝ) (and hence of L(G)), under the hypothesis that G is K-drift-bounded.
We show here that given K, one can decide whether G is K-drift-bounded. We
use Proposition 2 to create a full TC-MSC graph Ĝ. The main idea is that if
Ĝ is not (K, K̂)-drift-bounded, then there must be a path of “minimal” length

which is consistent but not (K, K̂)-drift-bounded. The idea is then to look for

such a minimal witness. We call a path ρ · n of Ĝ a minimal witness iff:

1. The path ρ is (K, K̂)-drift-bounded, and

2. The path ρ · n is not (K, K̂)-drift-bounded, and
3. The path ρ · n is consistent.

Remark 1. G is not K-drift-bounded iff Ĝ is not (K, K̂)-drift-bounded iff there

exists a minimal witness in Ĝ.

Now we build a finite automaton recognizing exactly the set of minimal
witnesses of Ĝ which from the remark above immediately proves Theorem 2.
Requirements 1. and 2. are easy to check with the automaton built in the previous

11

section. Requirement 3. is harder to check on its own as there is no effectively
constructible finite state automaton accepting all consistent paths, (since it is
undecidable to know whether there exists a consistent final path [11]). However,
we will prove that thanks to requirement 1., requirement 3. can be replaced by:
the path ρ ·n is consistent and K2-drift-bounded, for some contant K2 depending
on G and K̂. Notice that fixing K2 = K̂ may not be enough.

The bound K2 is chosen as follows. For a node n in Ĝ, set Dn to be the sum
of lower bounds of δ(e, f), for every pair (e, f) with el f . For a transition (n, n′)

in Ĝ, set D(n,n′) to be the sum of the lower bounds of ∆p(n, n
′) for p ranging

over P . Set D(Ĝ) to be the maximum of D(n,n′) +Dn′ where (n, n′) ranges over

transitions of Ĝ. Finally, we let K2 = (|P|/2 + 1) · K̂ +D(Ĝ).

Proposition 6. Let ρ · n be a path of Ĝ such that ρ is (K, K̂)-drift-bounded.
Then ρ · n is consistent iff ΦK2,K2

(ρ · n) is satisfiable.

The technical proof uses the characterization of consistent systems of equations
given by Shostak lemma [17], which we explain now.

Recall that consistency of a path ρ in Ĝ is equivalent to satisfiability of
the associated system of inequalities PF (ρ). Let ϕ be a (simplified) system of
inequalities. A cycle in ϕ is a sequence x1 . . . xm such that for all i ∈ {1, . . . ,m−1},
xi+1− xi ≤ ai appears in φ for some ai, and xm = x1. The weight of this cycle is∑
i∈{1,...,m−1} ai. A cycle is simple if all variables, except the first and last one,

are pairwise distinct. According to Shostak lemma [17], a system of inequalities
ϕ has a solution iff every cycle in ϕ has non-negative weight iff every simple
cycle in ϕ has non-negative weight. Detection of cycles of negative weight can be
efficiently performed with the Bellman-Ford algorithm.

Proof (of Prop. 6.). We will consider three systems of inequalities.

1. The first one is φ1 = Φ(ρ · n).
2. The second one is φ2 = ΦK2,K2

(ρ · n). By definition, φ2 is obtained from φ1
by adding inequalities xe − xf ≤ K2 for all e, f from the same node of ρ · n.

3. Finally, φ3 = ΦK,K̂(ρ). Since K ≤ K̂ ≤ K2, φ3 can be obtained from φ2
by deleting the events from n, and adding inequalities xe − xf ≤ K for all

concrete e, f from the same node of ρ, and adding inequalities xe − xf ≤ K̂
for all events e, f from the same node of ρ s.t. e or f or both are dummy.

We know that ρ · n is consistent iff φ1 is satisfiable. Hence, we just need to
prove that φ2 has a solution iff φ1 has a solution to yield the statement of the
proposition. Clearly, if φ2 has a solution, then this solution is also a solution for
φ1. Conversely, assume that φ1 has a solution. By Shostak lemma, it implies that
every cycle in φ1 has weight at least 0. Now to prove that φ2 has a solution, it
suffices to show that every simple cycle of φ2 has weight at least 0. Let x1 . . . xm
be a simple cycle in φ2. That is, for all i ∈ {1, . . . ,m− 1}, xi+1−xi ≤ bi appears
in φ2 for some bi, and xm = x1. We want to prove that

∑
i bi ≥ 0.

Let ai be the associated coefficients in φ1, i.e such that there is an inequality
in φ1 of the form, xi+1 − xi ≤ ai (if ai does not exist, fix ai = +∞). Let ci be

12

the associated coefficients of φ3 (we fix ci = −∞ if it corresponds to events in n,
i.e., events not represented in φ3).

Observe that ci ≤ bi ≤ ai by definition of φ1, φ2, φ3. Now, if ai = bi for all i,
then the cycle x1 . . . xm in φ2 is also a cycle in φ1 and

∑
i bi =

∑
i ai. As every

cycle in φ1 has weight at least 0, we are done. Else, we have aj 6= bj for some
j. Let J 6= ∅ be the set of indices j such that aj 6= bj . Hence |J | ≥ 1. Further,
ej , ej+1 are in the same node m of ρ · n for all j ∈ J , because φ2 only adds
constraints on pairs of events of the same node. Last, bj = K2 for all j ∈ J , as
the only additional constraints in φ2 w.r.t. φ1 are of the form xe − xf ≤ K2.

Now, we partition the indices {1, . . . ,m} = Iρ ∪ In ∪ Jρ ∪ Jn where,
Jρ = {j | bj = K2 and both xj and xj+1 belong to ρ},
Jn = {j | bj = K2 and at least one of xj or xj+1 belongs to n}.
In = {j | bj 6= K2 and at least one of xj or xj+1 belongs to n}, and
Iρ = {j | bj 6= K2 and both xj and xj+1 belong to ρ}.

With this
∑
i bi =

∑
i∈In bi +

∑
i∈Jn bi +

∑
i∈Iρ bi +

∑
i∈Jρ bi. Now, observing

that J = Jρ ∪ Jn, we have
∑
i∈(Jn∪Jρ) bi = K2 · (|Jρ|+ |Jn|) = K2 · |J | ≥ K2 · 1.

Further, we also have
∑
i∈In bi ≥ −D(Ĝ) by definition of D(Ĝ) and because the

cycle is simple. Now, we bound the sum
∑
i∈Iρ bi (the remaining weights) using

φ3. Indeed, since each i ∈ Iρ is an index such that xi and xi+1 are events of ρ, we
have bi ≥ ci where ci is the coefficient of φ3. And therefore it suffices to bound(∑

i∈Iρ ci
)
. It immediately yields the bound for

∑
i bi.

For this, the set Iρ is first partitioned into pieces. Each piece I ′ ⊆ Iρ is made of
“consecutive” indices, i.e., either I ′ = {i, i+ 1 . . . , j} or I ′ = {i, . . . ,m, 1, . . . , j},
such that (ei−1 ∈ n or bi = K2) and (ej+1 ∈ n or bj = K2). There are at most
|Jρ| + |P|/2 pieces (because the cycle is simple). Each piece begins and ends
either with the last event on some process of the node before n or with an event
ei or ei+1 such that bi = K2.

ρ n

K2

r1

r2

r3

p1

p2

p3

p4

ej

ej+1

For instance, the picture above depicts a cycle (in φ2) with 3 pieces r1, r2, r3,
involving 4 processes. r1 begins with the last event on some process p1 of ρ and
ends with an event ej such that bj = K2. r2 begins with ej+1 and ends with the
last event on some process p4 of ρ. r3 begins and ends with the last events on
some processes p2, p3 of ρ.

13

As ρ is (K, K̂)-drift-bounded and consistent, we know that φ3 has a solution,
that is every cycle in φ3 has weight at least 0 by Shostak lemma. Let I1, · · · , Ir be
the pieces of Iρ. Recall that r ≤ |Jρ|+|P|/2. For all i ≤ r, denoting Ii = {s, . . . , t},
we rename es · · · et into yi1 · · · yimi . We now build a cycle of φ3 using every piece,
and with some additional edges connecting these pieces. More precisely, we
define ξ = y11 · · · y1m1 · · · yr1 · · · yrmry11 , made by gluing all the pieces together.
Comparing the weight of ξ with

∑
i∈Iρ ci, there is an additional weight di in ξ

with yi+1
1 − yimi ≤ di, for each i. We have that both yimi and yi+1

1 are in the
same node (either the last node before n, or some node where there were a
K2 edge). In φ3, there is an edge between any two events of the same node,
hence this connecting edge ys+1

1 − ysms ≤ cs exists (that is ξ is a cycle), and

cs ≤ K̂, by definition of φ3. By Shostak lemma, the weight w of ξ in φ3 is at
least 0. We thus have

(∑
i∈Iρ ci

)
+ (|P|/2 + |Jρ|) · K̂ ≥ w ≥ 0. We then have∑

i∈Iρ bi ≥
∑
i∈Iρ ci ≥ −(|P|/2+|Jp|)·K̂. Thus, we get

∑
i bi ≥ K2 ·(|Jρ|+|Jn|)−

(|P|/2+|Jρ|)·K̂−D(Ĝ) = K2+(|Jρ|+|Jn|−1)·K2−(D(Ĝ)+|P|/2K)−|Jρ|)·K̂ =

K̂ + (|Jρ|+ |Jn| − 1) ·K2 − |Jρ| · K̂ = (|Jρ|+ |Jn| − 1) ·K2 − (|Jρ| − 1) · K̂ ≥ 0,

as |Jρ| − 1 ≤ |Jρ|+ |Jn| − 1, 0 ≤ |Jρ|+ |Jn| − 1 and K̂ ≤ K2. ut

We can now build an automaton accepting minimal witness paths of Ĝ.

An automaton for minimal witnesses. We search for a minimal witness
path ρ · n = n0 · · ·n` · n in Ĝ using an automaton B(Ĝ). The first component of

a state of B(Ĝ) keeps track of the current node n. The second component will

test for (K, K̂)-drift-boundedness, which needs to hold for ρ but not for ρ · n.

This is done by keeping track of a K̂-bounded profile. The last component keeps
track of PFK2,K2

(ρ) which is sufficient to check consistency of ρ according to

Proposition 6. Theorem 2 is obtained using the following proposition (where |Ĝ|
is the number of nodes of Ĝ):

Proposition 7. Let G be a TC-MSC graph. Then there exists an automaton
B(Ĝ) such that L(B(Ĝ)) = ∅ iff Ĝ is (K, K̂)-drift-bounded. Further, B(Ĝ) has at

most |Ĝ|× (2K̂+1)|P|
2× (2K2 +1)|P|

2

states, where K2 = (|P|/2+1) ·K̂+D(Ĝ).

Proof (Sketch). The states of B(Ĝ) are triples (n, σ, τ), with n a node of Ĝ, σ a

K̂-bounded profile of Ĝ, and τ a K2-bounded profile of Ĝ. The initial state of
B(Ĝ) is (nin ,PFK,K̂(nin),PFK2,K2

(nin)). A state (n, σ, τ) of B(Ĝ) is final if σ

is not satisfiable, but τ is. Last, there is a transition labeled by n′ from (n, σ, τ)

to (n′, σ′, τ ′) iff Ĝ contains a transition n→n′, σ′ = θn→n
′

K,K̂
(σ), τ ′ = θn→n

′

K2,K2
(τ),

and both σ and τ ′ are satisfiable. Notice that τ is satisfiable when σ is, as
K2 ≥ K̂ ≥ K, and that σ′ is not required to be satisfiable. ut

6 Conclusion

This paper has addressed the emptiness problem for TC-MSC graphs. We have
shown that emptiness can be checked under the restriction that a TC-MSC graph

14

is K-drift-bounded, for some K, and we established the decidability of checking
this restriction. The decision procedure does not consider linearizations of TC-
MSC graphs, nor rely on the seminal result of [4]. Instead, a finite automaton
keeps track of a system of inequalities describing symbolically constraints over
dates on each process. As future work, we plan to consider checking whether a
TC-MSC graph is drift-bounded (without the bound K), and if so computing
the bound. It seems that tackling this problem needs new ideas and concepts.

References

1. S. Akshay, B. Genest, L. Hélouët, and S. Yang. Regular set of representatives for
time-constrained MSC graphs. Inf. Proc. Letters, 112(14-15):592–598, 2012.

2. S. Akshay, M. Mukund, and K. Narayan Kumar. Checking coverage for infinite
collections of timed scenarios. In CONCUR 2007, LNCS 4703, pp. 181–196.
Springer.

3. S. Akshay, P. Gastin, K. Narayan Kumar, and M. Mukund. Model checking
time-constrained scenario-based specifications. In FSTTCS 2010, LNCS 4855, pp.
290–302. Springer.

4. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Comp. Sci.,
126(2):183–235, 1994.

5. R. Alur and M. Yannakakis. Model checking of message sequence charts. In
CONCUR 1999, LNCS 1664, pp. 114–129. Springer.

6. J. Bengtsson and W. Yi. On clock difference constraints and termination in
reachability analysis of timed automata. In ICFEM 2003, pp. 491–503.

7. P. Bouyer, S. Haddad, and P.-A. Reynier. Timed unfoldings for networks of timed
automata. In ATVA 2006, LNCS 4218, pp. 292–306. Springer.

8. F. Cassez, T. Chatain, and C. Jard. Symbolic unfoldings for networks of timed
automata. In ATVA 2006, LNCS 4218, pp. 307–321. Springer.

9. G. Dantzig and B. C. Eaves. Fourier-Motzkin Elimination and Its Dual. J. Comb.
Theory, Ser. A, 14(3):288–297, 1973.

10. C. Dima and R. Lanotte. Distributed time-asynchronous automata. In ICTAC
2007, LNCS 4711, 185–200. Springer.

11. P. Gastin, K. Narayan Kumar, and M. Mukund. Reachability and boundedness in
time-constrained MSC graphs. In Perspectives in Concurrency – A Festschrift for
P. S. Thiagarajan. Universities Press, India, 2009.

12. J. G. Henriksen, M. Mukund, K. N. Kumar, M. Sohoni, and P. S. Thiagarajan. A
theory of regular MSC languages. Inf. and Comp., 202(1):1–38, 2005.

13. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC ’99), 1999.
14. B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms.

Springer, 3rd edition, 2006.
15. D. Lugiez, P. Niebert, and S. Zennou. A partial order semantics approach to the

clock explosion problem of timed automata. Theoretical Comp. Sci., 345(1):27–59,
2005.

16. A. Muscholl and D. Peled. Message sequence graphs and decision problems on
Mazurkiewicz traces. In MFCS 1999, LNCS 1672, pp. 81–91. Springer.

17. R. Shostak. Deciding linear inequalities by computing loop residues. JACM,
28(4):769–779, 1981.

18. J. Zhao, H. Xu, X. Li, T. Zheng, and G. Zheng. Partial order path technique for
checking parallel timed automata. In FTRTFT 2002, LNCS 2469, pp. 417–432.

15

7 Appendix

Additional material (mainly proofs) is given section-wise.

3.2 Full TC-MSC Graphs

In this subsection, we show the properties relating a TC-MSC graph G and its
“augmented” full TC-MSC graph Ĝ obtained by adding “dummy events” to nodes
of G. For notational convenience, we assume that TC-MSCs may contain internal
events. Indeed, as is standard, an internal event can be simulated by a send event
to some new process (not already in P).

Proposition 2. For a TC-MSC graph G, a path ρ of G and K ∈ N, (i) ρ is

consistent in G iff ρ̂ is consistent in Ĝ, (ii) ρ is K-drift-bounded in G iff ρ̂ is

(K, K̂)-drift-bounded in Ĝ, with K̂ = (|P| − 1) ·K.

Proof: The proof of (i) is straightforward. Any consistent path ρ = n0 . . . n` of

Ĝ is also a consistent path in G, since if M is a consistent dated MSC for ρ in Ĝ,
one can obtain a consistent dated MSC M ′ for ρ in G by deleting dummy events.
Conversely, taking a consistent path ρ of G and a dated MSC M for it, one can
create a consistent dated MSC M ′ ∈ L(Ĝ) for ρ in Ĝ from M by adding the
dummy events and setting the date of dummy event e on p to be the same as the
date of the event on p immediately before e (or date 0 if there is no such event).

One direction of proof of (ii) is also trivial, since if ρ̂ is (K, K̂)-drift-bounded

in Ĝ, then by deleting the dummy events, we obtain that ρ is K-drift-bounded
in G. The other direction of (ii) is much more involved, and will be infered from
the three technical lemmas that follow.

Lemma 2. Let ρ = n0 . . . n` be a K-drift-bounded path of G such that for every
h = 0, . . . , `−1, there exists some process ph, such that both nh, nh+1 have events
on ph. Let (E, (<p), µ, λ, d) be a K-drift-bounded dated MSC generated by ρ.
Then for any indices i, j with 0 ≤ i < j ≤ `, if e is an event in ni, f an event in
nj, then d(e)− d(f) ≤ K̂.

Note that we do not claim |d(e) − d(f)| ≤ K̂, which may not be true in
general. Intuitively, Lemma 2 just means that, under the given hypothesis, an
event e appearing in a node ni cannot be associated a date which is too ahead of
the dates of events appearing in the subsequent nodes in the path.

Proof. By the hypothesis of the lemma, one can choose a sequence of processes
pi . . . pj−1, such that for each h = i, . . . , j − 1, nh, nh+1 both have events on
process ph. From the sequence pi . . . pj−1, we pick a subsequence pα1 . . . pαz , where
z ≤ |P|, as follows. Firstly, let α1 be the largest index in {i, . . . , j − 1}, such that
pα1

= pi. That is, ph 6= pi whenever α1 < h ≤ j − 1. Secondly, inductively, for
u = 1, . . ., suppose α1, . . ., αu have been set. Pick αu+1 to be the largest index in
{αu + 1, . . . , j− 1} such that p(α(u+1)) = p((αu)+1). That is, ph 6= pαu+1 whenever

16

αu+1 < h ≤ j−1. It follows that pα1
, pα2

, . . ., are pairwise distinct, and thus this
procedure of picking indices α1, α2, . . . will terminate after picking αz = j − 1
for some z ≤ |P|. We emphasize that p(α(u+1)) = p((αu)+1) for u = 1, . . . , z − 1.

Now for h = 1, . . . , z − 1, and a sequence pi, . . . , pj−1 pick events xh, yh
from node nαh+1 such that xh is on process pαh and yh is on process pαh+1.
Further, pick event y0 on process pi from ni and event xz on process pj−1 from
nj . Existence of xh, yh, h = 1, . . . , z− 1, and y0, xz is guaranteed by construction
of the sequence pi, . . . , pj . Set x0 = e and yz = f . For h = 0, . . . , z − 1, since yh,
xh+1 are of the same process, we have d(yh) ≤ d(xh+1). Since (E, (<p), µ, λ, d)
is K-drift-bounded, we have d(xh)− d(yh) ≤ K for h = 0, . . . , z. Suppose e is on
process pe and f on process pf . Recall that pα1 , . . ., pαz are pairwise distinct.

We show d(e)− d(f) ≤ K̂ by considering four cases.
—Case (1). If pe, pα1

, . . . , pαz , pf are pairwise distinct, then z ≤ |P| − 2, and

thus d(e)−d(f) ≤
∑z
h=0(d(xh)−d(yh)+

∑z−1
h=0(d(yh)−d(xh+1)) ≤ (z+1)·K ≤ K̂.

—Case (2). If pe = pαt for some t in {1, . . . , z} and pα1
, . . ., pαz , pf are

pairwise distinct, then z ≤ |P| − 1 and thus d(e) − d(f) ≤ d(e) − d(xt) +∑z
h=t d(xh)− d(yh) ≤ (z − t+ 1) ·K ≤ K̂.
—There remains two cases: (i) pe, pα1 , . . ., pαz are distinct, pf = pαt for some

t in {1, . . . , z}. (ii) pe = pαt , pf = pαu for some t, u ∈ {1, . . . , z}. Both cases can
be handled similarly to cases (1) and (2), which completes the proof of Lemma 2.

The above lemma motivates a new notion, which will turn out to be crucial in
what follows. Let ρ = n0 . . . n` be a path of G, and (E, (<p), µ, λ, d) a dated MSC
generated by ρ. For an integer C, we define (E, (<p), µ, λ, d) to be C-distant iff
for any i, j in {0, . . . , `} with i < j, for any event e in ni, f in nj , it is the case
that d(e)− d(f) ≤ C. Note that unlike K-drift-boundedness, the notion of being
C-distant places restriction on dates of events in two different nodes. Intuitively,
being C-distant means if event e is at node which occurs earlier than the node in
which event f is in, then e can be executed at most C time units later than f .

Lemma 3. Suppose that ρ is a K-drift-bounded consistent path of G. Then there
exists a K̂-distant K-drift-bounded dated MSC generated by ρ in G.

Proof. Let (E, (<p), µ, λ, d) be a K-drift-bounded dated MSC generated by
ρ = n0 . . . n`. If for every h = 0, . . . , ` − 1, nh and nh+1 have events on some

process ph, then by Lemma 2, (E, (<p), µ, λ, d) is K̂-distant. Now suppose such
is not the case. Let t1 < . . . < tz be all the indices in {0, . . . , `− 1} such that the
set of events of nti and nti+1 occur on a disjoint set of processes. From the proof
of Lemma 2 it follows that, if e is an event in ni, f an event in nj , and none of

t1, . . . , tz falls within {i, . . . , j − 1}, then d(e)− d(f) ≤ K̂.
Observe that for each i = 1, . . . , z, there is no time constraint dictated

between an event in n0, . . . , nti and an event in nti+1, . . . , n`. Fix an integer c
whose choice is to be determined later. From (E, (<p), µ, λ, d), we construct a new
dated MSC (E, (<p), µ, λ, d

′) by inductively applying the modifications associated
with t1, . . . , tz as follows. Firstly, we apply the modification associated with t1,
which is to add c to the date of each event in nt1+1, . . . , n` (while the date of

17

any event in n0, . . . , nt1 remains unchanged). Inductively, suppose modifications
associated with t1, . . . , ti−1 have been done, for some i ≤ z. We further apply the
modification associated with ti, which is to add c to the date of each event in
nti+1, . . . , n` (while the date of any event in n0, . . . , nti remains unchanged).

Note that the date of an event is non-negative. By choosing c such that
d(g)−K̂ ≤ c for every event g in n0 . . . , n`, one concludes that in (E, (<p), µ, λ, d

′),
for any event e in ni, f in nj , with i < j, and some of the indices t1, . . . , tz
falling within {i, . . . , j − 1}, we have d′(e)− d′(f) ≤ d(e)− c ≤ K̂. If none of the

indices t1, . . . , tz falls within {i, . . . , j − 1}, then d′(e)− d′(f) = d(e)− d(f) ≤ K̂
as observed earlier, following the proof of lemma 2. Clearly, (E, (<p), µ, λ, d

′) is
K-drift-bounded and fulfills the time constraints in ρ, since (E, (<p), µ, λ, d) is a
K-drift-bounded dated MSC generated by ρ. This completes the proof.

The next lemma shows that K-drift-bounded and K̂-distant dated MSCs of
G can be transformed into (K, K̂)-drift-bounded dated MSCs of Ĝ. Together
with Lemma 3, one establishes that if ρ is a K-drift-bounded path of G, then ρ̂
is a (K, K̂)-drift-bounded path of Ĝ, thus completing the proof of the remaining
part of Proposition 2(ii).

Lemma 4. Assume that there exists a dated MSC generated by a consistent
path ρ of G, which is K̂-distant and K-drift-bounded. Then one can construct
a (K, K̂)-drift-bounded dated MSC of Ĝ, which is in L(T ρ̂) where T ρ̂ is the

TC-MSC generated by ρ̂ in Ĝ.

Proof. Let ρ = n0 . . . n`, and let M = (E, (<p), µ, λ, d) be a K̂-distant K-drift-

bounded dated MSC generated by ρ in G. Recall the construction of Ĝ =
(N, T̂ , Λ̂, nin , Nfi ,−→, ∆) from the beginning of Section 3.2. We shall extend M

to be to a dated MSC M ′ = (E′, (<p), µ, λ, d
′) generated by ρ̂ in Ĝ as follows.

First, E′ consists of events in T ρ̂, the TC-MSC obtained by concatenation of
nodes of ρ according to Ĝ. Second, we keep dates of events in E unchanged (that
is, d′(e) = d(e) for every e ∈ E), and assign suitable dates to dummy events. The
assignment of dates to dummy events are done inductively, node by node, for
nodes n0, . . ., n`. Through the rest of this proof, for each i = 0, . . . , `, pick an
event fmax

i in ni which has maximum date among events in ni. For node n0, for

any dummy event e in Λ̂(n0), we set d′(e) = max{d(fmax
0)− K̂, 0}. Inductively,

assume that dummy events in Λ̂(n0), . . . , Λ̂(ni−1) have been assigned dates, then

for any dummy event e in Λ̂(ni), we set d′(e) to be the larger of d′(ei−1) and

d(fmax
i)− K̂, where ei−1 is the maximal event in Λ̂(ni−1) which is on the same

process as e. Note that ei−1 exists as Λ̂(ni−1) is full.
Since concrete events in M ′ has the same dates as in M , to see that M ′

satisfies the time constraints in ρ̂, it suffices to show:
Claim (1): For any i = 0, . . . , ` − 1, for any process p, if at least one of

Λ̂(ni), Λ̂(ni+1) contains a dummy event on p, then d′(ei) ≤ d′(ei+1) where ei is

the maximal event on p in Λ̂(ni), and ei+1 the minimal event on p in Λ̂(ni+1).
We now prove Claim (1). Fix i,p. If ei+1 is a dummy event, then by definition

of d′(ei+1), we have d′(ei) ≤ d′(ei+1). It remains to consider the case that ei is a

18

dummy event but ei+1 is not a dummy event. Let j be the largest index such that

0 ≤ j < i and Λ̂(nj) contains concrete events on p. If such a j exists, set D = d(ej)

where ej is the maximal event on p in Λ̂(nj) (which is an concrete event); if no
such j exists, set j = −1 and D = 0. By “unrolling” the definition of d′(ei), one

sees that d′(ei) is the maximum in the set consisting of D and d(fmax
h)− K̂ for

all indices h with j < h ≤ i. Since ei+1 is on p, the choice of D ensures that

D ≤ d(ei+1). Owing to that ρ is K̂-distant, we have d(fmax
h) − K̂ ≤ d(ei+1)

whenever j < h ≤ i. These yield that d′(ei) ≤ d(ei+1) = d′(ei+1). —End of
proof of Claim (1)

Having shown that M ′ is a dated MSC generated by ρ̂ in Ĝ, we next prove
that M ′ is (K, K̂)-drift-bounded. Since M is K-drift-bounded and the dates of
concrete (non-dummy) events in M , M ′ are the same , it suffices to show:

Claim (2): For nodes n0, . . ., n` in ρ, if e, g are events in Λ̂(ni) such that at

least one of e, g is a dummy event, then |d′(e)− d′(g)| ≤ K̂.

We prove Claim (2) by induction on i. For i = 0, let e, g be events in Λ̂(n0)
such that at least one of them is a dummy event. Suppose e is dummy. If g is
also dummy, then d′(g) = d′(e), else d′(e) = max{d(fmax

0)− K̂, 0}, d′(g) = d(g)

and d(fmax
0)−K ≤ d(g) ≤ d(fmax

0) would imply that |d′(e)− d′(g)| ≤ K̂.
Assume now that Claim (2) holds for node n0, . . . , ni−1. Let e, g be events in

Λ̂(ni) such that at least one of them is dummy. Suppose e is dummy. Let ei−1
(resp. gi−1) be the maximal event in Λ̂(ni−1) on the same process as e (resp. g).

—Case (1): g is not a dummy event.

If d′(e) = d(fmax
i) − K̂, then the same argument as in the base case of

node n0 yields that |d′(e) − d′(g)| ≤ K̂. Otherwise, we have d′(e) = d′(ei−1).

We have d′(e)− d′(g) ≤ d′(ei−1)− d′(gi−1) ≤ K̂ by induction hypothesis. And

d′(e)− d′(g) ≥ (d(fmax
i)− K̂)− d(fmax

i) = −K̂. These yield |d′(e)− d′(g)| ≤ K̂.
—Case (2): g is a dummy event.
If d′(e) = d′(ei−1) and d′(g) = d′(gi−1), then by induction hypothesis, we have

|d′(e)− d′(g)| ≤ K̂. The case of d′(e) = d(fmax
i)− K̂ and d′(g) = d(fmax

i)− K̂
is trivial. So it remains to consider the case that exactly one of d′(e) = d′(ei−1),
d′(g) = d′(gi−1) holds. Since both e, g are dummy events, w.l.o.g. assume d′(e) =

d′(ei−1) but d′(g) 6= d′(gi−1). That is, d′(g) = d(fmax
i) − K̂ > d′(gi−1). Thus,

d′(e)−d′(g) < d′(ei−1)−d′(gi−1) ≤ K̂ by induction hypothesis, and d′(e)−d′(g) ≥
0 by definition of d′(e). These yield |d′(e)− d′(g)| < K̂.

—End of proof of Claim (2)
From Claims (1),(2), and the fact that M is K-drift-bounded, one concludes

that M ′ is a (K, K̂)-drift-bounded dated MSC generated by ρ̂. This completes
the proof of Lemma 4 and thus finally (using Lemma 3 and the arguments above),
completes the proof of Proposition 2. ut

Corollary 1. Given a TC-MSC graph G, (i) L(G) 6= ∅ iff L(Ĝ) 6= ∅, and (ii) G

is K-drift-bounded iff Ĝ is (K, K̂)-drift-bounded, where K̂ = (|P | − 1)K.

19

Proof: For part (i), L(G) 6= ∅ means that there exists a path ρ in G that is

consistent. From Proposition 2, ρ is also a consistent path of Ĝ, and hence
L(Ĝ) 6= ∅. Suppose that L(G) = ∅, then it means that for every path ρ, one
cannot find a consistent date for events in the TC-MSC T ρ generated from ρ in G.
And so, we cannot find a consistent date for events in the TC-MSC T ′ρ generated
from ρ in Ĝ. Proving (ii) is also straightforward. If G is K-drift-bounded, then

every path ρ of G is K-drift-bounded, and by Proposition 2, ρ is (K, K̂)-drift-

bounded in Ĝ. Conversely, if Ĝ is (K, K̂)-drift-bounded, then every path ρ of Ĝ

is (K, K̂)-drift-bounded, and by Proposition 2, ρ is K-drift-bounded in G. ut

4 Emptiness for K-Drift-Bounded TC-MSC Graphs

Fourier-Motzkin elimination technique: We now describe this technique
whose details may be found in [9, 14]. Let φ = {xi − xj ≤ aij} be a system of
inequalities over a set of variabes X, and let xk ∈ X be a variable to eliminate from
φ. That is, we want to obtain a new system of inequalities φ′ over variablesX\{xk}
that is equivalent with φ. For this, we first partition φ into three distinct systems
of inequalities φ = φ1∧φ2∧φ3, where φ1 is the system of inequalities that do not
involve xk, φ2 is the system of inequalities ∧i∈I xk − xi ≤ aki that involve xk as
first operand, and φ3 is the system of inequalities ∧j∈J xj−xk ≤ ajk that involve
xk as second operand. Then ∃xk, φ2∧φ3 is equivalent to ∃xk,minj∈J ((xj−ajk)) ≤
xk ≤ maxi∈I((aki+xi)). We can thus eliminate variable xk to obtain an equivalent
formula minj∈J ((xj−ajk)) ≤ maxi∈I((aki+xi)). This is equivalent to (the system
of |I| × |J | inequalities defined by) ψ = ∧i∈I,j∈J(xj − xi) ≤ (ajk + aki). Note
that if both ajk, aki are integers, then so is ajk + aki.

Note that this elimination is not just a simple projection on X \ {xk}. It
propagates constraints attached to xk on remaining variables and this is why the
set of solutions (over X \ {xk}) remains the same. Notice also that the number
of inequalities of φ′ is at most (|X| − 1)2, after simplification of φ′ (i.e., replacing
each x− y ≤ a ∧ x− y ≤ a′ by x− y ≤ min(a, a′)).

We can extend elimination to sets of variables. Let φ be a system of difference
inequalities over X ∪ Y . Let ψ1 and ψ2 be two systems of inequalities over Y
obtained from φ by repeatedly applying Fourier-Motzkin elimination of each
variable in X, where the order in which variables of X are eliminated is different.
Then we may have ψ1 6= ψ2. However, Sol(ψ1) = Sol(ψ2), denoting by Sol(ψ)
the set of solutions of any system of inequalities ψ. This allows us to fix an order
when eliminating variables. For F ⊆ X, let φ|F denote the (unique) system of
inequalities over variables F obtained by performing Fourier-Motzkin elimination
of variables in X \ F following the fixed order. Regardless of the order, φ and
φ|F are equivalent. Also, if φ has integral coefficients, then so does φ|F .

Symbolic and Bounded Profiles.

Proposition 3. PF (ρ) is satisfiable iff ρ is consistent.

20

Proof. The proof follows easily from the properties of Fourier-Motzkin elimination.
A profile is obtained by successive elimination of all variables except those
representing dates of last events executed on each process. From a system of
inequalities φ, one hence obtains an equivalent system φ′ by eliminating a sequence
of variables. So, PF (ρ) is satisfiable iff Φ(ρ) is satisfiable and by definition of
Φ(ρ), it is satisfiable iff ρ is consistent, which completes the proof. ut

Proposition 4. Let ρ be a path of a full TC-MSC graph H and Y , Y ′ be two
positive integers such that Y ≤ Y ′. Then, (1) PFY,Y ′(ρ) ∈ PFY ′ and (2) ρ is
consistent and (Y, Y ′)-drift-bounded iff PFY,Y ′(ρ) is satisfiable.

Proof. The first part follows directly from the definitions. For the second part,
the proof follows on the same lines as Proposition 3 above. For a path ρ one can
compute a system of inequalities ΦY,Y ′(ρ) such that ρ is (Y, Y ′)-drift-bounded
iff ΦY,Y ′(ρ) is satisfiable. As for unbounded profiles, PFY,Y ′(ρ) is obtained by
successive applications of Fourier-Motzkin eliminations. Such variable eliminations
preserve satisfiability of systems of inequations, hence PFY,Y ′(ρ) is satisfiable iff
ΦY,Y ′(ρ) is satisfiable iff ρ is (Y, Y ′)-drift-bounded and consistent. ut

Lemma 1. Let H be a full TC-MSC graph and Y ≤ Y ′ be two integers. Then,
for a path ρ and a transition n−→n where n− is the last node of ρ, we have
PFY,Y ′(ρ · n) and θn

−→n
Y,Y ′ (PFY,Y ′(ρ)) have the same set of solutions.

Proof. This proof essentially follows from the fact that the Fourier-Motzkin
elimination is confluent with respect to solutions. That is, the order in which the
variables are eliminated does not matter for the set of solutions, as long as the
resultant set of equations are over the same set of variables.

Consider the system of inequalities ΦY,Y ′(ρ · n) on variables XE associated
with path ρ · n. Let En denote the set of events of the TC-MSC Tn. Also denote
by Eρ the set of events of T ρ and let Eρlast = {ep | p ∈ P} with ep the last event
of T ρ on p. Finally, let Xρ, Xn, Xρ

last be the variables associated respectively
with sets of events Eρ, En, Eρlast.

We can partition ΦY,Y ′(ρ · n) = φ1 ∧ φ2 with, for each i ∈ {1, 2},

φi =
(∧
xe,xf∈Ri∩A

xe−xf ≤ min{ae,f , Y }
)
∧
(∧
xe,xf∈Ri∩B

xe−xf ≤ min{ae,f , Y ′}
)

– where R1 = Xρ×Xρ and R2 =
(
Xn× (Xn ∪Xρ

last)
)
∪
(
(Xn ∪Xρ

last)×Xn
)
,

– A = {(xe, xf) | e and f are concrete} and B = {(xe, xf) | e or f is dummy}

Thus φ1 corresponds to those inequalities that are fully in ρ while φ2 has the
rest. Now, consider ΦY,Y ′(ρ ·n)|Xn∪Xρlast where all variables from Xρ \Xρ

last have
been eliminated. This elimination keeps inequalities in φ2 intact and so we have
ΦY,Y ′(ρ · n)|Xn∪Xρlast = (φ1 ∧ φ2)|Xn∪Xρlast = φ1|Xρlast ∧ φ2.

Now (1) φ2 = ψn ∧ ψn−→n and (2) φ1|Xρlast precisely correspond to PF (ρ),

i.e., φ1|Xρlast = ψPF(ρ), where ψn, ψn−→n, ψPF(ρ) are from the definition of

21

θn
−→n
Y,Y ′ (PFY,Y ′(ρ)). Thus, denoting by Xρ·n

last the set of variables attached to

last events in Eρ ∪En, we can eliminate all variables from Xn ∪Xρ
last \X

ρ·n
last, to

get that the set of solutions of PF (ρ · n) and θn
−→n(PF (ρ)) coincide (syntacti-

cally, the profiles may be different as the elimination orders may be different). ut

Construction of a Symbolic Automaton.

Proposition 5. Let H be a full TC-MSC graph. Then, for any positive integers
Y ≤ Y ′, there exists an automaton A(H) with at most |H|× (2 ·Y ′+1)|P|

2

states,
such that L(A(H)) 6= ∅ iff H has a (consistent) final (Y, Y ′)-drift-bounded path.

Proof. Note that we define drift-boundedness only for a consistent path and so
the reuse of the term consistent in the statement above is purely for emphasis.

– The states of A(H) are pairs (n, σ), with n a state of H and σ ∈ PFY ′ .
– The initial state is (nin ,PFY,Y ′(nin)).
– A state (n, σ) is final if n is final, and σ is satisfiable.
– There is a transition from (n, σ) to (n′, σ′) labeled by n′ iff
• both σ, σ′ are satisfiable, and
• there is a transition from n to n′, and
• σ′ = θn→n

′

Y,Y ′ (σ).

There are at most (2 · Y ′ + 1)|P
2| such profiles, and A(H) has at most |H| × (2 ·

Y ′ + 1)|P|
2

states. We claim that A(H) accepts exactly the set of final (Y, Y ′)-
drift-bounded (and hence consistent) paths of H. (More precisely, we mean that
ρ is accepted by A(H) iff nin · ρ is a final (Y, Y ′)-drift-bounded path of H, but
we abuse notation slightly and replace nin · ρ by ρ itself.)

To see the claim, first consider any (Y, Y ′)-drift-bounded and hence consistent
path ρ = n0 · · ·n` of H. It is easy to see that at most one sequence of states
(n0, σ0) · · · (n`, σ`) in A(H) can exist. We show now that such a sequence exists
as the path is (Y, Y ′)-drift-bounded (and consistent). Indeed, by contradiction,
if such sequence does not exist, then there exists an index i < ` such that
(n0, σ0) · · · (ni, σi) is a sequence of states of A(G), but θ

ni→ni+1

Y,Y ′ (σi) is not a valid
profile. As ρ is (Y, Y ′)-drift-bounded, we have that ρ′ = n0 · · ·ni · ni+1 is also
(Y, Y ′)-drift-bounded. Hence ΦY,Y ′(ρ

′) and PFY,Y ′(ρ
′) are satisfiable. We have

that PFY,Y ′(ρ
′) is satisfiable, and thus θ

ni→ni+1

Y,Y ′ (σi) is a valid profile by Lemma 1,
which is a contradiction with what we stated above.

Now, assume that the consistent and (Y, Y ′)-drift-bounded path ρ ends in a
final node n` of H. Then the corresponding state (n`, σ) reached in A(H) is final
as σ is satisfiable by Proposition 4. Conversely, if A(G) has an accepting sequence
(n0, σ0), · · · (nl, σ`), but n0 · · ·n` is not (Y, Y ′)-drift-bounded, then, ΦY,Y ′(ρ) and
PFY,Y ′(ρ) have no solution. Again, by Lemma 1, we have a contradiction, and
A(H) accepts exactly the set of final (Y, Y ′)-drift-bounded paths of H. As a
consequence, if H is (Y, Y ′)-drift-bounded, then L(A(H)) = ∅ iff L(H) = ∅. ut

Proof (of Theorem 1). As every path of Ĝ is (K, K̂)-drift-bounded, in Propo-

sition 5, taking H = Ĝ, Y = K,Y ′ = K̂ implies L(A(Ĝ)) 6= ∅ iff L(Ĝ) 6= ∅ (iff

22

L(G) 6= ∅ by Corollary 1). Now, checking that L(A(Ĝ)) 6= ∅ is decidable in space
logarithmic in |G|,K and polynomial in |P|.

The complexity follows since all states of A(H) are of the form (n, σ) where
n is a node of H and σ a profile obtained inductively by application of function
θ. Every profile encodes a set of |P|2 inequations of the form xe − xf ≤ ce,f
where ce,f is an integer ranging between −Y ′ and Y ′ (since Y ≤ Y ′). During
Fourier-Motzkin elimination, we only use min and max over existing constants
ce,f and Y,−Y . Also, the number of equations never grows above than m2, as
we simplify the system on the fly, where m2 is the number of variables at the
begining of Fourier-Motzkin elimination, that is |T | + |P|, for |T | the number
of events in the TC-MSC T that labels the node extending the current profiles.
Thus, each application of Fourier-Motzkin elimination in our case is polynomial
(unlike the general setting, which is doubly-exponential) in the size of input
and so, the overall complexity of building on-the-fly the automaton A(H) and
checking whether its language is empty is in PSPACE. ut

5 Checking K-Drift-Boundedness of TC-MSC Graphs

An automaton for minimal witnesses We search for a minimal witness path
ρ · n = n0 · · ·n` · n in Ĝ using an automaton B(Ĝ). The first component of a

state of B(Ĝ) keeps track of the current node n. The second component will

test for (K, K̂)-drift-boundedness, which needs to hold for ρ but not for ρ · n.

This is done by keeping track of a K̂-bounded profile. The last component keeps
track of PFK2,K2

(ρ) which is sufficient to check consistency of ρ according to

Proposition 6. Theorem 2 is obtained using the following proposition (where |Ĝ|
= no. of nodes of Ĝ = no. of nodes of G):

Proposition 7. Let G be a TC-MSC graph, and Ĝ the associated full TC-MSC
graph. Then there exists an automaton B(Ĝ) such that L(B(Ĝ)) = ∅ iff Ĝ is

(K, K̂)-drift-bounded. Further, B(Ĝ) has at most |Ĝ|×(2K̂+1)|P|
2×(2K2+1)|P|

2

states, where K2 = (|P|/2 + 1) · K̂ +D(Ĝ).

Proof. The automaton B(Ĝ) is defined as follows:

– The states of B(Ĝ) are triples (n, σ, τ), with n a node of Ĝ, σ a K̂-bounded

profile of Ĝ, and τ a K2-bounded profile of Ĝ,
– The initial state of B(Ĝ) is (nin ,PFK,K̂(nin),PFK2,K2

(nin)).

– A state (n, σ, τ) of B(Ĝ) is final if σ is not satisfiable, but τ is. (Note that
there is no condition on n being final).

– There is a transition from (n, σ, τ) to (n′, σ′, τ ′) labeled by n′ iff

1. Ĝ contains a transition n→n′, and
2. σ′ = θn→n

′

K,K̂
(σ), and

3. τ ′ = θn→n
′

K2,K2
(τ), and

23

4. both σ and τ ′ are satisfiable.
Here σ is satisfiable implies τ is satisfiable as K2 ≥ K̂ ≥ K and τ ′ is
satisfiable also implies that τ is. Thus condition 4. can be replaced by σ, τ, τ ′

are satisfiable. However, note crucially that σ′ is not required to be satisfiable.

We claim that L(B(Ĝ)) accepts exactly the set of minimal witnesses of Ĝ. In

one direction, suppose that L(B(Ĝ)) is not empty. It means that there exists a
sequence of nodes (n0, σ0, τ0) . . . (nk, σk, τk) such that (nk, σk, τk) is final. Then,

ρ = n0 · · ·nk is a path of Ĝ, σk is not satisfiable, and τk is satisfiable. As τk
is satisfiable, ρ is consistent. As σk is not satisfiable, it means that ρ is not
(K, K̂)-drift-bounded. Lastly, as the transition (nk−1, σk−1, τk−1)→(nk, σk, τk)
happened, it means that τk−1 is satisfiable which means that n0 · · ·nk−1 is

(K, K̂)-drift-bounded. Thus, the run defines a minimal witness of Ĝ.

Conversely, it is easy to see that B(Ĝ) generates at least every path ρ · n
with ρ is (K, K̂)-drift-bounded and ρ · n is consistent (due to the fact that σ
associated with ρ is satisfiable, and using Proposition 5, τ ′ associated to ρ · n is
also satisfiable). Hence if L(B(Ĝ)) is empty, no reachable state s = (n, σ, τ) is
such that σ not satisfiable and τ satisfiable, so in particular, no path with ρ is
(K, K̂)-drift-bounded, ρ · n is consistent and ρ · n is not (K, K̂)-drift-bounded
has been found.

For the complexity, it suffices to remark that Y -bounded profiles have in-
equalities with constants lying between −Y and Y and then we get the maximal
size of B(Ĝ) as in Proposition 5. ut

24

