
Notes - RMS asymptotic behavior ; Summary of
the paper by Mosseri

Our numerical results for the triadic Cantor set spectrum in the tight-binding
model indicate that 〈∆x2(t)〉 ∼t→∞ tα, with

〈∆x2(t)〉 = 1
t

∫ t

0

∑
k≥0

k2|ψ(k, t′)|2dt′

and α = ln 2
ln 3 the fractal dimension of the triadic Cantor set. Numerical results seem to

indicate that the time-averaged RMS is, asymptotically, a scaling function. The value
we found for the characteristic exponent α is not confirmed by the literature, and
seems in contradiction with predictions from Mantica [1], namely : 〈∆x2(t)〉 ∼t→∞
t2α.

However, the quantum system described by Mantica is different from ours ; we
shall give some details later. Other papers deal with the question of the characteristic
exponent : Piéchon [2], Mosseri [3] and Dunne, Teplyaev, Akkerman [4] ; but the
spectral measure and the definition of de spectral dimension varies from a paper to
another, which makes the comparasion difficult.

This note is organized as follows :
1) Summary and comment of the paper by Mosseri
2) Comparison with papers by Piéchon and Akkerman
3) Comparison with the paper by Mantica
4) Conclusion and some ideas

The goal is to answer (or at least give ideas) to answer the questions :
- Are our results in contradiction with the literature ?
- Is the asymptotic exponent of 〈∆x2(t)〉 the spectral dimension ?

Summary and comment of Mosseri’s paper
In [3], Mosseri studies theoretically and numerically the Harper model and the

Fibonacci model, in the tight-binding model, for dimensions 1D, 2D and 3D.
Consider an electron placed on a lattice of finite size (N sites). The system is

described by the Hamiltonian H = ∑
i ui|i〉〈i|+

∑
i,j vi,j|u〉〈j|, and the wavefunction

of the electron evolves according to : i d
dt

Ψ(t) = HΨ(t). The wavepacket is initially
localized at site n = 0. Thus, the amplitude of the wavefunction at time t, on the
site n, is given by :

ψn(t) =
∑
j

φ0(εj)∗φn(εj)e−iεjt

with φ(εj) the eigenfunction of H corresponding to the eigenvalue εj.
The spectral dimension D2 is defined as follows : consider

R(l) =
∫∫
|ε−ε′|< l

2

dµ(ε)dµ(ε′)

where µ(ε) is the spectral measure (not explicitely given here). If, for l → 0,
R(l) ∼l→0 l

δ, then set D2 = δ.
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Mosseri focuses on the time-averaged return probability :

C(t) = 1
t

∫ t

0
P (t′)dt′

with
P (t) = |ψ0(t)|2 = |

∑
j

|φ0(εj)|2e−iεjt|2

Using standard calculation, the following equivalence in proven :

R(l) ∼l→0 l
δ ⇔ C(t) ∼t→∞ t−δ (1)

Note : This confirms our analytical results for the triadic Cantor set, with the uni-
form measure we defined : in this case, δ = ln 2

ln 3 . Furthermore, we showed that, for
any measure with a scaling symmetry, C(t) is asymptotically a scaling function (e.g.
C(t) ∼t→∞ t−δ), and that δ is the spectral measure in the sense of Mosseri.

The Fibonacci and Harper model are then studied numerically in 1D, 2D and 3D.
It is demonstrated that the (numerical) specral dimension for the Fibonacci model
depends on the choice of the model (diagonal or off-diagonal) and on the amplitude
of the potential. It is therefore difficult to compare the numerical results with the
other results in the literature.

However, it is worth noticing that Mosseri uses a local spectral measure : µ(ε)
is the measure at the site where the wavepacket is initially localized, e.g. µ(ε) =
|φ0(ε)|2dε.

The RMS d(t) =
√∑

n n2|ψn(t)|2 is only briefly mentionned : Mosseri reminds
that, according to the literature, d(t) ∼t→∞ tβ. However, the question of whether or
not the the exponent β is related to the spectral dimension of the measure is not
discussed.

Conclusion and comments

To conclude on this paper, it confirms what we derived for the time-averaged
return probability and its connection to the spectral measure, but does not give us
many information about the exponent of the RMS.

However, one could use the duality (1), which gives the relation between the
spectral dimension associated to the measure µ and the decay of the time-averaged
probability, for the study of the RMS (further details are given in the last paragraph).

Comparison with papers [2], [4]
In [2], Piéchon studies the dynamics of a wave packet evolving in a Fibonacci

potential in the tight-binding model. The time and space averaged RMS, is studied
numerically and theoretically ; however, the spectral dimension is different from the
one defined by Mosseri (which is the definition we also used). The approach here is
to consider a space averaged measure, e.g. the average of all the local measures at
sites n. Assuming that the time-averaged probability of having the wave packet at
site k after a time t is a scaling function of both space and time :

〈|ψ(k, t)]2〉 = t−σf(kt−σ)
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leads to the following asymptotic expression of the time-averaged RMS : 〈d(t)〉 ∼t→∞
tds , with ds the spectral dimension associated to the measure.

However, it is not clear that such a scaling relation exists. In fact, our study of the
tight-binding model showed that the eignefunctions can be written as polynomials in
the energy ; the detail of the calculation is not give here but it seems that the return
probability, even after a space average, does not have a simple scaling symmetry in
space.

The paper [4] is about diffusion on a fractal ; the problem is thus not exaclty the
same, but very similar. The time-averaged probability to diffuse over a distance n at
time t, P (r, t) = ∑

k φk(ε)∗φk+n(ε)e−iεt (for Piéchon, the corresponding probability
is the square module of this probability amplitude). It is of the form :

P (r, t) = t−ds/2f(kt−ds/2)

ds being the spectral dimension. The RMS is then defined as 〈d2(t)〉 = ∑
n n

2P (n, t),
and has the asymptotic behavior : 〈d2(t)〉 ∼t→∞ tds , which is consistent with the
results by Piéchon.

Comparison with papers by Mantica
In [1], Mantica develops a different approach : starting from a spectral measure µ,

with associated spectral dimension ds, he derives a set of orthonormal polynomials
qk(x) (in the sense of µ) : ∫

spectrum
qk(x)ql(x)dµ(x) = δk,l (2)

and builds the "tight-binding Hamiltonian" (a tridiagonal matrix) having the poly-
nomials as eigenfunctions. Then, a numerical study gives the typical exponent of
the time-averaged RMS :

〈d2(t)〉 ∼t→∞ t2ds

However, it is difficult to compare this result to our numerical results, since the
Hamiltonian studied by Mantica does not rigourosly have the form of a tight-binding
Hamiltonian. Furthermore, in our case (see reminder in the following paragraph),
even if the eigenfunctions are also gien by some polynomials pk(ε), the orthogonality
relation (2) does not hold a priori.

Conclusion - Some ideas
This section summarizes some ideas to go further in the study of the exponent

of the time-averaged RMS :

〈d2(t)〉 =
∑
n

(n− n0)2〈|ψn(t)|2〉

We focus on the tight-binding model in the case of a triadic Cantor spectrum K. We
wish to use the duality (1) from Mosseri’s paper, to study the time-averaged RMS.
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In fact, the time-averaged RMS 〈d(t)〉 is given by :

〈d2(t)〉 =
∑
n

n2〈|ψn(t)|2〉

=
∑
n

n2
∫∫

φ0(ε)∗φn(ε)φ0(ε′)φn(ε′)∗sinc((ε− ε′)t)dµ(ε)dµ(ε′)

=
∫∫ (∑

n

n2
∫∫

φ0(ε)∗φn(ε)φ0(ε′)φn(ε′)∗
)
sinc((ε− ε′)t)dµ(ε)dµ(ε′)

which is, formally, the wavelet transform associated to the "measure"(∑
n

n2
∫∫

φ0(ε)∗φn(ε)φ0(ε′)φn(ε′)∗
)

The dimension δ associated to this measure is, a priori, different from the local
spectral mesure µ(ε) = |φ0(ε)|2dε.

To calculate δ, we need to study the asymptotic behavior, for l→ 0, of :

RK(l) =
∫∫
|ε−ε′|< l

2

(∑
n

n2
∫∫

φ0(ε)∗φn(ε)φ0(ε′)φn(ε′)∗
)
dµ(ε)dµ(ε′)

If R(l) ∼l→0 l
−δ, then 〈d2(t)〉 ∼t→∞ tδ.

Remind that, in the tight-binding model, the eigenfunctions φ(ε) are given by :

φn(ε) = φ0(ε)pn(ε)

were pn(x) is a polynomial of degree n− 1, defined recursively by :

pk+1(ε) = (2 + V (k)− ε)pk(ε)− pk−1(ε)

with initial conditions :
{

p1(ε) = 1
p2(ε) = 2 + V (1)− ε

The wave packet is initially localized at site n = 1. At time t, the amplitude of
the wave function at site k is given by :

ψ(k, t) =
∫
K
φε(1)∗φε(k)e−iεtdµ(ε)

=
∫
K
|φε(1)|2pk(ε)e−iεtdµ(ε)

Let us define the local spectral measure dµ(ε) ≡ |φε(1)|2dµ(ε). We assume that
this measure verifies the scaling property characteristic of the triadic Cantor set :∫

K
f(x)dµ(x) = 1

2

∫
K
f
(
x

3

)
dµ(x) + 1

2

∫
K
f
(
x+ 2

3

)
dµ(x) (3)

Thus, the wave function is given by :

ψ(k, t) =
∫
K
pk(ε)e−iεtdµ(ε)
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Due to the orthonormality of the eigenfunction, the polynomials pk verify :∑
k

pk(ε)pk(ε′) = δε,ε′ (4)

Furthermore, the initial condition translates into :∫∫
K×K

pk(ε)pk(ε′)dµ(ε)dµ(ε′) = δk,1 (5)

Thus :
RK(l) =

∫∫
|ε−ε′|< l

2

(∑
n

(n− 1)2pn(ε)pn(ε′)
)
dµ(ε)dµ(ε′)

I did not manage to do this calculation ; however, one can notice that, from (5),
we get : RK(2) = 0, and since

∫
K |pk(ε)|2dµ(ε) > 0, we deduce that RK(0) > 0.

Thus, RK seems to be a decreasing function.

References
[1] G. Mantica, Physica D 109 (1997) 113-127
[2] F. Piéchon, PRL, Vol 76, num 23 (1996)
[3] J. X. Zhong, R. Mosseri, J. Phys. Condens. Matter 7 (1995) 8383-8404
[4] E. Akkermans, G. V. Dunne, A. Teplyaev, arXiv :0903.3681v2 [cond-mat.mes-

hall] 4 Dec 2009

5


