Memento on cell-complexes

Guillaume BATOG

October 1, 2009
X is a Hausdorff space. D^{n} is a n-dimensional closed ball. Δ^{n} is the n-dimensional standard simplex. For a subspace A of X, \bar{A} is the closure of A and $\operatorname{int} A$ its interior. A caracteristic map of X is a continuous function $f_{\alpha}: D^{n} \rightarrow X$ whose restriction to $\operatorname{int} D^{n}$ is an embedding. A cell e_{α}^{n} of X is the image of a caracteristic map f_{α} of X on the open ball int D^{n}. Notice that $\bar{e}_{\alpha}^{n}=f_{\alpha}\left(D_{\alpha}^{n}\right)$.

Cell-complex. A cell-complex K is a Hausdorff space which is the disjoint union of cells e_{α}^{n} which satisfy the following condition
($\star \bar{e}_{\alpha}^{n} \backslash e_{\alpha}^{n}$ is contained in K^{n-1}
where K^{n} is the $n^{\text {th }}$ skeleton of K which consists of all the cells of dimension $\leq n$ ($K^{-1}=\varnothing$). A cell-complex is called regular if its characteristic maps can be chosen to be embeddings. A cell-complex is finite if its disjoint union of cells is finite. The dimension of K is the minimum m such that $K^{m}=K$. A subcomplex $L \subset K$ is the union of a subcollection of the cells of K such that, if $e \subset L$ then $\bar{e} \subset L . K^{n}$ is a subcomplex of K for any n.

The examples in Fig 3 illustrate the hypothesis in the definition of a cell-complex. In C_{1}, the two edges are not disjoint. In C_{2} or C_{3}, it is impossible to map continuously the closed segment D^{1} onto the open segment or the circle. In C_{4}, e^{2} is a cell but e^{1} is not because it is not homeomorphic to the open segment. In C_{5}, the condition (\star) is falsified because ∂e_{2}^{1} is contained in K^{1} but not in K^{0}. Notice that (\star) is satisfied for e^{1} in C_{2} and in C_{3} and for e^{2} in C_{5}. In C_{6}, the cell e^{2} is homeomorphic to int D^{2} but such an homeomorphism cannot be extended to an embedding of D^{2} so C_{6} is not regular. C_{7} and C_{8} are two cell complexes where ∂e_{2} is not a union of cells.

Figure 1: Examples and counter-examples of cell-complexes

Lavalle's definition. Lavalle gives an alternative definition of cell-complex. A L complex is a Hausdorff space K which is the disjoint union of cells e_{α}^{n} satisfying the two following condition:
(a) K^{n} is a closed subset of K,
(b) e_{α}^{n} is an open subset of K^{n}.

Lemma 1. A L-complex is a cell-complex.
Proof. Let consider a L-complex. As e_{α}^{n} is an subset of K^{n} which is a closed subset of K (hypothesis (a)), its closure \bar{e}_{α}^{n} (in K) is contained in K^{n} so ∂e_{α}^{n} is contained in K^{n}. Suppose now by contradiction that a point x of ∂e_{α}^{n} is contained in some cells e_{β}^{n}. As e_{β}^{n} is an open subset of K^{n} (hypothesis (b)), its complementary $K^{n} \backslash e_{\beta}^{n}$ has to be a closed subset of K^{n}. But x is an accumulation point of e_{α}^{n} which is disjoint of e_{β}^{n}, this leads to a contradiction. Finally ∂e_{α}^{n} is contained in K^{n-1} and the property (\star) is satisfied.

CW properties. A $C W$-complex is a cell-complex which satisfy the following properties:

- Closure-finiteness. For each cell e_{α}^{n}, its frontier ∂e_{α}^{n} is contained in the union of a finite number of cells of K^{n-1}.
- Weak topology. A subset of K is closed if and only if it meets the closure of each cell of K in a closed set.

Any finite complex K is a CW-complex: it is obviously closure finite and it has the weak topology since $A \subset K$ is the union of the finite number of sets $X \cap \bar{e}$.

Lemma 2. A CW-complex is a L-complex.
Proof. In a CW-complex, all skeleton K^{n} are closed CW-complexes (see [2]) so condition (a) of L-complex is satisfied. Let show that $\left(e_{\alpha}^{n}\right)^{c}=K^{n} \backslash e_{\alpha}^{n}$ is closed in K^{n} by using the weak topology property of K_{n}. The condition (b) will be also satisfied.

- Cells $e_{\beta}^{j} \neq e_{\alpha}^{n}$ in K^{n}. Such a cell is contained in $\left(e_{\alpha}^{n}\right)^{c}$ by the disjointness of cells. By condition (star), its boundary ∂e_{β}^{j} is contained in $K^{j-1} \subset\left(e_{\alpha}^{n}\right)^{c}$, so the closed set \bar{e}_{β}^{j} is contained in $\left(e_{\alpha}^{n}\right)^{c}$.
- Cell e_{α}^{n}. We have $\bar{e}_{\alpha}^{n} \cap\left(e_{\alpha}^{n}\right)^{c}=\partial e_{\alpha}^{n}$. By closure-finiteness property, ∂e_{α}^{n} is contained in a finite union of cells e_{γ}^{k} with $k<n$. Since \bar{e}_{α}^{n} is a closed set of $K^{n}, \bar{e}_{\alpha}^{n} \cap \bar{e}_{\beta}^{j}=$ $\partial e_{\alpha}^{n} \cap \bar{e}_{\beta}^{j}$ is a closed set for all cells $e_{\beta}^{j} \neq e_{\alpha}^{n}$. We obtain

$$
\bar{e}_{\alpha}^{n} \cap\left(e_{\alpha}^{n}\right)^{c}=\partial e_{\alpha}^{n}=\bigcup_{\beta \neq \alpha} \partial e_{\alpha}^{n} \cap \bar{e}_{\beta}^{j}=\bigcup_{\gamma} \partial e_{\alpha}^{n} \cap \bar{e}_{\gamma}^{k}
$$

and the last union is finite so it is a closed set of K_{n}.

About non-compact cells. In affine space, we wish to consider unbounded cells (as in Voronoi diagrams) but in the formalism of a cell-complex, a cell has compact closure. We can embed the affine space in the projective space or we can compactify it to get back the formalism of complexes. In each case, we have to add ideal cells.

Figure 2: From left to right: decomposition in affine space, associated cell-complex in projective space, associated cell-complex in the compactification

Triangulations. A Δ-complex is a (CW-)complex whose characteristic maps satisfy the additional property: each cell e_{α}^{n} is provided with a characteristic map $f_{\alpha}: \Delta^{n} \rightarrow \bar{e}_{\alpha}^{n}$ such that the restriction of f_{α} to each face Δ^{n-1} of Δ^{n} is f_{β} for some cell e_{β}^{n-1}. If the ordering of vertices of simplices does not matter, the Δ-complex is unordered. In the literature unordered Δ-complexes are called generalized triangulations.

Regular complexes are homeomorphic to Δ-complexes but the converse is false (à vérifier, homéo cellulaire?). A simplicial complex (or simplicial multicomplex, or multicomplex) is a regular unordered Δ-complex in which each simplex is uniquely determined by its vertices. (ie on a des simplexes bien droits?)

A singular Δ-complex is a (CW-)complex with characteristic maps $f_{\alpha}: \Delta^{n} \rightarrow \bar{e}_{\alpha}^{n}$ whose restrictions to faces Δ^{n-1} are compositions $f_{\beta} \circ q: \Delta^{n-1} \rightarrow \Delta^{k} \rightarrow K$ for q a linear surjection taking vertices to vertices (and preserving orders).

Figure 3: From left to right: simplicial complex, Δ-complex, singular complex

References

[1] A. Hatcher, Algebraic Topology.
[2] J. H. C. Whitehead, Combinatorial Homotopy, Bull. Amer. Math. Soc., 55(3), 1949, 213-245.
[3] S. M. LaValle, Planning Algorithms.

