PERGAMON INTERNATIONAL LIBRARY
of Science, Technology, Engineering and Social Studies

The 1000-volume original paperback library in aid of education,
industrial training and the enjoyment of leisure
Publisher: Robert Maxwell, M.C.

L. D. LANDAU and E. M. LIFSHITZ
COURSE OF THEORETICAL PHYSICS

Volume 9

STATISTICAL PHYSICS

Part 2

THE PERGAMON TEXTBOOK
INSPECTION COPY SERVICE

An inspection copy of any book published in the Pergamon International Library
will gladly be sent to academic steff’ without obligation for their consideration for
course adoption or recommendation, Copies may be retained for a period of 60 days
from receipt and returned if not suitable. When a particular title is adopted or
recommended for adoption for class use and the recommendation results in a sale
of 12 or more copies, the inspection copy may be retained with our compliments,
The Publishers will be pleased to receive suggestions for revised editions and new
titles to be published in this important International Library.




Other Titles in Series

LANDAU and LIFSHITZ: COURSE OF THEORETICAL PHYSICS

Vol. 1 Mechanics (3rd edition)
Vol. 2 The Classical Theory of Fields (4th edition)
Vol. 3 Quantum Mechanics — Non-relativistic Theory (3rd edition)
Vol. 4 Relativistic Quantum Theory Part 1
Relativistic Quantum Theory Part 2

Vol. 5 Statistical Physics (3rd edition) Part 1

Vol. 6 Fluid Mechanics
Vol. 7 Theory of Elasticity (2nd edition)

Vol. 8 Electrodynamics of Continuous Media

Vol. 10 Physical Kinetics



STATISTICAL PHYSICS

Part 2

Theory of the Condensed State

by
E. M. LIFSHITZ and L. P. PITAEVSKII

Institute of Physical Problems, U.S.S.R. Academy of Sciences

Volume 9 of Course of Theoretical Physics

Translated from the Russian by
J. B. SYKES and M. J. KEARSLEY

PERGAMON PRESS
OXFORD - NEW YORK - TORONTO - SYDNEY - PARIS - FRANKFURT



UK

USA

CANADA

AUSTRALIA

FRANCE

FEDERAL REPUBLIC
OF GERMANY

Pergamon Press Ltd., Headington Hill Hall,
Oxford OX3 0BV, England

Pergamon Press Inc., Maxwell House, Fairview
Park, Elmsford, New York 10523, USA

Pergamon Press Canada Ltd., Suite 104,
150 Consumers Road, Willowdale, Ontario M2J 1P9,
Canada

Pergamon Press (Aust.) Pty, Ltd., P.O. Box 544,
Potts Point, NSW 2011, Australia

Pergamon Press SARL, 24 rue des Ecoles,
75240 Paris, Cedex 05, France

Pergamon Press GmbH, 6242 Kronberg-Taunus,
Hammerweg 6, Federal Republic of Germany

Copyright © 1980 Pergamon Press Ltd,

All Rights Reserved. No part of this publication may be
reproduced, stored in a retrieval system or transmitted
in any form or by any means: electronic, electrostatic,
magnetic tape, mechanical, photocopying, recording or
otherwise, without permission in writing from the
publishers.

First published in English, 1958

Second edition, revised and enlarged 1969
(Part 2), 1980

Reprinted (with corrections) 1981

British Library Cataloguing in Publication Data

Landau, Lev Davidovich

Statistical physics

Part 2: Theory of the condensed state

(Course of theoretical physics; vol. 9)

1. Mathematical physics

2. Mathematical statistics

I. Title II. Lifshitz, Evgenii Mikhailovich
II1. Pitaevskil, Lev Petrovich IV. Theory of
the condensed state V. Series

530.1'5'95 QC21.2 78—41328

ISBN 0-08-023073-3 (Hardcover)
ISBN 0-08-023072-5 (Flexicover)

Printed in Great Britain by
A. Wheaton & Co. Ltd., Exeter



@n W W W L W
AN G S

L WS UON LD AN U UL U O WO OB N W L D
—~ OO0 P IR DB LN =O D0

RO PO i = pd bk ik b e i ek et

L L L LY LD LD LD WD LN WD LD
WWWNIODNDIDN N
f\):—"O'\OOO\IO\UI:h{:J)N

CONTENTS

Preface
Notation

I. THE NORMAL FERMI LIQUID

Elementary exitations in a quantum Fermi liquid

Interaction of quasi-particles

Magnetic susceptibility of a Fermi liquid

Zero sound

. Spin waves in a Fermi liquid

A degenerate almost ideal Fermi gas with repulsion between the particles

II. GREEN’S FUNCTIONS IN A FERMI SYSTEM AT T =0

Green’s functions in a macroscopic system

Determination of the energy spectrum from the Green’s function

Green’s function of an ideal Fermi gas

. Particle momentum distribution in a Fermi liquid

. Calculation of thermodynamic quantities from the Green’s function

¥ operators in the interaction representation

. The diagram technique for Fermi systems

The self-energy function

. The two-particle Green’s function

. The relation of the vertex function of the quasi-particle scattering amplitude
. The vertex function for small momentum transfers

The relation of the vertex function to the quasi-particle interaction function
. Identities for derivatives of the Green’s function

. Derivation of the relation between the limiting momentum and the density
. Green's function of an almost ideal Fermi gas

III. SUPERFLUIDITY

. Elementary excitations in a quantum Bose liquid

. Superfluidity

Phonons in a liquid

. A degenerate almost ideal Bose gas

. The wave function of the condensate

- Temperature dependence of the condensate density
. Behaviour of the superfluid density near the A-point
Quantized vortex filaments

A vortex filament in an almost ideal Bose gas
Green’s functions in a Bose liquid

The diagram technique for a Bose liquid

v

ix
xi

12
13
19
21

28
33
38
41
42
43

53
56

63
68
7
76
78

85
88
94
98
102
106
109
111
117
118
124



vi

§ 33
§ 34
§ 35

Contents

. Self-energy functions
. Disintegration of quasi-particles
. Properties of the spectrum near its termination point

IV. GREEN’S FUNCTIONS AT NON-ZERO TEMPERATURES

. Green’s functions at non-zero temperatures

§
§ 37. Temperature Green's functions
§

38. The diagram technique for temperature Green'’s functions

O U UL SO0 LN Wn L WDn O O SON WON O WO LN OB
h hh L v a bbb =N w
R&Ed2ER

PO SO0RURN:

P LR o W LD U LD LR UL LD D LB D e
[o - N W= We We W Wo We WY T WY

(/‘M
LA BV~ OO0

V. SUPERCONDUCTIVITY |

. A superfluid Fermi gas. The energy spectrum

. A superfluid Fermi gas. Thermodynamic properties

. Green’s functions in a superfluid Fermi gas

. Temperature Green’s functions in a superfluid Fermi gas

. Superconductivity in metals

The superconductivity current

The Ginzburg+Iandau equations

Surface tension at the boundary of superconducting and normal phases
The two types of superconductor

The structure of the mixed state

Diamagnetic susceptibility above the transition point

The Josephson effect

Relation between current and magnetic field in a superconductor
Depth of penetration of a magnetic field into a superconductor

. Superconducting alloys

. The Cooper effect for non-zero orbital angular momenta of the pair

VI. ELECTRONS IN THE CRYSTAL LATTICE

. An electron in a periadic field

. Effect of an external field on electron motion in a lattice
Quasi-classical trajectories

Quasi-classical energy levels

The electron effective mass tensor in the lattice

. Symmetry of electron states in a lattice in a magnetic field
Electronic spectra of normal metals

. Green’s function of electrons in a metal

. The de Haas-van Alphen effect

Electron-phonon interaction

Effect of the electron-phonon interaction on the electron spectrum in a metal
The electron spectrum of solid insulators

. Electrons and holes in semiconductors

. The electron spectrum near the degeneracy point

VII. MAGNETISM

. Equaiion of motion of the magnetic moment in a ferromagnet
. Magnons in a ferromagnet, The spectrum
. Magnons in a ferromagnet. Thermodynamic quantities

127
131
135

141
146
149

153
159
164
169
1M
173
178
184
190
193
201
204
208
214
216
219

223
232
236
240
243
247
251
255
259
266
270
274
277
279

284
289
294



§ 72
§ 73
§ 74

AU U AT U AN

O O & o0 0o oo
— O \D 0o -1 A

Contents

. The spin Hamiltonian
. Interaction of magnons
. Magnons in an antiferromagnet

VIII. ELECTROMAGNETIC FLUCTUATIONS

. Green’s function of a photon in a medium

. Electromagnetic field fluctuations

. Electromagnetic fluctuations in an infinite medium

. Current fluctuations in linear circuits

. Temperature Green’s function of a photon in a medium
. The van der Waals stress tensor

. Forces of molecular interaction between solid bodies. The general formula

. Forces of molecular interaction between solid bodies. Limiting cases
. Asymptotic behaviour of the correlation function in a liquid
Operator expression for the permittivity

. A degenerate plasma

IX. HYDRODYNAMIC FLUCTUATIONS

. Dynamic form factor of a liquid

. Summation rules for the form factor

. Hydrodynamic fluctuations

. Hydrodynamic fluctuations in an infinite medium
. Operator expressions for the transport coefficients
. Dynamic form factor of a Fermi liquid

Index

VIl

300
305
310

314
319
321
326
327
33
338
342
347
350
353

360
364
369
373
378
380

385



NOTATION

VECTOR suffixes are denoted by Latin letters #, k£, ... Spin indices are denoted by
Greek letters «, 3, ... Summation is implied over all repeated indices.

“4-vectors” (see the footnote to equation (13.8)) are denoted by capital letters
X, P, ...

Volume element dV or d3x.

Limit on tending to zero from above or below +0 or — 0.

Operators are denoted by a circumflex.

Hamiltonian H, A’ = I:J—,uN.

Perturbation operator V.

w operators in the Schrédinger representation @, ®»*; in the Heisenberg represen-
tation ¥, ¥+ in the Matsubara representaion ¥M, 27

Green’s functions G, D.

Temperature Green’s functions &, 0.

Thermodynamic quantities are denoted as in Part 1, for example 7 temperature,
V volume, P pressure, y. chemical potential.

Magnetic field H; magnetic induction B; external magnetic field §.

References to earlier volumes in the Course of Theoretical Physics:

Mechanics = Vol. 1 (Mechanics, third English edition, 1976).

Fields = Vol. 2 (The Classical Theory of Fields, fourth English edition, 1975).

QM = Vol. 3 (Quantum Mechanics, third English edition, 1977).

RQT = Vol. 4 (Relativistic Quantum Theory, first English edition, Part 1, 1971;
Part 2, 1974).

Part 1 = Vol. 5 (Statistical Physics, Part 1, third English edition, 1980).

FM = Vol. 6 (Fluid Mechanics, first English edition, 1959).

ECM = Vol. 8 (Electrodynamics of Continuous Media, first English edition, 1960).

All are published by Pergamon Press.



PREFACE

As A brief characterization of its content, this ninth volume in the Course of
Theoretical Physics may be said to deal with the quantum theory of the con-
densed state of matter. It opens with a detailed exposition of the theory of
Bose and Fermi quantum liquids. This theory, set up by L. D. Landau follow-
ing the experimental discoveries by P. L. Kapitza, is now an independent
branch of theoretical physics. Its importance is in fact measured not so much by
even the remarkable phenomena that occur in the liquid isotopes of helium as by
the fact that the concepts of a quantum liquid and its spectrum are essentially
the foundation for the quantum description of macroscopic bodies.

For example, a thorough understanding of the properties of metals involves
treating the electrons in them as a Fermi liquid. The properties of the electron
liquid are, however, complicated by the presence of the crystal lattice, and a
study of the simpler case of a homogeneous isotropic liquid is a necessary pre-
liminary step in the construction of the theory. Similarly, superconductivity in
metals, which may be regarded as superfluidity of the electron liquid, is difficult
to understand clearly without a previous knowledge of the simpler theory
of superfluidity in a Bose liquid.

The Green’s function approach is an indispensable part of the mathematical
formalism of modern statistical physics. This is not only because of the con-
venience of calculation of Green’s functions by the diagram technique, but
particularly because the Green’s functions directly determine the spectrum of
elementary excitations in the body, and therefore constitute the language that
affords the most natural description of the properties of these excitations. In
the present volume, therefore, considerable attention is paid to methodologi-
cal problems in the theory of Green’s functions of macroscopic bodies.
Although the basic ideas of the method are the same for all systems, the specific
form of the diagram technique is different in different cases. It is consequently
natural to develop these methods for the isotropic quantum liquids, where the
essence of the procedure is seen in its purest form, without the complications
arising from spatial inhomogeneity, the presence of more than one kind of
particle, and so on.

For similar reasons, the microscopic theory of superconductivity is described
with the simple model of an isotropic Fermi gas with weak interaction, dis-
regarding the complications due to the presence of the crystal lattice and the
Coulomb interaction.

In respect of the chapters dealing with electrons in the crystal lattice and

ix



X Preface

with the theory of magnetism, we must again stress that this book is part of a
course of theoretical physics and in no way attempts to be a textbook of solid
state theory. Accordingly, only the most general topics are discussed here, and
no reference is made to problems that involve the use of specific experimental
results, nor to methods of calculation that have no evident theoretical basis.
Moreover, this volume does not include the transport properties of solids,
with which we intend to deal in the next and final volume of the Course.

Finally, this book also discusses the theory of electromagnetic fluctuations
in material media and the theory of hydrodynamic fluctuations. The former was
previously included in Volume 8, Electrodynamics of Continuous Media. Its
transfer to the present volume is a consequence of the need to make use of
Green’s functions, whereby the entire theory can be simplified and made more
convenient for application. It is also more reasonable to treat electromagnetic
and hydrodynamic fluctuations in the same volume.

This is Volume 9 of the Course of Theoretical Physics (Part 1 of Statis-
tical Physics being Volume 5). The logic of the arrangement is that the
topics dealt with here are closely akin also to those in fluid mechanics
(Volume 6) and macroscopic electrodynamics (Volume 8).

L. D. Landau is not among those who have actually written this book.
But the reader will quickly observe how often his name occurs in it: a consid-
erable part of the results given here are due to him, alone or with his pupils
and colleagues. Our many years’ association with him enables us to hope that
we have accurately reflected his views on these subjects—while at the same
time, of course, having regard to developments in the fifteen years since his
work was so tragically terminated.

We should like to express here our thanks to A. F. Andreev, 1. E. Dzyalo-
shinskii and I. M. Lifshitz for many discussions of topics in this book. We
have had great benefit from the well-known book Quantum Field Theoretical
Methods in Statistical Physics (Pergamon, Oxford, 1965) by A. A. Abrikosov,
L. P. Gor’kov and I. E. Dzyaloshinskii, one of the first books in the literature
of physics to deal with the new methods of statistical physics. Lastly, we are
grateful to L. P. Gor’kov and Yu. L. Klimontovich for reading the book in
manuscript and making a number of comments.

April 1977 E. M. LirsHITZ
L. P. PITAEVSK11



CHAPTER 1

THE NORMAL FERMI LIQUID

§ 1. Elementary excitations in a quantum Fermi liquid

AT TEMPERATURES so low that the de Broglie wavelength corresponding to
the thermal motion of the atoms in a liquid becomes comparable with the
distances between the atoms, the macroscopic properties of the liquid are de-
termined by quantum effects. The theory of such quantum liquids is of consid-
erable fundamental interest, although there exist in Nature only two such
that are literally liquids, the liquid isotopes of helium He® and He# at tempera-
tures ~ 1-2°K. All other substances solidify well before quantum effects
become important in them. In this connection, it may be recalled that according
to classical mechanics all bodies should be solid at absolute zero (see Part 1,
§64). Helium, however, because of the peculiarly weak interaction between
its atoms, remains liquid down to temperatures where quantum phenomena
come into effect, whereupon it need not solidify.

The calculation of the thermodynamic quantities for a macroscopic body
requires a knowledge of its energy level spectrum. In a system of strongly
interacting particles such as a quantum liquid, we can refer, of course, only to
levels that correspond to quantum-mechanical stationary states of the whole
liquid, not to states of the individual atoms. In calculating the partition func-
tion at sufficiently low temperatures, we are to take account only of the weakly
excited energy levels of the liquid, lying fairly close to the ground state.

The following point is of fundamental importance for the whole theory.
Any weakly excited state of a macroscopic body may be regarded, in quantum
mechanics, as an assembly of separate elementary excitations. These behave
like quasi-particles moving in the volume occupied by the body and possessing
definite energies ¢ and momenta p. The form of the function &(p), the disper-
sion relation for the elementary excitations, is an important characteristic of
the energy spectrum of the body. It must again be emphasized that the con-
cept of elementary excitations arises as a means of quantum-mechanical
description of the collective motion of the atoms in a body, and the quasi-
particles cannot be identified with the individual atoms or molecules.

There are various types of energy spectrum that can in principle occur in
quantum liquids. There will be completely different macroscopic properties
also, depending on the type of spectrum. We shall begin by considering a liquid
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2 The Normal Fermi Liquid

with what may be called a Fermi spectrum. The theory of such a Fermi liquid
is due to L. D. Landau (1956-1958); he derived the results given in §§1-4.
The energy spectrum of a Fermi quantum liquid has a structure which is to
some extent similar to that of an ideal Fermi gas (of particles withspin ).
The ground state of the latter corresponds to the occupation by particles of all
the states within the Fermi sphere, a sphere in momentum space whose radius
pr1s related to the gas density N/V (number of particles per unit volume) by

N/V = 2.4mp}/3(2nh)3
= pY/3m; (1.1

see Part 1, §57. The excited states of the gas occur when the particles pass from
states of the occupied sphere to some states with p > py.

In a liquid, of course, there are no quantum states for individual particles,
but to construct the spectrum of a Fermi liquid we start from the assumption
that the classification of energy levels remains unchanged when the interaction
between the atoms is gradually “switched on”, i.e. as we go from the gas to the
liquid. In this classification the role of the gas particles is taken by the elemen-
tary excitations (quasi-particles), whose number is equal to the number of
atoms and which obey Fermi statistics.

It is evident that such a spectrum can occur only for a liquid of particles
with half-integral spin: the state of a system of bosons (particles with integral
spin) cannot be described in terms of quasi-particles obeying Fermi statistics.
At the same time it must be emphasized that a spectrum of this type cannot be
a universal property of all such liquids. The type of spectrum depends also on
the specific nature of the interaction between atoms. This is clear from the
following simple consideration: if the interaction is such that it causes the
atoms to tend to associate in pairs, then in the limit we obtain a molecular
liquid consisting of particles (molecules) with integral spin, for which the
spectrum under consideration is certainly impossible.

Each of the quasi-particles has a definite momentum p (we shall return later
to the question of the validity of this assertion). Let n(p) be the momentum
distribution function of the quasi-particles, normalized by the condition

_fndt = NV, dr = d%]|(2nh)p®;

this condition will later be made more precise. The classification principle
mentioned above consists in supposing that, if this function is specified, the
energy E of the liquid is uniquely determined and that the ground state cor-
responds to a distribution function in which all states are occupied within the
Fermi sphere, whose radius pj is related to the density of the liquid by the
same formula (1.1) as for an ideal gas.

t To anticipate, we may mention here for the avoidance of misunderstanding that we are
referring to a non-superfluid (normal) Fermi liquid, such as is the liquid isotope He?, with
the reservation made in the third footnote to §54.



§ 1 Elementary Excitations in a Quantum Fermi Liquid 3

It is important to emphasize that the total energy E of the liquid is not simply
the sum of the energies ¢ of the quasi-particles. In other words, E is a functional
of the distribution function that does not reduce to the integral [ ne dr (as it
does for an ideal gas, where the quasi-particles are the same as the actual
particles and do not interact). Since the primary concept is E, the question
arises how the energy of the quasi-particles is to be defined, with allowance for
their interaction.

For this purpose, let us consider the change of £ due to an infinitesimal
change in the distribution function. It can manifestly be defined as the integral
of an expression linear in the variation dn, i.e. it has the form

8EIV = { &(p)én dr.

The quantity ¢ is the functional derivative of the energy E with respect to the
distribution function. It corresponds to the change in the energy of the system
when a single quasi-particle with momentum p is added. This quantity plays
the role of the Hamiltonian function of a quasi-particle in the field of the other
particles. 1t is also a functional of the distribution function, i.e. the form of the
function &(p) depends on the distribution of all the particles in the liquid.

In this connection it may be noted that an elementary excitation in the type
of spectrum considered may in a certain sense be treated like an atom in the
self-consistent field of the other atoms. This self-consistency is, of course, not
to be understood in the sense usual in quantum mechanics. Here its nature is
more profound; in the Hamiltonian of the atom, not only is allowance made for
the effect of the surrounding particles on the potential energy, but the depend-
ence of the kinetic-energy operator on the momentum operator is also modified.

Hitherto we have ignored the possible spin of the quasi-particles. Since spin
is a quantum-mechanical quantity, it cannot be treated classically, and we must
therefore regard the distribution function as a statistical matrix with respect
to the spin. The energy ¢ of an elementary excitation is in general not only a
function of the momentum but also an operator with respect to the spin
variables, which may be expressed in terms of the quasi-particle spin operator
S. In a homogeneous isotropic liquid (not in a magnetic field and not ferromag-
netic) the operator § can appear in the scalar function ¢ only in the form of the
scalars §% and (8.p)?; the first power of the product §.p is inadmissible, since the
spin vector is an axial vector and this product is therefore a pseudoscalar. The
square §* = s(s+1), and for spin s = + the scalar (8.p)> = % p? also reduces to
a constant independent of §. Thus in this case the energy of a quasi-particle
is independent of the spin operator, and all the energy levels of the quasi-
particles are doubly degenerate.

The statement that a quasi-particle has spin essentially expresses the fact
that this degeneracy exists. In this sense we can say that the spin of the quasi-
particles in a spectrum of the type considered is always +, whatever the spin
of the actual particles in the liquid. For with any spin s other than -;— the terms



4 The Normal Fermi Liquid

of the form (8.p)? would give a splitting of the (2s+ 1)-fold degenerate levels
into %(2s+1) doubly degenerate levels. In other words, 5(2s+1) different
branches of the function &(p) would appear, each corresponding to “quasi-
particles with spin 5.

As already mentioned, when the spin of the quasi-particles is taken into
account the distribution function becomes a matrix or an operator A(p) with
respect to the spin variables. This operator may be explicitly written as an
Hermitian statistical matrix n,,(p), where a and § are spin matrix indices taking
the two values +%. The diagonal matrix elements determine the numbers of
quasi-particles in particular spin states. The normalization condition for the
quasi-particle distribution function must therefore now be written

tr (idv = [n. dv= NIV, dv= d°|Q2nky, (1.2)

where tr denotes the trace of the matrix with respect to the spin indices.'
The quasi-particle energy £ is in general also an operator (a matrix with
respect to the spin variables). It must be defined by

OE/V = tr J‘ F 6ﬁ d‘L’ = J- €8 6nﬁa d’t. (].3)

If there is no spin dependence of the distribution function and the energy,
so that n,, and ¢,, reduce to unit matrices:

Hap = NOupy  Eap = €0ap, (1.4)

then the taking of the trace in (1.2) and (1.3) amounts to simply multiplying
by 2:

2 (ndv =NV, SE[V =2[ebndr 1.5)

It is easy to see that in statistical equilibrium the quasi-particle distribution

function is an ordinary Fermi distribution, the energy being represented by the

quantity ¢ defined in (1.3). For, because the energy levels of the liquid and of

the ideal Fermi gas are classified in the same manner, the entropy S of the
liquid is determined by a similar combinatorial expression

S|V = —tr [{#log i—(1—r) log (1—A)} dv (1.6)

to that for a gas (Part 1, §55). Varying this expression with the additional con-
ditions of constant total number of particles and constant total energy,

SNJV =tr [dde =0, S8E/V =tr [26adr =0,
we obtain the required distribution:
A= [eG=mT+1]71, (1.7)

where p is the chemical potential of the liquid.

t Here and throughout, summation is as usual implied over repeated indices.



§1 Elementary Excitations in a Quantum Fermi Liguid 5

When the quasi-particle energy is independent of the spin, formula (1.7)
signifies a similar relation between » and ¢:

n = [ee=0T+1]"L (1.8)

At T = 0, the chemical potential is equal to the limiting energy on the surface
of the Fermi sphere:

[tlreo = er = &(pF). (1.9)
It must be emphasized that, despite the formal analogy between the expression
(1.8) and the ordinary Fermi distribution, it is not identical with the latter:
since ¢ itself is a functional of n, formula (1.8) is strictly speaking a complicated
implicit expression for n.

Let us now return to the assumption that a definite momentum can be
assigned to each quasi-particle. The condition for this assumption to be valid
is that the uncertainty in the momentum (due to the finite mean free path of the
quasi-particle) should be small not only in comparison with the momentum
itself but also in comparison with the width Ap of the “transitional zone” of
the distribution, over which it differs appreciably from a step function:'

=0 for p=>pr.

It is easy to see that this condition is satisfied if the distribution n(p) differs
from (1.10) only in a small region near the surface of the Fermi sphere. For,
by the Pauli principle, only quasi-particles in the transitional zone of the distri-
bution can undergo mutual scattering, and as a result of this scattering they
must enter free states in that zone. Hence the collision probability is propor-
tional to the square of the width of the zone. Accordingly, the uncertainty in the
energy and hence that in the momentum of the quasi-particle are both propor-
tional to (4p)2. It is therefore clear that, when Jp is sufficiently small, the un-
certainty in the momentum will be small in comparison not only with pr but
also with Ap.

Thus the method described is valid only for excited states of the liquid which
are described by a quasi-particle distribution function differing from a step
function in just a narrow region near the Fermi surface. In particular, for
thermodynamic equilibrium distributions only sufficiently low temperatures are
permissible. The (energy) width of the transitional zone of the equilibrium
distribution is of the order of T. The quantum uncertainty in the energy of a
quasi-particle, due to collisions, is of the order of #/z, where 7 is the mean free
time of the quasi-particle. The condition for the theory to be applicable is

therefore
fij]t < T. (1.11)

t For future reference, it may be noted that the derivative 8’(p) = — 6(p— pp), since both
sides give unity on integration over any range of p that includes the point p = pp.



6 The Normal Fermi Liquid

According to the preceding discussion, the time 7 is inversely proportional to .
the squared width of the transitional zone:

T oc T2

so that (1.11) is certainly satisfied as T' - 0. For a liquid in which the inter-
action between particles is not weak, all the energy parameters are of the same
order as the limiting energy e,; in this sense, the condition (1.11) is equivalent
to T < | &z

For almost step-function distributions (i.e. those close to the distribution
for T = 0), as a first approximation we can replace the functional ¢ by its value
calculated with n(p) = 6(p). Then ¢ becomes a definite function of the magni-
tude of the momentum, and (1.7) becomes the ordinary Fermi distribution.

Near the surface of the Fermi sphere, where alone the function &(p) has a
direct physical significance, it can then be expanded in powers of the differ-
ence p—pg. We have

e—¢ep ~ Vp(p—pF), (1.12)

vr = [0¢/Oplp = p, (1.13)

is the “velocity” of the quasi-particles on the Fermi surface. In anideal Fermi
gas, where the quasi-particles are identical with the actual particles, we have
& = p?/2m, and so vy = pp/m. By analogy we can define for a Fermi liquid
the quantity

where

m* = pr[vF, (1.14)

called the effective mass of the quasi-particle; it is positive (see the end of
§2).

In terms of the quantities thus defined, the condition for the theory to be
applicable may be written T <« vgpp, and only quasi-particles with momenta
p such that | p—pg| <« pr have any real meaning. This important fact, in
particular, makes the relation (1.1) between pr and the density of the liquid
non-trivial, since its intuitive derivation (for a Fermi gas) is based on the
concept of particles in states occupying the whole Fermi sphere, not just the
neighbourhood of its surface.*

The effective mass determines, in particular, the entropy S and the specific
heat C of the liquid at low temperatures. These are given by the same formula
as for an ideal gas (Part 1, §58), in which we need only replace the particle mass
m by the effective mass m":

S=C=VyT, y=m"ps/38 = (zm)¥(m*/A2) (N/V)¥3;  (1.15)

t For liquid He?, however, the range of quantitative applicability of the theory is shown
by experiment to be in fact limited to T < 0.1 °K (whereas | 5| = 2.5 °K).

¥ The proof of (1.1) involves the use of more complicated mathematical methods, and is
given in §20 below.
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because of the linear dependence on T, S and C are the same. This follows
because the expression (1.6) for the entropy in terms of the distribution func-
tion is the same for a liquid and for a gas, and in the calculation of this integral
only the range of momenta near pg is important, in which the quasi-particle
distribution function in the liquid and the particle distribution function in the
gas are given by the same expression ( 1.8).

Before the theory is further developed, the following remark should be made.
Although this method of defining the quasi-particles in a Fermi liquid by
exact analogy with the particles in a gas is the most convenient in systematically
deriving the theory, the corresponding physical picture has the disadvantage of
involving the unobservable filled Fermi sphere of quasi-particles. This could be
eliminated by a formulation in which the elementary excitations occur only
when T > 0. In such a picture, the elementary excitations are represented by
quasi-particles outside the Fermi sphere and *holes” within it; the former are
to be assigned, in the approximation corresponding to (1.12), the energy
¢ = ve(p—pp), and the latter the energy ¢ = v (pr—p). The statistical distri-
bution of each is given by the Fermi distribution formula with zero chemical
potential (in accordance with the fact that the number of elementary excitations
is here not constant, but is itself determined by the temperature)*

n=[eT+1]1, (1.16)

The elementary excitations in this picture appear or disappear only in pairs,
and so the total numbers of excitations with p > pr and p < pp are always
the same.

With this definition of the elementary excitations, their energy is certainly
positive, being the excess of the energy of the excited level over that of the
ground Jevel of the system. The energy of the quasi-particles defined by (1.3)
may be either positive or negative.

Moreover, for a liquid at zero temperature and zero pressure, the quantity
e = p is certainly negative, and the values of ¢ close to &, are therefore
negative also. This is clear, since, when T = 0 and P = 0, —u is a positive
quantity, the limiting value of the heat of evaporation of the liquid per particle.

t For liquid He? at zero pressure, py/# = 0.8X 108cm™!; m* = 3.1 m (He®); py is found
from the density of the liquid, and m* from its specific heat.

It will be recalled (cf. Part 1, §63) that under such conditions the number of quasi-parti-
cles N,, is determined by the condition for thermodynamicequilibrium: the free energy Fis a
minimum as a function of N, for given temperature and volume: (0F/0Nyp) 7, p = 0. This
derivative is, however, just the “chemical potential of the quasi-particles”; it should not be
confused with the chemical potential u of the liquid, which is determined by the derivative
of Fwith respect to the number of actual particles V.
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§ 2. Interaction of quasi-particles

The energy of the quasi-particles, being a functional of their distribution
function, varies with that function. The change of energy for a small deviation
dn of the distribution function from the step function (1.10) must be

Sep(P) = [ foy.po(Ds P') 15 (p') ¥’ @.1)
or, in a more symbolic form,
8&(p) = tr’ [ /(p, p") SA(p") dr’,

where tr’ denotes the trace with respect to the pair of spin indices that cor-
respond to the momentum p’. The function f may be called the interaction
function of the quasi-particles; in a Fermi gas, f = 0. By definition, it represents
the second variational derivative of the total energy E of the liquid, and is
therefore symmetrical in the variables p, p’ and the corresponding pairs of
spin indices:

fa?. ﬂt’(ps p’) = fya, dﬁ(p’9 p)' (2°2)

With the change (2.1), the energy of the quasi-particles near the surface of
the Fermi sphere is given by the sum

&p)—er = ve(p—pr)+tr [ f(p, p) 3A(p') dv. (2.3)

In particular, for thermodynamic equilibrium distributions, the second term
in (2.3) gives the temperature dependence of the quasi-particle energy. The
deviation d#’ is appreciably different from zero only in a narrow band of p’
values near the surface of the Fermi sphere, and this contains the momenta
p of actual quasi-particles. The function £ (p, p’) in (2.1) and (2.3) can therefore
be replaced in practice by its value on that surface, putting p = p' = pg,
so that f will depend only on the directions of the vectors p and p'.

The spin dependence of the function f is due both to relativistic effects
(spin-spin and spin-orbit interaction) and to the exchange interaction. The
latter is the most important. When it is taken into account, the quasi-particle
interaction function has (on the Fermi surface) the form

(prm* [724%) f (b, P') = F(9)+0.6'G(P), 24

where ¢ and o' are the Pauli matrices acting on the corresponding spin indices
(i.e. corresponding to the variables p and p’), and F and G are two functions
of the angle @ between p and p’.! The form of this expression arises from a
characteristic property of the exchange interaction, which is independent of the
spatial orientation of the total angular momentum of the system, so that the

T Inexplicit matrix form,

(prm* [7*H%) f oy, ps = FOop0,8+ GOap: Oys. (2.4a)
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two spin operators can appear in it only as a scalar product. The functions
F and G as defined by (2.4) are dimensionless. The factor separated for this
purpose on the left of (2.4) is the number of quasi-particle states on the Fermi

surface per unit energy interval:

v(er) = [2d0/delymey = 2-4mp} (dp)

@ny \de)

or
v = pi[ndvr = prpm*[nhS. (2.5)

Since the trace of a Pauli matrix is zero, the second term in (2.4) vanishes
when the trace tr’ is taken, and tr’ fis independent of & also. This in fact also
happens when the spin-orbit and spin-spin interactions are taken into account.
The reason is that the scalar function tr’ f could contain the spin operator only
as the product §-p Xp’ of the two axial vectors § and p Xp’; expressions quad-
ratic in the components of § need not be considered, since for spin - they reduce
to terms linear in § or independent of 8. But this product is not invariant under
time reversal, and therefore cannot appear in the invariant quantity tr’ f.

The following notation will be convenient:

Jar, 6y(Ps P') = 0o f(P, D), S = %trtr’f' (2.6)
From the expression (2.4), we have
(prm* [n*8%) f(B) = 2F (). (27

The quasi-particle interaction function satisfies a certain integral relation
which follows from Galileo’s principle of relativity. A direct consequence of
this principle is that the momentum of the liquid per unit volume is equal to
its mass flux density. The velocity of a quasi-particle is 0¢/0p, so that the quasi-

particle flux is
tr | 2(d¢/0p) dr.

Since the number of quasi-particles in the liquid is the same as the number of
actual particles, it is clear that the total mass transfer by quasi-particles is
found by multiplying their number flux by the actual particle mass m. Thus we

obtain the equation
tr [ phdr = tr [ m(9%/dp)A dr. (2.8)

Putting n_g = nd g, e, = €d,5 we vary both sides of (2.8), use (2.1), and
take f from (2.6):

a rn ’
fp ondr =m I%andt+m gj—r%%?—ln on' dv dv',

Oe ( . on’ ,
-..mf—a;b‘ndt—mw f(p,p)-é-l—,-,én dr dv’,



10 The Normal Fermi Liquid

where n’ = n(p’); in the second integral, we have renamed the variables, and
integrated by parts. Since dn is arbitrary, this gives the required relation:

p/m = 0¢/Op— [ f(p, P') [On(p')/0p'] 2", (2.9)

For a step function n(p’) = 6(p’), the derivative on'/0p’ reduces to a delta
function:

e0(p)/op = —(p/p) 8(p—pr). (2.10)

Substituting the function &(p) from (1.12) in (2.9), and then replacing the
momentum p = pn everywhere by the value pr = pn on the Fermi surface,
and multiplying both sides of the equation by pg, we get the following relation
between the mass m of the actual particles and the effective mass of the quasi-

particles:
1

Tt j F(#) cos 8 do’, 2.11)

where do’ is the element of solid angle in the direction of p’. If we substitute
here the expression (2.7) for f(#), this equation becomes

m*{m = 1+ F(#) cos 9, (2.12)

where the bar denotes averaging over directions, i.e. integration over do’ /4n =
= , sin & d?.

Let us also calculate the compressibility of a Fermi liquid at absolute zero,
i.e. the quantity u? = 0P/p." The density of the liquid is 0 = mN/V, so that

u* = —(V?/mN) oP/oV.

To calculate this derivative, itis convenient to express it in terms of the deriv-
ative of the chemical potential. Since the latter depends on N and V only
through the ratio N/V, and for T = constant = O the differential du = VdP/N,
we have

on __Vou_ ¥ op
oN - N oV ~ N2 @y’
and hence
N op
2 _ T8
W = AN (2.13)

Since jt = egfor T = 0, the change du when the number of particles changes
by ON is
bu = [f(pr, ") &' dv' +(Bep/Opr) Spr . (2.14)

T When T = 0, S = 0 also. and so there is no need to distinguish the isothermal and adia-
batic compressibilities. The quantity u is defined by the usual expression for the velocity of
sound in the liquid. It must be borne in mind, however, that at T = 0 ordinary sound in fact
cannot be propagated in a Fermi liquid; see §4.
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The first term here is the change of &(p;) due to the change in the distribution
function. The second term occurs because a change in the total number of
particles also affects the value of the limiting momentum: from (1.1), éN =
= Vp30pg/n?hs. Since dn’ is appreciably different from zero only when p’ =~ pp,
we can write, replacing fin the integral by its value on the Fermi surface,

, ., 1 , ,2dv 1 ON
{f&n df N'i- g‘fdo g’ﬁn —?4"&“——':2-475_?-27‘7.

Substituting this expression in (2.14) and putting de;/0pr = prm", we obtain

ou _f 23
W 717+ eV (2.15)

Finally, with 1/m* from (2.11) and again using (1.1), we have

2 __ p?" 1 (pF 8 _ ’
w=LE M) J[f(a)(l cos 9) do’. (2.16)

With f(#) from (2.7), and using (2.12), we can put this expression in the form

P¥ P
u? = — [1+F(#)). (2.17)

The function f must satisfy certain conditions that result from the require-
ment of stability of the ground state of the liquid. This state corresponds to
occupation of all quasi-particle states within the Fermi sphere, and its energy
must be a minimum with respect to any small deformation of the sphere. We
shall not give the calculations in full, but only the final result,” which may be
conveniently expressed by expanding the functions F(#) and G(&) from (2.4) in
Legendre polynomials:

F(9) = Y (2+1) FP(cos #), G(#) = Y (21+1)G/Pi(cos B); (2.18)
! l

with this definition, the coefficients F,and G, are the mean values of the prod-
ucts FP,and GP,. Then the stability conditions are the inequalities

Fi+1 =0, (2.19)
Gi+1 = 0. (2.20)
A comparison of (2.19) for / = 1 with the expression (2.12) for the effective

mass shows that the latter is positive. The condition (2.19) for / = 0 ensures
that (2.17) is positive.?

1 See I. Ya. Pomeranchuk, Soviet Physics JETP 8, 361, 1959.

¥ For I = 1, we also have the inequality F, > G,, as shown by A. J. Leggett, Annals of
Physics 46, 76, 1968.
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§ 3. Magnetic susceptibility of a Fermi liquid

A quasi-particle with non-zero spin has in general a magnetic moment also.
For spin %, the operator of this moment is 86 (the z-component of the magnetic
moment is £ ). The constant 25/# which gives the ratio of the magnetic moment
of the quasi-particle to its angular momentum 7 is equal to the corresponding
constant for actual particles; clearly the value of this ratio is unchanged, which-
ever way the particle spins are added to the quasi-particle spin.

The existence of the magnetic moment of a quasi-particle leads in turn to
to a paramagnetism of the liquid. The corresponding magnetic susceptibility
may be calculated as follows. ‘

For a “free” quasi-particle, the operator of its additional energy in a mag-
netic field H would be —f86.H. In a Fermi liquid, however, we must take it
into account-that the interaction of the quasi-particles causes the energy of
each of them to change, because of the changed distribution function in the
magnetic field. In calculating the magnetic susceptibility, we must therefore
write the quasi-particle energy change operator as

08 = —Pa.H+tr' | foR" dr'. 3.D

The change in the distribution function is given in terms of 6 by i = (On/0¢)
82;" we thus have

8&(p) = —Po.H+1tr' [ f(p, p') (dn'[de’) 6&(p) d’. (3.2

We shall need the solution of this equation only on the surface of the Fermi
sphere, and seek it in the form

8¢ = — 3 fPga.H, (3.3)
where g is a constant. For a step function n(p’) = 6(p"), we have
dn'|de = —06(¢ — er),

so that the integration over dp’ = d¢'[v, reduces to taking the value of the
integrand on the Fermi surface. Substituting f from (2.4) and noting that the
Pauli matrices satisfy

tre =0, tr(e.6’)e’ = Latr ¢’.¢ =26,
we find
g = 2—gG(P),
or
g = 2/[1+G(®)], (2.4)

where the bar again denotes averaging over directions, as in (2.12).

+ In calculating the field-dependent increment dn, we may neglect the change in the chemi-
cal potential. The change in the macroscopic quantity x in an isotropic liquid can only be
quadratic in the field H (which is assumed to be small in the calculation of the susceptibility),
whereas 0¢ is of the first order in the field. Since the magnetic susceptibility of the liquid is
small, we need not distinguish between the field and the induction in it.
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The susceptibility y is determined from the expression for the magnetic
moment per unit volume of the liquid:

yH = ptr [o dndr = Btr j 6dé(0n/0¢) dv
or, after integration with the step function n(p),
prm* .
xH = —-,3 W tr cae(pp).

Finally, substituting (3.3) and (3.4), and noting that tr(c.H)o = 2H, we find

_ Bprm* _ 3yB8?
X = 23(14+G)  a2(1+G)° (3-5)

where y is the coefficient in the linear specific heat law (1.15). The expression
y = 3yp%[n? gives the susceptibility of a denegerate Fermi gas of particles with
magnetic moment 8; see Part 1, (59.5). The factor 1/(1+G) represents the
difference between a Fermi liquid and a Fermi gas.!

The stability condition (2.20) with / = 0 is the same as the ¢ondition y = 0.

§ 4. Zero sound

Non-equilibrium states of a Fermi liquid are described by quasi-particle
distribution functions that depend not only on the momenta but also on the
coordinates and time. These functions A(p, r, ¢) satisfy a transport equation

da/dt = I(h), (4.1)

where I(#) is the collision integral, giving the change in the number of quasi-
particles in a given element of phase volume because of collisions between
them.*

The total time derivative in (4.1) includes both the explicit dependence of
/i on t and the implicit dependence due to the change in the coordinates, mo-
mentum and spin variables of the quasi-particle in accordance with its equations
of motion. The distinctive feature of the Fermi liquid is that, since the quasi-
particle energy is a functional of the distribution function, in an inhomoge-
neous liquid, ¢ as well as A depends on the coordinates.

For distributions 7 that differ only slightly from the equilibrium distribution
Ho, We write

A(p, T, 1) = no(p)+A(p, , 1). (4.2)

T ForHe?, G ~ —2/3.

* This section assumeés familiarity with the transport equation and in that respect goes
outside the scope of the book. However, the theory of Fermi liquids would be incompletely
formulated without the tratisport equation (and its application in§§4 and 5). We shall here
need only the equation without the collision integral; problems involving the specific form of
that integral will be discussed in another volume which deals with physical kinetics.
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The quasi-particle energy is then ¢ = g0 8¢, where &, is the energy correspond-
ing to the equilibrium distribution, and ¢ is given by (2.1), so that

0¢ 068 . 06n(p) ,,
?a;—"a-!—_'-—-tr [f(Dsp) or dr’. (4.3)

v

If there is no external magnetic field, ¢ and no are independent of the spin.
The explicit time-dependence of /i gives a term in d#/dt

on/ot = 0dn/ot.

The dependence through the coordinates and momentum gives terms
LSO
ar L] ap .p’

The quasi-particle energy ¢ plays the role of the Hamiltonian. From Hamilton’s
equations,

= 08/6p, p= —oor
Hence we have, as far as the terms of the first order in 67,

00h Oeo Ono 00E
or “op oOp or’
Finally, the time variation of the function 7 as an operator with regard to the

spin variables is given, according to the general rules of quantum mechanics,
by the commutator

(i/h) [¢, A). (4.4)

However, when no and & are independent of the spin, there are no terms of
the first order in 6# in this commutator.
Collecting the various terms, we obtain the equation

00h  Oco 0On  DOE Ono
ot  op or or op
Before going on to apply the transport equation, let us discuss the conditions
for it to be valid. By using the equations classical with regard to coordinates
and momentum, we have assumed the motion of the quasi-particles to be quasi-
classical; essentially the same assumption already underlies the description of
the liquid by a distribution function that depends on both the coordinates and
the momenta of the quasi-particles. The condition for quasi-classical motion is
that the quasi-particle de Broglie wavelength #/p, be small compared with the
characteristic length L over which n varies considerably. Using instead of L
the “wave number” of the inhomogeneity, k ~ 1/L, we can write this condition
as’

= I(#). (4.5)

hk < pg. (4.6)

T According to the definition (1.1), #/p is of the order of the interatomic distances, so that
the condition (4.6) is very weak.
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The frequency w of the distribution function variation that is established for
a given k is of the order of vzk, and automatically satisfies the condition

fiw << eF. 4.7)

There may be any relation between 7w and the temperature T. If fiw > T,
the width of the transitional zone of the distribution function is #iw; then
(4.7) is the condition necessary for the entire theory to be valid, ensuring that
the quantum uncertainty in the quasi-particle energy (due to their collisions)
is small compared with #iw.

Let us now apply the transport equation to investigate vibrational motion in
a Fermi liquid.

At low (but non-zero) temperatures, collisions occur between quasi-particles
in a Fermi liquid, and the mean free time = oc T2, The nature of the waves
propagated in the liquid essentially depends on the value of wz.

When wt < 1 (which is effectively the condition for the quasi-particle mean
free path / to be small compared with the wavelength 2), the collisions are able
to bring about thermodynamic equilibrium in each volume element (small
compared with 2)in the liquid. This means that we have ordinary hydrodynam-
ical sound waves propagated with velocity u = +4/(0P/0g). The absorption of
sound waves is small when wr <« 1, but increases with w7z, and for wr ~ 1
becomes very strong, so that the propagation of sound waves becomes im-
possible.”

When w7 increases further to wz > 1, wave propagation again becomes
possible in the Fermi liquid, but the waves have a different physical character.
In these vibrations, collisions of quasi-particles are unimportant, and thermo-
dynamic equilibrium is not established in each volume element. The process
may be regarded as occurring at absolute zero of temperature. These waves
are called zero sound.

According to the above discussion, the collision integral in the transport
equation can be omitted when wr > 1; then

oo, 06 _dma 08 _
or  or op or

(4.8)

where v = 0O¢/0p is the quasi-particle velocity calculated from the unperturbed
energy €(v = vgn, where n is a unit vector in the direction of p); the suffix
"0 is omitted from ¢ here and henceforward.

When T = 0, the equilibrium distribution function #o is a step function
O(p) cut off at the limiting momentum p = p;. Its derivative is

Ono/Op = —nd(p—pr) = —vi(e—eF).

T When w7 < 1, the sound absorption coefficient y ~ w?y/ou, where 7 is the viscosity of
the liquid. In order of magnitude, # ~ vz, n/0 ~ vl ~ V37, where v, is the quasi-particle
velocity (independent of the temperature), so that  oc 7 (1. Ya. Pomeranchuk 1950). Then
Yujw ~ ot o€ wT?.
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Assuming that the time and coordinate dependence of 67 in the wave is
given by the factor expli(k.r—wt)], we shall seek the solution of the transport
equation in the form

8 = 8(e— er)P(n) eler—on) (4.9)

Then (4.8), with 0dé/cr from (4.3), becomes

2
(— venk)3(n) = n.k (2%3 tr' f £, 0)i(n’) do, (4.10)
where n and n’ are unit vectors in the directions of p and p’, and the integration
is over the directions of n’.

Let us consider (zero sound) vibrations which do not affect the spin prop-
erties of the liquid. This means that both the equilibrium distribution func-
tion and also its “perturbation” én are independent of the spin variables.
In such a wave, the change in the distribution function during the vibrations
amounts to a deformation of the limiting Fermi surface (a sphere in the un-
perturbed distribution), which remains a sharp boundary between the occupied
and unoccupied quasi-particle states. The function »(n) is the displacement
(in units of energy) of this surface in a given direction n.

Since »(n’) is independent of the spin variables, the operation tr’ in (4.10)
applies only to f. Writing f'in the form (2.4), we have tr’ f = (2n243/p.m*) F(#).
Thus the operator 6 no longer appears in the equation, which now becomes

(0—k.v)»(n) = k.v | F(8) v(n) do’ /4. (4.11)

We take the direction of k as the polar axis, and define the direction of n
by angles 6 and ¢. Introducing the wave propagation velocity uo = w/k and
the notation s = uo/vy, we can write the equation in the final form

(s—cos 8) ¥(8, ¢) = cos 8 [ F(#) ', ¢) do’ /4. (4.12)

This integral equation determines, in principle, the wave propagation veloci-
ty and the function »(n’) in the waves. We see at once that, for undamped
vibrations (the only ones considered here), s must exceed unity, i.e.

Uo > UF. (4.13)
The origin of this inequality can be understood if we rewrite (4.12) as

WO, &) do’
s—cos 0 4n

#8, ¢) = cos O [F(ﬁ)

Y

where v has been replaced by another unknown function # = (s—cos 0)».
When s = w/kvy < 1, the integrand has a pole at cos ' = s, and in order
to make the integral meaningful this pole in the plane of the complex variable
cos 6" must be avoided by some definite rule. This adds an imaginary part to
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the integral; the frequency w therefore also acquires an imaginary part (for

a given real k), and the wave is damped. The physical significance of tl;e. equa-
tion cos @ = u,/vr, corresponding to the pole, is that this is the condition for

the quasi-particles to emit Cherenkov waves of zero sound.!

As an example, let us consider the case where F(1#) is a constant Fo. The in-
tegral on the right of (4.12) is then independent of the angles 6 and ¢, and the
required function » is therefore

6
p = constant X —— (4.14)

s—cos 0’
The Fermi surface thus becomes a surface of revolution elongated in the for-
ward direction of wave propagation and flattened in the opposite direction.
This anisotropy is a consequence of the non-equilibrium state of the liquid in
each of its volume elements: in equilibrium, all properties of the liquid must be
isotropic, and the Fermi surface must therefore be spherical. For comparison,
it may be mentioned that an ordinary sound wave corresponds to a spherical
Fermi surface with oscillating radius (the limiting momentum p,varies with
the density of the liquid), shifted as a whole by an amount depending on the
velocity of the liquid in the wave; the corresponding function v is ¥ = dpp+
+ constant X cos 6.

To find the zero sound wave propagation velocity uo, we substitute (4.14)
in (4.12):

7

j‘cos@ 2nsin 6 df

s—cos 0 dn
(1]

1.

On integrating, we get an equation which implicitly determines uo for a given

value of Fy:

1 s+1

The function on the left decreases from infinity to zero when s varies from 1 to
=, and is always positive. Hence it follows that the waves concerned can exist
only when Fo > 0. It should be emphasized that the possibility of propagation
of zero sound thus depends on the properties of the interaction of the quasi-
particles in the Fermi liquid.

When Fo - 0, (4.15) shows that s tends to unity:

s—1 = -22-2- e—?IFo, (4.16)

T This is called Landau damping ; it will be discussed in detail in connection with plasma os-
cillations, in the last volume of the course. The rule for avoiding the pole in the integral is given
by replacing @ by w10 (i.e. s -~ s+ /0); this signifies that the perturbation is made finite at all
previous times (including { —+ — o).
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This case has more general significance than (4.15) (in which it is assumed that
F 1s a constant = Fo): it corresponds to zero sound in an almost ideal Fermi
gas for any function F(#). An almost ideal gas has F(#) small in magnitude.
It is seen from (4.12) that s is then close to 1, and » is appreciably different
from zero only for small angles 6. Hence, considering only the range of small
angles, we can replace F(?9) on the right of (4.12) by its value when % = 0
(which corresponds to 6 = 8’ = 0). We then return to (4.14) and (4.16), with
the constant Fo replaced by F(0)." In a slightly non-ideal gas, the velocity of
zero sound exceeds that of ordinarysound by a factor 4/3: for the former
o ~ Vg, and for the latter (2.17) gives (with F neglected and m ~ m*) 12 ~
Az pf:,/3m"2 = ?}?.-/3.

In the general case of an arbitrary function F(#), the solution of (4.12) is
not unique. The equation, in principle, allows the existence of various types
of zero sound differing in the angular dependence of the amplitude »(f, ¢) and
propagated at various velocities. As well as the axially symmetrical solutions
(0), there can also exist asymmetric solutions in which » contains azimuthal
factors e*™? with integral m (see Problem). For all such solutions, the inte-
gral [ vdo = 0,1i.e. the volume within the Fermi surface is fixed. This means
that the vibrations do not alter the density of the liquid.

The possibility of wave propagation in a Fermi liquid at absolute zero im-
plies that its energy spectrum may contain a branch corresponding to elemen-
tary excitations with momentum p = %k and energy e = fiw = uop, which are
“quanta of zero sound”. The fact that zero sound (with any k) can have an
arbitrary (small) intensity means, in terms of the elementary excitations, that
these can occupy their quantum states in any numbers; that is, they obey
Bose statistics and form what is called the Bose branch of the spectrum of the
Fermi liquid. It must be stressed, however, that in the Landau theory it would
be improper to apply the corrections, corresponding to this branch, to the
thermodynamic quantities for the Fermi liquid, since these contain higher
powers of the temperature (72 in the specific heat) than even the first corrections
to the approximate theory given above.

The problem of the absorption of zero sound requires a consideration of the
collisions of quasi-particles, and is outside the scope of this book.

PROBLEM
Find the velocity of propagation of asymmetric waves of zero sound when F= F, + F; cos .

SoLuTION. When

F = Fy-- Fy[cos 6 cos 6" +sin 6 sin 0’ cos(¢p’ — )],

T Vibrations corresponding to zero sound in a slightly non-ideal Fermi gas were first
discussed by Yu. L. Klimontovich and V. P. Silin (1952).
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there can exist solutions with vece®: putting » = £(0)e'd, substituting in (4.12) and integrating,
over ¢¢’, we obtain

bt 4
(s—cos ) f = } Fy cos Osin 0 | sin® 0(5) d9'.
0
Hence
sin 6 cos # ”
—_— ',

y = constant X
s—cos B

Substituting this expression back into the equation, we get

A sin? 6 cos 6
f — df = 4/F,,

s—cos 6
0

which gives the dependence of the velocity of propagation on F;. The integral on the left is
a monotonically decreasing function of s. Its greatest value therefore occurs when s = 1. Cal-
culating the integral for s = 1, we find that an asymmetric wave of the type considered can be
propagated if Fy > 6.1

§ 5. Spin waves in a Fermi liquid

As well as the spin-independent solutions »(n)considered in §4, (4.10) has so-
lutions of the form

¥ = o.u(n), (5.1

in which the variation of the quasi-particle distribution function depends on
the spin component. These may be called spin waves.

Substituting (5.1) in (4.10), again taking f in the form (2.4), and noting that.
tr' o’(o.6") = 20, we get (after cancelling o)

(s—cos 0) w(6, @) = cos 0 [ G() w(0", ¢") do’[4x. (5.2)

Thus, for each component of the vector w, we get an equation that differs
from (4.12) only in that F is replaced by G. Hence the subsequent calculations
in §4 are applicable to spin waves also.

Spin waves of another kind can be propagated in a Fermi liquid when a
magnetic field is present (V. P. Silin 1958). Here we shall consider only vibra-
tions with k = 0, in which 67 is independent of the coordinates.

When a magnetic field H is present, even the quasi-particle energy and distri-
bution function “unperturbed” by the vibrations are spin-dependent. These
dependences are interrelated, and are given by (see §3)

€0 = eo(p)—pio.H, p1=B/(1+G), (5.3)
Ro = no(p)—(dno/de)ﬂlo.H
= no(p)+ 6(6—61:)/316.1'1, (5.4)

T For liquid He?, F, and F; can be calculated from the known values of m* and u? by means
of (2.12)and (2.17): F, = 10.8, F; = 6.3 (at zero pressutre).

+ Inliquid He?, G, = G(&#) <0; see the second footnote to §3. Such waves therefore cannot
be propagated in it.
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where eo(p) is the energy in the absence of the field; the suffix 0 again indi-
cates that these expressions relate to the equilibrium liquid.
We again seek the small variable part of the distribution function in the
wave in the form
0n = 8(e—er) o.p(m)e™".

The corresponding change in the quasi-particle energy is

0 = c.Jp.(n’) G(9) Z‘; et

In the transport equation, we must now take into account the term (4.4)
containing the commutator [, A]; for distributions independent of the coor-
dinates, it becomes

oon i ..
—3—[—+—ﬁ—[s, Al = 0. (5.5)
As far as terms linear in 6/ we have

[¢, A] = —pi[e.H, OAl+ B1d(e—er) [0¢, . H].

The commutators are given by the formula

[6.a, 6.b] = 2is.a XD,

where a and b are any vectors; see QM (55.10). The transport equation thus
becomes

iow(m) = (281/4) H xp(n), (3.6)
p(n) = w(n)+ [ w(') G(#) do’/4=. (3.7)

In the general case, the solution of (5.6) can be expanded as a series of spher-
ical harmonics Y, (9, ¢), with the polar axis along H. Each term in the expan-
sion represents a particular type of vibration with its frequency w,,.

The first frequency oo corresponds to vibrations with p. = constant; then
e = p(1+G), and (5.6) becomes

iwoole = (28/A)H X @;

where

the vibrations are transverse to the field (w L H). Writing the equation in
components in the plane perpendicular to H and taking the determinant, we

find the frequency
oo = 2ﬂH/ﬁ . (58)

Here B is the magnetic moment of a particle (actual) in the liquid. Thus woo is
independent of the specific properties of the liquid. The values of all the other
frequencies w,,,, however, depend on the specific form of the function G(9).
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§ 6. A degenerate almost ideal Fermi gas with repulsion between
the particles

The problem of the thermodynamic properties of an “almostideal” degenerate
gas has no direct physical significance, since the gases that actually exist in
Nature condense at temperatures near absolute zero. Nevertheless, in view of
the considerable methodological interest of this problem, there is value in
discussing it for a hypothetical model of a gas whose particles interact in such
a way that the gas cannot condense.

The condition for the gas to be almost idealis that the range ro of the molec-
ular forces be small compared with the mean distance / ~(¥/N)V3 between
the particles. As well as the condition ro << I, the inequality

pro/fi <1 (6.1

is valid for the particle momenta p: in a degenerate Fermi gas, the limiting
momentum pg is estimated from (1.1), which gives pg/f ~ (N/V)"* <« 1/ro.

We shall consider here only a pair interaction between particles, and assume
for simplicity that the interaction U(r) is independent of the particle spins.
Our aim is to calculate the leading terms in the expansion of the thermody-
namic quantities in powers of the ratio ro//, by means of quantum-mechanical
perturbation theory. The difficulty is that, because of the rapid increase of the
interaction energy at small distances between the particles, perturbation theory
(the “Born approximation”) is in fact not applicable to particle collisions.
This difficulty can, however, be circumvented in the following way.

In the limiting case of “slow” collisions (as for instance when the condition
(6.1) holds), the mutual scattering amplitude of particles with mass m tends to
a constant limit —a, which in the Born approximation (see QM, (126.13)) is

—a = —mUo/dnt?, Uo= [U(r) dx; (6.2)

this limit corresponds to the s state of the pair of particles (with spin 3). The
constant a is called the scattering length.! Since this quantity entirely deter-
mines the properties of the collisions, it must also determine the thermodynamic
properties of the gas.

This leads to the possibility of applying a procedure known as renormalization.
We formally replace the true energy U(r) by a different function having the
same value of a but such that perturbation theory can be used. So long as
(i.e. in an approximation such that) the final result of the calculations contains
U only in the scattering amplitude, it will be the same as the result that would
be given by the actuval interaction.

T The expression (6.2) takes no account of the quantum-mechanical identity of the particles.
In the limit of slow collisions of identical spin-1 particles, scattering occurs only for anti-
parallel spins, and the differential cross-section for scattering into the solid angle do (in the
centre-of-mass system) is do = 4a® do; the total cross-section is obtained by integrating do
over a hemisphere, and iso = 87a® (see QM, §137).
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The range of the actual interaction is in general the same in order of magni-
tude as the scattering length a. For the fictitious field U(r) which serves an auxi-
liary purpose, the condition for the Born approximation to be valid is a << ro.
The actual small expansion parameter in this theory is, of course, ap;/#.

We shall need the relation between Uo and a not only in the first approxi-
mation (6.2), but also in the second Born approximation. To find this, we re-
call that, if the transition probability of the system under the action of a con-
stant perturbation P is given in the first approximation by the matrix element
V 00, then in the second approximation Voo is replaced by

where the summation is over the states (with n ¢ 0) of the unperturbed system
(see OM, §43). In the present case we have a system of two colliding particles,
and the perturbation is their interaction U(r). The perturbation matrix ele-
ments for transitions in which the particle momenta p; and ps become p,
and p, (with p1+p2 = p,+p,) are

1
<p],_d1, pé(lz [U | Pixi, pgoc2> = —I}- J‘ U(I‘) e=ip.r/h d3x, (6.3)

where p = p,—p2 = —(p;—p1); since the interaction is independent of the
spins, the particle spin components «; and «, are unaltered by the collision.
The matrix element for zero momenta Uy/V plays the role of Voo. Thus, in
changing from the first to the second approximation, we must replace U, by

1 o [P3+p—pi2—p2]~t —ipa/k iy |2
U0+T;pzi[ - jl IIUe prk Bx|2;

the summation is for given p; and ps, over p; 5 p1, p2. Since in our case the
particle momenta are assumed small, in all the important terms in the sum we
can replace the matrix elements by their values at p = 0. We then get the
following expression for the scattering length:'

m Us 2m
T [U°+“V§p%+pg—p12—p;2]' (©4)

Hence, with the same accuracy,

2 2
_ dah’a l’l_ 4nh?a 2m ] . (6.5)

U - ’ ’
T m my’ %p%+p%—-p12-p22

T In all the intermediate formulae we write the sums over discrete values of the particle
momenta with the particles in a finite volume V’; in the final calculation the summation is
replaced, as usuval, by integration over Vd®p/(2nfi)3.
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The divergence of the sum in (6.4) for large p; and p; is due to the replace-
ment of all matrix elements by constants and is not important, since, when
this expression is later used to calculate the energy of the system, a convergent
expression is still obtained, in which large momenta are not significant. We
take a to be the scattering length of slow particles, which is independent of
their energy. Formula (6.4) seems at first sight to depend on the momenta p,
and p,, but in fact this dependence is restricted to the imaginary part of the
scattering amplitude (which exists when the method of summation is appro-
priately defined; cf. QM, (130.9)), which need not be considered, since we know
that the final result will be real. This topic will be resumed in §21.

In the present section, we shall consider the model of a Fermi gas with a
repulsive interaction between the particles; for such an interaction, a = 0. In
this case, the gas has an energy spectrum of the Fermi type described in §§1
and 2.

The Hamiltonian of a system of particles (with spin ) having a pair inter-
action is, in the second quantization method,

p2 ot
A= Z 2 Z <P1°°1, P20o | U | Pyoty, Poka) & apla,ap;uzap,a,aplal' (6.6)

see QM, §64. Here 4;, and 4,, are creation and annihilation operators for a
free particle with momentum p and spin component « (= %3). The first term
in (6.6) corresponds to the kinetic energy of the particles, and the second term
to their potential energy; in the latter, the summation is over all values of the
momenta and spin components, subject to the conservation of momentum
in the collisions.

In accordance with the assumption that the particle momenta are small,
we again replace the matrix elements in (6.6) by their values for zero momenta:
(Oatz, Octo| U |0y, Oeg) = Uo/¥. Next we note that, since the operators Gy, and
d,,., anticommute in Fermi statistics, their product is antisymmetrical with
respect to the interchange of suffixes; the same applies to the products 4, ulaj s
In consequence, all terms cancel in the second sum in (6.6) that contain pairs
of equal suffixes «1, @2 (physically, this occurs because of the fact already men-
tioned that, in the limit of slow collisions, only particles with opposite spins
can scatter each other).

The Hamiltonian of the system thus becomes

P .. U TN
A= Z 5 Gpelpe + > 7 Z a118,%8, 4, ., (6.7)

D1, Ps, p1

where 4, = 4, ,, 8, = 4,,.,, etc., and the suffixes + and — here and hence-
forward replace + 3 and — %,

The eigenvalues of this Hamiltonian are calculated by ordinary perturbation
theory; the second term in (6.6) is treated as a small correction to the first
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term. The first term 1s diagonal, and its eigenvalues are

E® =% (p*/2m) npe, (6.8)

Py

where n,, are the occupation numbers of the states p, «."
The first-order correction is given by the diagonal matrix elements of the

interaction energy':
U
EW = -V—° Y mans_, (6.9)

Pr, P2
where n1, = n, , etc.
To find the second-order correction, we use the known formula of pertur-
bation theory,
’ Vnm }2

E’(‘z)ZZ’E _E ’

where the suffixes n and m label the states of the unperturbed system. A simple
calculation (with the known matrix elements of the operators d,, and d;,) gives

U3 nyng—(l—ny,) (1—ny_)
Us. (L2A% . 6.10
) (P3+P3—pi2—ps¥)2m (6.10)

P1, P2, DY

The structure of this expression is very clear: the squared matrix element of the
transition p1, p2 — P1, P» is proportional to the occupation numbers of the states
P1, P2, and to the numbers of unoccupied positions in the states p;, p,.

The integral Uy in (6.9) and (6.10) must be expressed in terms of a real phys-
ical quantity, the scattering amplitude —a. In the second-order terms this can
be done from (6.2); in the first-order terms, the more exact formula (6.5) is
needed. After these substitutions, we find as the correction of the first order
in a

E® = Té’} Y nipne (6.11)

Py P2

and as the second-order correction

nipng-{(1—ny,) (1—ny,—)—1]
pPi+p3—pi2—ps® ’

g — 2me

)

P1, P2, Pq

for brevity, we use in the intermediate formulae the “coupling constant” of
the gas particles* g = 4n#2a/m. In expanding the expression in the numerator,

t By assuming that the particles have definite values of the spin component, we assume that
the statistical matrix n,p(p) is also reduced to diagonal form; the functions ny(p) with & = +1
are then its diagonal elements.

t After the renormalization of the scattering amplitude, this quantity is no longer equal to
the constant U, in (6.2).
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we note that the terms with products of four n cancel, because their numerators
are symmetrical and their denominators antisymmetrical with respect to the
interchange of pi, p2 and p;, p;; and the summation over these variables is
symmetrical. The final result is

2mg® ny na—(n 4 +ny-)
E® = — ., 6.12
D = = ¢12

P1, P2, P,

This sum (in which all the n,, — 0 as p - o) is convergent.

From these formulae we can calculate, first of all, the energy of the ground
state. To do so, we must put all the #,, equal to unity within the Fermi sphere
(p < pr = #(322N/V)'?) and zero outside. Here it should be noted that, al-
though in the original Hamiltonian the eigenvalues of the operator products
ata,, give the occupation numbers of the states of the gas particles themselves,
after diagonalizing the Hamiltonian by means of perturbation theory we are
concerned with the quasi-particle distribution function (denoted, as in previous
sections, by n,,

Since Y n,, = Yn,_ = 5N, we find from (6.11) the first-order correction

E® = gN¥/av.

In (6.12) we replace the summation over three momenta, together with the
condition py+pa = p;+P,, by integration over

ye ’ ’ 4 !
iy 8(p1-+p2—P1 —P) &p1 d®p. d°p; dp;,

so that

Amg?V [ 6(p1+p2—Pi—P2)
E =~ ansy j o rA—pipi O PP T

the integration being taken over the range p1, ps, p; < pr. The calculation of
the integral’ gives the following final result for the energy of the ground state:

— 2
Eo — 3p,.- [l+10 Pra + 4(11—2log 2) (ppa) } , 6.13)

10m 9n 4 21n? h

where the coefficient of the square bracket is the energy of an ideal Fermi gas
(K. Huang and C. N. Yang 1957).

The chemical potential of the gas at absolute zero is given by the derivative
u = (OEo/ON),.. Expressed in terms of the limiting momentum pg, it is

_ E[l+ip,=a+4(ll-——2log 2) (ppa)’]' (6.14)

2m 3n A 15n2 h

T In practice, it is simpler to proceed in a different order, beginning with the calculation of
the function f (see below),
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According to the general ideas of the Landau theory, the spectrum of
elementary excitations e(p) and the quasi-particle interaction function 7, .(p, p’)
are determined by the first and second variations of the total energy with
respect to the quasi-particle distribution function.! If E is written as a discrete
sum over p and «, we have by definition

1 ;
OF = Z &(p) Ortps +"2'I7 Z Sear(Ps P) Ot Oy (6.15)

| | N

(after differentiation of the energy, n,, is to be replaced by unity within the
Fermi sphere and zero outside). There is, however, no need to calculate in this
way the effective mass m* of the quasi-particles, since it can be found more
simply (see below).

To calculate the function £, .(p, p’) (on the Fermi surface), we twice differ-
entiate the sum of the expressions (6.11) and (6.12), and then put p = p’ = pg.
After making this simple calculation and changing from summation to integra-

tion, we have

o) = ae 4mg2f 3(p+p'—P1—P2)
I+-0P) = 8- 0w 2pk—pi—p3

|
(%

d(p+p1—p —p2)+6(p'+p1—p—p2)
" d3p, Bp,,
2(p>—pd) Prape

f~,— +(ps p’) = f—- —(pa P’)
_ 2mg® [ 3(p+p1—p —p2)+6(p'+p1—p—p2)
~ (2nhy {‘ P—p2 d*p, dps.

[ Y

The integration in these formulae is comparatively simple, because of the lower
multiplicity of the integrals.

The final result is to be put in the form (2.4), which is independent of the
choice of the spin quantization axis. In this form it is

2naki? 2 D 1+sin X &
Say, 85 = :' {[1+~ﬂ(2+2cos log SIn )] 8as0ys

R sin + & 1—sin 58/
2apr 11 1+sin &9
_ [1 +7h_2~(1_ Lsin 19 log m)] Opdl,  (616)

where # 1s the angle between the vectors pr and pr (A. A. Abrikosov and I. M.
Khalatnikov 1957).}

¥ The matrix fo-(p,p’) in this section is made up of the elements of the matrix Say, 88D, D")
that are diagonal in two pairs of suffixes («, § and v, ).

* The function (6.16) becomes logarithmically infinite at # = z. This is because of the
approximations made. A more exact analysis shows that, although # = x is indeed a singular-
ity of the function, the latter is zero there, not infinite; see the third footnote to §54. The
invalidity of (6.16) near # = = is unimportant in subsequent applications, which invol ve in-
tegrals convergent at this point.
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The effective mass of the quasi-particles is found from this by integration as
in (2.12):
m* 8 apr\?2
— — Bt .00 6.17
- 14+ 455 (710g2 1)( ,1) (6.17)

Formula (2.17) gives the velocity of sound in the gas:

o P¥ [1.2 apr  8(11-2log2) (apr\*

u
L

Then, integrating u?m/N (expressed in terms of N/V instead of py) with respect
to N, we find from (2.13) the chemical potential of the gas, and a further
integration with respect to N gives the expression (6.13) for the energy of the
ground state.

Formula (6.13) represents the first terms irt an expansion of the gas energy in
powers of the “gaseousness parameter” y = pra/h ~ a(N/V)"2. By similar but
considerably more laborious calculations, we could derive some further terms
in the expansion. The reason is that, in a Fermi gas, triple collisions contribute
to the energy only in a fairly high approximation. Of three colliding particles,
at least two have the same spin component; the coordinate wave function of the
system must then be antisymmetric with respect to these two particles. Thus the
orbital angular momentum of the relative motion of these particles is at least
1 (p state). The corresponding wave function contains an extra power of p/#
in comparison with the s-state wave function (see QM, §33), and therefore the
probability of such a collision contains an extra factor p?, i.e. is reduced by a
factor ~ (pa/#)® ~ 72 in comparison with that of a *“head-on” collision of
particles not obeying the Pauli principle. In consequence, triple collisions con-
tribute to the energy only in terms containing the volume as ¥ ~2)=23, In other
words, all terms in the expansion of the energy up to those of order N(p2/myns
inclusive, i.e. three more beyond those shown in (6.13), are expressed in terms
of the characteristics of pair collisions only. However, these characteristics
will include not only the amplitude of s-wave scattering for slow collisions, as
in (6.13), but also its derivatives with respect to the energy, and the amplitude
of p-wave scattering.



CHAPTER 11

GREEN’S FUNCTIONS IN A FERMI SYSTEM AT
T=0

§ 7. Green’s functions in a macroscopic system

THE method used in §6 becomes laborious and in practice unusable in the higher
orders of perturbation theory. This disadvantage is the more important in that
the interaction between particles in actual physical problems is certainly not
weak, and so, to ascertain the various general properties of macroscopic
systems, we have to consider infinite sequences of terms in the perturbation-
theory series. To overcome such difficulties, we can use a mathematical for-
malism similar to the one in quantum field theory.

The specific form of this treatment depends essentially on the nature of the
macroscopic system to which it is to be applied. The subsequent sections of this
chapter deal with the development of the formalism for a Fermi liquid at
absolute zero.” The purpose of the exposition is not only the practical applica-
tion of the method to such a system, but also to show how the formalism itself
is constructed.

The starting-point is the second-quantized v operators, whose properties are
known from quantum mechanics (see QM, §§64, 65). Here we shall need them
in the Heisenberg representation, in which they depend explicitly on the time.
We therefore begin by establishing some properties of the v operators in that
representation.

We shall consider systems of spin-; particles. Accordingly, the y operators
must be given a suffix that indicates the value of the spin component and takes
the values -+ é«; these suffixes will again be written as Greek letters, and summa-
tion over repeated suffixes is implied.

By the general rule (see QM, §13), the operator £ (¢) of any physical quantity
in the Heisenberg representation is expressed in terms of the time-independent
(Schrédinger) operator f of the same quantity by?

F) = it fe—idt,
where H is the Hamiltonian of the system.

t The systematic construction of this formalism is due to V. M. Galitskii and A. B. Migdal
(1958).

* In order to simplify the formulae, we shall often use units such that the quantum constant
f = 1 (so that the momentum and energy have dimensions of reciprocal length and recipro-

28
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Here, however, it will be appropriate to modify this definition somewhat.
The reason is that in quantum statistics it is more convenient to consider the
states of the system not for a specified number N of particles in it but for a
specified chemical potential y. The ground state of the system, in which it is
found at T = 0, can then be defined as the state having the lowest eigenvalue
of the operator

B = A—uN, (7.1)

and not of A as when N is specified: the probability that the system is (for a
specified value of w) in a state with energy E, and number of particles N, is

/

wac exp [ — Zn2BNn _ oxp [~ En)
(-577) e (-7):

see Part 1, (35.1). Here E,, are the eigenvalues of the operator A’. We see that
at 7 = 0 only the state with the lowest E, remains."
Thus we define the Heisenberg ¢ operators by the formulae

Y.(t, ) = SR (r) eil,

Y1, 1) = 15 (r) et B,
Y

(7.2)

The Heisenberg v operators will be denoted by the capital letter ¥, and the
Schradinger y operators by .

The Schrédinger ¢ operators obey the familiar commutation rules. The
commutators of the Heisenberg operators taken at different times ¢ and ¢
cannot be calculated in a general form, however. When ¢ = ¢/, the commuta-
tion rules are the same as for the Schrédinger operators. Thus, from the rule

Pu(O)PF () + P (') Palx) = g O(r—r')
we have the corresponding rule
Pt )T (1, 1)+ L5 (1, ) P (2, 1)
= eB[P.() 5 () + D3 (1) D)) B
= Og0(r—1’). (7.3)
Similarly,

e, D) Py(t, ©)+ (1, ) Pt 1) = O, } (1.4)

it r) (e, v)+ st ) (2, 1) = 0.

cal time respectively). To change from these to ordinary units, all momenta p and energies E
in the formulae are to be replaced by p/# and E/#. Such units will, in particular, be used in the
present chapter. . R

t The term ‘Hamiltonian’ will be used for both H and H”.
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Differentiating the definition (7.2) with respect to time, we find that the
Heisenberg ¢ operator satisfies the equation

?’u(t r) = AV 0)-P.(,)B'; (7.5)

cf. OM, (13.7).

The Heisenberg and Schrodinger representations are identical for the oper-
ator of any conserved quantity (i.e. an operator that commutes with the Hamil-
tonian). This is true, in particular, of the Hamiltonian itself, and of the particle
number operator, which also of course belongs to a conserved quantity. The
expressions for these operators in terms of Schrédinger and Heisenberg v
operators are the same. For example, the particle number operator is

N= _’-7/7;(1') Pa(x) dx
= [Pi@, ) Pu(t, v) dB. (7.6)

The Hamiltonian of a system of interacting particles is
q = H'<°>+V‘1>+I7‘2>+ !
o= _ (W”tra'f’ t, r)d3x — uN, |
5 (1, 1) 6¥(1, 1) i 27
yo = f‘l“ (1, ) UD () W (1, x) dix,
PO = 5 [V, 0P 1) U2 —r) Po(t, v') Po(t, v) dBx dBx, J

where /'@ is the Hamiltonian of a system of free particles; ¥V is the operator
of their interaction with the external field U(r); P® the operator of their
pair interaction, U®(r—r’) being the interaction energy of two particles. The
omitted terms represent triple etc. interactions; cf. QM, (64.25). For simplicity,
all interactions are assumed to be independent of the spins of the particles.

The commutator of A’ and ¥, in (7.5) is calculated by means of the rules
(7.3) and (7.4); the delta functions that appear are removed by integration.
We thus obtain a “Schrédinger equation” for ¥, (¢, r), in the form

0 3 1
S A ( e A=t U‘l’(r)) P, )
+H{ P Y URE-—1) Pt v) B W (t, )+ ... (7.8)

The concept of the Green’s function for a macroscopic system is fundamentat
in the method described here. This function is defined by’
Gup(X1, X2) = —KTE(X1) P5 (X)) (7.9)

Here and and below, X denotes for brevity the time ¢ together with the position
vector r. The angle brackets (. . .) denote averaging with respect to the ground

* This definition is analogous to that of the exact Green'’s functions (propagators) in quan-
tum electrodynamics (cf. ROT, §§100, 102).
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state of the system, instead of the more cumbersome notation (0! ... |0) for
the diagonal matrix element. The symbol T denotes the chronological product:
the operators following it are to be arranged from right to left in order of
increasing times t;, t. For fermions, the interchange of a pair of ¢ operators
(as compared with their arrangement in the original writing of the product)
must change the sign of the product. Explicitly,

Gap(X1, Xo) = { — i) PF (X)) for 1 >t }

P (Xo) Pu(Xy)) for 1<t (7.10)

There are some obvious properties of the Green’s function. If the system
is not ferromagnetic and not in an external field, the spin dependence of the
Green’s function reduces to a unit matrix:

Gup(X1, Xo) = 8u5G(X1, Xo); (7.11)

any other dependence would distinguish a particular direction in space, the
z-axis of spin quantization." Since time is homogeneous, t; and t, appear in
the Green’s function only as the difference t = t,—1,. If also the system is
microscopically homogeneous in space, the coordinates of the two points
appear only as the difference r = r1—r,. In other words, for this case we have

Gaﬁ(X], Xg) = (SapG(X), X = X]"‘Xg. (712)

It must be emphasized that microscopic homogeneity means that the body is
assumed homogeneous not only as regards its mean (macroscopic) density but
also as regards the probability density of various (microscopic) positions of its
particles in space. Liquids and gases have this property (but solid crystals do
not). Their isotropy has the result that G(z, r) = G(t, —r). In this connection,
let us note once again that the function G(z, r), by its definition, is certainly not
an even function of ¢. The order of #; and 1, in the difference ¢t = #;—1; is for
that reason significant. ,

The coordinate density matrix of a particle in the system is defined as the
mean value

ousesy 12) = 3 (31, 1) Palt, 1), (7.13)

From a knowledge of this matrix we can find the mean value of any quantity
pertaining to an individual particle. Let Faﬁ be some “one-particle” operator,
1., an operator of the form

Fp =319, (7.14)

where fjf‘,‘) is an operator acting on the coordinates and spin of only one (the
ath) particle, and the summation is over all particles in the system. In the

T This statement needs elucidation. The spin components 'f’a form a contravariant spinor of
rank one (and in this sense it would be more correct to raise the index: ¥*). The components

¥4 form a covariant spinor. Thus G,g is a mixed spinor of rank two,and d,g is a unit spinor of
this kind.
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second-quantization formalism, such an operator is written (in the Heisenberg
representation) as

Fes(t) = [ W (1, 1) fo, 2,(8, ¥) dB3x; (7.15)

cf. OM, (64.23). Hence it is clear that the mean value of F can be expressed in
terms of the density matrix as

<F> = N<f> = J. Lf‘ﬁgl)gﬁm(rl, r2)]rlmr2 d3x1, (7.16)

where 3’ is an operator acting on the coordinates ry (we put ry = ry after
applying this operator but before integrating).

According to (7.10), the density matrix can be expressed in terms of the
Green’s function:

Qap(l'l, ry) = —_I%Gap(tl, ri; 1140, ra). (7.17)

Here, and everywhere henceforward, writing the argument of the function as
t;+0 signifies taking the limit as it tends to 7, from above. This ensures the
correct arrangement of the y operators, as in the product (7.13).

For a microscopically homogeneous system, the density matrix depends only
on the difference r = r;—r;, and if there is no spin dependence, @,; = 4,50,
with

oX) = ~ 1 G(t =—0,1); (1.18)

here G 4(X;, X;) has been replaced by G(X; — X,) = G(X) inaccordance with
(7.12). With r; = ro, after taking the trace with respect to the spin variables,
the operator product in (7.13) becomes ¥}¥,, the operator of the particle
number density in the system. The mean density of the body is therefore

NIV = 2Np(0) = —2iG(t = —0,r = 0), (7.19)

where 7 tends to zero from below. This equation relates the chemical potential
p at T = 0 (on which G depends as a parameter) to the particle number density
N/V.

The Fourier expansion of the function o(ry, rs) determines the momentum
distribution of the particles:’

N(p) = N [ o(rs, rs) e~ =) d¥(x, — x5)
= —i [IG(t, D))m—o ™'+ Px. (7.20)

t The one-particle density matrix is (see QM,§14) the integral

Q(rlr rz) = _‘. T*(rm Q) w(r’.’ q)de

where P(r, g) is the wave function of the system as a whole, r denoting the position vector of
one particle and g the set of coordinates of all the other particles, with integration over these.
The Fourier components of the density matrix are equal to

[ 1] ¥, @yetor dix |2 dg,
and this gives its relation to the particle momentum distribution.
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This is the number of particles (per unit volume) with a specified value of the
spin component and with momenta in the range d®p/(2%)%. Here we are referring
to actual particles, not to quasi-particles (which have not yet made an appear-
ance in the formalism being described). The notation N(p) is used in contrast
to the quasi-particle distribution function 7(p).

We shall usually be concerned with the Green’s function in the momentum
representation, defined as the component of the Fourier expansion of G(¢, r)
with respect to £ and r:

G(t,x) = [ G (w, p)e'®*== dw dBp/(2m)*, (7.21)
G(w,p) = [G(t,r) e i@r—o0 dt dix. (7.22)
The particle momentum distribution is expressed in terms of this function by

. g r _. dow
N() = —i lim f G(w, p)e~iot — | (7.23)

t——0 27!

which is found by substituting (7.21) in (7.20). It is normalized by
. dod®p N
— —lw —

2i tklllo f G(w,p) e~ et G =V (7.24)

which is the condition (7.19) in the momentum representation. Thus the distri-
bution N(p) automatically has the correct normalization

2 [ N(p) /2y = NV

The limit in which the integrals (7.23) and (7.24) are taken is equivalent to a
particular contour rule in the plane of the complex variable w. The presence of
the factor e~ with t < 0 allows the path of integration (the real axis) to be
closed by an infinite semicircle in the upper half-plane of w, so that the integral
is determined by the residues of G(w, p) at its poles in that half-plane.

§ 8. Determination of the energy spectrum from the Green’s function

For a microscopically homogeneous system, it is easy to determine the time
and coordinate dependence of the matrix elements of the Heisenberg ¢ operator
with respect to stationary states having definite values of the energy and mo-
mentum.

The time dependence is given by the usual exponential factor:

(n| ot x) | m) = elommin| o) | m), (8.1)

but, since the Heisenberg y operator is defined by means of the Hamiltonian A’,

we have

= En—Em—H(Nn—Nm).
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According to the general properties of u operators, ¥ decreases (and ¥+
increases) by one the number of particles in the system. Hence N, = N, —1
in the matrix element (8.1), so that

Wpm == En(N) ‘—Em(N‘!— 1)+ My (82)

where the arguments are the numbers of particles in the corresponding states.

To determine the dependence on the coordinates, we note that, since the
system 1s homogeneous, a displacement relative to the system through an
arbitrary distance r cannot alter the matrix elements of its 1 operators. This does
not mean, however, that the matrix elements are independent of the coordi-
nates. The reason is that the difference between v,,(r) and the value v,,,(0)
at some specified point r = 0 is due to two causes: the displacement through r
relative to the system itself, and the movement of the point of observation to a
different position, which also changes the phases of the wave functions. In
order to exclude this latter change, we shift the system through —r, i.e. apply
to its wave functions the parallel-translation operator

T(—r) = e~i¥,

where P is the operator of the total momentum of the system; see QM, (15.13).
These operations return the point of observation to its original position, but
it remains shifted by r relative to the system. The invariance of the matrix
elements under this transformation is expressed by

(] 9a(0)! m) = {n| =P (r)e~ir® ' m). (8.3)
If the system has definite momenta P, and P,, in the states n and m, then
(1 90) [ m) = e'kam=(n! o(r)' m),

(1 Vt,1) m) = elonni~lameXn | §,(0)! m),
(n ! 'Ijt(t, l')‘ m) = <m j ¢a(t’ l')} l1>*, }

where k,,, = P,—P,,.

Using these formulae, we can deduce an important expansion of the Green’s
function in momentum space, which clarifies its physical significance.

Because of the “discontinuous” definition of the function G(t, r), in calculat-
ing G(w, p) we must separate the integral over ¢ in (7.22) into two, from — oo
to 0 and from 0 to -. In the second (i.e. when ¢ = t;—¢t; > 0), we expand the
definition (7.10) by the matrix multiplication rule and find

G(t! l') = ‘} iwa = """,12'1. Z <O ’ ':?ra(Xl)! m> <m ‘ 'fj:-(XQ)l 0>s

whence

(8.4)

with summation over all quantum states of the system. Substituting (8.4) and
noting that Po = 0 in the ground state, we have

G(t,¥) = — 3 X [<OD(O)md|? eiceont+ P (5.5)
where Wopy = EO(N)_Em(N+ 1)‘*—_11/.
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The spatial integration in (7.22), with G(t, r) from (8.5), gives the delta func-
tion 8(p—P,,) in each term of the sum. In the integration over ¢z (> 0), to ensure
convergence, we must add to w an infinitesimal positive imaginary part, i.e.
replace @ by w+i0." Then

1 . o(p—Pn)
i(wt—p-r) 3 —_ 3 2 —_—
J\J‘ G(t, r) e d X dt ) (Zﬂ) ; |<0[Wa(0)lm>l w+w0,,,+10
0

The integral over ¢ from — o to 0 is calculated similarly. For ¢ < 0 we have
instead of (8.5)

G(t, ¥) = 1Y |(m | $.(0) ! 0) [ eomat—Pu), 8.6)

where w,,, = E,(N—1)—Ey(N)+ u. Now, calculating the integral from — o
to 0 and adding it to the other, we obtain

1 And(®—P,)
—_ 3
G(w, p) = 5 @27 ), { o+ g+ E(N)—En(N+D+i0
Bnd(p+Pm)
VT AT E(N—1)—Eo(N)—70 } ’ ®.7)
with the notation
Am = {0 9.0) my|?, B, = |(m]|P0)]0)[% (8.8)
This is the required expansion.?
We shall use the notation
&) = E (N+1)—ExN), &5 = E(N)—En(N-1) (8.9)

for the excitation energies given by the differences between the excited level of
the system with a particular number of particles and the ground state of the
system with one particle more or fewer. The superscripts (+) and (—) indicate

the inequalities
&) >pu, &)< u. (8.10)

For, since Eo(N+1)—Eo(N) ~ 0E¢/ON = u, the chemical potential at T = 0,
we can write, for instance,

e = Ep(N+1)—Eo(N+1)+Eo(N+1)—Eo(N)
e [En(N+1)—Eo(N+ 1]+ p.

T This procedure is analogous to the method of calculating Green’s functions in quantum

electrodynamics (cf. RQT, §76).
¥ The corresponding expansion in quantum field theory is the Kéllén-Lehmann expansion

(cf. RQT, §§101 and 108).
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The difference in the square brackets (where both energies relate to systems
with the same number of particles) is positive by the definition of the ground
state; hence &7 > u. The significance of the definition (8.9) will be discussed
again below.

The displacement of the poles of the terms in the sum (as functions of w),
expressed by the terms +i0 in their denominators, is equivalent to the presence
of delta-function imaginary parts according to'

1
x+i0

=P —;C- Find(x). (8.11)

Applying this to (8.7), we find as the real part of the Green’s function

re G(w,p) = 4%y P

m

[Amé(p—Pm) +Bm6(p+PM)] , (8.12)

o+p—elf) - wt+p—ef)

and its imaginary part (since each difference £{’— u > 0, and each difference
(=)
> O)

—47t Y Apd(p—Pm) dw+pu—e) for o =0,

im G, p) =1 44 iB,,,a(erP,,.) So+u—eC) for w<o0. [ &1
Hence we always have
sgn im G(w, p) = —sgn o. (8.14)

We may also notice the asymptotic behaviour of the function G(w, p) as
w — oo. From (8.7),

4n3
G(w, p) = — Y [4md(p—Pu)+ Bnd(p+Pm)]-

The coefficient of 1/w is easily seen to be the Fourier component with respect
to ri—rs of

%: {Ysja(t’ l']_) ?:P;"(t, r2)+ g’:(t’ 1'2) g’a(t, rl)} = 6(1'1_1.2)’

1.e. unity, Thus
G(w,p) ~ /o as |w]| —»>oo. (8.15)

T See QM (43.10). The symbol P denotes that in the integration of expressions of the form
J(x)/(x+i0) the integral is to be taken as a principal value:
AC f fx)

g dx T inf(0).

—OO

The second term comes from the passage round the pole x = —i0 or x = {0 along a semicircle
above or below it respectively.
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The chief property of the Green’s function in the momentum representation
is that its poles can only be at the points @ = ¢,,— , Where ¢, are the discrete
excitation energies of the system, defined as shown above. Each of these energies
corresponds to a definite value of the momentum P,, of the system, as is evident
from the presence of a corresponding delta function in each pole term of the
Green’s function.

We are interested here, however, in the Green’s function of a macroscopic
body. This means that we are considering the limit in which the volume ¥ and
the number of particles N tend to infinity (for a fixed finite value of the ratio
N/V). In this limit, the separations between the levels in the system tend to
zero, the poles of the function G(w, p) merge, and we can say only that this
function has an imaginary part for values of w+ u in the continuous range of
possible values of the excitation energy of the system. Excitations in which the
whole momentum p of the macroscopic system can be ascribed to one quasi-
particle with a definite dispersion relation £(p) (in the ground state of the
system, p = 0) form an exception; such values correspond to isolated poles
of the Green’s function.

If the momentum p is made up of the momenta of more than one quasi-
particle, the energy of the system is not uniquely determined by the value of p:
a given momentum of the system can be composed in various ways of quasi-
particle momenta, with the total energy of the quasi-particles covering a con-
tinuous range of values; the pole is removed by integration over all such states.

Thus the quasi-particle dispersion relation is determined by the equation

G-Y(e—p,p) = 0 (8.16)

(V. L. Bonch-Bruevich 1955).

It should be emphasized that the definition of the excitation energy as in (8.9)
in fact corresponds to the definition of the quasi-particle energy in the Landau
theory: the difference () is the change in the energy of the system when one
particle is added to it, and if the whole of this change is ascribed to one quasi-
particle we have ¢ defined in accordance with (1.3). Similarly, — & is the change
in energy when one particle is removed, and so £ is the energy of the quasi-
particle removed. It is therefore natural that ¢ < u, since in the Landau
theory a quasi-particle can be removed only from within the Fermi sphere."

Since all the excited states that occur in the expansion (8.7) are obtained
from the ground state by adding or removing one particle with spin 3, it is
clear that, for a system of fermions, the poles of the Green’s function determine
only the spectrum of Fermi-type elementary excitations. It will be shown in§18
how the Bose branch is determined.

T 1t should be noted that the excited level E,, of the system appears with the negative sign
in the definition of the quasi-particle energy (. This is the reason why the momentum of
these quasi-particlesp = — P, asis seen from the delta function d(p+P,,) in the corresponding
terms of the expansion (8.7).
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The description of the spectrum of a macroscopic system by means of the
concept of quasi-particles with a definite dependence of ¢ on p is an approxi-
mate one, whose accuracy diminishes with increasing '¢— u|. The departure
from the picture of independent quasi-particles is shown by the shift of the
Green’s function pole into the complex domain, &(p) becoming complex.
According to the general principles of quantum mechanics (see QM, §134),
complex energy levels signify a finite lifetime 7 of the excited state of the sys-
tem: T ~ 1//im €'. The quantity im ¢ itself represents the degree of “broaden-
ing” of the quasi-particle energy values (the level width). Of course, this treat-
ment is meaningful only if the imaginary part is sufficiently small, |im ¢, <
< | e—u|. As explained in §1, this condition is in fact satisfied for weakly
excited states of the system, since 'im ¢! ~ 1/t oc (p—pg)?, whereas re(e—u) o
o | p—prl-

The required sign of im ¢ is ensured by the fixed sign of the imaginary part
of the Green’s function: near its pole, this function has the form

G(w,p) ~ Z/lw+ u—e(p)], (8.17)

and the constant Z > 0, as follows from the fact that the coefficients A4,, and
B, in the expansion (8.7) are positive; Z is often called the renormalization
constant (by analogy with quantum electrodynamics). The imaginary part
of the Green’s function is

imG ~ Zim¢/jo+u—e'™

Since this expression relates to values of w ~ e¢— u, we find, on comparing its
sign with the rule (8.14), that

ime <0 when ree¢ >y, (8.18)
ime >0 when ree< p, '

as it should be: this sign of im e corresponds in both cases (¢ and &, in (8.9))
to the correct negative imaginary increment to the energy E,, of the excited
state.

The analytical properties of the Green’s function will be further discussed
in §36, where this question will be considered for the general case of arbitrary
temperatures.

§ 9. Green’s function of an ideal Fermi gas

To illustrate the general relations given in §8, let us calculate the Green’s
function of an ideal gas.
The Schrodinger o operators can always be written as an expansion

Pulr) = Y Gpotppa(r, 0) (9.1)

p, 0
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in terms of a complete set of functions y,,, the spinor wave functions of a free
particle with momentum p (and spin projection o), i.e. in plane waves

Wpa=%(-%r)- eip-r’ (9.2)
where u, is the spinor amplitude normalized by the condition wu, = 1; this
choice of the functions ¢,, has no connection with the actual interaction of the
particles in the system.

For a system of non-interacting particles, the Heisenberg ¢ operator can
also be written in an explicit form. In this case, the change from the Schrédinger
to the Heisenberg representation consists in placing in each term of the sum in
(9.1) the corresponding time factor:

2

Pi1,1) = 3 b, 0)xp |~ (24) 1] 9.3)
This is easily seen if we note that the matrix elements of the Heisenberg operator
for every transition i - f must contain factors exp [—i(E;—E/)t], where E,
and E; are the energies of the initial and final states (in this case, eigenvalues
of the Hamiltonian A’ = A — uN). For a transition with decrease in the number
of particles in the state p, « by one, the difference E;—E; = p2/2m— u, so that
the condition stated is satisfied.

However, instead of directly calculating the Green’s function by means of
(9.3) from the definition (7.10), it is more convenient to begin by converting
this definition into an equivalent differential equation. To do so, we differentiate
G 4(X1— X?) with respect to #;. It is necessary to take account of the disconti-
nuity of this function at ¢; = t,: according to the definition (7.10), the amount
of the discontinuity is

[Gazﬁ] = [Gaﬁ]tl=t,+0_[Gaﬂ]tl=t;-0
= —i(Pu(ts, 1) B3 (11, 1)+ W5 (11, 1) Polt, 1))
or, from (7.3),"
[Gap] = —i8p0(r1—132). %4

The presence of the discontinuity gives rise to a term [G 4]6(t1— 15) on differ-
entiation. Hence

0 ./ 0F.(XY) ;
—a'?; Gap =—1 <T-_6t—1; ?;(X2)>— t&apé(rl —l'z) (5([1 — tz). (9.5)
For a system of free particles, the Heisenberg v operator satisfies the equation
0P, 1
ot =~ am A1

T It must be emphasized that the magnitude of the discontinuity does not depend on the
interaction of the particles.
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cf. (7.8). Substituting this derivative in (9.5) and again using the definition
(7.10), we get as the equation for the Green’s function

(,-.g?+§n_+ u) GO, x) = (1) 8(r), (9.6)

where we have put G) = 8,,G‘?; the superscript (0) to G indicates that there
is no interaction between the particles.
This equation has the Fourier transform

(co—-p—2+p) GO, p) = 1.
2m ’

In determining the Green’s function from this, we must add to w an infini-
tesimal imaginary part in such a way that the imaginary part of G has the cor-
rect sign in accordance with (8.14): .

GO(w,p) = [w—%+ u+i0. sgn w] 1. ©.7
The pole of this expression is at w+ u = &(p) = p?/2m, in accordance with
the fact that in an ideal gas the quasi-particles are the same as the actual
particles. The chemical potential of an ideal Fermi gas is u = p%/2m. For
weakly excited states, p is close to py, so that we can put p%/2m ~ p+ v(p—pg),
where v, = pg/m, and write the Green’s function for such states in the form

Gw, p) = [w— vp(p—pr)+i0. sgn o], (9.8)

In all integrations involving the function G‘®, the presence of the infinitesimal
imaginary part in its denominator is important only near the pole, when
@ =~ Up(p—pg). In this sense, sgn w in (9.7) may be replaced by sgn (p—pg),
and G written as

GO(w,p) = [02—p%2m+ p+ i0. sgn (p—pr)]—% (9.9)

This change is important in that G in the form (9.9) is a single function of the
complex variable w, analytic throughout the plane, and the methods of the
theory of analytic functions can be used to calculate the integrals.

For instance, to calculate the integral (7.23) (the particle momentum distri-
bution) for a non-zero negative ¢, we close the contour of integration (the real
w-axis) by an infinite semicircle in the upper half-plane (and can then put

= 0). The integral

Np) =—- S fw_p2/2m+ u—+i0. sgn (p—pr)

is now determined by the residue of the integrand at the pole in the upper half-
plane. When p > p, there is no such pole, and N(p) = 0. If p < pg, however,
we find N(p) = 1, as it should be for the ground state of an ideal Fermi gas.
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§ 10. Particle momentum distribution in a Fermi liquid

The Green’s function of a Fermi liquid cannot, of course, be calculated in a
general form as was done for a Fermi gas. But the statement that a Fermi
liquid has a spectrum of the type described in §1 implies that its Green’s func-
tion has a pole at

w= &(p)—u ~ vr(p—pr), Vr = pr/m*. (10.1)

It can therefore be written as

Z

G(w, p) = w—vr{p —pr)+i0. sgn w

+g(o, p), (10.2)

where g(w, p) is a function finite at the point (10.1). As already noted in con-
nection with (8.17), the coefficient Z (the residue of G at the pole) is positive.

An interesting conclusion can be drawn from (10.2) about the nature of the
particle (not quasi-particle) momentum distribution in the liquid. We calculate
the difference between the values of the distribution function N(p) (which in
practice depends only on the magnitude p) on the two sides of the surface of the
Fermi sphere, i.e. the limit of the difference N(pp—q)—N(pg+¢) as ¢ - +0.

The distribution N(p) is expressed in terms of the Green’s function by the
integral (7.23). Since g(w, p) is finite, it is evident that the difference between
the integrals of g tends to zero with g. It is therefore sufficient to consider the
difference between the integrals of the pole terms in (10.2). Since, in this integ-
ration, the term 0 in the denominator is important only near the pole, we can,
as already mentioned in §9, replace sgn w by sgn(p—pg). Then

oo

. Z Z do
N(pr—q)—N(pr+q) = —i I {w+qu—i0 ~ w_quHO} 5
since this integral of the difference converges, the factor e='** in it, with t = —0;

may be omitted. Now, closing the contour of integration by an infinite semicircle
in either half-plane, we find that the whole integral is equal to Z, and inde-
pendent of ¢g. Thus

N(pr—0)—N(pr+0) = Z (10.3)

(A. B. Migdal 1957).
It has been mentioned above that Z > 0. Since N(p) = 1, it follows from

(10.3) that
0<Z=<l; (10.4)

the value Z = 1 is reached only in the limit of an ideal gas.
The particle momentum distribution in a Fermi liquid at T = 0 therefore
has, as in a gas, a discontinuity on the surface of the Fermi sphere, decreasing
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towards the outside. Unlike the gas case, however, the magnitude of the dis-
continuity is less than unity, and N(p) remains non-zero for p = py, as shown
in Fig. 1 by the continuous curve; the broken curve corresponds to a gas.

FiG. 1.

§ 11. Calculation of thermodynamic quantities from the Green’s function

A knowledge of the Green’s function of a system is sufficient to describe its
thermodynamic properties. When T = 0, these properties are expressed by the
dependence of the energy of the system (which is the ground-state energy Eo)
on the density N/V.

When the quasi-particle dispersion relation &(p) has been determined (by
solving equation (8.16)), this dependence can be found by using the fact that

&(pr) = g (11.1)
Since the dependence of pr on N/V 1s known, from (1.1):
P = (3n?)B(N|V ), (11.2)

equation (11.1) determines the function u(N/V) (though in an implicit form,
since the dispersion relation e(p) in general contains u as a parameter). At
T = 0 (and therefore S = 0), the chemical potential u = (Eo/ON),; integra-
tion of this gives the required energy

Eo = f W(N/V)dN; (11.3)
0

when N = 0, Eg = 0, of course.

Another way of describing the thermodynamic properties at 7= 0 is to cal-
culate the thermodynamic potential 2. According to the general definition
(see Part 1, §24), this potential 2 = E—TS—uN = —PV, and its differential
df2 = —SdT—Ndu; when T = 0, S = 0 also and these expressions reduce to

Q = E—uN, (11.4)
dQ = —Ndu. (11.5)

The significance of the potential £2 is that it describes the properties of the sys-
tem at constant V.
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The simplest method of expressing £ in terms of the Green’s function is to
use the relation (7.24) between N/¥ and G. Substituting N from (7.24) in (11.5)
and integrating with respect to g (with 7 constant), we obtain

M
. . . d% dow

2w) = Zszdy. lim (G(w, p)eiwt (gn)‘ , (11.6)

0

t— -0
v

since again 2 = 0 when u = 0.

§ 12. ¥ operators in the interaction representation

The Green’s function for a system of interacting particles cannot, of course,
be calculated in a general form. There is, however, a mathematical technique
(similar to the diagram technique in quantum field theory) whereby it can be
calculated as a power series in the particle interaction energy, each term being
expressed by means of the Green’s functions of a system of free particles and
the interaction operator.

We shall use, as well as the Heisenberg representation, a representation of
operators in which their time dependence is given not by the actual Hamilto-
nian of the system

A =RH9+Y = AO—uN+7V

(where ¥ is the interaction operator) but by the free-particle Hamiltonian
H(0):
Pt r) = exp (iH'©1) P(r) exp (— il ©1). 12.1)

The operators and wave functions in this interaction representation will be
distinguished by the suffix 0. By expressing the Green’s function in terms of the
operators ¥ (instead of the Heisenberg operators ¥) we take the first step
towards the objective of expressing G in terms of G'® and V.

In this section, @ or ¢ will denote wave functions in “occupation number
space” (in contrast to the coordinate wave functions ¥ or v); these functions
are acted on by second-quantized operators. Let ¢ be such a function in the
Schrédinger representation; its time dependence is given by the wave equation

i0¢/0t = ('O +V)o. (12.2)

In the Heisenberg representation, where the whole of the time dependence is
transferred to the operators, the wave function @ of the system is a constant,
independent of time. In the interaction representation, however, the wave
function @, is time-dependent, but only because of the interaction of the par-
ticles in the system, and is given by

i0Do(1)/0t = Po(t) Po(t), (12.3)
where

Po(t) = exp (iH' @)V exp (—iR'©1) (12.4)
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is the interaction operator in that representation; for operators having the
form (7.6), (7.7), the change to the new representation is obtained by simply
substituting Yo for ¥. Equation (12.3)is easily derived, since the transformation
of operators by (12.1) corresponds to transformation of the wave functions

according to
Do = exp (H' )¢, (12.5)

see OM, §12. Differentiating this and using (12.2), we get (12.3).
From (12.3), the values of @o(f) at two successive instants are related by

Do(t+ 8f) = [1—iBL.Vo()] Do(2)
= exp {—i8t.Po(2)} Po(2).

Accordingly, the value of @, at any instant ¢ can be expressed in terms of its
value at some initial instant #o (<?) by

Do(t) = S(t, to) Po(to), (12.6)
where
H
S(t, to) = ] exp {—idt.Po(t))}; 12.7)
ti=1p
the factors in this product are clearly arranged from right to left in order of
increasing time ¢;; it is understood that we take the limit of the product over

all the infinitesimal intervals &¢ between to and t. If Vo(¢) were an ordinary
function, this limit would reduce simply to

exp { —i f V() dt} ,

but this result depends on the commutativity of the factors pertaining to
different instants, which is assumed in changing from the product in (12.7)
to the summation in the exponent. For the operator Po(t) there is no such
commutativity, and the reduction to an ordinary integral is not possible. In-
stead, we can write (12.7) in the symbolic form

S(t, to) = T exp {—i _f Po(t) dt}, (12.8)

where T denotes the chronological ordering of the factors in the same sequence
as in (12.7), i. e. with the time increasing from right to left.
The operator § is unitary (§-! = §+), and has the obvious properties

S(t3’ t2) S(t2s tl) = S(t;;, tl)s 2.9
§~1(ts, 11) SH(ts, t2) = S™Y(1s, 1) } (129)

T Equation (12.3) is the same as RQT (73.5), and the following method of solution repeats
that given in RQT §73.
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To simplify the subsequent analysis, we make the formal hypothesis (which
does not affect the final results) that the interaction Po(f) is adiabatically
“switched on” between ¢ = — « and a finite time, and adiabatically “switched
off” at t = + o. Then, as ¢t - — e, before the interaction begins, the wave
function Do(¢) coincides with the Heisenberg function @. Putting # = — -
in (12.6), we get

D o(t) = S(t, — = )P. (12.10)

Having thus established the relation between the wave functions in the two
representations, we also have the transformation rule for operators, including
1 operators:

¥ = §Yt, — ) PoS(t, — ). (12.11)

Since $ is unitary, the operators ¥+ are transformed in the same way.
Let us now express the Green’s function in terms of y operators in the in-
teraction representation.” Let ¢, > f,; then
Gup(X1, X2) = —i(Pu(t1) P§ (12))
= —i(S§71(t1, — o) Wpelt1) $(t1, — =) X
X $71(tz, — o) Pia(tz) S(t2 — o))
According to (12.9),
S(tls - °°)S—1(t29 - °°) = S(tls t2) g(tZa — °°)S_1(t2’ - °°)
= S(th t2)9
St — ) = §Xt1, — =) § Yoo, 11) (o, 1)
= §7 (o, — o) §(ce, t1).

Substitution in the preceding expression gives
Gup(X1s Xo) = —iS™Y oo, — o) S( oo, t1) Poultr) S(t1, t2) P(t2) S(ta, — o))

Taking the operators § as the products (12.7) we see that all factors from the
second onwards in the averaged expression are in chronological order from

right to left, t = — o to t = . We can therefore write
G.s(X1, X2) = —i{S 1 T[Wou(t:) ¥a(t2) S1), (12.12)
with
§=8(c0,— )= Texp{—i T Vo(t)dt}. (12.13)

The calculation with t, < t; differs from the above only in the notation,
and the final result (12.12), (12.13) is valid for any ¢; and ¢,.

The transformation made does not depend on the state of the system with
respect to which the averaging is done. However, if the averaging is with

t This derivation repeats the one given in RQT, §100.
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respect to the ground state (as in (12.12)), the transformation can be carried
further. To do so, we note that the adiabatic switching on or off of the inter-
action, like any adiabatic perturbation, cannot cause a transition with change
of energy of the quantum system (see QM, §41). Hence a system in a non-
degenerate state (such as the ground state) will remain in that state. That is,
the effect of the operator $ on the wave function @ = @g(— =) must reduce
to multiplication by a phase factor (which does not affect the state), the mean
value of § in the ground state: SO = ($H®. Similarly, ®*S~! = (S)~10".
Thus we have finally the following formula for the Green’s function in terms
of operators in the interaction representation:*

iGoa(X1s Xo) = :—5@[%«@1) Pis(xy) S1). (12.14)

According to the meaning of this representation, the averagingin (12.14)is with
respect to the ground state of a system of free particles: the properties of the
operators ¥y are the same as those of the Heisenberg operators ¥ in the absence
of interactions, and the Heisenberg wave function @ is independent of time,
so that it is the same as its value at ¢t == — «, when there is no interaction.
Hence, in particular,

(T0(X1) Pis(X2)) = iGP(X1, Xo) (12.15)

is the Green’s function of a system of non-interacting particles.

§ 13. The diagram technique for Fermi systems

The significance of symbolic expressions such as (12.14)is that they make it
easily possible to write down the successive terms in expansions in powers of
V. For example,

(TP 0 X) Pir(X') §) =

oo o0

I fdu... fdt,,@%(xﬂfaa(xv Pa(tr) .. Votal), (13.1)

n!

n=0
and the expression for {S) differs from the above only in that the factors Y’(,GY’O*;
do not appear in the T product. As already mentioned, the operator Po(z) in
the interaction representation is found from (7.7) by replacing all the ¥ by ¥,
The calculation of successive terms in the expansion (13.1) thus reduces to the
averaging, with respect to the ground state, of the T product of various num-
bers of p operators of free particles.

T The notation in (12.14) is in a certain way conventional: although it contains the symbol
T twice (once explicitly and once in the definition of S), all factors in the product must really
be arranged in a single chronological sequence.
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These calculations are made largely automatic by the rules of the diagram
technique, which, however, essentially depend on the nature of the physical
system considered. The technique described in this section relates to non-
superfluid Fermi systems, the particles being assumed to have a spin-independ-
ent pair interaction. The corresponding interaction operator is

Vo) = 5 [ t, r) Wi (2, 1) Ulrs—r2) Poslt, 12) P, (2, 11) &%y dBxa, (13.2)

where U(r;—r,) is the interaction energy of two particles; the superscripts
(2) to ¥ and U are omitted.

The mean value of products of p operators is calculated by Wick’s theo-
rem:? the average of the product of any (even) number of operators ¥ and ¥~
is equal to the sum of products of all possible means (contractions) of pairs
of these operators. In each pair, the operators are in the same order as the
original product. The sign of each term in the sum is given by the factor
(—1F, where P is the number of interchanges of operators needed to bring all
the averaged operators together.

Only those contractions are non-zero which contain one operator ¥ and one
¥+ :in the diagonal matrix element, all particles annihilated by the operator ¥
must be created again by ¥*. It is therefore clear that the mean value of the
product of several  operators can be non-zero only if it contains the same num-
ber of operators ¥ and ¥~.

When applied to the average of the T product, Wick’s theorem enables it
to be expressed in terms of the means of paired T products, i.e., according to
(12.15), in terms of the Green’s functions of free particles. We shall do this for
the first-order correction to the Green’s function of a system of interacting
particles.

First of all, let us note that, in expanding the expression in the numerator
of (12.14) by Wick’s theorem, we get, in particular, terms of the form

(T (X1) Pis(X2)) () = iIGP(X1, X:)(S), (13.3)

in which the pair of v operators that are “outside” $§ are contracted; the ex-
pression for (S} contains, in each term of its expansion, only contractions of
“inside” operators. The factor () cancels entirely with the denominator in
(12.14), and so all these terms give just the “unperturbed” Green’s function
iG9.

- Retaining the first two terms of the expansion in (13.1), substituting (13.2)
and renaming the variables, we find

iGaﬂ(X1, Xz) ~ lGe(,%)-f-ng};),
where
iGP = — 3 KT0(X1) Pits(Xs) x

X j dt-‘. d3xs3 d3x.1y]0t(t, rs) 'i’o"a(t, ry) U(rs —ryg) 'i’og(t, re) 'I’o,,(t, r3)>.

t The proof is given at the end of the section 80 as not to impede the discussion here.
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For greater compactness in the formulae, we use the notation

UX1—X2) = U(ri—r2) 0(t1— t2). (13.4)
Then'
iGH = —%i [ (TP PP W) Uy, d* Xy d'X,,

where d*X = dt d3x.
In order to average by Wick’s theorem, we write out the operators separately
and show all the relevant contractions:

+ W+ P+ + f+ A ‘’ \
(PP U3 W Oy - PO W+ P P P, Wy +
+ VP P Pt W W P,

The terms containing contractions ‘Ijr![fz* have been omitted in accordance
with the previous discussion. The operators contracted in pairs (joined by the
loops) are to be interchanged so as to be adjacent. For instance, the first term
written above denotes the product

(T3 (TP (T ),

and the last one is

—(TEF) (TEF T (BT,

The contractions of products of y operators with different arguments are
replaced according to

P = (TYWH) = iGh, W W, = —iGY,, etc.

Those of y operators with the same argument represent the spatial number
density of particles in an ideal gas (denoted by n‘®), regarded as a function of
the chemical potential:*

Py = nO(u) = (2mu)/2/3n2. (13.5)
Thus we have
iGR = § [ d'Xy XUy [ GRGPGY - GPGYGY
+inOGPGD + inOGPGY.

T Here and below, to simplify some particularly cumbersome expressions, we omit the

suffix in '170 and denote by numerals 1, 2,. . . the set of values of the argument X and the spin
index:

P, = ¥ (xy, P, = Pa(Xy),
Gz = Gop(Xy, Xo), Upp = UX1— X)), ...

* Such contractions always arise from y operators that appear in the same interaction oper-
ator 7. Hence ¥ insuch terms is always to the left of ¥.
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These four terms are equal in pairs, differing only in the naming of the variables
of integration X3 and X,. Thus the factor % disappears and the first-order
correction to the Green’s functions has two terms.

GR = | Uplin9GPGY ~GCYGRGR) dXz dX,. (13.6)

The structure of these terms is conveniently represented graphically by
means of the Feynman diagrams

s = (13.7)
i 4 2 | 3 4 2

Here the continuous line 4 < 2 denotes the contraction ¥, %" (i.e the function
iGR); the numerals refer to the variables X, and X, on which the contracted
operators depend, and the direction of the arrow corresponds to the direction

from ¥'* to ¥ inthe contraction. The contraction ¥+ ¥ of two operators depend-
ing on the same variables (i.e. the density n‘?) is represented by a loop — a
closed continuous line. The broken line 3-- 4 denotes the factor U,,. Integra-
tion is implied over all variables shown at interior points in the diagram
(points of intersection of lines). The variables (X; and X,) shown at the exter-
nal lines of the diagram remain free.

The first-order terms arising from (13.3) would have diagrams in two sepa-
rate parts: a straight segment (zG( ), and a diagram with closed loops of con-
tinuous lines, e.g.

—— ——

————

With an understanding of the method of operator contraction and the structure
of the corresponding diagrams, we can see the origin of the general rule accord-
ing to which, in all orders of perturbation theory, the role of the factor ($)~!
in (12.14) is to take into account only “connected” diagrams with two external
lines, which contain no detached loops without external lines that are uncon-
nected to the rest of the diagram by either continuous or broken lines. Cf.
RQT, §100, for a similar situation in quantum electrodynamics.

The cancelling of the factor 1 in (13.6) is an instance of a general rule: it is
not necessary to include (in the nth-order terms) the factor 1/a! from the ex-
pansion (13.1) or the factor 2~" from the coefficients 4- in (13.2). The reason is
that diagrams of order n contain »n broken lines i---k. The factor 1/n! cancels
from the combination of terms differing by interchanges of pairs of numbers
i, k among all n broken lines. The factor 2~”" cancels from the interchanges of
the numbers 7, k between the ends of each line.

The rules of the diagram technique will be finally formulated for the calcu-
lation of the Green’s function not in the coordinate representation but directly
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in the momentum representation, which is the most important in physical
applications.

The change to the momentum representation is made by means of the Fourier
expansion (7.21), (7.22), which we write in the four-dimensional form'

G(X) = [ G(P)e~iPX d'P|(2n)!, }

G(P) = [ G(X)eiPX ¥, (13.8)

where the “4-momentum” P = (w, p), and PX = wt—p.r. We can similarly
expand the interaction potential:

U(X) = 8(1) Ur) = [ U(Q)e™2% d*Q/(2m), (13.9)

where O = (qo, q); U(Q) is the same as the three-dimensional expansion com-
ponent,

U(Q) = U(q) = [ U(r)e~iar dx. (13.10)
Since U(r) is even, it is clear that U(—q) = U(q).

Let us make this expansion for the first-order correction G = G{)(X1—
— X2). To do so, we multiply equation (13.6) by exp [iP(X1— X>)] and integrate
over d*{(X;— Xo).

In the first term we write

EP(Xy—X3) — plP(X1~Xy) piP(X3—X3)

and, changing the variables of integration, obtain

in®@ [ GQ(X1— X3) ePh—=Xa) dh(X;— X;3) X
X GR(X3— X5) X~ @ Xy— X) | U(X3— X)dH X3~ X,).

The first two integrals give GO)(P) G)(P), and the third is U(0) = J' U(r) d3x,
the value of U(q) for q = 0.
Similarly, in the second term we write

ePX1—X3) — @IP(X1—X3) piP(X3—X}) olP(Xy—Xy)

and, after changing to'integration with respect to Xi1—Xs, Xs—X,, X,— X,
obtain
—GS(P) | GR(X) U(X)ePX dtX.GR(P).

The remaining integral is expressed in terms of the Fourier components of
G'? and U by means of the formula for the Fourier components of the product
of two functions?

[F(X) g(X)e'PX @t X = [ f(Py1) g(P—P1) d*P1/(2m)*. (13.11)

T Though using for convenience a four-dimensional terminology in the discussion and
notation, we must reiterate that it is entirely unconnected with relativistic invariance.

* To prove this formula, we must substitute on the left the functions f(X) and g(X) as
Fourier expansions:

[ 1(X) g0 ePT @AX = [ £(Py) g(Py) P ~Fi=FD dX d*Py d*P,/(2n)".
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Thus the first-order correction to the Green’s functions in the momentum
representation is finally
iIGR(P) = in® U(0) GO(P) GY(P)—
- f GO(P) G(P1) GP(P) U(p—p1) d*P/(2m)". (13.12)

Each of the two terms in (13.12) corresponds to a particular Feynman dia-
gram, and this equation may be written

iy P + FR (13.13)
pa—de—p pa—tesie—0p

The points of intersection of lines are called vertices of the diagram. Each
diagram has 2n vertices, where n is the order of the perturbation theory. At
each vertex, two continuous lines and one broken line meet. To each con-
tinuous line is attached its “4-momentum” P in the direction shown by the
arrow (and the direction of the arrows is unchanged along each continuous
sequence of such lines). To each broken line is attached a 4-momentum Q; for
these lines, conventionally any direction of the arrow may be chosen.' The “con-
servation of 4-momentum™ holds at the vertices of the diagram: the sum of the
4-momentum for the ingoing lines is equal to that for the outgoing lines at each
vertex. Each vertex also has a particular spin index «. Each diagram has two
external lines (one ingoing and one outgoing), whose 4-momentum is the argu-
ment of the required Green’s function iG,,(P); these two lines also have the
spin indices « and B of that function. The remaining lines in the diagram are
called internal lines.

The analytical form of the terms corresponding to each diagram is deduced
from the following rules:

1. Each continuous line between vertices « and 8 is associated with the factor
iGO(P), and each broken line with the factor —iU/(Q). A closed loop with one
vertex is associated with the factor n®(u).

The integration over 44X is effected by the formula
elPX i X = (2n)404(P),

where the “four-dimensional” delta function 6 is defined as the product of delta functions
of the components of the “4-vector” P. The resulting factor 6® (P— P,— P,) is removed by
integration over d*P,, and we have the right-hand side of (13.11).

t The “time” components of the 4-vectors Q = (g,, q) are in general non-zero, but the
function U(Q) is independent of g, by the definition (13.10). The arbitrariness of the direction
of the broken line arises because the function U(— Q) = U(Q)iseven.
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2. At each vertex, the conservation of 4-momentum holds. There is integra-
tion over d*P/(2x)* for the 4-momentum of internal lines that are left indeter-
minate. At each vertex there is summation over a pair of dummy spin indices,
one from each of the adjacent G factors.

3. The common factor of the diagram in iG 4 is (— 1)k, where L is the number
of closed loops of continuous lines with more than one vertex in the diagram.

This last rule arises as follows. A closed loop with k (= 1) vertices comes
from the contraction of v operators in the form

PP, .. B,

Here, the contractions equal iGS), ..., iGL), , and finally —iGZ). For loops
with one vertex, the correct sign is already obtained by the presence of n®

from rule 1.
As an example, here is a set of diagrams giving the second-order correction

to the Green’s functions:

P /f \;. A; ,= P - L - h P \:
N
(a) (b)
| | ! I
- —— - - - - |
(c) SN’ d) —

(e)
O (13.19)

L
|

|
S . (e e

(i) (i)

Lastly, let us return to Wick’s theorem and prove it in the “macroscopic
limit” (i.e. as ¥ — o or, equivalently for a given density of the system, as
N — <o), which is the only important case in statistical applications.

Let us consider, for example, the averaged product of four v operators, of
the type

Lol 505 = Z <a Gy datyexp(...); (13.15)
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the y operators are in the form (9.3), and the obvious but lengthy exponents
are omitted. In this sum, the only non-zero terms are those containing equal
numbers of operators &, and 4} with the same values of the momenta. They
include terms in which the momenta are equal in pairs, e.g. p1 = p, and pz = ps.
These correspond to the paired contraction

Yo, o PHWs

and are expressed by a sum of the form

5 T (Gl Gdiyem ...

P1,D2

In the limit ¥ — oo, the summation over p; and p; is replaced by integration
over Vid3p,d3ps/(27)%; the volume ¥V cancels, and the expression remains
finite. In the sum (13.15), terms with p; = p: = ps = p, are also non-zero;
they form a sum

1
W;(ﬁpdpdid.}*)exp(-.-),

but after the change to integration one factor 1/¥ remains, and this expression
vanishes in the limit ¥V —+ .

This is clearly a general result: in the limit ¥ —+ o, only the results of paired
contractions are non-zero in the mean value of a product of y operators.

In the proof given, no essential use has been made of the fact that the aver-
aging is with respect to the ground state, and it therefore remains valid for
averaging with respect to any quantum state of the system.

§ 14. The self-energy function

The rules of the diagram technique formulated in §13 have an important
property: the common factor in the diagram is independent of its order. Con-
sequently, each “figure” in.the diagram has a definite analytical significance,
whatever the diagram in which it appears, and can be calculated independently
beforehand. In fact, we can calculate beforchand the sum of several figures
having a definite number of external lines, and then substitute it as a “block”
in more complex diagrams. This is one of the chief advantages of the diagram
technique.

One such block, which is also of considerable independent importance, is
the self-energy function.! In order to arrive at this concept, let us consider all
the Green’s function diagrams that cannot be separated into two parts joined
by only one continuous line, These include, for example, the two diagrams of

t Compare the corresponding definition of the compact self-energy function in quantum
electrodynamics (RQT, §§100, 102).
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first-order perturbation theory (13.13), and the second-order diagrams (13.14
a-f). All have the same type of structure: one factor iG$) at each end, and an
internal part (a function of P), called the self-energy function. The sum of all
possible such parts is called the exact or complete self-energy function or the
mass operator ; we shall denote it by —iX ,(P).

All diagrams of the self-energy type give a contribution to the Green’s

function
iIGQ(P)[—iZ,(P)]IGY(P) = iG(P) Z(P) GO(P)b.s, (14.1)

where we have written G = G®3,; and also

Zof(P) = 8.,4Z(P). (14.2)

The complete Green’s function (represented graphically by a thick continuous
line) is given by the sum of an infinite series

= g—— + 4_04_ +.—O<—O<— + ---, (14.3)

where the circles denote exact self-energy functions —iZ,;. Each term in this
series from the third onwards is a set of diagrams which can be dissected into
two, three, ... parts joined by one continuous line.

If we detach from each term of the series (14.3), from the second onwards,
one circle and the line to its right, the remaining series is again the complete
function. Thus

= - + Oe— (14.4)
Analytically, this is written
G = GO+GLG? (14.5)
or, dividing by GG,
! ! —Z(P). (14.6)

GP) ~ GO(P)

We note that the sign of the imaginary part of 2’ is the same as that of im G,
and from (8.14)
sgn im X(w, p) = —sgn w. (14.7)

This follows from (14.6), since the sign of im G™1 is the reverse of that of im
G, and from (9.7) im [G‘®]™! = 0.

Thus the calculation of G reduces to that of X, which requires the use of a
smaller number of diagrams. The number can be still further reduced, since
some of the remaining diagrams can be summed at once in a very simple form.

Let us select among all the diagrams that determine X' (with a pair interaction
between particles) those which represent various “offshoots” connected to the
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external lines by one broken line, and denote their sum by X,. All such diagrams
are present in one skeleton diagram' of the form

.‘___ i ‘_9___ (14.8)

The remaining part of 2'is denoted by £,. For example, the following diagrams
of the first and second orders belong to the first class:

____=Q . ?+~§2— (14.9)

[
——d et 4——14—
(a) (b) (c)

77N Q

and to the second class:

@ - Q-J;:-‘Q— + o—laiglara— + : +
(a) (b) -
(c) (14.10)
I, <
+ + | |
\\’/ iyt
(d) (e)

The thick loop in the diagram (14.8) corresponds to the exact density n(u)
of the system, just as the thin loop in (13.13a) corresponds to the ideal gas
density n‘@(u). It therefore follows from the definition (14.8) that

—iX, = —in(u) U(0). (14.11)

Thus
2 = n(p) UO)+Zs, (14.12)

and only the diagrams in 2, need be specially calculated.
The quasi-particle dispersion relation is given by (8.16). Expressing G there
in terms of 2’ by (14.6) and taking G‘@ from (9.7), we obtain the equation
1
G(O)(e_ Hs P)

On the boundary of the Fermi sphere, where p = pg, the energy of the quasi-
particle is equal to u. Hence we see that

u—2(0, pr) = pE/2m. (14.14)

2
= e(p)—5— = Z(e—u, P). (14.13)

' As in quantum field theory, skeleton diagrams are those made up of thick lines and
blocks; each such diagram is equivalent to a definite infinite set of ordinary diagrams of various
orders.
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The dispersion relation therefore has the form (for p close to pj)
eP)—p = " (p—p)+Z(e—p, p)—Z(0,pr).  (14.15)

We emphasize that p; here is the exact value of the limiting momentum for
a system of interacting particles. It is related by p}/372 = n to the exact density

n(u), not to the approximate density n‘®, as in (13.5).

§ 15. The two-particle Green’s function

Other important concepts in the diagram technique are reached by consider-
ing the T product of four Heisenberg y operators, averaged with respect to

the ground state:!
Ky 1 = (TEP S, (15.1)

This is called the two-particle Green’s function (as distinct from the single-
particle Green’s function (7.9)).

To apply perturbation theory and set up the diagram technique, we must
again change to y operators in the interaction representation. As with the func-
tion G, this leads to the appearance of the factor § in the T product:

Koy 12 = <—;; (T, B, P E5S). (15.2)

In the zero-order approximation (i.e. when § = 1) this expression becomes a
sum of products of two contractions expressible in terms of G functions:

322 12 = Gg‘}’Gi%) - G&%’Gﬁ‘i’ . (15-3)

The subsequent discussion of the properties of the two-particle Green’s
function thus defined will be given in the momentum representation.

For a homogeneous system, Kj, ;, in fact depends only on three independent
differences of the arguments, for example X3—X», X4—X», X1—Xo. In the
momentum representation, this property has the consequence that the Fourier
component with respect to all the variables X3, . .., X, contains a delta function:

[ Ksu, 12€xp {i(PyXy + P X, — P.X, — P,Xp)} dUX, . . . d*X,
= (27)" 6@ (P34 Py— Py — Py) Ky, ap( Py, Py Py, Py). (15.4)

This is easily seen by noting that

P3X3+P4X4—P1X1—P2X2
= Py(X3—X3) + Py(X3— X3) — P1(X1~ Xp) — Xo( P1+ P,— P3—Py),

t We are again using the simplified notation in which the suffixes 1,2, . . denote the 4-coor-
dinates together with the spin index: X,a, X,f, ... ; cf. the second footnote to §13. The full
notation is shown by

Ksi 12 = Kpp op (X3, X;; Xy, Xo).
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and changing to integration over X3— Xy, X1— X2, X1— X», X,. It may be noted in
passing that the inverse Fourier transform may be written

K34, 12 = IKyd. «p(P3, Pa; P1, P3+Pi—P1) X

X exp {—i[Ps(X3s— Xao)+ Ps(Xs— X3)— Pr(X1— X2)}} d‘Pl(g;};::zd‘P‘ . (15.5)

The function K, ,5(Ps, Py; P1, Py) defined in this way will be called the two-
particle Green’s function in the momentum representation: its arguments are

related by
Py + Py = P34+ Py

In the zero-order approximation, in agreement with (15.3), we have

K,(agzap(Ps, Py; Py, Pp)
= (2u[80(P;—Py) GR(P,) GP(Py) — 09 (P1—P)) GH(P) GR(P)],  (15.6)

i.e. K reduces to a sum of two products of single-particle Green’s functions.

In higher approximations of perturbation theory, terms appear which amount
to corrections to these single-particle functions, together with terms that do not
form products of G functions. This part of the two-particle Green’s function
is of independent interest. To derive it, we put K in the form

Koaue, 2100 (P3s Pas P1, P3)
= (2m)4[6“(P1— Ps) Goyey(P1) Gopoy(P2)—
— W(Py— Py) Gogay(P2) G o, (P +
+ Guy8.(P3) Gy (Pa)il ;. :6:(P3s Pay P1, P2) Gpoy(P1) Gpyan(P2). (15.7)

The function I'" thus defined is called a vertex function.

According to the definition (15.1), a two-particle Green’s function in the
space-time representation is antisymmetric with respect to interchanges of
arguments (together with the spin suffixes) in the first or second pair: 1 and 2,
or 3 and 4. Hence we have the analogous symmetry property for the Green’s
function and the vertex function in the momentum representation:

I',s, «p(P3, Pyy P, Pg) = ~ 1T, op(Ps, P3; P1, P3)
= —d ., pa(P3, P4; P, P]_). (158)

The reason for separating the four G factors in the definition of I" (the last
term in (15.7)) becomes clear if we trace back the nature of the diagrams that
arise when the expression (15.2) for the two-particle Green’s function is ex-
panded. The analysis below again assumes a pair interaction between particles.

In the zero-order approximation, the function K is assigned diagrams

Py=P, Py=P

- e

- g

P4=P2 P3=P2
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corresponding to the terms in (15.6). In first-order perturbation theory, dia-
grams appear of the types’

representing corrections to each of the factors in (15.6). There also appear
diagrams that do not separate into two parts:

A d
%-o—r—-—-ﬁ" ;z 4—'1——-5:
. | + : (15.9)
Av—le—R pe—e—p
P P,

q

The four arrows Py, ..., P, correspond to the four G factors in the last term
in (15.7), and the internal part of the diagrams determines (in first order) the
vertex function, the circle on the left of the diagram equation (15.9). Writing
these diagrams in analytical form, we have

I'P 5(P3, Py; P1, Ps) = — 84,0p5U(P1— P3)+ 0abp, U(P1— Py).

The diagrams of higher orders contain corrections of three types: (1) further
corrections to two unconnected continuous lines, (2) corrections of self-energy
type to external lines in the diagrams (15.9), (3) corrections forming a figure
that replaces the broken line in the diagrams (15.9); the sum of all possible
such figures gives the exact vertex function iI'. In the graphical representation
of the two-particle Green’s function by a sum of skeleton diagrams,

£s A
=R AR
; . (15.10)
~——— Ae—
f=F; A=A
2 7

the thick lines represent exact G functions, and the circle conventionally
represents the vertex function.

The calculation of the vertex function in various orders of perturbation
theory must be made by means of the diagram technique rules formulated
in §13, and diagrams with four external lines are to be considered (rather than
those with two as in the calculation of G). Rule (3), which gives the sign of the
whole diagram, is to be supplemented by the following point; if external lines

T As for the single-particle Green's function, the factor (S")‘1 in the definition (15.2) leads
to the vanishing of diagrams that contain detached closed loops of continuous lines.
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1 and 4, and 2 and 3, are joined by sequences of continuous lines (instead of
1 and 3, and 2 and 4), the sign of the diagram is reversed.

As an example, the following are all the diagrams that determine the vertex
function in second-order perturbation theory:

DEP¢
o

(a)
! 8 ! (15.11)
Y \J
O | + (' + (3wed)

4 2 (d)
(¢c)

The self-energy function 2' and the vertex function I" are not independent;
they are related by a certain integral equation called Dyson’s equation.”

To derive this, we use equation (9.5), which is valid (as mentioned in §9)
even when the interaction of the particles is taken into account. There is a
difference from the derivation in §9, however, in that the  operator now satis-
fies equation (7.8). Omitting in the latter the term containing the external field,
and substituting from it the derivative 8%¥/0t, in (9.5), we obtain

. O L1 — - (1) —
(I_671+5n—+”) Gp(X1— Xo)— 800X, — X)

= —i [(TP}(X) UKy~ Xo) Vo (Xs) @ X3 W (X1) Vi (X))
= —i [ Kpu, yp(X3, X1; X3, X2) Ursd®X. (15.12)
This equation solves the problem in principle, since K is expressed in terms of
I" by (15.7). We have only to change to the momentum representation. To do
so, we multiply (15.12) by exp [iP(X1— X,)] and integrate over d4(X;— Xs),
taking K3, 4, in the form (15.5) and Uss in the form (13.9). Then the integration
with respect to 4-coordinates gives delta functions, which are removed by the
integration with respect to 4-momenta. The result is
[GOY(P) G(P)~1] b
. d*P3 d*P
= —i | K,u,,8(P3, Ps; Py+Ps—P, P) U(P—Py) o o304 (15.13)

with GO(P) from (9.7).

¥ It is analogous to Dyson’s equation in quantum electrodynamics (see RQT,§104).
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It now remains to express K in terms of I'. Substituting (15.7) in (15.13), we
finally obtain Dyson’s equation in the form

8.6l GOHP)—GTH(P)] = 8upZ(P)

= U(0) n(u) 8up+idap f U(P—P,) G(Py) (i%’;-
+ { I'ya, ys(Ps, Pa; Ps+Py— P, P) G(Ps) G(Py) G(P3s+Py—P) X
d‘Ps d‘P;
XU(P—P")—(_ZE:)_S— . (15.14)

Here n(u) is the exact density of the system as a function of its chemical poten-
tial; this factor comes from the integration of G by formula (7.24), together
with the fact that the G function arose from a contraction in which ¥+ is to
the left of ¥. The first term on the right of (15.14) is X, (14.11).

§ 16. The relation of the vertex function to the quasi-particle
scattering amplitude

The mathematical formalism developed in the preceding sections makes
possible a rigorous justification and fuller understanding of the significance of
the fundamental relations in the Landau theory of the Fermi liquid, which have
been introduced in Chapter I in a partly intuitive form. This topic will be the
subject of §§16-20.1

There is a close relation between the vertex function and the mutual scattering
amplitude of quasi-particles. For a better elucidation of this relation, let us
consider it first in terms of the purely quantum-mechanical problem of the
scattering of two particles in a vacuum.

In quantum mechanics, diagrams with four external lines (two ingoing and
two outgoing) correspond to a collision of two particles; in the analytical form
of the diagram, its external lines correspond to the wave function (plane wave)
amplitudes of free particles (cf. RQT, §103). Let us see how such diagrams of
different orders in fact give successive terms in the ordinary (non-relativistic)
Born expansion of the scattering amplitude.

First of all, in a vacuum many of the diagrams are zero. This is most simply
understood in the coordinate representation, since in a vacuum all contractions
of the form (¥*¥) are zero in which the annihilation operator is to the right
and acts first on the vacnum state; only contractions of the form (¥¥™*)
remain. Hence all diagrams with closed loops of continuous lines are zero,
since they always contain a contraction of the form (¥*+¥). For the same
reason, all corrections to the Green’s function, i.e. to the internal continuous

T The content of §§16-18 is due to L.D. Landau (1958),and that of §§19 and 20 to L. D.
Landau and L. P. Pitaevskii (1959).
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lines in the diagrams, are zero." Lastly, diagrams with intersecting broken lines
are zero; for example, in the diagram

)
1
M

(where 1 and 2 denote the arguments ¢, and ¢») the upper internal line cor-
responds to the contraction (¥F¥1) = 0 if 1, > #;, and the lower line to
<‘I’f—¥’2> = 01if ty < 1.

Thus, for two particles in a vacuum, there remain only the following dia-
grams forming a “ladder series™:

|
:_,1
[
U~
[}

(16.1)
Pso—-{-——[-"; "“l"‘l"‘ --p-,d—p—-

- L XY +(304)
P“q----h---[?2 4—-&—'-.-- -4—-"—'.-’-—-

The internal continuous lines here correspond to the vacuum Green'’s functions
Gva)w, p) = co————p2 + - 16.2
vac 1 .
(o, p) [ m 10] (16.2)

(formula (9.7) with p = 0). It should be noted that (because u is absent from
the denominator) the pole of this function is always in a particular (the lower)
complex w half-plane. The vanishing of the diagrams listed above occurs,
from the mathematical point of view, precisely because all the poles of the
integrands lie in one half-plane; the vanishing of the integrals is obvious if the
path of integration is closed in the other half-plane.

The ladder series (16.1) can be summed by reducing it to an integral equation
(cf. the summation of the similar series (17.3) below). If the diagrams with
interchanged external lines 3 and 4 are at first omitted, this equation is equiv-
alent to Schrodinger’s equation for two particles, ignoring their identity,
written in the momentum representation; see QM (130.9). Accordingly the
vertex function is expressed in terms of the scattering amplitude f of the
two particles by

Tys,45(P3, Pa; P1, Pp) = 0ay0ps(d7t/m)f. (16.3)

The addition of the diagrams with interchanged external lines 3 and 4 brings
about the antisymmetrization of the amplitude, as is correct for fermions.

t The vanishing of all corrections to the Green’s function in the vacuum simply expresses
the fact that a single particle cannot interact with anything. Here it may be recalled that the
existence of vacuum corrections to the Green’s function of a particle in the relativistic theory
is due to the possible occurrence of virtual electron pairs or photons in intermediate states.
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In the first approximation of perturbation theory, only the first diagram (16.1)
and the one with interchanged external lines remain; these do not involve
G"?9. The expression for the scattering amplitude is then the usual one in the
first Born approximation. The subsequent diagrams, after the integration over
intermediate frequencies, give the familiar expressions for the corrections to
the amplitude in the subsequent Born approximations.

In a Fermi liquid, the interaction of the colliding particles with the particles
of the medium causes them to be effectively replaced by quasi-particles. All the
corrections to the internal lines of the diagram resulting from this interaction
are automatically taken into account by the definition of the function I". A
further allowance must, however, be made for the corrections to the external
lines. In quantum field theory (by virtue of the general requirements of a unitary
scattering matrix), these corrections are shown to cause a factor 4/Z to appear
in the scattering amplitude for each free external line, where Z is the renormal-
ization constant of the Green’s function (see RQT, §107); for diagrams with
four external lines, this means multiplication by Z2. Although the proof given
in RQT is valid also for quasi-particles in a Fermi liquid, we shall here explain
the origin of this factor by simpler (but not rigorous) arguments.

The Green’s function of a liquid, near its pole (the first term in (10.2)) differs
from that for an ideal gas only by the factor Z. If ¥ and ¥'* are replaced by the
operators ¥, = ¥/v/Z, ¥}, = ¥*/+/Z, the Green’s function G, = G/Z
formed from them will look exactly like that for an ideal gas, near the pole.
In this sense such operators may be regarded as y operators of an ideal gas of
quasi-particles. The two-particle Green’s function determined from them is
K. = K|Z?, and therefore, by the definition (15.7), the vertex part I',, = I'Z?,
as required.

In the application to quasi-particles, what is of interest is the number of
collisions (per unit time and liquid volume) rather than the collision cross-
section. For collisions with a given change in the momenta and spin compo-
nents of the particles (pia, pof — psy, p,6), this number is

dW = 2= Zzl",,.,, og(P3, Ps; P1, Po)|? O(eg+e4—€1— &) X
X g, Mg, (1 —1y,) (1 —np,) dpy1 dp2 dPps/(27)°, (16.4)

where p1+ps = ps-+p,, and #, is the quasi-particle distribution function. The
factors n, and n,, simply express the fact thatthe number of collisions of quasi-
particles with given initial momenta (and spin components) is proportional to
the numbers of such quasi-particles per unit volume. The factors (1—n,)
and (1—n, ) are due to the fact that, in accordance with the Pauli principle,
a collision can occur only if the final states are unoccupied.
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§ 17. The vertex function for small momentum transfers

An important role in the theory of Fermi liquids is played by the vertex
function with almost equal values of the pairs of variables Py, Ps and Py, P,
(we shall see, in particular, that it is closely related to the quasi-particle inter-
action function). Using the relation Py+P; = P3+P,, we put P3 = P1+K,
P, = P,—K, and write in simplified notation

Iys,0p(P1+ K, P2—K; Py, Py) = I s, .g(K; Py, Py); (17.1)

this function will be considered for small X. In terms of quasi-particle scattering
processes, this means that we consider collisions with a small transfer of 4-mo-
mentum, which are close to “forward scattering”.

When K = 0, as we shall see, the function I" has a singularity; we shall be
interested in the part of the function that contains this singularity. The origin
of the singularity is easily understood from the skeleton diagram

A o+k B
(17.2)

P +K Pr-K

which includes the set of diagrams of the two-particle Green’s function that
can be cut between the pairs of external lines Py, P3 and P,, P, into two parts
joined by two continuous lines.” The two thick joining lines correspond to the
exact one-particle Green’s functions G(Q) and G(Q+ K), with integration over
the 4-momentum Q in the diagram. As K — 0, the arguments of these two func-
tions become closer, and therefore so do their poles. These may “pinch”
between them the contour of integration (see below), which is the source of
the singularity in the function I.

To calculate the exact function I', we must sum the whole perturbation-
theory series. Since our aim is to separate the part that has a singularity when
K = 0, we must first distinguish the contribution from all diagrams that cannot
be cut through pairs of continuous lines having almost equal (differing by K)
values of the 4-momentum. This part of the function I', which has no singu-
larity at K = 0, is denoted by I'; in it we can put K = 0, since it is a function
only of the variables P; and Py: I, .4(P1, P2). The “dangerous” diagrams can
be classified by the numbers of pairs of lines with almost equal arguments

T For example, in second-order perturbation theory (with respect to the pair interaction),
(17.2) contains the diagrams (15.11a, b, ¢), and (15.11e) with interchanged external lines
3and 4.
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which they contain. Thus the total vertex part I' is represented by the following
infinite ladder series of diagrams:

5 Syt

P+K B-K
Here the white circle corresponds to the required il", and the shaded circles
represent iI". The external lines in these diagrams do not enter into the deter-
mination of I, and serve only to indicate the number atid values of the ingoing
and outgoing 4-momenta.

All the internal lines in the diagrams (17.3) are thick, i.e: they correspond to
exact G functions. Here it should be emphasized that the possibility of repre-
senting I" in the form of these skeleton diagrams (and thefefore all the conclu-
sions drawn from them) does not presuppose a pair interaction between par-
ticles, since there are no explicit broken lines, and the nature of the interaction
actually affects only the internal structure of the blocks represented by circles,
which is of no interest in this connection.?

The problem of summing the series (17.3) amounts to the solution of the
integral equation; to derive this, we “multiply” the whole series by a further I":

Comparison with the original series (17.3) gives the equation

7 2

P P> P A
O+K \ 2 \ 2

; /C)( - % (17.4)
° Bx Rk Pk P YK P-K

This diagram equation, when written in analytical form, gives the required in-
tegral equation

Fyd, aﬂ(K;Pl’ P?.) - Pyd,aﬂ(Ply P2)—'i J‘ Pyc, ¢R(P1’ Q) G(Q+K) G(Q)X
X Iy, 18(K5 Q, Pp) d*Q/(27)". (17.5)

R*K

In accordance with the above discussion, we have put K = 0 in the functions I",
used the abbreviated notation for I" and I previously described, and also put
Gaﬂ - Gaaﬂ.

t Only such general propzrties as the conservation of particle number are assumed. This
latter is shown by the constant difference between the number of lines going right and left
at each cross-section of the diagram (equal to zero for cross-sections of the type shown in
(17.3)).
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To investigate this equation, let us first consider the product G(Q+ K)G(Q)
in its kernel. As already mentioned, for small X the poles of the two factors
are close together. Near these poles, the G functions are represented by the
pole terms in (10.2). Denoting the components of the 4-vectors K and Q by

K= (‘P, k)a Q = (qo, (]), (17°6)
we can write in this region

G(Q) G(O+K) ~ Z?[go— vr(q—pr)+ i8]t [go+0— vr( q+ k| — pp)+ i8,] 72,
(17.7)

where 8, and 0, are infinitesimal increments whose signs near the poles are given
by
sgn 0; = sgn(g—pr), } (17.8)
sgn 03 = sgn(|q-+k|—p).

The signs of 6; and &, determine the position of the poles in the upper or
lower half-plane of the complex variable go. The singularity in the kernel of
the integral equation, and therefore in the solution of the equation, arises from
the pinching of the contour of integration with respect to go (the real axis)
between the poles, for which the latter must be on opposite sides of the contour,
1.e. in opposite half-planes.

Let us first suppose that q.k > 0, i.e. cos § > 0, where 0 is the angle be-
tween q and k. Then |q+k| > ¢, and 4, and &, have opposite signs (6; < 0,
0, > 0)if ¢ < pp, | q+k | > pg, which, in view of the smallness of k, is equiv-
alent to the conditions

pr—kcos 0 < g < pp. (17.9)

In the subsequent integration with respect to go in (17.5), the contour of inte-
gration may be replaced by an infinite semicircle in either the upper or the lower
half-plane; the integral is then given by the residue of the integrand at the cor-
responding pole. Because of the narrowness of the range (17.9) when k is small,
we can take k = 0 in the factors I" and I in the integrand, and similarly
qo ~ 0 for the position of the poles when k£ and w are small.

In other words, as regards its role in the kernel of the integral equation
(17.5), the product of pole factors (17.7) is equivalent to the delta functions
Ad(qo) 6(g— pg), with a coefficient A given by

4 = Z2 dqo a:q
[go—

Vr(g—pr)+id1] [qgo+w = vr(|q+Kk|—pp)+ids]

When ¢ is outside the range (17.9), both poles lie in the same half-plane of
complex go; when the contour of integration with respect to go is completed in
the other half-plane, we see that the integral js zero. In the range (17.9),
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completing the contour in one half-plane and calculating the integral from the
residue at the pole in that half-plane, we find

4 f 27iZ? dg
"~ ] wo—ve(lq+k! —g)+i0 °

where we have used the fact that 6; < 0 and d; > 0 in the range (17.9). Since,
by (17.9), g =~ pr >k, we can put [q+k|—q = k cos §, and then, with the
limits given by (17.9),

A = 2niZ% cos 0/(w—kvr cos 6).

It is easy to prove by the same method that a similar expression for 4 (but
with the opposite sign of i0) is obtained when cos 8 < 0 (when the integration
is to be taken over the range ¢ > pg, |q+k! < pg). Thus we have in the kernel

£ (17.5)
° 27iZ2.kd(q0) 6(q—pr)

w—vrl.k+i0.sgn

G(Q) G(Q+K) = +¢(Q), (17.10)

where Lk is written in place of k cos (1 = q/g), and the function ¢ has (when
K is small) no delta-function part, and we can therefore put in it K = 0.
Substituting (17.10) in (17.5), we get the basic integral equation in the form

Iy, .6(K; Pi, Py) = [y, 0p(P1, Pa)
i [ Lot a(Prr Q) H(Q) T, (K Q, Po) Q)20

Z7p} L.kd
+ Pr [P'yf, am(Pls QF)I‘nd, Cﬁ(K; QF, P2)w o (17.11)

In the last term we have written d*Q = g* dgq do, dqo (where do, is the element
of solid angle in the direction of 1) and have removed the delta functions by
integration over dg dgo. In this term the argument Q in the functions I" and I" is
taken on the Fermi surface: Qp = (0, pgl).

The factor Lk/(w—v k) in the kernel of (17.11) has a specific property:
its limit ask — 0 and o — 0 depends on the limit of the ratio w/k. The solution
of the equation must therefore have the same property: the limit of the function
I'(K; Py, P,) as K —~ 0 depends on the way in which @ and k tend to zero.

Let I'°(P;, P») denote the limit

ISy p(P1, Pp) = lim I, .p(K; Py, Py) for kjw —0; (17.12)
K-»0
we shall see in §18 that the quasi-particle interaction function is related to

this quantity. With that method of taking the limit, the kernel of the last integral
term in (17.11) is zero, and so I'“ satisfies the equation

Iy g(P1, P2) = Ty 5(Py, Py)—i j Lyt 0o P1, 0) §(Q) T2, 15(Q, Ps) d*Q/ (271
(17.13)
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Because of (15.8),
Iy os(P1, P2) = Iy, p.( P2, P1). (17.14)

We can eliminate I" from the two equations (17.11) and (17.13). The result is

ya dﬂ(K Pls P") = 76 aﬁ(Pl’ P2)

Z2p%

+®5f o2, ak P15 OF) Lya, 06(K5 OF, Pa) Ldo,

ook U719

since, if we formally write (17.13) as I' = LI'*, (17.11) becomes

2
ir—py 2P frr-._';"_di’_.

Qnr) w—vrlk

Substituting here I' = LI and applying the operator £-1 to both sides of the
equation, we get (17.15).
We now define the function I'* by

I3y op(P1, P2) = lim Iy, .4(K; Py, P)) with w/k ~0.  (17.16)
K0

This function (multiplied by Z?) is the forward scattering amplitude (i.e. that
of the transition P, P, — Py, P,), corresponding to actual physical processes
undergone by quasi-particles at the Fermi surface: collisions that leave the
quasi-particles on that surface are accompanied by a change of momentum
without change of energy, and therefore the passage to the limit of zero mo-
mentum transfer (k — 0) must be made with exactly zero energy transfer
(» = 0). The function I defined above corresponds to the non-physical limit
of “scattering” with a small energy transfer and exactly zero momentum trans-
fer (k = 0).

Putting w = 0 in (17.15), taking the limit k — 0 and multiplying both sides
by Z2, we get

I’ op(P1, Pr) = ZP% op(P1, P3)

- vF(Zn)3 jp 5%, w(P1.QF) Z°T54, t(Qr, Pr)doy. (17.17)

Thus there is a general relation between the two limiting forms of the forward
scattering amplitude.

The antisymmetry properties (15.8) for I'" give some information about the
behaviour of I'* and I"” when P; — P,. Putting P; = P, and « = § in this
equation, we get

I'ys, 0a( P1+ K, P1—K; Py, Py) = 0; (17.18)

there is no summation with respect to « here.! The transition to I'® or I'*
T When only theexchange interaction between the quasi-particle spinsis taken into account,

the only non-zero I'yp, qa arethe I'ye, 44, This expresses the constancy of the spin vector in scat-
tering, and may be verified directly from an expression of the type (2.4).
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in this equation is to be made with caution, since in the latter functions we first
put K = 0, but in (17.18) we first put P, = P,.

Let K and P;—P; = S = (50, 8) be simultaneously small. Then, as well as
the diagrams (17.2), the diagrams

RB-K P+

are dangerous. When K and § — 0, the function I’ , ,, will therefore depend on
the two ‘“‘singular” arguments

x = wlk, y= (so+w)/|s+k|,

and (17.18) shows that this function is zero when x = y. We shall consider
the values of I" on the Fermi surface; then w = so = 0, and so y = 0. Hence,
in this limit, (17.18) is valid only if also x = 0. Thus, on the Fermi surface it is
valid for I'*:

I% 0(P1, P1) =0 (17.19)

(N. D. Mermin 1967).

§ 18. The relation of the vertex function to the quasi-particle interaction
function

Just as intermediate states with particle numbers N+ 1 are involved in the
matrix element (7.9), which determines the one-particle Green’s function, so
intermediate states with N, N+1 and N+2 particles are involved in the matrix
element (15.1) of the two-particle Green’s function.!

Because of the presence of intermediate states with N+ 1 particles, the two-
particle Green’s function has poles which coincide with those of the function G,
Le. with the quasi-particle energy. The corresponding factors are, however,
shown explicitly in (15.7). Hence the vertex function I" defined by this formula
only has poles corresponding to states with N or N+2 particles. The angular
momentum of these states differs by 0 or 1 from that of the ground state, and
so the elementary excitations corresponding to these poles have integral spin
(0 or 1) and hence obey Bose statistics. Thus the poles of the vertex function
determine the Bose branches of the energy spectrum of a Fermi liquid.

T States with N particles arise with such a sequence of operators in the T product as, for
example, ¥ Wi W, WS . States with N+ 2 particles correspond to such sequences as ¥, ¥, Wi ¥ .
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The poles arising from the intermediate states without change of particle
number correspond to elementary excitations that represent zero sound quanta.
In the diagram technique, intermediate states correspond to different cross-
sections that divide the diagrams into two parts between various external lines..
In the present case, intermediate states without change of particle number
correspond to cross-sections of the diagrams (17.3) at one of the pairs of
continuous lines joining adjacent blocks I'; the constancy of particle number in
these states is expressed by the equal numbers of lines passing in each direction
through the cross-section. The 4-momentum transfer through such a cross-
section is (Q+K)—Q = K; accordingly, the elementary excitations without
change of particle number correspond to poles of the vertex function I'(X;
P;, P,) with respect to the variable X.

We have seen previously, in the derivation of (17.10), that one of the two
momenta q and q-+k (which appear in the 4-vectors Q and Q-+ K) must be
greater than the limiting momentum pg, and the other must be less. On the
other hand, in excitation from the ground state, only “particles” can be outside
the Fermi sphere, and only “holes” within it. In this sense, we can say that the
zero-point excitations in a Fermi liquid may be regarded as particle-hole bound
states.’

Elementary excitations corresponding to intermediate states with N+2 par-
ticles (and to the poles of the function I'(K; P, P») with respect to the variable
P1+P,) could be regarded as bound states of two particles or two holes.
The presence of such states would, however, lead (as will be shown in Chap-
ter V) to superfluidity of the Fermi liquid, and this in turn necessitates a consid-
erable change in the whole mathematical formalism of the diagram technique.

Thus, to determine the Bose branch of the energy spectrum of a non-super-
fluid Fermi liquid, we must examine the poles of the vertex function I'(K;
P, P,) with respect to the variable X = (o, k). For each value of k, a partic-
ular energy w(k) corresponds to the pole, and the dispersion relation for these
excitations is thereby determined. For weakly excited states, w and k are small,
so that we can use the equations derived for the function I'(K; P, Py) in
the range of small X.

Near a pole of I', the left-hand side and the integral on the right-hand side
of (17.15) become arbitrarily large; the term I'*(P,, P2) remains finite, and
may therefore be omitted. Moreover, the variable P, and the suffixes 8 and
6 are unaffected by the operations on I" in (17.15), and so they act as unimpor-
tant parameters in that equation. Lastly, we shall consider the function I" on
the surface of the Fermi sphere, i.e. we shall put P; = (0, pn), where nis a
variable unit vector. From all these facts we conclude that the determination of

t In this formulation, the problem is formally very similar to that of determining the elec-
tron-positron bound state levels in quantum electrodynamics (see RQT, §122). In particular,
equations (17.4) and (17.5) are analogous to the Bethe-Salpeter equation, RQT (122.10),
(122.11).
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the acoustic excitations in a Fermi liquid reduces to the problem of finding the
eigenvalues of the integral equation

o) = S [ T 0,1 a0 - (18.1)

where y,,(n) is an auxiliary function.
This equation may be transformed by replacing y by another function

) = T (). (18.2
Equation (18.1) then becomes
(@—25n.k) ya(0) = ki {’;Z); [ T ol 0) @) do’,  (18.3)

with n’ in place of 1.

This equation has exactly the same form as the transport equation (4.10)
for the vibrations of a Fermi liquid. Comparison of the two equations gives
the following correlation between the quasi-particle interaction function and
the function I':

S8, 6(pFm, pr’) = Z°T'%, g(n, 0). (18.4)

This shows the relation between the function f and the properties of quasi-
particle scattering.

Equation (18.4) relates f to the non-physical scattering amplitude. We now
use (17.17) to obtain an explicit relation between f and the “physical” forward
scattering amplitude for quasi-particles on the Fermi surface, which we denote
by

Ays, cp(1, mg) = Z2I'fy p(m1, my). (18.5)

The relation (17.17) on the Fermi surface is
Ay&. aﬁ(nl’ n2)

PE , , do’
= fys,ap(m1, B2) — T Jot,ax(01, 1) Ao, ep(W', o) o~ (18.6)

The spin dependence of the functions 4 and f can be expressed by means
of the Pauli matrices o. In the general case, these functions may contain any
scalar combinations of the four vectors ny, ns, 61, G,. If there is an exchange

¥ The above general proof is due to L. D. Landau (1958). For a slightly non-ideal Fermi
gas, the derivation of the transport equation by summation of specific diagrams of the type
(17.3) was earlier given by A. B. Migdal and V. M. Galitskii (1958). For a gas, the G functions
(in the zero-order approximation) contain only pole terms, and so the exclusion of non-pole
terms does not arise.
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interaction between the particles, the only permissible scalar products are
0:.0; and @,.0,. The functions 4 and f can then be written (as with fin (2.4)) as

__zi_f?o' aﬁ(nla nz) = F('ﬁ) ba,,ﬁﬁo-i— G(’ﬁ) Gy eCsp,
neUF (18.7)

7'55;1;1;. A}'G, aﬁ(nls n2) = B(?9) 6176ﬁa+C(19‘) Qy“.coﬂ’

where the coefficients F, G, B, C, are functions only of the angle # between
n; and ny. They may be expanded in series of Legendre polynomials:

o

B(’l?) = Z (2[+ 1) B(P((COS 19), aas (188)

I=0

Substituting (18.7) and (18.8) in (18.6), and calculating the integral with the
addition theorem for Legendre polynomials, we get

By = F(1-B), C;=G/(1-C)). (18.9)

These formulae establish a simple algebraic relation between the expansion
coefficients of fand 4.
The stability conditions (2.19) and (2.20) give similar inequalities for the
coefficients B, and C;:
B <1, C<l. (18.10)

Moreover, these coefficients satisfy a relation that follows from (17.19): B(0)--
+ C(0) = 0, or

S (2I+1) (B+C) = 0. (18.11)
=0

Equations (18.9) and (18.11) together with the conditions (18.10) are sufficient
to prove an interesting theorem: in every stable Fermi liquid, there is at least
one branch (ordinary or spin) of axially symmetric zero sound.’

§ 19. Identities for derivatives of the Green’s function

In the mathematical formalism of Green’s functions, an important part is
played by certain identical relations between the derivatives of these functions
and the quasi-particle scattering amplitude. These relations are all derived in
the same way by calculating the change in the Green’s functions caused by some
fictitious “external field” for which the result of its action on the system is
already known.

t See N. D. Mermin, Physical Review 159,161, 1967.
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First of all, then, let us calculate the change 6G in the Green’s function
caused by an arbitrary “external field”, for which the corresponding term in
the Hamiltonian is

dP® = [Pr(t,r) 80P (1, 1) Px, (19.1)

where 80U is some operator acting on functions of r (and possibly depending

on the time ?).

When the external field is present, the Green’s function depends on the two
4-momenta P; and P,. In the diagram technique, such a field is represented by
a new graphical feature, an external broken line:

|
|
Ao—le—nr

and this line is associated with a factor
_iSU(P,, Py) = —if eP3X §0e~1P1X g4x, (19.2)

In the first order with respect to the external field, the correction to the exact
Green’s function is represented by a sum of two skeleton diagrams:

P
|

A

where all the continuous lines are thick (exact G functions) and the circle is an
exact vertex function (iI'). In analytical form, this equation is

3Gps( P2, P1) = Gp,(P3) 8U(Pz, P1) G P1)—
—iGpy(P3) Gea P1) [ Ty, itP2, Q13 Pr, Q2) X
X 0U(Q2, Q1) Ge Q2) Guo(Q1) 4401 /(27)4, (19.4)

with Q2+P1 = P2+Q1.

The first two identities to be considered are due to the conservation of the
number of particles in the system. In the Hamiltonian of the system, this prop-
erty is expressed by the appearance of the y operators in pairs: one ¥+(X)
and one ¥(X) for each argument X.

We apply a gauge transformation to the % operators:

V(X)) = PUX)e~ixn, P = Pi+erd, (19.5)

where %(X) is a real function.” From the above-mentioned property of the

t This is analogous to the gauge transformation in quantum electrodynamics; cf. QM
(111.2)-(111.9).
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Hamiltonian, if ¥ satisfies the “Schrodinger equation” (7.8), ¥’ satisfies a sim-
ilar equation with the changes

. bl bo) ax
A~ (V=¥ = e

For an infinitesimal 3 = &y, this change in the equation is equivalent to adding
to the Hamiltonian an “external field”

50 — abx

3¢ +—-——(A5x +2v0y%. V).

In particular, if
Oy(X) = reyoe~'kX, K =(w,Kk),

where the symbol re can in fact be omitted, since the subsequent operations
are linear, we have

1
5U(Pz, Pl) = i(2.”'5)4 206(4)(P2—P1—K) {w ——2—’7—1 k. (p]_ + pz)} . (196)

On the other hand, the Green’s function constructed from the ¢ operators
Y, =W (1 +idy), ¥+ =Pr1-idy)
differs from that constructed from ¥ and ¥+ by
8Gp(X1, X2) = iGos(X1—X2)[07(X1) — 62(X2)]
or, in Fourier components,
8Gup(P2, P1) = [ 8G.p(X1, X3) e®rXi=P:iX9 giX, d4X,
= i[Gup(P1) — Gap(P2)] O%(P2—P1), (19.7)

where

82(P) = [ ox(X) ePX dX = (2m)* 2,0 W(P— K).

Thus the same change 6G,, has been expressed in the two forms (19.7) and
(19.4), where 8U is to be substituted from (19.6). Equating these two expres-
sions, we get, after putting G,; = Gd,, and renaming some of the variables,

k.2p+ k)] 8us +

3.4lG(P+ K)— G(P)] = G(P+K) G(P) { [— w2

+i f T'ss, .fK; P, Q) G(Q) GO~ K) [a) _k. (i"‘n“ ")] (‘;:54 } .

The required identities are obtained by taking the limit of this equation as
o -~ 0,k - 0; then

G(P+K)—G(P) + 0 otk ., (19.8)

aPo op
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where P = (po, p). Taking the limit with the condition k/w — 0, we get the
first identity:

aG'(P)
opo

6¢ﬁ - {GZ(P)}w aﬂ_ 1 j\I‘gb at’(P Q){GZ(Q)}w (271)‘ ] (19.9)

with the notation
{G¥(P)}o = lim G(P)G(P+K), kjw — 0. (19.10)
y K — 0

Similarly, taking the limit with the condition w/k — 0, we get a second
identity:

g = (TP [ 8,p J AP, 0L (G0 (w)*] (19.11)

with the corresponding notation {G*(P)},.
Next, let us consider the change in the Green’s function when a constant

field
80 = 8U(r) = Uyelk-r (19.12)

is applied to the system. When k — 0, this field varies slowly in space, and so
its influence on the system can be treated macroscopically. According to the
thermodynamic condition of equilibrium in an external field, we must have
p+ 06U = constant (see Part 1, §25); when k — 0, this means that the chemical
potential u changes by the small amount — Up. The corresponding change in
the Green’s function is

6G¢p(X1, Xz) - — anaﬂ aG(Xl —Xz)/aﬂ,
and its Fourier component, defined as in (19.7), is
0Gop(P3, Py) = —(@2n)® 5(4)(1’2_Pl)UoéaﬂaG(Pl)/a‘“'

The same change in the Green’s function can also be calculated from equa-
tion (19.4), this time with

SU(P,, P,) = 2a) Ud®W(Py,—P,—K) (K = 0,K).

The passage to the limit k — 0 in this case (constant field, w = 0) corresponds
to the case w/k — 0. This gives the identity

et a%f) = —{G¥P)k [6«a—i f T, (P, O){GA Qe %] (19.13)

Lastly, one more identity results from the Galilean invariance of the system.
To derive it, let us consider the liquid in a system of coordinates moving with
a small velocity dw(?) = woe™ "' that varies slowly with time. The change to
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such coordinates is equivalent to the imposition of an external field whose
operator is'

00 = —0w.p =iow. v (19.14)

or, in the momentum representation,

SU(Py, Py) = — Py Wo(27)! 8O(P,— P —K), K = (v, 0).

This expression is to be substituted in (19.4), and then the limit w - 0 is to
be taken.

When v — 0, we have a Galilean transformation from one inertial frame
of reference to another moving with constant velocity éw. If there is in the
liquid an elementary excitation with energy &(p), its energy in the frame mov-
ing relative to the liquid with velocity éwis e—p.éw.* Hence, in the new frame,
the frequency po must appear in the function G(P) as po+p.dw (so that the
pole of the function is shifted by —p.dw). Then

6G = p.ow 0G/0p,,

and we arrive at the identity

. &
up T5 ) = —{GX P {a,,,p—z J T (P, 0) a{G¥Q)} (—MQ)—‘} (19.15)

We shall need to use these identities, in particular, for values of the free
variable P = (po, p) on the Fermi surface: Pr = (0, pr). Transferring the factor
G*(P) from the right-hand to the left-hand sides, we replace the derivatives of
G(P) there by those of G~1(P); the way in which the limit K — 0 is taken in
G(P)G(P+ K) is unimportant.

Near the Fermi surface, the Green’s function is determined by the pole
term, so that

G-YP) = -é [po—ve(p—prF)]

Hence, on the surface itself,

oG 1 1 oG1 _ VF dpF

opo Z° Ou  Z du’

t In the classical Lagrangian of a free particle, L = Imv®, the change to moving coordi-
nates is effected by substituting v— v+ dw, and gives an increment 6L = mv.0w which is small
if 6w is small. Accordingly (cf. Mechanics (40.7)) the increment of the Hamilton’s function is
6H = —p.ow, and in quantum mechanics this corresponds to the operator (19.14).

* See the more detailed discussion in §23.
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Consequently, for example, the identities (19.9) and (19.13), on the Fermi sur-
face, take the form

i T3, ol Pe, GO s = (1——;—) et (19.16)

o

i [ 1%, w(Pr, 0) (GO -2 ( 2:;)& = (1_% %’;_") bg.  (19.17)

o

§ 20. Derivation of the relation between the limiting momentum
and the density

The relations derived in the preceding sections provide a consistent proof of
the fundamental proposition in the Landau theory of the Fermi liquid: the
relation between the limiting momentum prand the density N/V of the liquid
is given by the same formula (1.1) as for an ideal gas.

The idea of the proof is to calculate independently the changes in N and pg
due to an infinitesimal change in the chemical potential , and then to com-
pare them.

According to (7.24), the total number of particles in a given volume V, as
a function of the chemical potential, is given by the integral

t -0

N = —2iV lim f G(P) e=irot (2;;, P = (2o, P)- (20.1)

Hence the derivative

(20.2)

1 dN __ . [ 3GP) d'P
Vidu ou (2t

Since this integral converges for large po (0G/0u oc 1/pt when | po| — o), the
factor e="»' may be omitted from the integrand. After substitution of 8G/dou
from the identity (19.13) summed over « = 8, we find

1 dN :
7 = =2 [P G+ [ e, oo To52

where we have put I' = I . for brevity. The object of the calculation is now
to express the right-hand side of this equation in terms of an integral over the
Fermi surface only.

First, we replace I'* in the second integral from (17.17), with Sgin place of
OF:

LaN _ ) d*Pd*Q
7 = 2 [P+ [ (NI, OO T -

PrZ? oy d4P d4Q do
B mjm (PYu T2, ol Py SF)T %, e(SFO{GH D)k .“_(E).s_._é' . (20.3)
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We begin by transforming the last term. In the integrand, only the last two
factors depend on Q; the integral of these over d4Q is given (on the Fermi
surface, S = Sy) by (19.17), and this term therefore becomes

2 d

Next, we note that in the integration over d4P the limiting values of G(P) G(P+
+ K) are to be taken in the form (17.10); hence {G*(P)}, = ¢(P), and

(GHPYe = (GXPYa— 222 5(p0) 8(p — r)- (20.4)
This gives
. phZe d d*Pd .
zz;fi(iﬁ)—f(l UF ”F { I (GHPWoT(P, SF) (2:;)? —SmF},

where, in accordance with (18.4), we have used the quasi-particle interaction
function and expressed f,; ., in terms of F(¥) by (2.6), (2.7); the bar over F
denotes integration over do/4n. The remaining integral over @*P is given by
(19.16), and the integration over dog gives a further factor of 4. Thus the third
term in (20.3) is equal to

PrZ? (v dp 1
_'vinz(ZF @F—l){l——z—+F}. (20.5)

The second term in (20.3)is transformed similarly: the quantities {G?(P)}, and
{G%(Q)) are expressed in terms of {G*(P)}, and {G*(Q)}, by (20.4), and the
identities (19.9) and (19.16) are then used. This term is then found to be equal to

. aG d 4P d‘P p Fzz 1
The first integral gives zero on integration with respect to po, since G —~ 0

when po - + .
Lastly, the first term in (20.3), with the substitution of (20.4), becomes

pg,zz
I{G( P (2::)4 ot " (20.7)
Adding the contributions (20.5)—(20.7), we get
1 dN _ pt dpr , P32 dpr |
Vde —nf da += o { (1+F)} (20.8)

On the other hand, by putting
on' = (on'[0pg) Opr = (P’ —Pr) OPF
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in (2.14), we easily find
du/dpr = ve(1 +F). (20.9)

It should be emphasized that, in the derivation of (2.14), no specific depend-
ence of pron N/V has been assumed, and we can therefore use this relation
to find that dependence; equation (20.9) can, of course, also be obtained with
the aid of the same relations for the vertex functions as were used in deriving
(20.8)."

From this equation we see that the quantity in the braces in (20.8) is zero,

and so
d /[N 2d d [ 8np}
() =22 _ 2 —ZPF |, (20.10)
du\V n* du du | 3(2n)

‘When N/V — 0 we have a gas, and in this limit the dependence of pron N/V
must therefore be the same as for a gas. This determines the constant in the
integration of (20.10), and we have finally the required relation (1.1):

N/V = 8np}/3(27).

§ 21. Green’s function of an almost ideal Fermi gas

To illustrate the application of the diagram technique, we shall calculate in
this section the Green’s function of an almost ideal Fermi gas in the model
discussed in §6 by means of ordinary perturbation theory (V.M. Galitskii
1958). The gas, it will be recalled, has repulsion between the particles, and the
device described in §6 allows us to apply perturbation theory to this interaction,
provided that the final result involves only the scattering amplitude.

As shown in §14, the determination of the Green’s function reduces to the
calculation of the self-energy function 2 4(P). In first- and second-order per-
turbation theory, it is given by the set of diagrams (14.9) and (14.10). These
may be put in the form

P-Q
P : P- ot Io + ; +
|
(a) TSI
a
(21.1)
+ i i + | |
| | l t
P Po—e—a—rp
(c) (d)

T Formula (2.11) for the effective mass can be deduced from the relation (17.17) and the
identities (19.11) and (19.15).
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The diagrams (21.1a, b) include the first-order diagrams (14.10a) and (14.92)
and the second-order diagrams (14.10b, c) and (14.9b, c); the latter differ from
the former only by corrections to the internal continuous line. These lines are
shown thick in (21.1a, b) and must therefore be correlated not with the ideal-
gas Green’s functions G® but with the functions G corrected as far as first-
order terms. The diagrams (21.1c, d) are the second-order diagrams (14.10d, e).
All the diagrams have been subjected to a deformation in order to clarify
their structure; they are the first terms in a “ladder” series of diagrams with
four external lines, in each of which a pair of external lines have been “short-
circuited” in two different ways.
We first calculate the diagram (21.1a). Its analytical expression is

[—iZ(P)a = | UQ) G(P—Q)d*Q/(2x)", }
0= P=(,p);

the common factor 8,4 is omitted. We first integrate over go. Since the factor
U(Q) = U(q) does not depend on go,and G oc 1/go when ;g — ==, the manner
of integration has to be more precisely described. For this, we must go back
to the origin of the diagram (21.1a), and note that the continuous line there
corresponds to the contraction of a pair of y operators arising from one
operator V. This means that ¥ and ¥+ are taken at the same instant, and ¥~
is to the left of ¥’ in the contraction. That is to say, in the coordinate representa-
tion the G function occurring is taken for t = #;—t» — —0. In the momentum
representation, this means including a factor exp (—igo?) in the integrand of
(21.2) and taking the limit as t——0. Now using (7.23), we find

[—iZ]a = i | U@ N(p—q) d%q/(27)’, (21.3)

where N(p) is the particle distribution function.

The Fourier component U(q) depends markedly onq only when g 2 1/ro, where
rois the range of action of the field U(r); these values are certainly large (for a
rarefied gas) in comparison with p.. If we consider only values | p—pr < 1/ro.
then for these values of q we have N(p—q) =~ 0. Hence U(q) in (21.3) may be
replaced by U(0) and taken outside the integral.” The remaining integral is half
(because of the specified value of the spin component) the gas density n(u):

[Z]a = — 7 n(x) UO).

The diagram (21.1b), with the closed continuous line, gives [27], = n(u) U(0).
Thus the contribution to 2 from the two diagrams is

(21.2)

[£1a.6 = 2n(u) U(0) = (23/m) n(w)a, (21.4)
where g is the scattering length defined by (6.2).

 The resulting error is easily seen to be of the relative order of magnitude ~ (pgr,)*, and
therefore has no effect even on the terms of the next order in p gr,.
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The expression (21.4) includes, in particular, the whole of the first-order
effect. In this approximation, n(u) is to be understood as the ideal gas density

n'®(u), so that
2O = [Z10) = 2n/m) nO(u)a. (21.5)

For the subsequent calculation we define an auxiliary function F given by the
Jadder diagrams

P 7‘__(. j"“""PG Y Y -
P:B - I-/i‘ F:,:B T et T eleie— (216)

(as usual, P1+P; = P3+ Ps). In analytical form,
iFys,08(P3s Py3 Py, Py) = i0y0ps( FV + F®), (21.7)

where
iF® = —iU(Py—P), (21.8)

iF® = [ GO(P') U(P,— P') GO(P, + P, — P') U(P' — P d*P’[(2m)*. (21.9)

Expanding both diagrams (21.1c), (21.1d) and expressing them in terms of
F®, we obtain

[—iZ(P)].,a = — [ G(Q) F®(P, Q; Q, P)d*Q/(2n)*
+2 [ GO(Q) FO(P, Q; P, Q) d*Q/(2m)*; (21.10)

the same integrals with F in place of F® give (21.5). The difference in sign
between the two integrals is due to the presence of the closed loop in the dia-
gram (21.1d); the delta factors in the first diagram give §,,8,5 = 8,4, and those
in the second diagram 8,408, = 28,

Let us now calculate F®, Since U(Q) is independent of go, the integration
with respect to p, reduces to

«y

| 6oP) GO, + P,— ") dpi2.

Substituting here G from (9.9) and using the convergence of the integral for
' Dol — o=, we close the contour of integration by an infinite semicircle in one
half-plane of the complex variable p,; the integral is zero unless the poles of
the two functions G@ lie in different half-planes, i.e.

sgn (p' —pr) = sgn(|p1+P.—P | —Pr). (21.11)
The result is
F®(Py, P; Py, Py)
U(p,—p") U(P’ —ps) sgn (p’ —pr) d3p’ ,
w1+ wy+2p — '2‘}‘”‘ [p2+ (py+P2—P')?] +i0.5gn (p’ —pF) (@2my?

(21.12)
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where w; = pyo, Wz = pso. In order to satisfy the condition (21.11) automatic-
ally, we must substitute in the numerator of the integrand

sgn(p’—pr) -~ 1-6(p")—0(p,+Pp=—P'),

where 6(p) is the step function (1.10).

We have seen in §16 that a sequence of ladder diagrams determines (in a
vacuum) the mutual scattering amplitude of two particles. Hence the expression
(21.12) contains the correction to the first-order terms in the scattering ampli-
tude. This correction can be taken into account by substituting in F© (21.8)

U(ps—p,) ~ —(4z/m)re f(ps, P1)-

where f is the scattering amplitude' in a vacuum, correct to the second order,
and at the same time subtracting from the expression F® (21.12) the real part
of its value in a vacuum, i.e. for py = 0, g = 0, and the values w; = p}/2m,
wy = pa/2m corresponding to the energies of two real colliding particles (the
“physical” external lines of the diagrams). We can then replace —re f by the
value for zero energy, i.e. the scattering length a.* We thus have

FO(Py, P,; Py, Py)

doa\ 2 1-6(")—6(p:+p.—P")
=—(— 1
( m ) @+ Wy + 20— 5[ p"2+(py+ P2 — P')?] +10.580 (p" — pr)

2m dp’

_P .
p+pi—pi— P +p.—P) | 2n)°

(21.13)

The symbol P in the second term means that the integral is taken as a principal
value; this is the result of separating the real part of the integral by means of
the rule (8.11).

Since the expression (21.13) is symmetrical in Py and P,, the two integrals
in (21.10) are the same, and

[—iZ(P))e.a = [ G(Q) FA(P, Q; P, 0)d'Q/(2n)*.

When the first term from (21.13) is substituted, the integral with respect to go
is non-zero if
sgn (p’ —pr) = —sgn(g—pr), (21.14)

t Not to be confused with the quasi-particle interaction function.

! This replacement could not be made in (21.12), since it would cause the integral to diverge
for large p’. After the subtraction mentioned, the integral converges (for p’ ~ pyp) even with
this replacement, which is therefore feasible. The subtraction of only the real part of the inte-
gral (and accordingly the replacement of U by re f) is done in order to avoid a difficulty con-
cerning the imaginary part of the scattering amplitude. The reason is that, for small momenta,
re f is expanded in even powers of the momentum and im £ in odd powers (see QM, §132).
Hence the inclusion of the momentum dependence of f would lead to corrections of relative
order (ppa)®, which are negligible. The substitution U — —4nf/m, however, would mean
taking into account the imaginary part of f, which brings in corrections of relative order pya.
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so that the two poles of the integrand are again in different half-planes of go.
When the second term from (21.13) is substituted, only the factor Go(Q)
depends on go; the integration with respect to go is carried out by means of
formula (7.23) and gives N(q), the particle distribution function in an ideal
gas, i.e. the step function 6(q). The result, when the contributions from all
diagrams (21.1a)-(21.1d) are collected, 1s

Z(w, p) = (2n/m) n(p) a+ 2w, p), (21.15)
where
2w, p)
B ( 4na [1—0(p') 6(p +q—p)1[6(q) — 6(p")]
T \m ) ®+p+-5 g —p*—(P+q—P)]+i0.5gn (p'—pr)

2mb(q) d3q d3p’

; 21.16
pP+g¢-p?+@+q-pP| @) (21.16)

the factor 6(q)— 6(p’) in the numerator of the first term in the integrand replaces
—sgn (g —pg) with the condition (21.14).

First, we note that X has an imaginary part. It is separated from (21.16) by
means of the rule (8.11), and is

imE(w,p)=—- Amay’ j{e(q)[l—e(p')][l—e(wq Pl
3
+[1-0((1)]0(p')9(p+q—p’)}5[w+ﬂ+—2,l;(q —p*—(+q- p)z)] (3,‘,’)5’,
(21.17)

the expression in the braces is transformed using the fact that 62(p) = 6(p).
The quasi-particle energy spectrum is calculated, according to (14.13), as

2 2
@) = L+ 2% )t 20 (—z-m—-—u, p) ; (21.18)

in @ we can put & ~ p?/2m with the necessary accuracy. The fact that X is
complex means that the excitations are damped (im & = 0).

The presence of this damping expresses the instability of quasi-particles due
to the possibility of their actual decay. A quasi-particle may lose part of its
energy and so give rise to a pair of quasi-particles (particle and hole). Let us
consider, for example, the first term in the braces in the integrand of (21.17).
From the properties of the step function, this term is non-zero if

p'=>pr, |Q+P—P|>pr, q <PpF.
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These inequalities correspond to a process in which a quasi-particle with initial
momentum p(p > p;) enters a state p’ (p > p’ > pg), and the momentum
p—p’ is transmitted to a particle within the Fermi sphere (momentum ¢ < pg),
which is excited to a state with momentum q+p—p’ outside the Fermi sphere;
such a transition is equivalent to the appearance of two new elementary ex-
citations, with momenta —q (hole) and q+p—p’. The law of conservation of
energy in this process is expressed by the delta function in (21.17), in which

o+ u acts as the initial energy of the quasi-particle &(p):
&(p) = e(p')+[e(@+p—P)— Dk

here it is sufficient to put e(p) = p?/2min the first approximation. In accordance
with the significance mentioned, the energy &(p) determined by this equation in
fact corresponds to a quasi-particle outside the Fermi sphere (¢ = u).

Similarly, the second term in the braces in (21.17) results from processes in
which a pair is generated by a hole. This term gives the damping of elementary
excitations with ¢ < u. In the language of the diagram technique, the possi-
bility of creation of a pair by a quasi-particle is indicated by the possibility of
dividing the G function diagram into two parts by cutting through three con-
tinuous lines, one of which is in the opposite direction to the other two. In the
diagrams (21.1¢) and (21.1d), such cuts are to be made between the two broken
lines.

The case of a slightly non-ideal gas is special (in comparison with the general
case of any Fermi liquid) in that the quasi-particle spectrum in it is meaningful
for all values of the momenta, and not only near the Fermi surface: the decay
of the quasi-particles (im &) is relatively small, because the “gaseousness
parameter” ap; is relatively small. Here, however, we shall give the final result
of the calculations only for two limiting cases.

Near the Fermi surface (| p—pr| < pr), we find

ree = u+(p—pr) prim®,

with u from (6.14) and m* from (6.17). For the decay of the quasi-particles,
we have

: 1
im e = -- —(pra)* (p—pr) sgn (p—pr). (21.19)

The proportionality of this expression to (p—px)® has an obvious origin: one
factor p—py is the width of the region in momentum space (a thin spherical
shell) which contains the momentum of the quasi-particle after it has created
a pair, and the other factor p— pyis the width of the layer in which the pair is
created. These considerations, it may be noted, apply to any Fermi liquid, so
that we always have im ¢ oc (p— py)? near the Fermi surface."

T At non-zero temperatures, the averaging of this quantity over the thermal distribution,
makes the decay proportional to 72, as discussed in §1.
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For large momenta p > p. (but still pa < 1), we have

_ (PE | 2% _ . PFP >
£ = (2m + oo ppa) A v (pra)® (21.20)

In both cases the ratio im e/re ¢ is small. The maximum value of this ratio
is reached when p ~ pg, but even then it is ~(pra)® <« 1.

Lastly, the value of the renormalization constant for the Green’s function
of a slightly non-ideal gas, calculated as

_1__1__[32'(w,p)]

Z Jw ©=0,p=pp
is

_ 8log2

Z=1-—;

(pra). (21.21)




CHAPTER III

SUPERFLUIDITY

§ 22. Elementary excitations in a quantum Bose liquid

LET us now consider quantum liquids with an energy spectrum of a completely
different type, which may be called a Bose spectrum.t

This spectrum has the property that the elementary excitations (which are
absent in the ground state of the liquid) can appear and disappear singly. But
the angular momentum of any quantum-mechanical system (in this case, the
liquid) can change only by an integer. Hence the elementary excitations appear-
ing singly must have integral angular momenta, and therefore obey Bose
statistics. Any quantum liquid consisting of particles with integral spin (such
as the liquid isotope He®) must certainly have a spectrum of this type.

For comparison, it may be recalled that in a Fermi liquid, described in terms
of the spectrum of elementary excitations, which are absent in the ground
state (see the end of §1), these excitations can only appear and disappear in
pairs. This is the reason why elementary excitations in that type of spectrum
can have a half-integral spin.

In a quantum Bose liquid, elementary excitations with small momenta p
(wavelength large compared with the distances between atoms) correspond to
ordinary hydrodynamic sound waves, i.e. are phonons. This means that the
energy of such quasi-particles is a linear function of their momentum:

& = up, (22.1)

where u is the velocity of sound in the liquid. The latter is given by the usual
formula u? = OP/dg, and there is no need to specify whether the derivative is
taken at constant temperature T or at constant entropy S, since § — 0 when
T -0}

The number of elementary excitations in a Bose liquid tends to zero as
T — 0, and at low temperatures, when their density is sufficiently small, the

1 The theory of such quantum liquids was worked out by L. D. Landau in 1940-1941, fol-
lowing P. L. Kapitza’s discovery of the superfluidity of liquid helium. These discoveries formed
the basis for the whole of the modern physics of quantum liquids.

? The concept of phonons has been defined in Part 1,§§71 and 72, for elementary excita-
tions in solids. It must be emphasized that the momentum of an elementary excitation in a
microscopically homogeneous system (a liquid) is the actual momentum, and not the quasi-
momentum as in the periodic field of the crystal lattice in a solid.

85
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quasi-particles may be regarded as not interacting with one another, i.e. as
forming an ideal Bose gas. Hence the statistical-equilibrium distribution of
elementary excitations in a Bose liquid is given by the Bose distribution formula
(with zero chemical potential; cf. the last footnote to §1)

n(p) = [eNIT—11-1, (22.2)

With this distribution, and knowing the function &(p) for small p, we can
calculate the thermodynamic quantities for the liquid at temperatures so close
to absolute zero that practically all the elementary excitations present in the
liquid have low energies, i.e. are phonons. The corresponding formulae can be
written down immediately by using the expressions for the thermodynamic
quantities in a solid at low temperatures (see Part 1, §64). The only difference
1s that, instead of the three possible directions of polarization of sound waves
in a solid (one longitudinal and two transverse), in a liquid there is only one
(longitudinal), and so all the expressions for the thermodynamic quantities are
to be divided by 3. For example, the free energy of the liquid is

F = Fy—V .n2T4/90(fiu)®, (22.3)
where Fo is the free energy at absolute zero. The energy of the liquid is
E = Ey+V .22T4/30(fin)3, (22.4)
and the specific heat
C = V.2n2T3/15(fiu)3, (22.5)

proportional to the cube of the temperature.

The phonon dispersion relation (22.1) is valid only if the wavelength #/p of
the quasi-particle is large compared with the interatomic distances. As the
momentum increases, the curve of ¢(p) of course deviates from the linear form;
its subsequent form depends on the particular law of interaction of the liquid
molecules, and therefore cannot be determined in a general form.

In liquid helium, the dispersion relation of the elementary excitations has the
form shown in Fig. 2: after an initial linear increase, the function &(p) reaches
a maximum, then decreases and passes through a minimum at a certain mo-
mentum value po." In thermal equilibrium, the majority of the elementary
excitations in the liquid have energies near the minima of &(p), i.e. in the region
of small ¢ (near ¢ = 0) and in the region of &(po). These regions are therefore
particularly important. Near p = po, the function &(p) may be expanded in
powers of p— po. There is no linear term, and we have as far as the second-

order terms
e = A+(p—poP/2m", (22.6)

T This form of the spectrum was first suggested by L. D. Landau (1947) from an analysis of
experimental results regarding the thermodynamic quantities for liquid helium; it was later
confirmed by neutron scattering experiments.

A qualitative theory of such spectra was given by R.P. Feynman (1954); see the footnote:
following (87.5).
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where 4 = ¢(po) and m* are constants. Quasi-particles of this type are called
rotons. It must be emphasized, however, that both phonons and rotons are
quasi-particles corresponding only to different parts of the same curve, and
there is a continuous transition from one to the other.

The empirical values of the energy spectrum parameters for liquid helium
(extrapolated to zero pressure and density p = 0.145 g/cm3) are’

u=24x10tcmfsec, A= 8.TK, } 22.7)

polfi = 1.9x 108 cm—1, m* = 0.16m (He?).

Since the roton energy always includes the quantity 4, which is large com-
pared with T at temperatures sufficiently low for a “roton gas” to be considered,
this gas may be described by the Boltzmann distribution instead of the Bose
distribution. Accordingly, to calculate the roton part of the thermodynamic
quantities for liquid helium we start from the formula for the free energy of
a Boltzmann gas:

F = —NT]og_?VKJe—e/T dr, dv = dp|(2nh);

see Part 1, §41. In this formula, N is to be taken as the number of rotons in the
liquid, which is itself determined by the condition of thermodynamic equilib-
rium, i.e. by the condition of minimum free energy. Equating dF/ON to zero,
we find for the number of rotons

N, =V [e T gr, (22.8)

t The chemical potential of liquid helium at 7 = Ois u = — 7.16°K.
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which of course corresponds to the Boltzmann distribution with zero chemical
potential. The corresponding value of the free energy is

F,=— VTje-e/T dr.

The expression (22.6) is to be substituted in these formulae. Since p > m*T,
in integrating with respect to p we can take the factor p? outside the integral
and replace it with sufficient accuracy by pi. In integrating the exponential we
can extend the range of integration from — o« to o=. The result is

Ym*T V2 piV
R

N, = e-4T, F, = —TN,. (22.9)

Hence the roton contributions to the entropy and the specific heat are

2
S, =N, (—3—+ﬁ), C, =N, (1+ﬁ+-4—) (22.10)

2 T 4 T T2

We see that the temperature dependence of the roton part of the thermodynamic
quantities is essentially exponential. At sufficiently low temperatures (below
about 0.8°K for liquid helium), the roton part is therefore less than the phonon
part, while at high temperatures the position is reversed and the roton contribu-
tion is greater than that of the phonons.

§ 23. Superfluidity

A quantum liquid with an energy spectrum of the type described above
possesses a remarkable property known as superfluidity : the property of flowing
through narrow capillaries or slits without exhibiting viscosity. Let us first
consider a liquid at absolute zero, at which temperature the liquid is in its
ground state.

Let us consider a liquid flowing along a capillary at a constant velocity v.
Because of the friction against the walls of the tube and the friction within the
liquid itself, the presence of viscosity would have the effect that the kinetic
energy of the liquid would be dissipated and the flow would gradually become
slower.

It will be more convenient to discuss the flow in a coordinate system moving
with the liquid. In such a system the liquid helium is at rest, and the walls of
the capillary move with velocity —v. When viscosity is present, the liquid at
rest must also begin to move. It is physically evident that the entrainment of
the liquid bythe walls of the tube cannot initiate movement of the liquid as a
whole. The motion must arise from a gradual excitation of internal motions,
that is, from the appearance of elementary excitations in the liquid.

Let us suppose that a single elementary excitation appears in the liquid, with
momentum p and energy &(p). Then the energy Eo of the liquid (in the coor-
dinate system in which it was originally at rest) is equal to the energy ¢ of the
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excitation, and its momentum Po is equal to p. Let us now return to the coor-
dinate system in which the capillary is at rest. According to the familiar for-
mulae of mechanics for the transformation of energy and momentum, we
obtain for the energy E and momentum P of the liquid in this system

E=Ey+Py.v+3Me2, P =[Py+Mv, 23.1)
where M is the mass of the liquid. Substituting ¢ and p for Eq and Py, we have
E=ce+p.v+5 M2 (23.2)

The term +M? is the original kinetic energy of the flowing liquid; the ex-
pression e+ p.v is the change in energy due to the appearance of the excitation.
This change must be negative, since the energy of the moving liquid must
decrease: e+p.v < 0.

For a given value of p, the quantity on the left-hand side of this inequality
is a minimum when p and v are antiparallel; thus we must always have e —pv <

<= 0, or
v > g/p. (23.3)

This inequality must be satisfied for at least some values of the momentum p
of the elementary excitation. Hence the final condition for the ogcurrence of
excitations to be possible in the liquid as it moves along the capillary is obtained
by finding the minimum of ¢/p. Geometrically, the ratio &/p is the slope of the
line drawn from the origin (in the pe-plane) to some point on the curve of &(p).
Its minimum value is clearly given by the point at which the line from the
origin is a tangent to the curve. If this minimum is not zero, then, for velocities
of flow below a certain value, excitations cannot appear in the liquid. This means
that the flow will not become slower, i.e. that the liquid exhibits the phenom-
enon of superfluidity.

The condition just derived for the presence of superfluidity is essentially
equivalent to the requirement that the curve of &(p) should not touch the axis
of abscissae at the origin (ignoring the unlikely possibility that it touches this
axis at some other point). Thus any spectrum in which sufficiently small ex-
citations are phonons will lead to superfluidity.

Let us now consider the same liquid at a temperature other than absolute
zero (but close to it). In this case the liquid contains excitations, and is not in
the ground state. The arguments given above remain valid, since they made no
direct use of the fact that the liquid was originally in the ground state. The
motion of the liquid relative to the walls of the tube when the above condition
is satisfied still cannot cause any new elementary excitations to appear in it.
It is, however, necessary to elucidate the effect of excitations already present
in the liquid.

To do this, let us imagine that the “gas of qlfasi-partic]es ” moves as a whole
with respect to the liquid, with a translational velocity v. The distribution
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function for the gas moving as a whole is obtained from the distribution func-
tion n(e) for the gas at rest by replacing the energy ¢ of a particle by e—p.v,
where p is the momentum of the particle. For an ordinary gas this is a direct
consequence of Galileo’s relativity principle, and is proved by a simple change
of coordinates, but in the present case such arguments cannot be applied
directly, since the quasi-particle gas is moving not in a vacuum but “through
the liquid”. Nevertheless, the statement remains valid, as can be seen from the
following argument.

Let the gas of excitations be moving relative to the liquid with velocity v.
Let us take a coordinate system in which the gas is at rest as a whole, and
the liquid is accordingly moving with velocity —v (system K). According to
the transformation formula (23.1), the energy E of the liquid in the system K
is related to the energy Ej in a system Ko where the liquid is at rest by

E = EO-‘P0¢V+_;‘M'v2o

Let an elementary excitation of energy &(p) in Ko arise in the liquid. Then the
additional energy of the liquid in K is e—p.v, and this proves the statement.”
Thus the total momentum of the quasi-particle gas per unit volume is

P= fpn(e—p.v)dr.

Let us assume that the velocity v is small, and expand the integrand in powers
of p.v. The zero-order term gives zero on integration over the directions of the
vector p, leaving

P=— f 1) 2 g,

or, on averaging over the directions of p,
1 dn
= — ——— 2
P 3 vf( A ) ptdr. (23.49)

First of all, we see that the motion of the quasi-particle gas is accompanied
by a transfer of mass: the effective mass per unit volume of the gas is deter-
mined by the proportionality coefficient between the momentum P and the
velocity v in (23.4). On the other hand, in the flow of a liquid along a capillary
(say) there is nothing to prevent the quasi-particles from colliding with the
walls of the tube and exchanging momentum with them. In consequence the
excitation gas will be slowed down, like any ordinary gas flowing along a
capillary,

Thus we have the following fundamental result. At non-zero teniperatures,
part of the mass of the liquid will behave as a normal viscous liquid which

¥ For quasi-particles in a Bose liquid, n(¢) is the distribution (22.2). It should be noted that
the superfluidity condition v < ¢/p is precisely the condition for n(e— p.v) to be positive and
finite for all energies.
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“sticks™ as it moves along the walls of the vessel; the remaining part of the mass
will behave as a superfluid without viscosity. Here it is very important that
there is no friction between these two parts of the mass of the liquid as they
pass “through one another”, that is, there is no transfer of monrentum from
one part to the other. For the existence of such motion of one part of the mass
of the liquid relative to the other has been derived by considering the statistical
equilibrium in a uniformly moving excitation gas. But if any relative motion
can occur in a state of thermal equilibrium, it is not accompanied by friction.

It should be emphasized that the treatment of the liquid as a “mixture”
of normal and superfluid “parts” is simply a form of words convenient for
the description of the phenomena in a quantum liquid. Like any description
of quantum effects in classical terms, it is not entirely adequate. It does not at
all mean that the liquid can actually be separated into two parts. In reality
we should say that in a quantum Bose liquid there can exist simultaneously
two motions, each of which has a corresponding “effective mass” such that
the sum of these two masses is equal to the actual total mass of the liquid.
One of these motions is “normal”, i.e. has the same properties as that of an
ordinary viscous liquid; the other is “superfluid”. The two motions occur
without transfer of momentum from one to the other.

Thus, in the hydrodynamic sense the density of a Bose liquid can be written
as a sum ¢ = p,+ o, of normal and superfluid parts, each corresponding to a
hydrodynamic velocity v, or v,. An important property of superfluid motion

is that it is a potential flow:
curl v; = 0. (23.5)

This property is the macroscopic expression of the fact that the elementary
excitations with long wavelength (1. e. with small momentum) are sound
quanta (phonons). Hence the macroscopic hydrodynamics of superfluid mo-
tion must not allow other than acoustic vibrations,! as is ensured by the con-
dition (23.5); the proof of this condition will be considered in §26.

When T = 0, the normal part of the density p, = 0; the liquid can have only
superfluid motion. For non-zero temperatures, g, is given by (23.4):

1 dny\ ,
On = gj (—‘EE—)P dr. (23.6)

To calculate the phonon contribution to g,, we put in (23.6) € = up:

_ 1 ( dn , 4zxp?dp
i J dp ¥ TQakiy
0

* The liquid is assumed infinite. When there is a free surface, surface capillary waves are
also possible, and lead to a definite temperature dependence of the surface tension; see Prob-

lem 1.
t A detailed account of the hydrodynamics of a superfluid is given in FM, Chapter XVI.
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and obtain, on integration by parts,

oo

4 drp?d 4
(@non = —3;‘—]‘ np PP _ I jen dr.
0

(27eh)y?

The remaining integral here is iust the energy of the phonon gas per unit
volume; taking this from (22.4), we have finally

(Qn)ph = 4Eph/3u2V

= 2m2T*/458%u5. (23.7)

To calculate the roton contribution to g, we note that, since rotons can be

described by a Boltzmann distribution, for them dn/de = —n/T, and from
(23.6)

1 Pt N,
= e 2 D eer—
@) = 55 | P dT = Fr =

Since p? = p? with sufficient accuracy, we find, taking N, from (22.9),

PN, _ 20mps
(0n)r = 3OTV = 32n) Tllghs e=aIT. (23.8)

At very low temperatures, the phonon contribution to g, is large compared
with the roton contribution. They become comparable at about 0.6°K, and
at higher temperatures the roton contribution predominates.

As the temperature increases, an increasing fraction of the mass of the liquid
becomes normal. At the point where o, = p, the property of superfluidity
disappears entirely. This is called the A-point of the liquid, and is a phase
transition point of the second kind." The quantitative formulae (23.7) and
(23.8) are, of course, inapplicable near the A-point, where the quasi-particle
concentration becomes large, so that even the concept of quasi-particles is
largely meaningless.

We may also consider the behaviour of the atoms of substances dissolved
in liquid helium; the concentration of the impurity is assumed to be so small
that its atoms may be regarded as not interacting with one another (L. D.
Landaun and I. Ya. Pomeranchuk 1948).

The presence of an extraneous atom in the liquid gives rise to a new branch
of the energy spectrum corresponding to the motion of this atom through
the liquid; of course, owing to the strong interaction of the impurity atom with
the atoms of the liquid, this motion is really a collective effect in which the
liquid atoms also take part. A resultant conserved momentum p may be as-
cribed to this motion. Thus quasi-particles of a new type appear in the liquid,

t Liquid helium is called helium II at temperatures below this point. The A-points form
a curve in the phase diagram in the P7-plane. This curve intersects the liquid-vapour equilib-
rium curve at 2.19°K.
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whose number is equal to the number of impurity atoms, and whose energy
Emp(p) is a definite function of the momentum. In thermal equilibrium, the
energy of these quasi-particles is concentrated near the lowest minimum of
the function &g,(p). In practice, we are concerned with the He? isotope impu-
rity, and empirical results show that this minimum is at p = 0; near that point,
the quasi-particle energy is

Eimp(P) = P*/2Mimp, (23.9)

with the effective mass my,, equal to 2.8 times the mass of the He? atom.

Impurity quasi-particles interact with phonons and rotons when they col-
lide with these, and therefore belong to the normal part of the liquid. Because
of their low concentration, their thermal distribution is of the Boltzmann type,
and their contribution to g,, determined from (23.6), is

(0n)imp = vV 3T =y Mimps (23.10)

where Ni,,/V is the number of impurity atoms per unit volume.

PROBLEMS

ProsLEM 1. Find the limiting temperature dependence of the surface tension coefficient o
of liquid helium near absolute zero (K. R. Atkins 1953).

SoLuTION. The coefficient « is the free energy per unit area of the liquid surface; see Part 1,
(154.6). It is calculated from Part 1, (64.1), in which the frequencies w, now relate to surface
vibrations. In the two-dimensional case, the change from summation to integration (over the
wave vectors of the vibrations) is effected by including a factor d?k/(27)? or 2nk dk/(2n).

Integration by parts gives
o= 0y+ Tj' log (1—e-%0ITy kdk[2n
B fi kt dow
4n ) ehwlT_.1 °

=ao

where &, is the surface tension at T = 0. At sufficiently low temperatures, only vibrations with
low frequencies (i.e. long wavelengths) are important. Such vibrations are hydrodynamic
capillary waves, for which w® = ak3/p ~ agk®/o (where g is the density of the liquid). Hence

#i (_g__)m F '3 dw

o = Qfn—= ————
0 4.75 ao e"“”r—-l ’

since the integral converges rapidly, the upper limit may be replaced by infinity. The calcu-
lation of the integral (see the note in Part 1, §58) gives

718 A2/
T I3 L)

s
= tg— 0.13 T7/9 g?3/#4/3 312,

This applies to liquid He* at temperatures so low that the whole mass of the liquid may be
regarded as superfluid.t

a—_-ao

t In a Fermi liquid (liquid He?®) capillary waves of the type considered (like volume waves
of ordinary sound) do not exist, since the viscosity increases without limit as 7" - 0.
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ProBLEM 2. Find the dispersion relation &,,(p) for impurity particles in a moving super-
fluid if its form &% (p) ina liquid at rest is known (J. Bardeen, G. Baym and D. Pines 1967).

SoLuTiON. After the addition to the liquid at rest (7= 0) of an impurity atom with mass
m and momentum p,, the energy and momentum of the liquid, in the coordinate system in
which it was originally at rest, are E, = £{2,(po), Po = po. In coordinates such that the liquid
is moving with velocity v, we have from (23.1)

E = sffn’p(po)+po.v+—%(M+m) v, P=rp,+(M+m)v.

Hence we see that the changes of energy and momentum of the moving liquid when an impu-
rity atom is added to it are

0
Eimp = s(lm)p(Po)'f'Po Vi+im?,  p = pot+mv.
Expressing &, in terms of p, we find
8imp(p) = ei(!(:l)p(p—mV)+p V— é muv2.

For small v, as far as the first-order terms, with a spectrum &{0).(p) of the form (23.9), we have

2 m
8Imp(p) = 2”1:* +ch (1_‘ * ) .

imp

§ 24. Phonons in a liquid

When we go from the classical picture of sound waves to the quantum concept
of phonons, the hydrodynamic quantities (density, velocity of the liquid, etc.)
are replaced by operators that can be expressed in terms of the phonon anni-
hilation and creation operators &, ¢ . We shall derive such expressions.

First, we recall that, in the classical description of a sound wave, the density
of the liquid undergoes small oscillations whose frequencies and wave vectors
are related by w = wuk. The velocity v of the liquid is a quantity of the same
order of smallness as the variable part ¢ = p— g, of the density (where go
is the equilibrium value of the density). The motion of the liquid in the wave
i1s a potential flow, i.e. it can be described by a scalar velocity potential ¢
which determines the velocity according to

V= V. (24.1)

The velocity and the density are related by the equation of continuity do’/0t =
= —div (pv) =~ —po divyv, or

00'[0t = —gpr. (24.2)
The energy of the liquid in the sound wave is given by the integral
E = _‘ (5 00v2 + 102/ 20,) d3x. (24.3)

The first term in the integrand is the kinetic energy density, and the second
the internal energy density, of the liquid; both are quadratic in the small
quantities v and o’.
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The subsequent quantization procedure could be carried out in an exactly
similar way to that for phonons in solid crystals (see Part 1, §72). We shall
take a somewhat different route, however, which illustrates some instructive
points of methodology. Let us first consider the liquid density and velocity
operators expressed in terms of microscopic variables, the coordinates of the
particles.

In the classical theory, the density g and the mass flow density j of the liquid
can be written as sums

o(r) = ;maa(ra—r)a ir) = ;paé(ra“r),

taken over all the particles, where r, and p, are the position vectors and mo-
menta of the particles. The integrals of these functions over any volume give
the total mass and total momentum of the liquid in that volume. When we
go to quantum theory, these functions are replaced by the corresponding oper-
ators. The density operator has the same form:

or) = Za: mad(rs—r); (24.4)
the current density operator is
X =+ ; {Da0(rs—1) + 6(rs—r) Do), (24.5)
where p, = —ifiv, is the momentum operator of the particle.!

Let us find the commutation rule for the operators J(r) and 4(r’) taken at
points r and r’: for brevity, we may consider just one term in the sums (24.4)
and (24.5), since the operators corresponding to different particles commute.
In the expansion of the commutator, the operators of the form 8(ry—r) v18(r1—
—r') are transformed as follows:

0(r; —r) V16(r; — v') = 8(x; ~r)(V(r—1r)) + 8(r,— 1) 1, — 1') V;,

where in the first term (Vé(r—r’)) denotes simply the gradient of the delta
function; because of the presence of the factor é(r;—r), we can replace (v16(r1—
—r')) by (v8(r—r’)) in that term. The result is

] P ’ A R *F A
Ir) 6(r") — 6(x") () = — ihg(vd(r—r')). (24.6)
Now, instead of J, we use the liquid velocity operator ¥, defined by
] 1 /an AA
)= 5 (6V+¥0).
T For simplicity, let the system consist of only one particle. Averaging the operator
o(r) = md(r,—r) over the state with wave function y(r,) gives ftp*(r,)é‘rp(r,)d’xF m|p(r)|? as
it should. Similarly, averaging the operator f(r) gives the correct expression for the current

density,
(1] 20) {p*(r) Tp(r)— p(r) Ty*(r)).
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The commutation rule for the operators ¢ and ¥is determined by the require-
ment that the expression (24.6) is obtained for the commutator of ¢ and J.
It is easily verified that for this to be so we must put

¥(r) o(r") — 0(x’) ¥(x) = —ifi(VO(r—r’)),

using the obvious commutativity of the operators g(r) and 4(r’). Lastly, put-
ting ¥(r) = v(r), we find the commutation rule for the density and velocity

potential operators:
$() &' — ') §(r) = — ihdX—1'); (24.7)

here we must of course replace ¢ by the operator ¢’ = g— go of the variable
part of the density. The rule (24.7) is analogous to that for the particle coordi-
nate and momentum operators; in this sense, o’ and ¢ here act as canonically
conjugate generalized “coordinates” and “momenta”.

Having used the expressions (24.4) and (24.5) to establish the rule (24.7),
we can now write the operators ¢ and @’ in the second-quantization represen-
tation (i.e. express them in terms of the phonon annihilation and creation
operators), with the requirement that they satisfy the rule (24.7). To do so,
we write

36) = — T (el + AL e=e-%)
VvV %
with coefficients A4, as yet undetermined; the summation is over all values of
the wave vector that occur for a liquid with large but finite volume #." The

operators &, and & satisfy the Bose commutation rules
Ciliy — Eée = Oue. (24.3)

For subsequent reference, the non-zero matrix elements of these operators
are

(me— 16| mo = (| & | me—1) = v/m, (24.9)

where n, are the occupation numbers of the phonon states.

We shall later need, however, not the Schrodinger operator ¢(r) but the
Heisenberg operator @(z, r). This is obtained from @(r) by simply including
the factors exp (Fiwt) with frequencies w = uk in each term of the sum

&o(t, r) = —\/lV_ Z ( Ay by @& -r—kun o grat e—i(k.r—kut));
k

T Unlike the y operators of particles, the operator of the real quantity ¢ is Hermitian and
contains both phonon creation and phonon annihilation operators. This property (like the
corresponding property of the field operators in quantum electrodynamics) is due to the non-
conservation of the number of “particles” in the phonon field.
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cf. the relevant comment for the y operators at the beginning of §9. The density
operator §'(¢, r) must be related to ¢(z,r) by (24.2), and is therefore given by a
similar sum with factors i4, pok/u in place of 4,. The factors 4, must then be
determined so as to satisfy the commutation rule (24.7). This gives the follow-

ing final expressions:

-

R Bu \Y2 s
¢(t’ l‘) —_ Z ( ) (ck ei(k.l"'ukt)_'_cl-‘*- e-'(k-r‘-uk’)),

2V
‘ eoﬁglzk 172 L (24.10)
él(t, l') — Z i(m) (ék et’(k e—ukt) __ é‘i" e—i(k . r—ukt)).
k s

For, on substituting these expressions on the left of (24.7) and using (24.8), we
obtain the required delta function:

] 1 A A A A
—ih— ¥ (adid - 88 e =)
k

___lfi_ k.(r—r) __l:_’_i_ k.(x-r) Vdak T —
=—= zk:e‘ 7 é o = ifid(r —r’).

It is also easy to see that the Hamiltonian of the liquid, obtained by substi-
tuting ¥ = v and ¢’ in place of v and g’ in the integral (24.3), has the form

k

as it should; its eigenvalues are Zufik(n, ++),in accordance with the concept
of phonons having energies ¢ = u#ik.

The expression (24.3) for the energy of a liquid in a sound wave consists of
the first (after the zero-order) terms in an expansion of the exact expression

E = [[3ov+0oe(@)] d*x,

where e(p) is the internal energy of the liquid per unit mass. This integral,
with v and p replaced by the operators ¥ = v$ and § = po+ ¢’ with ¢ and
8’ from (24.10), acts as the exact Hamiltonian of the liquid:

H= [[$9.09+0e(0)] d°; (24.1D)

the kinetic energy operator is written in the symmetrized form 1¥. 0¥, so as

to be Hermitian. Here it is important that g and ¢ are canonically conjugate
“generalized coordinates and momenta” in terms of which the Hamiltonian
must be expressed. This is seen from the fact that the commutation rule (24.7)
satisfied by the operators (24.10) is exact; the smallness of the oscillations is
nowhere used in deriving it.

The terms of higher (third, etc.) degree in the expansion of this Hamilto-
nian represent the anharmonicity of the sound vibrations, or in terms of the
phonon picture describe the interaction of phonons. They have non-zero
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matrix elements for transitions with simultaneous change of several phonon
occupation numbers, and thus act as a perturbation causing various phonon
scattering and decay processes. The matrix elements of the operators & and
& have, of course, the previous form (24.9), since (as always in perturbation
theory) the representation used is one in which the unperturbed Hamiltonian
is diagonal. The terms of the third and fourth orders are

2\ 53
a® = .f [—é—?.@’i"-{- (chio go) 96 -‘ s, (4.12)
2 .2
o= s () [

§ 25. A degenerate almost ideal Bose gas

The fundamental properties of the Bose-type energy spectrum are clear from
the model of a slightly non-ideal Bose gas at almost zero temperature. This
model will be considered in the present section in the same way as in §6 for
a Fermi gas.” The whole of the discussion in §6 relating to the general charac-
teristics of models of a degenerate almost ideal gas applies here also. In par-
ticular, the condition of being only slightly non-ideal (the gaseousness parameter
a(N/V)** <« 1, where a is the scattering length) can again be put in the form of
the condition (6.1) that the particle momentum be small: pa/# <« 1.}

The Hamiltonian of the system of bosons (assumed spinless) interacting in
pairs differs from (6.6) only by the absence of the spin suffixes:

T PUE I
H = Zé’—ma: 8y +5 2. (P1P2 | U| PrPo) Goidpicondos (25.1)

with summation over all the momenta appearing as suffixes. The particle
annihilation and creation operators now obey the commutation rules

Godd — a8, = 1.

As in §6, we again make the assumption that the momenta are small, and

replace all the matrix elements in (25.1) by their values for zero momenta;
then

2 U n + n
B = 34— 8ty 3 Giilei il (25.2)

T The method given below is due to N. N. Bogolyubov (1947). His application of it to the
Bose gas was the first consistent microscopic derivation of the energy spectrum of “quantum
liquids™.

$ We shall see below that, in a degenerate Bose gas, the majority of the particles (outside
the “condensate”) have momenta p ~ fiy/(aN/ V), for which this inequality is indeed satis-
fied.
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The starting-point for the application of perturbation theory to this Hamil-
tonian is the following remark. In the ground state of an ideal Bose gas, all
particles are in the condensate, i.c. the state of zero energy; the occupation
numbers N,_, = No = N, N, = 0 for p % 0 (see Part 1, §62). In an almost
ideal gas, in the ground state and in weakly excited states, the numbers N,
are not zero, but they are very small in comparison with the macroscopically
large number Ny. The fact that the quantity dj d, = No ~ N is very large in
comparison with unity means that the expression

dodsd — g do = 1

is small compared with d and 45 themselves, which may therefore be regarded
as ordinary numbers (equal to 4/Ny), their non-commutativity being neglected.

The application of perturbation theory now signifies formally the expansion
of the fourfold sum in (25.2) in powers of the small quantities d,, 4; (p = 0).
The zero-order term in the expansion is

3 4gf dodo = a5 - (25.3)

The first-order terms are zero (since they cannot satisfy the law of conserva-
tion of momentum). The second-order terms are

@ Y (Gpd—p+d5 at, +485 5,). (25.4)

p=0

Taking only the second-order terms, we can replace a3 = No in (25.4) by
the total number of particles N. In (25.3), the more accurate relation

a3+ Y d¥d, =N

pZo
must be used. The sum of (25.3) and (25.4) is then
N2+N Y (Gpd—p+3ay dLy+ 245 dyp),

p=0
and on substitution in (25.2) we get the following expression for the Hamilto-

nian:

N2 2 N A A At 2 At A
H == 7‘/— Uo+ zp:_zza:ap'f'_z? Uop;o(apa—p +a:atp+2a:ap)' (25'5)

The first term in this expression gives, in the first approximation, the energy
Ey of the ground state of the gas, andits derivative with respect to N the chem-
ical potential u at T = 0:

Eo = N2U,/2V, u = NU/V. (25.6)

The remaining terms in (25.5) give the correction to Eo and the spectrum of
weakly excited states of the gas.
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The integral Uy in (25.5) has still to be expressed in terms of a real physical
quantity, the scattering length a. In the second-order terms, this can be done
directly from the formula (6.2): Uy = 4nfi’a/m. In the first term, however,
the more exact formula (6.5) is needed, which takes account of the second
Born approximation in the scattering amplitude. Here we are considering the
collision of two particles in the condensate, and accordingly in the sum in

(6.5) we must put p1 = p2 = 0, p; = —p. = p, so that

4ntla 4nfi’a 1
Up = - (1+ % p;ﬂ pz)'

Substitution in (25.5) gives for the Hamiltonian

2nfita N2 dnh2a 1
1 el
14 ( + 14 l);‘) Pz)

2nf’a N At A At A
m Vv p; (@oB—p + 85 a1y + 237 4y) + Z m 5 dp. (25.7)

A =

To determine the energy levels, we must bring the Hamiltonian to diagonal
form; this is done by a suitable linear transformation of the operators 4,
at. With new operators b, and b} defined by

dy = uph,+vbty, & = uhf +vb_,
and the requirement that they satisfy the same commutation relations
bby —byb, =0, bbi —b5b, = 6y

as the 4, and ;" (it is easily seen that for this, we must have u?— v3 = 1), we can
write the linear transformation as

_ betLbt, . biaLb,
R - (e A @

The quantity L, is to be defined so as to eliminate from the Hamiltonian the
non-diagonal terms b,b_, and b} bt,. A simple calculation gives

1 p? .
Lp = “;l-l-"-z— 8(‘0)'--“2“"—1 ~—mu-:, (25.9)
with the notation
e(p) = [up?+(p*2m)*J'2, (25.10)
u = (4nh2aN/m2v /2, (25.11)

The Hamiltonian is then

H =FEy+ Y, &p)bib, (25.12)

p=0
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where

2 3
Ey= 3 N+ 5 {ecp)—-%- s+ 72 } (25.13)

The form of the Hamiltonian (25.12) and the Bose commutation relations
for the operators b,, b} enable us to conclude that b, and b, are creation and
annihilation operators for quasi-particles with energy e(p) which obey Bose sta-
tistics. The eigenvalues of the diagonal operator b} 5, represent the numbers 7,
of quasi-particles with momentum p, and formula (25.10) gives the dependence
of their energy on the momentum. (The quasi-particle occupation numbers are
again denoted by 7, to avoid confusion with the actual gas particle occupa-
tion numbers N,.) This completely determines the energy spectrum of weakly
excited states of the gas in question.

The quantity E, is the energy of the ground state of the gas. Replacing the
summation over the discrete values of p (in the volume ¥) by integration over
V d®p|(2nh) and completing the calculations, we get the expression

2q N2
2nh%aN [1 + 128 a"N] (25.14)

bo=— 7 15 YV av

(T. D. Lee and C. N. Yang 1957). The chemical potential of the gas (at T = OY

is correspondingly
2
ZEO 4rch aN [ 32 Va‘*N] (25.15)

These formulae give the first two terms in an expansion in powers of (a3N/V)"2.
Even the next term, however, could not be obtained by the above method.
It must contain the volume as V2, and a quantity of that order depends on
triple collisions as well as on pair collisions.

For large momenta (p s> mu) the quasi-particle energy (25.10) tends to
P%2m, i.e. to the kinetic energy of an individual gas particle.

For small momenta (p < mu) we have ¢ = up. It is easy to see that the coeffi-
cient u is the same as the velocity of sound in the gas, so that this expression
corresponds to phonons in accordance with the general theorems in §22.
At T = 0, the free energy is equal to Eo; taking the leading term in the expan-
sion of the latter, we find the pressure

P = —0E[0V = 2n/i2aN?3/mV2.

The velocity of sound is u= +/(0P/0p), where o = mN/V is the gas density;
it is the same as (25.11).

In the model of a Bose gas here considered, the scattering length a must
necessarily be positive (for a repulsive interaction between the particles). This
is seen formally from the fact that imaginary terms would occur in the above
formulae for the energy if a < 0. The thermodynamic significance of the
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condition @ = 0 is that it is necessary to satisfy the inequality (0P/6V); < O in
this model of a Bose gas.

The statistical distribution of elementary excitations (the mean values 7, of
their occupation numbers) at a non-zero temperature is given simply by the
Bose distribution formula (22.2). The momentum distribution N, of the actual
gas particles can be calculated by averaging the operator 4;d,. Using (25.8)
and the fact that the products 5_)b, and b b*  have zero diagonal matrix

elements, we get
N, = [A,+L¥#A,+ D)/(1 - L) (25.16)

This expression is, of course, valid only if p 0. The number of particles with
zero momentum is
V
] —_— ] OV ———— 3 .
No=N p;o N,=N Oty f N, a%p. (25.17)

In particular, at absolute zero all the #, = 0, and with (25.9) we obtain from
(25.16) the distribution function in the form®

m24

2¢(p){e(p) + p?/2m + mu?} ; (2>.18)

N, =

when T = 0, the mean values of N, are the same as the exact values, and the
bar over the letter is therefore omitted. The non-idealness of the Bose gas
naturally causes the presence of particles with non-zero momentum even at abso-
lute zero; the integration in (25.17) with N, from (25.18) is elementary, and
gives

N0=N[1—§— 2

8/ X« ] . (25.19)

Lastly, a comment on the spectrum derived here. For small p, the derivative
de/dp® > 0, i.e. the curve of &(p) turns upwards from the initial tangent
e = up. In such a case (see §34) there is an instability of the spectrum because
of the possibility of spontaneous disintegration of the quasi-particles (phonons).
The corresponding level width is, however, small (proportional to p® when p is
small) and does not affect the expressions derived in the approximations con-

sidered above.

§ 26. The wave function of the condensate

As already mentioned in §23, the appearance or disappearance of super-
fluidity in liquid helium takes place by a phase transition of the second kind.
Such a transition always involves some qualitative change in the properties of

1The maximum number of particles with a given momentum magnitude (~ p*N,) occurs
for p/# ~ +/(aN/V), where the change takes place from one limiting expression for &(p) to
the other. This has already been mentioned in the second footnote to §25.
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the body. At the A-point of liquid helium, this change may be described macro-
scopically as the appearance or disappearance of the superfluid component of
the liquid. From the more profound microscopic viewpoint it is a matter of
certain properties of the momentum distribution of the (actual) liquid particles:
in a superfluid, a finite fraction of the particles (i.c. a macroscopically large
number of them) have exactly zero momentum; these particles form the Bose-
Einstein condensate, or simply the condensate, in momentum space. In an ideal
Bose gas at T = 0, all its particles are in the condensate (see Part 1, §62); in an
almost ideal gas, almost all the particles are in the condensate. In the general
case of a Bose liquid with strong interaction between the particles, the fraction
of particles that are in the condensate at T = 0 is not close to unity.

We shall show how the property of Bose-FEinstein condensation is formulated
in terms of y operators. For an ideal Bose gas (a system of non-interacting
bosons), the Heisenberg y operator is written explicitly as'

1 n i | p2
P, r) = —\/—Vgapexp{zp.r—%%t}. (26.1)

As explained in §25, we may ignore the non-commutativity of the operators
do and a7, regarding them as classical quantities. In other words, part of the
w operator (26.1) is an ordinary number, which we denote by Z':

E = Go/\/V. (26.2)

To formulate this property of the y operators in the general case of an arbi-
trary Bose liquid, we note that, since the condensate contains a macroscopically
large number of particles, changing this number by 1 does not essentially
affect the state of the system; we may say that the result of adding (or removing)
one particle in the condensate is to convert a state of a system of N particles into
the “same” state of a system of N+1 particles. In particular, the ground
state remains the ground state. Let & and £+ denote the part of the v operators
that changes the number of particles in the condensate by 1; then, by definition,

Elm N+1)=E|m,N),
E+|m,Ny=E*\m, N+1),

where the symbols {m, N ) and |m, N+1 ) denote two “like” states differing
only as regards the number of particles in the system, and £ is a complex
number. These statements are rigorously valid in the limit N — . Hence the

t Cf. (9.3). We assume the gas particles spinless, and so the spin suffix is omitted. In (26.1)
we have also used the fact that for an ideal Bose gas at 7 = 0 the chemical potential u = 0,
and so the term — pt/# in the exponents is omitted.

* The addition or removal of the particle is to be regarded as occurring with infinite slow-
ness. This prevents excitation of the system by the variable field.
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definition of £ is to be written

p—

lim {m,N|Z|mN+1) =5,
. N e A, (26.3)
th (mN+1|E*+ |m,N)=E*;
the limit is taken for a given finite value of the liquid density N/V.
If the y operators are written as

=519, P+=FE+q9+ (26.4)

their remaining part (“above the condensate™) converts the state |m, N) into
states orthogonal to it, i.e. the matrix elements’

lim (m, N|¥' |m,N+1) =0,
e 26.5)
th (m,N+1|¥'+|m, N) = 0. (

In the limit N — o, the difference between the states |m, N)and |m, N+1)
disappears entirely, and in this sense £ becomes the mean value of the operator
¥ for that state. It must be emphasized that the finiteness of the limiting value
is a characteristic of systems containing a condensate.

The equations (26.3) complete the “operator” properties of £ and £+,
and they may be regarded as commuting with ¥’ and ¥”*. In particular, the
operators £ and £+ will be replaced by £ and E* (i.e. will behave as classical
quantities) in any averaging with respect to the ground state. We must emphasize
again that (because the number of particles in the condensate is macroscopic)
this approximation involves neglecting only quantities with relative order of
smallness 1/N.} :

If the time dependence of the wave functions is determined by the Ham-
iltonian A’=H—uN, then £ is independent of time: the matrix element

{m,N|Z|m, N+1) is proportional to
exp { ——;1 [E(N+1)—EN)—(N+1)pu +N,u]},

and the exponent tends to zero, since (to within a quantity ~ 1/N) E(N+1)—
—E(N) = p.

In a homogeneous liquid at rest, .= is independent also of the coordinates
and is simply (with the appropriate choice of the phase of the complex quan-

tity)
E = '\/ N, (26.6)

t To avoid misunderstanding, it may be mentioned again that these equations refer only to

transitions between “like” states.
t In particular, to this accuracy we must regard as equal the matrix elements of the opera-

tors ¥ for transitions between states differing by the same (small) number of particles in the
system.
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where 7, is the number of condensate particles per unit volume of the liquid:
E+£ is the operator of the particle number density in the condensate, and the
mean value of this operator is just no.

The existence of the condensate brings about a qualitative difference in the
properties of the density matrix for particles in a Bose liquid in comparison
with the density matrix in an ordinary liquid. In an arbitrary state of a homo-
geneous Bose liquid, the density matrix is given by

No(ry, r,) = {m, N|P+(t, r) ¥(¢, 1)) m, N), (26.7)

and this function depends only on the difference r = ry—r,; cf. (7.13). Substi-
tuting here the ¢ operators in the form (26.4) and using the properties (26.3)
and (26.5), we get

No(r1, 1) = nyg+Np'(ry, ry). (26.8)

The density matrix o’ “above the condensate” tends to zero as {r;—ra| — o}
the density matrix p tends to the finite limit #o/N. This expresses the existence of
“long-range order” in a superfluid, which is not present in ordinary liquids;
in these, we always have p — 0 as |r;—r3| — oo. It is this symmetry property
that distinguishes the superfluid and non-superfluid phases (V. L. Ginzburg
and L. D. Landau 1950).

The Fourier component of the density matrix determines the momentum
distribution of the liquid particles by

N(p) = N [o@@) e~ * dx; (26.9)
cf. (7.20). Substituting o from (26.8), we obtain
N@®) = u) nd@®)+N [ o'(t) e~-* dx. (26.10)

The delta function term corresponds to the finite probability for the particle
to have exactly zero momentum.

If superfluid motion takes place in the liquid, or if it is in non-uniform and
non-stationary external conditions (which, however, vary considerably only
over distances large in comparison with interatomic distances), the Bose-
Einstein condensation again occurs, but we cannot now assert that it will
occur in the state with p = 0. The quantity £, again defined by (26.3), will now
be a function of coordinates and time, representing the particle wave function
in the condensate state. It is normalized by the condition | Z|2 = no, and can
therefore be expressed as

E(t, 1) = 4/[ng(t, r)] e—9® v, (26.11)

Since there is a macroscopically large number of particles in the condensate
state, the wave function of this state becomes a classical macroscopic quantity.!

t Just as the field strength of an electromagnetic wave becomes a classical quantity for
large photon occupation numbers in every state (cf. RQT, §5).
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‘Thus there is a new characteristic of macroscopic states in a superfluid, including
states of thermodynamic equilibrium.
The current density calculated from the wave function (26.11) is

I3 lh — fwnd 1 :!* l:!
cond = 5o (Eve V&)
Ao
= — nyVP
m nov ]

where m is the mass of a liquid particle. This has the significance of the macro-
scopic current density of condensate particles, and may be equated to nev,,
where v, is the macroscopic velocity of that motion. From a comparison of the

two expressions, we find
Vs = (fi/m) vP. (26.12)

Since the motion can occur in a state of thermodynamic equilibrium (charac-
terized by the quantity &), it is non-dissipative, and (26.12) therefore determines
the velocity of the superfluid motion. We thus arrive at the property of such
motion already mentioned in §23: it is a potential flow. The velocity potential ¢
1s equal (apart from a constant factor) to the phase of the condensate wave
function:

¢ = (film)D. (26.13)

To avoid misunderstanding, however, we should emphasize that, although
the condensate velocity is the same as the velocity of the superfluid component
of the liquid (and although the condensate and the superfluid component appear
simultaneously at the A-point), the densities mno of the condensate and o, of
the superfluid component are not at all the same. The identity of these two
quantities would be impossible to justify, and its incorrectness is also evident
from the fact that at absolute zero the whole mass of the liquid is superfluid,
whereas not all its particles are in the condensate.?

§ 27. Temperature dependence of the condensate density

The particle number density in the condensate is greatest at 7 = 0, and
decreases with rising temperature. The limiting form of its temperature depend-
ence as T — 0 can be found by considering the fluctuations of a macroscopic
quantity, the condensate wave function & (R. A. Ferrell, N. Menyh4rd, H.
Schmidt, F. Schwabl and P. Szépfalusy 1968).

First, we recall that Z'is a classical quantity which corresponds to the oper-
ator ¥ in the quantum-mechanical formalism. Hence, to calculate the fluc-
tuations, we ought in principle to use that operator. However, near absolute

! In practice, the density of the condensate in liquid helium seems to be only a small frac-
tion of the total density of the liquid.
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zero, long-wavelength oscillations play the main part in the fluctuation spectrum
of a macroscopic quantity. These oscillations in the liquid are sound waves
described by the macroscopic equations of hydrodynamics, and it is therefore
possible to construct an operator corresponding to £ by independent quanti-
zation of 5.

In the present case, for & = 4/no exp i®, in the long-wavelength limit, the
phase @ fluctuates most strongly, and is directly related to the superfluid ve-
locity potential by (26.13). Both ¢ and @, it may be recalled, are defined only to
within additive constants. The uniquely defined quantity 4/no can therefore be
expressed only in terms of the derivatives of @, and so the Fourier components
of its fluctuations will contain extra powers of the wave vector k, i.e. will be
small when Kk is small.

The relation of the phase @ to the potential ¢ allows @ to be directly related
to quantities characterizing the phonon distribution in the liquid. For this pur-
pose, we regard ¢, and therefore @, as second-quantized operators, expressing
¢ by (24.10) in terms of the phonon creation and annihilation operators:

m

¢ = ;(w:p

the unperturbed liquid density is written as ¢ = nm, where n is the particle num-
ber density, and the suffix 0 is omitted. According to the foregoing discussion,.
this means that the operator of the macroscopic quantity £, i.e. the long-wave:
part of the operator ¥, can be expressed as

Y = /nyexpid, (27.2)

1/2
) (&, €T 1 &5 e—iv-1ih); Q1.1

where no is the condensate particle density.

We first apply this formula to calculate the momentum distribution of par-
ticles “above the condensate” in a Bose liquid (for small momenta). In the
single-particle density matrix o(r1, rs), for large distances [r;—rs!, we can use
the long-wave expression (27.2) for the y operator:

No(ry, 15) = (P+(1,) P (r) = nee—i#+ ) gidan), (27.3)

where the mean value is taken with respect to the state of the liquid at a given
temperature. Since the fluctuations are small, this expression is to be expanded
in powers of &, retaining only the first non-vanishing (the quadratic) terms.
Since §+ = P, we obtain

No(ry, t5) = no— no (D)) + n(B(x,) B(ry)). (27.4)

The third term tends to zero as |ra—r;| — <o, and gives the required above-
condensate part of the density matrix; the second term is independent of r in a
homogeneous liquid, and gives a correction to the condensate density that will
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be calculated below by a somewhat different method. Using (27.1), we can
write the above-condensate part as

No'(ry, 1) = ’720;1: Z %— {(&F ép) e—ip (1=t | <é‘pé‘l;l'> el - —rg)/k}
P

= _ﬁn‘l;—"—:-lf- Z ‘_i_ (np + _;_) el -(l’l-l'z)/ﬁ’
p

where
n, = [eP*T—1]"1

Changing from summation to integration, we have

, U +1 d3
No'(ry, 1p) = no;n J‘ npp 2_ pip.(r1—Ts) (271:;; )3 . (27,5)

This expression applies, of course, only to the contribution from small p
(fi/p large compared with interatomic distances). The integrand in (27.5)
immediately gives the particle momentum distribution

N = (n.,+—;-) . (276)

When T = 0, this becomes
N(p) = ngmu/2np (27.7)

(J. Gavoret and P. Noziéres 1964); when T = 0 and up « T,
N(p) = ngmT/np? (27.8)

(P. C. Hohenberg and P. C. Martin 1965).
We can now determine the temperature dependence of the condensate den-
sity. By definition,
no(T) = n— | N(p)d*p/(2rh)’. (27.9)

If we substitute (27.6) here directly, the integral diverges because of the zero-
point vibrations. This is related to the invalidity of (27.6) for large p, and means
only that we cannot calculate in such a way the value of the condensate density
at T = 0, which must here be regarded as a given quantity. To find the required
temperature dependence, we must subtract from no(T") its value at T = 0;
the integral is then convergent. The result is

nf(T)—n0) _  mu f n, d%

0 ~  n | p 2uAP
mT? r xdx mT?
T Tt | e =1 12nuk® (27.10)

0

In the calculation we have neglected the temperature dependence of the to-
tal density of the liquid; this is legitimate, since the thermal expansion of the
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liquid (due to the excitation of phonons) is proportional to a higher power of
the temperature, namely T* (cf. Part 1, §67).!

Finally, we may make some remarks on the methodologically important
subject of a two-dimensional Bose liquid. In this case, the temperature-depend-
ent part of the integral (27.9) diverges logarithmically for small p, where the
formula for N(p) should have been correct. This means that in the two-dimen-
sional case the basic assumption is incorrect, namely that there exists a con-
densate at non-zero temperatures. In the two-dimensional case, the condensate
can exist only at T = 0. The position here is analogous to that of two-dimen-
sional crystals (see Part 1,§137). As with the latter the fluctuations of the atomic
displacements smooth out the lattice, so the phase fluctuations eliminate the
condensate. The formal analogy between the two systems is that in both cases
the energy depends on quantities that can appear in it only as derivatives.
In the first case these are the atomic displacement vectors, which cannot them-
selves appear in the energy, because the latter is invariant under displacements
of the system as a whole. In the second case it is the phase of the condensate
wave function, which cannot itself appear in the energy, because it is not
uniquely determined. The dependence of the energy on only the gradients of
these quantities is the ultimate reason for the divergence of the fluctuations.

Next, we have seen in Part 1, §138, that the weak (logarithmic) divergence
of the fluctuations causes in a two-dimensional crystal a slow (power-function)
decrease of the correlation function in the system. Similarly, in a two-dimen-
sional Bose system the density matrix (27.3) decreases as [F;—rs| — oo according
to a power law, and does not tend to a constant limit as in the presence of the
condensate.! Such a system thereby differs qualitatively from an ordinary
liquid, and so, in the two-dimensional case also, there can be a phase transition
of the second kind between the ordinary liquid with an exponential decrease
of o(r1, rp) and a liquid with a power-law decrease.

§ 28. Behaviour of the superfluid density near the /-point

As already mentioned in §23, with increasing temperature the fraction g,/p of
the superfluid density in a Bose liquid decreases, becoming zero at the A-
point of the liquid, a phase transition point of the second kind. The temperature
T, of this point is a function of the pressure P; the equation T = T,(P) defines
the curve of A-points in the phase diagram in the PT-plane.

In the general theory of phase transitions of the second kind, the change in
state of the body is described by the behaviour of the order parameter, which

t The formulae obtained, which are valid for any Bose liquid, are of course in agreement
with those of §25 for a slightly non-ideal Bose gas. In the comparison, it must be noted that for
such a gas ny = n, and the condition for p to be smallis p <«< mu ~ #(an)*'2,

! These statements relate also to a two-dimensional ideal Bose gas.

§ See ). W.Kane and L. Kadanoff, Physical Review 155, 80, 1967.
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characterizes its symmetry properties. For the A-transition of a Bose liquid, the
condensate wave function £ acts as such a parameter, and describes, as ex-
plained in §26, the “long-range order” in the liquid. The fact that £ is complex
means that the order parameter has two components, and the effective Hamil-
tonian of the system (see Part 1, §147) depends only on | Z|?, i.e. is invariant
under the transformation £ — ¢ £ for any real «.

The empirical results concerning the A-transition in liquid helium seem to
indicate that there is no region in which the Landau theory of phase transitions
is valid: the condition in Part 1 (146.15) is not satisfied anywhere in the neigh-
bourhood of the A-point (1. e. anywhere in the region |T—T,| < T,). Hence,
to describe the properties of this transition, we must use the fluctuation theory
of phase transitions of the second kind, which makes it possible to relate the
temperature dependences of various quantities.

The temperature dependence of the order parameter (and therefore of the
condensate density no) as T — T, is given by the critical index 8 (see Part 1,
§148):

| & = 4/ny oc (TH,—TY. (28.1)

A more interesting question, however, is that of the behaviour of the super-
fluid density p,. To calculate it, let us consider a liquid in which the phase @
of the condensate wave function varies slowly in space. This means that there
is in the liquid a macroscopic superfluid motion with the velocity (26.12) and
accordingly with kinetic energy (per unit volume of the liquid)

3002 = o2/ 2m?) (VD). (28.2)

This expression may also be applied to the long-wavelength fluctuations of
the order parameter. According to the hypothesis of scale invariance, the
only parameter of length that determines the fluctuation picture near the
transition point is the correlation radius r, of the fluctuations. This therefore
determines the order of magnitude of the distances at which the fluctuational
change of the phase @ is of the order of unity; hence the mean square of the
fluctuational velocity varies with temperature according to

V2 oc 1/r2 oc (T3, —T)?, (28.3)

where v is the critical index of the correlation radius. On the other hand, since
it is the long-wavelength fluctuations that govern the singularity of the ther-
modynamic quantities at the transition point, we may naturally assume that
near this point the fluctuational kinetic energy (28.2) varies with temperature
in the same way as the singular part of the thermodynamic potential of the
liquid, i.e.as (T,—T)*~" (where « is the critical index of the specific heat C,).
Thus we find

es;)—? oC Qs(Tl—'T)m oC (TZ.—T)z—a,
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whence o oc (T,—T)*~*~, Lastly, with the relation 3» = 2—a (which follows
from the hypothesis of scale invariance; see Part 1, §149), we have

0, ¢ (T3 —T)=o)3, (28.4)

This establishes the relation between the temperature dependences of ps
and the specific heat near the A-point (B. D. Josephson 1966)."

§ 29. Quantized vortex filaments

An ordinary liquid enclosed in a cylindrical vessel rotating about its axis is
carried along by friction against the vessel walls, and is ultimately caused to
rotate as a whole together with the vessel. In a superfluid, only the normal
component is brought into rotation; the superfluid component remains at
rest, in accordance with the fact that this component cannot rotate as a whole,
since this would make the superfluid motion no longer a potential flow.*

For sufficiently large rates of rotation, however, such a state becomes ther-
modynamically unfavourable. The condition of thermodynamic equilibrium is

that the quantity
Erot =E—M.ﬂ (29.1)

is a minimum; this is the energy in a rotating coordinate frame, with E and
M the energy and angular momentum of the system in a fixed coordinate frame
(see Part 1, §26). The term —M.S in (29.1) causes (for sufficiently large £2) the
state with M. > 0 to be thermodynamically more favourable than that
with M = 0.

Thus, as the rate of rotation of the vessel increases, superfluid motion must
eventually occur. The apparent contradiction between this statement and the
condition for superfluid motion to be a potential flow is removed by assuming
that the potential flow is lost only at certain lines of singularity in the liquid,
known as vortex filaments or vortex lines.® The liquid executes a motion about
these lines which may be called potential rotation, since curl v, = 0 throughout
the volume outside the lines.

The vortex filaments in a liquid have a thickness of atomic dimensions,
and macroscopically they must be regarded as being of infinitesimal thickness.
Their existence does not contradict the expression (26.12) for the velocity,
since the latter assumes that v, varies sufficiently slowly in space, whereas it

T The indices « and ¢ for liquid helium are very small, and so we have with high accuracy
£ = 1/3,and g, ¢ ny o (Ty—T)*/8.

* When the liquid rotates as a whole, the velocity v = QXr, where  is the angular ve-
locity and the position vector r is drawn from some point on the axis. Then curl v=2€ 0.

§ This assumption was proposed by L. Onsager (1949) and further developed by R. P.
Feynman (1955).

' This statement does not apply, however, to the immediate nieghbourhood of the 4-point;
there, the thickness of a vortex filament is of the order of the correlation radius of the fluctua-
tions,
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varies with arbitrarily great rapidity near a vortex filament; see (29.3) below.
It also does not contradict the proof in §23 that superfluid motion is a potential
flow, which made use of properties of a Bose liquid energy spectrum, since a
vortex filament is associated with a particular macroscopically large energy
(see (29.8) below), and the state of a liquid containing a filament cannot be
regarded as weakly excited.

Let us first consider vortex filaments from a purely kinematic standpoint,
as lines of singularity in the velocity distribution for potential flow of the lig-
uid. Each vortex filament has a particular value (27x,say) of the velocity
circulation along a closed contour round the filament:

ffiv, dl = 27x, (29.2)

This value is independent of the choice of the contour of integration: if C;
and C, are two contours enclosing the vortex filament, the difference between
the circulations along them is, by Stokes’s theorem, equal to the flux of the
vector curl v, through a surface spanning C; and C,; since this surface does
not meet the vortex filament, curl v, = 0 at all points on it, and the integral
is zero. Hence it follows also that a vortex filament cannot terminate: either
it is closed or it ends at the boundary of the liquid (or, in an infinite liquid,
has both ends at infinity), since the existence of a free end of a vortex filament
would imply that there could be a surface spanning the contour C but nowhere
meeting the filament, and so the integral on the left of (29.2) would be zero.
The condition (29.2) enables us to determine the velocity distribution in 2

liquid moving round a vortex filament. In the simplest case of a straight fila-
ment in an infinite liquid, the streamlines are circles in planes perpendicular
to the filament, with centres lying on the filament. The circulation along such

a curve 1s 2nrv, so that
vs = #/1, (29.3)

where r is the distance from the filament. We may note that in potential rota-

tion the velocity decreases away from the axis of rotation (the vortex filament),

in contrast to rigid rotation, where the velocity increases in proportion to r.
For a vortex filament of any shape, the velocity distribution is given by

Ve = 3% [ dIXR/RS, (29.4)

where the integration is along the filament, and R is the radius vector from dl
to the point where the velocity is observed.! At distances from the filament

T This expression may be written down immediately by analogy with the familiar Biot—
Savart formula for the magnetic field of line currents. The formal equivalence of the two prob-
lems is evident from a comparison of the velocity circulation (29.2) with the circulation of the
magnetic field H round the line current J:

$H. 41 = anJje.

One problem is obtained from the other by substituting v, for Hand 22 for J/c.
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that are small compared with its radius of curvature, formula (29.4) of course
reduces approximately to (29.3).

As already mentioned, formulae (29.2)—(29.4) result simply from the fact
that the motion of the liquid is a potential flow. The quantum nature of vortex
filaments in a superfluid is shown by the fact that the constant x can only have
values in a certain discrete series. Using (26.12) for the velocity v, expressed
in terms of the phase @ of the condensate wave function, we find as its circu-
lation

$ v .dl = (H/m) A, (29.5)

where 4D is the change of phase on traversing the contour. Since the wave
function is single-valued, its change of phase on returning to the original point
must be an integral multiple of 2z, and so

% = nfi/m, (29.6)

where n is an integer. We shall see below that in fact only vortex filaments
with the lowest possible circulation (7 = 1) are thermodynamically stable.

We shall therefore put
% = fi/m. (29.7)

Let us now determine the critical rate of rotation of the cylindrical vessel at
which a vortex filament first appears. It is evident from symmetry that this
filament will be along the axis of the vessel. The change in the energy of the
liquid due to the appearance of the vortex filament in it is

AE = | LontdV = SoL [v3.27rdr = Lo { drfr,

where L is the length of the vessel. The integration with respect to r is to be
taken between the radius R of the vessel and some value r ~ a of the order
of atomic distances, at which the macroscopic treatment ceases to be meaning-
ful; because the integral is logarithmically divergent, its value does not depend
greatly on the precise choice of a. Thus

AE = Lmoy(#2/m?) log (R/a); (29.8)

this expression is said to have logarithmic accuracy, i.e. not only the ratio
R/a but also its logarithm is large.! The angular momentum of the rotating
liquid is

M = [ousdV = ox [ AV = LaR¥(H/m) .. (29.9)

t The motion round the vortex filament is in general accompanied by a change in the den-
sity of the liquid. The neglect of this change in the calculation given here is justified by the fact
that the main contribution to the energy (29.8) comes (because of the logarithmic divergence
of the integral) from large distancesr,at which the density change is small. For the same reason,
we may neglect the contribution to AE from the change in the internal energy of the liquid.
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The occurrence of the vortex filament is thermodynamically favourable if
AE,, = AE—MQ < 0, i.c. if

Q > Q. = (iimR%)1og(R/a). (29.10)

The above arguments also indicate the reason why vortex filaments with
n > 1 in (29.6) are thermodynamically unstable: when n = 1 is replaced by a
value n > 1, the energy AE is increased by a factor of n?%, and M by a factor n,
which must increase AE,_,.

When the rate of rotation of the cylindrical vessel increases further beyond
the critical value (29.10), new vortex filaments appear, and when Q > Q_
their number is very large. Their distribution over the cross-section of the
vessel tends to a uniform one, and in the limit they simulate the rotation of the
superfluid part of the liquid as a rigid body.! The number of vortex filaments
for a given (large) value of £ is easily determined by the condition that the
velocity circulation along a contour enclosing a large number of filaments
should have a value corresponding to rotation of the liquid as a whole. If
such a contour encloses unit area in the plane perpendicular to the axis of

rotation, then )
jws.dl = 9.2ax = 2nvh/m,

where » is the distribution density of the vortex filaments over the cross-section
of the vessel. On the other hand, when the liquid rotates as a whole, curl
v, = 2L, and this circulation is 22. Equating the two expressions, we find

v = m8/nh. (29.11)

The occurrence of vortex filaments to some extent eliminates the property
of superfluidity. The elementary excitations that form the normal component
of the liquid are then scattered by the filaments, transferring to these (and thus
to the superfluid component of the liquid) a part of their momentum. This
consequently implies the presence of friction between the two components
of the liquid.

Vortex filaments in general move about in space with the flow of the liquid.
When T = 0 and the liquid is entirely superfluid, each element dl of the fila-
ment moves with the velocity v, of the liquid at the position of that element.
At non-zero temperatures, the frictional force on the filament causes it to have
a velocity relative to the superfluid component.

Vortex filaments formed by rotation are straight. The flow of a liquid through
capillaries, slits, etc., may be accompanied by the formation of closed fila-
ments or

T This is easily seen by noting that, since the number of filaments increases in proportion
to £ (see (29.11) below), the second term in 4E,,, = AE— M increases as 22, but the first
term increases as £2, and may therefore be neglected when Q > Q... Then the minimization of
AE,,, is equivalent to the maximization of M, which occurs when the liquid rotates as a rigid
body.
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vortex rings. These eliminate the superfluidity in flow at velocities above a
certain critical value. The actual values of these critical velocities depend on
the specific conditions of the flow; they are much less than the value above
which the condition (23.3) is violated.

Unlike straight vortex filaments, which can remain stationary in a liquid
that is at rest (far from them), vortex rings move relative to the liquid. The
displacement velocity of each line element is the value of v, which results
(according to (29.4)) at its position from the action of all the rest of the fila-
ment; for curved filaments this is not in general zero. Consequently, vortex
rings have as a whole not only definite energies but also definite momenta,
and in this sense are a special type of elementary excitations.

PROBLEMS
ProBLEM 1. Find the velocity and momentum of a circular vortex ring.

SoLuTioN. Each element of the ring moves with the velocity v, at a given point, and from
the symmetry of a circular ring this velocity is the same at every point of it. It is therefore
sufficient to determine the velocity v, at any one point P of the ring due to the rest of the ring.
The elements 4l of the ring and the radius vectors R from d1 to the point P are in the plane of
the ring; hence the velocity at the point P, given by (29.4), is perpendicular to the plane of the
ring, as a result of which the ring moves without change of shape or size.

Let us define the position of the element dl by the angle # (Fig. 3). Then

dl = R,d®, R =2Rysinl®, |dIXR|= Rsinld.dl,

P

FiG, 3.

where R, is the radius of the ring, and we find from (29.4) for the ring velocity v
4

0 — Y’ ZJ‘ dad
~ 8Ry sin 48

0

This integral, however, is logarithmically divergent at the lower limit, and must be cut off at
a value # ~ a/R, corresponding to atomic distances (~ a) of the element dl from the point P.
The integral is determined, with logarithmic accuracy, by the range of values a/R, < # < =,
andis
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s0 that
v = (%/2R,) log (Re/a)
= (fi/2mR,) log (R,/a). (1)

With the same logarithmic accuracy, the energy of the vortex ring is
& = 27 Re0,(i*/m*) log (Ro/a), @

which is (29.8) with R, and 27 R, in place of R and L. The energy ¢ is related to the velocity v
by de/dp = v, where p is the momentum of the ring. Hence

dp = defv
= 4n%0,(f/m) RydR,

{with logarithmic accuracy, the large logarithm is to be regarded as constant in the differentia-

tion), and so
p = 2n%o,(fi/m) R§. €))

Formulae (2) and (3) determine the function e(p) for vortex rings in parametric form (with
R, as parameter).

It may be noted that, because of the logarithmic nature of the integration that leads to
formula (1), this formula (with some changes of notation) remains valid also for the velocity
v with which any given element moves in a curved vortex ring of any shape:

v = (%/2R,) b log (A/a). 4)

Here b is a unit vector perpendicular to the tangent plane at the given point on the filament
(the binormal vector), R, is the radius of curvature at that point, and 2 is the characteristic
distance over which the curvature of the filament varies.

ProBLEM 2. Find the dispersion relation for small vibrations of a straight vortex filament
(W. Thomson 1880).

SorLutioN. We take the line of the filament as the z-axis, and let r = (x, y) be a vector
giving the displacement of points on the filament when it vibrates; r is a function of z and the
time ¢, of the form exp[i(kz— wt)]. The velocity of points on the filament is given by formula (4),
with 4 here taken as the wavelength of the vibrations (A ~ 1/k):

1 b

o1
vV =dr/dt = —iwr = 2ulog a7 Ry

The binormat vector b = tXn, where t and n are unit vectors along the tangent and the prin-
cipal normal to the curve. According to a well-known formula of differential geometry,
d’t/dI* = n/R,, where [ is the length measured along the curve. For small vibrations, the fila-
ment is only slightly curved, and we can therefore take / ~~ z and t = t, (a unit vector along
the z-axis); then

b/Ry == t,Xdr[dz* = — k*t,Xr,

The equation of motion of the filament is then
—dowr = — 2kt Xr log (1/ak).

On expansion, this gives two linear homogeneous equations for x and y; equating the deter-
minant to zero, we get the required relation between w and k:

w = Ixk?log (1/ak).
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§ 30. A vortex filament in an almost ideal Bose gas

As already mentioned, the thickness of a vortex filament in a liquid is compa-
rable with atomic distances. An exception in this respect, however, occurs in
the case of an almost ideal Bose gas. Here the “core” of the vortex filament,
where the properties of the medium are significantly altered, has (as we shall
see below) a macroscopic thickness, and its structure may be macroscopically
described (V. L. Ginzburg and L. P. Pitaevskii 1958, L. P. Pitaevskii 1961, E. P.
Gross 1961).

Let us consider a slightly non-ideal gas at absolute zero. In such a gas, almost
all the particles are in the condensate state. In terms of y operators, this means
that the “above-condensate” part of the operator (¥") is small in comparison
with its mean value, i.e. in comparison with the condensate wave function £.
If we neglect this small part completely, & will satisfy the same “Schrédinger
equation” (7.8) as the complete operator ¥. If only pair interactions are taken
into account, this equation is (for spinless particles)

ih—a-ﬂ(t r) = o A+p|EED+ER D | [EE )20 "Yd3x'
= 5, -—(—27,,—- y)u(,) E(t, 1) | (8¢, v) 2 UG—r) dox.
(30.1)

Regarding the function Z(z, r’) as varying only slightly over atomic distances,
we can replace it by Z(t, r) and take it outside the integral, which then be-
comes | U(r)d® x = Uo. Substituting also u = nUp (see (25.6); n is the unper-
turbed value of the particle number density in the gas), we get

ih 050t = — (K2/2m) AE + UE | E |2 —nE). (30.2

In a stationary state, & is independent of the time. A straight vortex fila-
ment corresponds to a solution having the form

E = \/"e"”f(" / Y 0)’ Fo = h/ ‘\/(2mU0n)a (30'3)

where r and ¢ are the distance from the axis of the filament and the polar
angle round the axis. The phase of this function corresponds to the value (29.7)
of the circulation. The squared modulus |Z |2 is the particle number density
in the condensate; in the approximation considered, it is the same as the total
density of the gas. When r — o, this density must tend to the fixed value »,
and therefore f must tend to unity.
With the dimensionless variable & = r/ro, we find for the function f(£) the

equation

1 dy.df\ f

75—-‘1@(a,=a;.—)—-§+f—f=* = 0. (30.4)
Figure 4 shows the solution obtained by numerical integration of (30.4).
When & — 0 it tends to zero as &; when & — o it tends to unity as 1—1/2&2.
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The parameter ro determines the order of magnitude of the filament “core”
radius. Using the scattering length a instead of Uy, with Uy = 4mhi%a/m (6.2),
we find

ry ~ n=13y=1/2 5 p-1/3

where 7 = an!/3 is the gaseousness parameter. This radius is therefore in fact
large in comparison with interatomic distances if the gaseousness parameter is
sufficiently small.

PROBLEM

Find the spectrum of elementary excitations in an almost ideal Bose gas, regarding it as the
dispersion relation for small oscillations of the condensate wave function.

SoLuTION. We consider small oscillations of £ about a constant mean value 4/n:

Z = \/n+Aet& -r-0h) 4 gg—itk .r-ot)

where 4 and B* are small complex amplitudes. Substituting this expression in equation (30.2),
linearizing, and separating terms with different exponential factors, we find a set of two
equations:

fiwA = (p?/2m) A+nUy(A+ B),

~fiwB = (p%/2m) B+nU,(A+ B),

with p = #k. Hence, equating the determinant to zero, we have
(fiw)* = (p*/2m)*+(p*/m) nU,,

in agreement with (25.10).

§ 31. Green’s functions in a Bose liquid"

The mathematical formalism of Green’s functions in a Bose liquid is very
similar in its structure to that for a Fermi system. Without reiterating all the
arguments, we shall give here first of all the basic definitions and formulae,
stressing the differences due either to the different particle statistics or to the
presence of the condensate.* As in the preceding sections of this chapter, the
particles in the liquid are assumed spinless.

t In §§31-33 and 35, the unitsused have # = 1.
* The mathematical technique of Green’s functions was first applied to Bose systems withs
condensate by S. T. Belyaev (1958).
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In determining the Green’s function for a Bose liquid, we must separate the
condensate part of the Heisenberg u operators by putting them in the form
(26.4). The Green’s function is found from the above-condensate part of the

operators according to the formula
G( Xy, X,) = — KT (XD ¥+ (X)), (31.1)

where the angle brackets (...) again denote averaging with respect to the
eround state of the system, and T denotes the chronological product. However,
in contrast to the fermion case, the interchange of y operators to put them in
the necessary order need not be accompanied by a change of sign of the prod-
uct, so that, unlike (7.10),

F(X)P+HX)), 4> ;2,} (31.2)

1G(Xy, Xp) = {(Bf” +HXy) Sz"’(Xl», h <ty

A similar mean value to (31.1) but with the complete ¢ operators instead of
the above-condensate ones would give

—KTP(Xy) P+ (X)) = —ing+ G(Xy, Xy), (31.3)

where no is the particle number density in the condensate.’ In a homogeneous
liquid, the function G depends, of course, only on the difference X = X;— Xo.

The above-condensate density matrix o’ is expressed in terms of the Green’s
function by

NQ'(I’l, 1'2) = iG(t1, ri; 1 +0, l'z) = iG(t = -0, l'); (3]4)

it will be noted that the sign is opposite to that of (7.18). In particular, for
r, = rp we get from this the total above-condensate particle number density,
%——no = iG(t =—0, r = 0); (31.5)
cf. (7.19).

The change to the momentum representation is made by the same formulae
(7.21), (7.22). The normalization of G(w, p) is expressed by

N o ot GO &P
— = ny+i lim fG(w, p) e~i* VO (31.6)

V t —>~0
cf. (7.24).

T As with Fermi systems, we shall consider states of a Bose system for a given value of the

chemical potential u (rather than of the number N). Accordingly, the difference A =H- ,ul?l
(7.1) acts as the Hamiltonian of the system. The condensate part of.the ¥ operator is then in-
dependent of time.
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For the Green’s function of a Bose system in the momentum representation
we can derive an expansion similar to the one obtained in §8 for a Fermi sys-
tem. Exactly analogous calculations lead first to the formula

And(p—Pm)
@ +E(N)—E(N+1)+pu+i0

B.o(p+Pm) } , (31.7)

G(w, p) = (2n)* ),

m

T W—Ey(N)+E (N=D+p—i0

where

Am = |019'0)|m)}%  Bnm = [(m|9'(0)|0)}%
#'(x) being the Schrodinger above-condensate operator.’ To bring this expan-
sion to the final form, we note that the excitation energies ¢,(N) in a Bose
system are determined as the (always positive) differences between the energies
of the excited states of the system and the energy of its ground state for a con-
stant particle number N. Since Eo(N)+pu ~ Eo(N+1), we therefore find that

En(N+1)—EyN)—pu ~ En(N+1)—Eo(N+1) = en(N+1) > 0,

E (N=1)—Ef(N)+p =~ Ef(N—1)—Ef(N—1) = e¢n(N—1) > 0.}
But the addition or removal of one particle changes the properties of the system
only in the terms of relative order ~1/N; for a macroscopic system these terms

are negligible, and so the excitation energies ¢, (N11) are to be regarded as
coinciding with each other and with ¢, (N). Thus we have finally

ArSr(P—Pm) _ BrOm(P+P)
W —&p + 0 W+Em—i0 [

G(w, p) = (2m)* ), { (31.8)

m

By the same method as in deriving (8.14), we easily find from this that for
Bose systems the imaginary part of the Green’s function is always negative:

im G(w, p) < 0. (31.9)
The asymptotic form of the Green’s function for @ — - remains the same

as for Fermi systems:
G(w,p) - l/w as |o' o} (31.10)

cf. (8.15). In deriving this, we must use the commutation rule
P, r) Pt r) =P+ ) P (4 1) = Oy 1),

in which the commutator of the operators ¥ and ¥* now replaces the anti-
commutator.}

t Formula (31.7) corresponds to (8.7). The factor % is absent here, because the particles
are spinless. It should be noted that the sign of the second term in (31.7) is the opposite of that
in (8.7).

t The fact that the condensate part of the y operators is separated in the definition of G is
here unimportant: the constant term —in, in (31.3) corresponds in the momentum represen-
tation to the delta function d(w) d(p), which does not affect (31.10).
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Next, arguments similar to those in §8 lead to the fundamental result that
the poles of the Green’s function determine the spectrum of elementary exci-

tations
GYe, p) =0, (31.11)

and only the positive roots of this equation are to be taken; the subtraction of
u from e is here unnecessary, in contrast to (8.16).
Near its pole, the Green’s function has the form

G(w, p) ~ Zy/[wFe@), Z, >0, Z_ <O0; (31.12)

the sign of the residue at the pole is the same as that of w, as follows from the
fact that the coefficients A4,, and B,, in (31.8) are positive. The magnitude of the
residue is subject to no conditions such as (10.4) for example, for Fermi sys-
tems. Using the expression (31.12), we can easily verify (as in §8) that the in-
equality (31.9) automatically makes the quasi-particle damping coefficients
positive, i.e. gives the necessary sign —im ¢ > 0, when the values of ¢ move
into the complex domain.

The possible passage of above-condensate particles into the condensate and
back has the result that, in the mathematical formalism of Green’s functions
for Bose systems, as well as the function (31.1), the following functions auto-
matically appear, as we shall see in §33:

iF(Xy Xp) = (N=2| T2 (X) P'(X) | N, (31.13)
iF+(X;, Xp) = (NI T+ (X)) '+ (X,)IN-2)
= (N+2|TY'+(X) P'+(X,) | N), (31.14)

where the matrix element is taken for transitions with change in the total number
of particles in the system, and | N) denotes the ground state of the system with
N particles; the last equation in (31.14) is valid to within quantities ~1/N
(cf. the fourth footnote to §26). The functions F and F* thus defined are called
anomalous Green’s functions. We shall show that in a homogeneous liquid at
rest they are equal.

Like the function G, the functions F and F* for a homogeneous liquid depend
only on the difference X = X;—X..! Since interchanging X, and X, changes
only the order of the operators in the product, which is in any case governed
by the chronological operator, we have

F(X) = F(—X). (31.15)

¥ The fact that the function F is independent of the sum of times 7, + , arises because the

term —,uf\? is included in the definition of the Hamiltonian A’ = H~ ,uf/'. This excludes from
the difference of energy eigenvalues of systems with different numbers of particles the term

E(N+2)~E(N) = 20E[oN = 2u,

and correspon dingly excludes the factor exp [— iu(t; +1,)] from the matrix elements of the
operator ¥1¥%;.



122 Superfluidity

Hence it follows, of ‘course, that in the momentum representation also Fis an
even function of its argument :

F(P) = F(—P). (31.16)

Next, a relation between F and F* results from the following property of the
Heisenberg v operator of a liquid at rest:'

P, r) = P(—t, —1). (31.17)

Taking, say, f» > t;, we thus have
iF*(Xy, Xp) = (N+2 2"+ (X,) ¥'+(Xp) | N)

= (N1 P"+(x) &'+ (X) | N+2)
=(N1¥'(-X)P'(-X;)IN+2)
== iF(—Xl, —'Xz),

or F*(X) = F(—X). Using (31.15), we then obtain the required relation
F+(X) = F(X). (31.18)

Expressing F(X)in terms of the matrix elements of the y operators, we can
derive for F(w, p) an expansion similar to (31.8), and thus determine the poles
of the function, but we shall not pause to do so here, merely mentioning that
the poles of F(w, p) coincide with those of G(w, p).

To conclude this section, let us calculate the Green’s function G‘® of an ideal
Bose gas. First of all, since in the ground state of such a gas all particles are in
the condensate, the above-condensate particle annihilation operator ¥’ acting
on the wave function of the ground state gives zero. Hence the function G©'(¢, r)
is non-zero only for ¢t = t;—ts > 0 (when, according to (31.2), the creation
operator ¥+ acts first).

 This property may be proved as follows. All non-zero matrix elements of the operators
@, and 4] can be defined as real quantities; see QM, (64.7),(64.8). In this sense the operators
are real, i.e. 4 = d} = 4,. (4 denotes the transposed operator; cf. QM, §3.) The Schrédinger

¥ operator
PO = V1Y dyeo -t
p

therefore has the property §(r) = 15(— r). Hence in turn we have the equation (31.17) for the
Heisenberg operator
¥ (t,r) = exp ((Ht) § () exp (—iflt),

as is easily seen by noting that (for a system without spin interactions) the Hamiltonian H is

real (so that H* = H ) and unchanged by inversion. We must emphasize, however, that if the
Hamiltonian is real, there can be no macroscopic superfluid motion in the liquid. For a Bose
system with condensate, the Hamiltonian depends on a macroscopic parameter, the conden-
sate wave function £, In a moving liquid, this parameter is complex, and therefore the Hamil-
tonian also is complex (but, of course, Hermitian).
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Although the chemical potential u = 0 for an ideal gas, we shall not assert
this here, regarding u as a free parameter not specified beforehand; such a
procedure is necessary with a view to the subsequent application of G‘® in the
diagram technique for an arbitrary liquid, where u acts as such a parameter.
Accordingly, the operator 'ff“”’(t, r) is written as

\/V p; d, exp [ (p r-—-—é—’——t-&—ﬂt)] (31.19)
differing from (26.1) by the term iu# in the exponents. When this expression is
substituted in the definition of G, in accordance with (31.2), we note that on
averaging (i.e. taking the diagonal matrix element) we can obtain a non-zero
result only from the products 4,4} and did,. But, since in the ground state of
the gas the occupation numbers of all particle states with p = 0 are zero, we
have

Por(, r) =

<aA|;'- dn> = 0, (dpd; > = L

Now changing in the usual way from summation over p to integration, we get

i a
GO, r) = IJ‘ €Xp [ i > +iut+ip. r] Gy for t=0, (31.20)
0 for t<O.

Hence the Green’s function in the momentum representation is

~ 2
GYw, p) = —1i ‘- exp (—-z-;— t+mt+zwt) dt.

The integration is effected by means of the formula

oo

it P i
[e dt PR (31.21)

¢
derived by including in the integrand a factor e=* with 2 > 0 and then taking
the limit as 4 — 0. Finally we have
-1

A .
(0) — N
G, p) {w . ,u+10] . (31.22)

For an ideal gas the function F©O(X) = 0, as is evident from the definition
(31.13), in which both operators annihilate above-condensate particles. In the
momentum representation also, therefore,

FO(w, p) = 0. (31.23)

This equation expresses the fact that particles appear above the condensate
(at T = 0) only as a result of interaction.



124 Superfluidity

PROBLEM
Find the Green’s function of a phonon field, defined as
D(X;, Xp) = DX~ X;) =—KT &(Xy) 0'(Xy)), (0))

where the angle brackets denote averaging with respect to the ground state of the field, and ¢’ is
the density operator from (24.10); the chronological product is expanded by the rule (31.2).

SoLuTiON. When substituting (24.10) in the definition (1) we note that, since in the ground
state all the phonon state occupation numbers are zero, only the mean values (é,é})=1 are
other than zero. Then, changing from summation over k to integration, we obtain

— _Qi f(k . r Fuks) dak
D, r) f 2 ¢ Gy

where the minus and plus signs in the exponent refer to ¢ > 0 and ¢ < 0 respectively; in the
integral for ¢t < 0, we have renamed the variable of integration, k — —k. The integrand (with-
out the factor &®7) isthe Fourier component of the function D(¢, r) with respect to the coordi-
nates. Expanding with respect to time also, we find the Green’s function in the momentum rep-

resentation.
k) o) ]
'D(w’ k) = _'e; {f e‘(w—uk)ldt+ J"'e“w+ulc)t drt .
2iu \

0 —00
The integration is carried out by means of (31.21);

ok [ 1 _ 1 ] _ ok?
2u | wo—uk+i0 , o+uk—i0 | ?—uPk*+i0 °

D(w, k) =

§ 32. The diagram technique for a Bose liquid

The diagram technique for the calculation of Green’s functions in a Bose
system can be set up similarly to those for Fermi systems in §§12 and 13. We
shall again formulate the rules of this technique for systems with a pair inter-
action between particles, described by the operator

v =% J' P+(t, r) Y+, 1) U(ry—1,) Y(t, r) P(1, 1) d3x, d3x,. (32.1)

The chief distinctive feature of Bose liquids with condensate is that all the
Heisenberg y operators must be put in the form ¥ = ¥+ £, where ¥" is the
above-condensate part and £ the condensate wave function, which for a liquid
at rest is simply the real number 4/no.! After this substitution, the operator
(32.1) separates into a series of terms containing from four to no operators
¥ (together with the corresponding additional number of factors 4/no).

The whole discussion in §12 concerning the change to the interaction rep-
resentation remains valid, and the subsequent expansion of the expressions
obtained is carried out by means of Wick’s theorem, except that the inter-

¥ We must emphasize that, since this quantity arises from the separation into parts of the
exact (Heisenberg) y operator, n, is the exact value of the condensate density in the liquid
(at T = 0).
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change of y operators in the product being averaged does not now involve a
change of sign. The difference in the form of the terms into which the operator
(32.1) separates leads, however, to new elements in the Feynman diagrams.
These will be described in their final form in the momentum representation.

At each vertex of the diagram we again have three lines meeting: a broken
line associated with the factor —iU(Q), with 4-momentum Q = (qo, q), and
two particle lines, one ingoing and one outgoing. Here we must distinguish
condensate and above-condensate particles. The continuous lines will now
correspond to above-condensate particles, and such a line (with 4-momentum
P = (w, p)) is again associated with a factor iG‘?(P). The lines of condensate
particles will be drawn as wavy lines; these have an assigned 4-momentum
P = 0 and an associated factor 4/no.! Thus four kinds of vertices arise:

Yo WYY

)

(322)

Q - on an

i t
l !
( ¢
(a) (b) (c) (

Vertices with one or two wavy lines are said to be incomplete. At each vertex
there must be “conservation of 4-momentum”; in vertices (b) and (c), therefore,
the 4-momentum of the broken line is equal to that of the continuous line, and
in vertex (d) it is zero. The wavy lines are always external lines of the diagram,
i.e. are joined to it at only one end, the other end remaining free.

Each diagram that occurs in the definition of the Green’s function G(P) has
two continuous external lines with 4-momenta P (ingoing and outgoing), and
may also have some (even) number of external wavy lines; the total numbers
of ingoing and outgoing external lines are equal in every diagram (this expresses
the conservation of the total number of particles, condensate and above-
condensate, in the system). As for a Fermi system, and for the same reason
(see §13), only those diagrams are admissible which do not separate into two
(or more) disconnected parts. Unlike the case of Fermi systems, however, the
diagrams in iG all have the same sign, i.e. rule 3 in §13 is eliminated.

Each broken line in the diagram has a complete or incomplete vertex at its
two ends. These, however, cannot be two vertices of the type (32.2d): having
no continuous end, such a figure cannot be attached to a Green’s function
diagram. They also cannot be vertices of the types (32.2d and c) or (32.2d
and b): when there are three wavy external lines, the conservation of 4-momen-
tum at the vertices would mean that the 4-momentum of the fourth external
line would also be zero in such a figure, and we should have a figure with four
condensate (wavy) external lines.

T More precisely, a factor £ is to be associated with a wavy line coming to a vertex, and a
factor £* with one leaving; since £ is real, these factors are actually the same.
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A considerable number of diagrams in each order of perturbation theory,
constructed by the above rules, are identically zero, however. This is due to
the absence of above-condensate particles in the ground state of an ideal Bose
gas, as is particularly clear if we trace back to the origin of the diagrams in the
coordinate representation: all contractions of the form (¥"*¥"), in which the
above-condensate particle annihilation operator is to the right and acts first
on the ground state, are zero; this leaves only contractions of the form (S?”E?”*).*

Diagrams with a closed continuous line are zero: such a line arises from a
contraction (¥"*(z, r) (¢, r)), which is the above-condensate particle density.
Diagrams containing a continuous line closed by a broken line

- ——

-

are zero: such a line arises from a contraction ('f”*(t, r2) P'(t, 1)) of two
operators within the same interaction operator (z), in which ¥'* is to the left
of ¥

Lastly, all diagrams are zero in which a closed circuit is formed by any
sequence of continuous and broken lines with all the continuous lines in the
same direction. Such a circuit can be represented as follows, with the time
arguments of the 1 operators shown at the end-points of the lines:

M

The arguments at the ends of each broken line are the same.* Those of the
functions G‘@ corresponding to the continuous lines are equal to the differences
ta—t1, t3— ta, ta—ts, 11— ta; for each closed circuit their sum is zero, so that at
least one of them is negative and the corresponding function G*? is zero.

The above rules relate also to the diagrams which determine the anomalous
Green’s function, the only difference being that both the continuous external
lines must be outgoing (for F) or both ingoing (for F*). Accordingly, in these
diagrams the numbers of ingoing and outgoing wavy lines are no longer equal,
but the total number of outgoing lines remains equal to the total number of
ingoing ones. The 4-momentum P is assigned to one of the continuous external
lines, and — P to the other, where P is the argument of the required function
F(P) or F*(P);# the sum of the 4-momenta of these two lines must be zero, by
the “law of conservation of 4-momentum” applied to the whole diagram.

T For a similar reason, some diagrams were zero for two-particle scattering in vacuum;
cf. §16.

! In the space-time representation of the diagrams, a factor iU(X,— X;), which contains
the delta function &(¢,— ¢,), corresponds to a broken line between points 1 and 2.

$ Since F is an even function of its argument, the choice of sign for P is here unimportant.
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The Green’s functions calculated by the diagram technique contain two
parameters: the chemical potential u and the condensate density no; these
parameters have also to be related to the liquid density » = N/¥V. One relation
between these three quantities is given by formula (31.6), which follows im-
mediately from the definition of the Green’s function. As a second relation,
we use the equation (33.11) derived below, which expresses u explicitly in
terms of the concepts of the diagram technique.

§ 33. Self-energy functions

Let us examine more closely the structure of the diagrams for Green’s
functions, using the concept of the self-energy function in the same way as was
done in §14 for Fermi systems: by considering the set of all diagrams (with
two continuous external lines) that cannot be cut into two parts by dividing
just one continuous line. In contrast to §14, however, there are now various
possibilities as regards the direction of the external lines in the diagrams: as
well as diagrams with one ingoing and one outgoing line, there are those with
two ingoing, or two outgoing, lines. Accordingly, there are self-energy parts of
three kinds:

-iZy ~/Z20 ~iZ02 (33.1)
FmO0—=% 70=% +0=

(in this notation, the two suffixes to X' denote respectively the numbers of
ingoing and outgoing continuous external lines). As well as the continuous
external lines, the self-energy diagrams in general also have wavy (condensate)
free ends. These are included in the definition of the self-energy function, which
is represented here by a circle. We shall see later that the functions Xos(P) and
290(P) are in fact the same:

Z'oz(P) = ZQO(P). (33.2)

We may also note at this point that, since P and — P occur symmetrically in
the definition of these functions, they are even functions:
Zoz(P) = Zoz( —P) (333)

As an illustration, the following are all the non-zero diagrams of the functions
211 and Zog in the first two orders of perturbation theory:

2GR Tt A 1 N Y W

oz -3 T 335

Let us now establish the equations giving the exact functions G and F in
terms of the self-energy functions.
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In terms of perturbation theory, the difference G(P) —G©(P) is expressed by
a sum of an infinite number of chain diagrams

{
.ﬁ_o ......... O.f_D.ﬁ

|
5O OO

consisting of various numbers of circles joined in all possible ways by forward
and backward (relative to the two outermost) arrows. Similarly, the exact
function F (the function F® = 0) is represented by a sum of chain diagrams
in which the two outermost arrows have opposite directions:

If the end member (circle and arrow) is detached from each chain, as shown by
the vertical broken line, the set of remaining diagrams with the outermost
arrows in the same direction will again coincide with the exact function G,
and the set of those with the outermost arrows in the opposite direction will
coincide with the exact F.

We shall introduce the graphical notation for these functions, of thick arrows
in one or both directions

P P -R R -R

Then the foregoing assertions can be written as graphical equations consisting
of skeleton diagrams:

P P P P P-P_ P
ooy T afjm—— 1'4——04—4--.—-—04——
(33.7)

D '——Oo—.-fn——o——.
-P -° P =P P

- P
Cf. the analogous equation (14.4). In analytical form, these equations give'

G(P) = [1 +21x(P) G(P) + Zp(P) F(P)] GO(P), } (33.8)
F(P) = GO(— P)[ 21— P) F(P) + Zoo( P) G(P)]. '

t A similar system of equations could be written for G and F*, differing from (33.8) only
by the interchange of £,. and Z,,. Since F = F*, this proves (33.2).
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Solving these equations for G and F and substituting (31.22) for G®, we obtain
the required formulae

G(P) = o [+ £ n+Iu(-P)], FP) = = ZalP), (339)

where

D = (Za(P= [Eu(P)=0—10+4 —u] [ 5 (- P)+a—io+ L)

2m o
(33.10)

It must be emphasized that these relations do not depend on the internal
structure of the self-energy functions, and therefore are not connected with the
assumption of pair interactions between particles; they.are thus valid for any
Bose liquid.

The energy of elementary excitations in the liquid, as a function of the
momentum p, is determined by the poles of G and F as functions of the variable
w. For small p, these excitations are phonons, and their energy tends to zero
with p. Hence the function (33.10) must vanish when p = 0 and w = 0. From
this we find the equation

[211(0) — u]? = 235(0).
As an equation for u, it has two roots, of which we must choose

For, in the long-wave limit, the ¢ operator is given by (27.2), and its above-
condensate part ¥’ = ¥—a/no ~ iv/no®, so that ¥'+ = _¥" and F ~—G;
the latter equation is satisfied with the choice (33.11), when the numerators in
(33.9) (in the limit P - 0) differ only in sign. The equation (33.11) is the second
relation (see the end of §32), which, together with (31.6), enables us to express
the parameters u and no in terms of the density » of the liquid.

The subsequent expansion of (33.10) in series in w and p determines the form
of the Green’s function for small values of the arguments. Here we must take
into account that the scalar functions X, and 2o, are expanded in powers of
p%, and the expansion of Yo, an even function of all its arguments, contains
only even powers of w also. Putting (33.10) in the form

D = {00 —*;—[211(1’)—211(—?)]}2

p* 1 ’
_ {7’_”_ =t [Zu(P)+ Zn( —P)]} +Z%(P),

we can immediately conclude that the first non-vanishing terms in the expan-
sion have the form D = constant X (w?—u2?p?+i0), where u is a constant, which
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is clearly the velocity of sound in the liquid. Noting also that, from (33.11), the
numerators in (33.9) for o — 0 and p — O differ only in sign, we find

constant
w?—uPp?+i0

G=—F=—

The contour rule is determined by comparing with (31.8).

The value of the constant in the numerator can be determined by calculating
from this Green’s function the particle momentum distribution N(p) (for small
p) and comparing it with the known distribution (27.7). The integral

N({p) =i lim J‘ G(w, p) e~iot
f =0

dw
2r

(cf. (7.23)) is calculated by closing the contour of integration by an infinite
semicircle in the upper half-plane (cf. the note at the end of §7), and accordingly
is determined by the residue at the pole @ = —up+i0. The result is N(p) =
= constant/2up, and by comparison with (27.7) the constant is found to be
nomu?/n. Thus we have finally the following expression for the Green’s functions
with small w and p:

G = — F = nymu?/n(w? — u?p? 4- i0). (33.12)

This function coincides (apart from a normalization coefficient) with the
Green’s function of the phonon field (see §31, Problem)—an entirely reasonable
result, since for small o and p the elementary excitations in a Bose liquid are
phonons.

Lastly, let us show the application of the above formulae to the model(§25)
of an almost ideal Bose gas with pair interaction between particles. In first-
order perturbation theory, X1; and 2, are determined by the first two diagrams
(33.4) and the first diagram (33.5). Expanding these in analytical form, we find

2y = m[Upg+UP)], Zoa = noU(p).

With the same accuracy, the condensate density 7o in these formulae may be
replaced by the total gas density n. As mentioned in §25, the gas particle mo-
menta in this model may be regarded as small, and accordingly the Fourier
components U(p) may be replaced by their value Uy at p = 0. Then

211 = 2nUo, 202 = nUo. (33.13)

Substitution of these expressions in (33.11) gives u = nU,, in agreement with
(25.6). Substitution in (33.9) and (33.10) leads to the following formulae for
the Green’s functions:

_ 0+p*2m4-nU,
G, P) = — a0
U (33.19)
F(w’ p) = — e

% —e¥(p)+i0 ’
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e(p) = [(—5—;—)2+—m—2-nU0]1/2.

From the form of the denominators in these functions, it is clear that &(p) is
the energy of the elementary excitations, in agreement with the result (25.10),
(25.11) obtained previously by a different method.

§ 34. Disintegration of quasi-particles

The finite lifetime (decay) of a quasi-particle in a quantum liquid may be
due either to collisions with other quasi-particles or to spontaneous disintegra-
tion into two or more new quasi-particles. As the temperature T' — 0, the first
cause of decay disappears, since the collision probability tends to zero with the
quasi-particle number density, and the decay is then due only to the disintegra-
tion of quasi-particles.

Let us consider the disintegration of a quasi-particle (with momentum p)
into two. If q is the momentum of one of the resulting quasi-particles, that of
the other is p—q, and the law of conservation of energy gives the condition

&(p) = e(g)+e(lp—q)). (34.1)

It can happen that in some range of values of p this equation is not satisfied
for any q; the quasi-particles in such a range do not decay at all (if, of course,
disintegration into a larger number of quasi-particles is also impossible). As p
varies, decay begins at the value p = p, (disintegration threshold) for which
equation (34.1) first has solutions.

First of all, it should be noted that at the point p = p, the right-hand side of
(34.1) has an extremum as a function of q. For let the extremum value of the
sum &(g)+e(p—q)) for a given p be E(p); we shall take the particular case
where this is a minimum. Then, in the equation

&(p)—E(p) = «(9)+<(lp—q!)—E(p),

the right-hand side is non-negative. The equation therefore certainly has no
roots for values of p such that ¢(p)—E(p) < 0; a root appears only at the point
P =P, for which a(pc) = E(pc)'

Putting equation (34.1) in the symmetrical form

&(p) = e(q1) +e(ga), Wm+4q: =P,

we find that the condition for an extremum of its right-hand side may be

written 0¢/0q; = 0¢/0q,, or
V1 = V2, (34.2)

1.e. the two quasi-particles formed at the threshold point have equal velocities.
Here we may distinguish various cases (L. P. Pitaevskil 1959).
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(a) The quasi-particle velocity in the Bose liquid is zero for momentum
p = po corresponding to the roton minimum on the curve in Fig. 2 (§22).
Hence, if v, = v = 0, the quasi-particle disintegrates at the threshold into two
rotons with momenta p, and energies 4. Accordingly, the energy of the dis-
integrating quasi-particle is ¢(p,) = 24 and its momentum p, is related to po
by the condition p, = po1+Poss i.€. 2po cos 6 = p., where 20 is the angle be-
tween the directions of the two rotons. Hence it follows that we must always

have
Pe < 2po. (34.3)

(b) If the velocities are v = v; # 0, and the corresponding momenta q,
and q. are finite, the disintegration at the threshold yields two quasi-particles
with collinear (parallel or antiparallel) momenta.'

(c) If the velocities v, and v, are non-zero but one of the momenta (qs, say)
tends to zero near the threshold, the corresponding quasi-particle is a phonon
and the velocity v; = u. We then have a threshold beyond which the creation
of a phonon by the quasi-particle becomes possible. At the threshold itself,
the phonon energy is zero, and the quasi-particle velocity reaches that of sound
(equal to v = vg = u).

(d) There is one special case, in which there is a disintegration of one phonon
into two, the threshold being at the start of the spectrum, p = 0. Such a dis-
integration is, however, possible only for one sign of the curvature of the initial
(phonon) part of the spectrum: we must have d2¢(p)/dp® > 0, i.e. the curve of
&(p) must turn upwards from the initial tangent ¢ = up. This is easily seen by
representing this part of the spectrum as

e(p) ~ up+apd, (344)

which includes both the linear term and the next term in the expansion in powers
of the small momentum.* The equation of conservation of energy (34.1) then
gives

up—q—|p—ql) =—x(p*-g*-p—q[*).

Near the threshold, the phonon is emitted at a small angle 0 to the direction
of the initial quasi-particle momentum p; on the left-hand side we have

p—q—|p—q| z—;‘—’—_q;(l—cose), (34.5)

T Because of the isotropy of the liquid, the directions of the quasi-particle momentum p
and velocity v = 9¢/0p are collinear, but they may be in either the same or opposite directions.

1 The dispersion relation for acoustic vibrations gives the squared frequency w*as a func-
tion of the wave vector. Accordingly, the squared phonon energy €*(p) has a regular expansion
in powers of the momentum p; the expansion begins with a term in p? and continues in
powers of p?because of the isotropy of the liquid. The expansion of &(p) itself therefore
contains odd powers of p.
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and on the right-hand side it is sufficient to put |p—q' ~ p—gq. Then
1—cos @ = 3a(p—q)> (34.6)

Hence it follows that necessarily « > 0.

We shall see later (§35) that in cases (a) and (b) the function &(p) cannot be
continued beyond the threshold, which is thus the end of the spectrum. In
cases (c) and (d) the disintegration of a quasi-particle with emission of a long-
wavelength phonon causes a slight decay which may be determined by means
of perturbation theory.’

Let us calculate the decay of a phonon due to its disintegration into two
phonons (case (d)). The matrix elements for this process come from the third-
order terms in the Hamiltonian, given by (24.12). For a transition from the
initial (i) state with one phonon p to the final (f)state with phonons q; and q,
the matrix element of the perturbation operator is

3'2nh) [u 1/2 2 d u?
Vi = é(P—ih—‘Iz)’z—(g_V)%z“ (‘Q‘P%Qz) {1 %l?d_e—e—} ; (34.7)

the suffix O of the unperturbed density go is omitted. The factor (pqig2)"?
should be noted; its smallness (in this disintegration of a long-wavelength
phonon) ensures the applicability of perturbation theory.*

The differential disintegration probability per unit time is given by

2x Vadiq, d3q, |
dw—--—;Vf,lza(Ef E) (2::}15)6 2 .

see QM, (43.1). When (34.7) is substituted, a squared delta function appears,
which is to be interpreted as®

[0(p— a1~ q))* = "(EEVW 0(p— @1 — 9o)- (34.8)

The remaining delta function is removed by integration over d%g»; putting also
E; = up, E; = u(g1+gs), we obtain

_ 1 02 d u?)® 9= .
w—‘2—{1+ 32 do 9} p JP%(P )(p—q—1p—4)) 555 (2ﬂﬁ)3 ;

T Which of these cases can actually occur in practice depends on the specific form of the
quasi-particle spectrum e(p). Empirical results for liquid He* indicate the presence (at
pressures below 15 atm) of a short initial section of the phonon spectrum in which is an
instability of type (d). The spectrum in liquid helium terminates at a point of type (a).

? Tocalculate the matrix element (34.7), we must take into account that each of the phonon
operators ¢y and &7 can be taken from any of three factors @’ and ¥; this is the reason for the
factor 31, The delta function in (34.7) arises from the integration of the factor exp[i(p— g, — qz)-
.r/fi). Lastly, we have used the fact that the directions of p, q; and q, are almost the same.

§ The function 6(k) arises from the integral _f e™*d3x/(2n)3. If the other similar integral is
calculated atk = 0 (because one delta function is already present), and the integration is taken
over a finite volume ¥, we get V/(27)3, as isexpressed by formula (34.8).
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with independent integration over d3g; and d3g., the result must be halved,
because of the identity of the two phonons. Finally, expressing the argument
of the delta function in the form (34.5) and carrying out the integration over
d*q, = 2ng’ dgqid cos 0 (in the range g = p), we find the total disintegration
probability

W = __32075Qﬁ4 {1 +-3—1"'2— ?19— ?} . (34.9)
The phonon decay coefficient y = —im ¢ = % #w. In particular, for an almost

ideal gas, according to (25.11), u?/p =~ 4nfi%a/m?® is independent of the density.

In this case
y = 3p°/640nh30 (34.10)

(S. T. Belyaev 1958).

For phonon emissiont by a quasi-particle near a threshold of type (c), the
form of the perturbation operator is established by considering the change in
the quasi-particle energy in the sound wave. This change consists of two parts:

e
ae(p) = ao Q +V.p.

The first term is due to the change in the density of the liquid, on which the
quasi-particle energy depends as a parameter. The second term, in which v is
the liquid velocity in the sound wave, is the change in the energy of the quasi-
particle because of the macroscopic motion of the liquid; since the wavelength
of the phonon emitted (near the threshold) is large compared with the wave-
length of the quasi-particle, we may suppose that the latter is in a uniform flow
of liquid, and the change in its energy is then determined as shown at the begin-
ning of §23. The perturbation operator is found from d¢ by replacing v = v¢
and @' by the second-quantized operators (24.10), and p by the quasi-particle
momentum operator f = —i#y:

_ Oe

V=%

1
&+ @ p+P.9);

in the second term, the product has been symmetrized in order to bring it to
Hermitian form. The phonon emission probability is then calculated as pre-
viously for phonon disintegration (see Problem).

PROBLEM

Determine the probability of phonon emission by a quasi-particle whose momentum p is
close to the threshold value p, at which the quasi-particle velocity reaches that of sound.

SoLuTION. The matrix element of the operator (34.11) is taken for the creation of one
phonon (with momentum q) and the simultaneous transition of the quasi-particle between
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states (plane waves) with momenta p and p’. Near the threshold, the phonon momentum
g < p,, and the direction of q is almost the same as that of p.T We then find

A u\Y?
Vi = —iQnh)? 0(p — @, ~ Q2) 5w (-g—b-) ,

where
0 Be]
A= p,+|=—-—— .
p+[u aQ pP=mp,

Hence the differential phonon emission probapbility is

AU ool ) — el p—a ) — gl —2o0 .
A*[e(p)—-e(ip—ql)—uq] k)

dw = 7o

the delta function of momenta is removed by the integration over d%p’. Writing the argument
of the delta function in the approximate form — ug(1— cos 6) and integrating over d3q, we

obtain
w = 24*(p— p,)3[3oht.

§ 35. Properties of the spectrum near its termination point

In this section we shall consider the properties of the spectrum of a Bose
liquid near the decay thresholds (thresholds of disintegration) of elementary
excitations into two quasi-particles, neither of which is a phonon (cases (a)
and (b) in §34).* In contrast to phonon-creating disintegrations, these cases do
not allow the application of perturbation theory, and in order to investigate
them it is necessary to elucidate the nature of the singularities of the Green’s
functions of the liquid at the threshold points. On the other hand, since we are
interested only in these singularities, we can to a large extent schematize and
thus simplify the calculations. In particular, we need not distinguish between
the functions G and F (since their analytical properties are the same), and can
proceed as if there were only one type of Green’s function; taking account of
the difference between G and F would simply produce some terms with analo-
gous analytical properties in the equations, which would not affect the results.

The fact that the relevant singularity of the Green’s function is related to the
disintegration (decay) of a quasi-particle into two others means, in terms of the
diagram technique, that it arises from diagrams of the type

Q
+—__ 0 5.1
P-0

T We are taking the particular case where the phonon is emitted in that direction (and not
the opposite one). For this to be so, &(p) near the threshold must have the form

e(p) =~ &(p)+ (p—p,) u+a(p—p,)?,

with a plus sign in the linear term. From the law of conservation of energy, we easily see that
phonon emission is then possible if & > 0, and occurs when p > p,; the momentum of the
emitted phonon takes values in the range 0 = q = 2(p-p,).

 Theresults in this section are due to L. P. Pitaevskil (1959).
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which may be cut across two continuous lines, i.e. which contain two-particle
intermediate states. In these diagrams, there is integration with respect to the
intermediate 4-momentum Q = (g0, q), and a decisive role (as regards the oc-
currence of the singularity) is played by the range of values of Q and P—Q
with which quasi-particle decay products are formed near the threshold. The
basic proposition in the theory given below is that this range of 4-momentum
values is not special as regards the Green’s function G(Q), which has there the

usual pole form
G(Q) = G(90 @) < [go—&(g) + 0], (35.2)

where the function &(g) is the energy of the quasi-particles formed and has no
singularity. The only physically distinctive feature of this range is that within
it the quasi-particle can “stick” to another quasi-particle, but this process is
impossible at zero temperature, because of the absence of real excitations. The
only special region as regards the Green’s function is the range of P values
(external lines in the diagrams (35.1)) near the decay threshold of the original
quasi-particle.

The two joining linesin the diagram(35.1) correspond to factors G(Q)G(P—Q),
and there is integration with respect to Q. Here, since only a small range of Q
values is important, the remaining factors in the diagram may be taken as
constant in the integration and equal to their values at the threshold Q = Qc'.'r
Thus the diagram includes a factor expressed by the integral

i d'Q
@n)t | (90— #(q)+i0l[w—go—e(lp—q[)+i0] °
where P = (w, p). The integration with respect to qo is carried out by closing

the contour of integration with an infinite semicircle in one half-plane of the
complex variable go, and gives

(P = — f 4 (35.3)

I(P) =

(27)® | wo—e(@)—e(lp—q))+i0

We shall return later to the study of this integral; first, we must express in
terms of it the required exact function G(P), summing for this purpose all dia-
gramas of the form (35.1).

For the function G(P) we can write a Dyson diagram equation:

2
7 T TF 'T@'T (354)
P-0

T This statement needs to be made more precise. Since the factors G(Q)G(P— Q) are inde-
pendent of the angle ¢ which defines the position of the (p, q) plane. Hence the integration
with respect to ¢ amounts to averaging the rest of the integrand with respect to ¢, and then
d*Q can be taken as 27g%dqg,dq d cos 6. In this integration over d*Q, only a small range is
important. This remark applies also to corresponding stages in the following calculations.
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Here the thick lines represent the exact function /G, and the thin lines the
“non-singular” part of this function, determined by the set of diagrams that
cannot be divided across two lines. The second term on the right of (35.4)
represents the set of diagrams of the form (35.1). The white circle stands for
the exact “three-point™ vertex function, which we denote by I'(Q, P—Q, P);
the shaded circle is its non-singular part, which excludes diagrams that can be
divided across two continuous lines.” As explained previously, the integration
over d4Qleads to the presence of a factor JI(P), and the remaining factors in the
diagram are replaced by their values at Q = Q,. Thus equation (35.4) signifies

that
G(P) = a(P)+b(P)G(P)T'(P)II(P), (35.5)

where I'(P) = I'(Q,, P—Q,, P), and a(P), b(P) are some functions regular near
the threshold P = P..

In (35.5) there are two singular functions G and I', and to express them in
terms of I a further equation is therefore needed. This is found by noting that
the exact vertex function I is represented by a “ladder” series:

o 0 A

similar to (17.3) for a four-point vertex function. Summation of this gives the

equation
0 o 0
)
O£ = Y-t - DL
P
P-0 P-G p-o O

(cf. (17.4)); in analytical form, with @ ~ Q,, it gives
L'(P) = c(P)+d(P) II(P)I'«P),

where ¢(P) and d(P) are regular functions. Now eliminating I", from the two
equations obtained, we find the required expression for the Green’s function
in terms of II:

A(P) II(P)
1+ B(P) II(P)

G-YP) = +C(P), (35.6)
where A4, B and C are functions that are likewise regular (near P = P,).

The subsequent calculations are different for the various types of quasi-
particle disintegration.

T The situation here is analogous to Dyson’s equation in quantum electrodynamics (see
RQT,§104): as there, the whole required set of diagrams is obtained by applying corrections
to onty one of the vertex functions.
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(a) Threshold for disintegration into two rotons

In this case, the energy e(g) of the particles formed near the threshold is given
by (22.6), and the integral (35.3) becomes
d?
M, g) = f o240t o+ (p—al~poPl| = (5 G5

For the integration, we use new variables g, g,, according to the definitions

gx = (posin 8+ gg) cos ¢,
gy = (posin0+q,)sin @,
g- = pocosB+q:,

the z-axis being in the direction of p, and the angle f defined by the equation
2po cos 0 = p. Near the threshold, ¢, and g, are small, and we have with the

necessary accuracy
q = po+q,sin 0+ q; cos 0,

'P—q; = py+q,sin6—g; cos b,
d*q ~ pysin 0dq, dq, do.

The expression in the braces in (35.7) becomes

{w — 24— 7117 (9,2s1n? 0+ g% cos? 6)}

and after a further change of variables
g.Sin @ = 4/m*pcosy, ¢q,cos@ =4/m*psiny

we find, integrating with respect to v,

___m'p, 0dp
H(w’p)— 27!0056"‘ _w+2A+92.

The divergence of this integral for large p is due only to the approximations
made, and is not important; cutting off the integral at some value g2 = [24— w|
gives a contribution only to the regular part of I7. The singular part of this
function, with which we are concerned, arises from the range near the lower
limit of integration, and is found to be

1T o log EZI:Z; . (35.8)

For small values of 24—w, this logarithm is large; substituting (35.8) in
(35.6) and expanding in inverse powers of the logarithm, we obtain

a -1
G Yo, p) = b-’rc(log 2A——w) ,
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where a, b and ¢ are further regular functions of w and p. At the threshold
(p = p,), the energy of the disintegrating quasi-particle is 24. Since the energy
of quasi-particles is determined by the zeros of G~2, this means that G124, p.)
= 0, and for this we must have b(24, p.) = 0. The regular function b(w, p)
is expanded in integral powers of the differences p— p. and w—24; replacing
also the regular functions a(w, p) and c(w, p) by their values at the threshold,
we arrive at the following expression for the Green’s function in the region
near the threshold:

G40, 1) = B [ p—peta loa577) (3.9)

where a, « and 8 are constants.

Equating this expression to zero, we find the spectrum (p) near the threshold.
If the range in which disintegration is impossible lies at p < p,, € < 24, the
constants « and @ must be positive, and the equation G~! = 0 has the non-
decaying solution

«
e=24—aexp|— . 35.10
o (-7 ) (35.10)
We see that the spectrum reaches the threshold with a horizontal tangent of
infinite order. In the range p > p,, however, the equation G™! = 0 has no
solutions, real or complex, with ¢ ~ 2/ for p ~ p.. In this sense the spectrum
does not continue beyond the threshold, but terminates there."

(b) Threshold for disintegration into two quasi-particles with parallel momenta.

Since at the threshold, with p = p,, the expression &(g)+&(/p—ql) as a
function of ¢ must have a minimum, its form near the threshold is

dq)+e(lp—ql) = e+ vdp—p)+2(q—qo)*+Bl(q— o) - P]?,  (35.11)

where « and § are constants, v, is the velocity of each of the quasi-particles
formed by disintegration at the threshold, and qo is the momentum of one of
them. Substituting (35.11) in (35.3) and using new variables of integration
defined by

P=4—qQo, Q+Pc= 0P COSY,

we obtain

II(w, p) =

1 o*dodcosy
(2m)? &— &c— U p— pec) —ap®— o2 cos? y .

This integral has a square-root singularity at the threshold:
IT oc [0{p—pc)— (e— &)V (35.12)

T As already mentioned in the third footnote to §34, the spectrum in liquid helium in fact
ends at a point of this type; the curve in Fig. 2 approximates to the straight line ¢ = 24, with
a horizontal tangent.
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Substituting this in (35.6), we find the Green’s function near the threshold:
G~Y(w, p) = A(w, p)+ B(w, ) [v(p—pc)— (00— e)]V2.

Since G~(e,, p,) = 0, and A4 and B are regular functions, we can expand the
latter in powers of p—p_. and w—¢_, and finally obtain

G-lc [vc(p—pc)"(w“sc)]1/2+[a(p_Pc)+b(w_Ec)]’ (35.13)

where a and b are constants.

The form of the spectrum is determined by the equation G~(g, p) = 0.
We seek its solution in the form e—e¢, = v (p—p_)+constant X (p—p )?; if this
exists for p < p,, we must have a+bv, = 0, and then

& = g+ 0 p—pc)—(a+bv.)?(p—pc)’. (35.14)

With the same condition at p > p_, the equation G~1 = 0 has no solution with
¢ = ¢, for p~p,. Thus in this case also the spectrum terminates at the thresh-
old.



CHAPTER 1V

GREEN’S FUNCTIONS AT NON-ZERO
TEMPERATURES

§ 36. Green’s functions at non-zero temperatures’

THE definition of the Green’s function of a macroscopic system at non-zero
temperatures differs from that at zero temperature only in that the averaging
with respect to the ground state of a closed system is replaced by an averaging
over the Gibbs distribution: the symbol (. ..) now denotes

Q-E, )

(o) = Townn] ., w,,::exp( = (36.1)

where the summation is over all states of the system (distinguished both by
the energy E, and by the particle number N,), E, = E,—uN,, and (n| ... |n)is
the diagonal matrix element with respect to the nth state. The mean values thus
defined are functions of the thermodynamic variables T', u and V.

In the study of the analytical properties of Green’s functions at non-zero
temperatures (L. D. Landau 1958) it is convenient to use what are called re-
tarded and advanced Green’s functions, whose analytical properties are sim-
pler.* We shall take the particular case of Fermi systems.

The retarded Green'’s function is defined by

T (XD X+ (XD Tu(X)), 11> 1y,

0, H < ts

iGR(X1, X3) = { } (36.2)

For a microscopically homogeneous non-ferromagnetic system, in the absence
of an external field, this function (like the ordinary &,z) feduces to a scalar
function depending only on the difference X = X;— X!

GX(X1, X2) = 8,4GR(X), GR= GR. (36.3)
The change to the momentum representation is made in the usual way.
But, since G®(¢, r) = 0 for ¢ < 0, in the définition

GR(w, p) = [ [ eXet=5+7 GR(, x) di dox (36.4)
0

t In §§36-38, the units used are such that # = 1.
$ These functions are customarily denoted by indices R and A respectively.
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the integration with respect to ¢ is actually taken only from O to <. The dis-
placement of the variable w into the upper half-plane simply improves the
convergence of such an integral. Hence the integral (36.4) defines an analytic
function without singularities in the upper half-plane of .! In the lower half-
plane, where the function G® is defined by analytical continuation, it has poles
(see below).

We can obtain for G® an expansion similar to (8.7) for G at T = 0. Expand-
ing the matrix element (n' ... n) of the product of y operators by the matrix
multiplication rule and expressing the matrix elements in the form (8.4), we
have

GR(1,1) =} 3 wale~tmt~tmn-1n | §.(0)| m)(m §+(0) )

, m

+ei(wmnf‘km . l')<n : ’17):'(0) : m><m 1I i;’a(o) | n>}9

where o, = E, —E,, k,, =P,—P,. The summation over n and m has
slightly different meanings for the two terms in the braces: in the first term,
the numbers of particles in the states n and m are related by N,, = N,+1,
and in the second term by N,, = N,—1. In order to eliminate this difference,
we interchange the suffixes m and » in the second sum. Noting also that

(n | 9a(0) 1 1y {m |37 (0) 1) = [(n! Pa(0) 1) * = Apuny
we can write the whole expression as

iGR(t, 1) = L Y woe—iomi—knn-04, (1 +e=omT), 1>0. (36.5)

m, n

Lastly, in calculating the integral (36.4) we replace @ (as in §8) by w0,
obtaining finally

Amna _kmn
GR(w,p) = 52 Y w, w_c(op +i0) (1 +e—wm/T), (36.6)

It should be noted that all the poles of this expression lie (in accordance with
the above analysis) below the real axis, in the lower half-plane of w.

The latter property is sufficient to establish a certain relation between the
real and imaginary parts of the function, called the Kramers-Kronig relation
or the dispersion relation:

o0

‘0 GR
reGR(w,p)=—1—Pf im GR(u,

L (36.7)

T u—aow

-0

compare the similar relation for «(w) in Part 1, §123. The validity of this can
also be verified directly, by separating the real and imaginary parts in (36.6)

T Compare the analogous discussion for the function a(w)in Part 1, §123. The correspond-
ence of the analytical properties of the functions G® and « is, of course, not due to chance.
From Part 1, (126.8), a is expressed similarly in terms of a certain operator commutator.
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through the use of (8.11). It may also be noted that the latter formula allows
(36.7) to be rewritten as

o0

1 )
GR(w,p) = — J‘ -u-‘-’_—(Z‘-)-{—)l-.(-)-du, (36.8)

where
e, p) = —4n* 2 WA (U — W) P —Kpn )(1 €7 /T,

m, n
For real w, p = im G*.

The representation (36.8) acquires a deeper significance if we take the
“macroscopic limit” ¥ — e (for a given ratio N/¥). In this limit, the poles
o, coalesce, and p(u) becomes non-zero for all », and is not just a sum of
delta functions at discrete points. Then formula (36.8) determines G¥(w) di-
rectly in the upper half-plane of w and on the real axis. To determine G*(w)
in the lower half-plane of w, it is necessary to make an analytical continuation
of the integral, and this requires the contour of integration to be deformed in
such a way that it always passes below the point ¥ = w. Here G®(w) may have
singularities in the lower half-plane (at a finite distance from the real axis),
and the contour of integration is then “pinched” between the pole u = @
and the singularity of the numerator.

The advanced Green’s function is defined similarly by

0 n > t29

— (T (X)) P (X)) + 5 (X2) P Xn)), 1< rg.} (369)

iGA( X1, X,) = {

The function G*(w, p) in the momentum representation is an analytical function
of the variable w, without singularities in the lower half-plane. Its expansion
differs from (36.6) by a change of sign of i0 in the denominators. This means
that on the real axis G*(») = G®*(w), and throughout the w-plane

GA(w*) = GR*w). (36.10)

As w — oo, GX and G* tend to zero in the same way as G:

GR.GA ~ 1/vw as |w| —=eo. (36.11)

The coefficient unity in this asymptotic expression is determined (see the deri-
vation of (8.15)) by the discontinuity of the function at ¢, = #1, which is inde-
pendent of temperature and is the same for all three functions G¥, G4, G, as is
clear from their definitions.

To establish the relation between the functions GR and G* thus defined and
the ordinary Green’s function

iGap(X1, X2) = (T P (X1) PH(Xa)), (36.12)
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we obtain for the latter an expansion analogous to (36.5). Calculations exactly
similar to those above give the result!

G(@, ) = = 5 7P 3. Wndmd@—Knn) X
X {-w—l-:o— (14+e=2miT)+imd(w —ma) (1 —e““’mJT)} . (36.13)

Comparison of (36.13) and (36.6) shows that

GR(w, p)
G4(w, p)

The same expressidn (36.13) also shows that

}= re G, p)+i coth (w/2T) im G(w, p).  (36.14)

sgn im G(w, p) = —sgn . (36.15)

It should be noted that G, unlike G® and G4, is not an analytic function of w.
As T — 0, coth (»/2T) — sgn w, it follows from (36.14) that on the real

axis
R
G- 0% @=0 (36.16)
G4, w-<0O.

Thus the function G(w) for T = 0 is equal, on the two halves of the real axis
of w, to the limits (as 'im w| — 0) of two different analytic functions: GR(w)
on the right half and G*(w) on the left half.

It is easy to write down expressions for G® and G“ in an ideal Fermi gas.
We need only observe that they satisfy the same equation (9.6), the derivation
of which used only the magnitude of the discontinuity of the function at t; = ».
The method of passing round the pole is known from the fact that the pole
must be below the real axis for G‘©® and above it for G©4, Hence

2

-1
GOR, 4(e, p) = [w——:‘%n—-{—y:f:iO] , (36.17)

which is valid at both zero and non-zero temperatures. For the function G*?,
we find, according to (36.14),

GO(w,p) = P

1 —intanh -2 .8 (o—P (36.18)
o—p2m+p 2T ( 2m “)' '
AsT — 0, we return to formula (9.7), which differs from (36.17) in that +i0 is
replaced by i0. sgn w.

t In changing to the momentum representation, the integral with respect to ¢ is divided
into two parts, from — oo to 0 and from 0 to oo in one of these, the summation suffixes m and
n are interchanged.
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The corresponding formulae for a Bose system are as follows. The retarded

and advanced Green’s functions are defined by

F X)X - P+ X P(X)), 0>t

0, I <t
0 ‘= 15, (36.19)

—(PX) V(X)) - P+ (X)) P (X)), <t

iGR(X1, X2) = {

IGAX, X) = {

For temperatures above the A-point, these definitions involve complete y oper-
ators; below the A-point, they relate to above-condensate operators. Instead
of (36.6) we now have

GR(w, p) = 27 3, wy 20— Krmn)

— o= Yma/T
3 wa SR (1—ememT). (3620

This function is related to G by
GR(w, p) = re G(w, p)+itanh (w/2T).im G(w, p). (36.21)

On the real axis,
im G(w, p) < 0; (36.22)

G is defined, according to (31.1), with averaging over the Gibbs distribution
instead of averaging with respect to the ground state. For an ideal Bose gas,
the function G® is given by the same formula (36.17), and G is

1 ) ) p?
©) — _ i _P ,
GO, p) = P~ i coth a(w 2 +y). (36.23)

The physical significance of the Green’s functions at non-zero temperatures
is essentially the same as at T = 0. The formulae relating G to the particle
momentum distribution (7.23) and to the density matrix (7.18), (31.4), remain
valid, of course.

The basic propositions which assert the coincidence of the poles of the
Green’s function with the energy of the elementary excitations also remain
valid (but, since G itself is not analytic, it is here more convenient to refer to
the poles of the analytic function G® in the lower half-plane of w, or to those
of G4 in the upper half-plane). This statement again (as in §8) follows from the
expansion (36.6). Although different terms of this expansion now contain the
transition frequencies w,,, between any two states of the system, there still
remain (after taking the macroscopic limit) poles corresponding only to transi-
tions from the ground state to states with one elementary excitation. Transitions
between two excited states do not produce a pole in the macroscopic one-
particle Green’s function, for the same reason that no pole results from tran-
sitions from the ground state to states with more than one quasi-particle (see§8):
the energy difference of such states is not uniquely determined by their momen-
tum difference.
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We must also emphasize that at non-zero temperatures the lifetime of quasi-
particles is governed not only by their intrinsic instability but also by their col-
lisions with one another. The decay from both causes must be weak if the con-
cept of quasi-particles is to continue to be meaningful.

§ 37. Temperature Green’s functions

To construct diagram techniques for calculating the Green’s function at
non-zero temperatures, it would be necessary to change from the Heisenber g
representation of the v operators to the interaction representation, as in §12.
This would again lead to an expression differing from (12.12) only in that the
averaging is not with respect to the ground state. This is, however, a very im-
portant difference: the averaging of the operator S~ can no longer be separated
from that of the other factors as was done in going from (12.12) to (12.14).
The reason is that a state other than the ground state is not converted into itself
by the operator $~1, but into some superposition of excited states having the
same energy (which includes the results of all possible mutual scattering pro-
cesses of quasi-particles). This causes a considerable complication of the dia-
gram techniques, and new terms arise from contractions involving also v oper-
ators from $-1.

We can, however, alter the definition of the Green’s function in such a way
that such complications do not occur. The mathematical formalism based on
this definition, which was developed by T. Matsubara (1955), is especially
suitable for calculating the thermodynamic quantities of a macroscopic system.

We define Matsubara v operators by'

PM(z, 1) = B P (r) e~ 7, ]

37.1y

PH(z,1) = e ) e 7, [ oD
where 7 is an auxiliary real variable; these operators formally differ from the
Heisenberg ones in that the real variable ¢ in the latter is replaced by the ima-
ginary variable —iv.* A similar change (¥ — ¥M, ¥+ P, io/0t - —0/07),
for example in (7.8), gives the equations satisfied by the operators (37.1). With
these operators, a new Green’s function £ is defined similarly to the definition
of the ordinary Green’s function G in terms of the Heisenberg % operators:

Gup(T1, 115 To, ¥2) = — (T, P M7y, 11) PY (10, 12)), (37.2)

T In this section we shall write the formulae simultaneously for Fermi systems and for
Bose systems (above the A-point). When there are alternative signs, the upper signs correspond
to Fermi systems and the lower ones to Bose systems. The spin indices are to be omitted for
Bose systems.

31t must be emphasized that, because of this change, the operator ¥¥ is not the same
as p¥+



§ 37 Temperature Green’s Functions 147

where T, is the “z-chronological operator”, which places the operators from
right to left in order of increasing = (with change of sign when operators are
interchanged for Fermi systems); the brackets {...) denote averaging over the
Gibbs distribution. This averaging may be written explicitly if the definition
(37.2) is expressed as

Goo =t (P T PW e 1) PP}, 9= e (222), @73

where tr denotes the sum of all the diagonal matrix elements. This is called a
temperature Green’s function, in contrast to the “ordinary” function G, called in
this connection a time Green’s function.

Like G, G 4 for a non-ferromagnetic system in the absence of an external
magnetic field reduces to a scalar: &, = €0, For a spatially homogeneous
system, its dependence on r, and r, again reduces to a dependence on the dif-
ferencer = r1—r,.

It is also easily seen that, by its definition (37.3), £ depends only on the differ-
ence T = 7,—7,. For example, let 1, < 7;; then'

G =+ T tr {e BT B 1) =t B 1) e,

or, with a cyclic interchange of factors in the trace,

g = +(—2)-e9/1‘tr [e~OT B pt(r) eB g (ry)), T<0, (374)

which makes evident the truth of the statement.
The variable 7 in practice takes values only in a finite range

—1T<7<1T. (37.5)

The values of £(z) for T < 0 and 7 > 0 are related in a simple manner. When
T = 71—72 > 0, we find, similarly to the derivation of (37.4),

g = —Tz‘)‘ e tr {e=OT-0 B ,(r1) e=H it (ra)}
_ (_2_)_ 9T tr {e—zﬁ' DF(rs) e~ WT-D A 17J¢(l'1)}, T >0,
and comparison with (37.4) gives
9@ =F4@+1T), v<0; (37.6)

from (37.5), the argument of the function on the right is positive when 7 < 0.

t The factor 2 in parentheses applies to Fermi systems; it is to be replaced by 1 for Bose
systems,
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Let us now expand &(z, r) as a Fourier integral with respect to the coordi-
nates and a Fourier series in 7 (over the range (37.5)):'

= ®.r={,7) il S
Gen=7 3 [eor-0gtnohs; (31.7)
for Fermi systems
{s = (2s+1)nT, (37.8a)
and for Bose systems
L, = 2saT, (37.8b)

s =0, +1, £2, ...; the condition (37.6) is then automatically satisfied. The
inverse transformation to (37.7) is
YT

¢ p) = f [ e=t®-r=tm) G(x, 1) d*x dr; (37.9)
0
the integral over the range —1/T =1t = 1/T is converted into one from 0 to
1/T, using (37.6) and (37.8).
Calculations similar to those in §36 enable us to express &(C,, p) in terms of
the matrix elements of the Schrodinger v operators, with the result

__ 8 Amna(p_kmn)
4@, p) = _-(T Z Wmn

m,n iCs — Wmp

(1+e-=nT).  (37.10)

Hence we see, first of all, that

G(—lsp) = ' p). (37.11)

Next, comparing (37.10) with the expansions (36.6) and (36.20) for G, we
find that '
4, p) = GR(ils,p), s =0. (37.12)

The condition {; = 0 is due to the fact that the expressions (36.6) and (36.20)
are immediately valid only in the upper half-plane of w, as explained in §36.
Similarly, we find that g(,, p) = GA(i,, p), {, < 0. Thus the temperature
Green’s function in Fourier components is the same as the retarded or ad-
vanced Green’s function at discrete points on the imaginary w-axis. In particu-
lar, this result leads at once to an expression for the temperature Green’s func-
tion in an ideal gas: replacing w by i, we find from (36.17)

g9, p) = [iCs“'ip%"{' y] - (37.13)

In the next section, the diagram technique for calculating the function
G(¢,, p) will be described. To determine G*(w, p) (and therefore, in particular.

T This device is due to A. A. Abrikosov, L. P. Gor’kov and 1. E. Dzyaloshinskii (1959) and
E.S. Fradkin (1959).
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to determine the energy spectrum of the system), we must construct an analytic
function equal to &(C,, p) at the points w = i, and having no singularity in the
upper half-plane of w. This procedure is unique if we add the requirement
that GR(w, p) - 0 as |@| — o ; see (36.11). Nevertheless, in specific cases such
an analytical continvation may involve some difficulties. It is, however, unne-
cessary in calculating the thermodynamic quantities.

For example, to calculate the potential 2, we can start from the expression
for the density matrix averaged over the Gibbs distribution,

Noug(ry, T2) = =EGop(71, 115 710, 12), (37.14)

which is evident from the definition (37.2); cf. (7.17). Putting r2 = r, and sum-
ming over a = f3, we find as the density of the system

N _ = e d*p
F=%T 3 Ue(a:,,p)e : (27‘)3]“._0. (37.15)

S B= =00

This expression determines N as a function of u, T and V, and Q(u, T, V) is
then calculated by integrating the equation N = — 62/0pu.

§ 38. The diagram technique for temperature Green’s functions

The diagram technique for calculating the temperature Green’s function &
is established in a similar way to that in §§12 and 13 for the time function G.
The fact that the definition of the Matsubara y operators (37.1) differs from
that of the Heisenberg operators only in the formal replacement of it by =
enables us to make considerable use of direct analogy.

First of all, let us define the Matsubara operators in the interaction represen-
tation; they differ from (37.1) in that the exact Hamiltonian A’ is replaced by
the free-particle Hamiltonian A,:

P(z,r) = exp (vHy) Pu(r) exp (—tHy). (38.1)

The relation between the operators ¥ and ¥ is given by the Matsubara
S-matrix, constructed similarly to (12.8):

(72, 1) = Ty exp { — j" Po(7) dr} s (38.2)
where b
Py(v) = exp (vHy) V exp (—tH,) (38.3)

is the interaction operator in that representation. But, whereas in §12 the rela-
tion between ¥ and ¥, was established with the initial condition that the inter-
action was “switched on” at ¢ = — -, the “initial” condition must now be
that ¥ and ¥¥ are the same at 7 = 0. Accordingly, we have instead of
(12.11)

PM(1) = 6-Y(x, 0) PM(<) 6(v, O). (38.4)
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We substitute this expression in the definition (37.3) of the Green’s function;
taking the particular case 7, > 7», we find

Gap(11,7) = —tr {96112, 0) (%, 6(13, 0) 5-X(z2, 0) Toh(1) 872, 0));
the arguments r, and r are omitted, for brevity. Noting that, when 7, > 7, =73,

(75, 73) = 6(T1, Ta) (T2 73)s

(T, Ty) 6713, T1) = 6(Ty, T3)s
we obtain

GoplT1n Ta) = = “{ wo (% 0) [‘3 (—}' ) fl) P¥(ry) (71, 73) D21 6(za, o)]} :

The factors in the square brackets are already in order of increasing 7 from right
to left. We can therefore write

Gupl(tyy T5) = — tr (06T, PM(1y) T2(15) 61}, (38.5)

where
6 = o(1/T, 0).

It is casily verified that in this form the expression remains valid for 7; < 7

also.
In contrast to (12.12), equation (38.5) contains an extra (Gibbs) factor,

and the averaging is over states of a system of interacting particles. We shall
show that these two differences cancel out,and a complete analogy with (12.14)
exists. To do so, we use the formula

e~ = e—+Hi5(z, 0), (38.6}

which is obtained by substituting (38.1) in (38.4) and then comparing the re-
sulting expression with the definition of ¥ (37.1). By means of (38.6) we can
substitute in (38.5)

e"ﬂ'/T&"l(l/T, 0) = e— BT

The factor %7 is taken outside the trace, moved from the numerator to the
denominator, and put in the form

e=2IT — tre~H'IT — tr o~ HIT 5(1/T, 0).

Lastly, multiplying the numerator and denominator by exp(£o/T"), where 2,
is the thermodynamic potential of an ideal gas for the same values of u, T and ¥V,

we find

aaﬂ('ﬁ, 12) == "<'5_1'>'(')’ <T1 ’I’o}‘o{(rl) @%(12) &>O’ (38 7 )
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where the averaging is with respect to the states of a system of non-interacting
particles:

(.o = tr{ip...}.

There is an evident analogy with (12.14).

To change to the diagrams of perturbation theory, as in§13, we expand (38.7)
in powers of the interaction operator V(7). For a system with pair interaction
between particles, this operator differs from (13.2) only in that the Heisenberg

operators ¥, Wi are replaced by Matsubara operators ¥, U™, The mean
values of the products of y operators are again expanded by Wick’s theorem
(i.e. by taking all possible ways of contracting pairs of operators); the validity
of this theorem in the macroscopic limit is proved in this case by the same
arguments as in §13.

The rules of the diagram technique thus obtained are entirely analogous to
the rules derived in§13 for T = 0. The graphical form of the diagrams is exactly
the same. There is only a slight change in the rules for analytical reading of the
diagrams.

In the coordinate representation, each continuous line from point 2 to
point 1 is associated with a factor —&Q(7y, r1; 72, r2) (with a minus sign).
Each broken line joining points 1 and 2 corresponds to a factor — U(r1—rg) X

X 8(t1—72). For all variables = and r of internal points in the diagram, there is
integration over d3x through all space, and over dr from O to 1/T.

In changing to the momentum representation, we must expand all functions
49 in the form (37.7). After the integration with respect to all the internal
variables r, a delta function appears at each vertex of the diagram, expressing
the law of conservation of momentum (Zp = 0). There is also at each vertex
an integral of the form

T }/TexP{ —i1(8s,+ L5y + {ap)} dv.
0

This integral is (from (37.8)) zero unless X, = 0, and in this case is equal to
unity. Thus the law of conservation of discrete frequencies is also satisfied at
each vertex. Bach continuous line is now associated with a factor — g%}
(&, p); a closed continuous line again has a factor n‘®(u, T), the ideal-
gas density for given u and T. For each broken line there is a factor — U(q).
There is integration and summation over all momenta and frequencies that
remain undetermined by the conservation laws at all vertices, in the form

oo d3
T“Z_” —(2;33

The coefficient of the whole diagram in — &, is (—1)* for Fermi systems,
where L is the number of closed sequences of continuous lines in the diagram.
For Bose systems, the coefficient is unity.
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In these techniques also, of course, as when T = 0, we can make a partial
summation and define various “blocks” in the diagram. In particular, we can
determine the vertex part, which is expressed in terms of the two-particle Green’s
function. This vertex part is related to & by a Dyson equation analogous to
(15.14). We shall not write out the corresponding formulae, whose derivation is
entirely similar to that in the diagram technique for T = 0.

When we make the transition to the case T = 0, the sums over s in the
Matsubara diagrams become integrals over {, and the Matsubara techniques
become very reminiscent of the ordinary ones described in Chapter II. There
is a difference, however, in that for real { the Matsubara functions are the same
as the values of G and G* on the corresponding halves of the imaginary
axis; see (37.11), (37.12). In changing to the ordinary technique for T = 0,
we must also rotate the contour of integration until it becomes the real w-axis.



CHAPTER V

SUPERCONDUCTIVITY

§ 39. A superfluid Fermi gas. The energy spectrum

THE whole of the Landau theory given in Chapter I applies only to one class
of Fermi liquids—those whose energy spectrum is not such as to lead to super-
fluidity. This is not the only possible type of spectrum for a quantum Fermi
liquid, and we shall now go on to consider Fermi systems with spectra of a
different kind. The origin of such spectra and their basic properties can be most
clearly perceived from a simple model which allows a complete theoretical analy-
sis: a degenerate almost ideal Fermi gas with attraction between the particles.

A slightly non-ideal Fermi gas with repulsion between the particles has been
discussed in §6. At first sight, the calculations given there are equally valid
whether there is repulsion or attraction, i.e. whether the scattering length a is
positive or negative. In fact, however, for the case of attraction (a < 0) the
ground state of the system thus found is unstable with respect to a certain
rearrangement that alters its character and lowers its energy.

The physical nature of this instability consists in a tendency of the particles
to “pair” by forming bound states of pairs of particles lying near the Fermi
surface in p-space and having equal and opposite momenta and antiparallel
spins—the Cooper effect (L. N. Cooper 1957). It is noteworthy that this effect
occurs in a Fermi gas, however weak the attraction between the particles.

Because of this effect, the set of operators 4, d;, used in the problem of a
Fermi gas with repulsion, corresponding to free states of individual particles
of the gas, cannot now serve as a correct initial approximation in perturbation
theory.? Instead, we must use from the start new operators, which we shall
seek in the form of linear combinations

by— = tpdy— +vp4Ly, 1 }
bo+ = tplpy —vpdt,,
of the operators of particles with opposite momenta and spins; the suffixes +

(39.1)

t This problem is the basis of the theory of superconductivity due to J. Bardeen, L. N.
Cooper and J. R. Schrieffer (1957). The method of solution given below is by N. N. Bogolyu-
bov (1958).

* An indication of the inapplicability of perturbation theory (in the form used in §6) to
pairs of particles with spin components + 1 and momenta p, ~ — p, is already given by the
presence of the singularity at # = n of the expression given by this theory for the quasi-
particle interaction function (6.16); this singularity exists only with antiparallel spins, corre-
sponding to the eigenvalue — 3 of the operator o,.c,.
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and — refer to the two values of the spin component. Because of the isotropy
of the gas, the coefficients #, and v, can depend only on the absolute magnitude
of the momentum p. In order that these new operators should correspond to
the creation and annihilation of quasi-particles, they must obey similar Fermi
commutation rules to those of the old operators:

bobih + 5350, = 1, (39.2)

and all other pairs of operators anticommute (the suffix « labels the two values
of the spin components). For this to be so, the transformation coefficients must

be such that

wi+vd =1, (39.3)

u, and v, may be made real by a suitable choice of the phase factor. The inverse
transformation to (39.1) is

dyy = upbp+ +vpbtm -9 }

(39.4
d,_ = upb,_ —vpb*, .. )

For the same reasons (the predominant role of the interaction between pairs
of particles with opposite momenta and spins), we shall retain in the second
sum in the Hamiltonian (6.7) only termsin whichpy = —-pa=p, p;= —p; =p"

2

H = Z "gnTﬁptdw - % Z, Ay Bty Ay, _ Gy, (39.5)
p, « P, P

again with the “coupling constant” g = 4n#% a|/m (the scattering length

a < 0).

In subsequent calculations, it will again be convenient to use the customary
procedure for avoiding the need to take explicit account of the constancy of
the number of particles in the system: as a new Hamiltonian, we use the differ-
ence ' = H— uN, where

N= Z B g
) 1
is the particle number operator; the chemical potential is then determined, in
principle, by the condition that the mean value N is equal to the given number
of particles in the system.
We shall also use the notation

Np = p2m—pu. (39.6)
Since w ~ p%/2m, we have near the Fermi surface
nr = vr(p—pr), (39.7)

where vp = pp/m. Subtracting uN from (39.5), we can thus write the initial
Hamiltonian as

B = ¥ 0,85 0p—5- T 85, 8%y, Gy, by (39.8)
P x D, P
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Here we make the transformation (39.4). Using the relations (39.2) and (39.3)
and the possibility of replacing the summation suffix p by —p, we obtain

B =2Y nd+ ¥ nui—v3) (b3t by + 55 by-)
P ]
+2 Z npupvp(b;+ 5ip- -+ b—p. - bp+) - '%" Zp, B:" Bp’ (39-9)

By=utb_, b, —vpbi bty _top(by, _bt, _—BL 5,.)

The coefficients u, and v, are now chosen from the condition that the energy £
of the system be a minimum for a given entropy. The entropy is given by
the combinatorial expression

S =— 3 [np, log ny+(1—ny)log (1 —ny)].

The condition stated is therefore equivalent to minimizing the energy for given

quasi-particle occupation numbers n,,.
In the Hamiltonian (39.9) the diagonal matrix elements are zero except for

terms containing the products
by by = Npsy by by = 1—n,,.
Hence

£=2 ; p¥p + ;np(uﬁ‘vﬁ)("w +ny-) "’ig/‘ [g. V(1 — 1y — np—)]2 . (39.10)

Varying this expression with respect to the parameters #, and using the rela-
tion (39.3), we find as the condition for a minimum

OE 2
r ?p-(l —ny, —Ny_) [anup'vp - Jf-,—(uf, - v,z,);up,vp»(l — Ny — npo_)] =0.
Hence
2,0, = A(uz—v}), (39.11)

where 4 denotes the sum

4=L Tupl-n.—m,) (39.12)

P

From (39.11) and (39.3) we can express u, and v, in terms of 77, and 4:

upl 1 (1 ——ﬁ’———) 39.13

'vf,} 2\ E V@) H13)

Substituting these values in (39.12), we obtain an equation for 4:

g Y 1—ny, —np
2V ¢ V(L+np)
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In equilibrium, the quasi-particle occupation numbers are independent of the
spin direction and are given by the Fermi distribution formula (with zero chemi-
cal potential; cf. the last footnote to §1):

Ny, =ny_ =np, = [T+ 1] (39.19)

Changing also from summation to integration over p-space, we can write this
equation in the form
1 1—2n, d3p
2% | V) Qahyp

=1. (39.15)

Let us now analyse the relations obtained above. We shall see that 4 plays

a basic role in the theory of spectra of the type under consideration. We shall
first calculate its value 4o for T = 0.

When T = 0 there are no quasi-particles, so that n, = 0 and equation (39.15)
becomes

g drp®dp

2k | A/(M+m3)

(39.16)

We may note immediately that this equation certainly could not have a solution
for 4o if g < 0, i.e. in the case of repulsion, since the two sides would then have
opposite signs.

The main contribution to the integral in (39.16) comes from the range of
momenta where Jdo < v ' pr—p| << gpr ~ U, and the integral is logarith-
mic; the smallness of Ao relative to p is confirmed by the result. Cutting off
the logarithmic integral at some 7 = & ~ u, we have'

[ p>dp ~ PF dn___ . 20F 15, ¢
J 143+ (pr—py 2 vr | (BG+9BR T vp T T Ay
Hence
(gmpr/2n%®) log (§/4,) = 1, (39.17)
or
Ay = Eexp (—2n3/gmpr) = Eexp(—nhi/2pr | a)). (39.18)

This expression may also be written

o = Eexp (—2/gve), (39.19)

¥ When p>>pp, 7,0¢p? and the integral (39.16) as written diverges as p. In reality, however,
this divergence is spurious, and is eliminated by renormalizing the relation between the con-
stant g (i.e. the scattering length a) and the interaction potential, as in §§6 and 25. A consistent
performance of this quite complicated calculation allows us to determine also the propor-
tionality factor between the cut-off parameter & and the chemical potential : & = (2/e)"Bu
= 0.49u (L. P. Gorkov and T. K. Melik-Barkhudarov, Soviet Physics JETP 13, 1018,
1961).
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where v, = mpg/a®3 is the energy density of the number of states of a particle
on the Fermi surface (v de is the number of states in the range de).

The most interesting feature is the form of the energy spectrum of the system,
i.e. the energy of the elementary excitations ¢, = ¢, = &(p). We can find
this from the change of energy of the whole system when the quasi-particle
occupation numbers change, i.e. by varying E from (39.10) with respect to n,,.
Since the values of u, and v, have already been taken from the condition that
the derivatives of E with respect to them are zero, the variation of E with respect
to ny,, can be carried out with constant «, and v,. Then

& = (OE/Onye)u,, v, -

The calculation of the derivative, using (39.11)-(39.13), leads to the simple

result
&(p) = /(42 +1}). ‘ (39.20)

We see that the quasi-particle energy cannot be less than the value 4, which
is reached when p = pr. In other words, the excited states of the system are
separated from the ground state by an energy gap. The quasi-particles, having
half-integral spin, must appear in pairs. In this sense we may say that the gap
is 24. Since pr | a|/h << 1, 4o is exponentially small with regard to u. Moreover,
the expression (39.18) cannot be expanded in powers of the small parameter,
the coupling constant g; the latter occurs in the denominator of the exponent,
and so g = 0 is an essential singularity of 4o(g).

The spectrum (39.20) satisfies the superfluidity condition established in §23:
the minimum value of &/p is not zero. Thus a Fermi gas with attraction between
the particles must have the property of superfluidity.’

Figure 5 compares the dispersion relations of quasi-particles in a superfluid
Fermi system (upper curve) and in a normal one. In the latter, the dispersion

!e
\ /
FiG. 5.

T Note, however, that the Landau condition has different meanings for the Bose and Fermi
spectra. Fot the Bose spectrum, violation of the condition would lead to unlimited growth of
excitations and there could not be an equilibrium motion of the normal part relative to the
superfluid part. (This is shown by the fact that the Bose distribution function is negative; see
the first footnote to § 23.) An unlimited growth of Fermi excitations is prevented by the Pauli
principle, and the presence of a Fermi branch not satisfying the Landau condition need not
imply the absence of superfluiditv. only that the normal part is present at T= 0.

P-P-
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relation is represented by the two straight lines ¢ = »;' p—pg|, in accordance
with the treatment mentioned at the end of §1.

The magnitude of the gap 4 depends on the temperature, i.e. the form of the
spectrum itself depends on the statistical distribution of quasi-particles—a situ-
ation analogous to that of a normal Fermi liquid. Since the quasi-particle
occupation numbers increase (tending to unity) with increasing temperature,
it is evident from (39.15) that A decreases, and becomes zero at some finite
temperature T, at which the system passes from the superfluid to the normal
state. This point is a phase transition of the second kind, like the A-transition
in a Bose superfluid.

The presence of the energy gap in the spectrum of a degenerate Fermi gas is
a manifestation of the “pairing”effect mentioned at the beginning of this sec-
tion. The quantity 24 may be regarded as the binding energy of the Cooper
pair, which would have to be expended in order to break it up.

The Hamiltonian (39.5) takes account (as already noted in §6) of the inter-
action only between pairs of particles in the singlet s-state: the orbital angular
momentum of the relative motion of the particles is zero, and their spins are
antiparallel. The pairs, having zero total spin, behave as Bose objects and may
accumulate in any numbers at the level (of their motion as a whole) with the
least energy, namely that for which the total momentum is zero. In this intuitive
treatment, the phenomenon is entirely analogous to the accumulation of par-
ticles in a state with zero energy (Bose-Einstein condensation) in a Bose gas; in
this case the condensate is the ensemble of paired particles.

The concept of bound pairs must not, of course, be taken very literally. It
would be more precise to speak of a correlation between the states of a pair of
particles in p-space, leading to a finite probability of the particles’ having zero
total momentum. The spread dp of the momentum values in the correlation
range corresponds to an energy of the order of 4, i.e. 8p ~ 4/vg. The cor-
responding length & ~ #/dp ~ #vg/A determines the order of magnitude of
the distances between particles with correlated momenta. When T = 0 this
length, called the coherence length, is

&y ~ fiwp/d,
~ (fi/pr) exp («fi/2pr | al). (39.21)

Since, in a degenerate Fermi gas, #i/pg is equal in order of magnitude to the
interatomic distances, we see that &, is very large in comparison with these.
This shows particularly clearly the conventionality of the concept of bound
pairs.

The origin of the Cooper effect is closely connected with the existence of the
Fermi surface which bounds (in p-space) a finite region of occupied states at
T = 0; an important point is that the energy density of the number of states
on this surface is not zero. The relationship is evident in formula (39.19) for
the gap 4o, which becomes zero as v — 0.
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§ 40. A superfluid Fermi gas. Thermodynamic properties

We shall begin the study of the thermodynamic properties of a superfluid
Fermi gas by calculating the temperature dependence of the energy gap.
Rewriting (39.15) as

1 dp n, d3p
—l+‘2—gf S(M)s _gJ‘ 3(27%)3 ’

we note that the integral on the left differs from that for T = 0 only in that
o is replaced by 4. Hence, using (39.17), we see that the left-hand side is
(gppn/27%i3) log(do/4). On the right we substitute n, from (39.14) and change
to integration over dp = dn/vg:

4, _ - dn _

—_— 00

where

~ dx .
1= .[ VOELuB)lexp /() 1] °
0

on account of the rapid convergence of the integral, the limits of integration can

be extended to + <.
At low temperatures (T < 4o) the integral is easily' calculated to give

A = Ao[1=+/(2nT|Ap) e—%IT]. (40.2)

Near the transition point, 4 is small, and the leading terms in the expansion
of the integral I(4/T) give?

log (d/A) = log (2T /yAy+72(3) A2/8n2T. (40.3)

Hence, first of all, we see that 4 is zero at a temperature

T For large u, the first term in the expansion of I() in powers of 1/u is

)y 2
I(u) ~ f -‘%?exp [-—u (1-:-3:—‘;-)]
0

= (af2upV? e~ ¥,

* To expand the integral I(u) when u — 0, we add to and subtract from it the integral

1 . 1 1 1
I = — —_—
1= 5 j ( VoD x tanh > x)dx.
0
Then I = I,+ I,, where

1 1 1
Iz-? (—J—r—tanh-i-x
0

1

1 o
—W tanhi vV 3+ “2)) dx.

In I,, the first term in the integrand is integrated by elementary means, and the second is
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T, = ylofz = 0.574, (40.4)

which is small in comparison with the degeneracy temperature To ~ u. Then,
in the first order in T,— T, we obtain

A=T, [722‘32) (1 %)]1/2 — 3.06T, ‘/(l —%) (40.5)

It remains to calculate the thermodynamic quantities for the gas. Let us

first consider the region of low temperatures.
To find the specific heat in this region, it is simplest to start from the formula

O0E = Y &(0ny, +0n,_) = 2 edn,
p P

for the change in the total energy when the quasi-particle occupation numbers
vary. Dividing by 8T and changing from summation to integration, we obtain

the specific heat

., MpF - on
C—Vn%"j i?Td"7

—

When T << 4, the quasi-particle distribution function » ~ e, and the quasi-
particle energy € ~ do+1%240; a simple integration gives

\2mprA3?
C = VWe 4IT, (406)

integrated by parts, giving

Iog x
2, =— 5
! log uty 2 f cosh’lx
The integral is equal to 2 log (7/2y), where log y = C = 0.577 is Euler’s constant; thus 2/, =

log (=/yu).
The integral I, is zero when u = 0. The first term of its expansion in powers of u? is

Substituting the expansion

tanh i x = 4x ) [2*Qn+1)2+x%]7Y,

derived as in the second footnote to §42, we obtain

I dx LT L T
2[, = 4u n; ( G “‘_/: Qn+D72 = ut—2 =
(1]
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Thus, as T - 0, the specific heat decreases exponentially—a direct consequence
of the presence of the gap in the energy spectrum.

In subsequent calculations it is convenient to start from the thermodynamic
potential 2, since the whole analysis is for a given chemical potential of the
system, not for a given number of particles in it.! We use the formula

(892/oN)r,v,, = (OR/02), (40.7)

where A is any parameter characterizing the system (cf. Part 1, (11.4), (15.11));
in this case we take as the parameter the coupling constant g, which appears
in the second term in the Hamiltonian (39.8). The mean value of this term is
given by the last term in (39.10), which by (39.12) is — ¥V A4%g oc g. Hence

0Q2/0g = -V A%/g2

As g — 0, the energy gap 4 tends to zero. Hence, integrating this equation with
respect to g from O to g, we find the difference between the thermodynamic
potential Q in the superfluid state and the value it would have in the normal
state (4 = 0) at the same temperature :*

- Jﬁ'? : (40.8)
0

According to the general theorem of small increments (Part 1, (24.16)), the
correction (40.8), when expressed in terms of the appropriate variables, is the
same for all the thermodynamic potentials.

At absolute zero 4 = Ao, and from (39.18)

dAo/dg = 273 Ao/mppgz.

Changing in (40.8) from integration over dg to that over d4o, we find the fol-
lowing expression for the difference between the ground-state energies of the
superfluid and normal systems:

—F =y PF_ 4o
E,—~E,=-V—2E- 4. (40.9)

t The chemical potential of the gas itself is not to be confused with the zero chemical poten-
tial of the quasi-particle gas.

! A comment is necessary here in connection with the approximations made throughout.
When g = 0, no interaction between particles remains in the Hamiltonian (39.8), and one
might suppose that we then have an ideal Fermi gas, not a “normal” non-ideal gas. In reality,
however, approximations have already been made in the Hamiltonian (39.8), after which one
cannot speak of calculating the absolute value of the energy. Interaction terms (which are not
important in finding the form of the spectrum and the difference £2,—£2,) have been omitted
whose contribution to the energy is large compared with the exponentially small quantity
(40.8); this is the contribution proportional to Ng given by (6.13).
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The negative sign indicates that, as mentioned at the beginning of this section,
the “normal” ground state is unstable when there is attraction between the gas

particles. The difference (40.9) per particle is ~ A%/ u.
Let us now take the opposite case, ' -~ T,. Differentiating (40.3) with respect

to g, we find

703) _ddy 2% dg
WA‘M— do = mp, g%

From here we substitute dg/g? in (40.8), regarding it as the difference of free
energies:

4
__ 5@)mpr [
Fs - Fn - VW A dA
and finally obtain, using (40.5),
5, 2mpeT? T \?2
Fs—Fn ——Vw(l Tc) o (40.10)

The difference of entropies is therefore

S; 8, = V7C(3)ﬁ3(1 Tc).

As T — T, the difference of specific heats tends to a finite limit,

C=Cr =V Zrt (40.11)

i.e. there is a discontinuity at the transition point, with C, > C,. The specific
heat of the normal state is given (in the first approximation) by the ideal-gas
formula (see Part 1, (58.6)); expressed in terms of pp, it is C, = Vmp T/3#3.
The ratio of specific heats at the transition point is therefore

C(T) 12

Gty = Ty Tl =24 (40.12)

As regards its superfluidity, the gas is characterized by the division of its
density p into normal and superfluid parts. According to (23.6), the normal part
of the density is

_ 8  , dn
O = T 30mhp’ de

I [ dn
~ T 3nuy f Z

dp
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The total density of the gas is related to p by

o = mN/V = 8npim/3(2n#)3.
Hence

o _ 5 j . (40.13)

This integral does not need to be calculated specially, since it can be reduced
to the known function A(T). Differentiating (40.1) with respect to T and com-
paring the resulting integral with (40.13), we see that

0 V|

o =175 (40.14)

Substituting here the limiting expressions (40.2) and (40.5), we obtain

172
T - 0: % _ (2’;’") e~ 4olT, (40.15)
T-T.: %‘:2(1 —Tl) (40.16)

Lastly, two comments are needed concerning the range of temperature in
which the above formulae are valid.

As the transition point T, is approached, processes of interaction of quasi-
particles (not taken into account in the above theory) become important; they
are responsible in this case for the occurrence of the singularities of the thermo-
dynamic quantities that are characteristic of phase transitibns of the second
kind. Sufficiently close to such a point, the formulae derived above must
become mvalid. However, because of the presence of a small parameter (the
coupling constant g) in the model considered, this happens only for extremely
small values of T,— T'; we shall discuss this in more detail in §45.

As in a superfluid Bose liquid, sound can be propagated in the Fermi gas
under consideration (unlike one with repulsion; cf.§4), with a velocity u ~ p./m
determined in the usual manner by the compressibility of the medium. This
means that, as well as the Fermi-type excitation spectrum dealt with here, the
spectrum of such a gas also contains a phonon (Bose) branch. The specific
heat due to phonons is proportional to 73 with a small coefficient, butas T — 0
it must ultimately predominate over the exponentially decreasing specific heat
(40.6).
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§ 41. Green’s functions in a superfluid Fermi gas

Let us now set up the mathematical formalism of Green’s functions for appli-
cation to superfluid Fermi systems.'

We have seen in §26 that, in terms of y operators, the Bose-Einstein conden-
sation in a Bose system is expressed by the existence of non-zero limiting values
(as the particle number N - =) of the matrix elements between states that
differ only in that N changes by unity. The physical significance of this statement
is that the removal or addition of one condensate particle does not alter the

state of a macroscopic system.
For a superfluid Fermi system, the same must be true of the condensate of

Cooper pairs: the state of the system cannot be altered when the number of
pairs in the condensate changes by unity. This is expressed mathematically by
the presence of non-zero limiting values (N — o) of the matrix elements for
the product ¥,(X2) ¥ (X1), the two-particle annihilation operator, and its
Hermitian conjugate, the pair creation operator YH(Xy) lI’,;*(X 2). These matrix
elements relate the “like” states of systems, differing only by the removal or

addition of one pair of particles:

lim (m, N|Ps(X2) Po(X1) | m, N+2)

N-—oo

= lim (m, N+2|¥#(X) &5 (X2) | m, N)* = 0. (41.1)

We shall henceforward omit the symbol for taking the limit, and for brevity
also the diagonal matrix suffix m which labels the “like” states of systems with
different numbers of particles.

As with Bose systems (§31), the mathematical formalism of Green’s functions
for superfluid Fermi systems involves several different functions. Together
with the ordinary Green’s functions

iGup(X1, X2) = (N | TP (X1) T3 (X2) | N) (41.2)
we need also the “anomalous” functions defined by

iFop(X1, X2) = (N| TZ(X1) Po(X2) | N +2), (41.3)
iFH(X1, X2) = (N+2| TZHX) PFH(X2) | N).

Since each of the functions F,; and Fj; is composed of two equal operators,
Fup(X1, X2) = — Fpu( X2, X1), Fp(X1, Xo) = — Fji(X2, X1).  (41.4)

The interchange of Fermi y operators with the factors in chronological order
causes a change in the sign of the product.

* The technique described in this section is due to L. P. Gor’kov (1958).
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According to the fundamental principles of statistical physics, the result of sta-
tistical averaging does not depend on whether it is with respect to the exact wave
function of a stationary state of a closed system or by means of the Gibbs
distribution. The only difference is that in the first case the result of the averag-
ing is expressed in terms of E and N, the energy and number of particles in the
body; in the second case, in terms of 7" and p, the temperature and the chemical
potential. The first method is the more convenient for the discussion that fol-
lows in this section.

In the model of a Fermi gas considered in §39, the bound pairs are in a singlet
state. The spin dependence of the matrix elements of the creation and anni-
hilation operators of such a pair reduces to a unit antisymmetric spinor:

8ap = (_(1) (l)) (41.5)

The functions (41.3) may be written'
Fop = 8.8F(X1, X3), Fi = 8pF1 (X1, X3); ‘ (41.6)

from (41.4), F and F* are symmetrical in X; and X,. The spin dependence of
the Green’s function G4 for a non-ferromagnetic system reduces to a unit
matrix 0,4:

Gop = J,pG.

In a homogeneous system macroscopically at rest, the Green’s functions G, F
and F* depend only on the differences of the coordinates of the points and the
difference of times (see the sixth footnote to §31).

Just as the function £(X) defined in §26 had the sense of a wave function for
particles in the condensate, so the function iF(f,r;; ¢, rs) may be regarded as
the wave function of particles bound in Cooper pairs in the condensate. Then

the function
E(X) = iF(X, X) (41.7)

will be the wave function for the motion of these pairs as a whole. From the
definitions (41.3) and (41.5) it is easily seen that then F*(X, X) = iZ*(X). In a
stationary system macroscopically at rest, the function Z(X) reduces to a
constant, which may be made real by a suitable choice of the phases of the y
operators,

Let us now calculate the Green’s functions thus defined for the model of a
Fermi gas with weak attraction between the particles.

The Heisenberg v operator satisfies the equation (7.8). Because the range of
the forces between particles in the gas considered is small, in the integral term

t Cf. the fifth footnote to §7. Whereas G,g in its spin structure is a mixed spinor of rank two,
F,pand Fjj are contravariant and covariant spinors respectively.
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in this equation we can take the factors P(t, ') at the point i’ = r and bring
them outside the integral. The equation then becomes’

oY, A .
Pt = (_2_m_+ u) W _ g PP, (41.8)

By taking the Hermitian conjugate of each term in this equation, we get a
corresponding equation for the operator ¥+ :

: a;t? = ( = +u) P+ g P W, (41.9)

Substituting (41.8) in the derivative 8G,,/0t (9.5), we obtain the equation

(aaz+——+u)G¢(X X')
—ig(N | TEH(X) P X) LX) P (X)) | N) = 8,60 (X —X"); (41.10)

cf. (15.12). The diagonal matrix element of the product of four ¢ operators
can be written out, by the matrix multiplication rule, as a sum of products of
matrix elements of two pairs of operators. Of all such products, we keep only
those containing matrix elements for transitions in which the change in the
number of particles is N <~ N+2, and omit all other terms:

(N|TE} P, P, P4 |IN) ~ (N|TH,E,|N+2)N+2|TE}
= — Fu(X, X) Fp(X, X') = — 0,4 F(0) F*(X - X"); (41.11)

the expressions (41.5) are used to derive the last formula. This term corresponds
physically to the pairing of particles, and it has the same order of magnitude as
the condensate density.

We must emphasize, however, that there is a fundamental difference from
the approximations used for a slightly non-ideal Bose gas. In the latter, almost
all particles are in the condensate at T = 0, and the number of above-conden-
sate particles, which occur only because of the weak interaction of the particles,
is relatively small. In the present case, on the other hand, the condensate itself
is due to the weak interaction, and therefore contains only a small fraction of
the particles. In other words, the terms omitted in making the substitution
(41.11) are large, not small, compared with those retained. The latter, however,
give rise to a qualitatively new effect, a change in the nature of the spectrum,
whereas the former would be needed only to calculate the corrections (which

are of no interest here) to the ground state of the system; cf. the last footnote
to §40.

T As in §39, we use the notation g for the coupling constant,equal to ~U; = — _f Ud3x.
In §§41 and 42, we haveput # = 1.
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After the substitution (41.11), equation (41.10) becomes

(17 + 37 +4) GO+8EF+(X) = 343); (41.12)

the argument X— X" is replaced by X, and the constant iF(0) is denoted by £,

in accordance with the definition (41.7). Here there are two unknown functions,

G(X) and F*(X), and another equation is therefore needed to calculate them.
It may be found by calculating the derivative

ﬂ(X X) <N+2|Talp+(X) tp-i-(X;)
ot ’ 0

a delta-function term (similar to the second term in (9.5)) does not arise here,

since the function F}(X—X’), unlike G 4(X—X"), is continuous at ¢ = vt

Substituting (41.9) and again separating the condensate term as in (41.11), we

obtain the equation

? -
('5__2%_ )F+(X)+g-=‘G(X) =0. (41.13)

It contains the same two functions G and F* as (41.12); the two equations are
therefore sufficient to calculate these functions. To calculate F, a further equa-
tion would have to be derived in a similar way.

In these equations we can change to the momentum representation by using
the Fourier components G(P) and F*(P) in the customary way:

(w—n,,)G(P)-}—gEF"‘(P) =1, } (41.14)
(0 +7,) F*(P)+85°G(P) = 0,

where P = (w, p) and 1), = p?/2m— . Since F*(X)is an even function, so are its
Fourier components: F*(P) = F*(—P).
Eliminating F* from the two equations, we find the equation for G

(02— — AN G(P) = w + 1, (41.15)

with the notation
Ad=g|E! (41.16)

The formal solution of (41.15) is

_ ot _ 4% %
IO =G = oep) "ot @1

where &(p) = v/(42+%2) and u, and v, are given by (39.13). It is evident from
this that the spectrum of elementary excitations, determined by the positive

t This is easily seen by calculatmg the dlscontmuxty of Fg in the same way as for G,gin§9,
and noting that the operators !I’+(t r)and Sl’i(t r’) anticommute.
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pole of the Green’s function, is given by &(p), and we recover the result (39.20).
We also see that the energy gap 4 and the modulus of the condensate wave
function for the motion of pairs as a whole are proportional to each other.

The expression (41.17) for G(P) is, however, not yet complete, since the man-
ner of passing round the poles has not been defined. That is, the imaginary
part of G is not yet determined; it contains the delta function é(w=¢), and
therefore disappears on multiplication by w?— 2 in (41.15).

When T = 0, the rule for passing round the poles is established by direct
comparison of (41.17) with the expansion (8.7): in terms with positive and
negative poles, the variable is to be replaced by w+ 70 and w—i0 respectively;
then (41.17) becomes
_ up v
Glo, p) = w—&(p)+i0 + w +&(p)—i0

n @ +7p
 (w—e+i0)(w+e—i0) (41.1%)

Now expressing F* by means of the second equation (41.14), we find

_ g5
+ _
Fr(w, p) = (w—&+i0)(w+e—i0) (41.19)

But, by definition,
~ 3
i5* = FH(X = 0) = j f F+ (P)-fi;"—zn‘-i—){;. (41.20)

Substituting (41.19), we integrate with respect to w by closing the contour
with an infinite semicircle in the upper half-plane, and so express the integral
in terms of the residue at the pole @ = &. Then, after cancelling £*, we find
equation (39.16) for Ao.

When T # 0, it is somewhat more complicated to determine the imaginary
part of the Green’s functions. To construct G(w, p) with the correct analytical
properties with respect to the variable w, we first write down the retarded func-
tion G*(w, p); it must be analytic in the upper half-plane, and is therefore
obtained from (41.17) by the substitution @ — w+i0. The imaginary part of
this function is

im GR = — afuZd(w — €) + v2(w +€)].

The imaginary part of the required function G is found from this by means
of (36.14), which gives

im G(w, p) = tanh (w/2T) im GR(w, p)
= = (1= 2n) afu}d(w — &) ~ v3d(w + )],

where n, is the Fermi distribution function (39.14); by using this formula,
we change from averaging with respect to a given stationary state of the system
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to averaging over the Gibbs distribution. The function G with this imaginary
part may be written

- % iny[128(c2 — &) — 020 1.21
G(w, p) = o—s1i0 T o Tei0 + 2min [u2d(w — &) — v26(w +£)].  (41.21)

We now find for the function F*(w, p)

F+(@, ) = [F*(@, Dlrmo— 220 (o —e) +d0+0)],  (41.22)

where the first term is the function (41.19), relating to T = 0. Substituting this
expression in (41.20) and carrying out the integration, we return to equation
(39.15) for A(T).

Equations (41.14) can be put in diagram form, similarly to the representation
of equations (33.7) for a superfluid Bose system. The functions G, F and F* are
represented by the same graphical elements (33.6)—one-way and two-way arrows.
The two equations (41.14) are written

P P P - P (41'23)

£ P -P P

A thin arrow corresponds to a factor iG‘P(P), where G‘©(P) is the Green’s func-
tion of an ideal Fermi gas. The wavy lines entering and leaving a vertex corre-
spond to factors ig= and —ig&" respectively. Comparing (41.23) and (33.7), we
see that these latter factors correspond to the self-energy functions i, and iZ,,
respectively, i.e. are first approximations to these quantities. The new elements
(two-way arrows, wavy lines) are the only special features of the diagram tech-
nique for superfluid Fermi systems; unlike the case of Bose systems, “triple”
vertices do not appear. The diagram technique is therefore much simpler here
and closer to the “ordinary” kind than for superfluid Bose systems.

§ 42. Temperature Green’s functions in a superfluid Fermi gas

In§41 we have determined the energy spectrum of a superfluid Fermi gas by
using the ordinary time Green functions. However, in order to solve more
complex problems (in particular, to investigate the properties of the system in
external fields), it is more convenient to use the mathematical formalism of tem-
perature Green’s functions (A. A. Abrikosov and L. P. Gor’kov 1958).

The temperature function € ,4is defined by the same formula (37.3) as for
a normal Fermi gas. The temperature functions (#,; and —(7a,9 (corresponding
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to the time functions F,; and F;) will be defined by the analogous formulae

(Fap(T1, 13 Toy To) = Z {m, N |WT, 'I’,{‘{Ep |m, N+2),
42.1
(Fop(T1y 113 Tay ) = 3. ({my N+2 | wT,Tj‘pr"{l m, N). (42D

The spin dependence of these functions is separated (asin(41.6)) in the form of
factors g,z:

(;o:ﬁ = g«ﬁ, (—}—aﬁ = _gaﬁ- (422)

Like 4, the functions (F and (F depend only on the difference 7 = 7:—7,,
and satisfy the relations (37.6) with the upper sign:

F@) = —F@+T), F) = —F@+1T). (42.3)
The Fourier series in 7 for these functions therefore contain only odd “frequen-
cies” (37.8a):{, = (2s+1)nT.
The Matsubara y operators for T = O are the same as the Heisenberg opera-
tors for t = O:
PM(z =0,r) = P(t =0,r).
Comparing the definitions of (F, (F with those of F, Ft, we thus find that
(F(0,r;0,1r) = E(r), (F(O,r;0,r)=5*r), (42.4)

where Z is to be understood as the condensate wave function averaged over the
Gibbs distribution, i.e. expressed in terms of the temperature of the system.

We shall show how the temperature Green’s functions may be used to obtain
again the energy spectrum of a superfluid Fermi gas at non-zero temperatures.

The equations for the temperature functions &, (F, (F are derived in an exact-
ly analogous way to equations (41.12) and (41.13); differentiation with respect to
7 replaces that with respect to ¢, and equations (41.8) and (41.9) are replaced by
others which differ by the substitution of = for it. As in (41.11), we separate from
the mean value of the product of four Matsubara v operators the terms con-
taining matrix elements for transitions in which the number of particles changes
by 2. The resulting equations are

(_‘aa?+ +ﬂ) G(z, 137, 1) + g5 F (z, 13 7, ¥) = 8z —7) d(r ),

0 A =
(‘a7+ EEJF/‘) F(, 03 v, ¥)—g5* Gz, 1; 7, ¥') =
(42.5)

After the change to Fourier components, these equations become

(=) GCor D)+ 8EF o D) = 1, } (426)
~ (s +1p) (F (Lo D) —85*G(Ls» P) = 0.

T The different signs in the definitions of (Fand (7 (in contrast to the same signs in (41.5))
are appropriate because the factor / in (41.3) does not appear in (42.1).
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The solutions are

ils+17
Gla D) = G-, @2.7)
F(Cs D) = gE*/(L2 +6) = F+(iL, p), (42.8)

where again & = A2+n?2, 4 = g&; this solution is uniquely defined, and con-
tains no, delta functions, unlike G and F*.
The condition which determines the energy gap in the spectrum is now ob-

tained from the equation

E*=(F(r=0,r=0=T Z Ci-'(Cs,P)(h)?,,

§ ER e= OO

or, after the substitution of (42.8),

gr dp  _
Gy 2| i - (429

The summation with respect to sis given by the formula®

) j_: [2s+1)2xn2+a%]"2 = —z%tanh-%-a (42.10)
and leads to
1 1 e dad
74 tanh (231)’3 =1, 42.11)

in agreement with (39.15).

§ 43. Superconductivity in metals

The phenomenon of superconductivity in metals is a superfluidity of the
electron Fermi liquid in them, similar to that of the degenerate Fermi gas con-
sidered in the preceding sections. Of course, in many important respects the elec-
tron liquid and the Fermi gas are quite different physical systems. The basic
physical aspects of the energy spectrum are, however, the same for both. Let us
examine qualitatively which features of the above model can be applied to
electrons in metals, and to what extent.

t This may be derived by writing

1 1 1 1
2s+12 n2+a® =~ 2a [a+in(2s+l) + a—in(2s+ 1)]

— __zla_f e—u[e—ln(2t+1)¢+e‘n(20+l)z]dx
0

and summing the geometrical progression before integrating.
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An important property of a metal is the anisotropy of its electron energy
spectrum, in contrast to the isotropy of the spectrum for the Fermi gas consid-
ered above. Thisdoes not, however, prevent the occurrence of the Cooper effect,
which depends only on the existence of a sharply defined Fermi surface (of
whatever shape) and a finite density for the number of states on that surface. It is
also necessary that electrons with opposite momenta and spins should have the
same energy, i.e. should both be on the Fermi surface. This condition automati-
cally follows from symmetry under time reversal. We may say that the electrons
are paired in states that are obtained from each other by time reversal.

Next, there is the question of the sign of the interaction of the electrons in a
metal. In a very simplified way, we may say that this interaction is made up of
the Coulomb repulsion, screened atinteratomic distances, and the interaction via
the lattice. The latter is describable as resulting from the exchange of virtual
phonons, and is attractive (§64). If this interaction preponderates, the metal will
be a superconductor at sufficiently low temperatures.

It is important to note that the interaction by phonon exchange involves only
electrons in a comparatively thin shell of p-space near the Fermi surface, whose
thickness (~ #w,, where wp is the Debye frequency of the crystal) is small in
comparison with the electron chemical potential u. Hence, if we describe the
superconductivity by a model of a slightly non-ideal Fermi gas, the cut-off pa-
rameter £ 1in (39.19) is to be taken as

instead of £ ~ u.
As to the assumption regarding the weakness of the interaction, we in fact
have for all actual superconductors

T. < fiop < . (43.2)

The assumption made in §39, however,embodies something further, namely that
the coupling constant g is small, and therefore that the dimensionless exponent
in (39.19) is large. In the present case, this condition is expressed as

log (Awp/Te) > 1; (43.3)

not only the ratio 7w, /T but also its logarithm must be large. In practice, this
condition is considerably less well satisfied.}

When all the actual differences between the electron liquid in a metal and the
model of a slightly non-ideal Fermi gas are taken into account, the theory of
superconductivity becomes very complicated. It is, however, found that even
a simple theory based on this model gives in many respects a good description

t This, incidentally, eliminates the problem of the divergence of the integral (39.16) for
large mementa (cf. the last footnote to §39),
* The ratio #iw /T, varies between about 10 for lead and 300 for aluminium and cadmium.
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of the properties of superconductors, both qualitatively and quantitatively. As
already mentioned, this theory is due to Bardeen, Cooper and Schrieffer; the
model of a Fermi gas with weak attraction between the particles is therefore
known as the BC'S model.

§ 44. The superconductivity current

The two types of motion in an electrically neutral superfluid (liquid helium)
correspond, in a superconducting metal, to two types of electric current that
can simultaneously flow in it. The superconductivity current transfers no heat
and involves no dissipation of energy; it can exist in a system in thermodynamic
equilibrium. The normal current is associated with the evolution of Joule heat.
We shall denote the two current densities by j, and j,; the total current density
j = js""jn’

Several important conclusions about the properties of the superconductivity
current can be drawn regardless of any particular model, simply from the exist-
ence of a new macroscopic quantity, the condensate wave function Z(, r).

Asin §26, we use the phase @ of this function:

E(t,1) = 5| eo. (44.1)

Just. as, in liquid helium, the gradient of @ determines the velocity v, of the
superfluid flow by (26.12), so in a superconductor the gradient of the phase
determines the observable quantity, the superconductivity current density. Be-
cause of the anisotropy of the metal, the direction of j, does not in general coin-
cide with that of v®, and the components of these vectors are related by a ten-
sor of rank two. To avoid inessential complications, however, we shall here
consider only a metal crystal having cubic symmetry.

The tensor then reduces to a scalar, and there is simple proportionality be-
tween j, and v®, which may be written

§s = (ehj2m)n, vO. | (44.2)

Here, by definition, e = —|e| is the electron charge and m its (actual) mass.
The quantity », thus defined, a function of temperature, is called the number
density of superconducting electrons, and acts here as an analogue of the density
of the superfluid component in liquid helium. It must be emphasized that this is
not the same as the density of the condensate of Cooper pairs, just as in liquid
helium g, is not the density of condensate atoms."

t The coefficient in (44.2) is written in such a way that in a free superfluid Fermi gas (BCS
model) mn, is equal to g, as calculated in §40. The latter is defined so that the current j, must
be expressed as en,v,, where v, is the velocity of superfluid motion. In turn, v, is related to the
phase gradient by v, = (i/2m) v®; twice the mass occurs here (instead of m as in (26.12))
because the condensate consists of paired particles.
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Formula (44.2), like (26.12) for liquid helium, presupposes that the phase varies
sufficiently slowly in space. However, in a Bose liquid @ had to vary only slightly
over interatomic distances, but the condition here is considerably stronger.
The characteristic dimension for a superfluid Fermi liquid is the coherence
length o ~ fivg/de, and the phase @ must vary only slightly over this distance,
which is large in comparison with interatomic distances. We must emphasize
that this is a constant (not temperature-dependent) length parameter £o. A rig-
orous justification of the above condition will be given later (see the end of §51).

The relation between j, and @ becomes more complicated if the superconduc-
tor is in an external magnetic field. We shall consider here the case of a field
constant in time. The necessary changes in formula (44.2) can be ascertained
from the condition that the theory is gauge-invariant.

This condition states that all observable physical quantities must remain un-
changed by a gauge transformation of the vector potential of the magnetic

field:
A —~ A+ vx(r), (44.3)

where y(r) 1s an arbitrary function of the coordinates. The y operators are trans-
formed in the same way as the wave functions:

¥~ Wexp (iegfhc), P+ — P+ exp(—iey/fic), (44.4)

where e is the charge of the particles described by the y operator; see OM,
(111.9).T The Green’s functions G(X, X*) and F(X, X’), as matrix elements of the
products P&+ or P¥', are transformed according to

6x, X) = exp {2119~ 20| 6CX, X,
(44.5)

F(X, X") -~ exp {—;% [x(@ + x(r’)]} F(X, X').

Here
= iF(X, X) - exp (2iey/fic) E,

L.e. the phase of the condensate wave function
D - D+ (2eftic) x(r). (44.6)

The relation (44.2) is not invariant under such a phase transformation. To
obtain the required invariance, this relation must include a further term contain-
ing the vector potential of the magnetic field :

efi

is = —2—m—-n, (V¢—~2—8-A) . (44.7)

fic

T Since the y operators appear in the second-quantized Hamiltonian (7.7) as pairs Y’(X)

and ‘P'"(X ), it is transformed by the changes (44.3), (44.4) in the same way as the ordinary
Hamiltonian for a similar transformation of ordinary (not operator) wave functions. A trans-
formation in the form (44.3), (44.4) has in fact already been used in §19.
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The doubling of the charge in this term corresponds to the pairing of electrons

in the superconductor.
This expression is now sufficient to account for the fundamental macroscopic

property of a superconductor; the displacement away from it of a magnetic
field (the Meissner effect).!

Let us consider a homogeneous superconductor in a magnetic field that is
weak compared with the critical field H, at which the superconductivity is lost.
This condition excludes any significant influence of the magnetic field on the
value of n,. Let the body be in a state of thermodynamic equilibrium, so that
there is no normal current and j, = j.* Taking the curl of both sides of (44.7)
and noting that curl A = B, the magnetic induction in the body, we get the
London equation

curlj = —(e*ns/mc) B (44.8)

(F.and H. London 1935).f
This equation is specific to superconductors. We shall also make use of the

general Maxwell’s equations

curl B = (4n/c) j, (44.9)
divB = 0. (44.10)

Substituting j from (44.9) in (44.8) and noting that, from (44.10), curl curl B =
= —AB, we obtain an equation for the magnetic field in a sup erconductor:

AB = B/o?, (44.11)

where
82 = mc?/4nen,. (44.12)

We can use (44.11) to find the field distribution near the surface (assumed
plane) of a superconductor. The surface is taken as the yz-plane, with the x-axis
into the body. In these conditions, the field distribution depends only on one
coordinate, x, and (44.10) gives dB,/dx = 0; then, from (44.11), we necessarily
have B, = 0. Equation (44.11) now becomes @’B/dx? = B/6%, whence

B(x) = §e—*/8, (44.13)

where the vector § is parallel to the surface.

We see that the magnetic field decreases exponentially into the superconduc-
tor, penetrating only to distances ~ 8. This distance is macroscopic, but small
compared with the usual dimensions of solid objects (6 ~ 1078-105 cm), and

t See ECM, Chapter VI, for the phenomenological electrodynamics of superconductors.

? This will be assumed throughout the rest of Chapter V, and j will therefore everywhere
denote the superconductivity current density.

§ The derivation of (44.8) given here is due to L. D. Landau (1941).
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so the field actually penetrates only into a thin surface layer. The distance § is
called the London penetration depth of the field. We must emphasize that it is
directly measurable and has an entirely definite meaning, unlike the convention-
al significance of the parameter n,.

The above derivation requires an important proviso, however. The original
formula (44.7) is valid only if all quantities vary sufficiently slowly in space: the
characteristic distances over which they vary considerably must be large com-
pared with the coherence length &o.T In the present case, this means that we must

have
d > §&,. (44.14)

This requirement, of course, does not affect the proof that the field is dis-
placed from the superconductor: to suppose that the field is not displaced would
lead to a logical contradiction, since it would then certainly vary slowly and
equation (44.11) would be valid, but the specific equation (44.11) and the result-
ing law of field decay (44.13) are valid only if (44.14) is satisfied.

A superconductor in which the inequality é > & is satisfied is called a London
superconductor; the opposite case, with 6 << &, is called the Pippard case (the
field decay in the superconductor is then of the kind to be discussed in §52). As
T — T., the superconducting electron density n, — 0, so that 8 — «. Thus we
always have the London case sufficiently close to the transition point. AsT — 0,
however, the relation between 8 and &, depends on the specific properties of
the metal.}

Lastly, let us consider a further consequence of equation (44.7) that is inde-
pendent of the relation between 6 and §,. As we know from the macroscopic
electrodynamics of superconductors, if there is a magnetic flux linking a super-
conducting torus, it remains constant regardless of any changes in state of the
body (if these do not destroy its superconductivity). Here we assume that the
torus has a diameter and thickness large compared with the coherence length
and the field penetration depth. We shall show that the magnetic flux “frozen”
in the aperture of the torus can only be an integral multiple of a certain “flux
quantum” (F. London 1954).

Within the body (beyond the range of penetration of the field) the current
density j = 0; the vector potential, however, is not zero, but only its curl, i.e.
the magnetic induction B. We take any closed contour C embracing the aper-
ture of the torus and passing through the torus far from the surface, so that the
condition for equation (44.7) is satisfied, namely the slowness of the spatial
variation of the phase @ and the potential A. The circulation of the vector A

T The induction B itself is the true microscopic strength of the magnetic field, averaged over
physically infinitesimal volume elements that are large only in comparison with the lattice
constant,

*+ The London case occurs at all temperatures, for example, in pure transition metals and
in some intermetallic compounds. The Pippard case occurs (far from 7T,) in pure non-transi-
tion metals.
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along the contour C is equal to the flux of the magnetic induction through a sur-
face spanning the contour, i.e. the flux ¢ through the aperture of the torus:

$A.dl = [curlA.df = [B.df = ¢.

On the other hand, equating (44.7) to zero and integrating it along the contour,
we have

§A.dl Sﬁvcp dl_—acp

where 89 is the change of phase of the wave function on passing round the
contour. Since this function must be one-valued, it follows that the phase change
can only be an integral multiple of 2%. Thus we have the result

b = ndo, o = mhic/|e| =2X10-7 G.cm?, (44.15)

where n is an integer. The quantity ¢o is the quantum of magnetic flux.

The quantization of the magnetic flux has another aspect: it causes the values
of the total current J that can flow along a superconducting ring (in the absence
of an external magnetic field) to be discrete. This current J creates a magnetic
flux through the ring equal to LJ/c, where L is the self-inductance. Bquating
this to n¢go, we find as the possible values of the current

J = cpon/L = nfic®n/|e| L. (44.16)

In contrast to the magnetic flux quantum, the “quantum of total current”, like
the self-inductance L, depends on the shape and size of the ring.

PROBLEM

Determine the magnetic moment of a superconducting sphere with radius R « 4 in a mag-
netic field, in the London case.

SoLutioN. When R <« 9§, the magnetic field within the sphere may be regarded as constant
and equal to the external field §. If the vector potential is taken in the form A = 1§xr, we

can put simply | (netm) A
=~ (n,e*/mc) A,

i.c. take P = 0 in (44.7): the boundary condition for the normal component of the current to
be zero on the surface of the sphere (n.j = 0) is then automatically satisfied. The magnetic
moment is calculated as the integral

M_—-_frxjdV

over the volume of the sphere, and is
M = — R’ /304,
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§ 45. The Ginzburg-Landau equations

The complete theory of the behaviour of a superconductor in a magnetic
field is very complex. However, the position is considerably simpler in the
temperature range near the transition point. Here it is possible to set up a sys-
tem of relatively simple equations, valid in both weak and strong fields.!

In the general Landau theory of phase transitions of the second kind, the
difference between the “unsymmetrical” and the “symmetrical” phase is de-
scribed by the order parameter, which is zero at the transition point (see Part 1,
§142). For a superconducting phase, the natural order parameter is the conden-
sate wave function Z. To avoid complications that are in principle unnecessary,
we shall assume that the metal crystal has cubic symmetry; as already men-
tioned in §44, the superconducting state is then characterized by a scalar quan-
tity n,, the superconducting electron density. A more convenient choice as the
order parameter in this case is a quantity v that is proportional to £ but is
normalized by the condition w2 = %n,. The phase of v is the same as that
of &

p = /(3 n5) €. (45.1)

The superconductivity current density (44.2), expressed in terms of y, is

. ieh .
is =——W}2V¢=——5,—n~(w Ty —py®). (45.2)

The starting-point of the theory is the expression for the free energy of the
superconductor as a functional of y(r). In accordance with the general ideas of
the Landau theory, this is found by expanding the free energy density in powers
of the small (near the transition point) order parameter ¢ and its derivatives
with respect to the coordinates. As a first step, let us consider a superconductor
in the absence of a magnetic field.

In accordance with its significance as a quantity proportional to the Green’s
function F(X, X) = —iZ(X), the order parameter y is not unique: since F(X, X)
is constructed from two operators ¥, an arbitrary change of phase of these
operators, ¥ — We™2 causes a change of phase of the function F by a. Phys-
ical quantities, of course, must not be affected by this arbitrariness, i.e. must
be invariant under a transformation of the complex order parameter  — pe'™.
This excludes odd powers of y in the expansion of the free energy.

The specific form of this expansion is established by the same considerations
as in the general theory of phase transitions of the second kind (see Part 1,
§146). Without repeating the arguments, we can write down the following ex-

¥ The theory given below is due to V. L. Ginzburg and L. D. Landau (1950). It is note-
worthy that this theory was constructed phenomenologically, before the microscopic theory
of superconductivity.
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pansion of the total free energy of a superconducting body:*
2
F=F,,+I{Tf;—-IVWI2+a!1/)Iz+%b!1pl‘}dV. (45.3)

Here F, is the free energy in the normal state (i.e. for v = 0); b is a positive
coefficient depending only on the density of the substance (not on the temper-
ature); a is a function of the temperature given by

a=u(T-T), (45.4)

and is zero at the transition point; the coefficient & > 0, in accordance with the
fact that the superconducting phase corresponds to the range T < T,; the
coefficient of | vy |2 in (45.3) is chosen so that the expression (45.2) is obtained
for the current (see below).* The fact that (45.3) contains only the first deriva-
tives of y is the result of assuming sufficient slowness of spatial variation of y.
In a homogeneous superconductor, with no external field, the parameter y is
independent of the coordinates. Then the expression (45.3) reduces to

F=F,+aV |p2+1bV |yt (45.5)

The equilibrium value of | ¢|2 (for T < T) is determined by the condition for
this expression to be a minimum:

lp|?=—a/b=a(T.—T)b; (45.6)

the superconducting electron density, as a function of temperature, decreases
linearly to zero at the transition point.

Substituting (45.6) back into (45.5), we find the difference in the free energies
of the superconducting and normal states:

Fy,—F, = —V(a2/2b)(T.—T)2 (45.7)

From this, by differentiating with respect to the temperature, we can find the
difference in the entropies, and then the discontinuity in the specific heat at the

transition point:?
Ci~C, = VaiT.Jb. (45.8)

T We shall only mention again that this form of the gradient term depends on the assump-
tion that the crystal has cubic symmetry. With lower symmetry, it would have a more general
quadratic dependence on the derivatives dy/0x;.

? This choice (including the identification of m with the actual mass of the electron) has,
of course, no deep significance, and is conventional to the same extent as the definition of n,.
in (44.2).

§ Comparison of (45.6) and (45.8) for |y |? = @,/2m and for the discontinuity in the specific
heat with (40.16) and (40.11) for the same quantities in the BCS model gives the values of the
coefficients @ and b in that model (L. P. Gor’kov 1959):

a = 6n%T /1LQB) u = 7.04T./u, b = aT./n;
here we have used the relation between the particle number density n = g/m, the chemical
potential u (at 7 = 0) and the limiting momentum for an ideal gas:
n = p3[3n*h®, u = p}/2m.



180 Superconductivity

Near the transition point, the difference (45.7) is a small addition to the free
energy. According to the theorem of small increments (Part 1, §15), the same
quantity, expressed as a function of temperature and pressure, instead of
temperature and volume, gives the difference in the thermodynamic potentials,
®.—®,. On the other hand, according to a general formula in the thermody-
namics of superconductors (see ECM, (43.7)), this difference is — V H?/8n, where
H, is the critical field which destroys the superconductivity. Thus we find for
this field the following temperature dependence near the transition point:*

H. = (4na?/b)V2 = (dmo2/bYV2(T.—T). (45.9)

When a magnetic field is present, the expression (45.3) for the free energy
has to be modified in two ways. Firstly, the magnetic field energy density
B2/8n (where B = curl A is the magnetic induction in the body) has to be added
to the integrand. Secondly, the gradient term has to be changed so as to satisfy
the requirement of gauge invariance. In the previous section it has been shown
that this condition makes it necessary to replace the gradient v® of the conden-
sate wave function phase by v®—2eA [#ic. In the present case, this means making

the substitution
Ty = e? v ||+ iy VP ~ vy — (2ieffic) Ay.

Thus we have the following basic equation:

B2 A2 | 2ie
F= F"°+H'z§+m1(v“75“)'f’

2+aw12+—;-brw}dr’, (45.10)

‘

where F, is the free energy of the body in the normal state in the absence of
the magnetic field. It must be emphasized that the coefficient 2ie/fic in this
expression is not arbitrary (in contrast to the above-mentioned conventional
choice of the coefficient #i2/4m). The doubling of the electron charge is due to the
Cooper effect (L. P. Gor’kov 1959); this coefficient could not, of course, be
found by purely phenomenological means.

The differential equations which determine the distribution of the wave
function v and the magnetic field in a superconductor are now found by mini-
mizing the free energy as a functional of the three independent functions ,
»* and A.

The complex quantity y is a set of two real quantities, so that y and »* must
be regarded as independent functions in the variation. Varying the integral

t In the BCS model,
H, = 244 (mpp/t®YVW*(T,—T) as T~ T,.

In the same modelat T = 0,
Hc = 099Tc (mpF/ﬁ3)ll2’

as is found by equating — VH?/8x to the energy difference (40.9).
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with respect to ¢* and integrating by parts in the integral of the term (vy—
2ieA/ticyvdy®, we find

#2 2ie  \?2 2 .
_{f_ _cie dv
OF H - (v = A) v+ap+b|y| w}av
#i2 2ie .
. (V,p_ = A,,,) Sy* df; (45.11)

the second integral is taken over the surface of the body. Putting 6F = 0,
we obtain as the condition for the volume integral to be zero for arbitrary &y"

L (Cino—22AY prap+bipty =0 (45.12)
4m ( c ) 'p ay’ '/’ 'p — VY .
varying the integral with respect to y gives the complex conjugate equation,
and therefore nothing new.

Similarly, varying the integral with respect to A gives Maxwell’s equation

curl B = (4n/c)j, (45.13)
and the current density is
i= _ﬁ . - . _._ziz_ 2
J=—5 W VY—pIy)———[p[*A, (45.14)

which agrees with (44.7); we have written j for j,, since in thermodynamic equi-
librium there is no normal current. From (45.13) we have the equation of conti-
nuity divj = 0, which may also be obtained,by direct differentiation of (45.14),
using (45.12).

Equations (45.12)—(45.14) form the complete set of Ginzburg-Landau equa-
tions.

The boundary conditions on these equations are found from the condition
that the surface integrals in the variation 6F are zero. Thus we get from (45.11)
the boundary condition

n.(—ih vy — %‘imp) =0, (45.15)

where n is the normal vector at the surface of the body. As a result of this con-
dition, the normal component of the current (45.14) is also zero, as it should be:
n.j = 0.!

1 With the boundary condition (45.15), v itself is not zero, as the wave function apparently
ought to be at the boundary of the body. This is because g actually falls to zero only at dis-
tances ~ &, from the surface, but such distances are regarded as negligible in the Ginzburg-
Landau theory.

The condition (45.15) has been derived here essentially for a superconductor-vacuum
boundary. It remains valid for a boundary with an insulator, but it is not correct for an inter-
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The boundary conditions for the field are as follows. From equation (45.13),
since j is finite in all space (up to the surface of the body), the tangential com-
ponent B, of the induction is continuous. The equation div B = 0 shows that
the normal component B, of the induction is continuous. Thus the boundary
conditions require the continuity of the whole vector B.

In a weak magnetic field, we can neglect the influence of the field on |9 |2, and
take the latter to have the value (45.6) at all points in the body. Then the substi-
tution of (45.14) in (45.13), followed by taking the curl of both sides, gives the
London equation (44.11), with penetration depth

me2p 2 mc?h 1/2
6= [W] - [ ST T)] . (45.16)

The Ginzburg-Landau equations contain another characteristic length be-
sides this: the correlation radius of the fluctuations of the order parameter
(in the absence of the field), which we denote by &(T). From the formulae of
fluctuation theory (see Part 1, §146), this radius is expressed in terms of the
coefficients in the free energy (45.3) by

§(T) = #/2(m |a |}V
= fif2(ma)'2 (T, — T2 (45.17)

The characteristic lengths (45.16) and (45.17) determine the order of magni-
tude of the distances over which thereis a significant change in the order param-
eter p and the magnetic field, as described by the Ginzburg-Landau equations.
The length 8 is in general characteristic of the magnetic field, and &(T) of the
distribution of y. Both these lengths must be large in comparison with the
“dimensions of the pair” &o, in order to satisfy the assumption that all quantities
vary sufficiently slowly in space. Since both lengths increase as the transition
point is approached (in proportion to (7,—T)~*?), this condition is in general
satisfied near the transition point (see below).

In the theory given here, the Ginzburg-Landau parameter is important; it is
defined as the constant (temperature-independent) ratio of the two lengths:

% = §(T)/E(T) = mcbY2/(2m)42 | e hi. (45.18)

face between different metals (one superconducting, the other normal), since it does not take
into account the partial penetration of superconducting electrons into the normal metal. In
this case, (45.15) is replaced by a more general condition compatible with n.j = 0:

n. (-— if w-ﬁ} Atp) = ip/h, (45.152)

where 4 is a real constant (with the dimensions of length); however, an estimate of this con-
stant would need a more detailed microscopic investigation.
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In order of magnitude, » ~ 8o/%0, where &, is the coherence length (39.21), and
o is the London penetration depth at absolute zero. There is also a formula

x = 2+/2(| e|/tic) H{T) 8XT), (45.19)

obtained from (45.9) and (45.16), expressing » directly in terms of observable
quantities.

Having established the form of the equations, let us now consider their range
of applicability.

At low temperatures, this range is in any case limited by the condition
T,—T <« T,, enabling the order parameter to be regarded as small, which is
thus fundamental to the expansion that has been obtained for the free energy.
The same condition ensures that £(T") > &, but it is not strong enough to ensure
that 8(T) > & in superconductors for which the parameter » is small;’ in such
cases, the inequality & > &, gives the condition

T,—T < »T.. (45.20)

As T — T, the validity of the equations is limited only by the general con-
dition for the validity of the Landau theory of phase transitions, relating to
the occurrence of fluctuations in the order parameter. In the present case,
however, this condition is extremely weak : it is expressed in terms of the coeffi-
cients in the expansion (45.3) by the inequality

T.—T > b2T?/x(fi%2/m)®

(see Part 1, (146.15)). For instance, an estimate of the expression on the right,
using the values of b and « in the BCS model, gives

(T.—T)IT. > (To/ ). (45.21)

Since the ratio T,/u ~ 1073-104 is very small, we can regard this condition
as satisfied almost up to the transition point itself. The fluctuation region for
the transition of the second kind between the superconducting and normal
phases practically disappears.

PROBLEM

Find the critical magnetic field (parallel to the film plane) which destroys the superconduc-
tivity for a plane film with thickness d < §, é (V. L. Ginzburg and L. D. Landau 1950).%

SoLuTiOoN. We take the median plane of the film as the xz-plane, with the x-axis in the di-
rection of the field. In equation (45.13) for the field B = B.(y) (which varies along the y-axis
normal to the film), we can take yp = constant. Then the first term in the expression (45.14) for

t Asexamples, the values of » for some pure metals are: aluminium 0.01, tin 0.13, mercury

0.16, lead 0.23.
3 See §47 for the corresponding problem of a small sphere.
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the current is zero, and taking the curl of (45.13) gives B =02B/82, where 0=y/yp,, 3=|al/b.
The solution of this equation, symmetrical in y, is

_ « _cosh(p8/8) y'—QGd)y
BO) =9 ooz~ [1+ 26" ez] >

where  is the external field. This corresponds to the current distribution
J = J: =—cB'[4m x — cb* Yy[4nb?.

In equation (45.12), however, we cannot completely neglect the dependence of ¢ on y: the
small derivative d%yp/0y® is here multiplied by #*/m| a| ~ &%, and thus acquires the large (from
the condition d <« &) coefficient (§/d)*. We can neglect the potential 4 = A4,() in this equation,
which here leads to terms of a higher order of smallness in d/§. In order to avoid the need to
consider the dependence of ¥ on y, we average equation (45.12) over the film thickness; the
derivatives with respect to y then disappear, because of the boundary condition dy/0y = 0 at
the surface of the film. Noting also that

azv, - m j )2
T T (lelﬁlw v

because of the z-dependence of the phase of y (and the relation between its gradient and the
current), we find, after cancelling y,

mj?
————al+bly|2= 0,
o lal+blyl
where
"-Z-___l, }/2 2dy = c’d*§°9H*
= R T TR T
—df2

Using also (45.9) and (45.16), we arrive at the equation
_Lf(@dr: (vl
24 H, y: '

which determines  for a film in a magnetic field. The critical field HY for the film is that for -
whichyp = 0. Itisrelated to the critical field H, for a bulk superconductor by

H! = /(24) HJ/d.

In the conditions considered, the removal of superconductivity by the field takes place
through a phase transition of the second kind: y tends to zero continuouslyas$ increases.
This is entirely reasonable, since for d <« ¢ the field actually penetrates into the superconduct-
ing film and there is no cause for a transition of the first kind, which would consist in a sudden
penetration of the field into the body.

§ 46. Surface tension at the boundary of superconducting and normal phases

The Ginzburg-Landau equations allow, in particular, the calculation of the
surface tension at the boundary of superconducting (s) and normal (») phases
(in the same sample) in terms of bulk characteristics of the material (V. L.
Ginzburg and L. D. Landau 1950). Such boundaries exist in metallic samples
that are in the “intermediate” state in a magnetic field. Since the only difference
between the two phases is that yis zero in one but not in the other, the transition
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between them is continuous over a certain layer and is described by the Ginz-
burg-Landau equations with boundary conditions established only at large
distances on either side of this layer.

Let us consider a plane interface between n and s phases in a metal, taking
the interface as the yz-plane and the x-axis into the s phase; the distribution of
all quantities in both phases depends only on the coordinate x. The vector
potential of the field, the choice of which is not yet uniquely specified, will
now be subjected to the gauge in which div A = 0;in the present problem this
gives d4,/dx = 0, whence we see that it is possible to take 4, = 0. It is evident
from symmetry that the vector A is everywhere in one plane; let this be the
xy-plane, so that 4, = A; then the induction vector is in the xz-plane, with

B=B, =4 (46.1)

(the prime denoting differentiation with respect to x).
Next, we rewrite (45.13) in the form usual in macroscopic electrodynamics,
curl H = 0, with the field strength H given by’

H=B-4aM, ccurlM =j.

From this equation, it follows in the present case that H = constant. Far from
the interface, within the normal phase, the induction and the field are the same
and equal to the critical field: B = H = H, (we neglect the magnetic suscepti-
bility of the normal phase). Hence H = H, = H, in all space.

Neglecting the change in the density of the material in the superconducting
phase transition, we shall regard the density (and the temperature) as constant
throughout the body.® Let f denote the free energy per unit volume (in contrast
to F, the free energy of the whole body). At constant temperature and density,
and with surface effects neglected, the differential df is

df = H.dB/4n; (46.2)

cf. ECM, §30. Hence we see that the additional requirement of constant B
would lead in these conditions to constancy of

f = f—H.Bjax. (46.3)

Thus the whole contribution to the integral F = j fdV from the variable part
of F is due only to the presence of the interface. Taking this contribution per

1 To avoid misunderstanding, we may mention that the comment in ECM §41 about the
unsuitability of using H referred to the electrodynamics of superconductors, where the range
of penetration of the magnetic ficld was regarded as infinitesimally short. The Ginzburg~
Landau equations, however, are applied to the structure of precisely this region.

* Strictly speaking, in phase equilibrium the chemical potential, not the density, is constant
throughout the system. When taking account of the change in the density it would therefore
be necessary to consider the thermodynamic potential €2, not the free energy.
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unit area of the interface, we can therefore calculate the surface tension coeffi-
cient as the integral

- _j” (f=F.) dx, (46.4)

where the constant f, is the value of f far from the interface, for example within

the normal phase.
For the normal phase, the free energy f, = f,o+ B2/8% = f,o + H>/8x, so that

ﬂ! =fn—H3/47l
= fno— He/87
=fﬂ0—a2/2bs

where the last expression is found by means of (45.9). The quantity f at any
point is expressed in terms of the free energy density f by

f =f—HcB/476.

Now, using (45.10), we reach the following formula for the surface tension:

oo

B2 hz , 4e2 l HcBmaz
s = H——+~—(lw2+ 2A2wl2+alwl2)+—2-blw"— in +2_b}dx'

8 4m fizc

— OO0

(46.5)

The integrand vanishes, as it should, both within the normal phase (x - — ),
where p = 0 and B = H,, and within the superconducting phase (x — <),
where [y [2 = —a/b, B = 0.

It should be noted that, in the integrand of (46.5), the term iA.vy does not
appear, since 4, = 0. The corresponding term also does not appear in (45.12),
and so the equation remaining has real coefficients; its solution may therefore
be taken real, as will be assumed below. The first term in the current density
(45.14) disappears, leaving

i = —(2e?/mc) p2A. (46.6)

We shall use instead of the variable x and the functions 4(x) and y(x) the
dimensionless quantities

=x/0, §=uyy/bllal), A=A/HS, B=dA/d%i= B/H,. (46.7)

In .the rest of this section, only these quantities will be used, and the bars over
the letters will be omitted, for brevity. In these variables, equation (45.12)
becomes
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Equation (45.13) with j from (46.6) is
A’ = Ay*. (46.9)

The boundary conditions on these equations in the problem considered
(corresponding to the » and s phases as x - — o and x — o) are

=0, B=A=1 at x=—oo,
¥ o } (46.10)
p=1 A =0 at Xx = oo.
It is easily verified that equations (46.8), (46.9) have the first integral
(2/#2) 9’2+ (2 — A%) y® —yt+ A"2 = constant = 1, (46.11)

the value of the constant being determined from the boundary conditions.

Lastly, the expression (46.5) becomes

oH (2 ,
oy = 202 V=D gt (4 - 1]
SHE [ [2 ,
= _%_2_1,,'2+A(A'—1)] dx, (46.12)

— OO

with the second equation obtained by taking y* from (46.11).

Let us now examine the above equations, and take first the case » < 1 (which
usually occurs in superconducting pure metals). This inequality signifies that
(T) =< &(T), i.e. the magnetic field varies considerably over a distance small
compared with the characteristic distance of variation of the function y(x).

Figure 6 shows diagrammatically the distribution pattern for the field and ¢
in this case. Where the field is large we have p ~ 0j; then the field falls abruptly
and y(x) begins to change slowly (over distances ~ 1/x) in the absence of the
field. Putting 4 = 0 in (46.11), we find the equation

a4

\/2 (1 - sz)'

€
|

I/x
Fig. 6.

t From the conditions (46.10) it necessarily follows thaty’ = 0 at x = + oo, and from the
same conditions and (46.9), that 4”” = 0and 4 = 0 at x = oo} the definite value of 4(cc) is

the result of taking y real.
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which is to be solved with the condition ¥ = 0 at x = 0, taken somewhere in
the region of decreasing field. This solution is

v = tanhxx/y/2, | (46.13)

and a calculation of the integral (46.12) with this function (and 4 = 0) gives

H?  H 195

IV - 8w (46.14)

Xps =

The error in this value is due to neglecting here the contribution to the inte-
gral from the region where the field decreases. Tc estimate the width 6, of this
region,! we note, first, that 1/6} ~ ¢ from (46.9); second, that formula
(46.13) must remain valid in order of magnitude even at the boundary of the
region x ~ &;, whence ¢ ~ x20;. From these two relations we find 8; ~ 1/4/%,
The contribution to the surface tension from this region is ~ H28/4/x, i.e.
is small in comparison with (46.14) only in the ratio ~ 4/% (so that the accuracy
of (46.14) is fairly low).

When the parameter x increases, the surface tension coeficient passes
through zero and becomes negative. This is evident from the fact that the
inequality «, << O is always satisfied for sufficiently large x: the characteristic
distances of variation of (x) in this problem cannot be less than those for 4(x),
since any change in A4 causes a change in »; hence, for large », the term y'2/»2
in the integrand in (46.12) may be neglected, and the integrand is negative since
0 < A" <1(.e.0 < B < H_in ordinary units). We shall show that «,, is zero at

To do so, we rewrite the expression for «,, as
ns = gf? f [(4"—1)2—yt] dx, (46.16)

which is obtained from the first integral (46.12) by integrating the term 2 by
parts and then substituting ¢’ from (46.8). The integral is certainly zero if the
mntegrand is identically zero, i.e. if

Fhe opposite sign cannot occur, since the field B = 4’ must decrease with
increasing x. Eliminating v from (46.17) and (46.9), we find

A" = A1 -4, (46.18)

T We must emphasize that &, is not the same as the field penetration depth in a super-
copductor adjoining a vacuum. In the latter case, y~ 1 in the field penetration region, where-
as in penetration from the n phase the field decreases in a region where g is small.
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the solution of which (with the boundary conditions A’ = 1 at x = — - and
A = 0 at x = ) determines the field distribution; by virtue of (46.17), the
boundary conditions (46.10) for v are then satisfied antomatically. We need
not actually solve (46.18), but simply verify that for »* = - the equation (46.8),
which has not yet been used, or equivalently its first integral (46.11), must
necessarily be satisfied. Substituting (46.17) in (46.9), we obtain ¢’ = —5-Ay;
this value of y’, with A’ from (46.17), in fact satisfies equation (46.11)identically
with #2 = L,

PROBLEM

For a superconductor with % << 1, find the first field correction to the penetration depth in
weak fields.

SoLuTION. We take the surface of the superconductor as the yz-plane, with the z-axis in the
direction of the external field §), and the x-axis into the body. The distribution of the field and
w in the superconductor is given by equations (46.8), (46.9), which are to be solved with the
boundary conditions

=0, B=A4'"=9H at x=0,

' =1 4=0 at x =oo;
the first of these is (45.15). We seek the solution in the form

v = l+pi(x), 4,=-9e *+4,(x),

where ,; and 4, are small corrections to the solution at x = 0, which corresponds to the Lon-
don decay of the field (44.13). The correctiony, is given by the equation

'/”1' _ 2%21/)1'*"%"2@2 e~ 21,
whence, with the boundary conditions,

1 1 o —1/2x
v, = —8—;{2.@2 e‘2"’-—4\/2 xHe v, (1)

For A, wecan now write the equation
’1’ = Al—z‘g e_z'pl,

and substitute for y; only the second term in (1), which is of the first order in ». Using the
boundary condition (4; = 0 when » =0) and neglecting where possible the higher-order
terms with respect to » in the coefficients, we find

Ay =391+ v2x)emz— e ATV, @

This gives the corrections to the field decay within the superconductor. The effective pene-
tration depth J,4 is, by definition, such that

H0u = [ B(x)dx = —A(Q) = H— A4,(0).
0

Returning to ordinary units, we find from (2)

e = 81+ 3 (1?)2] '
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§ 47. The two types of superconductor

The sign of the surface tension o, has a considerable influence on the props
erties of superconductors. This forms the basis for the division of all super-
conductors into two classes: those of the first kind, with «,, > 0, and those of
the second kind, with o, < 0. Since the sign of «,_ is governed by the value of
the Ginzburg-Landau parameter %, values » < 1/4/2 correspond (nearT,) to
the former and x > 1/4/2 to the latter.!

Let us consider a solid cylindrical superconductor in a longitudinal external
magnetic field . If the superconductor is of the first kind, it undergoes a phase
transition of the first kind as the field increases to a critical value H,. The role
of the surface tension is then (as in any phase transition of the first kind) to
impede the formation of the first nuclei of the new phase and thus make pos-
sible a metastable continuance of the s phase at fields somewhat above H..

If the superconductor is of the second kind, however, the occurrence of
“inclusions” of the n phase may be thermodynamically favourable even before
H_ 1s reached; the increase of volume energy is compensated by the negative
surface energy of such a nucleus. The lower limit of fields for which this is
possible is usually denoted by H, and called the lower critical field. Similarly,
starting from a metal in the normal state in a high external field, we reach a
value H,, > H_, the upper critical field, below which the occurrence of “in-
clusions” of the s phase is thermodynamically favourable, again because of the
advantage from the negative energy of the boundaries. Thus, over a certain
range of fields, H,; < $ < H_,, the superconductor is in a mixed state.}
Its properties in this state gradually change from purely superconducting at

]

FiG. 7.

t The first kind includes superconducting pure metallic elements; the second kind includes
superconducting alloys. The hypothesis that ¥ > 1/4/2 in alloys was first put forward by L. D.
Landau.

* Not to be confused with the intermediate state of a superconductor of the first kind,
which results from certain configurations of the sample in the external magnetic field.
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H_, to purely normal at H,,; at the same time, the magnetic field gradually
penetrates into it. The value of H, determined only by the relation between
the bulk energies of the » and s phases has no special significance in this case.

The two critical fields depend, of course, on the temperature, and become
zero at T = T,. This gives a phase diagram as shown in Fig. 7 for super-
conductors of the second kind. The broken curve in Fig. 7 is explained below.

The upper critical field can be determined (in the Ginzburg-Landau theory)
even without previously ascertaining the structure of the mixed state. We need
only observe that in fields somewhat below H_., a nucleus of the s phase must
have a small value of the order parameter y; it is evident that ¥ — 0 when
tends to H,,. Hence the state of these nuclei can be described by the Ginzburg-
Landau equations linearized with respect to . Omitting the non-linear term in
(45.12), we obtain the equation

1 . 2,0\

where A is to be taken as the vector potential of the uniform field § at y = 0,
when the body is in the normal state and the external field penetrates it com-
pletely.

But (47.1) is in form just the Schrodinger’s equation for a particle of mass
2m and charge 2e in a magnetic field, with | a| as the energy level. The boundary
conditions also agree: y = 0 at infinity. It is known (see QM, §112) that the
minimum energy of a particle moving in a uniform magnetic field is Eo = 3#wy,
where wy = 2/ e|D/2mc; this is the energy value at which the continuous energy
spectrum begins. The analogy between the two problems therefore shows that
the s-phase nuclei described by (47.1) can exist only if

la| > |e| hD/2me,

so that the critical field H,, = 2mc|al/|eli. By means of (45.9), (45.17) and
(45.18) this formula may be written

He = +/2¢H, (47.2)

(A. A. Abrikosov 1952).

The solution of equation (47.1), with the boundary condition » = 0 at
infinity, corresponds to the formation of an s-phase nucleus within the sample,
far from its surface. We shall show that the presence of the surface favours
nucleation, and that nuclei may thus be formed in a thin surface layer even if
9 > H_,, (P. G. de Gennes and D. Saint-James 1963). .

The solution of equation (47.1), describing an s-phase nucleus near the sur-
face of the body (assumed plane), must satisfy on the surface the boundary
condition d0y/0x = 0, where x is the coordinate along the normal to the surface
(the condition (45.15) with A4, = 0). To establish the required quantum-
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mechanical analogy, we recall that the above-mentioned problem of the motion
of a particle in a uniform magnetic field is in turn equivalent to that of motion
in a one-dimensional parabolic potential well

U = % 2moy(x — xo)%,
where xo is a constant corresponding to the “centre of the orbit” (see OM,
§112). Let us now consider a double well consisting of two equal parabolic

wells lying symmetrically relative to the plane x = 0 (Fig. 8). The ground
state of a particle in such a field corresponds to a wave function y(x) that is

Ux)

\
\
\
A

-X0 Ao X
FiG. 8.

even in x and has no zeros; such a function automatically satisfies the condition
1’ = 0 at x = 0. The ground level of a particle in the double well is, however,
below that in the single well;' when applied to the nucleation problem, this
proves the above assertion about their easier formation near the surface.

Numerical calculation of the level in a double well gives the result that its
minimum value (as a function of the parameter xo) is 0.59E,. Repeating the
arguments that led to (47.2), we find that the upper limit of fields in which sur-
face nuclei of the s phase occur is H g = H_,/0.59, i.e.

H = 1.7Hy = 2.4xH.. (47.3)

Thus, in the range of fields between H , and H 4, there arises the phenomenon
of surface superconductivity; the boundary of this region is shown by the
broken curve in Fig. 7. The thickness of the superconducting layer at the surface
of the normal phase is of the order of £(T"). This estimate is easily derived from
the same quantum-mechanical analogy: the wave function of a particle in a
potential well (at the level Eo) is concentrated in the region x ~#/+/(mE,). The
corresponding dimension of the nucleus is obtained by replacing Eo by |a|
and is, according to (45.17), &(T).

The above discussion relates entirely to superconductors of the second kind,
but the critical fields H,, and H,; defined here may have a certain physical
significance for those of the first kind also.

If  is in the range 1/4/2 = 0.71 > x> 0.59/4/2 = 0.42, then H,, < H, but
H. > H,_. Although no mixed phase occurs in this case, there is surface super-
conductivity in the range of fields between H, and H .

t This is because the potential energy in the half-space x < O is less than it would be for
a single well shown by the broken curve in Fig. 8; see, for example, QM, §50, Problem 3.
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Finally, in the sense of the above derivation, the value of H,, (47.2) deter-
mines (for any %) the upper limit of fields in which the formation of s-phase
nuclei with arbitrarily small v is possible. Hence, in a superconductor of the
first kind (where H,, < H)) in fields $ < H_,, the thermodynamically un-
favourable normal phase is absolutely unstable; but in the range H, < § <
< H,_ the normal phase can exist as a metastable phase. In this range, the phase
transition of the first kind from the 7 to the s phase can only occur by the for-
mation of s-phase nuclei with finite values of y, which is opposed by the posi-
tive surface tension at their boundaries (V. L. Ginzburg 1956).

PROBLEM

Determine the critical field for a superconducting sphere of small radius R« & (V. L.
Ginzburg 1958).

SoLuTiON. In this case (as in a thin film; see §45, Problem) the superconductivity is de-
stroyed by a phase transition of the second kind. The critical field for a sphere may be found
as that below which the n phase ceases to be stable with respect to the formation of s-phase
nuclei. As in the text, this amounts to finding the lowest eigenvalue of the Schrddinger’s equa-
tion (47.1). With the condition R < &, this may be sought by means of perturbation theory
with respect to the external field, the unperturbed wave function being y=constant (the nuc-
leus occupies the whole volume of the sphere). The eigenvalue is then simply the mean value
of the perturbation operator (2eA/c)?/4m (the mean value of the operator (fefi/mc) A. v for
yp=constant is zero). The vector potential of the uniform field must here be taken as A=19xr;
with this gauge, the solution ¢ = constant satisfies on the surface of the sphere the boundary
condition (45.15), which reduces ton.A = 0. The result of the averaging is

_ ez 2 2__ _ ezbsz
™ 4me? _3—%’2 = 10me?

The critical field is found, as in the text, from the condition £y = | al, which gives
H™® = ./20H,6/R.

The legitimacy of using perturbation theory is confirmed by the fact that the value found
for E, (at § = H™), with the condition R < 4, is in fact small compared with the next eigen-
value, which would correspond to a wave function varying within the sphere and would be of
the order of #2/mR*.

§ 48. The structure of the mixed state

We shall again consider (as in §47) a cylindrical sample of a superconductor of
the second kind in a longitudinal magnetic field $, and ascertain the structure
of the mixed state of the body in fields slightly exceeding the lower critical
field H,,."

In this case there are nuclei of the normal phase in the main superconducting
phase. To attain the maximum thermodynamic favourability they must have
(with negative surface tension) the largest possible surface. The structure ex-
pected is therefore one in which the n-phase nuclei are filaments parallel to the

t The results in this section and in the Problems are due to A. A. Abrikosov (1957).



194 Superconductivity

field. The magnetic field that penetrates into the body and the annular super-
conductivity currents surrounding these vortex filaments are concentrated near

the filaments.
As the external field approaches H_;, the number of such filaments in the

body decreases and the distance between them increases. When this distance
is sufficiently great, the arguments given at the end of §44 become applicable
to the individual vortex filaments, whereby the total magnetic flux concentrat-
ed near a filament must be an integral multiple of the flux quantum ¢o =
= mfic/|e!; we shall see later that filaments with the lowest possible flux, ¢o
itself, are thermodynamically favourable. The fact that ¢o is not zero is what
sets a limit to the further fragmentation of the n-phase nuclei.

When the external field, increasing from low values, reaches H ,;, one vortex
filament appears in the cylinder. We can write down the thermodynamic con-
dition that determines this point without for the present investigating the struc-
ture of the filament itself, but merely using the fact that it is associated with
some (positive) energy; this energy per unit length of the filament will be denot-
ed by ¢ (and calculated below).

It is evident that, in a cylindrical body in a longitudinal external field, the
induction B also will be everywhere parallel to the axis of the cylinder. The
same is true of the macroscopic field H = B—4aM defined in §46. The equa-
tion curl H = 0 then shows that H is constant over the cross-section (and
therefore throughout the volume) of the cylinder; because of the boundary
condition that the tangential component of H is continuous, this constant value
must be equal to the external field: H = §. Thus we have to consider the ther-
modynamic equilibrium of the body for given volume, temperature, and field
strength H. The condition for such an equilibrium is for ¥, the thermodynamic
potential with respect to these variables, to be a minimum (see ECM, §30).
Let £, be this potential for a superconducting cylinder; since B = 0 in the
superconducting phase, F, is the same as the free energy F,. Then the potential
F for a cylinder with one vortex filament will be

F=F,+Le— [H.BdV/4n
= Fs+Le—9 [ BdV/4nm.

The term Le is the free energy of the filament (L being the length of the fila-
ment, which 1s equal to that of the cylinder), and the last term is the difference
between the potential F and the free energy F. Since the induction B is entirely
concentrated near the vortex filament in the body, we have | BdV = Léo,
where ¢ 1s the flux of the induction through the cross-section of the filament.
Thus ~
F = F;+ Le — L§H/4n. (48.1)

The occurrence of vortex filaments becomes thermodynamically favourable
when the quantity added to F, is negative. Equating it to zero, we thus have as
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the critical value of the external field

H, = 4ne/d,. (48.2)

Let us now consider the structure of a single vortex filament. We shall take

only the important case where
%> 1, (48.3)

i. e. 8 > E. The length £ determines the order of magnitude of the radius of
the “core” of the filament, in which |y |2 varies from zero (corresponding to the
normal state on the filament axis) to the finite value corresponding to the main
s phase; at large distances r from the filament axis, |¢|? remains constant.t
The induction B(r) varies much more slowly, decaying only at distances r ~
~ & >> &. Thus essentially the whole of the magnetic flux passes through the
region outside the core, where |9 !2 = constant (Fig. 9).

2

v}

B(r)

Fic. 9.

The latter fact enables us to use the London equation (whose validity, let us
recall, does not depend on the temperature’s being close to T,) in order to find
the field distribution. To put it in the appropriate form, we first rewrite the rela-
tion (44.7) between the superconductivity current density and the phase of the

wave function:
A +&curl B = ¢ VP/2m, (48.4)

using the penetration depth & and expressing j in terms of the induction by
j = ccurl B/4n. The London approxXimation corresponds to the assumption
that d is constant. We integrate (48.4) along a closed contour C that embraces
the filament and passes at distances r>>£ from its axis. Transforming the integral

t In this section, » will denote a cylindrical coordinate, the distance from the axis.
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of A by Stokes’s theorem into an integral over a surface spanningthe contour

C, we find
fB.df+62§curl B.dl = ¢, (48.5)

and a similar transformation of the second integral gives

f B+ &2 curlcurl B).df = ¢y; (48.6)

on the right we have written the lowest possible (non-zero) value, corresponding
to a phase increase of only 2z. If the contour C passes at distances r > é from
the filament, where the field and the currents may be regarded as zero, the second
integral in (48.5) may be omitted, and we see that ¢o is equal to the total flux of
the induction concentrated around the isolated vortex filament. The filament
axis itself is a line singularity, a passage around which alters the phase of the
wave function.

Since the equation (48.6) must be satisfied for any contour C that satisfies the
conditions stated, it shows that we must have

B+é2curlcurl B = B—32AB = ¢od(r), (48.7)

where r is the two-dimensional position vector in the plane of cross-section of
the vortex filament. Writing the right-hand side of this equation as a delta
function signifies that distances ~ £ are here regarded as zero. In all space ex-
cept the line r = 0, equation (48.7) is the same as the London equation (44.11),
but to describe the vortex filament we need a solution with a singularity at
r=0.

The field distribution at distances r from the axis in the range 6 > r =& can
be found directly from (48.5). We take as the contour C a circle of radius r in
this range. The flux of induction through this contour, the first term on the left
of (48.5), is only a small part of the total magnetic flux, in the ratio ~ (r/d)?;
it will be neglected. In the second term, dl is an element of length of the circle;
since the vector B is along the z-axis (in cylindrical polar coordinates with the
axis along the filament) and depends only on r, we have

l.(VXB) =(Ixv).B= —0B,/or = —dB/dr,

where 115 a unit tangent vector to the circle. Thus we obtain the equation

1.curl B = —dB/dr = ¢q/2nrd?, (48.8)
whence
B(r) = —L—;-%z— log —> t<«r<d. (48.9)

Because of the logarithmic dependence, the upper limit of integration (at which
we should have B ~ 0) may be taken equal to the upper limit of the range of
distances r under consideration.
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To continue the distribution found above into the range r 2 8, we use equa-
tion (48.7), which is valid for all r =» £. Expanding the Laplacian operator in
cylindrical polar coordinates (with B = B,(r)), we can rewrite the equation
(forr # O)as

B" +B'[r+B/§ = 0.

The solution of this equation that decreases as r — o is
B(r) = constant X K(r/6),

where K, is the Macdonald function (the Hankel function with imaginary argu-
ment). The constant coefficient is determined by “joining” to the solution
(48.9), using the known limiting form Ko(z) ~ log (2/zy) for z<«< 1(y = ¢ =

1.78). Thus we have finally

B(r) = %2— Ko(r/0), r=>E& (48.10).

By means of the known asymptotic expression Ko(z) ~ (7/2z)"2e~* for z —
we therefore find, in particular, the law of decrease of the field far from the
axis of the filament:
B(r) = T8—7£50—3)1T e=rl, (48.11)
Attention may be drawn to the evident analogy between the properties of
vortex filaments in superconductors and those in liquid helium (§29). In both
cases, they are line singularities, a passage around which alters the phase of the
condensate wave function. The circular paths of superflnid motion round
vortex filaments in liquid helium correspond to circular currents in the super-
conductor; in the former, the velocity v, of superfluid motion decreases as 1/r,.
and in the latter the superconductivity current density

., C c
,=2-;lcm131=—§%§ (48.12)
decreases in the same way. This agreement is to be expected, since in both cases.
the relation is a direct consequence of the existence of the line singularity. But,
whereas in liquid helium this relation v,(r) extends to all distances, in a super-
. conductor the decrease of j(r) becomes exponential for r = 8. The difference is
due to the charged state of the electron liquid: the motion of charged particles
creates a magnetic field, which in turn screens the field; if the particle charge e
is made to tend to zero, the penetration depth 6 — .

We can now calculate the free energy of a vortex filament. The contribution
from the region of space outside the core (r > &), is given by the integrals

1 2
Fu = g~ 'f B2dV+§6—’—z- f (curl B)2dV (48.13)
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taken over this region. For, on varying this expression with respect to B (at a
given temperature i.e. given 8), we immediately obtain the London equation
(48.7) (for r #0)." The second integral in (48.13), which diverges logarithmically
at both ends of the range 8 > r > &, is large in comparison with the first. Sub-
stituting here |curl B! from (48.8), we obtain for the energy per unit length

of the filament
& = (¢o/4md)? log (8/%) (48.19)

This expression has logarithmic accuracy, i.e. we assume not only §/& > 1 but
also log (6/£) > 1 to this accuracy we can neglect the contribution to ¢ from the
core of the filament.

The result (48.14) allows, in particular, the proof of the statement made
above, that the formation of vortex filaments with the lowest magnitude of the
magnetic flux is thermodynamically favourable. Since the free energy of the
filament is proportional to the square of the magnetic flux attached to the fila-
ment, the energy for a filament with flux n¢o would contain a further factor #2,
and the break-up of such filament into # filaments with flux ¢, would lead to an
n-fold gain in energy.

Substituting (48.14) in (48.2), we find the lower critical field

H, = Zﬁ%—é-log (6/5). (48.15)

AsT — T, this expression may also be written, by means of (45.19), as*

H, cl = H c 1\3%: .

As the external field increases, so does the number of vortex filaments and
therefore the penetration of the magnetic field into the superconductor. When
the interaction between filaments is taken into account, thermodynamic equilib-
rium corresponds to a certain ordered configuration of the filaments, forming
a two-dimensional lattice in the plane of cross-section of the cylinder.! For any
number density of filaments, the axis of each remains a line such that passage
around it alters the phase of the wave function ¥ by 2. The mean value (over
the cross-section of the cylinder) of the induction is

B = v, (48.17)

(48.16)

T The second term in (48.13), expressed as a function of the current j, is
2nc?0? f jtdv = f LonNidv;

in the second expression we have also substituted 82 = mc?/4ne’n,, and the density and ve-
locity of the superfluid component according to j = ep,v,/m; see the first footnote to §44. We
see that this term can be regarded as the kinetic energy of the superconducting electrons.

* Since this formula has been derived on the assumption that log x > 1, it cannot be used
whenx ~ 1.In particular, forx = 1/4/2 the field H,, (like H,,) must be simply H,.

§ The most favourable lattice seems to be that formed by equilateral triangles with vortex
filaments at their vertices.
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where » is the number of filaments per unit area of the cross-section. For, if we
integrate the relation (48.4) along the contour around the whole cross-section
of the sample, we obtain equation (48.5) with Svdo on the right (S being the
cross-sectional area); on the left-hand side, the first integral is the total flux SB
of the induction, and the second represents an edge effect that is small in com-
parison with the first, in the ratio ~ /R, and is therefore negligible (R is the
linear size of the cross-section); here it is important, of course, that the field
around the filaments decays at distances ~ é.

So long as the distances d between the filaments remain large in comparison
with the correlation radius &, we can assert that the magnetic fields of the vortex
filaments are simply additive: when d > &, we can still draw a contour embrac-
ing any number of vortex filaments in such a way as to pass everywhere far
(at distances > &) from their cores. On such a contour, the condition for the
London approximation is satisfied (8 is constant), and we therefore again
arrive at an equation that differs from (48.7) only in that the delta function on
the right is replaced by a sum of delta functions of the distances from each fila-
ment; since this equation is linear, the statement made is proved.

When the external field approaches H.,, the distances between vortex fila-
ments become comparable with §. This is clear also from the expression (47.2)
tor the critical field if it is written, by means of (45.9) and (45.16)—(45.18), in
fhe form

He.» = ¢o/2mE2; (48.18)

it corresponds to a flux ¢o concentrated on an area ~ £2.

The disappearance of the superconductivity at §) = H , takes place as a phase
transition of the second kind. In accordance with the general theory of such
transitions, we can assert that the order parameter v as a function of the exter-
nal field vanishes as |y |2 oc H_,— 9. On the other hand, the magnetization of the
substance M = (B— H)/4n, a quantity independent of the choice of the phase
of vy, is itself proportional to |y |2 in this range. Since at § = H_, we must also
have B = H_,, we thus obtain a linear relation between the induction B in a
superconductor and the external field near the transition point:

B—chxS?—ch. (48.19)

PROBLEMS

ProBLEM 1. Calculate the energy of interaction of two vortex filaments at a distance d > §
apart.

SoLuTION. We transform the expression (48.13) for the free energy of a system of two
vortex filaments to a form in which the integrations are taken only near each separate filament.
To do so, we write, using equation (48.7),

B2+ §%(curl B)? = 4*(— B.curl curl B+ (curl B)?}
= &% div (BX curl B).
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The volume integral is transformed to
Fy, = (82/87) | BXcurl B.df, )

I+t

taken over the cylindrical surfaces f; and f; (of small radius »y: & << r <« §) embracing the
cores of the filaments. When d > ¢, the filament fields are additive, i.e. B = B,+B,. The
filament interaction energy is then given by the part of the integral (1) that depends on both
B, and B,:

Ley, = (32/87) {  B;Xcurl Bydfy+ [ ByXcurl By.dfy};

the integrals of the form | B,Xcurl By-df, tend to zero with ro. Using (48.8) and (48.10),
we now find

oy =20 Ba) = ~ B8 Kajo).

8
€12 = 2 g5 20 Tap 7 “8a28T

In particular, at distances d > 9,
2

€12 = 5775, ange (01N e, 7))

PrOBLEM 2. Determine the dependence of the mean (over the cross-section of a cylindrical
sample) magnetic induction B on the external field § in the mixed state when the vortex fila-
ments are at distances d >> 6 apart, forming (in the cross-section of the sample) a lattice of
equilateral triangles.

SoLuTION. The area of an equilateral triangle is 4/ 3d?/4 (where d is the length of a side), and
the number of filaments is half the number of triangles in the lattice (N triangles have 3N ver-
tices, but each vertex in the lattice belongs to six triangles that meet there); hence v=2/+/3d".

The thermodynamic potential f per unit volume of the body in the mixed state is

f .fl_-?-q-v( H¢1+'b)+ 2 ; ik

where the second term corresponds to the expression (48.1) with H,; from (48.2); in the third
term, €,, is the energy of interaction of two filaments, and the summation is over all filaments
passing through a unit area. Because of the exponential decrease of ¢,, when d > 4, it is
sufficient to consider only pairs of neighbouring filaments. In the triangular lattice, each fila-
ment has six nearest neighbours, so that

1 1
—2— ‘2 8‘,, = 6.-2— Z e{l = 3])812 (d)'

Substituting ¢,, from (2), Problem 1, we find

@—Hcl 3¢ e”*
f=r+ 2v3 5 [' P WISt am]

where a = d/0. The dependence of aon § is determined by the condition for the function
£ (@) to be a minimum , which gives
__3p

—_— Hn
O~ Ha = 37am
he term of higher order in 1/a < 1 is omitted. This equation, together with B = wg,, i.c.

a = (2po//36°B)?,

gives the required dependence B($). As 9 —~ H,,, the derivative dB/dD tends to infinity accord-
ing to

o Vae 3)

—azoc ! log=? s !
i~ o-H, P H-Hg'
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§ 49. Diamagnetic susceptibility above the transition point

It has been mentioned at the end of §45 that the range of temperatures T, in
which the fluctuations of the order parameter yp become large is extremely
narrow in superconductors. Outside this range, the fluctuation corrections to the
thermodynamic quantities are in general very small. They may, however, be
important as regards the magnetic susceptibility of a metal above the transition
point: the occurrence, because of fluctuations, of even a relatively small number
of superconducting electrons may give a contribution to the susceptibility that
exceeds the ordinarily very small susceptibility of the normal metal far from
the transition point.}

Let us consider a metal in a weak (9 < H,) external magnetic field at a tem-
perature above but close to T.. The equilibrium value of the order parameter is
here w = 0, and to calculate its fluctuations we can use the free energy from the
Ginzburg-Landau theory. In the expression (45.10), since the fluctuations are
small, we need retain only the terms quadratic in v, omitting the term in |y 4
and taking A to be the vector potential of the uniform field §. The fluctuations
of the induction B due to those of y are quadratic in y (since the current den-
sity j is quadratic). Hence, in the term B?/87, we can take B to be the mean
(thermodynamic) value of the induction, and neglect its fluctuations. Thus the
change in the total free energy of the metal in a fluctuation is given by the follow-
ing functional of p :*

AF[w]:[{-l—!( — i — 3e—A)ip!z-i—altp{?}afV. (49.1)
4m c | '

To calculate the fluctuational contribution AF to the free energy, we must
regard the functional (49.1) as the “effective Hamiltonian”, which determines
AF from the formula

exp(—4F/T) = [ exp (—AF[y)/T) Dy. (49.2)

where the (functional) integration is taken over all distributions y(r); see Part 1,
§147. In practice, it is carried out by expanding v in terms of some complete set
of eigenfunctions and integrating over the infinite number of coefficients in this
expansion. For a homogeneous system (without external field), the expansion is
made simply with respect to plane waves (see, for example, the calculation of the
fluctuational correction to the specific heat in Part 1,§147, Problem).

T This effect was pointed out by V. V. Shmidt (1966).

? To avoid misunderstanding, we should mention that the magnetic field is not, with regard
to the superconductor, the “external field” % in the sense in which it was defined in Part 1,
§144. The latter would have to appear in the free energy as a term — A(y +y*), which in the
present case is certainly impossible because such a term is not invariant with respect to the
choice of the phase of .
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In the present case, the expansion is to be made with respect to the eigen-
functions of the “Schrédinger’s equation”

- (—iﬁ v ——2-:LA)21/) ~ By, (49.3)
corresponding to the Hamiltonian (49.1). It has been mentioned in §47 that this
equation is formally identical with Schrodinger’s equation for the motion of a
particle (with mass 2m and charge 2¢) in a uniform magnetic field. Its eigen-
functions are labelled by one discrete (n) and two continuous (p,, p,) quantum
numbers, the eigenvalues depending only on n and p, (the z-axis is in the direc-

tion of ) and being given by
E(n+1%, p:) = (n+3) | e| h/mc+ pZ/4m; (49.4)

the number of different eigenfunctions for a given n with p, in the range dp, and
any possible p is
[V. 2]e| 9/(2nA)? c] dp:
(see QM,§112).
For brevity, we shall denote the set of numbers », p,, p, by one symbol g, and
write the expansion of the function y(r) as

P =3 cq¥P(T), (49-5)

where ¢, = c¢,-+ic, are arbitrary complex coefficients and the eigenfunctions are
assumed normalized by the condition _f |1, (2dV = 1 (with integration over the
volume of the metal).

Substitution of the expansion (49.5) in (49.1) allows, first of all, a change from
integration over the volume to summation over g: integrating the first term by
parts, we can bring (49.1) to the form

. 1 . 2e ,\? .
AF[«p]:j{w z—'h—(—zhv———?A) Y-+ afp}dV.

Substituting (49.5) here and noting that each of the functions v, satisfies equa-
tion (49.3) with E = E_ and that the eigenfunctions with different ¢ are ortho-
gonal, we find
AFY] = T | ¢, [*(E, +a). (49.6)
q

The functional integration in (49.2) denotes integration over all dc dc, . After
the substitution of (49.6), the integrations over all these variables separate,
giving

exp(—4FT) =[]+ ——
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or

aTl
AF = ——T§10g Fia (49.7)

In terms of the quantum numbers » and p,, this expression becomes

2e|T9 T . 49.8
~V oy ZJ E Epmnti)ta : #5)

AF = —

This sum diverges for large E, but the divergence is in fact spurious and due
only to the fact that the original formula (49.1) is applicable only for slowly
varying functions v(r): the change in ¢ over distances ~&o must be small. In
terms of the eigenvalues E,, this means that only E, < %2/m£; are allowable.
Cutting off the sum over n at some large N which satisfies the condition stated,
we use Poisson’s formula

S f(+3) ~ [ £ dr— KU OB

see Part 1, (59.10). When applied to (49.8), the integral term here is easily seen to
give a contribution to the free energy that is independent of §; this term is not
needed in calculating the magnetic susceptibility, and we shall omit it. In the
second term, we can now let N — <, so that the cut-off parameter does not

appear in the result:’

o0

e?T.$? dp.
48n%hmc® | a+pi/4m

—_—00

AF =V

Finally, calculation of the integral gives

e?T >
AF =V e o (49.9)
Hence the magnetic susceptibility is
1 624F e’T,
TV 89 12k ma) VAT —To)? (49.10)

(H. Schmidt 1968, A. Schmid 1969). We see that the susceptibility increases
as (T—T_,)~ "2 near the transition point. In this range, (49.10) is the principal
contribution to the magnetic susceptibility of a normal metal.

T In the coefficient we have put T = 7. For T close to 7., the important values in this in-
tegralare p, ~ +/(ma) ~ h/5(T) < hj&,, i.e. satisfy the requirement stated.
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PROBLEMS

ProBLEM 1. Determine the magnetic moment of a thin film (thickness d < &(T")) in a weak
magnetic field perpendicular to its plane at temperatures 7" > T, with T— 7, < T.,.

SoruTiON. The finite thickness of the film makes the quantum number p, in (49.4) discrete;
for a thin film, we must take in (49.7) only the value p, = 0; even the first non-zero value
P ~ #/d,sothat E ~ #i*/md® >> #2/m&* ~ a. The number of eigenfunctions with given n and
2, (and any possible p,) is 2| e| HS/2nfic, where S is the area of the film; hence the summation
over ¢ in (49.7) is to be taken as (@S/nhc)z. Applying Poisson’s formula to the sum, we get

o €T D
dF = § 24mwmeta ”
The magnetic moment of the filmis
— —04Fjog = —8§ ——2 10

127amco(T—T,)

1t should be noted that this increases faster, as T — T, than for an infinite metal.

ProBLEM 2. The same as Problem 1, but for a sphere of radius R < 5(7") (V. V. Shmidt
1966).

SorutioN. In this case, of all the eigenvalues of equation (49.3), only the lowest is impor-
tant, corresponding to the eigenfunction p = constant, and equal to E,= €2R*$?/10mc*; see
the discussion in §47, Problem. The sum (49.7) reduces to a single term, and the magnetic

moment is

M ~ T, 05, _ TR
T a 09  5Smi(T-T,)

§ 50. The Josephson effect

Let us consider two superconductors separated by a thin layer of an insulator.
For electrons, this layer is a potential barrier, and if it is sufficiently thin there
is a finite probability that they will penetrate it by quantum tunnelling. Even if
the transmission coefficient of the barrier is small, its difference from zero is of
fundamental importance: the two superconductors become one system de-
scribed by a single condensate wave function. This leads to effects first predic-
ted by B. D. Josephson (1962).

Because there is a single condensate wave function of the system, a super-
conductivity current can flow through the contact between the two supercon-
ductors even when no external potential difference is applied. Just as the cur-
rent density within the superconductors is determined by the gradient of the
phase @ of the condensate wave function, so the density j of the superconduc-
tivity current through the contact depends on the difference of the phase values
D, and D, on the two sides of the contact.! Since values of the difference @,—®P,

t In order that the superconductivity current through the contact should have an appreci-
able value, the thickness of the insulating layer must in fact be very small, ~10~7 cm. Such
distances are small even in comparison with the smallest characteristic length parameter of the
superconductor, the coherence length &,. In this sense the layer is to be regarded as of in-
finitesimal thickness, and the behaviour of the phase within it does not appear in the theory
atall.
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which differ by an integral multiple of 2z are physically identical, it is clear
that the function
J=Jj(®Pn), Pun = D—P, (50.1)

must be periodic, with period 2x. The operation of time reversal changes the
sign of the current j and also that of the phase @,;, since the wave functions are
replaced by their complex conjugates. This means that the function (50.1) must
be odd, and is zero when @,; = 0. Being bounded, of course, j(@3;) has maxi-
mum and minimum values, between which it varies with the phase difference;
since the function is odd, these values are equal in magnitude, and will be
denoted by =+ j,,.

The form (50.1) presupposes that the current is not affected by the magnetic
field of the currents within the contact. In the contrary case, the difference @,
would have to be replaced by the gauge-invariant expression

2

By &~ 2 | 4 dx.
fic

1

Because the thickness of the insulating layer is very small, the condition for
the integral of the continuous function 4,(x) to be negligible is easily satisfied,
and the values of A, itself on either side of the contact may be regarded as
equal.

The form of the function j(®,,;) at all temperatures can be established only
from the microscopic theory. We shall give here only a phenomenological
treatment within the range of applicability of the Ginzburg-Landau theory.

If the contact were entirely impermeable to electrons, the wave functions
m each superconductor would satisfy at the boundary of the contact the con-
ditions (45.15):

61[)1 _Zﬁ

o opa _2ie
Oox fc

Ay = 0, B %Axwg = 0.

The finite permeability of the barrier and the finite value of v at the boundaries
of the contact lead to non-zero expressions on the right-hand sides of these
conditions, depending on the values of y on the other side of the contact.
Since  is small (near the transition point T,), we need consider only the terms
linear in v in these functions, putting

oy, 2ie W, Oy, 2e Vi

ox i x¥1 =TT Tox e Axy, =7, (50.2)
the coefficient 1/2 being proportional to the permeability of the barrier. The

equations (50.2) must satisfy the requirements of symmetry under time reversal,
remaining valid under the transformation v — y*, A — —A, whence it
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follows that the constant 4 is real; then, under the transformation mentioned,
equations (50.2) simply become their complex conjugates.

The relation between the superconductivity current through the contact and
the difference between the phases of y can be determined by applying formula
(45.14) to either side of the contact, say side 1:

. oY Opf\ 2
J=- 2m( ig, W 6x) Ax%%

Substituting 8y1/0x from the boundary condition (50.2), we find
e e
= mi (Y192 —¥a¥2)-

For contacts of the same metal, v; and y, differ only in phase, and we then
have for the current density

J = jmsin @o1, jm = (eh/mi)|yp |2 (50.3)

As the transition point is approached, |y |2 tends to zero asT ,—T, and there-
fore so does the maximum current density through the contact.”

Now let a potential difference be applied from an external source to the
tunnel contact, so that there is an electric field E in the contact. We shall describe
this field by a scalar potential, denoted by ¥:E = — v¥. The influence of
this field on the superconductivity current through the contact can be ascer-
tained from the requirements of gauge invariance.

In the absence of the field (V7 = 0), the phase of the wave function is inde-
pendent of time: 6®@/0t = 0.* To generalize this equation to the case where
the electric field is present, we note that the general relation must be invariant
under the gauge transformation

1 oOx()
V V—? T (50.4)

of the scalar potential, which does not affect the vector potential (assumed in-
dependent of time). Just as in the derivation of the transformation (44.3),
(44.6), we find that together with ¥V, the phase of the wave function must be

transformed, by
D -~ D+ (2e/fic) x(2). (50.5)

t The microscopic theory based on the BCS model shows that a relation of the type (50.3)
between j and @, is valid at all temperatures. The same theory gives a relation between j,
and the electrical resistance of the contact between two metals in the normal state. This
theory is described by I. O. Kulik and 1. K. Yanson, The Josephson Effect in Superconductive
Tunneling Structures, Israel Program for Scientific Translations, Jerusalem 1972.

t The time factor exp (—2iut/#) is ehmmated from the wave function because the Hamil-

tonian H of the system is replaced by H = H- ,uN cf. the sixth footnote to §31.
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Hence it is clear that the relation
oD 2e
Y = 50.6
=+ V=0 (50.6)
is gauge-invariant; it becomes 0@/6t = 0 when ¥ = 0.
When the electric field is independent of time, integration of (50.6) gives

b = OO _(2e/h) V1,

where @@ is independent of time. Hence, if a constant electric potential differ-
ence V', is applied to the contact, the phase difference there is

D,y = O — (2e/h) V.

Substituting this expression in (50.3), we find the superconductivity current
through the contact:
J = jmsin (DY — (2e/h) Vat). (50.7)

We thus arrive at a noteworthy result: the application of a constant potential
difference to the tunnel contact causes the appearance of a superconductivity
alternating current with frequency

w; = 2 eV !/h. (50.8)

The power consumed at the contact is j¥q; its (time) average value is zero,
i.e. there is no systematic expenditure of energy by the external source; this
is as it should be for a superconductivity current, which does not involve any
dissipation of energy. We must emphasize, however, that when there is an ex-
ternal e.m.f. there will also be a normal current (weak when ¥, is small)
through the contact, and this is accompanied by dissipation.

The conclusion that the superconductivity current through the contact varies
periodically with the frequency (50.8) follows, in fact, from the periodic
dependence of j on @, and the linear time dependence of @s;; it does not
rest on any assumptions about the magnitude of the potential difference.
The specific formula (50.7) is valid only if the frequency w, is small in compari-
son with the frequency A/#% that characterizes the superconductivity :

fw; =2 eV | < AT). (50.9)

PROBLEM

Write down the equation for the current in a circuit consisting of a resistor R connected in
series with a superconductor having a tunnel contact, with ane.m.f. V, acting in the circuit.

SoLuTioN. The total voltage drop in the circuit is V, = RJ+ Vs, where J is the current
in the circuit and V,; the potential difference across the contact.t Substituting J = J,, sin @,

T We neglect the normal current in the superconductor, which is small if V, is small.



208 Superconductivity

and V,, from (50.6), we find

i 0D,
2le] ot

The variable current described by this equation is not sinusoidal.

= VO—RJm Sin ¢21.

§ 51. Relation between current and magnetic field in a superconductor

Formulae have been derived in §44 which give the relation between the current
and the magnetic field in a superconductor in the limiting (London) case
where all quantities vary slowly through the body; the field was assumed to
be much less than the critical value. Let us now consider this problem in the
ceneral case where the static field, though still assumed weak, varies in any
manner in space. The words “varies in any manner” here mean that the field
may vary considerably over distances ~ &o (but, of course, will still vary only
slightly over distances of the order of the lattice constant; the inhomogeneity
of the metal over atomic distances is therefore unimportant).

In the general case, the relation between the current and the magnetic field
in a spatially infinite medium is given by an integral formula of the type

Jim) = — [ Qulr —1') A(r’) &', (51.1)

where the kernel Q, depends only on the properties of the medium itself.
The linearity of (51.1) corresponds to the assumption that the field is weak.

The current density may be regarded as the variational derivative of the
energy of the system with respect to the vector potential: the change in the
Hamiltonian of the system when A is varied is

0H = —(1/c) fj.éA d®x;

see OM, (115.1). Hence the kernel Q;, in (51.1) is the second variational deriv-
ative, and the symmetry as regards the order of the twofold differentiation
(with respect to A,(r) and 4,(r’)) has the result that

Qin(r —r') = Qiir’ —r). (51.2)

Expanding A(r) and j(r) in Fourier integrals, we can write the relation (51.1)
for the Fourier components as

Jik) = — Qu(k) Ax(k), (51.3)
where, from (51.2), Q,.(k) = O,,(—k).

T The problem of an infinite medium here has only formal significance. Its actual impor-
tance lies in the subsequent application of the results to the problem of a finite medium (§52).
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Some important properties of the function Q,(k) follow from the require-
ments of gauge invariance. The current j must be unaltered by the gauge trans-
formation A(r) - A(r)-+ vy(r) or, in Fourier components,

A(k) - A(k) +ky(k).
This means that the tensor @, (k) must be orthogonal to the wave vector:
Ou(k) ki = 0. (51.4)

In particular, in a crystal with cubic symmetry, the tensor dependence of Q,,
reduces to terms of the forms d,, and kk, ; it then follows from (51.4) that

0 = (3u—"r) 0 (51.5

where Q(k) is a scalar function.

We now choose a potential gauge such that div A(r) = 0. This implies
that for the Fourier components k.A(k) = 0. Hence the relation (51.3) be-
tween the current and the potential reduces to

i(k) = - 0(k) A(k), (51.6)

i.e. is determined only by the scalar function Q(k).
The London case corresponds to the limit of Q(k) as k — 0. This is easily
found by taking the curl of both sides of equation (44.8),

curl j = —(e®ns/mc) curl A,

and using the fact that div A = 0. Since the equation of continuity gives div j =

= 0, we find
AJ = —(e*ns/mc) AA.

In infinite space with the functions j(r) and A(r) everywhere finite, it then fol-

lows that
i(r) = —(e?ns/mc) A(r), (51.7)

Le. the value of the current at every point is determined only by the value of
the potential at that point. A similar equation is valid between the Fourier
components j(k) and A(k), and comparison with (51.6) shows that Q(k) is
independent of k:'

O(k) = e?ns/mc (= c/4nd} as k — 0). (51.8)

The rest of this section will deal with the calculation of Q(k) for the BCS
model, which supposes, as already mentioned, an isotropic degenerate Fermi

t In this and the following sections, the London penetration depth is denoted by 4,
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gas with weak attraction between the particles (electrons). It is also assumed
that these particles interact with the magnetic field through their charge e.

In §42 we have given the equations (42.5) for the temperature Green’s
functions of a Fermi gas in the absence of an external field. The introduction
of the magnetic field is achieved by replacing the operator v by v —ieA/c in
the Hamiltonian A® (7.7).} A similar change therefore occurs in equation
(7.8) for ¥ and correspondingly the change v - -+ ieA/c in the similar equa-
tion for ¥+ it is evident that the same applies to the equations for ¥ and M,
The spin term ( ~ ©.H), corresponding to the direct interaction of the magnetic
moment of the electron with the field, is small and may be neglected in the
Hamiltonian and in the equations. When the operator <7 acts on the functions
4(z,r; v, r)and (F(z,r; v,r’), the operators ¥M(<,r) and P(z,T) respectively
are differentiated. Hence, in equations (42.5), the magnetic field is introduced
by the same substitutions vV - v JieA/c.

The presence of the external field makes the system no longer homogeneous
in space, and the dependence of the Green’s functions on the arguments r
and r’ is no longer simply a dependence onr —r’; but the functions still depend
on 7 and 7’ only through the difference 7—7’. We shall write down immediately
the equations for the Fourier components with respect to T—17’:

. 1 ] 2 ——
{zmi— |72 A0)| 4} Gin ) +8EF s E) = 30
i ¢ (51.9)
. 1 ] 2 = = '
L=t 5 [T+ AO] +u | FCirr) g5 GCn ) =0
For a weak field, the only case we shall consider here, these equations can
be linearized; we put

g =g9+g%, (F=GFO+F, (51.10)

where the first terms are the values of the functions in the absence of the field,
and the second terms are small corrections linear in the field, and we retain
in the equations only the terms of the first order of smallness in A.

Here it must be borne in mind that the presence of the field also changes the
condensate wave function =, which in this case does not reduce to a constant.
This complication, however, does not occur with our choice of the vector po-
tential gauge, in which

divA = 0. (51.11)

This is because the first-order correction (to the constant value Z©) in the
scalar function Z(r) could only be proportional to div A, and is zero with the
condition (51.11). Hence, with the necessary accuracy, we can put g& =

t We put # = 1 in the rest of this section (in equations (51.9)-(51.19)).
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trum of the gas in the absence of the field, is a real quantity.
The linearized equations (51.9) then become

= gZ© = A in the linearized equations, where 4, the gap in the energy spec-

(i&'s + % + ‘u') a(l)(cs; I, r,)+A—(7(1)(Cs; I, l")
= (ieJmc) A@®).vE,; r—r'), (51.12)
(' i+ % + #) FOCss 1, 1)= 4G v, 1)

= —(ie/mc) A(x).V(FOEL,; r—r).

Since these equations are linear in A, it is sufficient to solve them for one
Fourier component of the field, i.e.

A(r) = A(K) %, k.A(K) = 0. (51.13)

With this A(r), the dependence of & and (¥ onr+r’ can be separated imme-
diately by putting
a(z. - N — e pp') pik.(r+1')/2
G0, 1) g(ls;r—r)e , (51.14)
q(l)(Cs; r, r') e f(Cs; r_r’) eik.(l'-l-l")/z.

For example, the first equation (51.12) then becomes
L1 1.\2 L L
[zcs +5 (v+jzk) + u] glssx—r)+AfCssx—r')
= (ie/mc) A(K).e xC—2G. GO ; r—r'),

and similarly for the second equation. We now make a Fourier transformation
of the functions g and f with respect to r—r'. We finally arrive at the following

pair of algebraic equations:

[iCs — ZLm (p+—;—k)2+ M} gCs P +Af (s P) ‘
= — (e/mc)p.A(k) G© (Cs, p—-;— k) ,
? (51.15)

[—ics—zim (p+—;—k)2+ y]f(ts,p)—dg(ts,p)

= (e/mc) p.A(k) FO (cs, p——;—k) -

After some simple calculations using (42.7) and (42.8) for £@ and FO,
the solution of these equations is found to be

i) (ot )
g(Ces B) = ———p.AK) & (2:21 225’)5(;;2 8)2_“; : (51.16)
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where &, = e(pt4k), 7. = r(pt4k); the function f(, p) will not be needed
below.

Let us now calculate the current. To do so, we start from the expression for
the current density operator in the second-quantization representation:"

= 2 () E - (TP - AP,

To change to the Matsubara representation of this operator, the Heisenberg
operators ¥, ¥+ are to be replaced by the Matsubara operators ¥, ™. Using
the definition of the Green’s function (37.2), we find that the current density
(the diagonal matrix element of the operator J, averaged over the Gibbs distribu-
tion) may be written

j(r) =2 2% [(V' =) €@, ;7,1 )lvar, v=sr0—(€2/mc) A(r)n, (51.17)

where n is the particle number density; the factor 2 comes from &, = 24.
When we substitute & = @+ €% in (51.17), the term in £© disappears:
for a homogeneous isotropic system, & (r—r’) is even, and its derivative is
zero for r—r' = 0. Taking a Fourier expansion with respect to 7—1’, we ob-
tain
] ie > e’n
i=—T % [(v—=V)GIs:r, r)]ear—_Alr),

S=—

and on substituting A(r) and 4% from (51.13) and (51.14),

i0=20 5 [ et m) 35— e A

§=—o00c

When g({,, p) is substituted here from (51.16), it is convenient to use at the
same time the fact that the vectors j(k) and A(k) are transverse and to average
over directions of p, in a plane perpendicular to k, using the formula

PiiPik = 3 p*sin? 0(u—kiki/ k),

where 0 is the angle between k and p. We thus obtain the following expression
for the function Q(k) which determines the relation between j(k) and A(k):

- (Ls+m,) (@Es+n)+4 dPp  ne®

00 =i 2| P T mr e ey @y e
1

§=—og,

0 (51.18)
e =+, ’7:t=7n(pi"2'k) i

T See OM, §115. The term giving the contribution to the current from the particle spin is
here omitted. For a non-ferromagnetic system, in which the Green’s function Geg = &8y,
this term gives zero on averaging.
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The integrals and the sum as written here are formally divergent. Although
these divergences are actually spurious, the calculation must be made with
caution: until the divergence is removed, the result may depend on the order
of integration and summation.

This difficulty can be avoided by making use of the obvious fact that Q = 0
when 4=0: in a normal metal there is no superconductivity current. We there-
fore do not alter the result by subtracting from (51.18) the same expression
with 4 = 0:

o0

_eT o [ @) (s +n)+ A2
k) = —- ¥ p?sin 0{ (C?—lfs%,)(C?-l—ez_) _

1 dp
- @s—mny) (iC,—n_)} ry (51.19)

This expression is satisfactorily convergent, and the integration and summation
can be performed in any order.

First of all, let us note that the relevant values of k are small in the sense that
k << pg; this inequality simply expresses the fact that the characteristic dis-
tances over which the field and current vary in a superconductor are large in
comparison with the distances between the particles, i.e. with ~ 1/pp.

In (51.19), we first integrate with respect to p. The integral comes mainly from
a narrow range of momenta near the Fermi surface, | p—py| ~ k. In this range,

Ny ~ N++ vpk cos 0 =~ vp (p—pr)+ L vk cos 6;

the factor p? in the integrand may be replaced by pZ, and integration over d®p
by one over 2nmpy dn d cos 0. The integral over dn of the second term in the
braces in (51.19) is then zero: the contour of integration can be closed by an
infinite semicircle in the complex 7-plane, and the integral vanishes because
both poles of the integrand are in the same half-plane (upper or lower, depend-
ing on the sign of £,). The integration over dn in the first term in (51.19) is
elementary, and this leaves only the integral with respect to x = cos 0. With
the density n from the equation p% = 3n2%n, we have as the final result (in ordi-
nary units)

o(k) = dmc + A2+ (X hopkx)?] (C2+ 4212 1 (51.20)

Cs = (2s+1)=T

(J. Bardeen, L. N. Cooper and J. R. Schrieffer 1957).

In the limit of small k (k§o << 1, where &o ~ fivg/do ~ fivg/T, is the coherence
length), it can be shown that (51.20) reduces to the London expression (51.8),
which is independent of &, but we shall not pause to prove this.

S=% - 00

1
3nTne* &= J‘ A%(1—x2) dx
NG

t The derivation given here, using the temperature Green’s functions, is due to A. A.
Abrikosov and L. P. Gor’kov (1958).
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In the opposite limit, when k&o>> 1, the important range in the integral
(51.20) is x < T./fikvy < 1. We can therefore neglect x2 in comparison with
unity in the numerator of the integrand, and then (because of the rapid con-
vergence) extend the integration from — o to . The result is

3n%ne®T = A?
k) = 2mchvrk Sr_z_w 2+ A2

Carrying out the summation by means of (42.10), we can write this as'

O(k) = cBl4nk,

4nne*  3n? Va| (51.21)
— / — £
= i Hon Atanh 5T » k&o > 1.

When T'< T, we have n, ~ n, 4 ~ o, and 8 ~ 1/8}0. When T,—T < T,,
the gap -l is small, so that tanh (4/2T) ~ 4/2T,; using formulae (40.4) and
(40.5), we again find § ~ 1/8;&c. Thus, at all temperatures from 0 to T,

B ~ 1/83. (51.22)

The function Q(k) therefore remains approximately constant in the range
k < 1/% (and has a regular expansion in powers of k% near k = 0); outside
this range, O(k) decreases, as 1/k when k > 1/§0. This behaviour of Q(k)
corresponds to a coordinate function Q(r) that decreases slowly (as 1/r?) in
the range r < & and rapidly (exponentially) outside that range. Thus the
correlation between the field and the current always extends to distances ~ 5.
It should be emphasized that this statement is valid at all temperatures from
zero to 7,. We have thus justified the assertion in §44 that &o is universal as a

characteristic length parameter for superconductivity.

§ 52. Depth of penetration of a magnetic field into a superconductor

Let us apply the results of §51 to the problem of the penetration of an external
magnetic field into a superconductor, which has been analysed in the London
approximation in §44.

Let the superconductor have a plane boundary surface and be in the half-
space x > 0; let the external field § (and therefore the induction B within the
superconductor) be along the z-axis parallel to the surface. Then all quantities
depend only on the coordinate x, and the current j and the vector potential A
(in the gauge with div A = 0) are along the y-axis. Maxwell’s equation curl B =
= —AA = 4zj/c reduces to '

A'"(x) = — 4zj(x)/c, x =0, 82.1)

where the prime denotes differentiation with respect to x.

t A formula of this kind was suggested by A. B. Pippard (1953) from qualitative arguments,
before the microscopic theory of superconductivity existed.
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The boundary conditions on this equation depend, however, on the physical
properties of the metal surface as regards electrons incident on it. The simplest
case is that of mirror reflection of electrons from the surface. It is evident that,
with this law of reflection, the problem of a half-space is equivalent to that of an
infinite medium in which the field A(x) is distributed symmetrically on either
side of the plane x = 0: A(x) = A(— x). The derivative A4'(x), an odd function
of x, is discontinuous at x = 0, changing sign as x passes through zero. Thus
the conditi