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Abstract—A finite state Markov chain M is often viewed as a linear fashion) a given probability distribution into a newe.
probabilistic transition system. An alternative view - which we Starting from a distribution: one can iteratively apply/ to
follow here - is to regard M as a (linear) transform operating on generate a trajectory consisting of a sequence of diskifmsit
the set of probability distributions over its set of nodes (&ates) - e NN .
{1,...,n}. The novel idea here is to discretize the probability Given a set of 'n't'?l d'St.”bUt'onS' one can study the_ pr.ope.
value space[0, 1] into a finite set of intervals and symbolically Of the set of trajectories generated by these distributions
represent a concrete probability distribution . as a tuple of such Many interesting probabilistic dynamical properties bf
intervals called a discretized distribution D. The i'"* componentof can be expressed through these two approaches but they
the discretized distribution D representing i will be the interval are incomparable and complementary (see [6], [11]). Furthe

in which the probability assigned by . to i falls. . L ey
The setD of discrete distributions is finite and each trajectory, SO!Utions to model checking in one approach (e.g. decittiabil

generated by repeated applications of\/ to an initial distribution, ~ Of PCTL) will not translate into solutions in the other.
will induce a unique infinite string in D“. Hence, given a set of  The novel idea we explore here is thgmbolic dynamicef

initial distributions, the symbolic dynamics of M will consist g Markov chain, whose concrete dynamics is represented by

of a w-language Lys over the finite alphabet D. We investigate the sequences of probability distributions generated kyoa-(

whether this symbolic dynamics of M meets a specification given . e -— S . . .
as a linear time temporal logic formula whose atomic propogions sibly infinite) set of initial distributions. The main mo#tion

assert that the current probability of node 4 falls in interval 4.  for doing so is to avoid the complications -and the compjexit
Unfortunately, even for restricted Markov chains (for instance, caused by numerically tracking sequences of probabiligy di
irreducible and aperiodic chains), Ly is not guaranteed to be a triputions exactly. Further, in many applications such s t
w-regular language. To get around this we develop the notionfo probabilistic behavior of biochemical networks, queuilyg-s
e-approximation, based on the transient and long term behawrs . ' R
of M. Our main results are that, one can effectively check tems or. sensor netvyorks, exact estimates of the d'Strm“O.
whether (i) for each infinite word in Ly, at least one of itse- May neither be feasible nor necessary. To obtain the symboli
approximations satisfies the specification and (ji) for eaclinfinite dynamics, we discretize the probability value spfxé] into
word in Ly, all its e-approximations satisfy the specification. g finite set of intervalsZ = {10, p1), [p1,p2), - - - » [Pm, 1]

These verification results are strong in that they apply to dlfinite A probability distribution z of M over its set of nodes

state Markov chains. Further, the study of the symbolic dynanics 192 is th ted bolicall tuple of
of Markov chains initiated here is of independent interest ad 11+ 2:-- .7} IS then represented symbolically as a tuple o
can potentially lead to other applications. intervals(dy, da, . .. ,d,) with d; being the interval in which

u(i) falls. Such a tuple of intervals which symbolically repre-
sents at least one probability distribution is callediscretized
. INTRODUCTION distribution In general a discretized distribution will represent
Finite state Markov chains are a fundamental model ah infinite set of concrete distributions. In what followsg w
probabilistic dynamical systems. They are well-undemdtoavill often identify a discretized distribution with the sef
[10], [20] and the formal verification of the dynamics ofprobability distributions it represents.
Markov chains is also well established [2]-[4], [7], [9],.1+ A simple but crucial fact is that the set of discretized
[14], [17], [23]. In a majority of these studies, the Markowistributions, denoted, is a finite set. Consequently, each
chain is viewed a probabilistic transition system over & strajectory generated by an initial probability distritmrti will
of nodes, often called states in this context. The goal is tmiquely induce a sequence over the finite alphdhetience
reason about the probability space generated by the pathgh&f dynamics of\/ can be studied in terms of a language over
the transition system using probabilistic temporal logiash the alphabeD. Our focus here will be on infinite behaviors.
as PCTL [4], [14], [17]. Consequently the main object of our study will lig,, an
An alternative view - which we follow here- is to view thew-language contained iv~.
state space of the chain to be the set of probability dididhs To reason about the symbolic dynamics, we formulate a
over the nodes of the chain. The Markov chain transforms (idinear time temporal logic in which an atomic proposition



will assert “the current probability of the nodelies in the (M, D;,)= ¢ implies thatL,, itself meets the specification
interval d”. The rest of the logic is obtained by closing undep. On the other hand if it is not the case tHat, D,, )= ¢
propositional connectives and the temporal modalities ae@  then we can conclude that,, does not meet the specification
until in the usual way. We have chosen this simple temporal The remaining case is whefd/, D;,,)= ¢ but it is not
logic in order to highlight the main ideas. As we point outhe case thatM, D;, )= ¢. Then, we can decide to accept
in Section Il this logic can be considerably strengthendtat L,; meets the specification but onédyapproximately In
and consequently a rich variety of quantitative dynamicatany applications, this will be adequate. In case it is nog o
properties can be formulated. Our main results will easilyan fix a smallere and, with minimal additional overhead,
extend to cover this strengthened version. perform the two verification tasks again and attempt to otdai
The key verification question is whether each sequencedsfinite answer to the question whetlig; meets (exactly) the
Ly is a model of a specificatiop. If Ly, were to be av- specification. Apart from these verification results, théioro
regular language then standard model checking technigures of the symbolic dynamics of Markov chains we develop here
be applied. Unfortunately, even for restricted Markov aai is of independent interest and can lead to other application
this appears to be unlikely. To sketch the nature of the prabl We discuss briefly one such application in the final section.
let us assume tha¥/ is irreducible and aperiodic (the precise To conclude this introduction, we will often use basic résul
definition is given in Section V). This guarantees tiidthas concerning Markov chains without an attribution. Theseites
a unique stationary distributioms (i.e. - M = p¢). Further, can be found in any standard text book on Markov chains;
every trajectory will converge ta ;. However, ifu ¢ is a corner for instance [10], [20]. Finally, we do not address compiexi
point of a discretized distribution, a trajectory can in @&l issues in detail in order to keep the focus on the main ideas.
spiral towardsy; while visiting the discretized distributions However, many of our constructions can be optimized and we
nearuy in a fashion which is not ultimately periodic. This isplan to explore complexity issues in our subsequent work.
illustrated in fig. 1. An algebraic cause of this phenomenon
is that M will typically have eigenvalues that are complex.
Consequently, the angle by which a distribution is rotatedt Related work
by an application ofM will be a non-algebraic quantity. Symbolic dynamics is a classical topic in the theory of
As a result, the exact order in which a trajectory visits thédynamical systems [19]. Most of the theory is based on the
discretized distributions in the neighborhopd is very hard notion of shift sequences, with shifts of finite type playing
to pin down. an important role in coding theory [18]. Here, instead, we
We bypass this basic difficulty by constructing approximatecus on the symbolic dynamics from a formal verification
solutions to our verification problem. We fix an approximatiostandpoint.
factore > 0 and show that each symbolic trajectoryfi; will Our discretization quotients the infinite set of probayilit
consist of a transient phase and a steady state phase.fiirthéistributions into a finite set of discretized distributsorin
&, is the symbolic trajectory induced by the initial distritant  spirit, this is similar to bisimulation relations of finitadex
u, then in the steady state phagg,will cycle through a set studied in the theory of timed automata [1] (using the notion
of final classes of discretized distributions. These finasks of regions or zones) and in the theory of hybrid automata.[15]
will be determined byM, the initial distributiony ande but There are however two crucial differences. In our settiregeth
the number of such classes will depend onlylnUsing this are no resets involved and there is just one mode, namely
insight, we define the notion of anapproximation of,, for the linear transform\/, driving the dynamics. On the other
e > 0. Under our definition, i’ € D“ is ane-approximation hand, for timed automata and hybrid automata one succeeds
of &, then¢’” will agree with¢,, during its transient phase; andin obtaining finite index bisimulations only in cases whéve t
for eachk in the steady state phasg(k) and&, (k) will be  dynamics of the variables are decoupled from each other. In
in the same final class. Due to the influences@n the final our setting this is naturally a deal breaker. Consequehtly t
classes, this will have the consequence thdk) and¢’(k) symbolic dynamics we explore is delicately poised between
will be at moste-distance apart, for every. "too coupled to analyze by using bisimulations of finite iRtje
This leads to two interesting notions 81 e-approximately and “expressive enough to lead to undecidability”.
meeting the specificatiop. For convenience, we assume that Viewing a Markov chain as a transform of probability dis-
the initial (potentially infinite) set otoncretedistributions is  tributions and carrying out formal verification of the retsg
represented by a discretized distribution, . dynamics has been explored previously in [7], [11], [13]. In
1) (M, D;y,) e-approximately meets the specificatiprirom fact, the work reported in [7], [11] deals with MDPs (Markov
below -denoted(M, D;,, )= ¢ - iff for every u € D;,, Decison Processes) instead of Markov chains. However by
there existsan e-approximation of¢,,, which is a model considering the degenerate case where the MDP accesses just
of ¢. (§, is the symbolic trajectory induced hy). one Markov chain we can still compare our work with theirs.
2) (M, D;y,) e-approximately meets the specificatiprirom  Firstly [7], [11], [13] consider only one initial distribigin and
above-denoted(M, D;,)f= ¢ - iff for every u € D;,, hence just one trajectory needs to be analyzed. It is difftoul
everye-approximation of¢,, is a model ofep. see how their results can be extended to handle multiplalinit
Our main results are that givel/, D,,, ¢ and ¢, check- distributions of the kind we consider. Secondly, they study
ing whether(M, D,,,) e-approximately satisfiew from be- only irreducible and aperiodic Markov chains. In contrast w
low (above) can be effectively determined. We note thabnsider the class of all Markov chains. Last but not least,



they impose the drastic restriction that the unique fix point ~ As an example, suppose= 3 andZ = {[0,0.2), [0.2,0.4),
the irreducible and aperiodic Markov chain isiaterior point [0.4,0.7),[0.7,1]}. Then ([0.2,0.4),[0.2,0.4),[0.4,0.7)) is
w.r.t. the discretization implicitly induced by the specdiion. a D-distribution since for the distributior{0.25,0.25,0.5)
In [7], a similar restriction is imposed in a slightly morewe have 0.25 € [0.2,0.4) while 0.5 € [0.4,0.7).
general setting. Since the fix point is determined solely Byn the other hand, neithg({0,0.2),[0,0.2),[0.2,0.4)) nor
the Markov chain and has nothing to do with the specificatiofip.4,0.7),[0.4,0.7), 0.7, 1]) are D-distributions.
this does not seem a natural restriction. Naturally whetmsuc  We have fixed a single discretization and applied it to each
restriction is imposed in our setting, we can also easilaibt dimension to reduce notational clutter. In applicatiowsrd-
an exact solution to our model checking problem. duce complexity, it could be useful fix a different discratinn
Finally, intervals of probabilites have been considerefdr each dimension (e.d; = {[0, 1]} for a “don’t care”i).
previously in a number of settings [21], [24]. The ambitiou®ur results will still go through easily for this extension.
goal in these studies is to generalize the classical thebry oA concrete distributiony can be abstracted as &-
additive probability measures to intervals of probabi#jues. distribution D via the mapI' given by: D(p) = D iff
Our aim here are more modest in that we just want to UsRi) e D(i) for everyi. The mapI is well-defined since

probability intervals to derive the symbolic dynamics. 7 is a partition of[0, 1]. FurtherD is non-empty andinite.
For eachD-distribution D, we defineCp = {1 | I'(1) = D}.
B. Plan of the paper Abusing notation, we will often write, € D (or p is in D

In the next section, we define the notion of discretize%tc) instead of: € Cp.

distributions and the symbolic dynamics of Markov chaims, | Ve focus on infinite behaviors. With suitable modifications,
Section IlI, we introduce our temporal logic, discuss how R our results can be specialized to finite behaviors as. well
can be extended and formulate our main results. In Section fy frajectory of M is an infinite sequence of concrete distri-
we describe the constructions for irreducible and aperiodfUtioNSkop - - such thau - M =y for everyl > 0. It

Markov chains; and in Section V-A for the irreducible bufS Worth emphasizing that we are viewidd as a dynamical
periodic case. In order to bring out the main technical issire SYStemM whose state space is the set of probability distoilwsit

both these sections we allow just one initial concrete idiser OVeT X+ Thus our notion of a trajectory is the standard one
tion. In Section V-B, we extend the two previous construgsio US€d in the theory of dynamical systems. We [ERJ

to an (infinite) set of initial concrete distributions. Filgain d€note the set of trajectories df and will often drop the
Section VI, we remove all the restrictions. A summary angHPScriptM. As usual forp € TRJ with p = pop ...,

future directions are presented in the concluding section. We shall view p as map from{0,1,...} into the set of
distributions such thap(l) = p; for everyl. We will follow

a similar convention for members @~, the set of infinite

) . sequences ovdp. Each trajectory induces uniquely an infinite
Through the rest of the paper we fix a finite st = gequence of-distributions vial’. More precisely, we define

{1,2,...,n}. We refer to members ot as nodes and let 1w . 7R _ pw asT¥(p) = € iff T(p(¢)) = €(¢) for every

j range overt. A probability distribution overt, is as usual ;|5 what follows we will writeT* as justr.

amapy : X — [0, 1] such that), (i) = 1. Henceforth we  \yo ish to study the symbolic dynamics dff, given
shall refer to a probability distribution ove¥' as a distribution an initial set of concrete distributions. One can choose a

and sometimes as a concrete distribution. As emphasized, [fiyper of different mechanisms for specifying this set. For

the |ntrodu<_:t|0n, we shall View a Markov chain as a IInear,ronvenience we let a singe-distribution D;,, denote the set
transformation of distributions. Hence a Markov chalfh ¢ sl concrete distributions, namelyu | T'(1) = Din}.

over X will be represented as an x n matrix with non-
negative entries satisfyiny_, M (i, j) = 1 for eachi. Thus, v
if the system is currently residing in the notlehen M (%, j) :
is the probability of it being inj in the next time instant.

We will say that M transformsy into p/, if - M = u'.

Note that a distribution is represented as a row vector aed th

(matrix) multiplication is from the left sincé/ (i, j) denotes L(1, 6.8)=(dr. do. dr
the probability of going from to j.

We fix a partition of[0,1] into a finite setZ of intervals
and call it adiscretization We letd, d’ etc. with or without T(3.3,4)
subscripts to range ovef. Let D : X — Z. Then D is s
said to be aiscretized distributioriff there exists a concrete
distribution 1« such thatu(i) € D(:) for everyi. We denote o )
by D the set of discretized distributions, and Bt D’ etc. rnl
with or without subscripts range ovér. We shall often call /0 05 :

a (jlscretlzed distribution ®-distribution We \_NIH als,o often Fig. 1. A concrete and symbolic trajectory in tBedimensional space wrto.
write D as ann-tuple D = (dy,ds,...,d,) with D(i) = d; the discretization{d; = [0,0.5),d2 = [0.5,1]} (projected onto ther,y
for eachs. plane, with values inc,y andz.)

Il. DISCRETIZEDDISTRIBUTIONS

T




Since D;,, will in general contain an infinite set of concretéNe are also given a set of initial distributions presented as
distributions, this is not very restrictive. Further, o@sults a D-distribution D;,,. We shall say thatM, D;,) meets the
will at once extend to a set oD-distributions as initial specificationy -and this is denoted/, D;,, = ¢ - iff {, € L,
distributions. In the concluding section, we point to othdor everyu € Dy, (iff Ly C Ly).
means of specifying the set of initial distributions.

We now defineLy; p,, = {¢ € D¥ | 3p € TRJ s, p(0) € A. Extensions to the logic
D;n, T'(p) = &} We view Ly p,, to be the symbolic Before we proceed to consider the solution to the model
dynamics of the systerl, D;,,,) and sometimes refer to its checking problem defined above, we discuss briefly the ex-
members a®-trajectories or symbolic trajectories. Sinfg,, pressive power of our logic and how it can be extended.
will be fixed and clear from the context, from now on we will We can assert that currer®-distribution is D via the
write Ly instead ofLys p,,, - (propositional) formula/\; (i, D(i)). Hence we can assef?

Given (M, Dy, ), our goal is to specify and verify propertieswill appear infinitely often(0< A, (¢, D(i))) or only finitely
of thew-languageL ;. If Ly, were to be anv-regular subset often (¢O ~ A, (i, D(i))) along a symbolic trajectory. For a
of D* then well-established techniques can be brought sobsetD’ of D we can assert that the set Ptdistributions
bear on this problem. Unfortunately this is unlikely to be ththat appear infinitely is precisel®’, (i.e., ©0\/,.p, D).
case, even for restricted Markov chains, as explained in théWe can classify members d&f as representing “low” and
introduction. Our present conjecture is thiaf; is not a w- “high” probabilities. For example, i contains10 intervals
regular language in general. In light of this, we shall depel each of length).1, we can declare the first two intervals as
a pragmatic approximate method to solve verification proile “low” and the last two intervals as “high”. In this case we
concerningLj; without placing any restrictions of/. As it can form assertions such as “whenever the probability isf

will turn out, our method will often yield exact results. high, the probability ofj must be low” Q((¢, d9) V (¢, d10)) D
I1l. THE VERIFICATION PROBLEM We can also considerably extend the expressive power of

We shall formulate here a linear time temporal logic for §1e atomic propositions and hence that of the logic. We can

Markov chainM that is accompanied by a discretizatign 0 so by letting an atomic proposition to be a suitable sexen

Our linear time temporal logic is denotdd’L;. The set of taken from the first order theory of reals, which is known to
atomic propositionsAP is given by: AP = {(i,d) | 1 <i < be decidable [22]. To start with, we can define théplace

n,d € T}. The formulas ofLTL; are: predicatedist(xy, za, . .., x,) to assert thatzy, z2,...,z,)
’ is a concrete distribution. We just have to say that each

is non-negative and that_, z; = 1. We can say that the
foisaf la th is al ¢ I distribution (x1,x2,...,z,) is in the D-distribution D by
* :f v 'sg c/>rmuzfat er|0<p tﬁ as‘cJ>a/1_orrr|1u a ¢ | assertingz; € D(i) for eachi. To be precisex; € D(i)
* T pandy are formulas therplip” 1S also atormuia. ¢ o appreviation fofl < z;) A (z; < ) if D(i) = [I,r)
The atomic proposition(i,d) asserts that if the currentynq similarly for the case wher®(i) = [I,r]. We can

discretized distribution of\/ is D then D(i) = d. This in eyt form an arbitrary sentenae expressing a polynomial
turn means that if the current concrete distributionAdfis  -qnstraint over{zy,as,. .., z,} saying that the distribution

p then p(i) € d. The derived connectives of propositionaly; ss(y,, z,, ..., z,) satisfiesy. Finally, we can assert that
logic such asA, 5 and = are defined in the usual way assyery concrete distribution i satisfiesy. For instance with
also the unary modality> via () = ttUp wherett is the , _ 4 we can say that for every distributida, zo, . . ., z,)
constant that always evaluates to “true”. We will then alsq p it is the case thal(z; + x2) < 3(z3 + 24)%. More
haveD(y) =~ (O(N ©))- o . _to the point, we can defin&(z,,z2,...,2,) = >, z;-i and
The semantics of the Ioch is given by the satisfactiofssert that “eventually, the expected value will alwayiriithe
relation ¢, ! |= ¢ where¢ € D, [ > 0 andy is a formula. jnterval(2,3.5)". In actual applications, instead of the abstract

« Every atomic proposition is a formula.
e If ¢ andy’ are formulas then so are ¢ andy V ¢'.

This notion is defined inductively via: node sett we will have a vector of variables associated with
o L UE(,d)iff €(1)(1) =d each node and these variables will denote the values ofesntit
« The propositional connectives andV are interpreted in such as temperature, pressure, queue lengths, concemtrati
the usual way. levels of molecular species etc. Hence a rich set of quéingta
e LIEOpIff i+l properties can be captured by the atomic propositions amd th
o &1 Uy iff there existsk > [ such that, k |= " and time evolution of these quantities and their relationstipsa
Ul Epforl < <k be captured by the temporal modalities.

We say that is a model ofy iff £,0 = ¢. As usual,L,, is The key point is that the approximate solution to the model
the set of models of. In what follows, for a distributiop, we  checking problem we develop will go through in this extended
let p,, denote the trajectory i"RJ which satisfiesp(0) = . setting. Hence it is merely for notational convenience we
We let¢, be the symbolic trajectory generated hyln other present our results in the simple setting/df’Lz.
words, &, = I'(py). . .

The model checking problem we wish to solve is thB- The approximate model checking problem
following. We are given a finite state Markov chain M, a As pointed out earlierl,; is not known to bew-regular
discretizationZ and a specification as theTLz-formula p. and seems unlikely to be so except in special cases. Hence



an explicit solution to this model checking problem is out), Dm)f: e and let¢, € Ly with p € Dy,. Since every
of reach for the general class of finite state Markov chainsapproximation of¢, is in L., £, € L, as well. On the
Consequently we seek an approximate solution. Our notiother hand if M, D;,,) does not meet the specificatigrfrom
of approximation will be sharply guided by the structure dbelow, then for some: € D;,,, no e-approximation of,, is a
the symbolic dynamics of the Markov chain. To make thimodel of ». In particular,{,, is not a model ofp and hence
connection, we shall first summarize the main features of th&f/, D;,,) - . [ |
symbolic dynamics developed in the subsequent sections.  Our main result is:

We fix an approximation parameter> 0. We expect to Theorem 1:Let M be a Markov chainD;,, the initial set
be a small fraction of the length of an intervaldn A crucial of distributions, a specification and > 0 an approximation
notion is that of are-neighborhood. We first use thie, norm  factor. Then the questions wheth@r, D;,,)|= ¢ and whether
to define the distanc& between two distributiong and / (M, D;,)= ¢ can both be effectively solved.
as:A(p, ') = >, |u(i) — 1/ (i)|. We say that a distributiop Here, we have fixed a discretization first and designed a
is e-closeto 1/, if A(u, /) < e. The e-neighborhood of the temporal logic that is compatible with it by the choice of
distributiony is denoted ad/. (1) and is given byD € N (1) atomic propositions. Alternatively we could have startathw
iff there existsy” € D such thatA(u, 1) < e. We next define a temporal logic which mentions point values of probalaiti
F C D to be ane-neighborhood iff there exists a distributionand derived a discretization from these values. This ischigi
v such thatN(u) = F. The main feature of the symbolicthe approach followed in [11], [13]. We however feel that
dynamics that we shall establish in the subsequent sectidifthg a discretization independent of a specification and
can now be summarized as follows. formulating the symbolic dynamics of a Markov chain in terms

Lemma 1:Let M be a Markov chain, and > 0 be an of its D-distributions is of independent interest.
approximation factor. Then, there exists (i) a positivegar
0 that depends only o/ (ii) a positive integerK< that

. IV. IRREDUCIBLE AND APERIODICMARKOV CHAINS
depends only onM and e and (iii) an ordered family of

e-neighborhoods{ F,, 0, F,. 1, - -, Fue—1} - called thefinal We will build up the proof of our main result (Theorem
classesof u s.t., for everyk > K¢, £,(k) € Fu (k mod 0), 1) by starting with aperiodic Markov chains with a single
where¢,, is the symbolic trajectory generated by initial distribution. In the subsequent sections we wilhtdge

Thus, there will be a transient phase of length at nigst increasingly more general cases culminating in section VI.
followed by a steady state phase in Wh@u\/ill cycle through For each of the cases, the bulk of the proof will consist of

the e-neighborhood familie$.F,, o, Fy. 2, . - -, Fo—1} forever. effectively computing the three entities asserted in Lemma
Note however that the exact memberBf ,, which will be 1, namely, (i) the positive integef (i) the final classes
hit at each time is hard to characterize in a finitary manner{ %0, F.1, - - -, Fu,6—1} €ach of which is required to be an

Now, let .« be a distribution, ang’ € D. Then we will say neighborhood and (iii) a positive integéi“ that characterizes
that¢’ is ane-approximationof ¢, iff the following conditions the (maximum) length of of the transient phase.
are satisfied: We will often use facts from the theory of Markov chains

. €(k) =&, (k) for 0 < k < K°. without providing attributions. They can be found in, say];

« For everyk > K¢, ¢'(k) belongs taF,, (5 mod ), Where [20]. Let M be a Markov chain ovef’ = {1,2,...,n}. As

{Fr0:Fuzs- - Fuo_1} is the set of final classes of ugqal, the graph dW is the directed grap@n_f = (X, E_) WIFh

(i,7) € Eiff M(i,5) > 0. We say thatM is irreducible in
case(), is strongly connected. Assume thet is irreducible.
We define the period of a nodez N to be the gcd (greatest
common divisor){d|M<(i,i) > 0}. Then remark that in an
ireducible Markov chain, all nodes have the same period,
which we call the period of the chain. The irreduciblé/
is said to beaperiodicif 6 = 1. OtherwiseM is said to be
periodic, of periodd.

Irreducible and aperiodic Markov chains are sometimes
referred to as regular Markov chains. We will however avoid
this terminology here. Fig. 2 displays an example of an

Notice that every,, is ane-approximation of itself. We can
now formalize the approximate model checking problem.
Definition 1: Let M be a Markov chainpD;,, an initial set
of distributions > 0 an approximation factor and € LTLz:
1) (M, D;,,) e-approximately meets the specificatigrfrom
below and this is denoted a&/, D, |= ¢, iff for every
i € Dy, it is the case that’ € L, for somee-
approximatiorg’ of £,,.
2) (M, D;,,) e-approximately meets the specificatiprirom
above and this is denoted a&/, Dmfz o, iff for every
p € Din, It 'S, the case that’ € L, for every e g cible and aperiodic Markov chain.
apprommgtmnﬁ Of & ] ] ) ) We start with a Markov chaid/ which is assumed to be
~ The two notions of approximate satisfaction yield valuablg, jreducible and aperiodic Markov chain with the initial
information about exact satisfaction as follows. distribution.;,,. Our goal is to establish that Theordnholds
Lemma 2:Let M be a Markov Chaing > 0 andy be a oy this case.
property. Ther: As may be guessed, for this cage= 1.

1) (M,Din)E ¢ = (M, Diy) = ¢, and To compute the final classes we first recall the standard
2) (M,Din) ¥ ¢ = (M, Din) I~ . fact M being irreducible and aperiodic will have a unique
Proof: Both parts follow easily from the observation thastationary distributionf. In other wordsf - M = f and hence

each¢, is an e-approximation of itself. To see this, assume¢ is also often referred to akefix point of M. One can easily

5



computef by solving (in time quadratic in) the linear system
of equationsx - (M — I) = 0 where[ is then x n identity
matrix.

We now fix F = N (f), the e-neighborhood off. Thus in 3

Fixpoint= (5, &)

ST

eo

= 3 2
the present case, there will be just one final class. A further’ 0 Vo 5 5
special case arises whefi = {Dy;,,} is a singleton. In this 7 s 3
case it must be the case thate Dy;,. Otherwise, we will 10 0 10

have D # Dy, where f € D. Clearly f € D implies D € Fig. 2. An ireducible and aperiodic Markov chal

N.(f)- This leads to the contradiction thatis not a singleton. K¢ — (. K. ConsequenthA (- M, f) < ¢ for every and

Hencef € Dy;,. For this case -which is essentially the Oneeveryk > K
treated in [7], [11], [13]-the model checking problem can bé Sincej\&(f) — F we now have that,.(k) € F for every

solved exactly. This will follow easily from our approxingat .
solution to the model checking problem detailed below. pand everyk > K°.
Through the remaining portions of this report we will
implicitly use the fact that, (k) = p - M* for every . and
everyk and for everyM . We also recall (again) that, is the
trajectory generated by the distributipnand thaf(p,,) = &,,.
We now turn to computing<¢, such thatu;, - M* € F for
everyk > K*¢. Anticipating the needs of the later sections, we ) _
will fix K< so that for for everys (and not justu;,) it is the # Solution to the model checking problem
case thay: - K* € F for everyk > K°. We begin with the  Recall that, in this section, we are assuming that we have
following facts concerning irreducible and aperiodic Mark just a single initial distributiory;,,. To determine whether
chains, as can be found in [16]. (M, uin)EE ¢ we will construct a non-deterministic Buchi
Proposition 1: 1) Let M be an irreducible and aperiodica@utomaton3 running over sequences P~ such that the

Markov chain. Then there existssuch that\/*(i, j) > 0 language accepted Wy is non-emptyff (M, puin)f= . Since
for everyi, j and everyk > ¢ the emptiness problem for Buchi automata is decidable, we

2) Let M’ be a Markov chain such that/’(i, j) > 0 for will have an effective solution to our model checking prable
everyi, j. Then there exists such thatd) < < 1 and 10 Start with, lets = 247 with AP, being the set of
Ay - M, o - M) < 1 % A(ur, pi2) for every pair of atomic propositions that appear n Considera: € . As
distributionsyu1, . B before, we will viewa to be a map form{0,1,2,...,} into

One can effectively fix the constaftmentioned in the first >+ 1€ notion ofa, k [=x ¢ is defined in the usual way:

part of Proposition 1 to bé = n? — 2n + 2 thanks to [25] * &k s (i,d) iff (i,d) € a(k).
(also see [26]). « The propositional connectives are interpreted in the stan-

[ |
In fact, more optimal values foK¢ can be obtained using
more involved techniques, e.g. spectral theory. We give ya wa
to compute such a value in appendix, as complexity is not the
focus in this paper.

As for  mentioned in the second part of Proposition 1, the ~ dard way.
following value is given in [16]. Assume that’ is such that * F= O(p) iff o,k +1 '_:2 ®-
M'(i,5) > 0 for everyi, j. Lets = min{M'(i,j)}:;. Clearlly ~ * @k [=x ¢1Ups iff there existst’ > k such that, &' ==
0<1-—n-6 < 1 since the row sum od/’ is 1 for every row. p2 anda, k" =5 o1 for k< k7 < K.
fOo<1l—n-dthenwesety=n-0.1f0=1—n-d, we We say thatv is a ¥-model of ¢ iff a,0 =5 . This leads
setn =n-(3). In fact for the latter case, instead §fwe can 10 L, = {a | o, 0 = ¢}

choose any positive rational such thaty’ < 4. We next construct the non-deterministic Buichi automaton
We are now ready to effectively establish the existence ¢f = (@, Qin, %, —, A) running over infinite sequences in
K¢ with the required property. ¢ such that the language accepted.dys exactly L. This

Lemma 3:Let M be an irreducible and aperiodic MarkovS @ standard construction [23] and here we shall recall just
chain. Then one can effectively compute a positive intdger the basic details. They will be used to establish Theorem 2
such that for every distributiop and everyk > K¢ we have below.

Ay~ M*, f) < e. Consequently, (k) € F for everyy and We defineCL(yp), (abbreviated as just'L) the (Fisher-
everyk > K°. Ladner) closure of to be the least set of formulas containing

Proof: By the first part of Proposition 1 and the remark® @nd satisfying:
aboveM* (i, j) > 0 for everyi,j and everyk > ¢ with ¢ = « ¢ € CL iff ~ ¢ € CL (with the convention~~ ¢ is
n? —2n+2. Let M = M’. Again according to Proposition 1 identified with ).
and the remarks above we can effectivelyfisuch thath <« If 1V 42 € CL thenyy, ¢, € CL.
n<landA(uy M, pus-M') < n.(A(u1, o)) for every pair ¢ If O(¢) € CL theny € CL.
of distributions i1, yio. Let K be the least integer such that * If ¥1Uz € CL thenyy, 2, O(¢1Utpz) € CL.
n .2 < e. For any distributior: we now haveA (u - M*, f- We next define amtomto be a subsef of C'L satisfying
f\/[\K) = Ap - ]T/[\va) < 0% . A(u, f) for everyk > K. the following conditions. In stating these conditions welase
But thenA(y, f) < 2 according to the definition of\. Hence the formulas mentioned are L.
A(p- M*, f) < e for everyu and everyk > K. We now fix — « ¢ € Z iff ~ ¢ ¢ Z.



. 1[)1\/’1/)2€Ziﬂ: ’1/11€ZOI'7,Z12€Z.
. 1[)1U’l/)2 c 7 iff ’1/12 cZ Orlﬁl,O(’l/)lU’l/)Q) € Z.

Finally we define = 2¢Lv where CLy is the until

run of B over the infinite sequence € X with a(k) = Y
for eachk. Consequently the language accepted3ois non-
empty as required.

formulas contained i’ L. This leads to the Biichi automaton Next suppose that the language acceptedBoys non-

=(Q,Qin, X, —, A) given by:
e Q = AT x G where AT is the set of atoms.
e (Z,H) € Qi iff ¢ € Z. Further,vyUypy € H iff
Uy € Z andwg §é Z.
« —C Q x XY x @ is given Dby:
(Zl, Hl), Y, (ZQ, Hg)) c— iff:
1) (i,d) €Y iff (i,d) e Z
2) O(’L/J) € 7y iff Y € Zy
3) SupposeH; is non-empty. Them, Uy, € Hy iff
U € Hy andipy ¢ Zo.
4) Supposed; = (. Theny Uy € Hy iff 1 Uihs € Zo
andl/Jg ¢ Zs.
e (ZH)ec Aiff H=10

empty. Then there exists € X“ and an accepting ruff :
{0,1,2,...} — R of B overa. Let Y(k) = ((sk, (Z, Hx))
for eachk. We now defined’ as follows. (i)¢’'(k) = T'(ux)
for 0 < k < K°© wheres, = (ug, k) for 0 < k < K*. (ii)
¢'(k) = s for k > K°. By structural induction on) we
can now easily show that .k = ¢ iff v € Z; for every
k and everyy € CL. Sincep € Z, this will establish that
¢,0 = ¢. By construction&’ is an e-approximation of¢,,.
This completes the proof. [ ]

To determine whethefM, 1;, )= ¢, we first construct the
non-deterministic Blichi automate#’ such that the language
accepted byA’ is preciselyL.,. We then repeat the above
construction usingd’ in place ofA to construct the automaton
B’. It is then easy to show that:

We can now define the Buchi automaton we seek. FirstTheorem 3:M, u;, /= ¢ iff the language accepted 4y is

let S = {(k, pin - M*) | 0 < k < K¢}. Then our Bichi
automaton i3 = (R, R;,, X, =, B) defined via:

R = (SUF) x Q is the set of states, whefE = N (f)

is as defined earlier.

e Rin ={(0, uin)} X Qin is the set of initial states.

« The transition relatior= is the least subset @@ x X x R

satisfying the following conditions

First, Supposé(k, 11),¢) and (( w),q") are inR and

Y C AP,. Then((k,n),q),Y,(K',1'),q")) €= iff the

following assertions hold:

1) K=k+1landu-M =y, and

2) Supposei,d) € AP,. Thenp(i) € d iff (i,d) € Y,
and

3) (¢.Y.q') e—

Next, suppose((k,u),q)) and (D,q’) are in R with

D e F.LetY C AP. Then((k,p),q),Y,(D,q) €=

iff k= K¢ and (i,d) € Y iff p(i) € d(i). Furthermore,

(¢.Y.q') €

Finally, suppose(D q) and (D',¢") are inR andY C

AP,. Then((D,q),Y,(D’,q")) €= iff for every (i, ) €

APW D) =d iff (i,d) e Y Further,(q,Y,q’) €

o The set of final states iB = F x A.

We can now show:

Theorem 2:(M, pin)l= o iff the language accepted by
is non-empty.

Proof: Suppos€ M, pin )= . Then there exist§’ such
that¢’ is ane-approximation o, andu’,0 = ¢. Fork > 0,
we setZ, = {¢ | v € CL and¢',k = ¢}. It is easy to
check thatZ is an atom for everyt. Next we define{ H}
inductively via: ’L/Jl Uwg € Hy iff wl U’L/Jg € Zy and wg §é 2.
Next supposedy, is defined. Therf{,; is given by: If Hy, is
non-empty then)y Uys € Hyyq iff iU € Hy, and s ¢
Zry1.

We next define{si }r>o via: For0 < k < K¢, sp = pip, -
M*. And s;, = &' (k) for k > K*. Finally we define{Y;}r>0
via. Y, = Zip N APw.

Let T :{0,1,2,...} — Rvia Y(k) = (s, (Zx, Hy)) for
eachk. It is now stralghtforward to show that is an accepting

7

empty

Notice that transitions of andB’ check whether the current
distributiony satisfiesu(i) € d, or D satisfiesD(i) = d. Since
the first order theory of reals is decidable, we can also @ecid
whether (i) or D(i) satisfies a sentencg in this theory.
Hence our decision procedures easily extend to the setting
where atomic propositions consist of suitable sentencésein
first order theory of reals as discussed in the previous@ecti

V. IRREDUCIBLE PERIODICMARKOV CHAINS

We now consider irreducible Markov chains which are
periodic. We will establish our results in two stages. Wet firs
focus on the case of a single initial distribution. Then wevgh
how to handle a (possibly infinite) set of initial distribotis.

A. The single initial distribution case

Let us assume that we are given an irreducible and periodic
Markov chain M with the initial distribution p;,, and the
approximation parameter > 0. Our goal is to defin®, K¢
and{F,0,Fu1,-.-,Fuo—1}, the set of final classes qf;,
such that the premises of Lemma 1 are satisfied. We will then
proceed to establish Lemma 1 for the present case.

We setf to be the period of\/ as defined in the previous
section.

Our next task is to compute the final classes
{Fuo0,Fu1,---»Fuo—1}. A crucial observation in this
connection is thatt’ can be partitioned int@ equivalence
classes Xy, X1,...,Xp—1 such that in the graph of
M there is an edge from to j iff ¢ € A, implies
j € Xm+1 mode- An example of an irreducible periodic
Markov chain is shown in fig. 3(a) with perio8. In this
ChainXQ = {1,3},.)(1 = {2},X2 = {4}

As in the aperiodic case, every irreducible periodic Markov
chain has a unique stationary distribution. However, ita$ n
guaranteed that each trajectory will converge to this idistr
bution. For instance, the unique stationary distributibnihe
chain shown in fig. 3(a) |$15, 3 ) If one starts with the
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Fig. 3. Anirreducible and periodic Markov chain and its skaecomposition

distribution say(0, 1,0 0) then the chain will cycle through

(0,1,0,0)(0,0,0,1)(2,0,2,0)(0,1,0,0).... forever.

As before, we easily lift this map.,,

We now setK € = 6 - max,, K¢,. This leads to:

Lemma 4:For each distributiom over X and for eachk: >
K¢, we have that\(p, (k), g ™17) <e.

Proof: Let k > K = 0 - max,,¢qo,... 9—1} K- We first
prove the lemma for the case whénmod 6 = 0.

Let k = 6 - k. Thenk’ > max,,cqo,... 9—1} Ky, Fix a
distribution u. Let 8, = e, p(i) for 0 < m < 6. We
define the mags,, : X, — [0,1] for all m € {0,...,0 — 1}
by,

if B # 0

otherwise.

: Xy — [0,1] tO ), -

It turns out however that the dynamics of an irreducibld — [0,1] by letting x;, (i) = pm (i) for all i € X, and

and periodic chain can be, in a sense, decomposed into

dynamics of§ aperiodic components. The crucial observation It is easy to see that we can expregs as p

in this connection is that/? restricted taY,, is an irreducible
andaperiodic Markov chain for eachn in {0,1,...,60 —1}.
We will denote asM the restriction of M? to X,,. The

graphs of these chains for the example of fig. 3(a) are show2) A (.,

in fig. 3(b).

Each M,,, being irreducible and aperiodic, will have a

unique stationary distribution oveét,,, which we denote ag,,.
Now p;,, will induce 6 global distributions and in the limit)/
will cycle through these final distributions. The final dilstr-

tions crucially depends upon the probability mass conteibu

by ., to each member of the partitioAy, ..., Xp_1. We
accordingly definexy, ..., ap_1 via a,, = Zje?(m tin(4)-
For notational convenience, let us defifie : X — [0,1]

which is just f,,, extended tot’: For all : € X,
, fm(@) ifie X,
/
= 1
Jm(@) {0 otherwise. @

This is well-defined sinc¢ X, },,.co,....0—1} is @ partition of
X. Then, we define théinal distribution of ¢ associated
with p;,,, denotedg,, ., as the distribution ovei’ given by:
=Y mefo,...o—1} @m [, This then leads to the global
=gy, M™for0<m<6—1.

g//’/in
final distributionsvia: g7’

For the example shown in fig.2, let,, = (1,%,%.1) be
the initial distribution. Thenay = 4, &y = g and oy =
32 Furtherfo = (5,5) fi =), f2 = (1), and sof) =
(2.0.2.0).ff = (0.1.0,0), f; = (0.0,0,1). Hence.g,,, =
(5,5 10 3)-

We now define the set of final
{Frin0s Friin1s -+ s Fuom,0—13 Via: for0 <m < 6 —1,

Fuinm ={D €D | 3" € D, A(g; 1) < €}

We next turn to computingd<c. Recall that]f\fm, which is

the(j) =0 forall j € (X \ X,,).

Zme{o,...,efl} Bm i, This leads to the following properties:

P1) pu(k) = p- MF = Zme{o 01} B (1, - M*). This
follows from the linearity of multlpllcanon
M f) = Y |<um MOF)(0) = fr,(5)] =
et [tm - (M) )(G) = fin ()] = At - MY, fn):
This follows easily from the definitions.
P3) For allm such that3,, # 0, u.,_is a distribution of,,.

As k' > K¢, we haveA(u,, - M¥ | f,,) < e.

Now by (P1), we have\(p,, (k), g; ”‘”“) A(pu(k). )
= A(Zme{o,---,eﬂ} By, - MF), ZmG{O 0—1} P -
). This implies  A(p,(k), <
> ometo. o-13 B, - MF f1), triangular
inequality.

Applying (P2) and then (P3), we obta’uﬁ(pu(k),gz) <
> mefo,.. 9—13(Bme) = €, which completes the proof.

The other cases fdr = k’'6 4+ m for 0 < m < ¢ are proved
easily from thereA(p,, (k'0 +m), g ™) = A(p.(k'0) -
M™, g, -M™) < A(pu(k'0),8,) < ¢, due to the well known
fact thatA(u - M, p' - M) < A(p, 1) for any Markov chain
M. [ |

g/]j, mod 0)
by the

We next turn to the construction of a Buchi automat®n
such that the language accepted by this automAtdas non-
empty if and only ifM, ;. = ¢. As before, we e = 247

and first construct the non-deterministic Bichi automaton

= (@, Qin, X, —>, A) running over infinite sequences in
¥ such thatL 4, the language accepted by is exactly L,
the set of>3-models ofp.

classes We let S = {(k, pn - M*) | 0 < k < K¢}. In addition, let

F = Um]: in,M

The required Buchi automatdi = (R, R;,,, X, =, B) is
given by:

e R=(SUF)xQ is the set of states.

M? restricted toX,,, is an irreducible and aperiodic Markov * Rin = {(0, i)} X Qi is the set of initial states.

chain overX,,. For a/gistributionu over X,,, we denote by
pr, the trajectory ofM,, starting fromy, i.e., the sequence
(v, V~]/\/[\m, V~(]/\/[\m)2, ..
K¢, such that for every distribution of A, for everyk >
K¢,

APy (k) fm) <€ )

.). Then, by Lemma 4, there exists

« The transition relatior=> is the least subset @ x X x R
satisfying the following conditions.
Suppose((k, 1), q) and ((k',1'),¢') are inR andY C
AP,. Then((k,pn),q),Y, (K, 1),q)) e= iff the fol-
lowing assertions hold:

1) K=k+1landpu-M =y

2) Supposei,d) € AP,. Then(i,d) € Y iff pu(i) € d



3) (¢,Y,¢) e— easy to check that” = c¢- u+ (1 —¢) - i/ is a distribution
Next supposé (k, 1), q) and (D, q') are in R with D e and moreovery” € D;,. In fact the convex hull of any
F.lLetY C AP,. Then((k,n),q),Y,(D,q) €= iff set of distributions inD,,, will again be in D;,. In other
k=Kcand(i,d) € Y iff u(i) € d(i) for every(i,d) € Wwords, if ui,p2,...,pu € Dy @ander,ca,...,cu € [0,1]
AP. FurthermoreD € F,,. 1 and(q,Y,q") €—. with >7 e =1thenpu =ci-p1+ca-pa+...cu py IS @
Finally supposeD,q) and (D’,¢') are inR andY C distribution and moreover € D;,. A standard fact from the
AP,. Then(D,q),Y,(D',¢) e= iff (¢,Y,¢) €— theory of linear programming?] is that we can effectively

andD € F,,, ,n implies D' € Fy,. m+1 mod 6. More- find a finite set ofcorner points {1, 17, - - ki } S Din,
over, (i,d) € D iff (i,d) € Y for every(i,d) € AP, i.e., distributions inD;, such that for eachy € D,, there
e« B=Fx A exist ¢1,¢2,...,¢c; € [0,1] such that) ", ¢; = 1 andpu =

c1 - pih, + o i 4+ ..o+ ey - pg,. This fact will play a
By mildly modifying the arguments used to prove Theorem &rucial role in what follows. We first denote asP;,, the
in the previous section, we can now prove: set of corner pointgul , u2,,...,ul } of D,, and for the

Theorem 4: M, ;= ¢ iff the language accepted Wy is rest of this subsection, will often drop the subscrijpt’:
non-empty.

To determine whethei/, /imf: ¢ we first construct the
automaton4’ which accepts..,. We then use it instead of
the automator to construct a Blichi automatd®l such that
M, uinl= o iff the language accepted Hy is empty

Lemma 5:The set of stationary distributions af/? as-
sociated with evenyu € D;, is the convex hull of the set
of stationary distributions(g,,«)1<.<; associated with the
members ofC'P;,,.

Proof: As before, let (f)o<m<o—1 be the unique
stationary distribution for each componeat,, of X and
B. The multiple initial distributions case (fl.)o<m<o—1 denote their extentions ovet (see Equa-
tion (3) from the previous subsection). For edckl u < J,
we compute the weights gi* as g, = >, c, p"(z) for
eachm. Now supposer € Dj, with v = " ., ¢y -

Let M be an irreducible and periodic chain with periéd
We assume that the set of of initial distributions is repnése
as a discretized distribution;,,. We will assume the termi- ~* <
nology and notations developed in the previous subsectigh, Where cu € [0.1] and 35, ., .;c. = 1. Also, let
Given . € D;,, we already know how to compute the globaf'™ ~ Diex, V(1) for ea;:h m. Then it is easy to see
final distributiong;, that.- M**" will converge to. In fact as that om = D 1<ucy Cu - By for eachm € {0,....6 —
we proved in Lemma 4, there is a uniform bouAd on the 1}. That is, the gtqtlonary distribution to WhICb,,/ con-
number of steps after which every trajectory will belose to verges throughM 'S, Z0§m<9[21§u§J Cu + Bl =
all its final distributions. Unfortunately, we cannot haadhe 2=1<u<. Cul>om<o OS] = 221<u<s cusyi- We note that the
trajectories inD;,, one at a time since there will be in generaluples of distribution to whichp, ., will converge through
an infinite number of them. Hence we will group them into gepeated applications d¥/? is (X icney Cd(ngu - M™)) for
finite number of equivalence classes as follows. 0<m<86. - u

Let x be a distribution inD;, and let (gf,...,g0") Since one can effectively compute the set of corner points
be its associated global final distributions. Then we wilind their final distributions one can also effectively cotepu
say that ;1 has the e-approximate behaviorB =< K¢,

DDy - Dge; Do, ..., Dg_1 > if Dy = &u(k) for 1 <k < Now given the sequencB; --- Dg- € D and thef-tuple
K¢, andD,, = N(g);) for 0 < m < . There are only a (Dy, Ds,...,Dy_1) with D; C D, we can decide whether
finite number ofe-approximate behaviors due to the fact thahere exists:, € [0,1] with 1 <« < .J such that

D is a finite set. e Y e =1

Now suppos&u;,, .., € D;, have the same-approximate forléﬁng:Kf Z calpl - M*

/ ns Hin ‘ . v D 1<u<y Culpily, - M”) € Dy, and
behavior. Then it is easy to see thad/, Nien)L: o iff eforall0<m<0- 1, N(¥ culg - M™)) =
(M, )= . And (M, pin)I= @ iff (M, pif,, )= ¢). This .. IS g T,

leads to the notion of(M, B)i= ¢ which holds iff for We can decide this using the first order theory of reals. Gonse

some i € D;, whose e-approximate behavior iB, we = . )
have (M, u)= . Similarly (M, B)= ¢ holds iff for some guently we can compgt@, th(_a set.ofe—appro_xmate behawqrs
e Dm’ (M€ M)i; o. Clearly t’he algorithm of the previousoj M generated by distributions if;,,. An important fact is

section can be used to answer whether, B)l= o and }‘_ is a finite set. Hence for eaohapproxmate l_t)ehawor in

. . this set, we can use the procedure described in the previous
whether(M, B)= ¢, for anye-approximate behavioB. The ; . i .
) e . . , . ection and by taking the conjunction of all the outcomes we
issue however is which-approximate behaviors are wnnesseéan decide whethei, Dy )= o (resp.(M, Din)= ©)
(realized) by distributions iD;,,. y Vin)i2 ¢ P.(M, Din)= ¢).

To address this, we observe tha},, is aconvexset of con-
crete distributions. To bring this out, suppgsis a distribution
andc € [0, 1], thenc- u will be the mape-p : X — [0, ¢] given We finally turn to the general case. L& be a Markov
by c- u(i) = e(u(i)) for everyi. As usual, iff,g : X — [0,1] chain with D,, as the initial set of distributions. Let
then f + g is the function given byf + g(i) = f(i) + g(¢) for {SC4,SCs,...,SC,} be the set of maximal (in terms of their
everyi. Now supposeu, ' € D;, andc € [0,1]. Then itis node sets under inclusion) strongly connected components

VI. THE GENERAL CASE

9



As M is iteratively applied tou,,, the total probability
mass of the transient nodes will tend @0 To see this let
it € Xyn. Then there existx < |AXy.| and j € X.eo
such thatM*(i, j) > 0. Next we note that ifi; ... is a
path in Gy, and iy € X,... for somef with ¢ < k, then
iy € Xpee fOr everywv satisfying? < v < k. Consequently
we can find ap > 0 such that for everyi € X}, there
exists j € X,.. such thatM!¥eI(; ) > p. This implies
Sica, (pin - MI¥rnl) (i) < (1—p)- pin (i) for eachi € Xy,
Sincep > 0, we havel — p < 1 and hence for any > 0
(b) there exists a computablesuch that(y;,, - M*)(i) < J. Let

. . ) . K . €
Fig. 4. A general Markov chain (unlabelled transitions havebability 1) K be the least positive integer Such tmm" M )(Z) < 4

and (the Hasse diagram of) its poset of strongly connectesponents We now setk’; = K - and can easily show:
_ . _ Lemma 6:for all k > K1, >, fin - MF(i) < &

of G, the graph ofM. The relation=< over this set is  As noted above, for any > 0 there exists: such that(um
given by: SC < SC' iff there exists a node in SC, a pf*)(i) < &, Thusps, will tend to a distributiory},, (asM is
nodej in SC’ and a path fromi to j in Ga. Clearly = jteratively applied tqu;,) with 4, (i) = 0 for everyi € Xipm,.
is a partial ordering relation and the maximal elements UnCleingGM, we can explicitly compute the recurrent component
= (the final strongly connected components) are called the ;! as follows. Recall tha{X), X, ... X, } are the node
positive recurrent classe3 he chain restricted to each positivesets of the<-maximal elements of SC1,SCs,...,SC,} and
recurrent class is an irreducible chain which may be periodi hencelJ, ., <, Xo = Xree-
aperiodic. An example of a general Markov chain is shown in 7 restricted to eacl, is an irreducible Markov chain and
fig. 4(a) while the poset of its strongly connected composierthys we can decompose eaﬁn into its set of irreducible
is shown in fig. 4(b) (each strongly component is representgfld aperiodic components, o, Xy 1, ..., Xy 0,-1, as done in
by its set of nodes). If is a node that belongs to a nongection V-A. Consequently)/® restricted toX, ., will be
maximal strongly component then it is teansientnode. If anjrreducible and aperiodidViarkov chain forl < m < 6,
a node is not a transient node it isrecurrentnode. Thus, and1 < v < u with the unique stationary distributiof, ...
for instance in the example from fig. 4, nodgk 2, 3,4} are  Hence, by Lemma 3, for any given> 0 we can fix a constant
transientand, 6,7, 8,9} are recurrent. The positive recurrent?  for each of these components that will satisfy: for every
class{5,6,7} is |rredu0|ble and periodic with periogi while . > K;f for any distributionv, ,,, of X, ., the distribution
the positive recurrent clags, 9} is irreducible and aperiodic. ,, . M(“’ k) is §-CloS€ t0f .. We Now set = £ < and K, =

We will first sketch the main ideas for a single mmale max{K? 1. The reason for fixings in this fash|on will
distribution 1;,,. As before, given any Markov chait, 1 pecome Subsequent|y clear.
ande > 0, our goal is to computéi) the positive intege#,
depending only or\/, (i) the positive integei©, depending  Finally, we setk® = K + K. We note that by construction
on M ande, and(iii) define for each distributiop, the final X1 and K, and thereforek are all multiples off.
classeq F,,,m)meqo,..o—1} Such that Lemma 1 holds, i.e., for
everyk > K¢, &.(k) € Fuk moa o (§u being the symbolic ¢ petermining the final classes
trajectory generated by). In the three following subsections,
we will define these quantities and then prove the lemma.

We will use the same strategy as in Section V-A to define
the final classes. To this end, lete X}, and1l < v < r
and0 < m < 6 — 1 wherer and ¢ as define above. Then
A. Determiningd for & > 0, we definepy(i,v,m) = 3 ;cx,  M*(i, ), the

Given Markov chainM and its graphG s, let X,,., denote probability, starting fromi, to reachX,, ,,, in k6 steps of M
the set of transient nodes antl.. the set of recurrent nodes.(that is ink steps ofA/?). Notice that for allv, m, Xym iS a
Further, let {X;, X,,...X,} be the node sets of the- trap for M?, that is, if r € X, ,,, thenz - M" € Xym. We
maximal strongly connected components\éf In the example now definep(i, v, m) = limy_00pi (i, v, m).

above,{5,6,7} and {8,9} are the node sets of the twe- To see that this quantity exists (i.e., is well-defined), we
maximal components. note thatpy(i,v,m) is bounded from above by. Also, it
We now have U1<v<u)( = X,... Further,M restricted monotonically increases witlk as for any path inG,, of

to eachX, is an irreducible Markov chain and hence as ithe form zoz1,... 2w ... Ty With xo = i, if 4w € Xpm
Section V-A, it has a period, sa§,. We definef to be the thenz,g € X, ,, for 0 < u < «'. Hence, by the monotone
Icm (least common multiple) ofy,--- , 0,. convergence theorenti, v, m) exists. In term of LTL formula,
p(i,v, m) is the probability of the property\(EX,, ,,,) [5]. We
will follow [5] in order to to compute these numberg, v, m).

B. DeterminingK¢ X i
L , ! For all v,m, we define the linear operata®p, .,
The positive integef< ¢ will be defined as the sum of twoé 1 %een s [0, 1)% by ;

integerskK; and K, with K; determined by the transient node
and K> by the the recurrent nodes. Opym(x)=b+z-A
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where A is the matrix restriction ofM to A}.,, and b : Intuitively, this implies thatp,,, (K1) is ¢/2 close to a
Xirn — [0,1] is defined byb(s) = Zs’er,m M]s, s']. distribution i/ (which we define formally below) satisfying
Now, one can notice (see Theorem 10.15 in [5]) thdhe following properties:

(pk(i,v,m))iex,,. = OP} ,,(0), for 0 the null vector. We thus 1) ;//(3) = 0 for all i € X,,,, and

have (p(i,v,m))icx,,, = limk—cOpk ,,(0). This leads to  2) e, () = um for all v,m
Opvﬂn((p(i"U’m))ieXtrn) = (p(ivvvm))iez\’tm for all v, m. .
One can compute the set of solutions of this system of Iine\%
equations, for allu,m. The values for(p(i,v,m));cx,,, IS
one of these solutions. Equivalentlif(i, v, m));cx,,,, IS a
fix point of Op, . As stated in Theorem 10.15 of [5],
(p(i,v,m))ex,., isactually the least fix point adp,, ., (in the if i € Xy, thenh,,, (1) =0 (6)

space[0, 1]*¥e). This fact allows to determine uniquely the_ . _
value ofp(i, v, m) for all 4, v, m. Indeed, take any fix poinf € This statement (6) follows due to the fact that when A},.,,,

0, 1% Of Opy.m. ThatiS,0pu,m(y) = y. Now,y(i) > 0for €N & Xom for any v,m and so,,,(7) = 0. Now, it
all i € X,,,. That isy is bigger or equal to the null vector 'S possible thay/(i) # hy,, (i) for somei € Xrcc. But i
Now, y being a fix point andDp. ., being a positive operator, will converge toh,,,,, following the arguments of the previous
we gety = Opk , (y) > Opk (b) = (pr(i,v,m))icx,,. for section, so it suffices to wait anothéf, steps to get that
all k.. Hence at the limit fore 50, y(i) > pli, v, m) forall  Puin (K1 + K2) will be e-close toh,,,, . This intuition is made

i € Xy m, Which shows thatp(i,v,m))icx,,, iS indeed the precise in what follows. . _
least fix point ofOpy, . More formally, we sety/(i) = 0 for all i € X,,.,,, and for

Once p(i,v,m) is computed, for every distribution, &l 7. defin€ B =3 s pin - M7 (i), and /(i) =

Intuitively, one can understand as j;, - M where the

ry small probabilities in;,,, has been removed and placed

in X.... Notice thath,,,, also satisfies these two requirements.

The second one is by definition, and the first one is because

over X, we setal, = >,cyu(@)p(i,v,m) andh, = gj’: (pin - ME1(3)) for all i € X; ,,,. It is easy to check that:
2 v.m Qwm [y, AS beforef) . isjustf, , extended ovet’  C1) for all v,m, > ,cy, 4 (i) = gj’: e, (tan -
in the natural way. Also, as before, we defimg = h, - M™ ME1 (1)) = aj .
for all 0 <m < 6. We now define the final classes as: C2) A, pus,, (Kl);( - Siex |M/(i)/—_ Lin - MK;(Z'”. _
Fumm ={D €D |3/ € D, A(h;ﬁ,n,u’) <€} Dizy,, Min s MUY + D i p(0) = prin - MP(i) <
for m & {0 61} ' €/4+ Zj,m(Zier,m p(i) = pin - ME1(i)) = €/4+
Y ' Yim(Ciex,,, W (1) = Picx, ,, tin- M51(0)) = e/4+

o (@m = Lie, , in - MEH(0)) < €/2.
- . . The last inequality in Condition C2) holds thanks to (5).
Ihe key;QAderlvm?(Ehehmam;esult IS- Now, Condition C1) implies that the stationary distributio
emma /- (p#.m.(- ) By, ) < € g, associated withy/ in the sense of the previous section
Proof: By definition of K'; and Lemma 6, afteK, steps satisfiesg,, = h,,,,. Therefore, applying the same reasoning

D. The main result

we have thab’, .y, pin - M (i) < ¢/4. This implies that ,q i the previous section, & > max 0 - K&/, we get that
D> (i MM = D pan - MF() A’ - M52 hy,, ) <e/2 @)
VM IE€EXy, m 1€EXrec
1 Z i - M (3) > (1 — ¢/4) 3) Thus, we have
1€Xtrn A(ppi (K, by ) = Aptin 'MK1+K2ahum)
Also, we have for allk - § > K;, and for all j,m, <A@ - M2 hy, ) A, - METE2 K2y (8)
ZiGX]‘,m i - Mke(l) > ZiGX]‘,m Lhin MEr (z) since Xj,m < 6/2 + A(,uzn . MKI,,LL/) (9)
is an invariant set fon/?. Now, in particular, ; . (10)

i = in (1) - i M*(i, j . .
Yo,m ;{“ @) Foo JE; (i) The inequality (8) holds by the property of the norm. To prove
o (9), we use (7) and the standard fact that any Markov chéjn

= lim ( Z prin - M*0(5)) > Z prin - MF1(i) (4) satisfiesA (p-M, p/-M) < A(u, /) for any distributiongs, 1/

k—o00

JEX)m i€Xy,m HenceA(u - M2 p/ - M%2) < A(u, ), wherep = piy, -
In the following, we will write a, ., to meanati» purely M. Finally (10) follows by Condition C2) which completes
to avoid the cumbersome notation. It will be clear from ththe proof.
context that we mean the latter. Hence by (), ,,, o, m — [
Dicx, , Hin - ME())| = Y om(Qum = Dicx, . Hin - We can now easily extend the above lemma to show that for

MKI (Z)) = Zv m(aﬂym) - ZU m(ZiEXv m Hin - MKI (7’)) S all k 2 K€ with & mod 6 = U A(pl”n (k)’h:hn) S €. This’

1— (1 —€/4) = ¢/4, where the inequality follows by using follows by applying the same reasoning as in the last step of

(3). Thus, we have: proof of Lemma 4, i.e., by iterating/ sufficiently many times
from i, - M5". Finally, sincek ¢ does not depend om;,,, the
Z |cto,m — Z frin - M3 (0))| < €/4 () result holds starting from any distributign Thus, we have
v,m PE€Xy,m established Lemma 1 for the general case.
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Again since K¢ does not depend op,,, as done in the of our constructions. We plan to address this in our future
previous section, we can compute the corner point®gf, work.
and deduce the convex set of stationary distributions. Then
we can compute the finite set efapproximate behaviors, and REFERENCES
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benefits. Further, given the nature of the application, there
incurred through the-approximation method will be entirely
acceptable. As mentioned in the introduction, we have niokt pa
close attention to complexity issues. We are however comffide
that suitable geometric representations and linear atgebr
techniques can considerably reduce the complexity of many
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VIII. A PPENDIX Claim 1: For all yo, /(- M™ | f) < X- N (, f).

We explain here how to obtain a better value /6f, by Proof: Fix p = f + ZieX; a;b;. We haveA'(u, f) =
computing some contraction factdr around the stationary i [il- Also, for all j € X7, we write w; = (f +b;) -
distribution of an aperiodic and irreducible Markov ChainM™ = f + > ;cx Bibi, from which we getb; - M™" =
Actually, considering another basis and the norm assatiaticx (8ibi) andA'(w;, f) =3¢ /|| Thus by definition

with it, we even get the optimality of this factdt of A we have,

Lemma 8:One caneffectively compute i®(|X|?) time a Bil = A(wj, f) < X-A'((f +by), ) <A (12)
numbers with 0 < 6 < 1 such thatA(u - MIXF ) < §- Z;;' | (i /) < ( D f) <
A(l”’? f)' . . . 2

It follows from this lemma that for any choice éf, if & > Now, again by linearity of\/, we have(n - M™) = f +

KX, thenA(u - M*, f) < 6% - A, ). Now 0 < 6 < 1 Sosenr @ilbi - M™) = 43 s Vg ns Bl = f +
and in addition2 is an upper bound for (s, f). Therefore, 2rex[2icx @ifBrlbr. Hence

by choosing a large enougti we can sets® = k’-|X|? such o am® ey ‘ ‘
that for everyu, A(u- M*, f) < e for all k > K¢. Al(u-M"™, f) = Z | Z @il < Z Z il B

keX’ ieXx’ 1€EX keX!
Proof: First, note that the value of the unique stationary - Z || Z 1Br| < Z il - A= XA (u, f)
point f can be computed by solving the system of equations iex rex iex’

{(p-M) = p, >, cr s = 1}. Since this is a system of’| +-
1 equations with|X'| unknowns, it can be solved using say,
Gaussian elimination i©(|X|?) time.

Given f computed from above, we can writ§ =
(fis---, fn) such that>,., f; = 1. With the standard
basise; = (1,0,...,0) andes; = (0,1,...,0), ..., e, =
(0,...,0,1), we can writef = ", f;e;. There exists’ € X
such thatf;, > . Without loss of generality we let = 1

(end of Claim 1) m

Notice that by the definitiorl\ and because of this claim,
this value of A is an optimal contraction factor for the norm
A’. Indeed, there exists at least one distributiofior which
A is reached, so na’ < A fits.

Now since) < 1, from Equation (1) and Claim 1, we have
foranyk > 1, - A MO0 f) <A (- M9 f) <
[x]° XA (i, f) < o - A(p, f) where,n; andn, are the bounds

! —
and denotet . A \_{1}' Let || = .on the normA’ computed earlier. Then, we just chodse- ¢/
Now, we will rewrite the vectors in a new orthogonal basis ’

e

with centerf, namely the set of vecto8 = {b,...b,,} such such that = % < 1, which gives the proof of Lemma 2.
thatby = (fi, far-- s fu) = f1bo = (=1, 1,0,...,0), b5 = (end of Lemma 2) m
(=1,0,1,0,...,0),..., by = (=2,0,...,0,1). Working in
this new basis, and in a new norm (that we will define soon)
is quite useful, as we will show below.

Notice that for alli > 2, we havef + b; is a distribution.
This is because eadlf +b;) = (fi—<,..., fi+2,....fn)
and we have

1) f1 > L and

2) for eachi € X', fi <1— % (since}, . fi=1) and

3) Yjexf+bi)j=fit+...+fa=1
Also, for any distributiory,, we can write it asf + >, , a;b;.
In particular, the coefficient in the first component is alway
1. Indeed, taking any distributiopn = (i1, ,u,) (in the
standard basis),we have (1 — fi) =>_ i — > fi = 0.

Now, for two distributiong: = f+>,., a;b; andv = f+
> w0 Bibi, we have the new norm’ (p, v) = Y.<, |a; — Bil.
Notice that since the dimensidi&’| = n is finite, this norm
A’ is equivalent toA, that is there exists < 71,72 < 1 s.t.:

m A, ') < A(p,p') <o - A, p') for all g, (11)

The values of;; andn, can be computed by writing, ¢ in
the standard basis and comparing the values obtained.

Now, we let for alli > 2, w; = (f + ;) . M™ wheren =
|X|, and); = % We also let\ = max;cx+ \i. Now,
sinceM is irreducible and aperiodic, by fact (F1) and Lemma
3, we obtain thaf\/™" has all strictly positive entries and now
by fact (F2), we conclude thak'(w;, f) < A'((f + b;), f)-
Which in turn implies that each; < 1 and soA < 1. Now,
we have the following contraction property on the nafth
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