
1

Approximate Verification of the
Symbolic Dynamics of Markov Chains

Manindra Agrawal∗, S. Akshay†, Blaise Genest†,‡ and P. S. Thiagarajan§
∗School of Electrical and Computer Engineering, Indian Institute of Technology, Kanpur, India

Email: manindra@iitk.ac.in
†IRISA, ENS Cachan Bretagne and CNRS, Rennes, France

Emails: akshay@irisa.fr; bgenest@irisa.fr
‡CNRS, UMI IPAL joint with NUS and A*STAR/I2R, Singapore

§School of Computing, National University of Singapore, Singapore
Email: thiagu@comp.nus.edu.sg

Abstract—A finite state Markov chain M is often viewed as a
probabilistic transition system. An alternative view - which we
follow here - is to regard M as a (linear) transform operating on
the set of probability distributions over its set of nodes (states)
{1, ..., n}. The novel idea here is to discretize the probability
value space[0, 1] into a finite set of intervals and symbolically
represent a concrete probability distribution µ as a tuple of such
intervals called a discretized distributionD. The ith component of
the discretized distribution D representingµ will be the interval
in which the probability assigned by µ to i falls.

The setD of discrete distributions is finite and each trajectory,
generated by repeated applications ofM to an initial distribution,
will induce a unique infinite string in Dω . Hence, given a set of
initial distributions, the symbolic dynamics of M will consist
of a ω-languageLM over the finite alphabet D. We investigate
whether this symbolic dynamics ofM meets a specification given
as a linear time temporal logic formula whose atomic propositions
assert that the current probability of node i falls in interval d.

Unfortunately, even for restricted Markov chains (for instance,
irreducible and aperiodic chains),LM is not guaranteed to be a
ω-regular language. To get around this we develop the notion of
ǫ-approximation, based on the transient and long term behaviors
of M . Our main results are that, one can effectively check
whether (i) for each infinite word in LM , at least one of itsǫ-
approximations satisfies the specification and (ii) for eachinfinite
word in LM all its ǫ-approximations satisfy the specification.
These verification results are strong in that they apply to all finite
state Markov chains. Further, the study of the symbolic dynamics
of Markov chains initiated here is of independent interest and
can potentially lead to other applications.

I. I NTRODUCTION

Finite state Markov chains are a fundamental model of
probabilistic dynamical systems. They are well-understood
[10], [20] and the formal verification of the dynamics of
Markov chains is also well established [2]–[4], [7], [9], [11]–
[14], [17], [23]. In a majority of these studies, the Markov
chain is viewed a probabilistic transition system over its set
of nodes, often called states in this context. The goal is to
reason about the probability space generated by the paths of
the transition system using probabilistic temporal logicssuch
asPCTL [4], [14], [17].

An alternative view - which we follow here- is to view the
state space of the chain to be the set of probability distributions
over the nodes of the chain. The Markov chain transforms (in a

linear fashion) a given probability distribution into a newone.
Starting from a distributionµ one can iteratively applyM to
generate a trajectory consisting of a sequence of distributions.
Given a set of initial distributions, one can study the properties
of the set of trajectories generated by these distributions.
Many interesting probabilistic dynamical properties ofM
can be expressed through these two approaches but they
are incomparable and complementary (see [6], [11]). Further,
solutions to model checking in one approach (e.g. decidability
of PCTL) will not translate into solutions in the other.

The novel idea we explore here is thesymbolic dynamicsof
a Markov chain, whose concrete dynamics is represented by
the sequences of probability distributions generated by a (pos-
sibly infinite) set of initial distributions. The main motivation
for doing so is to avoid the complications -and the complexity-
caused by numerically tracking sequences of probability dis-
tributions exactly. Further, in many applications such as the
probabilistic behavior of biochemical networks, queuing sys-
tems or sensor networks, exact estimates of the distributions
may neither be feasible nor necessary. To obtain the symbolic
dynamics, we discretize the probability value space[0, 1] into
a finite set of intervalsI = {[0, p1), [p1, p2), . . . , [pm, 1]}.
A probability distribution µ of M over its set of nodes
{1, 2, . . . , n} is then represented symbolically as a tuple of
intervals(d1, d2, . . . , dn) with di being the interval in which
µ(i) falls. Such a tuple of intervals which symbolically repre-
sents at least one probability distribution is called adiscretized
distribution. In general a discretized distribution will represent
an infinite set of concrete distributions. In what follows, we
will often identify a discretized distribution with the setof
probability distributions it represents.

A simple but crucial fact is that the set of discretized
distributions, denotedD, is a finite set. Consequently, each
trajectory generated by an initial probability distribution will
uniquely induce a sequence over the finite alphabetD. Hence
the dynamics ofM can be studied in terms of a language over
the alphabetD. Our focus here will be on infinite behaviors.
Consequently the main object of our study will beLM , an
ω-language contained inDω .

To reason about the symbolic dynamics, we formulate a
linear time temporal logic in which an atomic proposition



will assert “the current probability of the nodei lies in the
intervald”. The rest of the logic is obtained by closing under
propositional connectives and the temporal modalities next and
until in the usual way. We have chosen this simple temporal
logic in order to highlight the main ideas. As we point out
in Section III this logic can be considerably strengthened
and consequently a rich variety of quantitative dynamical
properties can be formulated. Our main results will easily
extend to cover this strengthened version.

The key verification question is whether each sequence in
LM is a model of a specificationϕ. If LM were to be aω-
regular language then standard model checking techniques can
be applied. Unfortunately, even for restricted Markov chains,
this appears to be unlikely. To sketch the nature of the problem,
let us assume thatM is irreducible and aperiodic (the precise
definition is given in Section IV). This guarantees thatM has
a unique stationary distributionµf (i.e.µf ·M = µf ). Further,
every trajectory will converge toµf . However, ifµf is a corner
point of a discretized distribution, a trajectory can in general
spiral towardsµf while visiting the discretized distributions
nearµf in a fashion which is not ultimately periodic. This is
illustrated in fig. 1. An algebraic cause of this phenomenon
is thatM will typically have eigenvalues that are complex.
Consequently, the angle by which a distribution is rotated
by an application ofM will be a non-algebraic quantity.
As a result, the exact order in which a trajectory visits the
discretized distributions in the neighborhoodµf is very hard
to pin down.

We bypass this basic difficulty by constructing approximate
solutions to our verification problem. We fix an approximation
factorǫ > 0 and show that each symbolic trajectory inLM will
consist of a transient phase and a steady state phase. Further, if
ξµ is the symbolic trajectory induced by the initial distribution
µ, then in the steady state phase,ξµ will cycle through a set
of final classes of discretized distributions. These final classes
will be determined byM , the initial distributionµ and ǫ but
the number of such classes will depend only onM . Using this
insight, we define the notion of anǫ-approximation ofξµ for
ǫ > 0. Under our definition, ifξ′ ∈ Dω is anǫ-approximation
of ξµ thenξ′ will agree withξµ during its transient phase; and
for eachk in the steady state phase,ξ′(k) and ξµ(k) will be
in the same final class. Due to the influence ofǫ on the final
classes, this will have the consequence thatξµ(k) and ξ′(k)
will be at mostǫ-distance apart, for everyk.

This leads to two interesting notions ofM ǫ-approximately
meeting the specificationϕ. For convenience, we assume that
the initial (potentially infinite) set ofconcretedistributions is
represented by a discretized distributionDin.

1) (M,Din) ǫ-approximately meets the specificationϕ from
below -denoted(M,Din)|=ǫ ϕ - iff for every µ ∈ Din,
there existsan ǫ-approximation ofξµ, which is a model
of ϕ. (ξµ is the symbolic trajectory induced byµ).

2) (M,Din) ǫ-approximately meets the specificationϕ from
above-denoted(M,Din)|=

ǫ

ϕ - iff for every µ ∈ Din,
everyǫ-approximation ofξµ is a model ofϕ.

Our main results are that givenM , Din, ǫ andϕ, check-
ing whether(M,Din) ǫ-approximately satisfiesϕ from be-
low (above) can be effectively determined. We note that

(M,Din)|=
ǫ

ϕ implies thatLM itself meets the specification
ϕ. On the other hand if it is not the case that(M,Din)|=ǫ ϕ
then we can conclude thatLM does not meet the specification
ϕ. The remaining case is when(M,Din)|=ǫ ϕ but it is not
the case that(M,Din)|=

ǫ

ϕ. Then, we can decide to accept
thatLM meets the specification but onlyǫ-approximately. In
many applications, this will be adequate. In case it is not, one
can fix a smallerǫ and, with minimal additional overhead,
perform the two verification tasks again and attempt to obtain a
definite answer to the question whetherLM meets (exactly) the
specification. Apart from these verification results, the notion
of the symbolic dynamics of Markov chains we develop here
is of independent interest and can lead to other applications.
We discuss briefly one such application in the final section.

To conclude this introduction, we will often use basic results
concerning Markov chains without an attribution. These results
can be found in any standard text book on Markov chains;
for instance [10], [20]. Finally, we do not address complexity
issues in detail in order to keep the focus on the main ideas.
However, many of our constructions can be optimized and we
plan to explore complexity issues in our subsequent work.

A. Related work

Symbolic dynamics is a classical topic in the theory of
dynamical systems [19]. Most of the theory is based on the
notion of shift sequences, with shifts of finite type playing
an important role in coding theory [18]. Here, instead, we
focus on the symbolic dynamics from a formal verification
standpoint.

Our discretization quotients the infinite set of probability
distributions into a finite set of discretized distributions. In
spirit, this is similar to bisimulation relations of finite index
studied in the theory of timed automata [1] (using the notion
of regions or zones) and in the theory of hybrid automata [15].
There are however two crucial differences. In our setting there
are no resets involved and there is just one mode, namely
the linear transformM , driving the dynamics. On the other
hand, for timed automata and hybrid automata one succeeds
in obtaining finite index bisimulations only in cases where the
dynamics of the variables are decoupled from each other. In
our setting this is naturally a deal breaker. Consequently the
symbolic dynamics we explore is delicately poised between
”too coupled to analyze by using bisimulations of finite index”,
and ”expressive enough to lead to undecidability”.

Viewing a Markov chain as a transform of probability dis-
tributions and carrying out formal verification of the resulting
dynamics has been explored previously in [7], [11], [13]. In
fact, the work reported in [7], [11] deals with MDPs (Markov
Decison Processes) instead of Markov chains. However by
considering the degenerate case where the MDP accesses just
one Markov chain we can still compare our work with theirs.
Firstly [7], [11], [13] consider only one initial distribution and
hence just one trajectory needs to be analyzed. It is difficult to
see how their results can be extended to handle multiple initial
distributions of the kind we consider. Secondly, they study
only irreducible and aperiodic Markov chains. In contrast we
consider the class of all Markov chains. Last but not least,

2



they impose the drastic restriction that the unique fix pointof
the irreducible and aperiodic Markov chain is aninterior point
w.r.t. the discretization implicitly induced by the specification.
In [7], a similar restriction is imposed in a slightly more
general setting. Since the fix point is determined solely by
the Markov chain and has nothing to do with the specification,
this does not seem a natural restriction. Naturally when such a
restriction is imposed in our setting, we can also easily obtain
an exact solution to our model checking problem.

Finally, intervals of probabilities have been considered
previously in a number of settings [21], [24]. The ambitious
goal in these studies is to generalize the classical theory of
additive probability measures to intervals of probabilityvalues.
Our aim here are more modest in that we just want to use
probability intervals to derive the symbolic dynamics.

B. Plan of the paper

In the next section, we define the notion of discretized
distributions and the symbolic dynamics of Markov chains. In
Section III, we introduce our temporal logic, discuss how it
can be extended and formulate our main results. In Section IV,
we describe the constructions for irreducible and aperiodic
Markov chains; and in Section V-A for the irreducible but
periodic case. In order to bring out the main technical issues, in
both these sections we allow just one initial concrete distribu-
tion. In Section V-B, we extend the two previous constructions
to an (infinite) set of initial concrete distributions. Finally in
Section VI, we remove all the restrictions. A summary and
future directions are presented in the concluding section.

II. D ISCRETIZEDDISTRIBUTIONS

Through the rest of the paper we fix a finite setX =
{1, 2, . . . , n}. We refer to members ofX as nodes and leti,
j range overX . A probability distribution overX , is as usual
a mapµ : X → [0, 1] such that

∑
i µ(i) = 1. Henceforth we

shall refer to a probability distribution overX as a distribution
and sometimes as a concrete distribution. As emphasized in
the introduction, we shall view a Markov chain as a linear
transformation of distributions. Hence a Markov chainM
over X will be represented as ann × n matrix with non-
negative entries satisfying

∑
j M(i, j) = 1 for eachi. Thus,

if the system is currently residing in the nodei, thenM(i, j)
is the probability of it being inj in the next time instant.
We will say thatM transformsµ into µ′, if µ · M = µ′.
Note that a distribution is represented as a row vector and the
(matrix) multiplication is from the left sinceM(i, j) denotes
the probability of going fromi to j.

We fix a partition of[0, 1] into a finite setI of intervals
and call it adiscretization. We let d, d′ etc. with or without
subscripts to range overI. Let D : X → I. Then D is
said to be adiscretized distributioniff there exists a concrete
distributionµ such thatµ(i) ∈ D(i) for every i. We denote
by D the set of discretized distributions, and letD, D′ etc.
with or without subscripts range overD. We shall often call
a discretized distribution aD-distribution. We will also often
write D as ann-tupleD = (d1, d2, . . . , dn) with D(i) = di
for eachi.

As an example, supposen = 3 andI = {[0, 0.2), [0.2, 0.4),
[0.4, 0.7), [0.7, 1]}. Then ([0.2, 0.4), [0.2, 0.4), [0.4, 0.7)) is
a D-distribution since for the distribution(0.25, 0.25, 0.5)
we have 0.25 ∈ [0.2, 0.4) while 0.5 ∈ [0.4, 0.7).
On the other hand, neither([0, 0.2), [0, 0.2), [0.2, 0.4)) nor
([0.4, 0.7), [0.4, 0.7), [0.7, 1]) areD-distributions.

We have fixed a single discretization and applied it to each
dimension to reduce notational clutter. In applications, to re-
duce complexity, it could be useful fix a different discretization
for each dimension (e.g.Ii = {[0, 1]} for a “don’t care” i).
Our results will still go through easily for this extension.

A concrete distributionµ can be abstracted as aD-
distribution D via the mapΓ given by: Γ(µ) = D iff
µ(i) ∈ D(i) for every i. The mapΓ is well-defined since
I is a partition of[0, 1]. FurtherD is non-empty andfinite.
For eachD-distributionD, we defineCD = {µ | Γ(µ) = D}.
Abusing notation, we will often writeµ ∈ D (or µ is in D
etc) instead ofµ ∈ CD.

We focus on infinite behaviors. With suitable modifications,
all our results can be specialized to finite behaviors as well.
A trajectory of M is an infinite sequence of concrete distri-
butionsµ0µ1 . . . such thatµl ·M = µl+1 for every l ≥ 0. It
is worth emphasizing that we are viewingM as a dynamical
system whose state space is the set of probability distributions
over X . Thus our notion of a trajectory is the standard one
used in the theory of dynamical systems. We letTRJM

denote the set of trajectories ofM and will often drop the
subscriptM . As usual forρ ∈ TRJ with ρ = µ0µ1 . . .,
we shall view ρ as map from{0, 1, . . .} into the set of
distributions such thatρ(l) = µl for every l. We will follow
a similar convention for members ofDω, the set of infinite
sequences overD. Each trajectory induces uniquely an infinite
sequence ofD-distributions viaΓ. More precisely, we define
Γω : TRJ → Dω asΓω(ρ) = ξ iff Γ(ρ(ℓ)) = ξ(ℓ) for every
ℓ. In what follows we will writeΓω as justΓ.

We wish to study the symbolic dynamics ofM , given
an initial set of concrete distributions. One can choose a
number of different mechanisms for specifying this set. For
convenience we let a singleD-distributionDin denote the set
of initial concrete distributions, namely,{µ | Γ(µ) = Din}.
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Γ(.1, .6, .3)=(d1, d2, d1)

Γ(.7, .2, .1)
= (d2, d1, d1)

Γ(.2, .1, .7)

= (d1, d1, d2)

Γ(.3, .3, .4)
= (d1, d1, d1)

f

Fig. 1. A concrete and symbolic trajectory in the3-dimensional space wrto.
the discretization{d1 = [0, 0.5), d2 = [0.5, 1]} (projected onto thex, y
plane, with values inx, y andz.)
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SinceDin will in general contain an infinite set of concrete
distributions, this is not very restrictive. Further, our results
will at once extend to a set ofD-distributions as initial
distributions. In the concluding section, we point to other
means of specifying the set of initial distributions.

We now defineLM,Din
= {ξ ∈ Dω | ∃ρ ∈ TRJM , ρ(0) ∈

Din, Γ(ρ) = ξ}. We view LM,Din
to be the symbolic

dynamics of the system(M,Din) and sometimes refer to its
members asD-trajectories or symbolic trajectories. SinceDin

will be fixed and clear from the context, from now on we will
write LM instead ofLM,Din

.
Given(M,Din), our goal is to specify and verify properties

of theω-languageLM . If LM were to be anω-regular subset
of Dω then well-established techniques can be brought to
bear on this problem. Unfortunately this is unlikely to be the
case, even for restricted Markov chains, as explained in the
introduction. Our present conjecture is thatLM is not a ω-
regular language in general. In light of this, we shall develop
a pragmatic approximate method to solve verification problems
concerningLM without placing any restrictions onM . As it
will turn out, our method will often yield exact results.

III. T HE VERIFICATION PROBLEM

We shall formulate here a linear time temporal logic for a
Markov chainM that is accompanied by a discretizationI.

Our linear time temporal logic is denotedLTLI . The set of
atomic propositionsAP is given by:AP = {〈i, d〉 | 1 ≤ i ≤
n, d ∈ I}. The formulas ofLTLI are:

• Every atomic proposition is a formula.
• If ϕ andϕ′ are formulas then so are∼ ϕ andϕ ∨ ϕ′.
• If ϕ is a formula thenOϕ is also a formula.
• If ϕ andϕ′ are formulas thenϕUϕ′ is also a formula.

The atomic proposition〈i, d〉 asserts that if the current
discretized distribution ofM is D thenD(i) = d. This in
turn means that if the current concrete distribution ofM is
µ then µ(i) ∈ d. The derived connectives of propositional
logic such as∧, ⊃ and ≡ are defined in the usual way as
also the unary modality3 via 3(ϕ) = ttUϕ wherett is the
constant that always evaluates to “true”. We will then also
have2(ϕ) =∼ (3(∼ ϕ)).

The semantics of the logic is given by the satisfaction
relation ξ, l |= ϕ whereξ ∈ Dω, l ≥ 0 andϕ is a formula.
This notion is defined inductively via:

• ξ, l |= 〈i, d〉 iff ξ(l)(i) = d
• The propositional connectives∼ and∨ are interpreted in

the usual way.
• ξ, l |= Oϕ iff ξ, l+ 1 |= ϕ
• ξ, l |= ϕUϕ iff there existsk ≥ l such thatξ, k |= ϕ′ and
ξ, l′ |= ϕ for l ≤ l′ < k.

We say thatξ is a model ofϕ iff ξ, 0 |= ϕ. As usual,Lϕ is
the set of models ofϕ. In what follows, for a distributionµ we
let ρµ denote the trajectory inTRJ which satisfies:ρ(0) = µ.
We let ξµ be the symbolic trajectory generated byµ. In other
words,ξµ = Γ(ρµ).

The model checking problem we wish to solve is the
following. We are given a finite state Markov chain M, a
discretizationI and a specification as theLTLI -formula ϕ.

We are also given a set of initial distributions presented as
a D-distributionDin. We shall say that(M,Din) meets the
specificationϕ -and this is denotedM,Din |= ϕ - iff ξµ ∈ Lϕ

for everyµ ∈ Din (iff LM ⊆ Lϕ).

A. Extensions to the logic

Before we proceed to consider the solution to the model
checking problem defined above, we discuss briefly the ex-
pressive power of our logic and how it can be extended.

We can assert that currentD-distribution is D via the
(propositional) formula

∧
i(i,D(i)). Hence we can assertD

will appear infinitely often(23
∧

i(i,D(i))) or only finitely
often (32 ∼

∧
i(i,D(i))) along a symbolic trajectory. For a

subsetD′ of D we can assert that the set ofD-distributions
that appear infinitely is preciselyD′, (i.e.,32

∨
D∈D′ D).

We can classify members ofI as representing “low” and
“high” probabilities. For example, ifI contains10 intervals
each of length0.1, we can declare the first two intervals as
“low” and the last two intervals as “high”. In this case we
can form assertions such as “whenever the probability ofi is
high, the probability ofj must be low” (2((i, d9)∨(i, d10)) ⊃
((j, d1) ∨ (j, d2))).

We can also considerably extend the expressive power of
the atomic propositions and hence that of the logic. We can
do so by letting an atomic proposition to be a suitable sentence
taken from the first order theory of reals, which is known to
be decidable [22]. To start with, we can define then-place
predicatedist(x1, x2, . . . , xn) to assert that(x1, x2, . . . , xn)
is a concrete distribution. We just have to say that eachxi
is non-negative and that

∑
i xi = 1. We can say that the

distribution (x1, x2, . . . , xn) is in the D-distribution D by
assertingxi ∈ D(i) for each i. To be precise,xi ∈ D(i)
is an abbreviation for(l ≤ xi) ∧ (xi < r) if D(i) = [l, r)
and similarly for the case whereD(i) = [l, r]. We can
next form an arbitrary sentenceψ expressing a polynomial
constraint over{x1, x2, . . . , xn} saying that the distribution
dist(x1, x2, . . . , xn) satisfiesψ. Finally, we can assert that
every concrete distribution inD satisfiesψ. For instance with
n = 4 we can say that for every distribution(x1, x2, . . . , xn)
in D, it is the case that2(x1 + x2) < 3(x3 + x4)

2. More
to the point, we can defineE(x1, x2, . . . , xn) =

∑
i xi · i and

assert that “eventually, the expected value will always liein the
interval(2, 3.5]”. In actual applications, instead of the abstract
node setX we will have a vector of variables associated with
each node and these variables will denote the values of entities
such as temperature, pressure, queue lengths, concentration
levels of molecular species etc. Hence a rich set of quantitative
properties can be captured by the atomic propositions and the
time evolution of these quantities and their relationshipscan
be captured by the temporal modalities.

The key point is that the approximate solution to the model
checking problem we develop will go through in this extended
setting. Hence it is merely for notational convenience we
present our results in the simple setting ofLTLI .

B. The approximate model checking problem

As pointed out earlier,LM is not known to beω-regular
and seems unlikely to be so except in special cases. Hence
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an explicit solution to this model checking problem is out
of reach for the general class of finite state Markov chains.
Consequently we seek an approximate solution. Our notion
of approximation will be sharply guided by the structure of
the symbolic dynamics of the Markov chain. To make this
connection, we shall first summarize the main features of the
symbolic dynamics developed in the subsequent sections.

We fix an approximation parameterǫ > 0. We expectǫ to
be a small fraction of the length of an interval inI. A crucial
notion is that of anǫ-neighborhood. We first use theL1 norm
to define the distance∆ between two distributionsµ andµ′

as:∆(µ, µ′) =
∑

i |µ(i)−µ′(i)|. We say that a distributionµ
is ǫ-close to µ′, if ∆(µ, µ′) ≤ ǫ. The ǫ-neighborhood of the
distributionµ is denoted asNǫ(µ) and is given by:D ∈ Nǫ(µ)
iff there existsµ′ ∈ D such that∆(µ, µ′) ≤ ǫ. We next define
F ⊆ D to be anǫ-neighborhood iff there exists a distribution
µ such thatNǫ(µ) = F . The main feature of the symbolic
dynamics that we shall establish in the subsequent sections
can now be summarized as follows.

Lemma 1:Let M be a Markov chain, andǫ > 0 be an
approximation factor. Then, there exists (i) a positive integer
θ that depends only onM (ii) a positive integerKǫ that
depends only onM and ǫ and (iii) an ordered family of
ǫ-neighborhoods{Fµ,0,Fµ,1, . . . ,Fµ,θ−1} - called thefinal
classesof µ s.t., for everyk > Kǫ, ξµ(k) ∈ Fµ,(k mod θ),
whereξµ is the symbolic trajectory generated byµ.

Thus, there will be a transient phase of length at mostKǫ

followed by a steady state phase in whichξµ will cycle through
theǫ-neighborhood families{Fµ,0,Fµ,2, . . . ,Fµ,θ−1} forever.
Note however that the exact member ofFµ,m which will be
hit at each time is hard to characterize in a finitary manner.

Now, letµ be a distribution, andξ′ ∈ Dω . Then we will say
thatξ′ is anǫ-approximationof ξµ iff the following conditions
are satisfied:

• ξ′(k) = ξµ(k) for 0 ≤ k ≤ Kǫ.
• For everyk > Kǫ, ξ′(k) belongs toFµ,(k mod θ), where

{Fµ,0,Fµ,2, . . . ,Fµ,θ−1} is the set of final classes ofµ.

Notice that everyξµ is anǫ-approximation of itself. We can
now formalize the approximate model checking problem.

Definition 1: Let M be a Markov chain,Din an initial set
of distributions,ǫ > 0 an approximation factor andϕ ∈ LTLI :

1) (M,Din) ǫ-approximately meets the specificationϕ from
below, and this is denoted asM,Din|=ǫ ϕ, iff for every
µ ∈ Din, it is the case thatξ′ ∈ Lϕ for some ǫ-
approximationξ′ of ξµ.

2) (M,Din) ǫ-approximately meets the specificationϕ from
above, and this is denoted asM,Din|=

ǫ

ϕ, iff for every
µ ∈ Din, it is the case thatξ′ ∈ Lϕ for every ǫ-
approximationξ′ of ξµ.

The two notions of approximate satisfaction yield valuable
information about exact satisfaction as follows.

Lemma 2:Let M be a Markov Chain,ǫ > 0 andϕ be a
property. Then

1) (M,Din)|=
ǫ

ϕ =⇒ (M,Din) |= ϕ, and
2) (M,Din) 6|=

ǫ
ϕ =⇒ (M,Din) 6|= ϕ.

Proof: Both parts follow easily from the observation that
eachξµ is an ǫ-approximation of itself. To see this, assume

(M,Din)|=
ǫ

ϕ and letξµ ∈ LM with µ ∈ Din. Since every
ǫ-approximation ofξµ is in Lϕ, ξµ ∈ Lϕ as well. On the
other hand if(M,Din) does not meet the specificationϕ from
below, then for someµ ∈ Din, no ǫ-approximation ofξµ is a
model ofϕ. In particular,ξµ is not a model ofϕ and hence
(M,Din) 6|= ϕ.

Our main result is:
Theorem 1:Let M be a Markov chain,Din the initial set

of distributions,ϕ a specification andǫ > 0 an approximation
factor. Then the questions whether(M,Din)|=ǫ ϕ and whether
(M,Din)|=

ǫ

ϕ can both be effectively solved.
Here, we have fixed a discretization first and designed a

temporal logic that is compatible with it by the choice of
atomic propositions. Alternatively we could have started with
a temporal logic which mentions point values of probabilities
and derived a discretization from these values. This is basically
the approach followed in [11], [13]. We however feel that
fixing a discretization independent of a specification and
formulating the symbolic dynamics of a Markov chain in terms
of its D-distributions is of independent interest.

IV. I RREDUCIBLE AND APERIODICMARKOV CHAINS

We will build up the proof of our main result (Theorem
1) by starting with aperiodic Markov chains with a single
initial distribution. In the subsequent sections we will handle
increasingly more general cases culminating in section VI.
For each of the cases, the bulk of the proof will consist of
effectively computing the three entities asserted in Lemma
1, namely, (i) the positive integerθ (ii) the final classes
{Fµ,0,Fµ,1, . . . ,Fµ,θ−1} each of which is required to be anǫ-
neighborhood and (iii) a positive integerKǫ that characterizes
the (maximum) length of of the transient phase.

We will often use facts from the theory of Markov chains
without providing attributions. They can be found in, say, [10],
[20]. Let M be a Markov chain overX = {1, 2, . . . , n}. As
usual, the graph ofM is the directed graphGM = (X , E) with
(i, j) ∈ E iff M(i, j) > 0. We say thatM is irreducible in
caseGM is strongly connected. Assume thatM is irreducible.
We define the period of a nodei ∈ N to be the gcd (greatest
common divisor){d|Md(i, i) > 0}. Then remark that in an
ireducible Markov chain, all nodes have the same period,
which we call the periodθ of the chain. The irreducibleM
is said to beaperiodic if θ = 1. OtherwiseM is said to be
periodic, of periodθ.

Irreducible and aperiodic Markov chains are sometimes
referred to as regular Markov chains. We will however avoid
this terminology here. Fig. 2 displays an example of an
irreducible and aperiodic Markov chain.

We start with a Markov chainM which is assumed to be
an irreducible and aperiodic Markov chain with the initial
distributionµin. Our goal is to establish that Theorem1 holds
for this case.

As may be guessed, for this caseθ = 1.
To compute the final classes we first recall the standard

fact M being irreducible and aperiodic will have a unique
stationary distributionf . In other wordsf ·M = f and hence
f is also often referred to asthefix point ofM . One can easily
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computef by solving (in time quadratic inn) the linear system
of equationsx · (M − I) = 0 whereI is then × n identity
matrix.

We now fixF = Nǫ(f), the ǫ-neighborhood off . Thus in
the present case, there will be just one final class. A further
special case arises whenF = {Dfin} is a singleton. In this
case it must be the case thatf ∈ Dfin. Otherwise, we will
haveD 6= Dfin wheref ∈ D. Clearly f ∈ D impliesD ∈
Nǫ(f). This leads to the contradiction thatF is not a singleton.
Hencef ∈ Dfin. For this case -which is essentially the one
treated in [7], [11], [13]-the model checking problem can be
solved exactly. This will follow easily from our approximate
solution to the model checking problem detailed below.

Through the remaining portions of this report we will
implicitly use the fact thatξµ(k) = µ ·Mk for everyµ and
everyk and for everyM . We also recall (again) thatρµ is the
trajectory generated by the distributionµ, and thatΓ(ρµ) = ξµ.

We now turn to computingKǫ, such thatµin ·M
k ∈ F for

everyk > Kǫ. Anticipating the needs of the later sections, we
will fix Kǫ so that for for everyµ (and not justµin) it is the
case thatµ ·Kk ∈ F for everyk > Kǫ. We begin with the
following facts concerning irreducible and aperiodic Markov
chains, as can be found in [16].

Proposition 1: 1) LetM be an irreducible and aperiodic
Markov chain. Then there existsℓ such thatMk(i, j) > 0
for every i, j and everyk ≥ ℓ

2) Let M ′ be a Markov chain such thatM ′(i, j) > 0 for
every i, j. Then there existsη such that0 < η < 1 and
∆(µ1 ·M ′, µ2 ·M ′) ≤ η × ∆(µ1, µ2) for every pair of
distributionsµ1, µ2.

One can effectively fix the constantℓ mentioned in the first
part of Proposition 1 to beℓ = n2 − 2n + 2 thanks to [25]
(also see [26]).

As for η mentioned in the second part of Proposition 1, the
following value is given in [16]. Assume thatM ′ is such that
M ′(i, j) > 0 for everyi, j. Let δ = min{M ′(i, j)}i,j . Clearly
0 ≤ 1−n · δ < 1 since the row sum ofM ′ is 1 for every row.
If 0 < 1 − n · δ then we setη = n · δ. If 0 = 1 − n · δ, we
setη = n · ( δ2 ). In fact for the latter case, instead ofδ

2 we can
choose any positive rationalδ′ such thatδ′ < δ.

We are now ready to effectively establish the existence of
Kǫ with the required property.

Lemma 3:Let M be an irreducible and aperiodic Markov
chain. Then one can effectively compute a positive integerKǫ

such that for every distributionµ and everyk ≥ Kǫ we have
∆(µ ·Mk, f) ≤ ǫ. Consequentlyξµ(k) ∈ F for everyµ and
everyk ≥ Kǫ.

Proof: By the first part of Proposition 1 and the remark
aboveMk(i, j) > 0 for every i, j and everyk ≥ ℓ with ℓ =

n2 − 2n+2. Let M̂ =M ℓ. Again according to Proposition 1
and the remarks above we can effectively fixη such that0 <
η < 1 and∆(µ1 ·M ′, µ2 ·M ′) ≤ η.(∆(µ1, µ2)) for every pair
of distributionsµ1, µ2. Let K be the least integer such that
ηK · 2 ≤ ǫ. For any distributionµ we now have∆(µ · M̂k, f ·
M̂K) = ∆(µ · M̂K , f) ≤ ηK · ∆(µ, f) for every k ≥ K.
But then∆(µ, f) ≤ 2 according to the definition of∆. Hence
∆(µ · M̂k, f) ≤ ǫ for everyµ and everyk ≥ K. We now fix

1 2

2
5

7
10

3
5

3
10

Fixpoint= ( 7
11 ,

4
11 )

M =

∣∣∣∣∣∣

3
5

2
5

7
10

3
10

∣∣∣∣∣∣
Fig. 2. An irreducible and aperiodic Markov chainM

Kǫ = ℓ ·K. Consequently∆(µ ·Mk, f) ≤ ǫ for everyµ and
everyk ≥ Kǫ.

SinceNǫ(f) = F we now have thatξµ(k) ∈ F for every
µ and everyk ≥ Kǫ.

In fact, more optimal values forKǫ can be obtained using
more involved techniques, e.g. spectral theory. We give a way
to compute such a value in appendix, as complexity is not the
focus in this paper.

A. Solution to the model checking problem

Recall that, in this section, we are assuming that we have
just a single initial distributionµin. To determine whether
(M,µin)|=ǫ ϕ we will construct a non-deterministic Büchi
automatonB running over sequences inDω such that the
language accepted byB is non-emptyiff (M,µin)|=ǫ ϕ. Since
the emptiness problem for Büchi automata is decidable, we
will have an effective solution to our model checking problem.

To start with, letΣ = 2APϕ with APϕ being the set of
atomic propositions that appear inϕ. Considerα ∈ Σω. As
before, we will viewα to be a map form{0, 1, 2, . . . , } into
Σ. The notion ofα, k |=Σ ϕ is defined in the usual way:

• α, k |=Σ (i, d) iff (i, d) ∈ α(k).
• The propositional connectives are interpreted in the stan-

dard way.
• α, k |=Σ O(ϕ) iff α, k + 1 |=Σ ϕ.
• α, k |=Σ ϕ1Uϕ2 iff there existsk′ ≥ k such thatα, k′ |=Σ

ϕ2 andα, k′′ |=Σ ϕ1 for k ≤ k′′ < k′.
We say thatα is aΣ-model ofϕ iff α, 0 |=Σ ϕ. This leads

to L̂ϕ = {α | α, 0 |= ϕ}.
We next construct the non-deterministic Büchi automaton

A = (Q,Qin,Σ,−→, A) running over infinite sequences in
Σω such that the language accepted byA is exactlyL̂ϕ. This
is a standard construction [23] and here we shall recall just
the basic details. They will be used to establish Theorem 2
below.

We defineCL(ϕ), (abbreviated as justCL) the (Fisher-
Ladner) closure ofϕ to be the least set of formulas containing
ϕ and satisfying:

• ψ ∈ CL iff ∼ ψ ∈ CL (with the convention∼∼ ψ is
identified withψ).

• If ψ1 ∨ ψ2 ∈ CL thenψ1, ψ2 ∈ CL.
• If O(ψ) ∈ CL thenψ ∈ CL.
• If ψ1Uψ2 ∈ CL thenψ1, ψ2, O(ψ1Uψ2) ∈ CL.

We next define anatom to be a subsetZ of CL satisfying
the following conditions. In stating these conditions we assume
the formulas mentioned are inCL.

• ψ ∈ Z iff ∼ ψ /∈ Z.
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• ψ1 ∨ ψ2 ∈ Z iff ψ1 ∈ Z or ψ2 ∈ Z.
• ψ1Uψ2 ∈ Z iff ψ2 ∈ Z or ψ1, O(ψ1Uψ2) ∈ Z.

Finally we defineH = 2CLU where CLU is the until
formulas contained inCL. This leads to the Büchi automaton
A = (Q,Qin,Σ,−→, A) given by:

• Q = AT ×G whereAT is the set of atoms.
• (Z,H) ∈ Qin iff ϕ ∈ Z. Further,ψ1Uψ2 ∈ H iff
ψ1Uψ2 ∈ Z andψ2 /∈ Z.

• −→⊆ Q × Σ × Q is given by:
(Z1, H1), Y, (Z2, H2)) ∈−→ iff:

1) (i, d) ∈ Y iff (i, d) ∈ Z
2) O(ψ) ∈ Z1 iff ψ ∈ Z2

3) SupposeH1 is non-empty. Thenψ1Uψ2 ∈ H2 iff
ψ1Uψ2 ∈ H1 andψ2 /∈ Z2.

4) SupposeH1 = ∅. Thenψ1Uψ2 ∈ H2 iff ψ1Uψ2 ∈ Z2

andψ2 /∈ Z2.

• (Z,H) ∈ A iff H = ∅

We can now define the Büchi automaton we seek. First
let S = {(k, µin · Mk) | 0 ≤ k ≤ Kǫ}. Then our Büchi
automaton isB = (R,Rin,Σ,⇒, B) defined via:

• R = (S ∪F)×Q is the set of states, whereF = Nǫ(f)
is as defined earlier.

• Rin = {(0, µin)} ×Qin is the set of initial states.
• The transition relation⇒ is the least subset ofR×Σ×R

satisfying the following conditions
First, Suppose((k, µ), q) and ((k′, µ′), q′) are inR and
Y ⊆ APϕ. Then ((k, µ), q), Y, (k′, µ′), q′)) ∈⇒ iff the
following assertions hold:

1) k′ = k + 1 andµ ·M = µ′, and
2) Suppose(i, d) ∈ APϕ. Thenµ(i) ∈ d iff (i, d) ∈ Y ,

and
3) (q, Y, q′) ∈−→.

Next, suppose((k, µ), q)) and (D, q′) are in R with
D ∈ F . Let Y ⊆ AP . Then ((k, µ), q), Y, (D, q′) ∈⇒
iff k = Kǫ and (i, d) ∈ Y iff µ(i) ∈ d(i). Furthermore,
(q, Y, q′) ∈−→.
Finally, suppose(D, q) and (D′, q′) are inR andY ⊆
APϕ. Then((D, q), Y, (D′, q′)) ∈⇒ iff for every (i, d) ∈
APϕ, D(i) = d iff (i, d) ∈ Y . Further,(q, Y, q′) ∈−→.

• The set of final states isB = F ×A.

We can now show:
Theorem 2:(M,µin)|=ǫ ϕ iff the language accepted byB

is non-empty.
Proof: Suppose(M,µin)|=ǫ ϕ. Then there existsξ′ such

thatξ′ is anǫ-approximation ofξµin
andµ′, 0 |= ϕ. Fork ≥ 0,

we setZk = {ψ | ψ ∈ CL and ξ′, k |= ψ}. It is easy to
check thatZk is an atom for everyk. Next we define{Hk}
inductively via:ψ1Uψ2 ∈ H0 iff ψ1Uψ2 ∈ Z0 andψ2 /∈ Z0.
Next supposeHk is defined. ThenHk+1 is given by: IfHk is
non-empty thenψ1Uψ2 ∈ Hk+1 iff ψ1Uψ2 ∈ Hk andψ2 /∈
Zk+1.

We next define{sk}k≥0 via: For 0 ≤ k ≤ Kǫ, sk = µin ·
Mk. And sk = ξ′(k) for k > Kǫ. Finally we define{Yk}k≥0

via: Yk = Zk ∩ APϕ.
Let Υ : {0, 1, 2, . . .} → R via Υ(k) = (sk, (Zk, Hk)) for

eachk. It is now straightforward to show thatΥ is an accepting

run of B over the infinite sequenceα ∈ Σω with α(k) = Yk
for eachk. Consequently the language accepted byB is non-
empty as required.

Next suppose that the language accepted byB is non-
empty. Then there existsα ∈ Σω and an accepting runΥ :
{0, 1, 2, . . .} → R of B over α. Let Υ(k) = ((sk, (Zk, Hk))
for eachk. We now defineξ′ as follows. (i) ξ′(k) = Γ(µk)
for 0 ≤ k ≤ Kǫ wheresk = (µk, k) for 0 ≤ k ≤ Kǫ. (ii)
ξ′(k) = sk for k > Kǫ. By structural induction onψ we
can now easily show thatξ′, k |= ψ iff ψ ∈ Zk for every
k and everyψ ∈ CL. Sinceϕ ∈ Z0 this will establish that
ξ′, 0 |= ϕ. By construction,ξ′ is an ǫ-approximation ofξµ.
This completes the proof.

To determine whether(M,µin)|=
ǫ

ϕ, we first construct the
non-deterministic Büchi automatonA′ such that the language
accepted byA′ is preciselyL∼ϕ. We then repeat the above
construction usingA′ in place ofA to construct the automaton
B′. It is then easy to show that:

Theorem 3:M,µin|=
ǫ

ϕ iff the language accepted byB′ is
empty.

Notice that transitions ofB andB′ check whether the current
distributionµ satisfiesµ(i) ∈ d, orD satisfiesD(i) = d. Since
the first order theory of reals is decidable, we can also decide
whetherµ(i) or D(i) satisfies a sentenceψ in this theory.
Hence our decision procedures easily extend to the setting
where atomic propositions consist of suitable sentences inthe
first order theory of reals as discussed in the previous section.

V. IRREDUCIBLE PERIODICMARKOV CHAINS

We now consider irreducible Markov chains which are
periodic. We will establish our results in two stages. We first
focus on the case of a single initial distribution. Then we show
how to handle a (possibly infinite) set of initial distributions.

A. The single initial distribution case

Let us assume that we are given an irreducible and periodic
Markov chainM with the initial distributionµin and the
approximation parameterǫ > 0. Our goal is to defineθ, Kǫ

and {Fµ,0,Fµ,1, . . . ,Fµ,θ−1}, the set of final classes ofµin

such that the premises of Lemma 1 are satisfied. We will then
proceed to establish Lemma 1 for the present case.

We setθ to be the period ofM as defined in the previous
section.

Our next task is to compute the final classes
{Fµ,0,Fµ,1, . . . ,Fµ,θ−1}. A crucial observation in this
connection is thatX can be partitioned intoθ equivalence
classes X0,X1, . . . ,Xθ−1 such that in the graph of
M there is an edge fromi to j iff i ∈ Xm implies
j ∈ Xm+1 mod θ. An example of an irreducible periodic
Markov chain is shown in fig. 3(a) with period3. In this
chainX0 = {1, 3},X1 = {2},X2 = {4}.

As in the aperiodic case, every irreducible periodic Markov
chain has a unique stationary distribution. However, it is not
guaranteed that each trajectory will converge to this distri-
bution. For instance, the unique stationary distribution of the
chain shown in fig. 3(a) is( 2

15 ,
1
3 ,

1
5 ,

1
3 ). If one starts with the
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Fig. 3. An irreducible and periodic Markov chain and its class-decomposition

distribution say(0, 1, 0, 0) then the chain will cycle through
(0, 1, 0, 0)(0, 0, 0, 1)(25 , 0,

3
5 , 0)(0, 1, 0, 0).... forever.

It turns out however that the dynamics of an irreducible
and periodic chain can be, in a sense, decomposed into the
dynamics ofθ aperiodic components. The crucial observation
in this connection is thatMθ restricted toXm is an irreducible
andaperiodicMarkov chain for eachm in {0, 1, . . . , θ − 1}.
We will denote asM̂m the restriction ofMθ to Xm. The
graphs of these chains for the example of fig. 3(a) are shown
in fig. 3(b).

Each M̂m, being irreducible and aperiodic, will have a
unique stationary distribution overXm which we denote asfm.
Now µin will induce θ global distributions and in the limit,M
will cycle through these final distributions. The final distribu-
tions crucially depends upon the probability mass contributed
by µin to each member of the partitionX0, . . . ,Xθ−1. We
accordingly defineα0, . . . , αθ−1 via αm =

∑
j∈Xm

µin(j).
For notational convenience, let us definef ′

m : X → [0, 1]
which is justfm extended toX : For all i ∈ X ,

f ′
m(i) =

{
fm(i) if i ∈ Xm

0 otherwise.
(1)

This is well-defined since{Xm}m∈{0,...,θ−1} is a partition of
X . Then, we define thefinal distribution ofMθ associated
with µin, denotedgµin

, as the distribution overX given by:
gµin

=
∑

m∈{0,...,θ−1} αmf
′
m. This then leads to theθ global

final distributionsvia: gmµin
= gµin

·Mm for 0 ≤ m < θ− 1.

For the example shown in fig.2, letµin = (14 ,
1
6 ,

1
4 ,

1
3 ) be

the initial distribution. Thenα0 = 1
2 , α1 = 1

6 and α2 =
1
3 . Furtherf0 = (25 ,

3
5 ), f1 = (1), f2 = (1), and sof ′

0 =
(25 , 0,

3
5 , 0), f

′
1 = (0, 1, 0, 0), f ′

2 = (0, 0, 0, 1). Hence,gµin
=

(15 ,
1
6 ,

3
10 ,

1
3 ).

We now define the set of final classes
{Fµin,0,Fµin,1, . . . ,Fµin,θ−1} via: for 0 ≤ m ≤ θ − 1,

Fµin,m = {D ∈ D | ∃µ′ ∈ D,∆(gmµin
, µ′) ≤ ǫ}

We next turn to computingKǫ. Recall thatM̂m, which is
Mθ restricted toXm, is an irreducible and aperiodic Markov
chain overXm. For a distributionν over Xm, we denote by
ρ̂mν , the trajectory ofM̂m starting fromν, i.e., the sequence
(ν, ν · M̂m, ν · (M̂m)2, . . .). Then, by Lemma 4, there exists
Kǫ

m such that for every distributionν of Xm, for everyk >
Kǫ

m,

∆(ρ̂mν (k), fm) < ǫ (2)

We now setKǫ = θ ·maxmKǫ
m. This leads to:

Lemma 4:For each distributionµ overX and for eachk >
Kǫ, we have that∆(ρµ(k), g

k mod θ
µ ) ≤ ǫ.

Proof: Let k > Kǫ = θ ·maxm∈{0,··· ,θ−1}K
ǫ
m. We first

prove the lemma for the case whenk mod θ = 0.
Let k = θ · k′. Then k′ > maxm∈{0,··· ,θ−1}K

ǫ
m. Fix a

distribution µ. Let βm =
∑

i∈Xm
µ(i) for 0 ≤ m < θ. We

define the mapµm : Xm → [0, 1] for all m ∈ {0, . . . , θ − 1}
by,

µm(i) =

{
µ(i)
βm

if βm 6= 0

0 otherwise.

As before, we easily lift this mapµm : Xm → [0, 1] to µ′
m :

X → [0, 1] by letting µ′
m(i) = µm(i) for all i ∈ Xm and

µ′
m(j) = 0 for all j ∈ (X \ Xm).
It is easy to see that we can expressµ as µ =∑
m∈{0,··· ,θ−1} βmµ

′
m. This leads to the following properties:

P1) ρµ(k) = µ · Mk =
∑

m∈{0,··· ,θ−1} βm(µ′
m · Mk).This

follows from the linearity of multiplication.
P2) ∆(µ′

m ·Mk, f ′
m) =

∑
i∈X |(µ′

m ·Mθ·k′

)(i) − f ′
m(i)| =∑

j∈Xm
|(µm ·(M̂m)k

′

)(j)−fm(j)| = ∆(µm ·M̂k′

m , fm).
This follows easily from the definitions.

P3) For allm such thatβm 6= 0, µm is a distribution ofXm.
As k′ ≥ Kǫ

m, we have∆(µm · M̂k′

m , fm) ≤ ǫ.

Now by (P1), we have∆(ρµ(k), g
k mod θ
µ ) = ∆(ρµ(k), g

0
µ)

= ∆(
∑

m∈{0,··· ,θ−1} βm(µ′
m · Mk),

∑
m∈{0,...,θ−1} βm ·

f ′
m). This implies ∆(ρµ(k), g

k mod θ
µ ) ≤∑

m∈{0,··· ,θ−1} βm∆(µ′
m · Mk, f ′

m), by the triangular
inequality.

Applying (P2) and then (P3), we obtain∆(ρµ(k), g
0
µ) ≤∑

m∈{0,··· ,θ−1}(βmǫ) = ǫ, which completes the proof.
The other cases fork = k′θ+m for 0 < m < θ are proved

easily from there:∆(ρµ(k
′θ +m), gm mod θ

µ ) = ∆(ρµ(k
′θ) ·

Mm, gµ ·Mm) ≤ ∆(ρµ(k
′θ), gµ) ≤ ǫ, due to the well known

fact that∆(µ ·M,µ′ ·M) ≤ ∆(µ, µ′) for any Markov chain
M .

We next turn to the construction of a Büchi automatonB
such that the language accepted by this automatonB is non-
empty if and only ifM,µin|=ǫ ϕ. As before, we letΣ = 2APϕ

and first construct the non-deterministic Büchi automaton
A = (Q,Qin,Σ,−→, A) running over infinite sequences in
Σω such thatLA, the language accepted byA is exactlyL̂ϕ,
the set ofΣ-models ofϕ.

We let S = {(k, µin ·Mk) | 0 ≤ k ≤ Kǫ}. In addition, let
F =

⋃
mFµin,m.

The required Büchi automatonB = (R,Rin,Σ,=⇒, B) is
given by:

• R = (S ∪ F)×Q is the set of states.
• Rin = {(0, µin)} ×Qin is the set of initial states.
• The transition relation=⇒ is the least subset ofR×Σ×R

satisfying the following conditions.
Suppose((k, µ), q) and ((k′, µ′), q′) are inR andY ⊆
APϕ. Then ((k, µ), q), Y, (k′, µ′), q′)) ∈=⇒ iff the fol-
lowing assertions hold:

1) k′ = k + 1 andµ ·M = µ′

2) Suppose(i, d) ∈ APϕ. Then(i, d) ∈ Y iff µ(i) ∈ d
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3) (q, Y, q′) ∈−→

Next suppose((k, µ), q) and (D, q′) are inR with D ∈
F . Let Y ⊆ APϕ. Then ((k, µ), q), Y, (D, q′) ∈=⇒ iff
k = Kǫ and (i, d) ∈ Y iff µ(i) ∈ d(i) for every (i, d) ∈
AP . Furthermore,D ∈ Fµin,1 and (q, Y, q′) ∈−→.
Finally suppose(D, q) and (D′, q′) are inR and Y ⊆
APϕ. Then (D, q), Y, (D′, q′) ∈=⇒ iff (q, Y, q′) ∈−→
andD ∈ Fµin,m impliesD′ ∈ Fµin,m+1 mod θ. More-
over, (i, d) ∈ D iff (i, d) ∈ Y for every(i, d) ∈ APϕ

• B = F ×A.

By mildly modifying the arguments used to prove Theorem 2
in the previous section, we can now prove:

Theorem 4:M,µin|=ǫ ϕ iff the language accepted byB is
non-empty.

To determine whetherM,µin|=
ǫ

ϕ we first construct the
automatonA′ which acceptŝL∼ϕ. We then use it instead of
the automatonA to construct a Büchi automatonB′ such that
M,µin|=

ǫ

ϕ iff the language accepted byB′ is empty.

B. The multiple initial distributions case

Let M be an irreducible and periodic chain with periodθ.
We assume that the set of of initial distributions is represented
as a discretized distributionDin. We will assume the termi-
nology and notations developed in the previous subsection.
Givenµ ∈ Din, we already know how to compute the global
final distributiongrµ thatµ ·Mkθ+r will converge to. In fact as
we proved in Lemma 4, there is a uniform boundKǫ on the
number of steps after which every trajectory will beǫ-close to
all its final distributions. Unfortunately, we cannot handle the
trajectories inDin one at a time since there will be in general
an infinite number of them. Hence we will group them into a
finite number of equivalence classes as follows.

Let µ be a distribution inDin and let (g0µ, . . . , g
θ−1
µ )

be its associated global final distributions. Then we will
say that µ has the ǫ-approximate behaviorB =<
D1D2 · · ·DKǫ ;D0, . . . ,Dθ−1 > if Dk = ξµ(k) for 1 ≤ k ≤
Kǫ, andDm = Nǫ(g

m
µ ) for 0 ≤ m < θ. There are only a

finite number ofǫ-approximate behaviors due to the fact that
D is a finite set.

Now supposeµin, µ
′
in ∈ Din have the sameǫ-approximate

behavior. Then it is easy to see that(M,µin)|=ǫ ϕ iff
(M,µ′

in)|=ǫ ϕ. And (M,µin)|=
ǫ

ϕ iff (M,µ′
in)|=

ǫ

ϕ). This
leads to the notion of(M,B)|=

ǫ
ϕ which holds iff for

some µ ∈ Din whose ǫ-approximate behavior isB, we
have (M,µ)|=

ǫ
ϕ. Similarly (M,B)|=

ǫ

ϕ holds iff for some
µ ∈ Din, (M,µ)|=

ǫ

ϕ. Clearly the algorithm of the previous
section can be used to answer whether(M,B)|=

ǫ

ϕ and
whether(M,B)|=

ǫ
ϕ, for anyǫ-approximate behaviorB. The

issue however is whichǫ-approximate behaviors are witnessed
(realized) by distributions inDin.

To address this, we observe thatDin is aconvexset of con-
crete distributions. To bring this out, supposeµ is a distribution
andc ∈ [0, 1], thenc·µ will be the mapc·µ : X → [0, c] given
by c ·µ(i) = c(µ(i)) for everyi. As usual, iff, g : X → [0, 1]
thenf + g is the function given byf + g(i) = f(i)+ g(i) for
every i. Now supposeµ, µ′ ∈ Din and c ∈ [0, 1]. Then it is

easy to check thatµ′′ = c · µ + (1 − c) · µ′ is a distribution
and moreoverµ′′ ∈ Din. In fact the convex hull of any
set of distributions inDin will again be inDin. In other
words, if µ1, µ2, . . . , µu ∈ Din and c1, c2, . . . , cu ∈ [0, 1]
with

∑
l cl = 1 thenµ = c1 · µ1 + c2 · µ2 + . . . cu · µu is a

distribution and moreoverµ ∈ Din. A standard fact from the
theory of linear programming [?] is that we can effectively
find a finite set ofcorner points, {µ1

in, µ
2
in, . . . , µ

J
in} ⊆ Din,

i.e., distributions inDin such that for eachµ ∈ Din there
exist c1, c2, . . . , cJ ∈ [0, 1] such that

∑
l cl = 1 and µ =

c1 · µ1
in + c2 · µ2

in + . . . + cJ · µJ
in. This fact will play a

crucial role in what follows. We first denote asCPin, the
set of corner points{µ1

in, µ
2
in, . . . , µ

J
in} of Din and for the

rest of this subsection, will often drop the subscript “in”.

Lemma 5:The set of stationary distributions ofMθ as-
sociated with everyµ ∈ Din is the convex hull of the set
of stationary distributions(gµu)1≤u≤J associated with the
members ofCPin.

Proof: As before, let (fm)0≤m≤θ−1 be the unique
stationary distribution for each componentXm of X and
(f ′

m)0≤m≤θ−1 denote their extentions overX (see Equa-
tion (3) from the previous subsection). For each1 ≤ u ≤ J ,
we compute the weights ofµu as βu

m =
∑

x∈Xm
µu(x) for

eachm. Now supposeν ∈ Din with ν =
∑

1≤d≤J cu ·
µu, where cu ∈ [0, 1] and

∑
1≤u≤J cu = 1. Also, let

αm =
∑

i∈Xm
ν(i) for each m. Then it is easy to see

that αm =
∑

1≤u≤J cu · βu
m for eachm ∈ {0, . . . , θ −

1}. That is, the stationary distribution to whichρν con-
verges throughMθ is

∑
0≤m<θ[

∑
1≤u≤J cu · βu

m]f ′
m =∑

1≤u≤J cu[
∑

m<θ β
u
mf

′
m] =

∑
1≤u≤J cug

u
µ. We note that the

tuples of distribution to whichρν·Mm will converge through
repeated applications ofMθ is (

∑
1≤u≤J cd(g

m
µu ·Mm)) for

0 ≤ m < θ.
Since one can effectively compute the set of corner points

and their final distributions one can also effectively compute
Kǫ.

Now given the sequenceD1 · · ·DKǫ ∈ D and theθ-tuple
(D0,D2, . . . ,Dθ−1) with Di ⊆ D, we can decide whether
there existscu ∈ [0, 1] with 1 ≤ u ≤ J such that

•
∑

1≤u≤J cu = 1,
• for all k < Kǫ,

∑
1≤u≤J cu(µ

u
in ·Mk) ∈ Dk, and

• for all 0 ≤ m ≤ θ − 1, Nǫ(
∑

1≤u≤J cu(g
m
µu
in

·Mm)) =
Dm.

We can decide this using the first order theory of reals. Conse-
quently we can computêF , the set ofǫ-approximate behaviors
of M generated by distributions inDin. An important fact is
F̂ is a finite set. Hence for eachǫ-approximate behavior in
this set, we can use the procedure described in the previous
section and by taking the conjunction of all the outcomes we
can decide whether(M,Din)|=ǫ ϕ (resp.(M,Din)|=

ǫ

ϕ).

VI. T HE GENERAL CASE

We finally turn to the general case. LetM be a Markov
chain with Din as the initial set of distributions. Let
{SC1, SC2, . . . , SCr} be the set of maximal (in terms of their
node sets under inclusion) strongly connected components

9
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Fig. 4. A general Markov chain (unlabelled transitions haveprobability 1)
and (the Hasse diagram of) its poset of strongly connected components

of GM , the graph ofM . The relation� over this set is
given by: SC � SC′ iff there exists a nodei in SC, a
node j in SC′ and a path fromi to j in GM . Clearly �
is a partial ordering relation and the maximal elements under
� (the final strongly connected components) are called the
positive recurrent classes. The chain restricted to each positive
recurrent class is an irreducible chain which may be periodic or
aperiodic. An example of a general Markov chain is shown in
fig. 4(a) while the poset of its strongly connected components
is shown in fig. 4(b) (each strongly component is represented
by its set of nodes). Ifi is a node that belongs to a non-
maximal strongly component then it is atransient node. If
a node is not a transient node it is arecurrent node. Thus,
for instance in the example from fig. 4, nodes{1, 2, 3, 4} are
transient and{5, 6, 7, 8, 9} are recurrent. The positive recurrent
class{5, 6, 7} is irreducible and periodic with period3 while
the positive recurrent class{8, 9} is irreducible and aperiodic.

We will first sketch the main ideas for a single initial
distribution µin. As before, given any Markov chainM , µ
and ǫ > 0, our goal is to compute(i) the positive integerθ,
depending only onM , (ii) the positive integerKǫ, depending
onM andǫ, and(iii) define for each distributionµ, the final
classes(Fµ,m)m∈{0,...θ−1} such that Lemma 1 holds, i.e., for
every k > Kǫ, ξµ(k) ∈ Fµ,k mod θ (ξµ being the symbolic
trajectory generated byµ). In the three following subsections,
we will define these quantities and then prove the lemma.

A. Determiningθ

Given Markov chainM and its graphGM , let Xtrn denote
the set of transient nodes andXrec the set of recurrent nodes.
Further, let {X1,X2, . . .Xu} be the node sets of the�-
maximal strongly connected components ofM . In the example
above,{5, 6, 7} and {8, 9} are the node sets of the two�-
maximal components.

We now have,
⋃

1≤v≤u Xv = Xrec. Further,M restricted
to eachXv is an irreducible Markov chain and hence as in
Section V-A, it has a period, sayθv. We defineθ to be the
lcm (least common multiple) ofθ1, · · · , θu.

B. DeterminingKǫ

The positive integerKǫ will be defined as the sum of two
integersK1 andK2 with K1 determined by the transient nodes
andK2 by the the recurrent nodes.

As M is iteratively applied toµin, the total probability
mass of the transient nodes will tend to0. To see this let
i ∈ Xtrn. Then there existsk ≤ |Xtrn| and j ∈ Xrec

such thatMk(i, j) > 0. Next we note that ifi1 . . . ik is a
path in GM and iℓ ∈ Xrec for some ℓ with ℓ < k, then
iv ∈ Xrec for every v satisfying ℓ ≤ v ≤ k. Consequently
we can find ap > 0 such that for everyi ∈ Xtrn, there
exists j ∈ Xrec such thatM |Xtrn|(i, j) ≥ p. This implies∑

i∈Xtrn
(µin ·M |Xtrn|)(i) ≤ (1−p)·µin(i) for eachi ∈ Xtrn.

Sincep > 0, we have1 − p < 1 and hence for anyδ > 0
there exists a computablek such that(µin ·Mk)(i) < δ. Let
K be the least positive integer such that(µin ·MK)(i) ≤ ǫ

4 .
We now setK1 = K · θ and can easily show:

Lemma 6: for all k ≥ K1,
∑

i∈Xtrn
µin ·Mk(i) ≤ ǫ

4 .
As noted above, for anyδ > 0 there existsk such that(µin ·

Mk)(i) < δ. Thusµin will tend to a distributionµ′
in (asM is

iteratively applied toµin) with µ′
in(i) = 0 for everyi ∈ Xtrn.

UsingGM , we can explicitly compute the recurrent component
of µ′

in as follows. Recall that{X1,X2, . . .Xu} are the node
sets of the�-maximal elements of{SC1, SC2, . . . , SCr} and
hence

⋃
1≤v≤u Xv = Xrec.

M restricted to eachXv is an irreducible Markov chain and
thus we can decompose eachXv into its set of irreducible
and aperiodic componentsXv,0,Xv,1, . . . ,Xv,θv−1, as done in
Section V-A. Consequently,Mθ restricted toXv,m will be
an irreducible and aperiodicMarkov chain for1 ≤ m ≤ θv
and 1 ≤ v ≤ u with the unique stationary distributionfv,m.
Hence, by Lemma 3, for any givenδ > 0 we can fix a constant
Kδ

v,m for each of these components that will satisfy: for every
k ≥ Kδ

v,m, for any distributionνv,m of Xv,m, the distribution
νv,m ·M (θvk) is δ-close tofm,v. We now setδ = ǫ

2 andK2 =
θ ·max{Kδ

v,m}. The reason for fixingK2 in this fashion will
become subsequently clear.

Finally, we setKǫ = K1+K2. We note that by construction
K1 andK2 and thereforeKǫ are all multiples ofθ.

C. Determining the final classes

We will use the same strategy as in Section V-A to define
the final classes. To this end, leti ∈ Xtrn and 1 ≤ v ≤ r
and 0 ≤ m ≤ θ − 1 where r and θ as define above. Then
for k ≥ 0, we definepk(i, v,m) =

∑
j∈Xv,m

Mk·θ(i, j), the
probability, starting fromi, to reachXv,m in kθ steps ofM
(that is ink steps ofMθ). Notice that for allv,m, Xv,m is a
trap forMθ, that is, if x ∈ Xv,m, thenx ·Mθ ∈ Xv,m. We
now definep(i, v,m) = limk→∞pk(i, v,m).

To see that this quantity exists (i.e., is well-defined), we
note thatpk(i, v,m) is bounded from above by1. Also, it
monotonically increases withk as for any path inGM of
the form x0x1, . . . xuθ . . . xu′θ with x0 = i, if xuθ ∈ Xv,m

thenxu′θ ∈ Xv,m, for 0 ≤ u ≤ u′. Hence, by the monotone
convergence theoremp(i, v,m) exists. In term of LTL formula,
p(i, v,m) is the probability of the propertyi∧(EXv,m) [5]. We
will follow [5] in order to to compute these numbersp(i, v,m).

For all v,m, we define the linear operatorOpv,m :
[0, 1]Xtrn → [0, 1]Xtrn by

Opv,m(x) = b+ x ·A

10



where A is the matrix restriction ofM to Xtrn, and b :
Xtrn → [0, 1] is defined by b(s) =

∑
s′∈Xv,m

M [s, s′].
Now, one can notice (see Theorem 10.15 in [5]) that
(pk(i, v,m))i∈Xtrn

= Opkv,m(0), for 0 the null vector. We thus
have (p(i, v,m))i∈Xtrn

= limk→∞Op
k
v,m(0). This leads to

Opv,m((p(i, v,m))i∈Xtrn
) = (p(i, v,m))i∈Xtrn

for all v,m.
One can compute the set of solutions of this system of linear
equations, for allv,m. The values for(p(i, v,m))i∈Xtrn

is
one of these solutions. Equivalently,(p(i, v,m))i∈Xtrn

is a
fix point of Opv,m. As stated in Theorem 10.15 of [5],
(p(i, v,m))∈Xtrn

is actually the least fix point ofOpv,m (in the
space[0, 1]Xtrn). This fact allows to determine uniquely the
value ofp(i, v,m) for all i, v,m. Indeed, take any fix pointy ∈
[0, 1]Xtrn of Opv,m. That is,Opv,m(y) = y. Now,y(i) ≥ 0 for
all i ∈ Xtrn. That isy is bigger or equal to the null vector0.
Now, y being a fix point andOpv,m being a positive operator,
we gety = Opkv,m(y) ≥ Opkv,m(0) = (pk(i, v,m))i∈Xtrn

for
all k. Hence at the limit fork → ∞, y(i) ≥ p(i, v,m) for all
i ∈ Xv,m, which shows that(p(i, v,m))i∈Xtrn

is indeed the
least fix point ofOpv,m.

Once p(i, v,m) is computed, for every distributionµ
over X , we set αµ

v,m =
∑

i∈X µ(i)p(i, v,m) and hµ =∑
v,m αv,mf

′
v,m. As before,f ′

v,m is justfv,m extended overX
in the natural way. Also, as before, we definehmµ = hµ ·Mm

for all 0 ≤ m < θ. We now define the final classes as:

Fµin,m = {D ∈ D | ∃µ′ ∈ D,∆(hmµin
, µ′) ≤ ǫ}

for m ∈ {0, . . . , θ − 1}.

D. The main result

The key to deriving the main result is:
Lemma 7:∆(ρµin

(Kǫ), hµin
) ≤ ǫ.

Proof: By definition ofK1 and Lemma 6, afterK1 steps
we have that

∑
i∈Xtrn

µin ·MK1(i) ≤ ǫ/4. This implies that
∑

v,m

∑

i∈Xv,m

(µin ·MK1(i)) =
∑

i∈Xrec

µin ·MK1(i)

= 1−
∑

i∈Xtrn

µin ·MK1(i) ≥ (1 − ǫ/4) (3)

Also, we have for allk · θ ≥ K1, and for all j,m,∑
i∈Xj,m

µin ·Mk·θ(i) ≥
∑

i∈Xj,m
µin ·MK1(i) sinceXj,m

is an invariant set forMθ. Now, in particular,

αµin
v,m =

∑

i∈X

µin(i) · lim
k→∞

∑

j∈Xv,m

Mk·θ(i, j)

= lim
k→∞

(
∑

j∈Xj,m

µin ·Mk·θ(j)) ≥
∑

i∈Xv,m

µin ·MK1(i) (4)

In the following, we will writeαv,m to meanαµin
v,m purely

to avoid the cumbersome notation. It will be clear from the
context that we mean the latter. Hence by (4),

∑
v,m |αv,m −∑

i∈Xv,m
µin · MK1(i)| =

∑
v,m(αv,m −

∑
i∈Xv,m

µin ·

MK1(i)) =
∑

v,m(αv,m)−
∑

v,m(
∑

i∈Xv,m
µin ·MK1(i)) ≤

1 − (1 − ǫ/4) = ǫ/4, where the inequality follows by using
(3). Thus, we have:

∑

v,m

|αv,m −
∑

i∈Xv,m

µin ·MK1(i))| ≤ ǫ/4 (5)

Intuitively, this implies thatρµin
(K1) is ǫ/2 close to a

distribution µ′ (which we define formally below) satisfying
the following properties:

1) µ′(i) = 0 for all i ∈ Xtrn, and
2)

∑
j∈Xv,m

µ′(j) = αv,m for all v,m

Intuitively, one can understandµ′ asµin ·MK1 where the
very small probabilities inXtrn has been removed and placed
in Xrec. Notice thathµin

also satisfies these two requirements.
The second one is by definition, and the first one is because

if i ∈ Xtrn, thenhµin
(i) = 0 (6)

This statement (6) follows due to the fact that wheni ∈ Xtrn,
then i 6∈ Xv,m for any v,m and sof ′

v,m(i) = 0. Now, it
is possible thatµ′(i) 6= hµin

(i) for somei ∈ Xrec. But µ′

will converge tohµin
following the arguments of the previous

section, so it suffices to wait anotherK2 steps to get that
ρµin

(K1+K2) will be ǫ-close tohµin
. This intuition is made

precise in what follows.
More formally, we set:µ′(i) = 0 for all i ∈ Xtrn, and for

all j,m, defineβj,m =
∑

i∈Xj,m
µin ·MK1(i), andµ′(i) =

αj,m

βj,m
· (µin ·MK1(i)) for all i ∈ Xj,m. It is easy to check that:

C1) for all v,m,
∑

i∈Xv,m
µ′(i) =

αj,m

βj,m
·
∑

i∈Xj,m
(µin ·

MK1(i)) = αj,m.
C2) ∆(µ′, ρµin

(K1)) =
∑

i∈X |µ′(i) − µin · MK1(i)| =∑
iXtrn

µin ·MK1(i) +
∑

i∈Xrec
µ′(i)− µin ·MK1(i) ≤

ǫ/4 +
∑

j,m(
∑

i∈Xj,m
µ′(i) − µin · MK1(i)) = ǫ/4 +∑

j,m(
∑

i∈Xj,m
µ′(i)−

∑
i∈Xj,m

µin ·M
K1(i))) = ǫ/4+∑

j,m(αj,m −
∑

i∈Xj,m
µin ·MK1(i)) ≤ ǫ/2.

The last inequality in Condition C2) holds thanks to (5).
Now, Condition C1) implies that the stationary distribution
gµ′ associated withµ′ in the sense of the previous section
satisfiesgµ′ = hµin

. Therefore, applying the same reasoning
as in the previous section, asK2 ≥ max θ ·K

ǫ/2
v,m, we get that

∆(µ′ ·MK2 , hµin
) ≤ ǫ/2 (7)

Thus, we have

∆(ρµin
(Kǫ), hµin

) = ∆(µin ·MK1+K2 , hµin
)

≤ ∆(µ′ ·MK2 , hµin
) + ∆(µin ·MK1+K2 , µ′ ·MK2) (8)

≤ ǫ/2 + ∆(µin ·MK1 , µ′) (9)

≤ ǫ (10)

The inequality (8) holds by the property of the norm. To prove
(9), we use (7) and the standard fact that any Markov chainM ,
satisfies∆(µ·M,µ′·M) ≤ ∆(µ, µ′) for any distributionsµ, µ′.
Hence∆(µ ·MK2 , µ′ ·MK2) ≤ ∆(µ, µ′), whereµ = µin ·
MK1 . Finally (10) follows by Condition C2) which completes
the proof.

We can now easily extend the above lemma to show that for
all k ≥ Kǫ with k mod θ = r, ∆(ρµin

(k), hrµin
) ≤ ǫ. This,

follows by applying the same reasoning as in the last step of
proof of Lemma 4, i.e., by iteratingM sufficiently many times
from µin ·MKǫ

. Finally, sinceKǫ does not depend onµin, the
result holds starting from any distributionµ. Thus, we have
established Lemma 1 for the general case.
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Again sinceKǫ does not depend onµin, as done in the
previous section, we can compute the corner points ofDin,
and deduce the convex set of stationary distributions. Then
we can compute the finite set ofǫ-approximate behaviors, and
apply to eachǫ-approximate behavior the procedure of the
previous section to decide whether it satisfiesϕ from below
(or above). This leads to our main result, namely, Theorem 1,
which states thatǫ-approximate model checking (from below
and above) is decidable.

VII. C ONCLUSION

We have initiated here the study of the symbolic dynamics
of finite state Markov chains. We have done so by discretizing
the probability value space[0, 1] into a finite set of intervals
I. This leads to the notion of a discretized distribution.
The infinite set of distributions overX , the set of nodes
of the Markov chain, are then represented symbolically -and
unambiguously- by thefinite set of discretized distributionsD.
Given an initial set of distributions, the trajectory generated by
each initial distribution will induce an infinite sequence over
Dω. Consequently the dynamics of the Markov chain with a
given set of initial distributions is symbolically represented
by LM ⊆ Dω . Here we have focused on the problem of
determining whetherLM meets the specificationϕ whereϕ
is a formula ofLTLI , a simple linear time temporal logic.
In this logic only the atomic propositions have a probabilistic
flavor and they will assert that the current probability of a node
of M falls in d, whered is an interval inI. Since an exact
solution to this problem is out of reach due to the complicated
steady state behaviorM , we have developed the notion of
an ǫ-approximation. This in turn leads to the the notions of
(M,Din) ǫ-approximately satisfying the specificationϕ from
below and above. Our main result is that both these model
checking problems are decidable forall finite state Markov
chains.

In the present study we have used a discretized distribu-
tion to specify the initial set of distributions. An alternative
approach would be to present this set as the convex hull of
a finite set of concrete distributionsIN = {µ1

in, µ
2
in, . . . µ

u
in}.

As explained in Section V-B, as soon as the members ofIN

have rational coordinates, all our constructions will go through
with minor modifications.

As pointed out at the end of Section IV, it follows that
we can allow the atomic propositions to express polynomial
constraints over the distributions contained in the current D-
distributions while preserving decidability.

An interesting application we plan to explore is the dy-
namics of biochemical networks modeled by the Chemical
Master Equation [27]. In the discrete time version of nu-
merically solving the Chemical Master Equation, we feel
that our symbolic dynamics approach can bring considerable
benefits. Further, given the nature of the application, the errors
incurred through theǫ-approximation method will be entirely
acceptable. As mentioned in the introduction, we have not paid
close attention to complexity issues. We are however confident
that suitable geometric representations and linear algebraic
techniques can considerably reduce the complexity of many

of our constructions. We plan to address this in our future
work.
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VIII. A PPENDIX

We explain here how to obtain a better value ofKǫ, by
computing some contraction factorδ around the stationary
distribution of an aperiodic and irreducible Markov Chain.
Actually, considering another basis and the norm associated
with it, we even get the optimality of this factorδ.

Lemma 8:One caneffectively compute inO(|X |4) time a
numberδ with 0 < δ < 1 such that∆(µ ·M |X |2, f) < δ ·
∆(µ, f).

It follows from this lemma that for any choice ofk′, if k >
k′ · |X |2, then∆(µ ·Mk, f) < δk

′

·∆(µ, f). Now 0 < δ < 1
and in addition,2 is an upper bound for∆(µ, f). Therefore,
by choosing a large enoughk′ we can setKǫ = k′ · |X |2 such
that for everyµ, ∆(µ ·Mk, f) < ǫ for all k ≥ Kǫ.

Proof: First, note that the value of the unique stationary
point f can be computed by solving the system of equations
{(µ ·M) = µ,

∑
i∈X µi = 1}. Since this is a system of|X |+

1 equations with|X | unknowns, it can be solved using say,
Gaussian elimination inO(|X |3) time.

Given f computed from above, we can writef =
(f1, . . . , fn) such that

∑
i∈X fi = 1. With the standard

basis e1 = (1, 0, . . . , 0) and e2 = (0, 1, . . . , 0), . . ., en =
(0, . . . , 0, 1), we can writef =

∑
i fiei. There existsi′ ∈ X

such thatfi′ > 1
|X | . Without loss of generality we leti′ = 1

and denoteX ′ = X \ {1}. Let |X | = n.
Now, we will rewrite the vectors in a new orthogonal basis

with centerf , namely the set of vectorsB = {b1, . . . bm} such
that b1 = (f1, f2, . . . , fn) = f , b2 = (− 1

n ,
1
n , 0, . . . , 0), b3 =

(− 1
n , 0,

1
n , 0, . . . , 0),. . ., bn = (− 1

n , 0, . . . , 0,
1
n ). Working in

this new basis, and in a new norm (that we will define soon)
is quite useful, as we will show below.

Notice that for alli ≥ 2, we havef + bi is a distribution.
This is because each(f + bi) = (f1 −

1
n , . . . , fi +

1
n , . . . , fn)

and we have

1) f1 > 1
n and

2) for eachi ∈ X ′, fi < 1− 1
n (since

∑
i∈X fi = 1) and

3)
∑

j∈X (f + bi)j = f1 + . . .+ fn = 1.

Also, for any distributionµ, we can write it asf+
∑

i≥2 αibi.
In particular, the coefficient in the first component is always
1. Indeed, taking any distributionµ = (µ1, · · · , µn) (in the
standard basis),we have

∑
(µi − fi) =

∑
µi −

∑
fi = 0.

Now, for two distributionsµ = f +
∑

i≥2 αibi andν = f +∑
i≥2 βibi, we have the new norm∆′(µ, ν) =

∑
i≥2 |αi−βi|.

Notice that since the dimension|X | = n is finite, this norm
∆′ is equivalent to∆, that is there exists0 < η1, η2 < 1 s.t.:

η1 ·∆(µ, µ′) ≤ ∆′(µ, µ′) ≤ η2 ·∆(µ, µ′) for all µ, µ′ (11)

The values ofη1 andη2 can be computed by writingµ, µ′ in
the standard basis and comparing the values obtained.

Now, we let for alli ≥ 2, wi = (f + bi) ·Mn2

wheren =

|X |, andλi =
∆′(wi,f)

∆′((f+bi),f)
. We also letλ = maxi∈X ′ λi. Now,

sinceM is irreducible and aperiodic, by fact (F1) and Lemma
3, we obtain thatMn2

has all strictly positive entries and now
by fact (F2), we conclude that∆′(wi, f) < ∆′((f + bi), f).
Which in turn implies that eachλi < 1 and soλ < 1. Now,
we have the following contraction property on the norm∆′.

Claim 1: For all µ, ∆′(µ ·Mn2

, f) ≤ λ ·∆′(µ, f).
Proof: Fix µ = f +

∑
i∈X ′ αibi. We have∆′(µ, f) =∑

i∈X ′ |αi|. Also, for all j ∈ X ′, we writewj = (f + bj) ·

Mn2

= f +
∑

i∈X ′ βibi, from which we getbj · Mn2

=∑
i∈X ′(βibi) and∆′(wj , f) =

∑
i∈X ′ |βi|. Thus by definition

of λ we have,
∑

i∈X ′

|βi| = ∆′(wj , f) ≤ λ ·∆′((f + bj), f) ≤ λ (12)

Now, again by linearity ofM , we have(µ ·Mn2

) = f +∑
i∈X ′ αi(bi · Mn2

) = f +
∑

i∈X ′ αi

∑
k∈X ′ βkbk = f +∑

k∈X ′ [
∑

i∈X ′ αiβk]bk. Hence

∆′(µ ·Mn2

, f) =
∑

k∈X ′

|
∑

i∈X ′

αiβk| ≤
∑

i∈X ′

∑

k∈X ′

|αi||βk|

=
∑

i∈X ′

|αi|
∑

k∈X ′

|βk| ≤
∑

i∈X ′

|αi| · λ = λ ·∆′(µ, f)

(end of Claim 1)
Notice that by the definitionλ and because of this claim,

this value ofλ is an optimal contraction factor for the norm
∆′. Indeed, there exists at least one distributionµ for which
λ is reached, so noλ′ < λ fits.

Now sinceλ < 1, from Equation (1) and Claim 1, we have
for any k ≥ 1, η1 ·∆(µ ·M (n2·k), f) ≤ ∆′(µ ·M (n2·k), f) ≤
λk ·∆′(µ, f) ≤ η2 ·∆(µ, f) where,η1 andη2 are the bounds
on the norm∆′ computed earlier. Then, we just choosek = ℓ′

such thatδ = λℓ′η2

η1

< 1, which gives the proof of Lemma 2.
(end of Lemma 2)
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