PRL 99, 196805 (2007)

PHYSICAL REVIEW LETTERS

week ending
9 NOVEMBER 2007

Edge Solitons of Topological Insulators and Fractionalized Quasiparticles in Two Dimensions
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An important characteristic of topological band insulators is the necessary presence of in-gap edge
states on the sample boundary. We utilize this fact to show that when the boundary is reconnected with a
twist, there are always zero-energy defect states. This provides a natural connection among novel defects
in the two-dimensional p, + ip, superconductor, the Kitaev model, the fractional quantum Hall effect,
and the one-dimensional domain wall of polyacetylene.
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Excitations carrying fractional quantum numbers (e.g.,
fractional charge), such as the quasiparticles in the frac-
tional quantum Hall effect [1], have always been a subject
of interest. In 1976 Jackiw and Rebbi [2] wrote a seminal
paper which laid the foundation of charge fractionalization
in one spatial dimension. Four years later the influential
paper of Su, Schrieffer, and Heeger [3] proposed the
“Jackiw-Rebbi soliton” as the charge carrier in doped
polyacetylene. Today, all quantum number fractionaliza-
tion phenomena, such as the fractionalization of magnon
into spinons [4], can be attributed to the Jackiw-Rebbi
mechanism.

In the last 15 years, starting with the fractional quantum
Hall effect, condensed matter physicists stumbled upon
several instances where quantum number fractionalization
occurs in two spatial dimensions. These include the qua-
siparticles of the ‘“Pfaffian” quantum Hall state [5], the
vortices of a spin-polarized p, + ip, superconductor [6—
10], and the topological excitations in a spin model pro-
posed by Kitaev [11]. However, what is lacking is a general
framework, like the Jackiw-Rebbi theory in one dimen-
sion, specifying the condition under which fractionalized
excitations will appear. In this Letter, we provide such a
mechanism and reveal its connection to the Jackiw-Rebbi
theory. In particular, we show that, in two dimensions,
fractional charge will naturally appear around defects of
“topological’ insulators [12-14].

Recently it has been shown that the existence of frac-
tional charge in the quantum Hall effect is connected to the
existence of fractionally charged domain walls in certain
one-dimensional systems [15-18]. In the following we
generalize such a connection and show that when the
boundary of a topological insulator, an insulator which
necessarily possesses an in-gap edge state, is reconnected
with a twist, there are always zero-energy defect states
possessing fractional quantum numbers.

Let us begin by considering the Kitaev model [11]. This
exactly soluble model describes a honeycomb lattice of
quantum one-half spins interacting via three type of
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nearest-neighbor interactions [Fig. 1(a)]. The Hamilton-
ian is given by
H = ! J, o r 1
_EZ /_Lo-n+gu0-11) (1)
new u=123

where w (b) denotes the white (black) sublattice [see
Fig. 1(2)], n + e, is the nearest neighbors of n along the
p bond, and o* are the Pauli matrices. By performing
Jordan-Wigner transformation it was shown in Ref. [19]
that this model is equivalent to a free Majorana fermion
model:

HM = _IZ{ Z Jﬂ7n+e#7n + J3Dn7n+e37n}r (2)
newly=12

where D, = *1 is a classical Ising variable and vy,’s are
Majorana fermion operators [19]. Since the honeycomb
lattice consists of two sublattices, Eq. (2) can be recast into
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FIG. 1 (color online). (a) A graphical representation of the
Kitaev model. There are two sublattices (white and black), and
three types of bonds (labeled by 1, 2, and 3). (b) The graphical
representation of H + H,. In the Majorana representation, the
three-spin interactions in Eq. (5) become the next neighbor
hopping along the zigzag chain in the x direction. The arrow
represents the direction in which the second neighbor hopping
matrix elements are —iJy.
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where ¥l = (y,, Yn+ey)- In Eq. (3) the 2 X 2 coupling
matrix H,,, has the values H,,, = J3D, 0, for n = m and
H,, = *(iJ,/2)o~ for n # m. The upper sign applies if
the bond linking m to n is a black-to-white bond, and the
lower sign applies if it is a white-to-black bond.

In the ground state, the classical Ising variable takes
value D,, = 1 modulo a global flip per row [19]. For D,, =
1, Hy is translation invariant and can be diagonalized by
Fourier transformation. The Bloch matrix of H, is given

hi(k) = —J, sina(k) + J; sinB(K),

hy(k) = J;3 + J, cosa(k) + J; cosB(Kk), @
and a(k) = (v3k, — 3k,)/2, B(k) = (v3k, + 3k,)/2. Tt
is easy to show that for J;, +J, = J; = |J; — J,| the
energy spectrum is gapless. The possible connection to
the quantum spin liquids has been discussed in Ref. [20].
In Ref. [11] a magnetic field is introduced to open an
excitation gap in this parameter region, and the non-
Abelian quasiparticles become low energy excitations of
this gapped phase.

Unfortunately the magnetic field spoils the integrability
of the model. Here we propose a different way of opening a
gap while maintaining the integrability. This is achieved by
adding the following three-spin interaction to Eq. (1):

J
Z (T~0'7-0',]{+—4 Z 01!0'3.0'%. )
(ijloev

Here (ijk) denote three adjacent sites (with i being the
leftmost one) along the zigzag chain running along the x
direction. Depending on whether (i jk) form an up-pointing
or a down-pointing triangle, we use the first or second term
of Eq. (5). In terms of the Majorana fermion operators, this
amounts to adding a second nearest-neighbor hopping
between sites along the zigzag chain:

H, = _iJ4< Z Yive — Z 7i7k>- (6)

iLkeEw i,k€Eb

Then the Bloch matrix becomes Hy (k) = h; (K)o +
hy(K)oy, + hy(K)o3, where hy(k) = 2J,sin(+/3k,). The
vector function h(Kk) is a continuous mapping from the
first Brillouin zone to the space spanned by h =
(hy, hy, h3). The image is a closed two-dimensional mani-
fold (henceforth referred as the & surface). Since the ei-
genvalues of the Block matrix are =|h(k)]|, it follows that
if the & surface contains the origin, the spectrum is gapless;
otherwise the spectrum has a gap.

For an & surface not containing the origin, there is an
integer topological index

1 N N N
P=— fdzke’“’h - (0 h X 9; h) @)
87 » v

which counts the number of times the unit vector h wraps
around the origin. As shown in Ref. [21], P is proportional
to the well-known ‘‘Thouless-Kohmoto-Nightingale-den
Nijs” index [22] in the case of two bands. Spectra charac-
terized by different P are topologically distinct. They
cannot be deformed into each other without gap closing.
In the parameter regime where the non-Abelian quasipar-
ticle exists P = 1.

Topological excitations of the Kitaev model are created
by reversing the sign of D,,’s in Hy; along half a row. This
is shown by the dashed bonds in Fig. 2(c). In Fig. 2(d) we
have shown the result of numerical diagonalization for a
system of 1,600 sites with a toric boundary condition.
Because of the boundary condition two defects are intro-
duced; they are separated by 100 sites in the x direction.
They introduce two midgap states with a tunnel splitting
(which is already invisible here) which decreases exponen-
tially with the separation.

Now we switch gears to discuss the vortices in a
spin-polarized p, + ip, superconductor. Let us consider

(4 & .
r = = >

FIG. 2 (color online). The & surface for the Kitaev model
(a) and the p, + ip, superconductor (e). In panels (b) and
(f) the h surfaces are dissected to expose the origin (bold dot).
(c) Topological defects in the Kitaev model. To the right of the
gray-shaded plaquette the sign of D,,’s are reversed. As a result
the corresponding vertical hopping matrix elements change sign.
They are shown by the dashed bonds. (d) The eigenspectrum
associated with two far-separated topological defects in the
Kitaev model with J; =J, =1, J; = 0.2, and J, = 0.5. (g) A
vortex centered at the gray-shaded plaquette in a p, +ip,
superconductor. The pairing order parameter is shown for four
bonds. (h) The energy spectrum of two far-separated vortex-
antivortex pairs with t = 1, Ay = 0.5, and u = 0.3.
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this problem on a square lattice. Similar to the Kitaev
model, the Hamiltonian can also be written in the form
of Eq. (3), except Wl =(cf ¢,) and ¢, is a fermion
operator. The Bloch matrix is characterized by h(k) =
[—Agsink,, Ajsink,, —t(cosk, + cosk,) — u]. Here A,
is the pairing amplitude, ¢ is the hopping integral, and u
is the chemical potential. The % surface is shown in
Figs. 2(e) and 2(f). Straightforward calculation shows
that 2 = 1. After a singular gauge transformation, a vortex
can be created by reversing the sign of the hopping matrix
elements along a cut as shown in Fig. 2(g). Explicit calcu-
lation shows that there is also a zero mode associated with
each vortex [Fig. 2(h)].

For each free Majorana or Bogoliubov fermion model
discussed above, there is a free fermion model with an
identical excitation spectrum. To obtain this fermion model
we simply replace vl in Eq. (3) by the fermion operator
Wi = (ct el ), where 1 and 2 are “flavor” indices (they
might represent the two sites in the unit cell of a lattice).
This fermion model acts as a representative of all models
which share the same H,, (hence the same eigenspec-
trum). However, while the representative fermion model
is global U(1) invariant, the Majorana and Bogoliubov
fermion models have only Z, symmetry. The fact that in
the Z, models the particle number is conserved only mod-
ulo two is the root of non-Abelian statistics. In the rest of
the discussion, we refer to the system described by a
gapped free fermion model with nonzero P as a “‘topo-
logical band insulator.”” Thus the representative fermion
models for the Kitaev model and the p, + ip, supercon-
ductor are topological band insulators. Knowing the prop-
erties of edge states and defects of the representative
fermion model, one can readily deduce the corresponding
properties of the Majorana fermion (Kitaev) or the
Bogoliubov fermion (p, + ip,) models with the same
H,,,. For example, while in the fermion model the edge
states are free fermions, and the defect zero modes carry
half fermion quantum numbers, those in the Majorana or
Bogoliubov fermion model are true Majorana fermions.

In the following we provide a unifying mechanism for
the appearance of defect zero mode when the representa-
tive fermion model describes a topological band insulator.

As an example, let us consider the fermion representa-
tive of the Kitaev model [Fig. 3(a)]. Figure 3(b) shows
the gapped spectrum as a function of momentum along
the longitudinal circle. Because of its topological na-
ture, if we remove a row of bonds [Fig. 3(c)], in-gap
edge states appear [23] as shown in Fig. 3(d). The left
and right moving chiral edge fermions, represented by the
arrowed-bolded lines in Fig. 3(c), are described by a
massless Dirac Hamiltonian in 1D. If we reconnect the
two edges, but with weaker bonds, a smaller gap reappears
in the edge spectrum [see Figs. 3(e) and 3(f)]. The edge
fermions are now described by a massive Dirac
Hamiltonian

FIG. 3 (color online). (a) The Kitaev model and (b) its eigens-
pectrum as a function of wave vector k along the longitudinal
direction around k = 7. (c) The system cut open along the
longitudinal direction and (d) the corresponding energy spec-
trum. The arrowed-bolded lines in (c) indicate the edge states are
chiral fermions. (e) Hopping between the edge (thick gray
vertical bonds) is reintroduced, but with a magnitude smaller
than the bulk value. (f) The gapped energy spectrum corresponds
to (e). (g) An edge soliton is introduced by reversing the sign for
half of the vertical bonds between the edges. The sign reversal is
indicated by the solid and dotted vertical bonds. (h) The energy
spectrum corresponds to (f). The spectra in (b), (d), and (h) are
obtained from Hp with J; =J, =1, J3 =0.2, and J, = 0.5.
The spectrum in (f) and (h) was obtained with a restored edge
coupling J; = *=0.02.

Hy = f dx(—ivgt oo + mpto),  (®)

where v is the edge velocity, ¢ = (¢}, ) with w; /L
being the right/left fermion creation operators. When the
restored bonds have a sign reversal along half a row
[Fig. 3(g)], the mass term in Eq. (8) becomes x dependent
and changes sign as x goes through the location of the
topological defect. This should result in one localized zero
mode per defect according to Refs. [2,3]. Figure 3(h)
shows that this is indeed true. The presence of such a
zero mode, plus the fact that the spectra of Majorana
fermion models are £ < —E symmetric, immediately im-
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FIG. 4 (color online). The evolution of the & surface as the
model in Fig. 1(b) is gradually deformed into Haldane’s model.
In constructing the figure we used J; = J, = J; = 1. The full
strength of the second neighbor hopping is 0.5.

plies that the zero modes are Majorana fermion states in the
original Kitaev model. Furthermore, using the argument of
Ref. [24] it can be shown that the braiding of such
Majorana fermion defects leads to the non-Abelian statis-
tics. Thus, via the mechanism of Refs. [2,3] a rwo-
dimensional defect with a fractionalized quantum number
has emerged. Its presence is determined by the topological
nature of the host bulk band insulator just as the edge states
are.

Actually, a similar phenomenon was also found in the
continuum theory of Dirac fermions interacting with the
topological defects of a Higgs field [25]. However, in all
the examples we considered here, the location of the edge
Dirac point in the momentum space is far away from those
of the bulk Dirac points. Consequently the theory discussed
in Ref. [25] is not applicable here.

As a digression, we now show that the fermion repre-
sentative of the Kitaev model is topologically equivalent to
Haldane’s lattice model for the integer quantum Hall effect
[12]. Figure 4 shows the evolution of the A surface by
gradually switching off the second neighbor hopping in
Haldane’s model which are not contained in Eq. (6). The
leftmost column are the & surfaces for the Haldane model
(top) and Kitaev (bottom), respectively. In the rest of the
figure the surfaces are dissected to reveal the origin (the
bold dot). Clearly as we follow the evolution the origin
never migrates across the A surface. Thus P for the two
models is the same.

Finally what about the Laughlin quasiparticles?
Although fractional quantum Hall liquids are not band
insulators they are clearly fopological insulators. Indeed,
as shown by Wen [26], when a quantum Hall liquid on a
torus is cut open [Fig. 3(a)], there is ‘‘chiral Luttinger
liquid” in-gap edge modes. At 1/m filling, the edge modes
are described by the following free boson Hamiltonian:

= | dx{%ﬂ(x)uﬁ[axd)(x)ﬂ, ©)

where II and ¢ are conjugate boson fields satisfying
[IT(x), ¢(y)] = i8(x — y). To reconnect the edges, a po-
tential V = —g [dxcos(m¢p) needs to be added [26].
When g is sufficiently big, a gap opens in the edge spec-
trum and the ground states become m-fold degenerate.
They are characterized by <{(P(x)) =2ml/m, (I =
0,...,m — 1). In this case an edge soliton is where ¢(x)
interpolates between two different ground states, say,
(¢p(x)y =0 and 277/m. As shown by Goldstone and
Wilczek [27], such a soliton carries a charge AQ =
A¢ /27 = 1/m, precisely the same as that of a Laughlin
quasiparticle [1]. Hence the Laughlin quasiparticles are
also edge solitons of a topological insulator.
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