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Abstract

A collection C of balls in Rd is δ-inflatable if it is isometric to the inter-
section U ∩ E of some d-dimensional affine subspace E with a collection
U of (d + δ)-dimensional balls that are disjoint and have equal radius. We
give a quadratic-time algorithm to recognize 1-inflatable collections of balls
in any fixed dimension, and show that recognizing δ-inflatable collections of
d-dimensional balls is NP-hard for δ ≥ 2 and d ≥ 3 if the balls’ centers and
radii are given by numbers of the form a + b

√
c + d

√
e, where a, . . . , e are

integers.

1 Introduction

Let U be a family of disjoint balls of equal radius – unit balls, for short – in Rd+δ

and E ⊂ Rd+δ be a d-dimensional affine subspace – d-flat, for short. The intersec-
tion C = U ∩ E is a collection of d-dimensional balls that may no longer be unit,
but still are not arbitrary: not every collection of balls in Rd can be obtained as
sections of higher dimensional disjoint unit balls. We say that C is inflatable and U
is an inflation of dimension δ of C. In this paper, we study the δ-inflation problem
for balls in Rd:

δ-inflation problem: given a collection of n balls in Rd, decide if it
admits an inflation of dimension δ.

Motivation. This problem originates from geometric transversal theory, an area
that investigates properties of geometric transversals to collections of subsets of Rd

(see e.g. the survey of Wenger [20]), and in particular of line transversals to disjoint
convex objects. The topology and combinatorics of the set of line transversals to
disjoint objects depend on the geometry of these objects, typical examples being
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the existence of Helly-type theorems [1, 6, 7, 13, 14] or the maximum number of
geometric permutations [2, 3, 8, 10, 16, 17, 18, 19]. Understanding the hierarchy
among classes of convex sets induced by such properties is a central question in
geometric transversal theory.

In this hierarchy, the class of collections of disjoint unit balls is in a very partic-
ular situation. For example, the set of line transversals to any collection of disjoint
unit balls has at most 3 connected components [7, 8] while this number can be
Ω(nd−1) for n disjoint balls of arbitrary radii in Rd [18] and Ω(n) for n disjoint
translates of a convex set [3]. Another particularity is that any family of disjoint
unit balls in Rd has a line transversal if every 4d− 1 members have a line transver-
sal [7, 13] but no similar Helly-type theorem exists for collections of disjoint balls
with arbitrary radii [9, 12] or collections of disjoint translates of a convex set [14].

For these two examples, the properties of unit balls do generalize to inflatable
collections of balls [7, 8] and it is unclear whether further extension of this class is
possible. Looking for a working characterization of inflatable families of balls is a
natural approach to this question.

Related work. In the context of geometric transversal theory, the notion of in-
flatability was first introduced by Cheong et al. [7] as a tool to generalize properties
of line transversals to 4-dimensional disjoint unit balls to arbitrary dimension. In
the same paper, they also proved that two balls are inflatable if and only if the
squared distance between their centers is at least twice the sum of their squared
radii (c.f. Lemma 2). To the best of our knowledge, this was the first use of the no-
tion of inflatability and with the exception of the case of 2 balls, the present paper
is the first investigation of the problem of recognizing inflatable families of balls.

Several other results also aim at bridging the gap between unit and non unit
balls with respect to properties of line transversals. Zhou and Suri [22] proved that
disjoint balls with radii in the range [1, γ] have at most O(γlog γ) geometric per-
mutations, and Hadwiger [11] proved a Helly-type theorem for “thinly distributed”
families of balls, i.e. families such that the distance between the centers of any two
balls is at least twice the sum of their radii.

Results. First, we show that the 1-inflation problem can be solved in quadratic
time:

Theorem 1. We can recognize 1-inflatable families of n balls in d dimensions using
O(n2) arithmetic operations on the balls’ radii and center coordinates.

Our proof gives an algorithm to compute such an inflation, when it exists, using
O(n2) operations +,−, ∗, /, 2

√
· or comparison on the center coordinates and radii

of the balls.

2



Recall that an algebraic number is a root of some polynomial with integer coef-
ficients. Any algebraic number admits a finite representation such as the isolating
interval representation [21] that allows standard arithmetic computations. A col-
lection of balls with algebraic coordinate centers and radii can thus be described
by a finite string of bits and the restriction of the inflation problem to this type of
input can be studied in the bit model. We prove that this version of the problem is
NP-hard:

Theorem 2. For δ ≥ 2 and d ≥ 3, deciding if a collection of balls in Rd with
algebraic coordinate centers and radii has an inflation of dimension δ is NP-hard.

More precisely, we show that the problem is NP-hard for collections of balls with
integer radii and centers with coordinates of the form a + b

√
c + d

√
e, where

a, . . . , e are integers.

Paper organization. After some preliminary remarks on the inflation of pairs
of balls (Section 2), we prove Theorem 1 by reducing the 1-inflation problem to
the 2-coloring problem on some appropriate graph (Section 3). Then, we prove
Theorem 2 by giving a polynomial reduction from the graph 6-coloring problem to
the δ-inflation of d-dimensional balls with algebraic centers and radii (Section 4).

2 Inflations of pairs of balls

We denote by R the set of reals, by Sd the set of unit vectors in Rd+1 and identify
S0 with {−1, 1} and S1 with the set of angles [0, 2π[. We consider the balls to
be open and say that two balls are tangent if their bounding spheres are externally
tangent. Let C = {B1, . . . , Bn} be a collection of balls in Rd. An inflation of C is
a collection U of disjoint balls with equal radius ρ in some Rd+δ such that E∩U is
isometric to C for some d-flat E. The dimension of the inflation is δ and its radius
is ρ. A collection of balls is inflatable if its admits an inflation, of any dimension or
radius. In the rest of the paper, we do not consider the trivial inflation where δ = 0
and assume that δ ≥ 1.

We identify each ball Bi ∈ C with its image in E ∩ U and denote by B′
i the

corresponding ball of radius ρ in U . Let vi denote the vector from the center of Bi

to that of B′
i, ri denote the radius of Bi and dij denote the distance between the

center of Bi and that of Bj . U is an inflation if and only if:

∀i 6= j, d2
ij + ||vi||2 + ||vj ||2 − 2vi · vj ≥ 4ρ2.

Since all vectors vi are orthogonal to E, we can write−→vi = ||vi||−→xi with−→xi ∈ Sδ−1.
We call−→xi the inflation vector of Bi. From ||vi||2 = ρ2−r2

i we deduce that a family
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of vectors −→x1, . . . , −→xn defines an inflation of radius ρ if and only if:

∀i 6= j, 2 (−→xi · −→xj)
√

(ρ2 − r2
i )(ρ2 − r2

j ) ≤ d2
ij − r2

i − r2
j − 2ρ2. (1)

Lemma 1. Two inflatable balls admit an inflation of dimension 1 with opposite
inflation vectors.

Proof. If two balls are inflatable then there exists a triple (ρ,−→xi ,
−→xj) satisfying

Inequation (1). Since
−1 = −−→xi · −→xi ≤ −→xi · −→xj

the triple (ρ,−→xi ,−−→xi) also satisfies this inequation. The space E spanned by the
d-space containing the original balls and the vector xi intersects the two inflated
balls in disjoint balls of equal radius. Since E has dimension d + 1, this is an
inflation of dimension 1.

Consider two disjoint balls Bi and Bj with radii ri , rj and centers dij apart.
We define ρij as follows:

ρij =


max(ri, rj) if d2

ij ≥ r2
i + r2

j + 2 max(r2
i , r

2
j )

1
2

√
(d2

ij−r2
i−r2

j )2−4r2
i r2

j

d2
ij−2r2

i −2 r2
j

otherwise.
(2)

Observe that for two disjoint balls with equal radii then ρij = ri = rj .

Lemma 2. Two disjoint balls Bi and Bj are inflatable if and only if d2
ij > 2(r2

i +
r2
j ) when ri 6= rj and if and only if d2

ij ≥ 2(r2
i + r2

j ) when ri = rj . The set of
radius to which they are inflatable is the interval [ρij ,+∞[.

The first statement was previously observed by Cheong et al. [7, Lemma 6].

Proof. By Lemma 1 and Equation (1), the two balls are inflatable if and only if
there exists ρ ≥ max(ri, rj) such that

d2
ij − r2

i − r2
j − 2ρ2 ≥ −2

√
(ρ2 − r2

i )(ρ2 − r2
j ).

With

Mij(ρ) =
(√

ρ2 − r2
i −

√
ρ2 − r2

j

)2

(3)

we have that the two balls are inflatable with radius ρ ≥ max(ri, rj) if and only if:

d2
ij ≥ 2(r2

i + r2
j ) +Mij(ρ).
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If ri = rj , Mij is constant equal to 0 and the equivalence holds and ρij = ri.
Now if ri 6= rj , for any ρ ≥ max(ri, rj) we have Mij(ρ) > 0 and it follows that
the two balls are inflatable only if d2

ij > 2(r2
i + r2

j ). A first-order Taylor expansion
of the square root function around 1 yields that

Mij(ρ) ∼
ρ→∞

(r2
j − r2

i )
2

4ρ2
,

and we obtain that limρ→∞Mij(ρ) = 0. It follows that if d2
ij > 2(r2

i + r2
j ) the

two balls are inflatable.
The two balls are inflatable only to radius larger or equal to max(ri, rj). Also,

Mij is decreasing on [max(ri, rj),+∞[, as can be observed from its derivative:

d

dρ
Mij(ρ) = ρ

(√
ρ2 − r2

i −
√

ρ2 − r2
j

)  1√
ρ2 − r2

i

− 1√
ρ2 − r2

j

 . (4)

The set of radius to which the balls are inflatable is thus an interval [α, +∞[. By
symmetry, we assume that rj > ri and, from Mij(rj) = r2

j − r2
i , we get:

α = rj ⇔ d2
ij ≥ r2

i + 3r2
j .

If α 6= rj we have
Mij(α) = d2

ij − 2(r2
i + r2

j )

which reduces to

d2
ij − r2

i − r2
j − 2α2 = −2

√
(α2 − r2

i )(α2 − r2
j ).

This equality is equivalent to

4(α2 − r2
i )(α

2 − r2
j ) = (2α2 + r2

i + r2
j − d2

ij)
2

and rewrites:

4(d2
ij − 2r2

i − 2r2
j )α

2 = (d2
ij − r2

i − r2
j )

2 − 4r2
i r

2
j .

We finally get that

α =
1
2

√
(d2

ij − r2
i − r2

j )2 − 4r2
i r

2
j

d2
ij − 2r2

i − 2 r2
j

when d2
ij < r2

i + 3r2
j , which concludes the proof.
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Figure 1: Two balls with radii r1 < r2 inflatable only to radii strictly larger than
r2: in dimension 1 (left) and 2 (right).

It may be surprising that ρij can be strictly greater than max(ri, rj). An example
of this situation is given in Figure 1.

Lemma 3. Two tangent balls are inflatable if and only if they have equal radii. In
any inflation they have opposite inflation vectors.

Proof. It follows from Lemma 2 that two tangent balls are inflatable if and only if
they have equal radii. Consider an inflation of radius ρ of two tangent balls of equal
radius r with inflation vectors−→x and−→y . Following Condition (1) the inflated balls
are disjoint if and only if

(−→x · −→y ) (ρ2 − r2) ≤ r2 − ρ2 ⇐⇒ −→x · −→y ≤ −1 or ρ = r

that is, if and only if −→x and −→y are opposite (or null if ρ = r, in which case they
can also be considered opposite).

3 Inflations of dimension 1

Let C = {B1, . . . , Bn} be a collection of balls in Rd. We denote by ρij the smallest
radius of an inflation of the balls (Bi, Bj) as defined in Equation (2) and by RC the
maximum of ρij over all pairs {i, j}. Let Gρ(C) = (C, E) denote the graph where
E contains an edge (Bi, Bj) if and only if

2
√

(ρ2 − r2
i )(ρ2 − r2

j ) > d2
ij − r2

i − r2
j − 2ρ2, (5)

that is, according to Condition (1), if these balls cannot be inflated to radius ρ using
equal inflation vectors.
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Lemma 4. C admits an inflation of dimension 1 and radius ρ if and only if ρ ≥ RC
and Gρ(C) admits a 2-coloring.

Proof. Consider a 2-coloring φ of Gρ(C) for ρ ≥ RC ; since S0 has cardinality 2,
we can assume that φ colors Gρ(C) by vectors in S0. Let U denote the collection
of (d + 1)-dimensional balls obtained by inflating each ball Bi to radius ρ using
φ(Bi) as inflation vector. Lemma 2 yields that C is pairwise inflatable with radius
ρ, and so Lemma 1 implies that pairs inflated using opposite inflation vectors do
not intersect. By construction, pairs inflated using equal inflation vectors are not
connected by an edge in Gρ(C) and, thus, do not intersect. Therefore, U is an
inflation of dimension 1 of C.

Conversely, consider an inflation U of dimension 1 and radius ρ of C. Lemma 2
implies that ρ ≥ RC . Let φ : C → S0 map a ball in C to its inflation vector if that
vector is not null, and to an arbitrary vector in S0 otherwise. By construction, two
balls connected in Gρ(C) cannot be inflated using the same inflation vector. If a
ball Bi has inflation vector

−→
0 , then its radius is ri = ρ and it is connected in Gρ(C)

only to balls Bj satisfying:

d2
ij − r2

i − r2
j − 2r2

i < 0.

Condition (1) then implies that balls Bi and Bj are not inflatable to radius ρ. Since
ρ ≥ RC , any ball Bi with inflation vector

−→
0 is isolated in Gρ(C), and φ is a

2-coloring of Gρ(C).

The family of graphs Gρ(C) is monotone for ρ ≥ RC :

Lemma 5. Gρ1(C) ⊂ Gρ2(C) for any RC ≤ ρ1 ≤ ρ2.

Proof. Using the functionMi,j defined in Equation (3), Condition (5) rewrites as:

d2
ij < 4ρ2 −Mi,j(ρ).

The right-hand term is increasing for ρ ≥ RC as the sum of two increasing func-
tions (c.f. Equation (4)), and the statement follows.

Combining Lemmas 4 and 5, we get that C is 1-inflatable if and only if GRC(C)
has a 2-coloring. Computing GRC(C) takes O(n2) arithmetic operations on the
balls’ parameters (squaring Condition (5) to avoid manipulating square roots), and
deciding if it is 2-colorable can also be done in O(n2) time. Theorem 1 follows.
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4 Inflation of arbitrary dimension

In this section we prove Theorems 2. In fact, we prove that the δ-inflation problem
on d-dimensional balls with integer radii and center coordinates of the form a +
b
√

c + d
√

e, where a, . . . , e are integers, is NP-hard. Recall that the contact graph
of a collection C of balls is the graph whose vertices are the balls and whose edges
connect two vertices if and only if the corresponding balls are tangent.

4.1 Inflation of dimension 2 of balls in R3

Let G = (V,E) be a graph with V = {v1, . . . , vn} and let us equip the affine space
R3 with an orthonormal frame (O, x, y, z). We construct a family B2(G) of balls
in R3 such that 6-colorings G correspond to inflations of dimension 2 of B2(G).
We proceed in five steps:

1. For every edge (vi, vj) ∈ E we place two balls of radius 25, called poles, at

(500n(i− 1) + 500j + 29, 0, 0) and (500n(i− 1) + 500j − 29, 0, 0),

one labelled vi and the other vj . These two balls form a dipole.

2. For i = 1, . . . , n we place a series of balls of radius 25 at positions

{(50t, 200, 100i)|t = 0, . . . , 10(n2 + 1)}

and call it the spine of vi (or ith spine).

3. We connect each ball labelled vi to the spine associated to vi as depicted
in Figure 2. More precisely, from a pole ball centered at (x ± 29, 0, 0) we
draw a chain of tangent balls of radius 25 at positions (x± 79, 0, 50t) for all
integers t between 0 and 2i. To connect the last of these balls to the spine we
cannot use a “straight” chain of balls and recourse to an ad-hoc construction
explicited in Figure 2 for x = 100 (and that can be translated for any x).

4. Using local adjustment along the spines, as depicted on Figure 3, we make
sure that the distance between any two poles with the same label in the con-
tact graph of B2(G) is even.

5. We finally place three pairwise tangent balls of radius 37 centered respec-
tively at:  0

0
−100

 ,

 74
0

−100

 , and

 37
37
√

3
−100

 .
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vi

vj

j th
spine

i th
spine

x

y

z


21

0

0




50

200

0




21

50

0




50

150

0




21− 1

2

√
200
√

1659− 1659

100− 1
2

√
1659

0




50− 1

2

√
200
√

1659− 1659

100 + 1
2

√
1659

0



jth spine

Figure 2: Connecting the poles to the spines (the distance between the poles has
been increased for readability). The detailed view explicits the connection of the
last ball from the vertical chain starting at vj to the jth spine, in the plane z = 100j.


0
0
0




50
0
0




100
0
0




25

25
√

3
0




75

25
√

3
0



Figure 3: Adjusting the parity in the number of balls of a sequence.

Note that these balls are “isolated” in the sense that their centers are at dis-
tance at least 100 from the center of any other ball of B2(G).

Since the construction of B2(G) is polynomial in the size of G and deciding if
a graph is 6-coloriable is NP-hard [15], the next lemma implies Theorem 2 for the
case d = 3 and δ = 2.

Lemma 6. G has a 6-coloring if and only if B2(G) is 2-inflatable.

Proof. The contact graph of B2(G) consists of a triangle of balls of radius 37 and
one tree per vertex of G, each tree containing a spine and all the poles with the
same label. Lemma 3 implies that any inflation of three pairwise tangent balls uses
null inflation vectors. Thus, any inflation of B2(G) has radius 37.
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Let Ti denote the tree containing the poles labelled vi. By iterating Lemma 3
we get that in any inflation of B2(G) the balls in Ti use only two opposite inflation
vectors. More precisely, two balls use equal inflation vectors if their distance in Ti

is even and opposite inflation vectors if that distance is odd. Thus, step 5 in our
construction implies that all poles in a given tree use equal inflation vectors. By
construction two balls that are not tangent have centers at least 50

√
2 apart. Thus,

Condition (1) guarantees that the inflations to radius 37 of two non-tangent balls
from the same tree can never intersect. Finally, we get that all balls from a given
tree can be inflated and that in any such inflation the poles use the same inflation
vector.

Let −→u1, . . . ,
−→un be a collection of vectors in S1. We claim that B2(G) admits

an inflation of dimension 2 where the poles labelled vi have inflation vector −→ui if
and only if:

∀(vi, vj) ∈ E, ∠(−→ui ,
−→uj) ≥

π

3
. (6)

Since two balls in a dipole are distance 58 apart, Condition (1) yields that their
inflation vectors must form an angle of at least π

3 and Condition (6) is necessary.
Conversely, the distance between the centers of two balls that do not form a dipole
is at least 50

√
2 and, following Condition (1), only the dipoles enforce constraints

on the −→ui . Thus, Condition (6) is also sufficient.
For k = 0, . . . , 5 let Rk denote the interval [k π

3 , (k + 1)π
3 ) ⊂ S1. Assume

that B2(G) has an inflation of dimension 2 and let −→ui denote the common inflation
vector of the poles labelled vi. Condition (6) implies that if vi and vj are connected
by an edge in G then −→ui and −→uj belong to distinct regions Rk. Thus, if B2(G) has
an inflation of dimension 2 then G has a coloring by {R0, . . . , R5}. Conversely,
consider a coloring of G by {R0, . . . , R5}. If vi has color Rk then let −→ui denote
the endpoint of Rk contained in that interval. Since for any (vi, vj) ∈ E the angle
between −→ui and −→uj is at least π

3 , these vectors induce an inflation of B2(G) of
dimension 2.

4.2 Inflation of dimension δ of balls in R3

We now build on the previous construction to extend the proof to d = 3 and δ ≥ 3.
The idea is to first add a “U-shape” gadget, a chain of tangent balls of radius 25,
that can only be inflated using vectors orthogonal to those used to inflate the spines.
Thus, if we add one gadget to B2(G) we will get a new collection of balls that is
3-inflatable if and only if B2(G) is 2-inflatable. The second gadget bootstraps this
idea by enforcing two U-shapes to also use orthogonal inflation vectors. From
there, Bδ(G) is simply obtained by adding δ− 2 U-shapes to B2(G). An overview
of the construction is given in Figure 4.
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x

y

z

} Spines

} Spine extensions

U-shapes

Figure 4: Turning B2(G) into Bδ(G): extensions of the spines and U-shapes (left)
and gadgets between U-shapes, detailed on Figure 6 (right)

We proceed in three steps:

1. For i = 1, . . . , n we extend the spine of vi by a series of balls of radius 25 at
positions:

{(0, 200 + 50t, 100i)|t = 1, . . . , 4δ + 10}.

2. For j = 1, . . . , δ − 2 we place a U-shape in the plane y = 300 + 200j. This
shape, described in Figure 5, satisfies in particular the following constraints:
(i) it is a single chain of tangent balls of radius 25, (ii) the ball from the spine
of vi in the plane of the U-shape is at distance exactly 2

√
997 from two of

the balls of the U-shape, (iii) in the contact graph, the distance between these
two balls is odd, and (iv) all distances that we do not specify are larger than
50
√

2.

3. For every pair of U-shapes we add a gadget forcing their inflation vectors to
be orthogonal. The principle of the construction is described in Figure 6, the
gadget associated to Ui and Uj is placed in the plane z = 500n(i−1)+500j.
All balls have radius 25, in each chain, balls that are not tangent have centers
at least 50

√
2 apart, and centers have coordinates of the form a+b

√
c + d

√
e

where a, . . . , e are integers. For the sake of the presentation, we omit the
precise coordinates.
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2
√

997

2
√

997

x

z

spine of vi spine of vi+1spine of vi−1

√
−997 + 50

√
997

−50 + 2
√

997

Figure 5: A U-shape. The distance constraint the spine balls to use inflation vectors
orthogonal to those of the U-shape.

y

x

U-shape i U-shape j

2
√

997

{ {
2
√

997

Figure 6: Connections between the U-shapes i and j.

Lemma 7. For any fixed δ ≥ 3, G has a 6-coloring if and only if Bδ(G) has an
inflation of dimension δ.

Proof. By construction, each U-shape alone can be inflated to radius 37 and in
each such inflation it only uses a pair of opposite inflation vectors (−→u ,−−→u ). The
interactions between a U-shape and a spine imply that their respective inflation
vectors are orthogonal. Similarly, step 4 forces the inflation vectors of any pair of
U-shapes to be orthogonal.

If B2(G) has an inflation of dimension 2 then Bδ(G) has an inflation of di-
mension δ: we simply inflate the U-shapes using δ−2 pairwise orthogonal vectors
that are also orthogonal to those used in the inflation of B2(G). Conversely, as-
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sume that Bδ(G) has an inflation of dimension δ. Then its U-shapes require δ − 2
pairwise orthogonal inflation vectors. By construction, Bδ(G) contains a copy of
B2(G) that can only be inflated using vectors orthogonal to the inflation vectors of
its U-shapes. Thus, any inflation of Bδ(G) of dimension δ induces an inflation of
B2(G) of dimension 2. The result then follows from Lemma 6.

4.3 Proof of Theorem 2

We can now put together a complete proof of the main result of this section:

Proof of Theorem 2. For d = 3 the Theorem follows from our polynomial-time
reductions of the 6-colorability of an arbitrary graph G, which is NP-hard, to the
δ-inflatability of the collection of balls Bδ(G). Note that Bδ(G) can be considered
as a collection B′

δ(G) of d-dimensional balls, whose centers lie on a 3-flat, and
that the δ-inflatability of these two collections are equivalent. Thus, the case d = 3
implies the case d ≥ 3.

5 Conclusion

The original question was whether there exists a working description of the space
of families of d-dimensional inflatable balls. We showed that the algorithmic ques-
tion of recognizing if a given instance is δ-inflatable is easy if δ = 1 and likely to be
difficult if δ ≥ 2 and d ≥ 3. Although these results strongly suggest that a “work-
ing description” of this space is unlikely to be achieved, they do not completely
answer the original question as we discuss in the following remarks.

Remark 1. The original question is phrased over the reals and our negative an-
swer is phrased in the bit model. Arguably, the natural computational model to
study this question would rather be that introduced by Blum et al. [4, 5], but our
Theorem 2 does not trivially extend to a hardness result in this model.

Remark 2. Clearly, if n balls are inflatable they admit an inflation of dimension
at most n. However, since the number of balls in Bδ(G) increases with δ, our
reduction does not apply to the problem of recognizing inflatable families of balls
when no restriction is put on the dimension of the inflation.

Remark 3. Realizing our construction B2(G) in the plane raises non-trivial graph
drawing issues, as one has to control the interactions between non-tangent balls.
We would still not be surprised if the 2-inflation of families of disks is already
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be NP-hard but, however, expect that the case d = 1 behaves differently as the
ordering of the original balls may drastically change the nature of the problem.
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