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Abstract
This paper addresses reliability of timed systems in the setting of resilience, that considers the
behaviors of a system when unspecified timing errors such as missed deadlines occur. Given a fault
model that allows transitions to fire later than allowed by their guard, a system is universally resilient
(or self-resilient) if after a fault, it always returns to a timed behavior of the non-faulty system.
It is existentially resilient if after a fault, there exists a way to return to a timed behavior of the
non-faulty system, that is, if there exists a controller which can guide the system back to a normal
behavior. We show that universal resilience of timed automata is undecidable, while existential
resilience is decidable, in EXPSPACE. To obtain better complexity bounds and decidability of
universal resilience, we consider untimed resilience, as well as subclasses of timed automata.
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1 Introduction

Timed automata [2] are a natural model for cyber-physical systems with real-time constraints
that have led to an enormous body of theoretical and practical work. Formally, timed
automata are finite-state automata equipped with real valued variables called clocks, that
measure time and can be reset. Transitions are guarded by logical assertions on the values
of these clocks, which allows for the modeling of real-time constraints, such as the time
elapsed between the occurrence of two events. A natural question is whether a real-time
system can handle unexpected delays. This is a crucial need when modeling systems that
must follow a priori schedules such as trains, metros, buses, etc. Timed automata are not a
priori tailored to handle unspecified behaviors: guards are mandatory time constraints, i.e.,
transition firings must occur within the prescribed delays. Hence, transitions cannot occur
late, except if late transitions are explicitly specified in the model. This paper considers the
question of resilience for timed automata, i.e., study whether a system returns to its normal
specified timed behavior after an unexpected but unavoidable delay.

Several works have addressed timing errors as a question of robustness [10, 8, 7], to
guarantee that a property of a system is preserved for some small imprecision of up to ϵ
time units. Timed automata have an ideal representation of time: if a guard of a transition
contains a constraint of the form x = 12, it means that this transition occurs exactly when

© S. Akshay, Blaise Genest, Loïc Hélouët, S. Krishna, and Sparsa Roychowdhury;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 33; pp. 33:1–33:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akshayss@cse.iitb.ac.in
https://orcid.org/0000-0002-2471-5997
mailto:blaise.genest@irisa.fr
https://orcid.org/0000-0002-5758-1876
mailto:loic.helouet@inria.fr
https://orcid.org/0000-0001-7056-2672
mailto:krishnas@cse.iitb.ac.in
https://orcid.org/0000-0003-0925-398X
mailto:sparsa@cse.iitb.ac.in
https://orcid.org/0000-0003-3583-7612
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.33
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


33:2 Resilience of Timed Systems

Table 1 Summary of results for resilience.

Universal Resilience Existential Resilience

Timed Undecidable for TA (Prop. 18) EXPSPACE (Thm. 14)
EXPSPACE-C for IRTA (Thm. 20) PSPACE-Hard (Thm. 15, Thm. 32)

Untimed EXPSPACE-C (Thm. 21) PSPACE-C (Thm. 16, Rmk. 17)

the value of clock x is 12. Such an arbitrary precision is impossible in an implementation [10].
One way of addressing this is through guard enlargement, i.e., by checking that there exists
a small value ϵ > 0 such that after replacing guards of the form x ∈ [a, b] by x ∈ [a− ϵ, b+ ϵ],
the considered property is still valid, as shown in [7] for ω-regular properties. In [15], robust
automata are defined that accept timed words and their neighbors i.e., words whose timing
differences remain at a small distance, while in [16, 12, 19, 1], the authors consider robustness
via modeling clock drifts. Our goal is different: rather than being robust w.r.t. to slight
imprecisions, we wish to check the capacity to recover from a possibly large time deviation.
Thus, for a bounded number of steps, the system can deviate arbitrarily, after which, it must
return to its specified timed behavior.

The first contribution of this paper is a formalization of resilience in timed automata.
We capture delayed events with faulty transitions. These occur at dates deviating from the
original specification and may affect clock values for an arbitrarily long time, letting the
system diverge from its expected behavior. A system is resilient if it recovers in a finite
number of steps after the fault. More precisely, we define two variants. A timed automaton
is K-∀-resilient if for every faulty timed run, the behavior of the system K steps after the
fault cannot be distinguished from a non-faulty behavior. In other words, the system always
repairs itself in at most K steps after a fault, whenever a fault happens. This means that,
after a fault happens, all the subsequent behaviors (or extensions) of the system are restored
to normalcy within K steps. A timed automaton is K-∃-resilient if for every timed run
ending with a fault, there exists an extension in which, the behavior of the system K steps
after the fault cannot be distinguished from a non-faulty behavior. There can still be some
extensions which are beyond repair, or take more than K steps after fault to be repaired,
but there is a guarantee of at least one repaired extension within K steps after the fault.
In the first case, the timed automaton is fully self-resilient, while in the second case, there
exist controllers choosing dates and transitions so that the system gets back to a normal
behavior. We also differentiate between timed and untimed settings: in timed resilience
recovered behaviors must be indistinguishable w.r.t. actions and dates, while in untimed
resilience recovered behaviors only need to match actions.

Our results are summarized in Table 1: we show that the question of universal resilience
and inclusion of timed languages are inter-reducible. Thus timed universal resilience is
undecidable in general, and decidable for classes for which inclusion of timed languages
is decidable and which are stable under our reduction. This includes the class of Integer
Reset Timed Automata (IRTA) [18] for which we obtain EXPSPACE containment. Further,
untimed universal resilience is EXPSPACE-Complete in general.

Our main result concerns existential resilience, which requires new non-trivial core
contributions because of the ∀∃ quantifier alternation. The classical region construction
is not precise enough: we introduce strong regions and develop novel techniques based on
these, which ensure that all runs following a strong region have (i) matching integral time
elapses, and (ii) the fractional time can be re-timed to visit the same set of locations and
(usual) regions. Using this technique, we show that existential timed resilience is decidable,
in EXPSPACE. We also show that untimed existential resilience is PSPACE-Complete.
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Related Work. Resilience has been considered with different meanings: In [13], faults are
modeled as conflicts, the system and controller as deterministic timed automata, and avoiding
faults reduces to checking reachability. This is easier than universal resilience which reduces
to timed language inclusion, and existential resilience which requires a new notion of regions.
In [14] a system, modeled as an untimed I/O automaton, is considered “sane” if its runs
contain at most k errors, and allow a sufficient number s of error-free steps between two
violations of an LTL property. It is shown how to synthesize a sane system, and compute
(Pareto-optimal) values for s and k. In [17], the objective is to synthesize a transducer E,
possibly with memory, that reads a timed word σ produced by a timed automaton A, and
outputs a timed word E(σ) obtained by deleting, delaying or forging new timed events, such
that E(σ) satisfies some timed property. A related problem, shield synthesis [5], asks given a
network of deterministic I/O timed automata N that communicate with their environment, to
synthesize two additional components, a pre-shield, that reads outputs from the environment
and produces inputs for N , and a post-shield, that reads outputs from N and produces
outputs to the environment to satisfy timed safety properties when faults (timing, location
errors,...) occur. Synthesis is achieved using timed games. Unlike these, our goal is not to
avoid violation of a property, but rather to verify that the system recovers within boundedly
many steps, from a possibly large time deviation w.r.t. its behavior. Finally, faults in timed
automata have also been studied in a diagnosis setting, e.g. in [6], where faults are detected
within a certain delay from partial observation of runs.

2 Preliminaries

Let Σ be a finite non-empty alphabet and Σ∞ = Σ∗ ∪ Σω a set of finite or infinite words over
Σ. R,R≥0,Q,N respectively denote the set of real numbers, non-negative reals, rationals,
and natural numbers. We write (Σ ×R≥0)∞ = (Σ ×R≥0)∗ ∪ (Σ ×R≥0)ω for finite or infinite
timed words over Σ. A finite (infinite) timed word has the form w = (a1, d1) . . . (an, dn) (resp.
w = (a1, d1) . . .) where for every i, di ≤ di+1. For i ≤ j, we denote by w[i,j], the sequence
(ai, di) . . . (aj , dj). The untiming of a timed word w ∈ (Σ × R≥0)∞ denoted Unt(w), is its
projection on the first component, and is a word in Σ∞. A clock is a real-valued variable x
and an atomic clock constraint is an inequality of the form a ▷◁l x ▷◁u b, with ▷◁l, ▷◁u∈ {≤, <},
a ∈ N, b ∈ N ∪ {∞}. An atomic diagonal constraint is of the form a ▷◁l x − y ▷◁u b, where
x and y are different clocks. Guards are conjunctions of atomic constraints on a set X of
clocks.

▶ Definition 1. A timed automaton [2] is a tuple A = (L, I,X,Σ, T, F ) with finite set of
locations L, initial locations I ⊆ L, finitely many clocks X, finite action set Σ, final locations
F ⊆ L, and transition relation T ⊆ L× G × Σ × 2X × L where G are guards on X.

A valuation of a set of clocks X is a map ν : X → R≥0 that associates a non-negative real
value to each clock in X. For every clock x, ν(x) has an integral part ⌊ν(x)⌋ and a fractional
part frac(ν(x)) = ν(x) − ⌊ν(x)⌋. We will say that a valuation ν on a set of clocks X satisfies
a guard g, denoted ν |= g if and only if replacing every x ∈ X by ν(x) in g yields a tautology.
We will denote by [g] the set of valuations that satisfy g. Given δ ∈ R≥0, we denote by ν + δ

the valuation that associates value ν(x) + δ to every clock x ∈ X. A configuration is a pair
C = (l, ν) of a location of the automaton and valuation of its clocks. The semantics of a
timed automaton is defined in terms of discrete and timed moves from a configuration to the
next one. A timed move of duration δ lets δ ∈ R≥0 time units elapse from a configuration
C = (l, ν) which leads to configuration C ′ = (l, ν + δ). A discrete move from configuration
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C = (l, ν) consists of taking one of the transitions leaving l, i.e., a transition of the form
t = (l, g, a,R, l′) where g is a guard, a ∈ Σ a particular action name, R is the set of clocks
reset by the transition, and l′ the next location reached. A discrete move with transition t is
allowed only if ν |= g. Taking transition t leads the automaton to configuration C ′ = (l′, ν′)
where ν′(x) = ν(x) if x /∈ R, and ν′(x) = 0 otherwise.

▶ Definition 2 (Runs, Maximal runs, Accepting runs). An (infinite) run of a timed automaton
A is a sequence ρ = (l0, ν0) (t1,d1)−→ (l1, ν1) (t2,d2)−→ · · · where every pair (li, νi) is a configuration,
and there exists an (infinite) sequence of timed and discrete moves δ1.t1.δ2.t2 . . . in A such
that δi = di+1 − di, and a timed move of duration δi from (li, νi) to (li, νi + δi) and a discrete
move from (li, νi + δi) to (li+1, νi+1) via transition ti. A run is maximal if it is infinite, or if
it ends at a location with no outgoing transitions. A finite run is accepting if its last location
is final, while an infinite run is accepting if it visits accepting locations infinitely often.

We assume that all runs start from a configuration (l0, ν0), where l0 ∈ I and ν0 is the
initial valuation, assigning value 0 to every clock of X. One can associate a finite/infinite
timed word wρ to every run ρ of A by letting wρ = (a1, d1) (a2, d2) . . . (an, dn) . . ., where ai is
the action in transition ti and di is the time stamp of ti in ρ. A (finite/infinite) timed word
w is accepted by A if there exists a (finite/infinite) accepting run ρ such that w = wρ. The
timed language of A is the set of all timed words accepted by A, and is denoted by L(A).
The untimed language of A is the language Unt(L(A)) = {Unt(w) | w ∈ L(A)}. As shown
in [2], the untimed language of a timed automaton can be captured by an abstraction called
the region automaton. Formally, given a clock x, let cx be the largest constant in an atomic
constraint of a guard of A involving x. Two valuations ν, ν′ of clocks in X are equivalent,
written ν ∼ ν′ if and only if:
i) ∀x ∈ X, either ⌊ν(x)⌋ = ⌊ν′(x)⌋ or both ν(x) ≥ cx and ν′(x) ≥ cx

ii) ∀x, y ∈X with ν(x)≤cx and ν(y)≤cy, frac(ν(x))≤ frac(v(y)) iff frac(ν′(x))≤ frac(ν′(y))
iii) For all x ∈ X with ν(x) ≤ cx, frac(ν(x)) = 0 iff frac(ν′(x)) = 0.

A region r of A is the equivalence class induced by ∼. For a valuation ν, we denote by [ν]
the region of ν, i.e., its equivalence class. We will also write ν ∈ r (ν is a valuation in region r
when r = [ν]. For a given automaton A, there exists only a finite number of regions, bounded
by 2K , where K is the size of the constraints set in A. It is well known for a clock constraint
ψ that, if ν ∼ ν′, then ν |= ψ if and only if ν′ |= ψ. A region r′ is a time successor of another
region r if for every ν ∈ r, there exists δ ∈ R>0 such that ν + δ ∈ r′. We denote by Reg(X)
the set of all possible regions of the set of clocks X. A region r satisfies a guard g if and only if
there exists a valuation ν ∈ r such that ν |= g. The region automaton of a timed automaton
A = (L, I,X,Σ, T, F ) is the untimed automaton R(A) = (SR, IR,Σ, TR, FR) that recognizes
the untimed language Unt(L(A)). States of R(A) are of the form (l, r), where l is a location
of A and r a region, i.e., SR ⊆ L × Reg(X), IR ⊆ I × Reg(X), and FR ⊆ F × Reg(X).
The transition relation TR is such that

(
(l, r), a, (l′, r′)

)
∈ TR if there exists a transition

t = (l, g, a,R, l′) ∈ T such that there exists a time successor region r′′ of r such that r′′

satisfies the guard g, and r′ is obtained from r′′ by resetting values of clocks in R. The size of
the region automaton is the number of states in R(A) and is denoted |R(A)|. For a region r
defined on a set of clocks Y , we define a projection operator ΠX(r) to represent the region r
projected on the set of clocks X ⊆ Y . Let ρ = (l0, ν0) (t1,d1)−→ (l1, ν1) · · · be a run of A, where
every ti is of the form ti = (li, gi, ai, Ri, l

′
i). The abstract run σρ = (l0, r0) a1−→ (l1, r1) · · · of ρ

is a path in the region automaton R(A) such that, ∀i ∈ N, ri = [νi]. We represent runs using
variables ρ, π and the corresponding abstract runs with σρ, σπ respectively. The automaton
R(A) can be used to prove non-emptiness of L(A), as L(A) ̸= ∅ iff R(A) accepts some word.
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3 Resilience Problems

We define the semantics of timed automata when perturbations can delay the occurrence
of an action. Consider a transition t = (l, g, a,R, l′), with g ::= x ≤ 10, where action a can
occur as long as x has not exceeded 10. Timed automata have an idealized representation of
time, and do not consider perturbations that occur in real systems. Consider, for instance
that “a” is a physical event planned to occur at a maximal time stamp 10: a water tank
reaches its maximal level, a train arrives in a station etc. These events can be delayed, and
nevertheless occur. One can even consider that uncontrollable delays are part of the normal
behavior of the system, and that L(A) is the ideal behavior of the system, when all delays
are met. In the rest of the paper, we propose a fault model that assigns a maximal error to
each fireable action. This error model is used to encode the fact that an action might occur
at a greater date than allowed in the original model semantics.

▶ Definition 3 (Fault model). A fault model P is a map P : Σ → Q≥0 that associates to
every action in a ∈ Σ a possible maximal delay P(a) ∈ Q≥0.

For simplicity, we consider only executions in which a single timing error occurs. The
perturbed semantics defined below easily adapts to a setting with multiple timing errors.
With a fault model, we can define a new timed automaton, for which every run ρ =
(l0, ν0) (t1,d1)−→ (l1, ν1) (t2,d2)−→ · · · contains at most one transition ti = (l, g, a, r, l′) occurring
later than allowed by guard g, and agrees with a run of A until this faulty transition is taken.

▶ Definition 4 (Enlargement of a guard). Let ϕ be an inequality of the form a ▷◁l x ▷◁u b,
where ▷◁l, ▷◁u∈ {≤, <}. The enlargement of ϕ by a time error δ is the inequality ϕ▷δ of the
form a ▷◁l x ≤ b+ δ. Let g be a guard of the form

g =
∧

i∈1..m

ϕi = ai ▷◁li
xi ▷◁ui

bi ∧
∧

j∈1..q

ϕj = aj ▷◁lj
xj − yj ▷◁uj

bj.

The enlargement of g by δ is the guard g▷δ =
∧

i∈1..m

ϕi▷δ
∧

∧
j∈1..q

ϕj

For every transition t = (l, g, a,R, l′) with enlarged guard
g▷P(a) =

∧
i∈1..m

ϕi = ai ▷◁li xi ≤ bi + P(a) ∧
∧

j∈1..q

ϕj = aj ▷◁lj xj − yj ▷◁uj bj ,

we can create a new transition tf,P = (l, gf,P , a, R,
•
l′) called a faulty transition such that,

gf,P =
∧

i∈1..m

ϕi = bi▷̄◁li
xi ≤ bi + P(a) ∧

∧
j∈1..q

ϕj = aj ▷◁lj
xj − yj ▷◁uj

bj with ▷̄◁li
∈ {<,≤

}\ ▷◁ui

Diagonal constraints remain unchanged under enlargement, as the difference between clocks
x and y is preserved by time elapsing, and operator ▷̄◁li

guarantee that normal and faulty
behaviors occur at different dates. From now, we fix a fault model P and write tf and gf

instead of tf,P and gf,P . Clearly, g and gf are disjoint, and g ∨ gf is equivalent to g▷δ.
We take this particular definition of enlargement to consider late events as faults. We can
easily adapt the definition to handle early events, or any variation where non-specified faulty
transitions can be identified through a guard gf disjoint from g, without harming the results
shown in the rest of the paper.

▶ Definition 5 (Enlargement of automata). Let A = (L, I,X,Σ, T, F ) be a timed automaton.
The enlargement of A by a fault model P is the automaton AP = (LP , I,X,Σ, TP , FP), where

LP = L∪ {
•
l | l ∈ L} and FP = F ∪ {

•
l | l ∈ F}. A location

•
l indicates that an unexpected

delay has occurred.
TP = T ∪

•
T such that,

•
T = {(l, gf , a, R,

•
l′) | (l, g, a,R, l′) ∈ T} ∪ {(

•
l, g, a,R,

•
l′) |

(l, g, a,R, l′) ∈ T} i.e.,
•
T is the set of transitions occurring after a fault.

FSTTCS 2021
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ℓ1 ℓ2ℓ3

ℓ5

ℓ4

skip

arr, x ≤ 4

y := 0

arr, 4 < x ≤ 6

y := 0

x := 0

dep, 1 ≤ y ≤ 2

late, y = 0 ∧ x > 4

dep, 1 ≤ y ≤ 2

x := 0

arr, 6 ≤ x ≤ 8y := 0

Figure 1 Model of a train system with a mechanism to recover from delays.

A run of AP is faulty if it contains a transition of
•
T . It is just faulty if its last transition

belongs to
•
T and all other transitions belong to T . Note that while faulty runs can be finite

or infinite, just faulty runs are always finite prefix of a faulty run, and end in a location
•
l.

▶ Definition 6 (Back To Normal (BTN)). Let K ≥ 1, A be a timed automaton with fault
model P. Let ρ = (l0, ν0) (t1,d1)−→ (l1, ν1) (t2,d2)−→ · · · be a (finite or infinite) faulty accepting run
of AP , with associated timed word (a1, d1)(a2, d2) . . . and let i ∈ N be the position of the faulty
transition in ρ. Then ρ is back to normal (BTN) after K steps if there exists an accepting
run ρ′ = (l′0, ν′

0) (t′
1,d′

1)−→ (l′1, ν′
1) (t′

2,d′
2)−→ · · · of A with associated timed word (a′

1, d
′
1)(a′

2, d
′
2) . . .

and an index ℓ ∈ N such that (a′
ℓ, d

′
ℓ)(a′

ℓ+1, d
′
ℓ+1) · · · = (ai+K , di+K)(ai+K+1, di+K+1) . . . .

ρ is untimed back to normal (untimed BTN) after K steps if there exists an accepting run ρ′ =
(l′0, ν′

0) (t′
1,d′

1)−→ (l′1, ν′
1) (t′

2,d′
2)−→ · · · of A and an index ℓ ∈ N s.t. a′

ℓa
′
ℓ+1 · · · = ai+Kai+K+1 · · ·

In other words, if w is a timed word having a faulty accepting run (i.e., w ∈ L(AP)), the
suffix of w, K steps after the fault, matches with the suffix of some word w′ ∈ L(A). Note
that the accepting run of w′ in A is not faulty, by definition. The conditions in untimed
BTN are simpler, and ask the same sequence of actions, but not equality on dates. Words w
and w′ need not have an identical prefix: this means that a BTN run has returned to some
normal behavior, but not necessarily the behavior originally planned before the fault.

Our current definition of back-to-normal in K steps means that a system recovered from
a fault (a primary delay) in ≤ K steps and remained error-free. We can generalize our
definition, to model real life situations where more than one fault happens due to time delays,
but the system recovers from each one in a small number of steps and eventually achieves its
fixed goal (a reachability objective, some ω-regular property...). A classical example of this is
a metro network, where trains are often delayed, but nevertheless recover from these delays
to reach their destination on time. This motivates the following definition of resilience.

▶ Definition 7 (Resilience). A timed automaton A is
(untimed) K-∀-resilient if every finite faulty accepting run is (untimed) BTN in K steps.
(untimed) K-∃-resilient if every just faulty run ρjf can be extended into a maximal
accepting run ρf which is (untimed) BTN in K steps.

Intuitively, a faulty run of A is BTN if the system has definitively recovered from a fault,
i.e., it has recovered and will follow the behavior of the original system after its recovery.
The definition of existential resilience considers maximal (infinite, or finite but ending at a
location with no outgoing transitions) runs to avoid situations where an accepting faulty run
ρf is BTN, but all its extensions i.e., suffixes ρ′ are such that ρf .ρ

′ is not BTN.

▶ Example 8. We model train services to a specific destination such as an airport. On an
average, the distance between two consecutive stations is covered in ≤ 4 time units. At
each stop in a station, the dwell time is in between 1 and 2 time units. To recover from a
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ℓ1 ℓ2ℓ3

ℓ5

ℓ4

•
ℓ1

•
ℓ2

•
ℓ3

•
ℓ5

•
ℓ4

skip

arr, x ≤ 4

y := 0

arr, 4 <
x ≤ 6

y :=
0

x := 0

dep, 1 ≤ y ≤ 2

late, y = 0 ∧ x > 4

dep, 1 ≤ y ≤ 2

x := 0

arr, 6 ≤ x ≤ 8y := 0

skip

arr, x ≤ 4

y := 0

x := 0

dep, 1 ≤ y ≤ 2

late, y = 0 ∧ x > 4

dep, 1 ≤ y ≤ 2

x := 0

arr, 6 ≤ x ≤ 8y := 0

Figure 2 Enlarged automaton for the train system (with recovery) model of Figure 1.

delay, the train is allowed to skip an intermediate station (as long as the next stop is not the
destination). Skipping a station is a choice, and can only be activated if there is a delay. We
model this system with the timed automaton of Figure 1. There are 5 locations: ℓ1, and ℓ2
represent the normal behavior of the train and ℓ3, ℓ4, ℓ5 represent the skipping mechanism.
These locations can only be accessed if the faulty transition (represented as a red dotted
arrow in Figure 1) is fired. A transition tij goes from ℓi to ℓj , and

•
t21 denotes the faulty

transition from ℓ2 to
•
ℓ1. The green locations represent the behavior of the train without

any delay, and the red locations represent behaviors when the train chooses to skip the next
station to recover from a delay. This mechanism is invoked once the train leaves the station
where it arrived late (location ℓ3). When it departs, x is reset as usual; the next arrival to a
station (from location ℓ4) happens after skipping stop at the next station. The delay can
be recovered since the running time since the last stop (covering 2 stations) is between 6
and 8 units of time. Formally, verifying that this system can recover from a delay within K

steps can be done by setting as fault model P(arr) = 2, and then checking a K-∃-resilience
problem. It then amounts to asking if the enlarged automaton of Figure 2 can recognize a
suffix of a word recognized by the automaton of Figure 1, K steps after visiting location

•
ℓ1.

Consider the faulty run ρf = (ℓ1, 0|0) (t12,2)−→ (ℓ2, 0|2) (
•

t21,8)−→ (ℓ1, 6|0) (t13,8)−→ (
•
ℓ3, 6|0) (t34,10)−→

(
•
ℓ4, 0|2) (t45,10)−→ (

•
ℓ5, 0|2) (t51,18)−→ (

•
ℓ1, 8|0) (t12,19)−→ (

•
ℓ2, 0|1) reading (dep, 2)(arr, 8)(late, 8)(dep, 10)

(skip, 10)(arr, 18)(dep, 19). Run ρf is BTN in 4 steps. It matches the non-faulty run ρ =
(ℓ1, 0|0) (t12,2)−→ (ℓ2, 0|2) (t21,6)−→ (ℓ1, 4|0) (t12,8)−→ (ℓ2, 0|2) (t21,12)−→ (ℓ1, 4|0) (t12,14)−→ (ℓ2, 0|2) (t21,18)−→
(ℓ1, 4|0) (t12,19)−→ (ℓ2, 0|1) reading (dep, 2)(arr, 6)(dep, 8)(arr, 12)(dep, 14)(arr, 18)(dep, 19).
This automaton is K-∃-resilient for K = 4 and fault model P, as skipping a station
after a delay of ≤2 time units allows to recover the time lost. It is not K-∀-resilient, for any
K, as skipping is not mandatory, and a train can be late for an arbitrary number of steps.
In Appendix A we give another example that is 1-∀-resilient.

K-∀-resilience always implies K-∃-resilience. In case of K-∀-resilience, every faulty run
ρw has to be BTN in ≤ K steps after the occurrence of a fault. This implies K-∃-resilience
since, any just faulty run ρw that is the prefix of an accepting run ρ of AP is BTN in less
than K steps. The converse does not hold: AP can have a pair of runs ρ1, ρ2, sharing a
common just faulty run ρf as prefix such that ρ1 is BTN in K steps, witnessing existential
resilience, while ρ2 is not. Finally, an accepting run ρ = ρfρs in AP s.t., ρf is just faulty
and |ρs| < K, is BTN in K steps since ε is a suffix of a run accepted by A.
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4 Existential Resilience

In this section, we consider existential resilience both in the timed and untimed settings.

Existential Timed Resilience. As the first step, we define a product automaton B ⊗K A
that recognizes BTN runs. Intuitively, the product synchronizes runs of B and A as soon as
B has performed K steps after a fault, and guarantees that actions performed by A and B are
performed at the same date in the respective runs of A and B. Before this synchronization,
A and B take transitions or stay in the same location, but let the same amount of time
elapse, guaranteeing that synchronization occurs after runs of A and B of identical durations.
The only way to ensure this with a timed automaton is to track the global timing from the
initial state of both automata A and B till K steps after the fault, even though we do not
need the timing for individual actions till K steps after the fault.

▶ Definition 9 (Product). Let A = (LA, IA, XA,Σ, TA, FA) and B = (LB , IB , XB ,Σ, TB , FB)
be two timed automata, where B contains faulty transitions. Let K ∈ N be an integer. Then,
the product B⊗K A is a tuple (L, I,XA∪XB , (Σ∪{∗})2, T, F ) where L ⊆ {LB ×LA×[−1,K]},
F = LB × FA × [−1,K], and initial set of locations I = IB × IA × {−1}. Intuitively,
−1 means no fault has occurred yet. Then we assign K and decrement to 0 to denote
that K steps after fault have passed. The set of transitions T is as follows: We have(
(lB , lA, n), g, < x, y >,R, (l′B , l′A, n′)

)
∈ T if and only if either:

n ̸= 0 (no fault has occurred, or less than K steps of B have occurred), the action is
< x, y >=< a, ∗ >, we have transition tB = (lB , g, a, R, l′B) ∈ TB, lA = l′A (the location
of A is unchanged) and either: n = −1, the transition tB is faulty and n′ = K, or n = −1,
the transition tB is non faulty and n′ = −1, or n > 0 and n′ = n− 1.
n = n′ ̸= 0 (no fault has occurred, or less than K steps of B have occurred), the action
is < x, y >=< ∗, a >, we have the transition tA = (lA, g, a, R, l′A) ∈ TA, lB = l′B (the
location of B is unchanged).
n = n′ = 0 (at least K steps after a fault have occured), the action is < x, y >=< a, a >

and there exists two transitions tB = (lB , g, a, RB , l
′
B) ∈ TB and tA = (lA, gA, a, RA, l

′
A) ∈

TA with g = gA ∧ gB, and R = RB ∪RA (tA and tB occur synchronously).

Runs of B ⊗K A are sequences of the form ρ⊗ = (l0, lA0 , n0) (t1,tA
1 ),d1−→ · · ·

(tk,tA
k ),dk−→ (lk, lAk , nk)

where each (ti, tAi ) ∈ (TB ∪ {t∗}) × (TA ∪ {tA∗ }) defines uniquely the transition of B ⊗K A,
where t∗ corresponds to the transitions with action ∗. Transitions are of types (ti, tA∗ ) or
(t∗, tAi ) up to a fault and K steps of TB , and (ti, tAi ) ∈ TB × TA from there on.

For any timed run ρ⊗ of AP ⊗K A, the projection of ρ⊗ on its first component is a timed
run ρ of AP , that is projecting ρ⊗ on transitions of AP and remembering only location and
clocks of AP in states. In the same way, the projection of ρ⊗ on its second component is a
timed run ρ′ of A. Given timed runs ρ of AP and ρ′ of A, we denote by ρ⊗ ρ′ the timed
run (if it exists) of AP ⊗K A such that the projection on the first component is ρ and the
projection on the second component is ρ′. For ρ⊗ ρ′ to exist, we need ρ, ρ′ to have the same
duration, and for ρs the suffix of ρ starting K steps after a fault (if there is a fault and K

steps, ρs = ε the empty run otherwise), ρs needs to be suffix of ρ′ as well.
A run ρ⊗ of AP ⊗K A is accepting if its projection on the second component (A) is

accepting (i.e., ends in an accepting state if it is finite and goes through an infinite number
of accepting state if it is infinite). We can now relate the product AP ⊗K A to BTN runs.

▶ Proposition 10. Let ρf be a faulty accepting run of AP . The following are equivalent:
i ρf is BTN in K-steps
ii there is an accepting run ρ⊗ of AP ⊗K A s.t., the projection on its first component is ρf
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Let ρ be a finite run of AP . We denote by T⊗K
ρ the set of configurations of AP ⊗K A

such that there exists a run ρ⊗ of AP ⊗K A ending in this configuration, whose projection
on the first component is ρ. We then define S⊗K

ρ as the set of states of R(AP ⊗K A)
corresponding to T⊗K

ρ , i.e., S⊗K
ρ = {(s, [ν]) ∈ R(AP ⊗K A) | (s, ν) ∈ T⊗K

ρ }. If we can
compute the set S = {S⊗k

ρ | ρ is a finite run of AP}, we would be able to solve timed universal
resilience, because from this set, one can check existence of a run accepted by AP and not
by A. Proposition 18 shows that universal resilience is undecidable. Hence, computing S is
impossible. Roughly speaking, it is because this set depends on the exact timing in a run ρ,
and in general one cannot use the region construction.

We can however show that in some restricted cases, we can use a modified region
construction to build S⊗K

ρ , which will enable decidability of timed existential resilience.
First, we restrict to just faulty runs, i.e., consider runs of AP and A of equal durations,
but that did not yet synchronize on actions in the product AP ⊗K A. For a timed run ρ,
by its duration, we mean the time-stamp or date of occurrence of its last event. Second,
we consider abstract runs σ̃ through a so-called strong region automaton, as defined below.
Intuitively, σ̃ keeps more information than in the usual region automaton to ensure that for
two timed runs ρ1 = (t1, d1)(t2, d2) . . . , and ρ2 = (t1, e1)(t2, e2) . . . associated with the same
run of the strong region automaton, we have ⌊ei⌋ = ⌊di⌋ for all i. Formally, we build the
strong region automaton Rstrong(B) of a timed automaton B as follows. We add a virtual
clock xι to B which is reset at each integral time point, add constraint xι < 1 to each
transition guard, and add a virtual self loop transition with guard xι = 1 resetting xι on
each state. Standard regions are equivalence classes for clock values, but not for elapsed
time. Adding a virtual clock resetting at every integral time point allows to consider the
fractional part of elapsed global time in regions. Lemma 12 below shows that if two abstract
runs σ1, σ2 visit the same sequence of strong regions, then there are two runs of identical
duration that have σ1, σ2 as abstractions. We then make the usual region construction on
this extended timed automaton to obtain Rstrong(B). The strong region construction thus
has the same complexity as the standard region construction. Let L(Rstrong(B)) be the
language of this strong region automaton, where these self loops on the virtual clock are
projected away. These additional transitions capture ticks at integral times, but do not
change the behavior of B, i.e., we have Unt(L(B)) ⊆ L(Rstrong(B)) ⊆ L(R(B)) = Unt(L(B))
so Unt(L(B)) = L(Rstrong(B)).

For a finite abstract run σ̃ of the strong region automaton Rstrong(AP), we define the set
S⊗K

σ̃
of states of Rstrong(AP ⊗K A) (the virtual clock is projected away, and our region is

w.r.t original clocks) such that there exists a run σ̃⊗ through Rstrong(AP ⊗K A) ending in
this state and whose projection on the first component is σ̃. Let σ̃ρ be the run of Rstrong(AP)
associated with a run ρ of AP . It is easy to see that S⊗K

σ̃
=

⋃
ρ|σ̃ρ=σ̃

S⊗K
ρ . For a just faulty

timed run ρ of AP , we have a stronger relation between S⊗K
ρ and S⊗K

σ̃ρ

:

▶ Proposition 11. Let ρ be a just faulty run of AP . Then S⊗K
ρ = S⊗K

σ̃ρ

.

Proof. First, notice that given a just faulty timed run ρ of AP and a timed run ρ′ of A of
same duration, the timed run ρ⊗ ρ′ (the run of AP ⊗K A such that ρ is the projection on
the first component and ρ′ on the second component) exists.

To show that S⊗K
ρ = S⊗K

σ̃ρ

, we show that for any pair of just faulty runs ρ1, ρ2 of AP with
σ̃ρ1 = σ̃ρ2 , we have S⊗K

ρ1
= S⊗K

ρ2
, which yields the result as S⊗K

σ̃ρ

=
⋃

ρ′|σ̃ρ′ =σ̃ρ
S⊗K

ρ′ . Consider
ρ1, ρ2, two just faulty timed runs of AP with σ̃ρ1 = σ̃ρ2 and let (lAP , lA,K, r) ∈ S⊗K

ρ1
. Then,

this implies that there exists ν1 |= r and a timed run ρ′
1 of A with the same duration as ρ1,

such that ρ1 ⊗ ρ′
1 ends in state (lAP , lA,K, ν1). The following lemma completes the proof:
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▶ Lemma 12. There exists ν2 |= r and a timed run ρ′
2 of A with the same duration as ρ2,

such that ρ2 ⊗ ρ′
2 ends in state (lAP , lA,K, ν2).

The main idea of the proof is to show that we can construct ρ′
2 which will have the

same transitions as ρ′
1, with same integral parts in timings (thanks to the information from

the strong region automaton), but possibly different timings in the fractional parts, called
a re-timing of ρ′

1. Notice that ρ2 is a re-timing of ρ1, as σ̃ρ1 = σ̃ρ2 . We translate the
requirement on ρ′

2 into a set of constraints (which is actually a partial ordering) on the
fractional parts of the dates of its transitions, and show that we can indeed set the dates
accordingly. This translation follows the following idea: the value of a clock x just before
firing transition t is obtained by considering the date d of t minus the date dx of the latest
transition tx at which x has been last reset before t. In particular, the difference x − y

between clocks x, y just before firing transition t is (d−dx) − (d−dy) = dy −dx. That is, the
value of a clock or its difference can be obtained by considering the difference between two
dates of transitions. A constraint given by x− y ∈ (n, n+ 1) is equivalent with the constraint
given by dy − dx ∈ (n, n+ 1), and similar constraints on the fractional parts can be given.

Proof. Let t1, . . . , tn be the sequence of transitions of ρ1, ρ2 taken respectively, at dates
d1, . . . , dn and e1, . . . , en. Similarly, we will denote by t′1, . . . , t′k the sequence of transitions
of ρ′

1, taken at dates d′
1, . . . , d

′
k. Run ρ′

2 will pass by the same transitions t′1, . . . , t′k, but with
possibly different dates e′

1, . . . , e
′
k such that:

the duration of ρ′
2 is the same as the duration of ρ2,

σ̃ρ′
2

follows the same sequence of states of Rstrong(A) as σ̃ρ′
1

(in particular, ρ′
2 is a valid

run as it fullfils the guards of its transitions, which are the same as those of ρ′
1).

σ̃ρ2⊗ρ′
2

reaches the same state of Rstrong(AP ⊗K A) as σ̃ρ1⊗ρ′
1
.

We translate these into three requirements on the dates (e′
i)i≤k of ρ′

2:
R1. We have e′

k = en,
R2. For every i ≤ k, the integral part ⌊e′

i⌋ = ⌊d′
i⌋ . Remark that we already have ⌊e′

k⌋ =
⌊en⌋ = ⌊dn⌋ = ⌊d′

k⌋ by R1 and by the hypothesis,
R3. Fractional parts (frac(e′

i))i≤k satisfy a set of constraints, defined hereafter as a partial
ordering on (frac(e′

i))i≤k ∪ (frac(ei))i≤n.

Notice that the value of a clock x just before firing transition ti is obtained by considering
the date di of ti minus the date dx

i of the latest transition tj , j < i at which x has been
last reset before i. In particular, the difference x− y between clocks x, y just before firing
transition ti is (di − dx

i ) − (di − dy
i ) = dy

i − dx
i . That is, the value of a clock or its difference

can be obtained by considering the difference between two dates of transitions. A constraint c
given by x− y ∈ (n, n+ 1) is equivalent with the constraint d(c) given by dy

i −dx
i ∈ (n, n+ 1).

We then characterize the conditions required for the run ρ2 ⊗ ρ′
2 to reach the same region

r of Rstrong(AP ⊗K A) which was reached by ρ1 ⊗ ρ′
1. These conditions are described as on

region r in the following equivalent ways:
1. A set of constraints C on the disjoint union X ′′ = XAP ⊎XA of clocks of AP and A, of

the form x − y ∈ (n, n + 1) or x − y = n or x − y > Max (possibly considering a null
clock y) for n ∈ Z,

2. The associated set of constraints C ′ = {d(c) | c ∈ C} on D = {dx | x ∈ XAP } ⊎ {d′
x′ |

x′ ∈ XA}, with dx the date of the latest transition t⊗j that resets the clock x ∈ XAP , and
d′

x′ the date of the latest transition t⊗l that resets clock x′ ∈ XA,
3. An ordering ≤′ over FP = {frac(τ) | τ ∈ D} defined as follows: for each constraint

τ −τ ′ ∈ (n, n+1) of C ′, if ⌊τ⌋ = ⌊τ ′⌋+n then frac(τ) <′ frac(τ ′), and if ⌊τ⌋ = ⌊τ ′⌋+n+1
then frac(τ ′) <′ frac(τ).
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For each constraint τ − τ ′ = n of C ′, then frac(τ ′) =′ frac(τ).
For each constraint τ − τ ′ > cmax of C ′ such that ⌊τ⌋ = ⌊τ ′⌋ + cmax, we have frac(τ ′) >′

frac(τ) (if ⌊τ⌋ ≥ ⌊τ ′⌋ + cmax + 1, then we dont need to do anything), where cmax =
max({cx | x ∈ X}).

Further, path ρ′
2 needs to visit the regions r1, . . . rk visited by ρ′

1. For each i, visiting
region ri is characterized by a set of constraints Ci, which we translate as above as an
ordering ≤′

i on FP ′ = {frac(d′
i) | i ≤ k}.

Thus, finally, we can collect all the requirements for having ρ′ with required properties by
defining ≤′′ over FP ′ ∪FP (notice that it is not a disjoint union) as the transitive closure of
the union of all ≤′

i and of ≤′. As the union of constraints on C ′
i and on C ′ is satisfied by the

dates (di)i≤n and (d′
i)i≤k of ρ1 and ρ′

1, the union of constraints is satisfiable. Equivalently,
≤′′ is a partial ordering, respecting the total natural ordering ≤ on FP ∪ FP ′. We will
denote τ =′′ τ ′ whenever τ ≤′′ τ ′ and τ ′ ≤′′ τ , and τ <′′ τ ′ if τ ≤′′ τ ′ but we dont have
τ =′′ τ ′. Because ≤′′ is a partial ordering, there is no τ, τ ′ with τ <′′ τ ′ <′′ τ .

Note that there is only one way of fulfilling the first two requirements R1. and R2; namely
by matching e′

k and en, and by witnessing dates with the same integral parts in e′
k, en as

well as d′
k, dn. While this takes care of the last values, to obtain the remaining values, we

can apply any greedy algorithm fixing successively frac(e′
k−1) . . . frac(e′

1) and respecting ≤′′

to yield the desired result. We provide a concrete such algorithm for completeness:
We will start from the fixed value of frac(e′

k−1) and work backwards. Let us assume
inductively that frac(e′

k−1) . . . frac(e′
i+1) have been fixed. We now describe how to obtain

frac(e′
i). If frac(d′

i) =′′ frac(d′
j), j > i then we set frac(e′

i) = frac(e′
j). If frac(d′

i) =′′ frac(dj),
then we set frac(e′

i) = frac(ej). Otherwise, consider the sets Li = {frac(ej) | j ≤ n, frac(dj) <′′

frac(d′
i)} ∪ {frac(e′

j) | i < j ≤ n, frac(d′
j) <′′ frac(d′

i)}. Also, consider Ui = {frac(ej) | j ≤
n, frac(dj) >′′ frac(d′

i)} ∪ {frac(e′
j) | i < j ≤ n, frac(d′

j) >′′ frac(d′
i)}. We let li = max(Li)

and ui = min(Ui). We then set frac(e′
i) to any value in (li, ui). It remains to show that we

always have li < ui, which will show that such a choice of value for the fractional part of e′
i

is indeed possible.
By contradiction, consider that there exists i such that li ≥ ui, and consider the

maximal (first) such i. First, assume that both li and ui are of the form frac(ej), frac(ek)
respectively, i.e. corresponds to clock values in the last regions of ρ2. The contradiction
hypothesis is li = frac(ej) ≥ ui = frac(ek). By definition of Li and Ui, we also have
frac(dj) <′′ frac(d′

i) <′′ frac(dk). In particular, frac(dj) < frac(dk). This is a contradiction
with σ̃ρ1 = σ̃ρ2 , as the strong region reached by ρ1 and ρ2 are the same. A contradiction.

Otherwise, at least one of li, ui is of the form frac(e′
j), with j > i (consider j minimal

if both are of this form). By symetry, let say li = frac(e′
j) ≥ ui. Let say ui = frac(ek),

as ui = frac(e′
k) with k > j is similar since it has been fixed before frac(e′

j). We have
frac(d′

j) <′′ d′
i <

′′ frac(dk) by definition of Li, Ui. In particular frac(d′
j) <′′ frac(dk): That

is, k ∈ Uj , and by construction, and as j > i, we have li = frac(e′
j) < frac(ek) = ui, a

contradiction. ◀

Lemma 12 completes the proof of Proposition 11 immediately. Indeed, the lemma implies
that (lAP , lA,K, r) ∈ S⊗K

ρ2
from which we infer that S⊗K

ρ1
⊆ S⊗K

ρ2
. By a symmetric argument

we get the other containment also, and hence we conclude that S⊗K
ρ1

= S⊗K
ρ2

. ◀

Lemma 12, which is crucial for our decidability results for existential timed resilience, shows
that a timed run can be re-timed, i.e., it shows the existence of a timed run with the
same transitions but possibly different timestamps. For this, the global time-stamps (dj)
of actions need to be fixed, and in particular the ordering between their fractional parts
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s1 s2 s3
t1, y < 1

z := 0

t4, 1 < y < 2 ∧ z < 1

t2, y := 0

t3, z := 0
s1 s2 s3

t1, y < 1, z := 0

xι < 1

t4, 1 < y < 2 ∧ z < 1

xι < 1

xι = 1, xι := 0 xι = 1, xι := 0xι = 1, xι := 0

t2, xι < 1, y := 0

t3, xι < 1, z := 0

Figure 3 Example timed automaton (left) and its strong timed automaton (right).

frac(dj). The normal region automaton only ensures ordering between the differences of
(dj)’s, but not (dj) themselves. Let us illustrate this with an concrete example of a TA
c.f., Figure 3 (left), having 3 locations s1, s2, s3, 2 clocks y, z and transitions t1 = (y <
1, z := 0), t2 = (y := 0), t3 = (z := 0), t4 = (1 < y < 2, z < 1) such that t1 goes from
location s1 to s2, t2, t3 are loops at s2 and t4 goes from s2 to s3. We can see the run in the
standard region automaton σ = (s1, [{0}, {0}]) t1−→ (s2, [(0, 1), {0}]) t2−→ (s2, [{0}, (0, 1)]) t3−→
(s2, [(0, 1), {0}]) t4−→ (s3, [(1, 2), (0, 1), frac(y) < frac(z)]). The following two timed runs
ρ1 = (t1, d1 = 0.8)(t2, d2 = 1.2)(t3, d3 = 1.9)(t4, d4 = 2.4) and ρ2 = (t1, d′

1 = 0.9)(t2, d′
2 =

1.89)(t3, d′
3 = 2.69)(t4, d′

4 = 3.39) correspond to abstract run σ. Note that frac(d2) < frac(d3)
but frac(d′

2) > frac(d′
3).

We build the strong region automaton by adding a virtual clock xι reset at all integer
points (reset x when xι = 1) c.f., Figure 3 (right). As explained above, concrete runs ρ1 and ρ2
have the same abstract run σ in the standard region automaton. Now, if we consider abstract
runs in the strong region automaton (i.e. with the addition of a clock xι reset at integral time
points), the concrete run ρ1 will correspond to abstract run σ1 = (s1, [{0}, {0}, {0}]) t1−→
(s2, [(0, 1), (0, 1), {0}, frac(xι) = frac(y)]) t2−→ (s2, [(0, 1), {0}, (0, 1), frac(xι) < frac(z)]) t3−→
(s2, [(0, 1), (0, 1), {0}, frac(y) < frac(xι)])

t4−→ (s3, [(0, 1), (1, 2), (0, 1), frac(y) < frac(xι) <
frac(z)]), and the concrete run ρ2 will correspond to abstract run σ2 = (s1, [{0}, {0}, {0}]) t1−→
(s2, [(0, 1), (0, 1), {0}, frac(xι) = frac(y)]) t2−→ (s2, [(0, 1), {0}, (0, 1), frac(xι) < frac(z)]) t3−→
(s2, [(0, 1), (0, 1), {0}, frac(xι) < frac(y)]) t4−→ (s3, [(0, 1), (1, 2), (0, 1), frac(xι) < frac(y) <
frac(z)]). The abstract run σ1 ends with a relation frac(y) < frac(xι) < frac(z) on fractional
parts of clocks xι, y, z, the abstract runs σ2 end with the relation frac(xι) < frac(y) < frac(z).
Thus, ρ1 and ρ2, do not have the same abstract “strong” run.

Algorithm to solve Existential Timed Resilience. We can now consider existential timed
resilience, and prove that it is decidable thanks to Propositions 10 and 11. The main idea is
to reduce the existential resilience question to a question on the sets of regions reachable
after just faulty runs. Indeed, focusing on just faulty runs means that we do not have any
actions to match, only the duration of the run till the fault, whereas if we had tried to reason
on faulty runs in general, actions have to be synchronized K steps after the fault and then
we cannot compute the set of S⊗K

ρf
. We can show that reasoning on S⊗K

ρf
for just faulty runs

is sufficient. Let ρf be a just faulty timed run of AP . We say that s ∈ S⊗K
ρf

is safe if there
exists a (finite or infinite) maximal accepting run of AP ⊗K A from s, and that S⊗K

ρf
is safe

if there exists s ∈ S⊗K
ρf

which is safe.

▶ Lemma 13. There exists a maximal accepting extension of a just faulty run ρf that is
BTN in K-steps iff S⊗K

ρf
is safe. Further, deciding if S⊗K

ρf
is safe can be done in PSPACE.

Proof. Let ρf a just faulty run. By Proposition 10, there exists an extention ρ of ρf that is
BTN in K steps if and only if there exists an accepting run ρ⊗K of AP ⊗K A such that ρf

is a prefix of the projection of ρ⊗K on its first component, if and only if there exists a just
faulty run ρ⊗K

f of AP ⊗K A such that its projection on the first component is ρf , and such
that an accepting state of AP ⊗K A can be reached after ρ⊗K

f , if and only if S⊗K
ρf

is safe.
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Safety of S⊗K
ρf

can be verified using a construction similar to the one in Theorem 16: it is
hence a reachability question in a region automaton, solvable with a PSPACE complexity. ◀

This lemma means that it suffices to consider the set of S⊗K
ρf

over all ρf just faulty, which
we can compute using region automaton thanks to Prop. 11, which gives:

▶ Theorem 14. K-∃-resilience of timed automata is in EXPSPACE.

Proof. Lemma 13 implies that A is not K-timed existential resilient if and only if there exists
a just faulty run ρf such that S⊗K

ρf
is not safe. This latter condition can be checked. Let us

denote by Rstrong(AP) = (SR(AP ), IR(AP ),Σ, TR(AP ), FR(AP )) the strong region automaton
associated with AP . We also denote R⊗K

= (SR⊗K
, IR⊗K

,Σ, TR⊗K
, FR⊗K

) the strong region
automaton Rstrong(AP ⊗K A). Let ρf be a just faulty run, and let σ = σ̃ρf

denote the run
of Rstrong(AP) associated with ρf . Thanks to Proposition 11, we have S⊗K

ρf
= S⊗K

σ , as S⊗K
ρf

does not depend on the exact dates in ρf , but only on their regions, i.e., on σ. So it suffices to
find a reachable witness S⊗K

σ of R⊗K
which is not safe, to conclude that A is not existentially

resilient. For that, we build an (untimed) automaton B. Intuitively, this automaton follows
σ up to a fault of the region automaton Rstrong(AP), and maintains the set S⊗K

σ of regions
of R⊗K

. This automaton stops in an accepting state immediately after occurrence of a
fault. Formally, the product subset automaton B is a tuple (SB, I,Σ, T, F ) with set of states
SB = SRstrong(AP ) ×2SR⊗K ×{0, 1}, set of initial states I = IRstrong(AP ) ×{IR⊗K

}×{0}, and
set of final states F = SRstrong(AP ) × 2SR⊗K × {1}. The set of transitions T ⊆ SB × Σ × SB

is defined as follows,(
(l, r, S, 0), a, (l′, r′, S′, ♭)

)
∈ T if and only if tR =

(
(l, r), a, (l′, r′)

)
∈ TRstrong(AP ) and

♭ = 1 if and only if tR is faulty and ♭ = 0 otherwise.
S′ is the set of states s′ of Rstrong(AP ⊗K A) whose first component is (l′, r′) and such
that there exists s ∈ S, (s, a, s′) ∈ TR(⊗K).

Intuitively, 0 in the states means no fault has occurred yet, and 1 means that a fault has
just occurred, and thus no transition exists from this state. We have that for every prefix
σ of a just faulty abstract run of Rstrong(AP), ending on a state (l, r) of Rstrong(AP) then,
there exists a unique accepting path σ⊗ in B such that σ is the projection of σ⊗ on its first
component. Let (l, r, S, 1) be the state reached by σ⊗. Then S⊗K

σ = S. Thus, non-existential
resilience can be decided by checking reachability of a state (l, r, S, 1) such that S is not safe
in automaton B. Recall (from Lemma 13) that checking safety of S is in PSPACE. As B is
of doubly exponential size, reachability can be checked in EXPSPACE. As EXPSPACE is
closed under complement, checking existential resilience is in EXPSPACE. ◀

While we do not have a matching lower bound, we complete this subsection with following
(easy) hardness result (we leave the details in Appendix B due to lack of space).

▶ Theorem 15. The K-∃-resilience problem for timed automata is PSPACE-Hard.

Proof. We proceed by reduction from the language emptiness problem, which is known
to be PSPACE-Complete for timed automata. We can reuse the gadget Gund of Figure 4.
We take any automaton A and collapse its initial state to state s1 in the gadget. We
recall that s1 is accessible at date 15 only after a fault. We add a self loop with transition,
te = (s2, σ, true, ∅, s2) for every σ ∈ Σ. This means that after reaching s2, which is accessible
only at date 15 if no fault has occurred, the automaton accepts any letter with any timing.
Then, if A has no accepting word, there is no timed word after a fault which is a suffix
of a word in L(A), and conversely, if L(A) ̸= ∅, then any word recognized from s1 is also
recognized from qe. So the language emptiness problem reduces to 2-∃-resilience. ◀
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v0 v1

v2 qe

v3 A

x = 1, a, {y}
x = 1, y = 0, b

{x}

x = 10, c

X1

x = 9, c

X2

x = 2, y = 0, b{x}

⊤, Σ, ∅

1 < x ≤ 2, a, {y}

s0 si

si,1

si,2

s1

s2

x ≤ 10, a

{y}

x > 11 ∧ y < 1, b

x ≤ 10, b

z = 15, c

X1

z = 15, c

X2

Figure 4 The gadget automaton BΣ∗⊆A (left) and the gadget Gund (right).

Existential Untimed Resilience. We next address untimed existential resilience, which we
show can be solved by enumerating states (l, r) of R(A) reachable after a fault, and for
each of them proving existence of a BTN run starting from (l, r). This enumeration and the
following check uses polynomial space, yielding PSPACE-Completeness of K-∃-resilience.

▶ Theorem 16. Untimed K-∃-resilience is PSPACE-Complete.

Proof (sketch). Membership: A is untimed K-∃-resilient if and only if for all states q = (l, r)
reached by a just faulty run of R(AP), there exists a maximal accepting path σ from q such
that its suffix σs after K steps is also the suffix of a path of R(A). This property can be
verified in PSPACE. A detailed proof is provided in Appendix B.

Hardness: We can now show that untimed K-∃-resilience is PSPACE-Hard. Consider
a timed automaton A with alphabet Σ and the construction of an automata that uses a
gadget shown in Figure 4 (left). Let us call this automaton BΣ∗⊆A. This automaton reads a
word (a, 1)(b, 1)(c, 11) and then accepts all timed words 2 steps after a fault, via Σ loop on a
particular accepting state qe. If BΣ∗⊆A takes the faulty transition (marked in dotted red)
then it resets all clocks of A and behaves as A. The accepting states are qe ∪ F . Then, A
has an accepting word if and only if BΣ∗⊆A is untimed 2-∃-resilient. Since the emptiness
problem for timed automata is PSPACE-Complete, the result follows. ◀

▶ Remark 17. The hardness reduction in the proof of Theorem 16 holds even for determin-
istic timed automata. It is known [2] that PSPACE-Hardness of emptiness still holds for
deterministic TAs. Hence, considering deterministic timed automata will not improve the
complexity of K-∃-resilience. Considering IRTAs does not change complexity either, as the
gadget used in Theorem 16 can be adapted to become an IRTA (as shown in Appendix C).

5 Universal Resilience

In this section, we consider the problem of universal resilience and show that it is very close to
the language inclusion question in timed automata, albeit with a few subtle differences. One
needs to consider timed automata with ε-transitions [11], which are strictly more expressive
than timed automata. First, we show a reduction from the language inclusion problem.

▶ Proposition 18. Language inclusion for timed automata can be reduced in polynomial time
to K-∀-resilience. Thus, K-∀-resilience is undecidable in general for timed automata.

Proof. Let A1 = (L1, {l01}, X1,Σ1, T1, F1) and A2 = (L2, {l02}, X2,Σ2, T2, F2) be two timed
automata with only one initial state (w.l.o.g). We build a timed automaton B such that
L(A1) ⊆ L(A2) if and only if B is 2-∀-resilient.

We first define a gadget Gund that allows to reach a state s1 at an arbitrary date d1 = 15
when a fault happens, and a state s2 at date d2 = d1 = 15 when no fault occur. This gadget
is shown in Fig 4(right). Gund has 6 locations s0, si, si,1, s1, s2 /∈ L1 ∪ L2, three new clocks
x, y, z /∈ X1 ∪ X2, three new actions a, b, c /∈ Σ1 ∪ Σ2, and 5 transitions t0, t1, t2, t3, t4 /∈
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T1 ∪ T2 defined as: t0 = (s0, a, g0, {y}, si) with g0 ::= x ≤ 10, t1 = (si, b, g1, ∅, si,1) with
g1 ::= x > 11 ∧ y < 1, t2 = (si, b, g2, ∅, si,2) with g2 ::= x ≤ 10, t3 = (si,1, c, g3, X1, s1)
with g3 ::= z = 15, and t4 = (si,2, c, g4, X2, s2) with g4 ::= z = 15. Clearly, in this gadget,
transition t1 can never fire, as a configuration with x > 11 and y < 1 is not accessible.

We build a timed automaton B that contains all transitions of A1 and A2, but preceded
by Gund by collapsing the initial location of A1 i.e., l01 with s1 and the initial location of A2
i.e., l02 with s2. We also use a fault model P : a → [0, 2], that can delay transitions t0 with
action a by up to 2 time units. The language L(B) is the set of words:

L(B) = { (a, d1)(b, d2)(c, 15)(σ1, d3) . . . (σn, dn+2) | (d1 ≤ 10) ∧ (d2 ≤ 10) ∧ (d2 − d1 < 1)
∧∃w = (σ1, d′

3) . . . (σn, d′
n+2) ∈ L(A2), ∀i ∈ 3..n + 2, d′

i = di − 15}
The enlargement of B is denoted by BP . The words in L(BP) is the set of words in L(B)

(when there is no fault) plus the set of words in:
LF (BP) = {(a, d1)(b, d2)(c, 15)(σ1, d3) . . . (σn, dn+2) | (10 < d1 ≤ 12) ∧ d2 > 11

∧(d2 − d1 < 1) ∧ ∃w = (σ1, d′
3) . . . (σn, d′

n+2) ∈ L(A1), ∀i ∈ 3..n + 2, d′
i = di − 15}

Now, B is K-∀-resilient for K = 2 if and only if every word in LF (BP) is BTN after 2
steps (K = 2), i.e., for every word w = (a, d1)(b, d2)(c, 15)(σ1, d3) . . . (σn, dn+2) in LF (BP),
if there exists a word w = (a, d′

1)(b, d′
2)(c, 15)(σ1, d3) . . . (σn, dn+2) in L(B). This means that

every word of A1 is a word of A2. So L(A1) ⊆ L(A2) if and only if B is 2-∀-resilient.
As language inclusion for timed automata is undecidable [2], an immediate consequence

is that K-∀-resilience of timed automata is undecidable. ◀

Next we show that the reduction is also possible in the reverse direction.

▶ Proposition 19. K-∀-resilience can be reduced in polynomial time to language inclusion
for timed automata with ε-transitions.

Proof. Given a timed automaton A = (L, I,X,Σ, T, F ), we can build a timed automaton
AS that recognizes all suffixes of timed words recognized by A (see Appendix B, Figure 7
for an example). Formally, AS contains the original locations and transitions of A, a copy of
all location, a copy of all transitions where letters are replaced by ε, and a transition from
copies to original locations labeled by their original letters.

We have AS = (LS , IS , X,Σ∪{ε}, TS , F ), where LS = L∪{l′ | l ∈ L}, IS = {l′ ∈ LS , l ∈
I} TS = T ∪ {(l′1, g, ε, R, l′2) | ∃(l1, g, σ,R, l2) ∈ T} ∪ {(l′1, g, σ,R, l2) | ∃(l1, g, σ,R, l2) ∈ T}.
Obviously, for every timed word (a1, d1)(a2, d2) . . . (an, dn) recognized by A, and every
index k ∈ 1..n, the words (ε, d1)(ε, dk)(ak+1, dk+1) . . . (an, dn) = (ak+1, dk+1) . . . (an, dn) is
recognized by AS .

Given a timed automaton A and a fault model P, we build an automaton BP which
remembers if a fault has occurred, and how many transitions have been taken since a fault
(see Definition 9 in Appendix B). Then, we can build an automaton BP,ε by re-labeling every
transition occurring before a fault and until K steps after the fault by ε, keeping the same
locations, guards and resets, and leave transitions occurring more than K steps after a fault
unchanged. The relabeled transitions are transitions starting from a location (l, n) with
n ̸= 0. Accepting locations of BP,ε are of the form (l, 0) where l is an accepting locations
of A occurring after a fault in BP . Then, every faulty run accepted by BP,ε is associated
with a word of the form ρ = (t1, d1) . . . (tf , df )(tf+1, df+1) . . . (tf+K , df+K). . . . (tn, dn) where
t1, . . . tf+K are ε transitions. A run ρ is BTN if and only if (af+K+1, df+K+1) . . . (an, dn) is
a suffix of a timed word of A, i.e., is recognized by AS .

Now one can check that every word in BP,ε (reading only ε before that fault) is recognized
by the suffix automaton AS , i.e. solve a language inclusion problem for timed automata with
ε transitions. ◀
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We note that ε-transitions are critical for the reduction of Proposition 19. To get
decidability of K-∀-resilience, it is thus necessary (but not sufficient) to be in a class with
decidable timed language inclusion, such as Event-Recording timed automata [3], Integer
Reset timed automata (IRTA) [18], or Strongly Non-Zeno timed automata [4]. However,
to obtain decidability of K-∀-resilience using Proposition 19, one needs also to ensure
that inclusion is still decidable for automata in the presence of ε transitions. When a
subclass C of timed automata is closed by enlargement (due to the fault model), and if timed
language inclusion is decidable, even with ε transitions, then Proposition 19 implies that
K-∀-resilience is decidable for C. We show that this holds for the case of IRTA and leave
other subclasses for future work. For IRTA [18], we know that L(A) ⊆ L(B) is decidable
in EXPSPACE when B is an IRTA [18] (even with ε transitions), from which we obtain an
upper bound for K-∀-resilience of IRTA. The enlargement of guards due to the fault can add
transitions that reset clocks at non-integral times, but it turns out that the suffix automaton
AS of Proposition 19 is still an IRTA. A matching lower bound is obtained by encoding
inclusion for IRTA with K-∀-resilience using a trick to replace the gadget in Proposition 18
by an equivalent IRTA. Thus, we have Theorem 20 (proof in Appendix C).

▶ Theorem 20. K-∀-resilience is EXPSPACE-Complete for IRTA.

Finally, we conclude this section by remarking that universal untimed resilience is decidable
for timed automata in general, using the reductions of Propositions 18 and 19:

▶ Theorem 21. Untimed K-∀-resilience is EXPSPACE-Complete.

Proof. Recall that untimed language inclusion of timed automata is EXPSPACE-Complete [9].
The lower bound is readily obtained by using the reduction of Proposition 18.

For the upper bound, we will use the construction of automata AS and BP,ε built during
the reduction of Proposition 19. We however need inclusion of TA with ε transitions, and
thus we adapt the EXPSPACE algorithm in the presence of ε transitions:

We can consider ε transitions as transitions labeled by any letter, and build the region
automata A♯ = R(AS) and B♯ = R(BP,ε). The size of these untimed automata is exponential
in the number of clocks, with ε transitions. We can perform an ε reduction on A♯ to obtain
an automaton AS

U with the same number of states as A♯ that recognizes untimed suffixes of
words of A. Similarly, we can perform an ε reduction on B♯ to obtain an automaton BP

U with
the same number of states as B♯ that recognizes suffixes of words played K steps after a fault.
We then check L(BP

U ) ⊆ L(AS
U ) with an usual PSPACE inclusion algorithm, which yields the

EXPSPACE upper bound, as AS
U ,BP

U have an exponential number of states w.r.t. |A|. ◀

6 Conclusion

Resilience allows to check robustness of a timed system to unspecified delays. A universally
resilient timed system recovers from any delay in some fixed number of steps. Existential
resilience guarantees the existence of a controller that can bring back the system to a normal
behavior within a fixed number of steps after an unexpected delay. Interestingly, we show
that existential resilience enjoys better complexities/decidability than universal resilience.
Universal resilience is decidable only for well behaved classes of timed automata such as IRTA,
or in the untimed setting. A future work is to investigate resilience for other determinizable
classes of timed automata, and a natural extension of resilience called continuous resilience,
where a system recovers within some fixed duration rather than within some number of steps.
Another natural question is to consider resilience questions when K is not fixed, i.e., check
existence of a value for K such that A is K-∃-resilient (resp. K-∀-resilient).
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Figure 5 A on the left; Enlargement AP on the right, P(a) = 2, P(b) = 0.

A Example for Universal Resilience

▶ Example 22. Consider the automaton A in Figure 5, with two locations ℓ1 and ℓ2, a
transition t12 from ℓ1 to ℓ2 and a transition t21 from ℓ2 to ℓ1. The enlarged automaton AP has
two extra locations

•
ℓ1,

•
ℓ2, extra transitions between

•
ℓ1 and

•
ℓ2, and from ℓ1 to

•
ℓ2 and from ℓ2 to

•
ℓ1 respectively. We represent a configuration of the automata with a pair

(
ℓ, ν(x)|ν(y)

)
where,

ℓ belongs to the set of the locations and ν(x) (resp. ν(y)) represents the valuation of clock x

(resp. clock y). Let ρf = (ℓ1, 0|0) (t12,6)−→ (ℓ2, 6|0) (
•
t21,13)−→ (

•
ℓ1, 0|7) (

••
t 12,19)−→ (

•
ℓ2, 4|0) be a faulty

run reading the faulty word (a, 6)(b, 13)(a, 19) ∈ L(AP). This run is 1-BTN since the run σ =
(ℓ, 0|0) (t12,6)−→ (ℓ2, 6|0) (t21,12)−→ (ℓ1, 0|6) (t12,19)−→ (ℓ2, 7|0) is an accepting run of A, reading timed

word wσ = (a, 6)(b, 12)(a, 19) ∈ L(A). Similarly, the run ρ′ = (ℓ, 0|0) (
•

t12,14)−→ (
•
ℓ2, 14|0) (

••
t21,20)−→

(
•
ℓ1, 0|6) (

••
t12,31)−→ (

•
ℓ2, 11|0) of AP reading word (a, 14)(b, 20)(a, 31) is 1-BTN because of run

σ′ = (ℓ1, 0|0) (t12,10)−→ (ℓ2, 10|0) (t21,15)−→ (ℓ1, 0|5) (t12,19)−→ (ℓ2, 4|0) (t21,20)−→ (ℓ1, 0|1) (t12,31)−→ (ℓ2, 11|0)
reading the word wσ′ = (a, 10)(b, 15)(a, 19)(b, 20)(a, 31). One can notice that ρ′ and σ′ are
of different lengths. In fact, we can say something stronger, namely it is 1-∀-resilient (and
hence 1-∃-resilient) as explained below.

The example consists of a single (a.b)∗ loop, where action a occurs between 3 and 12 time
units after entering location ℓ1, and action b occurs less than 7 time units after entering ℓ2. A
fault occurs either from ℓ1, in which case action a occurs 12 + d time units after entering ℓ1,
with d ∈ [0, 2], or from ℓ2, i.e., when b occurs exactly 7 time units after entering ℓ2. Once a
fault has occurred, the iteration of a and b continues on

•
ℓ1 and

•
ℓ2 with non-faulty constraints.

Consider a just faulty run ρf where fault occurs on event a. The timed word generated in ρf

is of the form wf = (a, d1).(b, d2) . . . (a, dk).(b, dk+1).(a, dk+2), where dk+2 = dk+1 + 12 + x

with x ∈ [0, 2]. The word w = (a, d1).(b, d2) . . . (a, dk).(b, dk+1).(a, dk+1 + 5).(b, dk+1 + 5 +
x).(a, dk+1 + 5 + x + 7) is also recognized by the normal automaton, and ends at date
dk+1 + 12 +x. Hence, for every just faulty word wf which delays action a, there exists a word
w such for every timed word v, if wf .v is accepted by the faulty automaton, w.v is accepted
by the normal automaton. Now, consider a fault occurring when playing action b. The just
faulty word ending with a fault is of the form wf = (a, d1).(b, d2) . . . (a, dk).(b, dk + 7). All
occurrences of a occur at a date between dj +3 and dj +12 for some date dj at which location ℓ1
is reached, (except the first time stamp d1 ∈ (5, 12)) and all occurrences of b at a date strictly
smaller than di + 7, where di is the date of last occurrence of a. Also, for any value ϵ ≤ 7 the
word wϵ = (a, d1).(b, d2) . . . (a, dk).(b, dk + 7 − ϵ) is non-faulty. Let v1 = 12 − d1, recall that
d1 ∈ (5, 12). If we choose ϵ < v1 then the run w+

ϵ = (a, d1+ϵ).(b, d2+ϵ) . . . (a, dk +ϵ).(b, dk +7)
is also non-faulty because 5 < d1 + ϵ < d1 + v1 = 12. Clearly, we can extend w+

ϵ to match
transitions fired from wϵ hence, the automaton of the example is 1-∀-resilient.
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B K-∃-resilience and untimed K-∃-resilience

s0 si

s1

s2

x ≤ 10, a, {y} x > 11 ∧ y < 1, b

{X1}
x ≤ 10, b

{X2}10 < x ≤ 12, a, {y}

v0 v1

v2 qe

v3 A

x = 1, a, {y}
x = 1, y = 0, b

{x}

x = 10, c

X1

x = 9, c

X2

x = 2, y = 0, b{x}

⊤, Σ, ∅

1 < x ≤ 2, a, {y}

Figure 6 The gadgets G (left) and BΣ∗⊆A (right) which is untimed 2-∃-resilient iff L(A) ̸= ∅.

▶ Theorem 16 Untimed K-∃-resilience is PSPACE-Complete.

Proof. Membership: For every run of A, there is a path in R(A). So, A is untimed
K-∃-resilient if and only if, for all states q reached by a just faulty run, there exists a
maximal accepting path σ from q such that, K steps after, the sequence of actions on its
suffix σs agrees with that of an accepting path σ in R(A). We now prove that this property
can be verified in PSPACE.

Let q = (l, r) be a state of R(AP) reached after a just faulty run. K steps after reaching
q = (l, r) of R(AP), one can check in PSPACE, if there exists a path σs whose sequence
of actions is the same as the suffix of an accepting path σ of R(A). That is, either both
these end in a pair of accepting states from which no transitions are defined (both paths are
maximal), or visit a pair of states twice such that the cyclic part of the path contains both
an accepting state of R(AP) and an accepting state of R(A). To find these paths σ, σs, one
just needs to guess them, i.e., build them synchronously by adding a pair of transitions to
the already built path only if they have the same label. One needs to remember the current
pair of states reached, and possibly guess a pair of states (sA, sAP ) on which a cycle starts,
and two bits bA (resp. bAP ) to remember if an accepting state of A (resp. AP) has been seen
since (sA, sAP ). A maximal finite path or a lasso can be found on a path of length smaller
than |R(AP)| × |R(A)|, and the size of the currently explored path can be memorized with
log2(|R(AP)| × |R(A)|) bits. This can be done in PSPACE. The complement of this, i.e.,
checking that no maximal path originating from q with the same labeling as a suffix of a
word recognized by R(A) K steps after a fault exists, is in PSPACE too.

Now, to show that A is not untimed K-∃-resilient, we simply have to find one untimed
non-K-∃-resilient witness state q reachable immediately after a fault. To find it, non
deterministically guess such a witness state q along with a path of length not more than the
size of |R(AP)| and apply the PSPACE procedure above to decide whether it is a untimed
non-K-∃-resilience witness. Guess of q is non-deterministic, which gives an overall NPSPACE
complexity, but again, using Savitch’s theorem, we can say that untimed K-∃-resilience is
in PSPACE.

Hardness: We can now show that untimed K-∃-resilience is PSPACE-Hard. Consider a
timed automaton A with alphabet Σ and the construction of an automata that uses a gadget
shown in Figure 6 (right). Let us call this automaton BΣ∗⊆A. This automaton reads a word
(a, 1).(b, 1).(c, 11) and then accepts all timed words 2 steps after a fault, via Σ loop on a
particular accepting state qe. If BΣ∗⊆A takes the faulty transition (marked in dotted red)
then it resets all clocks of A and behaves as A. The accepting states are qe ∪ F . Then, A
has an accepting word if and only if BΣ∗⊆A is untimed 2-∃-resilient. Since the emptiness
problem for timed automata is PSPACE-Complete, the result follows. ◀
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Figure 7 An example automaton A (left) and its suffix automaton AS (right).

▶ Definition 23 (Counting automaton). Let AP = (L, I,X,Σ, T, F ) and be a timed automaton
with faulty transitions. Let K ∈ N be an integer. Then, the faulty automaton BP is a tuple
BP = (LP , IP , X,Σ, TP , FP) where LP ⊆ {L× {0}}, FP = F × [−1,K], and initial set of
states IP = I × {−1}. Intuitively, −1 means no fault has occurred yet. Then we assign K

and decrement to 0 to denote that K steps after fault have passed. The set of transitions TP

is as follows: We have
(
(l, n), g, a, R, (l′, n′)

)
∈ TP if and only if either:

n ̸= 0 (no fault has occurred, or less than K steps of B have occurred), we have transition
t = (l, g, a,R, l) ∈ T , and either: n = −1, the transition t is faulty and n′ = K, or
n = −1, the transition t is non faulty and n′ = −1, or n > 0 and n′ = n− 1.
n = n′ = 0 (at least K steps after a fault have occurred), and there exists a transition
t = (l, g, a,R, l′) ∈ T .

C Resilience of Integer Reset Timed Automata

Let us recall some elements used to prove decidability of language inclusion in IRTA. For
a given IRTA A we can define a map f : ρ → wunt that maps every run ρ of A to an
untimed word wunt ∈ ({✓, δ} ∪ Σ)∗. For a real number x with k = ⌊x⌋, we define a map
dt(x) from R to {✓, δ}∗ as follows : dt(x) = (δ.✓)k if x is integral, and dt(x) = (δ.✓)k.δ

otherwise. Then, for two reals x < y, the map dte(x, y) is the suffix that is added to dt(x)
to obtain dt(y). Last, the map f associates to a word w = (a1, d1) . . . (an, dn) the word
f(w) = w1.a1.w2.a2 . . . wn.an where each wi is the word wi = dte(di−1, di). The map f maps
global time elapse to a word of ✓ and δ but keeps actions unchanged. We define another map
f↓ : w → {✓, δ}∗ that maps every word w of A to a word in {✓, δ}∗ dropping the actions from
f(w). Consider for example, a word w = (a, 1.6)(b, 2.7)(c, 3.4) then, f(w) = δ✓δa✓δb✓δc,
and f↓(w) = δ✓δ✓δ✓δ. It is shown in [18] for two timed words ρ1, ρ2 with f(ρ1) = f(ρ2)
then ρ1 ∈ L(A) if and only if ρ2 ∈ L(A). It is also shown that we can construct a Marked
Timed Automaton (MA) from A with one extra clock and polynomial increase in the number
of locations such that Unt(L(MA)) = f(L(A)). The MA of A duplicates transitions of A to
differentiate firing at integral/non integral dates, plus transitions that make time elapsing
visible using the additional clock which is reset at each global integral time stamp.

▶ Definition 24 (Marked Timed Automaton (MA)). Given a timed automaton A =
(L,L0, X,Σ, T, F ) the Marked Timed Automaton of A is a tuple MA=(L′, L′

0, X∪ {n},Σ ∪
{✓, δ}, T ′, F ′) such that
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i) n /∈ X

ii) L′ = L0 ∪ L+ where for α ∈ {0,+}, Lα = {lα | l ∈ L}
iii) L′

0 = {l0 | l ∈ L0}, F ′ = {l0, l+ | l ∈ F} and

iv) T ′ is defined by
T ′ = {(l0, a, g ∧ n = 0?, R, l′0) | (l, a, g, R, l′) ∈ E}

∪{(l+, a, g ∧ 0 < n < 1?, R, l′+) | (l, a, g, R, l′) ∈ E}
∪

⋃
l∈L

(l0, δ, 0 < n < 1, ∅, l+) ∪
⋃

l∈L

(l+,✓, n = 1?, {n}, l0)

Then we have the following results.

▶ Theorem 25 ([18], Thm. 5). Let A be a timed automaton and MA be its marked automaton.
Then Unt(L(MA)) = f(L(A))

▶ Remark 26. The marked timed automaton of an IRTA is also an IRTA.
The proofs of resilience for IRTA will also rely on the following properties,

▶ Theorem 27 ([18], Thm. 3). If A is an IRTA and f(w) = f(w′), then w ∈ L(A) if and
only if w′ ∈ L(A)

▶ Lemma 28. The timed suffix language of an IRTA A can be recognized by an ε-IRTA AS

Proof. Let A = (L,X,Σ, T,G, F ) be a timed automaton. We create an automaton
AS = (LS , X,Σ ∪ {ε}, TS ,G, F ) as follows. We set LS = L ∪ Lε, where Lε = {lε |
l ∈ L} i.e., LS contains a copy of locations in A and another “silent” copy. The ini-
tial location of AS is l0,ε. We set TS = T ∪ Tε ∪ T ′

ε, where Tε = {(lε, ε, true, ∅, l) |
l ∈ L} and T ′

ε = {(lε, ε, g, R, l′ε) | ∃(l, a, g, R, l′) ∈ T}. Clearly, for every timed
word w = (a1, d1) . . . (ai, di)(ai+1, di+1) . . . (an, dn) of L(A) and index i, the word w′ =
(ε, d1). . . . (ε, di)(ai+1, di+1) . . . (an, dn) = (ai+1, di+1) . . . (an, dn) is a recognized by AS , and
it is easy to verify that As is an ε-IRTA. ◀

▶ Lemma 29. For two IRTA A and B and their corresponding marked automata AM and
BM , L(A) ⊆ L(B) if and only if untime(L(AM )) ⊆ untime(L(BM )).

Proof. (⇒) Assume, L(A) ⊆ L(B) and assume there exists a word w ∈ untime(L(AM )), but
w /∈ untime(L(BM )). Now, there exists a timed word ρ ∈ L(A) such that, f(ρ) = w. Clearly,
ρ ∈ L(B), then clearly f(ρ) = w ∈ untimed(L(BM )) a contradiction. So, untime(L(Am)) ⊆
untime(L(Bm)).

(⇐)Assume, untime(L(AM )) ⊆ untime(L(BM )), and L(A) ⊈ L(B). Then, there
exists a timed word ρ ∈ L(A) such that ρ /∈ L(B). Assume f(ρ) = w, then clearly,
w ∈ untime(L(AM )) and w ∈ untime(L(BM )). So, there exists a timed word ρ′ ∈ L(A)
such that, f(ρ′) = w = f(ρ). According to Theorem 27 we can conclude that, ρ ∈ L(B) a
contradiction. ◀

▶ Remark 30. Lemma 29 shows that the timed and untimed language inclusion problems
for IRTA are in fact the same problem. So, as we can solve the timed language inclusion
problem by solving an untimed language inclusion problem of IRTA and vice-versa, the
untimed language inclusion for IRTA is also EXPSPACE-Complete.

▶ Theorem 31. Timed K-∀-resilience of IRTA is EXPSPACE-Hard.

Proof. We proceed by a reduction from the language inclusion problem of IRTA, known
to be EXPSPACE-Complete [4]. The idea of the proof follows the same lines as the
untimed K-∀-resilience of timed automata. Assume we are given IRTA A1,A2. a, b, c are
symbols not in the alphabets of A1,A2. Consider B in Figure 8 (left). It is easy to see that
L(B)=(a, 1)(b, 1)(c, 11)(L(A1)+11), where L(A1)+k = {(a1, d1+k)(a2, d2+k) . . . (an, dn+k) |
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Figure 8 The automaton B (left) and the faulty automaton BP (right).

(a1, d1) . . . (an, dn) ∈ L(A1)}. Associate a fault model P(a) = 1, where the fault of a is 1.
We construct an IRTA BP as shown in Figure 8 (right). Notice that in general, IRTAs are
not closed under the fault insertion; the enlarged transition in B has guard 1 ≤ x ≤ 2, and
resets y. This violates the integer reset condition; however, since a value 1 < x < 2 when
resetting y clearly does not lead to acceptance in BP , we prune away that transition resulting
in BP as in Figure 8 (right). This resulting faulty automaton is an IRTA.

The language accepted by BP is L(B) ∪ (a, 2)(b, 2)(c, 11)(L(A2) + 11). Considering K = 2,
BP is BTN in 2 steps after the fault if and only if L(A2) ⊆ L(A1). The EXPSPACE
hardness of the timed K-∀-resilience of IRTA follows from the EXPSPACE completeness of
the inclusion of IRTA. ◀

▶ Theorem 32. K-∃-resilience for IRTA is PSPACE-Hard.

Proof. Consider an IRTA A with alphabet Σ and the construction of an automata that
uses a gadget shown below in Figure 9 (left). Let us call this automaton BΣ∗⊆A. It
is easy to see that the L(BΣ∗⊆A)=(a, 1)(b, 1)(c, 11)

(
(Σ × R)∗ + 11

)
, where L(A1) + k =

{(a1, d1 + k)(a2, d2 + k) . . . (an, dn + k) | (a1, d1) . . . (an, dn) ∈ L(A1)}. The Σ loop on a
particular accepting state qe is responsible for acceptance of all timed word. Now, associate a
fault model P(a) → 1 with B, where the fault of a is 1. Let us call this enlarged automaton
B(Σ∗⊆A)P

. We can prune away the transition 1 < x < 2 resetting y which does not lead
to acceptance, and resulting in an IRTA with the same language, represented in Figure 9
(right). The language accepted by B(Σ∗⊆A)P

is L(BΣ∗⊆A) ∪ (a, 2)(b, 2)(c, 11)(L(A) + 11).
The accepting states are qe ∪ F , where F is the set of final states of A. Then BΣ∗⊆A is
K-∃-resilient if and only if L(A) ̸= ∅. ◀

v0 v1
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x = 1, a

{y}

x = 1, y = 0, b

{x}

x = 10, c

x = 9, c, X
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⊤,Σ, ∅
v0 v1
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Figure 9 The IRTA BΣ∗⊆A (left) and the faulty IRTA B(Σ∗⊆A)P
(right).

▶ Remark 33. The untimed language inclusion problem is shown to be EXPSPACE-Complete
in Remark 30. The emptiness checking of timed automata is done by checking the emptiness
of its untimed region automaton. So, to show the hardness of untimed K-∀-resilient or
K-∃-resilient problems for IRTA, it is sufficient to reduce the untimed language inclusion
problem and untimed language emptiness problem of IRTA respectively. This reduction can
be done by using the same gadget as shown in Theorem 31 and Theorem 32 respectively.
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