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This is the first book to describe the physical properties of quantum materials near critical
points with long-range many-body quantum entanglement. Readers are introduced to the
basic theory of quantum phases, their phase transitions, and their observable properties.

This second edition begins with nine chapters, six of them new, suitable for an introduc-
tory course on quantum phase transitions, assuming no prior knowledge of quantum field
theory. There are several new chapters covering important recent advances, such as the
Fermi gas near unitarity, Dirac fermions, Fermi liquids and their phase transitions, quan-
tum magnetism, and solvable models obtained from string theory. After introducing the
basic theory, it moves on to a detailed description of the canonical quantum-critical phase
diagram at nonzero temperatures. Finally, a variety of more complex models is explored.
This book is ideal for graduate students and researchers in condensed matter physics and
particle and string theory.
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From the Preface to the first edition

The past decade has seen a substantial rejuvenation of interest in the study of quantum
phase transitions, driven by experiments on cuprate superconductors, heavy fermion mate-
rials, organic conductors, and related compounds. Although quantum phase transitions in
simple spin systems, like the Ising model in a transverse field, were studied in the early
1970s, much of the subsequent theoretical work examined a particular example: the metal–
insulator transition. While this is a subject of considerable experimental importance, the
greatest theoretical progress was made for the case of the Anderson transition of non-
interacting electrons, which is driven by localization of the electronic states in the presence
of a random potential. The critical properties of this transition of noninteracting electrons
constituted the primary basis upon which most condensed matter physicists have formed
their intuition on the behavior of the systems near a quantum phase transition. However,
it is clear that strong electronic interactions play a crucial role in the systems of current
interest noted earlier, and simple paradigms for the behavior of such systems near quantum
critical points are not widely known.

It is the purpose of this book to move interactions to center stage by describing and clas-
sifying the physical properties of the simplest interacting systems undergoing a quantum
phase transition. The effects of disorder will be neglected for the most part but will be con-
sidered in the concluding chapters. Our focus will be on the dynamical properties of such
systems at nonzero temperature, and it will become apparent that these differ substantially
from the noninteracting case. We shall also be considering inelastic collision-dominated
quantum dynamics and transport: our results will apply to clean physical systems whose
inelastic scattering time is much shorter than their disorder-induced elastic scattering time.
This is the converse of the usual theoretical situation in Anderson localization or meso-
scopic system theory, where inelastic collision times are conventionally taken to be much
larger than all other timescales.

One of the most interesting and significant regimes of the systems we shall study is one
in which the inelastic scattering and phase coherence times are of order �/kB T , where T
is the absolute temperature. The importance of such a regime was pointed out by Varma
et al. [523, 524] by an analysis of transport and optical data on the cuprate superconduc-
tors. Neutron scattering measurements of Hayden et al. [210] and Keimer et al. [263]
also supported such an interpretation in the low doping region. It was subsequently real-
ized [86, 419, 440] that the inelastic rates are in fact a universal number times kB T/�,
and they are a robust property of the high-temperature limit of renormalizable, interacting
quantum field theories that are not asymptotically free at high energies. In the Wilsonian
picture, such a field theory is defined by renormalization group flows away from a crit-
ical point describing a second-order quantum phase transition. It is not essential for this
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xiv From the Preface to the first edition

critical point to be in an experimentally accessible regime of the phase diagram: the quan-
tum field theory it defines may still be an appropriate description of the physics over a
substantial intermediate energy and temperature scale. Among the implications of such an
interpretation of the experiments was the requirement that response functions should have
prefactors of anomalous powers of T and a singular dependence on the wavevector; recent
observations of Aeppli et al. [5], at somewhat higher dopings, appear to be consistent with
this. These recent experiments also suggest that the appropriate quantum critical points
involve competition between phases with or without conventional superconducting, spin-,
or charge-density-wave order. There is no global theory yet for such quantum transitions,
but we shall discuss numerous simpler models here that capture some of the basic features.

It is also appropriate to note here theoretical studies [25, 93, 94, 336, 514] on the
relevance of finite temperature crossovers near quantum critical points of Fermi liquids
[218] to the physics of heavy fermion compounds.

A separate motivation for the study of quantum phase transitions is simply the value in
having another perspective on the physics of an interacting many-body system. A tradi-
tional analysis of such a system would begin from either a weak-coupling Hamiltonian,
and then build in interactions among the nearly free excitations, or a strong-coupling limit,
where the local interactions are well accounted for, but their coherent propagation through
the system is not fully described. In contrast, a quantum critical point begins from an inter-
mediate coupling regime, which straddles these limiting cases. One can then use the power-
ful technology of scaling to set up a systematic expansion of physical properties away from
the special critical point. For many low-dimensional strongly correlated systems, I believe
that such an approach holds the most promise for a comprehensive understanding. Many
of the vexing open problems are related to phenomena at intermediate temperatures, and
this is precisely the region over which the influence of a quantum critical point is dominant.
Related motivations for the study of quantum phase transitions appear in a recent discourse
by Laughlin [286].

The particular quantum phase transitions that are examined in this book are undoubt-
edly heavily influenced by my own research. However, I believe that my choices can also
be justified on pedagogical grounds and lead to a logical development of the main phys-
ical concepts in the simplest possible contexts. Throughout, I have also attempted to pro-
vide experimental motivations for the models considered; this is mainly in the form of a
guide to the literature, rather than in-depth discussion of the experimental issues. I have
highlighted some especially interesting experiments in a recent popular introduction to
quantum phase transitions [428]. An experimentally oriented introduction to the subject
of quantum phase transitions can also be found in the excellent review article of Sondhi,
Girvin, Carini, and Shahar [481]. Readers may also be interested in a recent introductory
article [533], intended for a general science audience.
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Preface to the second edition

Research on quantum phase transitions has undergone a vast expansion since the publica-
tion of the first edition, over a decade ago. Many new theoretical ideas have emerged, and
the arena of experimental systems has grown rapidly. The cuprates have been firmly estab-
lished to be d-wave superconductors, with a massless Dirac spectrum for their electronic
excitations; the latter spectrum has also been observed in graphene and on the surface of
topological insulators. Such fermions play a key role in a variety of quantum phase tran-
sitions. The observation of quantum oscillations in the presence of strong magnetic fields
in the underdoped cuprates has highlighted the relevance of competing orders, and their
quantum critical points. Optical lattices of ultracold atoms now offer a realization of the
boson Hubbard model, and exhibit the superfluid–insulator transition. And ideas on quan-
tum criticality and entanglement have had an interesting interplay with developments in
quantum information science.

The second edition does not present a fully comprehensive survey of these ongoing
developments. I believe the core topics of the first edition had a certain coherence, and
they continue to be central to the more modern developments; I did not wish to dilute the
global perspective they offer in understanding both condensed matter and ultracold atom
experiments. However, wherever possible, I have discussed important advances, or directed
the reader to review articles.

Also, in the last few years, a remarkable connection has developed between ideas on
quantum criticality and the string theory of quantum black holes. I briefly survey the initial
developments in Section 15.5. The subject has advanced rapidly since then, with interesting
applications to quantum critical states of fermions at nonzero density: this recent work is
not discussed here. In any case, this book should be useful background reading for this
emerging and growing field of research.

The primary change in the second edition is pedagogical. I have had the benefit of teach-
ing a course on quantum phase transitions several times since the first edition, both at Yale
and at Harvard. I am also grateful for the opportunity to lecture at various summer and
winter schools (Altenberg, Boulder, Cargese, Goa, Groningen, Jerusalem, Les Houches,
Mahabaleshwar, Milos, Prague, Trieste, Windsor). The content of these lectures is now in
the new Part II of the book. Chapters 3–8 are new, although they do extract some material
from the earlier chapters of the first edition. Part II, titled “A first course,” is intended for
a stand-alone course on the basic theory of quantum phase transitions, and for self-study.
It should be accessible to students in both theory and experiment, after they have taken the
core graduate courses on quantum mechanics and statistical mechanics. No prior knowl-
edge of quantum field theory is assumed. Exercises are included at the ends of chapters,
drawn from the problem sets of my courses.

xvii



xviii Preface to the second edition

After completing Part II, a course can choose from the more advanced topics in Parts III
and IV. I recommend a basic survey of the nonzero temperature phase diagram from
Chapters 10 and 11. This can be followed by a treatment of Fermi systems drawn from
Chapters 17 and 18. Chapters 19 and 20 offer many possibilities for student presentations.

The chapters in the new Parts III and IV have been significantly updated from the first
edition. Chapter 16 has a new section on the Fermi gas near unitarity: this was a simple and
natural extension of the previous discussion on dilute quantum liquids. These results apply
to ultracold atomic systems near a Feshbach resonance. Chapter 17, on Dirac fermions,
is entirely new. I took this opportunity to introduce the basics of the theory of unconven-
tional superconductivity induced by antiferromagnetism, as it applies to the cuprates and
the pnictides. Dirac fermions also offer a gentle way of introducing non-trivial quantum
phase transitions of Fermi systems. Chapter 18, on Fermi liquids and their phase transi-
tions, has been almost completely re-written: this reflects advances in our understanding,
and its relevance in many experimental contexts. Chapter 19, on quantum magnetism, has
numerous updates to reflect our improved understanding of spin liquids, and a brief dis-
cussion of deconfined criticality. However, I have not attempted to cover the many modern
developments in quantum magnetism: a more comprehensive starting point is offered by
my Solvay lecture [430].

My web site, http://sachdev.physics.harvard.edu, will have updates and corrections.
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many years.
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PART I

INTRODUCTION





1 Basic concepts

1.1 What is a quantum phase transition?

Consider a Hamiltonian, H(g), whose degrees of freedom reside on the sites of a lattice,
and which varies as a function of a dimensionless coupling, g. Let us follow the evolu-
tion of the ground state energy of H(g) as a function of g. For the case of a finite lattice,
this ground state energy will generically be a smooth, analytic function of g. The main
possibility of an exception comes from the case when g couples only to a conserved quan-
tity (i.e. H(g) = H0 + gH1, where H0 and H1 commute). This means that H0 and H1

can be simultaneously diagonalized and so the eigenfunctions are independent of g even
though the eigenvalues vary with g; then there can be a level-crossing where an excited
level becomes the ground state at g = gc (say), creating a point of nonanalyticity of
the ground state energy as a function of g (see Fig. 1.1). The possibilities for an infi-
nite lattice are richer. An avoided level-crossing between the ground and an excited state
in a finite lattice could become progressively sharper as the lattice size increases, lead-
ing to a nonanalyticity at g= gc in the infinite lattice limit. We shall identify any point of
nonanalyticity in the ground state energy of the infinite lattice system as a quantum phase
transition: The nonanalyticity could be either the limiting case of an avoided level-crossing
or an actual level-crossing. The first kind is more common, but we shall also discuss transi-
tions of the second kind in Chapters 16 and 19. The phase transition is usually accompanied
by a qualitative change in the nature of the correlations in the ground state, and describing
this change will clearly be one of our major interests.

Actually our focus will be on a limited class of quantum phase transitions – those that
are second order. Loosely speaking, these are transitions at which the characteristic energy
scale of fluctuations above the ground state vanishes as g approaches gc. Let the energy
� represent a scale characterizing some significant spectral density of fluctuations at zero
temperature (T ) for g �= gc. Thus� could be the energy of the lowest excitation above the
ground state, if this is nonzero (i.e. there is an energy gap �), or if there are excitations at
arbitrarily low energies in the infinite lattice limit (i.e. the energy spectrum is gapless), �
is the scale at which there is a qualitative change in the nature of the frequency spectrum
from its lowest frequency to its higher frequency behavior. In most cases, we will find that
as g approaches gc, � vanishes as

� ∼ J |g − gc|zν, (1.1)

3



4 Basic concepts

g

E

(a)

(b)

E

g

�Fig. 1.1 Low eigenvalues, E, of a Hamiltonian H(g) on a finite lattice, as a function of some dimensionless coupling, g. For the
case where H(g) = H0 + gH1, where H0 and H1 commute and are independent of g, there can be an actual
level-crossing, as in (a). More generally, however, there is an “avoided level-crossing,” as in (b).

(exceptions to this behavior appear in Section 20.2.6). Here J is the energy scale of a
characteristic microscopic coupling, and zν is a critical exponent. The value of zν is usually
universal, that is, it is independent of most of the microscopic details of the Hamiltonian
H(g) (we shall have much more to say about the concept of universality below, and in
the following chapters). The behavior (1.1) holds both for g > gc and for g < gc with the
same value of the exponent zν, but with different nonuniversal constants of proportionality.
We shall sometimes use the symbol �+ (�−) to represent the characteristic energy scale
for g > gc (g < gc).

In addition to a vanishing energy scale, second-order quantum phase transitions invari-
ably have a diverging characteristic length scale ξ . This could be the length scale determin-
ing the exponential decay of equal-time correlations in the ground state or the length scale
at which some characteristic crossover occurs to the correlations at the longest distances.
This length diverges as

ξ−1 ∼ �|g − gc|ν, (1.2)

where ν is a critical exponent, and � is an inverse length scale (a “momentum cutoff”)
of order the inverse lattice spacing. The ratio of the exponents in (1.1) and (1.2) is z, the
dynamic critical exponent. The characteristic energy scale vanishes as the zth power of the
characteristic inverse length scale

� ∼ ξ−z . (1.3)

It is important to note that the discussion above refers to singularities in the ground
state of the system. So strictly speaking, quantum phase transitions occur only at zero
temperature, T = 0. Because all experiments are necessarily at some nonzero, though



5 1.2 Nonzero temperature transitions and crossovers

possibly very small, temperature, a central task of the theory of quantum phase transitions
is to describe the consequences of this T = 0 singularity on physical properties at T > 0.
It turns out that working outward from the quantum critical point at g = gc and T = 0 is a
powerful way of understanding and describing the thermodynamic and dynamic properties
of numerous systems over a broad range of values of |g − gc| and T . Indeed, it is not even
necessary that the system of interest ever have its microscopic couplings reach a value
such that g = gc: it can still be very useful to argue that there is a quantum critical point
at a physically inaccessible coupling g = gc and to develop a description in the deviation
|g−gc|. It is one of the purposes of this book to describe the physical perspective that such
an approach offers, and to contrast it with more conventional expansions about very weak
(say g → 0) or very strong couplings (say g →∞).

1.2 Nonzero temperature transitions and crossovers

Let us now discuss some basic aspects of the T > 0 phase diagram. First, let us ask only
about the presence of phase transitions at nonzero T . With this limited criterion, there are
two important possibilities for the T > 0 phase diagram of a system near a quantum critical
point. These are shown in Fig. 1.2, and we will meet examples of both kinds in this book.
In the first, shown in Fig. 1.2a, the thermodynamic singularity is present only at T = 0, and
all T > 0 properties are analytic as a function of g near g = gc. In the second, shown in

g

T

0

T

0

gc

gc g

(a)

(b)

�Fig. 1.2 Two possible phase diagrams of a system near a quantum phase transition. In both cases there is a quantum critical
point at g = gc and T = 0. In (b), there is a line of T > 0 second-order phase transitions terminating at the
quantum critical point. The theory of phase transitions in classical systems driven by thermal fluctuations can be
applied within the shaded region of (b).
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Fig. 1.2b, there is a line of T > 0 second-order phase transitions (this is a line at which the
thermodynamic free energy is not analytic) that terminates at the T = 0 quantum critical
point at g = gc.

Moving beyond phase transitions, let us ask some basic questions about the dynamics
of the system. A very general way to characterize the dynamics at T > 0 is in terms of the
thermal equilibration time τeq. This is the characteristic time in which local thermal equi-
librium is established after imposition of a weak external perturbation (say, a heat pulse).
Here we are excluding equilibration with respect to globally conserved quantities (such as
energy or charge) which will take a long time to equilibrate, dependent upon the length
scale of the perturbation: hence the emphasis on local equilibration. Global equilibration
is described by the equations of hydrodynamics, and we expect such equations to apply
in all cases at times much larger than τeq. We focus here on the value of τeq as a function
of g − gc and T . From the energy scales discussed in Section 1.1, we can immediately
draw an important distinction between two regimes of the phase diagram. We character-
ized the ground state by the energy � in (1.1). At nonzero temperature, we have a second
energy scale, kB T . Comparing the values of � and kB T , we are immediately led to the
important phase diagram in Fig. 1.3. We will see that the two regimes, � > kB T and
� < kB T , are distinguished by different theories of thermal equilibration and of the val-
ues of τeq. In the regime where � > kB T , we will always find long equilibration times
which satisfy

τeq � �

kB T
, � > kB T . (1.4)

One of the important consequences of this large value of τeq is that the dynamics of the
system becomes effectively classical. Thus we can use classical equations of motion to
describe the re-equilibration dynamics at the time scale τeq.

Let us now turn our attention to the important “Quantum Critical” region in Fig. 1.3,
where kB T > �. We shall mainly be interested in quantum critical points which are
strongly interacting, and not amenable to a nearly-free particle description. In such cases
we find a short equilibration time given by

T

ggc

�Fig. 1.3 Separation of the phase diagram into distinct regimes determined by the energy scale�, which characterizes the
ground state, and kBT . The dashed lines are not phase transitions, but smooth crossovers at T ∼ |g− gc|zν .
The phase transition in Fig. 1.2b lies within the� > kBT region, and is not shown above.
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τeq ∼ �

kB T
, kB T > �. (1.5)

Now the equilibration occurs in a time which is actually independent of the microscopic
energy scale J , and is determined by kB T alone. Moreover, and most interestingly, we
cannot use an effectively classical description for the re-equilibration at times of order τeq.
Quantum and thermal fluctuations are equally important in the dynamics in the quantum
critical region, and developing a theory for this dynamics will be a central focus of Part III.

What about the T > 0 phase transition line in Fig. 1.2b? We have not shown this line
in Fig. 1.3. Such a transition should be viewed as reflecting the physics of the � > kB T
region, and so the transition line lies in the corresponding region of Fig. 1.3. In other words,
this transition is not really a property of the quantum critical point at g = gc, but of the
quantum phase at g < gc. (There could also be a separate transition reflecting the physics
of the g > gc phase, which we have not shown in our phase diagrams.) As we move closer
to this phase transition line, we will show that not only does τeq become long, but so do
all the time scales associated with long wavelength thermal fluctuations. Indeed we will
find that the typical frequency at which the important long-distance degrees of freedom
fluctuate, ωtyp, satisfies

�ωtyp � kB T . (1.6)

Under these conditions, it will be seen that a purely classical description can be applied
to these important degrees of freedom – this classical description works in the shaded
region of Fig. 1.2b. Consequently, the ultimate critical singularity along the line of T > 0
phase transitions in Fig. 1.2b is described by the theory of second-order phase transitions
in classical systems. This theory was developed thoroughly in the past three decades and
has been explained in many popular reviews and books [59, 172, 244, 312, 557]. We will
discuss the needed basic features of this theory in Chapters 3 and 4. Note that the shaded
region of classical behavior in Fig. 1.2b lies within the wider window of the phase diagram,
with moderate values of |g − gc| and T , which we asserted above should be described as
an expansion about the quantum critical point at g = gc and T = 0. So our study of
quantum phase transitions will also apply to the shaded region of Fig. 1.2b, where it will
yield information complementary to that available by directly thinking of the T > 0 phase
transition in terms of purely classical models.

We note that phase transitions in classical models are driven only by thermal fluctuations,
as classical systems usually freeze into a fluctuationless ground state at T = 0. In contrast,
quantum systems have fluctuations driven by the Heisenberg uncertainty principle even in
the ground state, and these can drive interesting phase transitions at T = 0. The T > 0
region in the vicinity of a quantum critical point therefore offers a fascinating interplay of
effects driven by quantum and thermal fluctuations; sometimes, as in the shaded region of
Fig. 1.2b, we can find some dominant, effective degrees of freedom whose fluctuations are
purely classical and thermal, and then the classical theory will apply. However, as already
noted, our attention will not be limited to such regions, and we shall be interested in a
broader section of the phase diagram.
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1.3 Experimental examples

To make the concepts of the previous sections less abstract, let us mention some experi-
mental studies of simple second-order quantum phase transitions. We will meet numerous
other examples in this book, but for now we focus on examples directly related to the
canonical theoretical models of quantum phase transitions to be discussed in Section 1.4,
and in Parts II and III.

• The low-lying magnetic excitations of the insulator LiHoF4 consist of fluctuations of the
Ho ions between two spin states that are aligned parallel and antiparallel to a particular
crystalline axis. These states can be represented by a two-state “Ising” spin variable on
each Ho ion. At T = 0, the magnetic dipolar interactions between the Ho ions cause all
the Ising spins to align in the same orientation, and so the ground state is a ferromagnet.
Bitko, Rosenbaum, and Aeppli [49] placed this material in a magnetic field transverse
to the magnetic axis. Such a field induces quantum tunneling between the two states of
each Ho ion, and a sufficiently strong tunneling rate can eventually destroy the long-
range magnetic order. Such a quantum phase transition was indeed observed [49], with
the ferromagnetic moment vanishing continuously at a quantum critical point. Note that
such a transition can, in principle, occur precisely at T = 0, when it is driven entirely
by quantum fluctuations. We shall call the T = 0 state without magnetic order a quan-
tum paramagnet. However, we can also destroy the magnetic order at a fixed transverse
magnetic field (possibly zero), simply by raising the temperature, enabling the material
to undergo a conventional Curie transition to a high-temperature magnetically disor-
dered state. Among the objectives of this book is to provide a description of the intricate
crossover between the zero-temperature quantum transition and the finite-temperature
transition driven partially by thermal fluctuations; we shall also delineate the important
differences between the T = 0 quantum paramagnet and the high-temperature “thermal
paramagnet;” see Chapters 11, 13, and 14.

A more recent realization of an Ising model in a transverse field has appeared in exper-
iments by Coldea and collaborators [90] on crystals of CoNb2O6, which belongs to the
columbite family of minerals. In this case, the Ising spin resides on the Co++ ion, again
aligned by the spin–orbit interaction to orient parallel or anti-parallel to a crystalline
axis. An important difference from LiHoF4 is that the interactions between the spins are
essentially nearest-neighbor, and the long-range dipolar couplings are unimportant; the
short-range interactions arise from the Heisenberg exchange process, and their energy
scale is determined by the electrostatic Coulomb interactions. Thus CoNb2O6 provides a
nearly ideal realization of the quantum Ising models which will be the focus of our study
in Parts II and III. The dominant exchange couplings are along a particular crystalline
axis, and so it is also a useful testing ground for exact results in one dimension.

• Experiments on ultracold atoms in optical lattices by Greiner, Bloch, and collabora-
tors [175] have provided a celebrated example of the superfluid–insulator quantum phase
transition. Atoms of 87Rb are cooled to temperatures so low that their quantum statistics
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is important. These atoms are bosons and so they ultimately Bose condense into a
superfluid state. Then, by applying a periodic potential on the atoms by an optical lattice,
Greiner et al. localized the atoms in the minima of the periodic potential, leading to a
quantum phase transition to an insulating state. At densities where the number of atoms
is commensurate with the number of minima of the periodic potential, this transition
is described by the O(2) quantum rotor model, which we introduce in Section 1.4 and
discuss at length in Parts II and III.

• TlCuCl3 is an insulator whose only low-lying electronic excitations are rotations of
the S = 1/2 spins residing on the Cu++ ions. Unlike the case for the Co++ ions in
CoNb2O6, the spin-orbit interactions are relatively weak on Cu++, and a single spin can
freely orient along any direction in spin space. A special feature of the crystal struc-
ture of TlCuCl3 is that the Cu atoms are naturally dimerized, i.e. each Cu site has a
single partner Cu site, and the exchange interactions are strongest between the partners
in each pair. The exchange interaction has an antiferromagnetic sign, and consequently
neighboring spins prefer to be oriented in anti-parallel directions. Under ambient pres-
sure, each Cu spin forms a singlet valence bond with its partner, much like that between
the two electrons in a hydrogen molecule. Thus although the neighboring spins within
a dimer are always anti-parallel, they fluctuate along all directions in spin space in a
rotationally invariant manner. We will refer to this state as a quantum paramagnet; it
has an energy gap to all excitations above the ground state. Under applied pressure,
TlCuCl3 undergoes a quantum phase transition [414] to an ordered antiferromagnet: a
Néel state. In this Néel state, the spins freeze into a definite orientation so that nearby
spins are anti-parallel to each other. Such an arrangement is more nearly optimal when
the exchange couplings between spins in different dimers are significant. As we discuss
below in Section 1.4, this transition between the quantum paramagnet and the Néel state
is described by the O(3) quantum rotor model, which will also be discussed in Parts II
and III.

1.4 Theoretical models

Our strategy in this book will be to thoroughly analyze the physical properties of quantum
phase transitions in two simple theoretical model systems in Parts II and III: the quantum
Ising and rotor models. Fortunately, these simple models also have direct experimental
realizations in the systems already surveyed in Section 1.3. Below, we introduce the quan-
tum Ising and rotor models in turn, discussing the nature of the quantum phase transitions
in them, and relating them to the experimental systems above. Other experimental connec-
tions will be discussed in subsequent chapters.

Part IV will survey some important quantum phase transitions in other models of phys-
ical interest. Our motivation in dividing the discussion in this manner is mainly pedagogi-
cal: the quantum transitions of the Ising/rotor models have an essential simplicity, but their
behavior is rich enough to display most of the basic phenomena we wish to explore. It will
therefore pay to meet the central physical ideas in this simple context first.
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1.4.1 Quantum Ising model

We begin by writing down the Hamiltonian of the quantum Ising model. It is

HI = −Jg
∑

i

σ̂ x
i − J

∑
〈i j〉
σ̂ z

i σ̂
z
j . (1.7)

As in the general notation introduced above, J > 0 is an exchange constant, which sets
the microscopic energy scale, and g > 0 is a dimensionless coupling, which will be used
to tune HI across a quantum phase transition. The quantum degrees of freedom are repre-
sented by operators σ̂ z,x

i , which reside on the sites, i , of a hypercubic lattice in d dimen-
sions; the sum 〈i j〉 is over pairs of nearest-neighbor sites i , j . The σ̂ x,z

i are the familiar
Pauli matrices; the matrices on different sites i act on different spin states, and so matrices
with i �= j commute with each other. In the basis where the σ̂ z

i are diagonal, these matrices
have the well-known form

σ̂ z =
(

1 0
0 −1

)
, σ̂ y =

(
0 −i
i 0

)
, σ̂ x =

(
0 1
1 0

)
, (1.8)

on each site i . We will denote the eigenvalues of σ̂ z
i simply by σ z

i , and so σ z
i takes the values

±1. We identify the two states with eigenvalues σ z
i = +1,−1 as the two possible orien-

tations of an “Ising spin,” which can be oriented up or down in | ↑〉i , | ↓〉i . Consequently
at g = 0, when HI involves only the σ̂ z

i , HI will be diagonal in the basis of eigenvalues
of σ̂ z

i , and it reduces simply to the familiar classical Ising model. However, the σ̂ x
i are off-

diagonal in the basis of these states, and therefore they induce quantum-mechanical tunnel-
ing events that flip the orientation of the Ising spin on a site. The physical significance of
the two terms in HI should be clear in the context of our earlier discussion in Section 1.3 for
LiHoF4 and CoNb2O6. The term proportional to J is the magnetic interaction between the
spins, which prefers their global ferromagnetic alignment. While the interaction in LiHoF4

has a long-range dipolar nature, that in CoNb2O6 has a nearest-neighbor form like that in
(1.7). The term proportional to Jg is the applied external transverse magnetic field, which
disrupts the magnetic order.

Let us make these qualitative considerations somewhat more precise. The ground state
of HI can depend only upon the value of the dimensionless coupling g, and so it pays to
consider the two opposing limits g � 1 and g � 1.

First consider g � 1. In this case the first term in (1.7) dominates, and, to leading order
in 1/g, the ground state is simply

|0〉 =
∏

i

| →〉i , (1.9)

where

| →〉i = (| ↑〉i + | ↓〉i )/
√

2,

| ←〉i = (| ↑〉i − | ↓〉i )/
√

2, (1.10)

are the two eigenstates of σ̂ x
i with eigenvalues ±1. The values of σ z

i on different sites are
totally uncorrelated in the state (1.9), and so 〈0|σ̂ z

i σ̂
z
j |0〉 = δi j . Perturbative corrections in
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1/g will build in correlations in σ z that increase in range at each order in 1/g; for g large
enough these correlations are expected to remain short-ranged, and we expect in general
that 〈

0
∣∣σ̂ z

i σ̂
z
j

∣∣0〉 ∼ e−|xi−x j |/ξ (1.11)

for large |xi − x j |, where xi is the spatial coordinate of site i , |0〉 is the exact ground state
for large-g, and ξ is the “correlation length” introduced above (1.2).

Next we consider the opposing limit g � 1. We will find that the nature of the ground
state is qualitatively different from the large-g limit above, and we shall use this to argue
that there must be a quantum phase transition between the two limiting cases at a critical
g = gc of order unity. For g � 1, the second term in (1.7) coupling neighboring sites
dominates; at g = 0 the spins are either all up or all down (in eigenstates of σ z):

|↑〉 =
∏

i

| ↑〉i or |↓〉 =
∏

i

|↓〉i . (1.12)

Turning on a small-g will mix in a small fraction of spins of the opposite orientation, but in
an infinite system the degeneracy will survive at any finite order in a perturbation theory in
g. This is because there is an exact global Z2 symmetry transformation (generated by the
unitary operator

∏
i σ

x
i ), which maps the two ground states into each other, under which

HI remains invariant:

σ̂ z
i →−σ̂ z

i , σ̂ x
i →−σ̂ x

i , (1.13)

and there is no tunneling matrix element between the majority up and down spin sectors
of the infinite system at any finite order in g. The mathematically alert reader will note
that establishing the degeneracy to all orders in g, is not the same thing as establishing its
existence for any small nonzero g, but more sophisticated considerations show that this is
indeed the case. A thermodynamic system will always choose one or other of the states as
its ground states (which may be preferred by some infinitesimal external perturbation), and
this is commonly referred to as a “spontaneous breaking” of the Z2 symmetry. As in the
large-g limit, we can characterize the ground states by the behavior of correlations of σ̂ z

i ;
the nature of the states (1.12) and small-g perturbation theory suggest that

lim|xi−x j |→∞
〈
0
∣∣σ̂ z

i σ̂
z
j

∣∣0〉 = N 2
0 , (1.14)

where |0〉 is either of the ground states obtained from | ↑〉 or | ↓〉 by perturbation theory in
g, and N0 �= 0 is the “spontaneous magnetization” of the ground state. This identification
is made clearer by the simpler statement〈

0
∣∣σ̂ z

i

∣∣0〉 = ±N0, (1.15)

which also follows from the perturbation theory in g. We have N0 = 1 for g = 0, but
quantum fluctuations at small-g reduce N0 to a smaller, but nonzero, value.

Now we make the simple observation that it is not possible for states that obey (1.11)
and (1.14) to transform into each other analytically as a function of g. There must be a
critical value g = gc at which the large |xi − x j | limit of the two-point correlator changes
from (1.11) to (1.14) – this is the position of the quantum phase transition, which is the
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focus of intensive study in this book. Our arguments so far do not exclude the possibility
that there could be more than one critical point, but this is known not to happen for HI , and
we will assume here that there is only one critical point at g = gc. For g > gc the ground
state is, as noted earlier, a quantum paramagnet, and (1.11) is obeyed. We will find that
as g approaches gc from above, the correlation length, ξ , diverges as in (1.2). Precisely at
g = gc, neither (1.11) nor (1.14) is obeyed, and we find instead a power-law dependence
on |xi − x j | at large distances. The result (1.14) holds for all g < gc, when the ground state
is magnetically ordered. The spontaneous magnetization of the ground state, N0, vanishes
as a power law as g approaches gc from below.

Finally, we make a comment about the excited states of HI . In a finite lattice, there is
necessarily a nonzero energy separating the ground state and the first excited state. How-
ever, this energy spacing can either remain finite or approach zero in the infinite lattice
limit, the two cases being identified as having a gapped or gapless energy spectrum, respec-
tively. We will find that there is an energy gap � that is nonzero for all g �= gc, but that it
vanishes upon approaching gc as in (1.1), producing a gapless spectrum at g = gc.

1.4.2 Quantum rotor model

We turn to the somewhat less familiar quantum rotor models. Elementary quantum rotors
do not exist in nature; rather, each quantum rotor is an effective quantum degree of freedom
for the low-energy states of a small number of electrons or atoms. We will first define the
quantum mechanics of a single rotor and then turn to the lattice quantum rotor model.
The connection to the experimental models introduced in Section 1.3 is described below in
Section 1.4.3. Further details of this connection appear in Chapters 9 and 19.

Each rotor can be visualized as a particle constrained to move on the surface of a (fic-
titious) (N > 1)-dimensional sphere. The orientation of each rotor is represented by an
N -component unit vector n̂i which satisfies

n̂2
i = 1. (1.16)

The caret on n̂i reminds us that the orientation of the rotor is a quantum mechanical oper-
ator, while i represents the site on which the rotor resides; we will shortly consider an
infinite number of such rotors residing on the sites of a d-dimensional lattice. Each rotor
has a momentum p̂i , and the constraint (1.16) implies that this must be tangential to the
surface of the N -dimensional sphere. The rotor position and momentum satisfy the usual
commutation relations

[n̂α, p̂β ] = iδαβ (1.17)

on each site i ; here α, β = 1 . . . N . (Here, and in the remainder of the book, we will always
measure time in units in which

� = 1, (1.18)

unless stated explicitly otherwise. This is also a good point to note that we will also set
Boltzmann’s constant
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kB = 1 (1.19)

by absorbing it into the units of temperature, T .) We will actually find it more convenient
to work with the N (N − 1)/2 components of the rotor angular momentum

L̂αβ = n̂α p̂β − n̂β p̂α. (1.20)

These operators are the generators of the group of rotations in N dimensions, denoted
O(N ). Their commutation relations follow straightforwardly from (1.17) and (1.20). The
case N = 3 will be of particular interest to us. For this we define L̂α = (1/2)εαβγ Lβγ
(where εαβγ is a totally antisymmetric tensor with ε123 = 1), and then the commutation
relations between the operators on each site are

[L̂α, L̂β ] = iεαβγ L̂γ ,

[L̂α, n̂β ] = iεαβγ n̂γ ,

[n̂α, n̂β ] = 0; (1.21)

the operators with different site labels all commute.
The dynamics of each rotor is governed simply by its kinetic energy term; interesting

effects arise from potential energy terms that couple the rotors together, and these will be
considered in a moment. Each rotor has the kinetic energy

HK = J g̃

2
L̂2, (1.22)

where 1/J g̃ is the rotor moment of inertia (we have put a tilde over g as we wish to
reserve g for a different coupling to be introduced below). The Hamiltonian HK can be
readily diagonalized for general values of N by well-known group theoretical methods.
We quote the results for the physically important cases of N = 2 and 3. For N = 2 the
eigenvalues are

J g̃�2/2 � = 0, 1, 2, . . . ; degeneracy = 2− δ�,0. (1.23)

Note that there is a nondegenerate ground state with � = 0, while all excited states are
two-fold degenerate, corresponding to a left- or right-moving rotor. This spectrum will be
important in the mapping to physical models to be discussed in Section 1.4.3. For N = 3,
the eigenvalues of HK are

J g̃�(�+ 1)/2 � = 0, 1, 2, . . . ; degeneracy = 2�+ 1, (1.24)

corresponding to the familiar angular momentum states in three dimensions. These states
can be viewed as representing the eigenstates of an even number of antiferromagnetically
coupled Heisenberg spins, as discussed more explicitly in Section 1.4.3 and in Chapter 19,
where we will see that there is a general and powerful correspondence between quantum
antiferromagnets and N = 3 rotors.

We are ready to write down the full quantum rotor Hamiltonian, which will be the focus
of intensive study in Parts II and III. We place a single quantum rotor on the sites, i , of a
d-dimensional lattice, obeying the Hamiltonian
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HR = J g̃

2

∑
i

L̂
2
i − J

∑
〈i j〉

n̂i · n̂ j . (1.25)

We have augmented the sum of kinetic energies of each site with a coupling, J , between
rotor orientations on neighboring sites. This coupling energy is minimized by the simple
“magnetically ordered” state in which all the rotors are oriented in the same direction. In
contrast, the rotor kinetic energy is minimized when the orientation of the rotor is maxi-
mally uncertain (by the uncertainty principle), and so the first term in HR prefers a quantum
paramagnetic state in which the rotors do not have a definite orientation (i.e. 〈n〉 = 0). Thus
the roles of the two terms in HR closely parallel those of the terms in the Ising model HI .
As in Section 1.4.1, for g̃ � 1, when the kinetic energy dominates, we expect a quantum
paramagnet in which, following (1.11),

〈0|n̂i · n̂ j |0〉 ∼ e−|xi−x j |/ξ . (1.26)

Similarly, for g̃ � 1, when the coupling term dominates, we expect a magnetically ordered
state in which, as in (1.14),

lim|xi−x j |→∞
〈0|n̂i · n̂ j |0〉 = N 2

0 . (1.27)

Finally, we can anticipate a second-order quantum phase transition between the two phases
at g̃ = g̃c, and the behavior of N0 and ξ upon approaching this point will be similar to that
in the Ising case. These expectations turn out to be correct for d > 1, but we will see that
they need some modifications for d = 1. In one dimension, we will show that g̃c = 0 for
N ≥ 3, and so the ground state is a quantum paramagnetic state for all nonzero g̃. The
case N = 2, d = 1 is special: there is a transition at a finite g̃c, but the divergence of
the correlation length does not obey (1.2) and the long-distance behavior of the correlation
function g̃ < g̃c differs from (1.27). This case will not be considered until Section 20.3 in
Part IV.

1.4.3 Physical realizations of quantum rotors

We will consider the N = 3 quantum rotors first, and expose a simple and important
connection between O(3) quantum rotor models and a certain class of “dimerized” anti-
ferromagnets, of which TlCuCl3 is the example we highlighted in Section 1.3. Actually
the connection between rotor models and antiferromagnets is far more general than the
present discussion may suggest, as we see later in Chapter 19. However, this discussion
should enable the reader to gain an intuitive feeling for the physical interpretation of the
degrees of freedom of the rotor model.

Consider a dimerized system of “Heisenberg spins” Ŝ1i and Ŝ2i , where i now labels a
pair of spins (a “dimer”). Their Hamiltonian is

Hd = K
∑

i

Ŝ1i · Ŝ2i + J
∑
〈i j〉

(
Ŝ1i · Ŝ1 j + Ŝ2i · Ŝ2 j

)
. (1.28)
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J

K

�Fig. 1.4 A dimerized quantum spin system. Spins with angular momentum S reside on the circles, with antiferromagnetic
exchange couplings as shown.

The Ŝni (n = 1, 2 labels the spins within a dimer) are spin operators usually representing
the total spin of a set of electrons in some localized atomic states, see Fig. 1.4. On each
site, the spins Ŝni obey the angular momentum commutation relations[

Ŝα, Ŝβ
]
= iεαβγ Ŝγ (1.29)

(the site index has been dropped above), while spin operators on different sites commute.
These commutation relations are the same as those of the L̂ operators in (1.21). However,
there is one crucial difference between the Hilbert spaces of states acted on by the quantum
rotors and the Heisenberg spins. For the rotor models we allowed states with arbitrary total
angular momentum � on each site, as in (1.24), and so there were an infinite number of
states on each site. For the present Heisenberg spins, however, we will only allow states
with total spin S on each site, and we will permit S to be integer or half-integer. Thus there
are precisely 2S + 1 states on each site

|S,m〉 with m = −S . . . S, (1.30)

and the operator identity

Ŝ2
ni = S(S + 1) (1.31)

holds for each i and n. In addition to describing TlCuCl3, Hamiltonians like Hd describe
spin-ladder compounds in d = 1 [33, 102] and “double layer” antiferromagnets in the
family of the high-temperature superconductors in d = 2 [129,322,337,443,444,506,507].

Let us examine the properties of Hd in the limit K � J . As a first approximation, we
can neglect the J couplings entirely, and then Hd splits into decoupled pairs of sites, each
with a strong antiferromagnetic coupling K between two spins. The Hamiltonian for each
pair can be diagonalized by noting that S1i and S2i couple into states with total angular
momentum 0 ≤ � ≤ 2S, and so we obtain the eigenenergies

(K/2)(�(�+ 1)− 2S(S + 1)), degeneracy 2�+ 1. (1.32)

Note that these energies and degeneracies are in one-to-one correspondence with those of
a single quantum rotor in (1.24), apart from the difference that the upper restriction on
� being smaller than 2S is absent in the rotor model case. If one is interested primarily
in low-energy properties, then it appears reasonable to represent each pair of spins by a
quantum rotor.

We have seen that the K/J → ∞ limit of Hd closely resembles the g̃ → ∞ limit of
HR . To first order in g̃, we can compare the matrix elements of the term proportional to
J in HR among the low-lying states, with those of the J term in Hd ; it is not difficult to
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see that these matrix elements become equal to each other for an appropriate choice of
couplings: see Exercise 6.1. Therefore we may conclude that the low-energy properties of
the two models are closely related for large K/J and g̃. Somewhat different considerations
in Chapter 19 will show that the correspondence also applies to the quantum critical point
and to the magnetically ordered phase.

The main lesson of the above analysis is that the O(3) quantum rotor model represents
the low-energy properties of quantum antiferromagnets of Heisenberg spins, with each
rotor being an effective representation of a pair of antiferromagnetically coupled spins. The
strong-coupling spectra clearly indicate the operator correspondence L̂i = Ŝ1i+ Ŝ2i , and so
the rotor angular momentum represents the total angular momentum of the underlying spin
system. Examination of matrix elements in the large-S limit shows that n̂i ∝ Ŝ1i − Ŝ2i : the
rotor coordinate n̂i is the antiferromagnetic order parameter of the spin system. Magneti-
cally ordered states of the rotor model with 〈n̂i 〉 �= 0, which we will encounter below, are
therefore spin states with long-range antiferromagnetic order and have a vanishing total fer-
romagnetic moment. Quantum Heisenberg spin systems with a net ferromagnetic moment
are not modeled by the quantum rotor model (11.1) – these will be studied in Section 19.2
by a different approach.

Let us now consider the N = 2 quantum rotors, and introduce their connection to the
superfluid–insulator transition of bosons. For N = 2, it is useful to introduce an angular
variable θi on each site, so that

ni = (cos θi , sin θi ). (1.33)

The rotor angular momentum has only one component, which can be represented in the
Schrödinger picture as the differential operator

L̂i = 1

i

∂

∂θi
(1.34)

acting on a wavefunction which depends on all the θi . The rotor Hamiltonian is therefore

HR = − J g̃

2

∑
i

∂2

∂θ2
i

− J
∑
〈i j〉

cos(θi − θ j ), (1.35)

which is a form that has appeared in numerous studies in different physical contexts. For
g̃ → ∞, the eigenstates of HR are of the form

∏
i |mi 〉, where mi is the integer angu-

lar momentum quantum number of site i ; in the Schrödinger form, these states have the
wavefunction exp

(
i
∑

i miθi
)
. Now we interpret mi as the change in occupation number

of a boson trapped in a potential which has its minimum at site i . The boson could be an
ultracold 87Rb atom, or a Cooper pair in a superconducting quantum dot, as illustrated in
Fig. 1.5. The occupation number is measured with respect to a “background” number of
bosons found in the insulator, and hence mi can take negative values whose absolute value
does not exceed this number. In the rotor model, mi can run all the way to −∞, but as in
the N = 3 case, we do not expect these additional high-energy states to be important for
low-energy physics.

From the wavefunction of these localized boson states, we see that the term propor-
tional to J in (1.35) has the effect of shifting nearest-neighbor pairs of angular momenta
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�Fig. 1.5 Bosons hopping on a lattice with potential minima at site i. Relative to an insulator with 2 bosons on each site, the
state shown has boson numbers mi = (. . . 0,−1, 1, 0 . . . ).

as mi → mi ± 1, m j → m j ∓ 1. In other words, bosons tunnel between sites i and j
with matrix element −J . Such a tunneling event becomes more probable when the optical
lattice potential is weak (i.e. g̃ is small), and strong tunneling eventually induces a tran-
sition to the superfluid state where (1.27) is obeyed. We will see later in Chapter 8 why
(1.27) implies superfluidity of the bosons. More details on the connection between N = 2
quantum rotors and quantum boson models appear in Chapter 9.
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Having introduced our key players, the quantum Ising model (1.7) and the quantum rotor
model (1.25), we outline here the general strategy followed in describing their physical
properties in Parts II and III. We introduce the idea of a continuum limit, and the classical
and quantum field theories we will study. We also highlight some key questions in the
theory of quantum phase transitions, towards which much of the subsequent discussion is
directed.

A central concept which will play a fundamental role in our analysis is the connection
between (D> 1)-dimensional classical statistical mechanical models and the d-dimensional
quantum Ising and rotor models introduced in Chapter 1, where

D = d + 1. (2.1)

This mapping is not an exact equivalence in general, but does become quantitatively pre-
cise in the vicinity of continuous phase transitions, as we discuss below. The nature of
this general quantum–classical mapping will be discussed and its limitations and utility
will be highlighted. As we noted at the beginning of Chapter 1, the present quantum–
classical mapping should not be confused with the d-dimensional classical physics of d-
dimensional quantum models in the vicinity of T > 0 phase transitions, as in the shaded
region of Fig. 1.2.

We set the stage by simply writing down the D-dimensional classical statistical mechani-
cal models. For the quantum Ising case (which we often refer to as the N = 1 case, because
the order parameter has a single component), we consider the classical Ising partition func-
tion

Z =
∑

{σ z
i =±1}

exp

⎛⎝K
∑
〈i, j〉

σ z
i σ

z
j

⎞⎠, (2.2)

where K is a dimensionless coupling that characterizes the “temperature” of the classical
problem, and the sum is over all 2M possible configurations of Ising spins in a system of
M sites in D dimensions. For N > 1, we have the classical O(N ) spin model

Z =
∏

i

∫
Dniδ

(
n2

i − 1
)

exp

⎛⎝K
∑
〈i, j〉

ni · n j

⎞⎠, (2.3)

where ni is a N ≥ 2 component unit vector on the sites, i , of a hypercubic lattice in D
dimensions.
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Our claim is that the above classical partition functions are “equal” (in a sense to be
made precise in Part II) to the partition functions of the quantum Ising and rotor models of
Chapter 1:

Z ∼ Tr exp

(
−HI,R

kB T

)
. (2.4)

It is important to note that the temperature, T , of the quantum models has no connection to
the inverse temperature, K , of the classical models. Instead, as we will see, K determines
the value of the dimensionless coupling g in the quantum Ising and rotor models.

Before we can explain the “classical” interpretation of T , we need to describe the
quantum–classical mapping more precisely. We will show in Part II how the quantum parti-
tion function in (2.4) can be written in a Feynman “sum-over-histories.” In this picture, we
evolve the quantum states forward in imaginary time, τ , using the Heisenberg imaginary-
time evolution operator, exp(−HI,Rτ). We then see that it is useful to take a spacetime
point of view, in which τ is viewed as another dimension, along with the d spacetime
dimensions. In this manner, we obtain a partition function which is to be evaluated in D
spacetime dimensions, which will turn out to be the models in (2.2) and (2.3). This con-
nection is illustrated in Fig. 2.1.

Now we see from (2.4) that the quantum partition function is equivalent to an imaginary
time evolution over a length Lτ , given by

Lτ = �

kB T
(2.5)

(momentarily inserting factors of � and kB). Thus the temperature T in the quantum model
HI,R maps to a finite size in the classical models (2.2) and (2.3). Because the quantum
trace in (2.4) involves the same initial and final traces, periodic boundary conditions are
imposed in the classical model along the τ direction. More formally stated, a quantum
model defined on a d-dimensional space Rd maps onto a classical model on Rd × S1,
where the circle S1 has circumference Lτ . In particular, the classical model in infinite
D-dimensional spacetime maps onto a quantum model at zero temperature.

The above discussion gives a qualitative and intuitive picture of the mapping, but it is not
numerically precise, as it glossed over the limit of temporal lattice spacing a → 0 we will

x

t

a

�Fig. 2.1 D-dimensional lattice on which (2.2) and (2.3) are defined. The spatial coordinate x is a schematic for d= D− 1
directions. The vertical co-ordinate is imaginary time, τ , and the quantum model evolves forward by exp(−HI,Ra),
where a is the “distance” between neighboring rows. The total length of the time coordinate is Lτ = �/(kBT), and
periodic boundary conditions are imposed along the time coordinate.
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need to take. As we outline below, and discuss in more detail in Part II, mapping becomes
numerically precise in the vicinity of phase transitions.

The models (2.2) and (2.3) are central to the theory of finite-temperature phase transi-
tions in classical statistical mechanics. We will review their basic properties in Chapters 3
and 4. For all values of N in D > 2, and for N = 1, 2 in D = 2, these models display
a phase transition between a low “temperature” magnetically ordered phase for K > Kc

and a high “temperature” disordered phase for K < Kc. These phases are characterized
by correlations of the order parameter σ z,n in a manner closely analogous to the magneti-
cally ordered and quantum paramagnetic phases of Chapter 1. So in the K < Kc disordered
phase we have, as in (1.26),

〈n̂i · n̂ j 〉 ∼ e−|xi−x j |/ξ , (2.6)

for large |xi − x j |, where the average is with respect to the classical partition function (3.2)
and xi is a D-dimensional coordinate. Similarly, for K > Kc we have, in (1.27),

lim|xi−x j |→∞
〈0|n̂i · n̂ j |0〉 = N 2

0 , (2.7)

where N0 is the spontaneous magnetization (this does not apply to the special case D = 2,
N = 1, where the behavior for K > Kc will be discussed in Section 20.3). Similar results
hold for the N = 1 case with the variable σ z . Upon approaching Kc, N0 vanishes as a
power law, and ξ diverges as

ξ−1 ∼ a|K − Kc|ν, (2.8)

with ν a critical exponent. Again, an exception to this is the case N = 2, D = 2 where the
divergence of ξ has a different form. Also for the cases N > 2, D = 2 there is no phase
transition at any finite K , but there is a diverging correlation length for K →∞, and most
of the considerations below apply to these cases as well.

An important consequence of the divergence of the correlation lengths (2.8) and (1.2)
near the phase transition in both the classical and quantum models is that of universality.
This is the claim that most microscopic details of the lattice models do not modify the
essential structure of the corrections in the critical region at length scales of order ξ . With
ξ � a, a lattice spacing, it seems reasonable that fluctuations of individual spins on the
lattice scale do not matter in their details, and some “renormalized” theory is important at
scales ξ and larger. This argument can also be made using energy scales of the quantum
model, in which case the requirement of universality is that �� J . We provide a specific
justification of the hypothesis of universality using the renormalization group in Chapter 4.

We can now make a more precise statement of quantum–classical mapping. The uni-
versal properties of the d-dimensional quantum Ising and rotor models in their region of
large correlation length are identical to those of the D-dimensional classical models (2.2)
and (2.3). Further, correlators of the classical model in D dimensions map onto imagi-
nary time correlators of the d-dimensional quantum model, where one of the classical D
dimensions behaves like the quantum imaginary time direction, and the remaining D − 1
classical directions map onto the d spatial directions of the quantum model. The mapping
has an immediate consequence: as the quantum imaginary time direction is simply one of
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the spatial directions of the classical model, we compare (2.8) with (1.1) and (1.2) and con-
clude that we must have the dynamic exponent z = 1 for the quantum Ising/rotor models.

Having identified the appropriate universal limit of the quantum models, it is appropriate
to ask: what is the quantum theory that describes these universal properties? These turn out
to be continuum quantum field theories, which are introduced in the following section.

2.1 Quantum field theories

The following discussion will be carried out in the language of the quantum Ising and rotor
models. However, essentially the same arguments can also be made for the classical models
(2.2) and (2.3), as we will see in Chapters 3 and 4.

Let us consider the regime where |g − gc| is small, so that

�� J and ξ−1 � �. (2.9)

Suppose, further, that we are observing the system at a temperature T , a length scale x ,
and a frequency scale ω, and all of these are of the order of the temperature, length, and
energy scales that can be created out of �, ξ , and the fundamental constants. We will
then be particularly interested in dynamic response functions of the system near a quantum
critical point in the limit where the inequalities (2.9) are well satisfied. From a particle
theorist’s perspective, this means we are taking the limits � → ∞ and J → ∞ while
keeping �, ξ , x , ω, and T fixed. In terms of dimensionless parameters, this means we
are sending �ξ → ∞ and J/� → ∞, while keeping �ω/�, x/ξ , and kB T/� fixed. A
glance at (1.1) and (1.2) shows that these limits can only be taken while tuning g to become
progressively closer to gc. The complementary condensed matter theorist’s perspective
is that we are keeping � and J fixed and looking at the system’s response at small �,
large ξ , and at long distances and times and low temperatures; the two approaches are
clearly equivalent as the limits of the dimensionless ratios are the same. The resulting
response functions can be considered to be correlators of a quantum field theory, which is
now associated with a Hamiltonian defined in the continuum and has no intrinsic short-
distance or high-energy cutoff. A quantum field theory shares many of the characteristics
of ordinary quantum mechanics, with a unitary time evolution operator defined by the
continuum Hamiltonian, except that it has an infinite number of degrees of freedom per
unit volume.

The physical utility of the quantum field theory relies mainly on its universality. As we
have sent �→∞ and J →∞, it appears plausible that changes in the structure of H(g)
at the lattice scale will not modify the nature of the quantum field theory that eventually
appears, and the only consequence is a change in the values of the dimensionful parameters
� and ξ (this change results from modifications of the prefactors in (1.1) and (1.2), which,
as we have already asserted, are nonuniversal). A general rule of thumb is that only essen-
tial qualitative features, such as the symmetry of the order parameter, the dimensionality
of space, and constraints placed by conservation laws, survive the continuum limit, and the
structure of the quantum field theory is severely constrained by these restrictions.
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We have argued above that every second-order quantum phase transition defines a quan-
tum field theory in the continuum. Our attack on the quantum phase transition problem
in this book can be considered as consisting of two essential steps. First, we understand
and classify the various quantum field theories that can arise out of quantum phase transi-
tions in lattice Hamiltonians of physical interest. And second, we describe the dynamical
properties of these quantum field theories at finite temperatures. The latter will then model
the universal properties of the physical lattice Hamiltonians in the vicinity of the quantum
critical point.

We can now answer the basic question: what are the quantum field theories associated
with the second-order quantum phase transitions in the quantum rotor model HR in (1.25)
and the quantum Ising model HI in (1.7)? It is possible to give a common treatment of HI

and HR , with HI simply being the N = 1 case of a general discussion for HR . We attempt to
write down a Feynman path integral for the quantum partition function (2.4). As we argued
earlier, this is expressed in terms of a functional integral over all possible time histories (the
“sum over histories” formulation of quantum mechanics) of the rotor coordinate ni (τ ) over
an imaginary time 0 ≤ τ ≤ �/kB T (and similarly for σ z

i for N = 1). Clearly, this time axis
is the (d + 1)th dimension of the corresponding classical model. The final quantum field
theory is conveniently expressed in terms of a coarse-grained field φα(x, τ ) defined by

φα(x, τ ) ∼
∑

i∈N (x)

niα(τ ), (2.10)

where x is a point in d-dimensional space, N (x) is a coarse-graining neighborhood of x ,
the index α = 1 . . . N , and the overall normalization of φα can be chosen at our conve-
nience. For the case N = 1, we simply replace niα by σ z

i . Because the ni can point in
different directions at each i , the magnitude of φα can vary over a wide range. Indeed, it
seems reasonable that instead of applying a “hard” constraint like n2

i = 1, we can view
φα as a “soft” spin whose magnitude can vary freely over all positive values. A remnant
of the hard constraint on the microscopic degrees of freedom is that we have a local effec-
tive potential V (φ2

α), which controls fluctuations of φ2
α and prevents it from becoming too

large. We can also make a polynomial expansion for V , and it turns out to be adequate to
truncate it at terms of order (φ2

α)
2. In this manner, the quantum field theory obtained by

considering the vicinity of the quantum critical points in HR,I is defined by the following
imaginary time Feynman path integral over all possible time histories of the field φα(x, τ )
for the partition function Z:

Z =
∫

Dφα(x, τ ) exp(−Sφ),

Sφ =
∫

dd x
∫

�/kB T

0
dτ

{
1

2

[
(∂τφα)

2 + c2(∇xφα)
2 + rφ2

α(x)
]
+ u

4!
(
φ2
α(x)

)2
}
,

(2.11)

where c is a velocity, r and u are coupling constants, and the functional integral is over
fields periodic in τ with period �/kB T (i.e. φα(x, τ ) = φα(x, τ + �/kB T )). The two
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nongradient terms in (2.11) arise from the polynomial expansion of the potential V (φ2
α)

noted above; the spatial gradient term represents the energy cost for the spatial variations
in the orientation of the magnetic order. The time derivative term arises from the quantum-
mechanical tunneling terms proportional to Jg (J g̃) in HI (HR), and we will see how
they lead to second-order time derivatives in Chapters 5 and 6. This quantum field theory
undergoes a quantum phase transition, from a phase with 〈φα〉 �= 0 to one with 〈φα〉 = 0,
by tuning the coupling r through a critical value rc at T = 0.

An alternative formulation of this quantum field theory is sometimes useful for analyzing
HR at small g̃ and for low values of d; this formulation applies only for N ≥ 2 and yields
a field theory with precisely the same universal properties as the formulation in (2.11).
The basic idea is that at small g̃, the predominant fluctuations will be variations in the
orientation of the local direction of ni . Also, the orientation should not vary significantly
from site to site, and we can therefore simply promote ni (τ ) to a unit-length continuum
field n(x, τ ) and obtain

Z =
∫

Dn(x, τ )δ
(
n2(x, τ )− 1

)
exp(−Sn),

Sn = N

2cg

∫
dd x

∫
�/kB T

0
dτ
[
(∂τn)2 + c2 (∇x n)2

]
, (2.12)

where the small g̃ expressions for g and c are given in (6.11) and (6.51), and n(x, τ )
satisfies a periodicity condition similar to that for φα . This field theory is often called the
O(N ) quantum nonlinear sigma model in d dimensions, for obscure historical reasons. The
action is only quadratic in the field n(x, τ ), but the model is not a free field theory because
of the constraint n2(x, τ ) = 1 imposed at each point in spacetime. Note also that (2.12)
is the obvious higher dimensional generalization of the D = 1 field theory (6.45) studied
in Chapter 3: instead of having only one “quantum” τ direction, we also have d additional
spatial directions labeled by x , along with the corresponding gradient squared term in the
action.

We note one important property of the quantum field theories (2.11) and (2.12), which
will not generalize to some of the other quantum phase transitions studied in Part IV. These
field theories are clearly invariant under “relativistic” transformations in spacetime, with
the velocity c playing the role of the velocity of light. Consequently spatial and tempo-
ral scales must behave equivalently near the quantum critical point; this implies that the
dynamic critical exponent must be z = 1, a value which is implicitly assumed in some of
the discussion in Parts II and III. Our discussion of transitions with z �= 1 is deferred to
Part IV.

The description of the universal dynamical properties of (2.11) and (2.12) will occupy
a substantial portion of Part III. Formally, the imaginary time correlations of an infinite
d-dimensional quantum system at a temperature T are simply related to the correlations of
a D-dimensional classical system that is infinite in d directions and of finite extent Lτ in
one direction.
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2.2 What’s different about quantum transitions?

The quantum–classical mapping discussed so far in Part I is in fact a very general result and
not a specific property of the Ising/rotor models. One can always reinterpret the
imaginary time functional integral of a d-dimensional quantum field theory as the finite
“temperature” Gibbs ensemble of a D-dimensional classical field theory. We will often
use this mapping between d-dimensional quantum mechanics and D-dimensional classi-
cal statistical mechanics, and we will refer to it as the QC mapping. However, in general,
the resulting classical statistical mechanics problem will not be as simple as it was for the
Ising/rotor models. Quantum critical points often have z �= 1, and so correlators of the
classical problem will scale differently along the x and τ directions. Furthermore, as we
note below, there is no guarantee that the Gibbs weights are positive, and they could even
be complex valued.

Given this simple, and ubiquitous, quantum–classical mapping QC, one can now legit-
imately raise the question: why does one need a separate theory of quantum phase transi-
tions? Is it not possible to simply lift results from the corresponding classical theory and
obtain all needed properties of the quantum system? The answer to the second question is
an emphatic “no,” and a direct treatment of the quantum problems is certainly needed. The
reasons for this should become clearer to the reader on proceeding through the book, but
we note some important points here:

• Note that thequantum–classical mappingQC yields quantum correlation functions that are
in imaginary time. The most interesting properties of the quantum critical point are often
related to their real-time dynamics (e.g. their energy spectra, inelastic neutron scattering
cross-sections, or relaxation rates as measured in NMR experiments). To obtain these, one
needs to analytically continue the imaginary time results to real time. The crucial point
is that this analytic continuation is an ill-posed problem; that is, it is possible to continue
exact imaginary time results to real time, but anything short of an exact result leads to
unreliable, and usually unphysical, results. In particular, existing analytic results in the
theory of classical critical phenomena (with the exception of a single exact result in two
spatialdimensions thatweshall consider inChapter10)are totally inadequate forobtaining
T > 0 dynamic properties of the corresponding quantum critical points; approximation
schemes which work in imaginary time usually fail after analytic continuation to real time,
i.e. the operations of expanding in a control parameter, and analytic continuation, do not
commute. The problem is particularly severe for the long time limit t � �/kB T , which
is usually of the greatest practical interest. These correlations are essentially impossible
to reconstruct from the equivalent classical problem, which only yields imaginary time
correlations in the domain 0 ≤ τ ≤ �/kB T . It is therefore of crucial importance that the
theory be constructed using the physical concepts of the quantum critical point and that
it formulate the dynamic analysis directly in real time at all stages.

• We will see in the following chapters that a fundamental new time scale characterizing
the dynamic properties of systems near a quantum critical point is the phase coherence
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time, τϕ . Loosely speaking, τϕ is the time over which the wavefunction of the many-body
system retains memory of its phase. Local measurements separated by times shorter than
τϕ will display quantum interference effects. Precise definitions of τϕ have to be tailored
to the physical situation at hand, and these will be presented later for the models and
regimes considered. In most cases τϕ is closely related to the thermal equilibration time,
τeq, discussed in Section 1.2. The phase coherence time has no analog near the corre-
sponding classical critical point in D dimensions. Note from (2.5) that an infinite D-
dimensional classical system maps onto a d-dimensional quantum system at T = 0; in
all the models we shall consider in this book, the latter will have either a unique ground
state or one with a degeneracy small enough that the entropy is not thermodynamically
significant: under these circumstances we can expect that it is always possible to define
a τϕ that is infinite at T = 0, and therefore the quantum system has perfect phase coher-
ence at sufficiently low temperatures. From the infinite D-dimensional classical point of
view, however, this result may seem extremely peculiar. Most such systems have a high-
“temperature” disordered phase in which there is no long-range order and all correlations
decay exponentially over very short scales. Yet we are claiming that such a disordered
state maps onto a corresponding “quantum-disordered” state, which is characterized by
correlations that have an infinite correlation time (there is also a long length scale, the
distance excitations can travel in a time τϕ – for related remarks from experimental-
ists’ perspectives, the reader should see the articles by Mason et al. [320] and Aeppli
et al. [4]); for this reason we shall eschew the commonly used “quantum-disordered”
appellation and refer to this state, as noted earlier, as a quantum paramagnet. This pecu-
liarity is closely related to the ill-posed nature of the analytic continuation noted above.
Quantum systems at T = 0 really do have a genuinely different long-range phase corre-
lation in time that is almost completely hidden once the mapping to imaginary time and
the corresponding classical system has been performed. Only for T > 0 does the τϕ of
the quantum system become finite. An important purpose of this book is to show how to
introduce a characterization of quantum states that demonstrates the perfect coherence at
T = 0, to show how to compute τϕ for T > 0, and to highlight the crucial role played by
τϕ in the structure of the dynamic correlations. The manner in which τϕ →∞ as T → 0
is an important diagnostic in characterizing the different T > 0 regions in the vicinity
of the quantum critical point. We shall find that, in all of the models we study, the time
Lτ in (2.5) appears as a lower bound on the rate of divergence of τϕ as T → 0, that is,

τϕ ≥ C �

kB T
as T → 0, (2.13)

where C is a number of order unity. Our estimates of τeq in Section 1.2 are clearly con-
sistent with (2.13). In the quantum critical region of Fig. 1.3, the inequality in (2.13) is
saturated; this region will be of particular interest to us. Its dynamical properties have
not been studied until recently, and we will find that they have many remarkably uni-
versal characteristics even though their saturating the lower bound on τϕ implies that
their physics is maximally incoherent. Because of this shortest possible τϕ , the quantum
critical region realizes a “nearly perfect” fluid, as we will discuss briefly in Section 15.5.
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• For a large class of interesting, physically relevant quantum critical points, the corre-
sponding classical critical points are rather artificial and not of a class that have been
studied earlier. In random systems, the classical problems have disorder that is infinitely
correlated along the imaginary time direction. Moreover, even in nonrandom systems,
the classical problems often have complex-valued Boltzmann weights. These complex
weights are clearly a consequence of the underlying quantum mechanics and are often
best understood as “Berry phase” factors (see [464] for an elementary introduction to
Berry phases; the Berry phases are complex even in imaginary time). We will study
quantum critical points of these types in Part IV of this book. We will see that this leads
to a whole new class of phenomena, which have no analogs in the classical theory.

• Even for those quantum critical points that do have well-studied classical analogs, note
that we need the classical correlation functions in a rather curious slab geometry: one
which is infinite in D − 1 dimensions and of finite length Lτ in one direction. There are
very few existing results in such a geometry, and one often has to reconstruct the needed
correlators from scratch.

Despite these caveats, it should be evident that it will pay to push the quantum–classical
mapping QC as far as possible, for this will allow us to get maximum mileage from the
sophisticated and profound developments in the theory of classical critical phenomena.
This is the strategy of this book. We begin in Parts II and III by thoroughly examining a
class of quantum phase transitions that do have simple and well-studied classical analogs.
In this manner, we will introduce many of the central concepts needed in a somewhat more
familiar environment. Then, as noted above, we will proceed in Part IV to many other
physically important quantum phase transitions that involve Berry phases in a crucial way,
but which do not have useful classical analogs.

There have also been discussions of the dynamical properties of quantum field theo-
ries at finite temperature in particle physics literature [50, 247, 259, 381]. However, these
are exclusively concerned with physics in D= 4 in models that do not satisfy “hyperscal-
ing” [59] properties, and this leads to significant differences from the systems we shall
examine here. Some of these studies [50, 247] have examined the model Sφ in (2.11) for
the case D = 4, N = 1, which turns out to be essentially a free field theory at low ener-
gies. As a result, inelastic decoherence effects are rather weak and nonuniversal. This will
be discussed further in Chapter 14. There is also interest in the high-temperature dynam-
ical properties of non-Abelian gauge theories [247, 381]. These are asymptotically free at
high energies (i.e. scattering between the elementary excitations is negligibly small at high
energies), and as a result the high-temperature behavior is controlled by a Gaussian and
classical fixed point. We will see an analogous phenomenon here in a much simpler con-
text in Section 12.3; the simplicity will allow us to make greater progress than has so far
been possible for the gauge theories. The models of primary interest in this book satisfy
hyperscaling and are not asymptotically free at high energies; such models have not been
studied in particle physics literature.
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A FIRST COURSE





3 Classical phase transitions

Given the motivation outlined in Chapter 2, we begin by discussing phase transitions in
the context of classical statistical mechanics. This is a vast subject, and the reader can
find many other books which explore many subtle issues. Here, our purpose is to summa-
rize the main ideas which transfer easily to our subsequent discussions of quantum phase
transitions.

We will consider the most important models of classical phase transitions: ferromagnets
with N component spins residing on the sites, i , of a hypercubic lattice. For N = 1, this is
the familiar Ising model with a partition function already met in (2.2):

Z =
∑

{σ z
i =±1}

exp(−H),

H = −K
∑
〈i, j〉

σ z
i σ

z
j . (3.1)

Note that we have refrained from inserting an explicit factor of temperature above, as
the symbol T will be reserved for the temperature of the quantum systems we consider
later. As is discussed in introductory statistical mechanics texts, this Ising model describes
the vicinity of the liquid–gas critical point, with the average value 〈σ z

i 〉 measuring the
density in the vicinity of site i . It can also model loss of ferromagnetism with increasing
temperature in magnets in which the electronic spins preferentially align along a particular
crystalline axis: this “easy-axis” behavior can be induced by the spin–orbit interaction. For
N > f 1, we generalize (3.1) to the model of (2.3)

Z =
∏

i

∫
Dniδ

(
n2

i − 1
)

exp

⎛⎝K
∑
〈i, j〉

ni · n j

⎞⎠. (3.2)

The N = 3 case (known as the “Heisenberg” model) describes ferromagnetism in materials
with sufficiently weak, small spin–orbit couplings, so that the spins can freely orient along
any direction. The N = 2 case (known as the “XY” model) describes the superfluid–normal
transition in liquid helium and other superfluids, as we will see in Section 8.3.

The observables, O, of the classical models will be arbitrary functions of the ni , and we
are interested in their expectation values defined by

〈O〉 ≡ 1

Z
∑

{σ z
i =±1}

exp(−H)O (3.3)

for N = 1, and similarly for N ≥ 1.

29
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As discussed in Chapter 2, the models in (3.1) and (3.2) undergo phase transitions at
some critical K = Kc. We are interested in describing the nature of the spin correlations in
the vicinity of this critical point, and especially their universal aspects. We begin in Sec-
tion 3.1 by describing this transition using a variational method which leads to a “mean-
field” theory. A more general formulation of the mean-field results appears in the frame-
work of Landau theory in Section 3.2, which allows easy treatment of spatial variations.
Finally, corrections to Landau theory are considered in Section 3.3.

3.1 Mean-field theory

First, we give a heuristic derivation of mean-field theory. Here, and below, for notational
simplicity we will focus on the N = 1 Ising case, although the generalization to N > 1 is
not difficult.

We focus on the fluctuations of a particular spin σ z
i . This spin feels the local Hamiltonian

−Kσ z
i

⎛⎝ ∑
j neighbor of i

σ z
j

⎞⎠ ≈ −Kσ z
i

⎛⎝ ∑
j neighbor of i

〈
σ z

j

〉⎞⎠ = −2DK N0σ
z
i . (3.4)

The mean-field approximation is in the center, where we replace all the neighboring spins
by their average value. Here N0 is the ferromagnetic moment, defined by

N0 ≡ 〈σ z
i 〉 (3.5)

in the full theory, where the translational invariance of H guarantees the independence of
N0 on the site i . Given the simple effective Hamiltonian for site i in Eq. (3.4), we can now
evaluate 〈

σ z
i

〉 = ∑σ z
i =±1 σ

z
i exp

(
2DK N0σ

z
i

)∑
σ z

i =±1 exp
(
2DK N0σ

z
i

) = tanh(2DK N0). (3.6)

Combining (3.5) and (3.6), we have our central mean-field equation

N0 = tanh(2DK N0) (3.7)

for the value of N0. We will discuss the nature of its solutions shortly.
Let us now give a more formal derivation of (3.7) using the variational method. This

method relies on the choice of an arbitrary mean-field Hamiltonian, HM F . Naturally, we
want to choose HM F so that we are able to easily evaluate its partition function ZM F , and
the expectation values of all the observables, which we denote 〈O〉M F after evaluation as
in (3.3) but with H replaced by HM F . We now want to optimize the choice of HM F by a
variational principle which bounds the exact free energy F = − lnZ . Of course, the best
possible choice is HM F = H , but this does not allow easy evaluation of correlations. The
variational principle descends from the theorem

F ≤ FM F + 〈H − HM F 〉M F . (3.8)
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The proof of the theorem proceeds as follows (here, and below, we use the symbol “Tr” to
denote the sum over all the σ z

i ):

e−F = Tre−H

= Tre−(H−HM F )−HM F

= e−FM F
〈
e−(H−HM F )

〉
M F

. (3.9)

We now use the statement of the convexity of the exponential function, which is〈
e−O

〉
≥ e−〈O〉. (3.10)

Taking logarithms of both sides of (3.9), we finally obtain (3.8).
Returning to the Ising model, we choose the simplest HM F consisting of a set of decou-

pled spins in a “mean field” hM F :

HM F = −hM F

∑
i

σ z
i . (3.11)

Then, we see immediately that

FM F = −M ln(2 cosh hM F ), (3.12)

where M is the total number of sites on the lattice, and

N0 =
〈
σ z

i

〉
M F = −

1

M

∂FM F

∂hM F
= tanh(hM F ). (3.13)

Using (3.8) to bound the free energy, we have

F ≤ FM F − K
∑
〈i j〉

〈
σ z

i σ
z
j

〉
+ hM F

∑
i

〈
σ z

i

〉
≤ FM F − M K DN 2

0 + MhM F N0. (3.14)

We now have upper bounds for the free energy for every value of the, so far, undeter-
mined parameter hM F . Clearly we want to choose hM F to minimize the right hand side of
(3.14); we will declare the resulting upper bound as our approximate result for F – this is
the mean-field approximation. Actually, it is helpful to trade the variational parameter hM F

with the value of the ferromagnetic moment N0, as they are related to each other by (3.13).
So our variational parameter is now N0, and our mean-field free energy is a function of N0

given by

F(N0)/M = FM F (N0)/M − K DN 2
0 + N0hM F (N0), (3.15)

where the functions FM F (N0) and hM F (N0) are defined by (3.12) and (3.13). Using these
expressions, we obtain the explicit expression

F(N0)

M
= −K DN 2

0 +
1+ N0

2
ln

1+ N0

2
+ 1− N0

2
ln

1− N0

2
, (3.16)
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�Fig. 3.1 Plot of (3.16) as a function of N0 for different K .

which can be interpreted as the sum of estimates of the internal energy and entropy of the
Ising spins (see Exercise 3.1). Our task is now to minimize (3.16) over values of N0 for
each K . Before examining the results of this, let us examine the nature of the stationarity
condition by taking the derivative of (3.15):

1

M

∂F
∂N0

= 1

M

∂F
∂hM F

∂hM F

∂N0
− 2K DN0 + hM F + N0

∂hM F

∂N0
. (3.17)

Using (3.13) we observe that the first and last terms cancel, and so the stationarity condition
is simply hM F = 2K DN0, which is finally equivalent to our earlier heuristic result in (3.7).

Rather than solving (3.7), it is more instructive to examine the solution by plotting (3.16)
as a function of N0 for different K . This is shown in Fig. 3.1. We notice a qualitative
change in the nature of the minimization at K = Kc= 1/(2D). For K < Kc (high temper-
atures) the free energy is minimized by N0= 0: this corresponds to the high-temperature
“paramagnetic” phase. However, for K > Kc we have two degenerate minima at nonzero
values of N0 which have the same magnitude but opposite signs. The system will “spon-
taneously” choose one of these equivalent minima, leading to ferromagnetic order. Note
that this choice is not invariant under the spin–flip symmetry of the underlying H , and so
this is a simple illustration of the phenomenon of “spontaneous symmetry breaking.” The
critical point K = Kc is the position of the phase transition between the paramagnetic and
ferromagnetic phases.
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3.2 Landau theory

The main idea of mean-field theory has been to represent the 2M degrees of freedom in
the Ising model by a single mean magnetization, N0. The free energy is determined as a
function of N0, and then minimized to obtain the optimal equilibrium state.

Landau theory retains the idea of free energy optimization, but generalizes N0 to a con-
tinuum field φα(x). Here α= 1 . . . N , and x is a D-dimensional coordinate associated with
a hypercubic lattice of spacing a. We have now returned to a consideration of the theory for
general N . The central actor in Landau theory will be a free energy functional, F [φα(x)],
which has to be minimized with respect to variations in φα(x).

For now, we will keep the definition of φα(x) somewhat imprecise. Physically, φα(x)
represents a coarse-grained average of the local magnetization niα in the vicinity of x = xi ,
as we discussed in (2.10) for the corresponding quantum model

φα(x) ∼
∑

i∈N (x)

niα. (3.18)

As discussed in the text following (2.10), we view φα as a “soft” spin whose magnitude
can vary freely over all positive values.

The Landau free energy functional F [φα(x)] is now derived from a few basic principles:

• The Hamiltonian is invariant under a common O(N ) rotation, niα → Rαβniβ , where
Rαβ is a rotation matrix applied to all sites i . So the free energy should also be invariant
under global rotations of the φα . We saw an example of this for N = 1: then the only
symmetry is σ z

i →−σ z
i , and consequently, (3.16) is an even function of N0.

• Near the critical point at K = Kc, the average value N0 was smaller than the natural value
|σ z

i | = 1. We expect this to hold also for N > 1. After the coarse-graining in (3.18), we
expect that φα is small in a similar sense. Our main interest is in the vicinity of Kc, and
therefore the Landau functional will be expanded in powers of φα .

• A key step by which Landau theory improves mean-field theory is that it allows for
spatial variations in the local magnetic order. We will assume here that the important
spatial variations occur on a scale which is much larger than a lattice spacing. This
assumption will be seen to be valid later, provided we are close to the critical point
K = Kc. With this assumption, we will be able to expand the free energy functional in
gradients of φα .

We are now prepared to write down the important terms in F[φα(x)]. Expanding in
powers and gradients of φα(x) we have

F =
∫

d Dx

{
1

2

[
K(∇xφα)

2 + rφ2
α(x)

]
+ u

4!
(
φ2
α(x)

)2
}
, (3.19)

expressed in terms of the parameters K, r , u. We may regard these as unknown phenomeno-
logical parameters that have to be determined by fitting to experimental or numerical data.
However, we can obtain initial estimates by matching to the results on mean-field theory in
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Section 3.1. First, we set the overall normalization of φα by setting its average value equal
to that of the niα:

〈φα(xi )〉 = 〈niα〉 . (3.20)

Then comparing (3.19) with the expansion of (3.16) to quartic order, we obtain for N = 1

r = a−D(1− 2DK ), u = 2a−D . (3.21)

Of course, this method does not yield the value of K, because mean-field theory does not
have any spatial variations. To estimate K we may examine the energy of a domain wall at
low temperatures between two oppositely oriented ferromagnetic domains with σ z

i = ± 1.
Such a domain wall has energy 2K per unit length; computing the domain wall energy
using (3.19), we obtain the estimate K ≈ 2K a2−D .

An interesting feature of (3.21) is that r = 0 at K = Kc. In fact, we expect quite generally
that r ∼ Kc − K , as a simple argument now shows. The optimum value of φα(x) under
(3.19) is clearly given by a space-independent solution (provided K > 0). For r > 0 (and
assuming that u > 0 generally), the minimum of F is obtained by φα(x)= 0. This is clearly
the paramagnetic phase. In contrast, for r < 0, it will pay to choose a space-independent
but nonzero φα . The O(N ) invariance of F guarantees that there is a degenerate set of
minima that map onto each other under O(N ) rotations. So let us orient φα along the α= 1
axis, and write

φα = δα,1 N0. (3.22)

Inserting this into (3.19) and minimizing for r < 0 we obtain

N0 =
√−6r

u
. (3.23)

This shows that N0 vanishes as r ↗ 0, and the approach to the critical point allows us to
introduce the critical exponent β defined by

N0 ∼ (−r)β . (3.24)

Both mean-field and Landau theory predict that β = 1/2, as can also be verified by a mini-
mization of the full expression in (3.16). Related analyses of other observables allow us to
obtain other critical exponents, as we explore in Exercise 3.4.

3.3 Fluctuations and perturbation theory

We now want to proceed beyond the mean-field treatment of the phase transition at K = Kc.
We expect that the value of Kc will have corrections to its mean-field value of 1/(2D): we
will not focus on these here because they are nonuniversal, i.e. dependent upon specific
details of the microscopic Hamiltonian. Rather, our focus will be on universal quantities
like the critical exponent β. The structure of Landau theory already suggests reasons why
β may be universal: notice that the value of β depended only on the quartic polynomial
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structure of the free energy, which in turn followed from symmetry considerations. Modi-
fying the form of H , e.g. by adding second-neighbor ferromagnetic couplings, would not
change the arguments leading to the Landau free energy functional, and we would still
obtain β = 1/2 although Kc would change.

Indeed, the universality suggested by Landau theory is too strong. It indicates that any
ferromagnet with O(N ) symmetry always has β = 1/2. We now see that there are fluctu-
ation corrections to Landau theory, and that the universal quantities depend not only on
symmetry, but also on the dimensionality, D. The Landau theory predictions are correct
for D > 4, while there are corrections for D ≤ 4. We will need the renormalization group
approach to compute universal quantities for D < 4, and this is described in Chapter 4.

One way to address fluctuation corrections is to return to the underlying partition func-
tion in (3.1), and expand it as a power series in K or in 1/K . Such series expansions
have been carried out to very high orders, and they are efficient and accurate methods
for describing the behavior at high and low temperatures. However, they are not directly
suited for addressing the vicinity of the critical point K = Kc. Instead, we would like to
use a method which builds on the success of Landau theory, and yields its results at leading
order. The coarse-graining arguments associated with (3.18) suggest a route to achieving
this: rather than summing over all the individual spins in (3.1), we should integrate over all
values of the collective field variable φα(x). In other words, we should regard the expres-
sion in (3.19) not as the free energy functional, but as the Hamiltonian (or “action”) of a
classical statistical mechanics problem in which the degrees of freedom are represented by
the field φα(x). The partition function is therefore represented by the functional integral

Z =
∫

Dφα(x) exp(−Sφ),

Sφ =
∫

d Dx

{
1

2

[
(∇xφα)

2 + rφ2
α(x)

]
+ u

4!
(
φ2
α(x)

)2
}
. (3.25)

Here the symbol
∫
Dφα(x) represents an infinite dimensional integral over the values of

the field φα(x) at every spatial point x . Whenever in doubt, we will interpret this somewhat
vague mathematical definition by discretizing x to a set of lattice points of small spacing
∼1/�. Equivalently, we will Fourier transform φα(x) to φα(k), and impose a cutoff |k|<�
in the set of allowed wavevectors.

We have set the coefficient of the gradient term K equal to unity in (3.25). This is to
avoid clutter of notation, and is easily accomplished by an appropriate rescaling of the
field φα and the spatial coordinates.

An immediate advantage of the representation in (3.25) is that Landau theory is obtained
simply by making the saddle-point approximation to the functional integral. We can also
see that, as described in more detail below, systematic corrections to Landau theory appear
in an expansion in powers of the quartic coupling u. The remainder of this chapter is
devoted to explaining how to compute the terms in the u expansion. Each term has an effi-
cient representation in terms of “Feynman diagrams,” from which an analytic expression
can also be obtained.
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3.3.1 Gaussian integrals

We introduce the technology of Feynman diagrams in the simplest possible setting. Let us
discretize space, and write the φα(xi ) variables as yi ; we drop the α label to avoid clutter
of indices. Then consider the multidimensional integral

Z(u) =
∫

Dy exp

⎛⎝−1

2

∑
i j

yi Ai j y j − u

24

∑
i

y4
i

⎞⎠, (3.26)

where the off-diagonal terms in the matrix A arise from the spatial gradient terms in Sφ .
In this section, we consider A to be an arbitrary positive definite, symmetric matrix. The
positive definiteness requires that r > 0, i.e. K < Kc. Also, we have defined∫

Dy =
∏

i

∫ ∞

−∞
dyi√

2π
, (3.27)

and are interested in the expansion of Z(u) in powers of u. Thinking of (3.26) as a sta-
tistical mechanics ensemble, we will also be interested in the power series expansion of
correlators like

Ci j (u) ≡ 〈yi y j 〉 ≡ 1

Z(u)

∫
Dy yi y j exp

(
−1

2

∑
k�

yk Ak�y� − u

24

∑
k

y4
k

)
. (3.28)

First, we note the exact expressions for these quantities at u= 0. The partition
function is

Z(0) = (detA)−1/2. (3.29)

This result is most easily obtained by performing an orthogonal rotation of the yi to a
basis which diagonalizes the matrix Ai j before performing the integral (Exercise 3.5). Also
useful for the u expansion is the identity∫

Dy exp

⎛⎝−1

2

∑
i j

yi Ai j y j −
∑

i

Ji yi

⎞⎠
= (detA)−1/2 exp

⎛⎝1

2

∑
i j

Ji A−1
i j J j

⎞⎠, (3.30)

which is obtained by shifting the yi variables to complete the square in the argument of the
exponential. By taking derivatives of this identity with respect to the Ji , and then setting
Ji = 0, we can generate expressions of all the correlators at u= 0. In particular, the two-
point correlator is

Ci j (0) = A−1
i j . (3.31)

For the 2n-point correlator, we have an expression known as Wick’s theorem:

〈y1 y2 . . . y2n〉 =
∑

P

〈yP1 yP2〉 . . .
〈
yP(2n−1)yP2n

〉
, (3.32)
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i j

k l

+

i j

k l

+

i j

k l

�Fig. 3.2 Representation of the 4-point correlator in (3.33). Each line is a factor of the propagator in (3.31).

+ + +

�Fig. 3.3 Diagrams for the partition function to order u2.

where the summation over P represents the sum over all possible products of pairs, and
we reiterate that both sides of the equation are evaluated at u= 0. Thus for the 4-point
correlator, we have〈

yi y j yk y�
〉 = 〈yi y j

〉 〈yk y�〉 + 〈yi yk〉
〈
y j y�

〉+ 〈yi y�〉
〈
y j yk

〉
. (3.33)

There is a natural diagrammatic representation of the right-hand side of (3.33): we repre-
sent each distinct field yi by a dot, and then draw a line between dots i and j to represent
each factor of Ci j (0) see Fig. 3.2.

We can now generate the needed expansions of Z(u) and Ci j (u) simply by expand-
ing the integrands in powers of u, and evaluating the resulting series term by term using
Wick’s theorem. What follows is simply a set of very useful diagrammatic rules for effi-
ciently obtaining the answer at each order. However, whenever in doubt about the value of
a diagram, it is often easiest to go back to this primary definition.

For Z(u), expanding to order u2, we obtain the diagrams shown in Fig. 3.3 which eval-
uate to the expression

Z(u)
Z(0) = 1− u

8

∑
i

(
A−1

i i

)2 + 1

2

(
u

8

∑
i

(
A−1

i i

)2
)2

+ u2

16

∑
i, j

A−1
i i A−1

j j

(
A−1

i j

)2

+ u2

48

∑
i, j

(
A−1

i j

)4 +O(u3). (3.34)

We are usually interested in the free energy, which is obtained by taking the logarithm of
the above expression, yielding

ln
Z(u)
Z(0) = −

u

8

∑
i

(
A−1

i i

)2 + u2

16

∑
i, j

A−1
i i A−1

j j

(
A−1

i j

)2 + u2

48

∑
i, j

(
A−1

i j

)4 +O(u3).

(3.35)

Now, note an important feature of (3.35): the terms here correspond precisely to the subset
of the terms in Fig. 3.3 associated with the connected diagrams. These are diagrams in
which all points are connected to each other by at least one line, and this result is an
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++

+ +

�Fig. 3.4 Diagrams for the two-point correlation function to order u2.

example of the “linked cluster theorem.” We will not prove this very useful result here: at
all orders in u, we can obtain the perturbation theory for the free energy by keeping only
the connected diagrams in the expansion of the partition function.

Now let us consider the u expansion of the two-point correlator, Ci j (u), in (3.28). Here,
we have to expand the numerator and denominator in (3.28) in powers of u, evaluate each
term using Wick’s theorem, and then divide the result series. Fortunately, the linked cluster
theorem simplifies things a great deal here too. The result of the division is simply to cancel
all the disconnected diagrams. Thus, we need only expand the numerator, and keep only
connected diagrams. The diagrams are shown in Fig. 3.4 to order u2, and they evaluate to

Ci j (u) = A−1
i j −

u

2

∑
k

A−1
ik A−1

kk A−1
k j +

u2

4

∑
k,�

A−1
ik A−1

kk A−1
k� A−1

�� A−1
�j

+ u2

4

∑
k,�

A−1
ik

(
A−1

k�

)2
A−1
�� A−1

k j +
u2

6

∑
k,�

A−1
ik

(
A−1

k�

)3
A−1
�j . (3.36)

We now state the useful Dyson’s theorem. For this, it is helpful to consider the expansion
of the inverse of the Ci j matrix, and write it as

C−1
i j = Ai j −�i j , (3.37)

where the matrix�i j is called the “self-energy,” for historical reasons not appropriate here.
Using (3.36), some algebra shows that to order u2

�i j (u) = −δi j
u

2
A−1

i i + δi j
u2

4

∑
k

(
A−1

ik

)2
A−1

kk +
u2

6

(
A−1

i j

)3
, (3.38)

and these are shown graphically in Fig. 3.5. Dyson’s theorem states that we can obtain the
expression for the �i j directly from the graphs for Ci j in Fig. 3.4 by two modifications:
(i) drop the factors of A−1 associated with external lines, and (ii) keep only the graphs
which are one-particle irreducible (1PI). The latter are graphs which do not break into
disconnected pieces when one internal line is cut; the last graph in Fig. 3.4 is one-particle
reducible, and so does not appear in (3.38) and Fig. 3.5.

The expression in (3.38) will be the basis for much of the analysis in Part II.
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+ +

�Fig. 3.5 Diagrams for the self-energy to order u2.

3.3.2 Expansion for susceptibility

We now apply the results of Section 3.3.1 to our functional integral representation in (3.25)
for the vicinity of the phase transition.

The problem defined by (3.25) has an important simplifying feature not shared by our
general analysis of (3.26): translational invariance. This means that correlators depend only
upon the differences of spatial coordinates, and that the analog of the matrix A can be
diagonalized by a Fourier tranformation. So now we define the correlator

Cαβ(x − y) = 〈φα(x)φβ(y)〉− 〈φα(x)〉 〈φβ(y)〉, (3.39)

where the subtraction allows generalization to the ferromagnetic phase; we will consider
only the paramagnetic phase here.

The subtraction in (3.39) is also needed for the fluctuation–dissipation theorem. We will
discuss the full version of this theorem in Section 7.1, but note a simpler version. We
consider the susceptibility, χαβ , the response of the system to an applied “magnetic” field
hα , under which the action changes as

Sφ → Sφ −
∫

d Dx hα(x)φα(x). (3.40)

Then

χαβ(x − y) = δ 〈φα(x)〉
δhβ(y)

= Cαβ(x − y), (3.41)

where the last equality follows from taking the derivative with respect to the field. Below
we set hα = 0 after taking the derivative. The Fourier transform of the susceptibility
χαβ is

χαβ(k) =
∫

d Dxe−ikxχαβ(x). (3.42)

In the paramagnetic phase, χαβ(k) ≡ δαβχ(k), and the susceptibility χ(k) will play a
central role in our analysis.

We can also Fourier transform the field φα(x) to φα(k), and so obtain the following
representation of the action from (3.25):

Sφ = 1

2

∫
d Dk

(2π)D
|φα(k)|2(k2 + r)

+ u

4!
∫

d Dk

(2π)D

d Dq

(2π)D

d D p

(2π)D
φα(k)φα(q)φα(p)φα(−k − p − q). (3.43)
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In this representation it is clear that the quadratic term in the action is diagonal, and so the
inversion of the matrix A is immediate. In particular, from (3.31) we have the susceptibility
at u= 0

χ0(k) = 1

k2 + r
, (3.44)

where we have defined χ0(k) to be the value of χ(k) at u= 0. Dyson’s theorem in (3.37)
becomes a simple algebraic relation

χ(k) = 1

1/χ0(k)−�(k) =
1

k2 + r −�(k) . (3.45)

We will shortly obtain an explicit expression for �(k).
Let us now explore some of the consequences of the u= 0 result in (3.44), which

describes Gaussian fluctuations about mean-field theory in the paramagnetic phase, r > 0.
The zero momentum susceptibility, which we denote simply as χ ≡ χ(k= 0)= 1/r ,
diverges as we approach the phase transition at K = Kc from the high temperature para-
magnetic phase. This divergence is a key feature of the phase transition, and its nature is
encoded in the critical exponent γ defined by

χ ∼ (Kc − K )−γ . (3.46)

At this leading order in u we have γ = 1.
We can also examine the spatial correlations in the u= 0 theory. Performing the inverse

Fourier transform to Cαβ(x) = δαβC(x) we find

C(x) =
∫

d Dk

(2π)D

eikx

(k2 + r)
= (2π)−D/2

(xξ)(D−2)/2
K(D−2)/2(x/ξ), (3.47)

where here K is the modified Bessel function, and we have introduced a characteristic
length scale, ξ , defined by

ξ = 1/
√

r . (3.48)

This is the correlation length, and is a measure of the distance over which fluctuations of
φα (or the underlying spins σ z

i ) are correlated. This is evident from the limiting forms of
(3.47) in various asymptotic regimes:

C(x) ∼

⎧⎪⎨⎪⎩
1

x D−2
, x � ξ

e−x/ξ

x (D−1)/2ξ (D−3)/2
. x � ξ

(3.49)

As could be expected of a correlation length, the correlations decay exponentially to zero
at distances larger than ξ .

An important property of our expression in (3.48) for the correlation length is that it
diverges upon the approach to the critical point. This divergence is also associated with a
critical exponent, ν, defined by

ξ ∼ (Kc − K )−ν, (3.50)
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and our present theory yields ν= 1/2. In the vicinity of the phase transition, this large
value of ξ provides an a-posteriori justification of our taking a continuum perspective on
the fluctuations. In other words, it supports our mapping from the lattice models in (3.1)
and (3.2) to the classical field theory in (3.25), where we replaced the lattice spin variables
by the collective field φα using (3.18).

Let us now move beyond the u= 0 theory, and consider the corrections at order u. After
mapping to Fourier space, the result in (3.38) for the self-energy yields

�(k) = −u
(N + 2)

6

∫
d D p

(2π)D

1

p2 + r
. (3.51)

Here, and below, there is an implicit upper bound of k < � needed to obtain finite answers
for the wavevector integrals. The N dependence comes from keeping track of the spin
index α along each line of the Feynman diagram, and allowing for the different possible
contractions of such indices at each u interaction point. We then have from (3.45) our main
result for the correction in the susceptibility:

1

χ(k)
= k2 + r + u

(N + 2)

6

∫
d D p

(2π)D

1

p2 + r
+O(u2). (3.52)

The first consequence of (3.52) is a shift in the position of the critical point. From (3.46),
a natural way to define the position of the phase transition is by the zero of 1/χ . The order
u correction in (3.52) shows that the critical point is no longer at r = rc= 0, but at

rc = −u
(N + 2)

6

∫
d D p

(2π)D

1

p2
+O(u2). (3.53)

Now, let us combine (3.52) and (3.53) to determine the behavior of χ as r ↘ rc. We
introduce the coupling s defined by

s ≡ r − rc, (3.54)

which measures the deviation of the system from the critical point. Rewriting (3.52) in
terms of s rather than r (we will always use s in favor of r in all subsequent analysis), we
have

1

χ
= s + u

(
N + 2

6

)∫ � d D p

(2π)D

(
1

p2 + s
− 1

p2

)
. (3.55)

We are interested in the vicinity of the critical point, at which s → 0.
A crucial point is that the nature of this limit depends sensitively on whether D is greater

than or less than four. For D > 4, we can simply expand the integrand in (3.55) in powers
of s and obtain

1

χ
= s(1− c1u�D−4), (3.56)

where c1 is a nonuniversal constant dependent upon the nature of the cutoff. Thus the effects
of interactions appear to be relatively innocuous: the static susceptibility still diverges with
the mean-field form χ(0) ∼ 1/s as s → 0, with the critical exponent γ = 1. This is in fact
the generic behavior to all orders in u, and all the mean-field critical exponents apply for
D > 4.
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For D < 4, we notice that the integrand in (3.55) is convergent at high momenta, and so
it is permissible to send �→∞. We then find that the correction to first order in u has a
universal form

1

χ
= s

[
1−

(
N + 2

6

)
2�((4− D)/2)

(D − 2)(4π)D/2

u

s(4−D)/2

]
. (3.57)

Note that no matter how small u is, the correction term eventually becomes important for a
sufficiently small s, and indeed it diverges as s → 0. So for sufficiently large ξ , the mean-
field behavior cannot be correct, and a resummation of the perturbation expansion in u is
necessary.

The situtation becomes worse at higher orders in u. As suggested by (3.57), the per-
turbation series for 1/(sχ) is actually in powers of u/s(4−D)/2, and so each successive
term diverges more strongly as s → 0. Thus the present perturbative analysis is unable
to describe the vicinity of the critical point for D < 4. We will show that this problem is
cured by a renormalization group treatment in the following chapter.

Exercises

3.1 Consider an Ising model on a system of N sites. Let N↑ be the number of up spins.
Calculate �(N↑, N ), the total number of ways these N↑ spins could have been placed
among the N sites. Obtain the entropy S = kB ln� as a function of the magnetization
m= (N↑ − N↓)/N , where N↓ = N − N↑. Combine this computation of the entropy
with a mean-field estimate of the average internal energy to obtain (3.16).

3.2 Ising antiferromagnet: We consider the Ising antiferromagnet on a square lattice. The
Hamiltonian is

HI = J
∑
〈i j〉
σiσ j , (3.58)

where i, j extend over the sites of a square lattice, 〈i j〉 refers to nearest neighbors,
and σi = ± 1. Note that there is no minus sign in front of J . We take J > 0, so
the ferromagnetic state, with all σi parallel, is the highest energy state. The ground
states have the pattern of a chess board: σi = 1 on one sublattice (A) and σi = −1 on
the other sublattice (B), and vice versa. Use mean-field theory to describe the phase
diagram of this model. Argue that the mean-field Hamiltonian should have two fields,
h A and h B , on the two sublattices, and correspondingly, two magnetizations m A and
m B . Obtain equations for m A and m B and determine the value of Tc.

3.3 XY model: We generalize the Ising model (with binary spin variables σi ) to a model
of vector spins, �Si , of unit length (�S2

i = 1 at each i). This is a model of ferromag-
netism in materials, e.g. iron, in which the electron spin is free to rotate in all direc-
tions (rather than being restricted to be parallel or anti-parallel to a given direction,
as in the Ising model). For simplicity, let us assume that the spin is only free to rotate
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within the x–y plane, i.e. �Si = (cos θi , sin θi ). So the degree of freedom is an angle
0 ≤ θi < 2π on each site i . The Hamiltonian of these XY spins is

H = −J
∑
〈i j〉

�Si · �S j = −J
∑
〈i j〉

cos(θi − θ j ), (3.59)

and the partition function is

Z =
∏

i

∫ 2π

0
dθi e

−βH. (3.60)

Use the variational approach to obtain a mean-field theory for the mean magnetiza-
tion �m=〈�Si 〉 at a temperature T . Use a trial Hamiltonian H0= −∑i

�h · �Si , and
bound the free energy by F ≤ 〈H−H0〉0+ F0. Argue that because of spin rotational
invariance (about the z axis) we can choose �h and �m to point along the x-axis, and
hence H0= −∑i h cos θi . Also, in the variational approach we define

m ≡ 〈cos θ〉0 = − 1

N

∂F0(h)

∂h
. (3.61)

We use this equation for m to solve for h as a function of m, and so now we can
consider F to be a function of the variational parameter m. Show that F equals

F = −Nq Jm2

2
+ Nhm + F0(h). (3.62)

Use these equations to evaluate ∂F/∂m and so obtain the mean-field equation for m
(note that you do not need an explicit form for F0 to obtain this) and determine the
critical temperature on a lattice with coordination number q.

3.4 Critical exponents: In mean-field theory, the free energy density of the Ising model
near its critical point can be obtained by minimizing the functional of the magneti-
zation density m:

F = a

2
m2 + b

4
m4 − hm + F0(T ).

Here F represents the Helmholtz free energy density; F0(T ) is a smooth background
function of T , all of whose derivatives are finite and nonzero at T = Tc. Assume b is
independent of T , while a is approximated by a linear T dependence a= a0(T −Tc).

(a) The critical exponent β is defined by the manner in which m vanishes upon
approaching Tc at h= 0:

m ∼ (Tc − T )β .

What is the mean-field value of β?

(b) The critical exponent δ is determined by the h dependence of m at T = Tc:

m ∼ h1/δ.

What is the mean-field value of δ?
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(c) The critical exponents γ and γ ′ are defined by the manner in which the magnetic
susceptibility χ = ∂m/∂h|h→0 behaves above and below Tc:

χ ∼ A(T − Tc)
−γ , T > Tc

χ ∼ A′(Tc − T )−γ ′ . T < Tc

Determine the values of γ , γ ′, and A/A′.
(d) Similarly, the behavior of the specific heat, CV = − T (∂2 F/∂T 2) at h= 0 is

specified by

CV ∼ B(T − Tc)
−α, T > Tc

CV ∼ B ′(Tc − T )−α′ . T < Tc

Determine the values of α, α′, B, and B ′.
3.5 Establish (3.29) by changing variables of integration in (3.26) so that the matrix A

is diagonal in the new basis. This will involve working with the eigenvectors and
eigenvalues of A.

3.6 Redo the computations in Section 3.3.1 for an N component field yiα .
3.7 Landau theory for the XY model: This is expressed in terms of a vector field �m(r) =

(m1(r),m2(r)). In zero applied field, the Landau free energy has the form

F =
∫

d3r

⎡⎢⎣K

2

∑
i=x,y,z

∑
a=1,2

(∂i ma)
2 + α

2

⎛⎝∑
a=1,2

m2
a

⎞⎠+ β

4

⎛⎝∑
a=1,2

m2
a

⎞⎠2
⎤⎥⎦

(3.63)

and the critical point is at α= 0 (assume, K , β > 0). Determine the correlation func-
tions G11(r)=〈m1(r)m1(0)〉 − 〈m1(r)〉〈m1(0)〉 and G22(r)=〈m2(r)m2(0)〉
− 〈m2(r)〉〈m2(0)〉 for both signs of α. You can compute these correlation functions
by applying an external field �h(r) to the system, under which

F → F −
∫

d3r
∑

a=1,2

ha(r)ma(r), (3.64)

and then computing the change in 〈ma〉 due to the presence of the field. As for the
Ising model, we have, to linear order in �h

〈ma(r)〉|�h = 〈ma(r)〉|�h=0 +
1

kB T

∫
d3r ′Gaa(r − r ′)ha(r

′)+ . . . (3.65)

By writing �m in the above form, you can read off the values of Gaa . Above the critical
temperature (α > 0), you should find G11=G22, which is a simple consequence of
rotational invariance. Below the critical temperature, (α < 0), choose the state with
〈m1(r)〉=√|α|/β and 〈m2(r)〉= 0 in zero field. You should find G11 �= G22, and
determine both functions in 3 dimensions.
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In Chapter 3 we developed the basic tools to describe the phase transition in the classical
Ising model, and its cousins with N -component spins. We argued that the vicinity of
the critical point at K = Kc could be described by the classical field theory in (3.25).
However, we observed that an expansion of the observable properties in powers of the
quartic coupling u broke down near the critical point for dimensions D< 4. We will now
show how the renormalization group circumvents this breakdown.

In its full generality, the renormalization group (RG) is a powerful tool with applications
in many fields of physics, and covered at great lengths in other texts. Our treatment here
will be relatively brief, and will be directed towards addressing the critical properties of
the classical field theory in (3.25).

The key to the success of the RG is that it exposes a new symmetry of the critical point
at K = Kc, which is not present in the underlying Hamiltonian. This symmetry can be
understood to be a consequence of the divergence of the correlation length, ξ , at K = Kc,
as indicated in (3.50). With the characteristic length scale equal to infinity, we may guess
that the structure of the correlations is the same at all length scales, i.e. the physics is
invariant under a scaling transformation under which the coordinates change as

x → x ′ = x/b, (4.1)

where b is the rescaling factor. In other words, the basic structure of all correlations should
be invariant under a transformation from the x to the x ′ coordinates. An example of this
invariance appears in our result for the two-point correlation function C(x) ∼ x2−D for
x � ξ in (3.49); this is only rescaled by an overall prefactor under the transformation (4.1).
We should note here that the lattice statistical mechanics model does have a characteristic
length scale, which is a the lattice spacing; the invariance under (4.1) holds only at lengths
much larger than a, and only at the critical point.

We will see that the role of the scale invariance is similar to that of other, more famil-
iar, symmetries. As an example, symmetry under rotations is due to an invariance of the
Hamiltonian under a change in angular coordinates θ ′ = θ + b; (4.1) is an analogous coor-
dinate transformation. Further, we know that rotational invariance classifies observables
according to how they respond to the coordinate change: scalars, vectors, tensors, . . .,
which are labeled by different values of the angular momentum. We will similarly find that
scale invariance labels observables by their scaling dimension.

45
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4.1 Gaussian theory

It is useful to begin with a simplified model for which the scaling transformations can be
exactly computed. This is the free field theory obtained from (3.25) at u= 0: let us write it
down here explicitly for completeness:

Z =
∫

Dφα(x) exp

(
−1

2

∫
d Dx

[
(∇xφα)

2 + rφ2
α(x)

])
. (4.2)

It is now easy to see that all correlations associated with this ensemble will maintain their
form if we combine the rescaling transformation (4.1) with the definitions

φ′α(x ′) = b(D−2)/2φα(x),

r ′ = b2r. (4.3)

The powers of b appearing in (4.3) are the scaling dimensions of the respective variables,
which we denote as

dim[φ] = (D − 2)/2,

dim[r ] = 2. (4.4)

Also, by definition, we always have from (4.1) that dim[x] = −1.
These scaling transformations now place strong restrictions on the form of the correla-

tion functions. Thus for the two-point correlation of φα , we have from (4.3) that〈
φ′α(x ′)φ′β(0)

〉
= b(D−2) 〈φα(x)φβ(0)〉 . (4.5)

However, both correlators are evaluated in the same ensemble, and φα and φ′α are merely
dummy variables of integration which can be relabeled at will. Therefore the correlators
must have the same functional dependence on the spatial coordinates and the couplings
constants, and so

C(x/b; b2r) = bD−2C(x; r), (4.6)

where we have indicated the dependence of the correlator on the coupling r , which was
previously left implicit. This is the payoff equation from the RG transformation, and places
a nontrivial constraint on the form of the correlations; it can be checked that the results
(3.47) and (3.48) do obey (4.6).

Although it is strictly not necessary here, it will be useful to build the rescaling transfor-
mation by the factor b via a series of infinitesimal transformations. This is analogous to the
use of angular momentum to generate infinitesimal rotation in quantum mechanics. Here,
we set b= 1 + d�, where d�� 1, and build up to a finite rescaling b= e� by a repeated
action of infinitesimal rescalings. These rescalings are most conveniently represented in
terms of differential equations representing the RG flow of the coupling constants. In the
present case, we have only the coupling r , and by (4.3) or (4.4), its flow is represented by

dr

d�
= 2r. (4.7)
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The constraint on the correlator in (4.6) can be written as

C(e−�x, r(�)) = e(D−2)�C(x, r). (4.8)

The result of the RG flow (4.7) is very simple. For an initial value r > 0, we have r →∞
as � increases: this represents the physics of the paramagnetic phase. Similarly for r < 0,
we have r → −∞ as � increases, representing the ferromagnetic phase. In between these
two divergent flows, we have the fixed point r = r∗ = 0, where r is �-independent. This
fixed point represents the phase transition between the two phases. Note that at an RG
fixed point, we can set r = r∗ on both sides of a rescaling equation like (4.8), and so
then the correlations are invariant under a rescaling of coordinates alone. Here, we have
C(e−�x)= e(D−2)�C(x), whose solution is

C(x) ∼ x2−D, r = r∗, (4.9)

which agrees with (3.49).
The above connection between RG fixed points and scale-invariance at phase transitions

is very general, and we will meet numerous other examples. The “homogeneity” relation-
ship (4.8) for the correlation function is also in a form that applies in many more complex
situations.

Our main result so far has been the identification of the “Gaussian fixed point,” r∗ = 0,
of the RG transformation. Let us now look at the stability of this fixed point to other pertur-
bations to the action. The simplest, and most important, is the quartic coupling u already
contained in (3.25). Applying the transformation (4.3) we now see that u transforms as

u′ = b4−Du. (4.10)

Equivalently, this can be written as the RG flow equation

du

d�
= (4− D)u. (4.11)

Thus in the more complete space of the two couplings r and u, the Gaussian fixed point is
identified by r∗ = 0 and u∗ = 0.

We also notice a crucial dichotomy in the flow of u away from this Gaussian fixed point.
For D> 4, the flow of u is back towards u∗ = 0 as � increases. In RG parlance, the Gaussian
fixed point is stable towards u perturbations for D> 4. This result is entirely equivalent to
our more pedestrian observation in (3.56), where we found that perturbation theory in u did
not change the leading critical singularity for D> 4. Conversely, for D< 4, the Gaussian
fixed point is unstable to u perturbations. This means that we have to flow away from
u∗ = 0. As we will see below, the flow is towards a new fixed point with u∗ �= 0, known
as the Wilson–Fisher fixed point. It is the Wilson–Fisher fixed point which will cure the
problem with perturbation theory in D< 4 identified in (3.57).

Before embarking on our search for the stable fixed point for D< 4, let us also consider
other possible perturbations to the Gaussian fixed point. A simple example is the six-order
coupling v defined by

Sφ → Sφ + v
∫

d Dx
(
φ2
α(x)

)3
. (4.12)
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Application of (4.3) easily yields

dv

d�
= (6− 2D)v, (4.13)

and so v∗ = 0 is stable for D> 3. In alternative common terminology, v is “irrelevant” for
D> 3. A similar analysis can be applied to all possible local couplings which are invariant
under O(N ) symmetry, and it is found that they are all irrelevant for D≥ 3. This was the
underlying reason for our focus on the field theory in (3.25), with only a single quartic
nonlinearity. The coupling v is “marginal” at the Gaussian fixed point in D= 3, but we
will see that it does not play an important role at the Wilson–Fisher fixed point.

4.2 Momentum shell RG

Our RG analysis so far has not been much more than glorified dimensional analysis.
Nevertheless, the simple setting of the Gaussian field theory has been a useful place to
establish notation and introduce key concepts. We are now ready to face the full problem
of classical field theory (3.25) in D ≤ 4 in the presence of the quartic nonlinearity.

The structure of the perturbation expansion in Section 3.3.2 shows that well-defined
expressions for the fluctuation corrections are obtained only in the presence of a wavevector
cutoff �. So in our scaling transformations we also have to keep track of the length scale
�−1. True scale invariance at the critical point appears only at length scales much larger
than �−1, and we need a more general RG procedure which allows such an asymptotic
scale invariance to develop.

The needed new idea is that of decimation of the degrees of freedom. The first step in
the RG will be a partial integration (or “decimation”) of some of the short-distance degrees
of freedom. This results in a new problem with a smaller number of degrees of freedom. In
our formulation with a momentum cutoff �, the new problem has a smaller cutoff �̃<�.
We choose �̃=�/b, and integrate degrees of freedom in the shell in momentum space
between these momenta.

The second step of the RG is the rescaling transformation already discussed. Given the
mapping of length scale x ′ = x/b, the mapping of the cutoff � is

�′ = b�̃ = �. (4.14)

Note that after the complete RG transformation, the initial and final cutoffs are equal. Thus
our RG will be defined at a fixed cutoff �. This is very useful, because we need no longer
keep track of factors of cutoff in any of the scaling relations, and can directly compare
theories simply by comparing the values of coupling constants like r , u, . . .

Now we only need an implementation of the first decimation step. The second rescaling
step will proceed just as in Section 4.1.

The key to the decimation procedure is the decomposition

φα(x) = φ<α (x)+ φ>α (x), (4.15)
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where the two components lie in different regions of momentum space

φ<α (x) =
∫ �/b

0

d Dk

(2π)D
φ<α (k)e

ikx , φ>α (x) =
∫ �

�/b

d Dk

(2π)D
φ>α (k)e

ikx . (4.16)

Then we evaluate the partition function as usual, but integrate only over the fields at large
momenta φ>:

exp
(−Sφ<) = ∫ Dφ>α (x) exp

(−Sφ). (4.17)

The resulting functional integral defines a functional Sφ< of the low momentum fields
alone, which we will now compute to the needed order. An important property which
facilitates the present analysis is that the φ< and φ> decouple at the Gaussian fixed point,
i.e. the Gaussian action is a sum of terms which involve only φ< or φ>, but not both.
This decoupling is a consequence of their disjoint support in the momentum space, and
consequently we can write

Sφ =
∫

d Dx

{
1

2

[
(∇xφ

<
α )

2 + rφ<2
α (x)+ (∇xφ

>
α )

2 + rφ>2
α (x)

]
+ u

4!
((
φ<α (x)+ φ>α (x)

)2)2
}
. (4.18)

Inserting (4.18) into (4.17) we obtain

Sφ< = 1

2

∫
d Dx

[
(∇xφ

<
α )

2 + rφ<2
α (x)

]
− lnZ>

− ln

〈
exp

(
− u

4!
∫

d Dx
((
φ<α (x)+ φ>α (x)

)2)2
)〉

Z>

. (4.19)

Here Z> is the free Gaussian ensemble defined by

Z> =
∫

Dφ>α (x) exp

(
−1

2

∫
d Dx

[
(∇xφ

>
α )

2 + rφ>2
α (x)

])
, (4.20)

and the expectation value in the last term in (4.19) is taken under this Gaussian ensemble
(as indicated by the subscript). The second term in (4.19) is an additive constant, and is
important in computations of the free energy; we do not include it below because it plays
no role in renormalization of the coupling constants.

It now remains to evaluate the expectation value in the last term in (4.19). This is easily
done in powers of u using the methods described in Section 3.3.1. Notice that φ< appears
as a source term, whose powers will multiply various correlation functions of the φ>; the
latter can be evaluated by Wick’s theorem, or equivalently by Feynman diagrams. Thus
all internal lines in the Feynman diagram represent φ>, while external lines are φ<. We
show the Feynman diagrams that are important to us in Fig. 4.1 The spatial dependence of
φ<α (x) determines the momenta that are injected into the Feynman diagrams by the external
vertices. We are ultimately interested in a spatial gradient expansion of the resulting action
functional of φ<, and this means that we can expand the Feynman diagrams in powers of
the external momenta.
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�Fig. 4.1 Feynman graphs important for the Wilson–Fisher RG equations. The external lines representφ<, while the internal
lines areφ> propagators. The first graph renormalizes r, while the second renormalizes u.

In the action functional for φ< so obtained, we obtain terms which have the same form
as those in the original Sφ in (3.25). We also obtain a number of other terms which involve
higher powers of φ< or additional gradients: we have just argued at the end of Section 4.1
that these other terms are not important, and so we can safely drop them here. The first
graph in Fig. 4.1 renormalizes terms that are quadratic in φ<, and this turns out to be
independent of momentum: this is related to the k independence of the self-energy �(k)
in (3.51). The second graph in Fig. 4.1 is quartic in φ<, and this can be evaluated at zero
external momenta because we are not interested in gradients of the quartic term. Collecting
terms in this manner, the final results of (4.19) can be written as

Sφ< =
∫

d Dx

{
1

2

[
(∇xφ

<
α )

2 + r̃φ<2
α (x)

]
+ ũ

4!
(
φ<2
α (x)

)2
}
. (4.21)

Note that the coefficient of the gradient term does not renormalize: this is an artifact of the
low-order expansion, and will be repaired below. The other terms do renormalize, and have
the modified values

r̃ = r + u
(N + 2)

6

∫ �

�/b

d D p

(2π)D

1

(p2 + r)
,

ũ = u − u2 (N + 8)

6

∫ �

�/b

d D p

(2π)D

1

(p2 + r)2
. (4.22)

Finally, it should be reiterated that the theory Sφ< in (4.21) has an implicit momentum
cutoff of �̃=�/b.

We can now immediately implement the second rescaling step of the RG and obtain the
new couplings

r ′ = b2̃r , u′ = b4−Dũ. (4.23)

Finally, we specialize to an infinitesimal rescaling b= 1 + d�, expand everything to first
order in d�, and obtain the RG flow equations

dr

d�
= 2r + u

(N + 2)

6

SD

(1+ r)
.

du

d�
= (4− D)u − u2 (N + 8)

6

SD

(1+ r)2
. (4.24)

Because the RG flow is computed at fixed �, we have conveniently set �= 1, and will
henceforth measure all lengths in units of �−1. The phase space factor SD = 2/(�(D/2)
(4π)D/2) arises from the surface area of a sphere in D dimensions. The equations (4.24)
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A

G

W-F

�Fig. 4.2 Plot of the flow equations in (4.24). There are two fixed points, the Gaussian (G) and Wilson–Fisher (W–F). The dashed
line represents a possible line of initial values of r and u, as the coupling K is changed in the underlying lattice model.
The critical point of such a lattice model is the point A, which flows into the Wilson–Fisher fixed point.

update (4.7) and (4.11) to the next order in u, and are the celebrated Wilson–Fisher RG
equations.

Let us momentarily ignore concerns about the range of validity of RG flow equations,
and examine the consequences of integrating (4.24). The results are shown in Fig. 4.2.
In addition to the r∗ = u∗ = 0 Gaussian fixed point already found, we observe there is a
second fixed point at nonzero values r∗ and u∗: this is the Wilson–Fisher fixed point, and
it will be the focus of our attention.

However, before embarking upon a study of the Wilson–Fisher fixed point, we need a
systematic method of assessing the reliability of our results. Wilson and Fisher pointed out
that a very useful expansion is provided by

ε ≡ 4− D. (4.25)

Even though the physical values of D are integer, all our expressions for the perturbative
expansions, Feynman diagrams, and flow equations have been analytic functions of D. So
we can consider an analytic continuation to the complex D plane, and hence to small ε.
The expansion in powers of ε has since established itself as an invaluable tool in describing
a variety of classical and quantum critical points.

We can now systematically determine the values of r∗ and u∗ by an ε expansion of
(4.24). We find

u∗ = 6ε

(N + 8)S4
+O(ε2), r∗ = −ε(N + 2)

2(N + 8)
+O(ε2). (4.26)

All the omitted higher order terms in (4.24), and all other terms higher order in φα , or with
additional gradients that could have been added to Sφ will not modify the results in (4.26).
This includes the effect of the coupling v in (4.12), which is actually irrelevant for small ε.
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Let us now examine the nature of the flows near r∗ and u∗, and their implication for
the critical properties of Sφ , and the underlying O(N ) spin models. The phases of the spin
models are accessed by varying a single coupling K . The initial values of r and u depend
upon the value of K , and so varying K will move us along a line in the r–u plane: this
line of initial values is shown as the dashed line in Fig. 4.2. Now notice that the RG flows
predict two very distinct final consequences as we vary K . On the right of the point A in
Fig. 4.2, all points ultimately flow to r → ∞; it is natural to identify all such points as
residing in the high-temperature paramagnetic phase. In contrast, points to the left of A
flow to r → −∞, as is natural in the ferromagnetic phase. The only point on the line of
initial values to avoid these fates is the point A itself, and it flows directly into the Wilson–
Fisher fixed point. It is therefore natural to identify A as the point K = Kc. Thus we have
established that, for essentially all realizations of the O(N ) spin model, the physics of the
critical point is described by the field theory of the Wilson–Fisher fixed point. This is a key
step in the “proof” of the hypothesis of universality: independent of the set of microscopic
couplings in H , the critical point is described by the same universal field theory.

Let us examine the structure of the flows near the Wilson–Fisher fixed point. Defining,
r = r∗ + δr and u= u∗ + δu/SD , (4.24) yields the linearized equations

d

d�

(
δr
δu

)
=
⎛⎝ 2− (N + 2)ε

(N + 8)

(N + 2)

6
+ (N + 2)2ε

(N + 8)
0 −ε

⎞⎠( δr
δu

)
. (4.27)

These equations are most easily integrated by diagonalizing the coefficient matrix: this is
done by defining two new eigen-couplings w1,2 which are different, linearly-independent
combinations of δr and δu. The flow of the eigen-couplings is simply

dwi

d�
= λiwi , i = 1, 2 (4.28)

with the eigenvalues

λ1 = 2− (N + 2)ε

(N + 8)
+O(ε2), λ2 = −ε +O(ε2). (4.29)

The flows in (4.29) are now finally as simple as those for the Gaussian theory in Section 4.1.
Regardless of its initial value, the couplingw2 is attracted tow∗2 = 0 and so can be regarded
as irrelevant. Setting w∗2 = 0 puts us on the track to identifying the universal properties of
the critical point. Notice however, that the eigenvalue λ2 has a small magnitude, and so the
flow towards the universal theory will be slow: we expect this flow of w2 to provide the
leading corrections to the universal critical behavior.

Our entire RG analysis has therefore been reduced to the flow of a single relevant cou-
pling w1, with the simple flow equation (4.28). Just as was the case with the coupling r in
Section 4.1, the critical point is at w1=w∗1 = 0, and so may identify this coupling

w1 ∼ Kc − K (4.30)

as a measure of the deviation from criticality. The flow of w1 when combined with the
rescaling of the field φα leads to a number of interesting physical consequences which we
explore below.
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4.3 Field renormalization

The entire analysis in Section 4.2 did not modify the original rescaling of the field φα
defined in (4.3). This is actually an artifact of working to first order in ε. At higher orders
in ε we do find a momentum in the self-energy, and consequently a renormalization of the
gradient term in Sφ , leading to change in the RG rescaling of φα . A complete treatment
of these effects is far more efficiently carried out using a more formal field-theoretical RG
which we will not describe now. Rather we will be satisfied with a shortcut which yields
the leading nonvanishing renormalization after some reasonable assumptions.

Anticipating the field scale renormalization, we define the RG rescaling of φα by

φ′α(x ′) = b(D−2+η)/2φα(x), (4.31)

where η is known as the anomalous dimension of the field φα . This is of course equiva-
lent to

dim[φα] = (D − 2+ η)/2. (4.32)

Assuming (4.32), the generalization of the relation (4.8) for the correlator C(x) at the
critical point K = Kc or w1= 0 is

C(e−�x) = e(D−2+η)�C(x). (4.33)

This implies C(x) ∼ x−(D−2+η). Taking the Fourier transform, we have for the
susceptibility

χ(k) ∼ 1

k2−η . (4.34)

Let us see how (4.34) could emerge from an analysis of the Wilson–Fisher fixed point.
We set r = r∗ and u= u∗, and compute χ(k) using (3.45) and a perturbative expansion for
the self-energy�(k). Because we are at the critical point, χ−1(0) should vanish, and hence
we should have r −�(0)= 0; thus χ−1(k)= k2−�(k)+�(0). At first order in u,�(k) is
k-independent, and so we have no correction to the free field behavior. However, at second
order in u, we obtain a momentum-dependent � given by the Feynman diagram in Fig. 4.3
(which corresponds to the last term in (3.38)), which yields

�Fig. 4.3 Graph contributing at order ε2 to the anomalous dimension η.
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�(k) = . . .+ u2 (N + 2)

18

∫
d D p

(2π)D

d Dq

(2π)D

1

(p2 + r)(q2 + r)((p + q + k)2 + r)
.

(4.35)

To leading nonvanishing order in ε, we can set u= u∗, r = 0, and D= 4 above. The result-
ing two-loop integral requires some technical results from the mathematical theory of
Feynman graphs to evaluate; the reader can find a concise and useful discussion, with a
valuable table of integrals, in the book by Ramond [392]. Evaluating the integral in this
manner we find

�(k) = . . .− (u∗S4
)2 (N + 2)

72
k2 ln

�

k
. (4.36)

Inserting this into χ−1(k) = k2 − �(k) + �(0), and assuming the logarithm is the first
term in a series which exponentiates, we obtain the form in (4.34). Using the value of u∗
in (4.26), we obtain our needed result for the anomalous dimension of φα:

η = (N + 2)

2(N + 8)2
ε2 +O(ε3). (4.37)

4.4 Correlation functions

The results of Sections 4.2 and 4.3 will now be collected and applied to determine the form
of correlations near the critical point.

Given the form of the field scaling relation (4.32), and the flow of the relevant coupling
w1 in (4.28), the most complete form of the homogeneity relation (4.8) for the two-point
φα correlator is

C(e−�x;w1eλ1�) = e(D−2+η)�C(x;w1). (4.38)

Recall that we have already set the leading irrelevant coupling w2=w∗2 = 0, and so we are
dealing exclusively with the “universal theory.” The relation (4.38) holds for any �, and so
let us evaluate it at �= �∗ where w1eλ1�

∗ = ± 1; the choice in sign will depend upon the
sign of the initial value of w1, i.e. whether we are above or below the critical point. Then
it takes the form

C(x;w1) = ξ−(D−2+η)F±(x/ξ), (4.39)

where we have set ξ = e�
∗

and F± are as yet undetermined functions, known as the scaling
functions; the subscript indicates the distinct forms of the scaling function on the two sides
of the critical point. The structure of (4.39) is very informative: it indicates that as we
change the value of the coupling w1, the x dependence of the correlations changes at the
characteristic scale ξ . It is therefore natural to identify ξ with the correlation length, the
analog of the quantity that appeared in (3.47) in the Gaussian theory; indeed, it is easy to
see that (3.47) is of the form (4.39), with an explicit result for the scaling function F+, and
an exponent η= 0 as expected at the Gaussian fixed point. We will mainly be interested in
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(4.39) at the Wilson–Fisher fixed point, where η is given by (4.37), and we can make an
analogous ε expansion for the scaling functions F±.

The above results also specify the divergence of ξ at the critical point. Using the expres-
sions just before and after (4.39), we have

ξ ∼ |w1|−1/λ1 ∼ |Kc − K |−ν. (4.40)

We meet again the correlation exponent ν, whose value is given quite generally by

ν = 1

λ1
. (4.41)

In other words, the exponent ν is the inverse of the relevant RG eigenvalue. Implicit in our
discussion is the assumption that there is only one such relevant eigenvalue, and that all
other perturbations are irrelevant at the Wilson–Fisher fixed point. The reader will recog-
nize that we have in fact established this strong and powerful result to leading order in ε.
There is overwhelming numerical evidence that such a result is also true at the physically
important value of ε= 1, and this is behind the success of the ε expansion.

We will also have occasion to meet RG fixed points with either zero or more than one
relevant perturbation. Those with zero relevant perturbations describe critical phases rather
than critical points; for all couplings not too far from the fixed point, the flow is towards the
fixed point, and hence the long-distance correlations have characteristics independent of all
microscopic parameters. The extent of such critical phases is determined by the domain of
attraction of the RG fixed point. RG fixed points with more than one relevant perturbation
describe “multicritical points.” Reaching such multicritical points requires that we tune
more than one linearly independent coupling in the underlying Hamiltonian: the number
of tuning parameters is equal to the number of relevant perturbations.

Finally, let us show that (4.39) also allows us to determine all other critical exponents
we have defined so far. Integrating (4.39) over all x , we obtain using (3.42) the result for
the wavevector-dependent susceptibility

χ(k) = ξ2−η F̃±(kξ), (4.42)

where the scaling functions F̃± are Fourier transforms of F±. This result clearly generalizes
(4.34) away from the critical point. As long as we are not at the critical point, we expect the
susceptibility to be nonsingular as k → 0, and so the F̃± will approach nonzero constants
in the limit of zero argument. Consequently, the uniform static susceptibility behaves as

χ ∼ ξ2−η, (4.43)

or the critical exponent γ in (3.46) is given by the exact “scaling relation”

γ = (2− η)ν. (4.44)

It remains to determine the critical exponent β for the ferromagnetic moment 〈φα〉=
N0êα , where êα is an arbitrary unit N -component vector. As discussed regarding (3.24),
this moment vanishes as

N0 ∼ (K − Kc)
β, (4.45)



56 The renormalization group

as we approach the critical point from low temperatures. Rather than deducing directly
from (4.39), let us reapply the RG transformation from scratch. Application of the funda-
mental scaling relation (4.31) tells us that

N0(w1eλ1�) = e(D−2+η)�/2 N0(w1), (4.46)

where again we neglect the influence of irrelevant couplings like w2. Evaluating (4.46) at
�= �∗ as before, we obtain (4.45) with the scaling relation

β = (D − 2+ η)ν/2. (4.47)

More generally, we can regard (4.47) as the most important application of a scaling relation
determining the singular contribution to the average value of any observable O

[〈O〉]sing ∼ ξ−dim[O]. (4.48)

An important case of the above result is the scaling of the free energy density F̃ =
− (1/V ) lnZ , where V is the D-dimensional volume of the system. The partition function
Z is a RG invariant, and so the scaling dimension of lnZ must be zero. Consequently

dim[F̃] = D, (4.49)

and the singular part of the free energy density scales as ξ−D . This result is often stated in
terms of the exponent of the specific heat (see Exercise 3.4) −∂2F̃/∂r2 ∼ |K − Kc|−α for
which we have the “hyperscaling relation”

α = 2− Dν. (4.50)

Exercises

4.1 Consider the RG flow of the sixth-order coupling v in (4.12). Compute the one-loop
correction to the RG flow in (4.13) by determining the coefficient of the term of order
uv on the right-hand side. Hence show that the Wilson–Fisher fixed point has v∗ = 0,
and the fixed-point eigenvalue of the six-order operator is

λv = 6− 2D − (n + 14)

2
S4u∗ +O(ε2)

= −2− (n + 26)

(n + 8)
ε +O(ε2).

4.2 This exercise is adapted from [382]. We consider the consequences of anisotropy
in the O(N ) symmetry of the Wilson–Fisher fixed point. In some applications to
classical ferromagnets, spin–orbit interactions may introduce a weak anisotropy in
which the rφ2

α term is replaced by

rs

∑
α<N

φ2
α + rNφ

2
N , (4.51)
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while the quartic term is replaced by

u1

24

∑
α,β<N

φ2
αφ

2
β +

u2

12

∑
α<N

φ2
αφ

2
N +

u3

24
φ4

N . (4.52)

Clearly, the original problem with full O(N ) symmetry is the case rs = rn and u1=
u2= u3. The model with rs =∞, u1= u2= 0 is the field theory of the Ising model,
while the model with O(N − 1) symmetry is rn =∞, u2= u3= 0.

(a) Show that the one-loop RG flow equations for this model are:

drs

d�
= 2rs + (N + 1)

6(1+ rs)
SDu1 + 1

6(1+ rn)
SDu2,

drn

d�
= 2rn + (N − 1)

6(1+ rs)
SDu2 + 1

2(1+ rn)
SDu3,

du1

d�
= εu1 − (n + 7)

6(1+ rs)2
SDu2

1 −
1

6(1+ rn)2
SDu2

2,

du2

d�
= εu2 − 2

3(1+ rs)(1+ rn)
SDu2

2

− (N + 1)

6(1+ rs)2
SDu1u2 − 1

2(1+ rn)2
SDu2u3,

du3

d�
= εu3 − 3

2(1+ rn)2
SDu2

3 −
(N − 1)

6(1+ rs)2
SDu2

2. (4.53)

(b) Show that these equations reduce to the expected equations in the limits corre-
sponding to the models with O(N ), Ising, and O(N − 1) symmetry just noted.

(c) Consider the fixed point of the flow equations with O(N ) symmetry: rs =
rn = r∗, and u1= u2= u3= u∗. Show that, to leading order in ε, and for n ≤ 4,
this fixed point has two relevant eigenvalues 2 − (n + 2)ε/(n + 8) and 2 − 2ε/
(n + 8).

(d) Assume the experimental conditions are such that the u couplings are close to
the O(N ) fixed point. Describe, qualitatively, the behavior of the susceptibility
for T > Tc for the two cases rs > rn and rn > rs .
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This chapter returns to the quantum Ising model (1.7) which was introduced in
Section 1.4.1:

HI = −Jg
∑

i

σ̂ x
i − J

∑
〈i j〉
σ̂ z

i σ̂
z
j . (5.1)

We will examine the eigenstates of HI in more detail in the large and small-g limits. These
limits were also studied briefly in Section 1.4.1, where we argued that there was a quantum
phase transition at some intermediate value g= gc. We will also study the quantum to clas-
sical mapping introduced in Chapter 2, and carefully establish [127, 378] the mapping to
the classical Ising model of (2.2). This mapping will eventually lead us to a field-theoretical
analysis of the vicinity of the quantum critical point at gc.

Before embarking on the large and small-g expansions of HI , we introduce the effective
Hamiltonian method in Section 5.1. This is an indispensable tool for characterizing the
spectrum of this and other models. This method is described in textbooks on quantum
mechanics, and we only recall a basic result which we will put to extensive use.

We then use the effective Hamiltonian method to examine the spectrum of HI under
strong-(g� 1) and weak-(g� 1) coupling limits, which were discussed briefly in
Section 1.4.1. The analysis is relatively straightforward in these limits, and two very dif-
ferent physical pictures emerge. In d = 1, the model HI is exactly solvable, and this is
described later in Chapter 10: this exact solution shows that there is a critical point exactly
at g= gc= 1, but that the qualitative properties of the ground states for g> gc (g< gc) are
very similar to those for g� 1 (g� 1). We argue below, and in the following chapters,
that these features also hold for d > 1, where no exact solution is possible. One of the two
limiting descriptions is therefore always appropriate, and only the critical point g= gc has
genuinely different properties at T = 0.

5.1 Effective Hamiltonian method

We consider a Hamiltonian of the form H = H0 + H1, where the eigenstates of H0 are
easily determined, and we are interested in describing the influence of H1 in perturbation
theory. Further, we assume that the eigenvalues of H0 are separated into distinct groups of
closely-spaced levels, such that the energy separation between two levels within the same
group is always much smaller than the separation between two levels in distinct groups.

58
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We use the symbols α, β, . . . to denote the groups, and i, j, . . . to denote levels within each
group. Thus the eigenstates of H0 are |i, α〉, with eigenenergies Eiα , and so

|Eiα − E jα| � |Eiα − E jβ | for α �= β. (5.2)

We are often interested in the structure of the levels within a given group, and would
like to understand their behavior without reference to levels in other groups. However,
in general, H1 will have nonzero matrix elements between states belonging to different
groups: consequently a conventional perturbative analysis will require repeated reference
to states lying outside the group of interest. The idea of the effective Hamiltonian method
is to perform a unitary transformation which eliminates these inter-group matrix elements.
After the unitary transformation, we obtain a new Hamiltonian Heff which has nonzero
matrix elements only within each group.

We skip the straightforward, but tedious, analysis needed to obtain Heff order-by-order
in H1. We quote here only the final result to second order in H1. The new Hamiltonian
Heff is defined by the following nonzero matrix elements between any two levels, |i, α〉
and | j, α〉 belonging to the same group α:

〈i, α|Heff| j, α〉 = Eiαδi j + 〈i, α|H1| j, α〉
+
∑

k,β �=α

〈i, α|H1|k, β〉〈k, β|H1| j, α〉
2

(
1

Eiα − Ekβ
+ 1

E j,α − Ekβ

)
(5.3)

Naturally, we have 〈i, α|Heff| j, β〉= 0 for all α �= β, ensuring that Heff is block diagonal,
and we can work independently within each group α.

5.2 Large-g expansion

In the interests of simplicity, we will restrict our discussion of the large-g expansion to
the case d = 1. The generalization to d > 1 involves only minor differences, and these will
be noted explicitly where needed. The situation is very different for the small-g expan-
sion discussed in the following section: there the cases d = 1 and d > 1 require a separate
analysis.

The g=∞ ground state was presented in (1.9), where we also discussed the nature of
the 1/g corrections. We found a quantum paramagnetic ground state, invariant under the Z2

symmetry (1.13), with exponentially decaying σ̂ z correlations as in (1.11). Conventional
perturbation theory can be used to obtain the ground state wavefunction and energy in
powers of 1/g. On a system of M sites, with periodic boundary conditions, the ground
state energy is

E0 = −M Jg
(

1+ 1/(4g2)+O(1/g3)
)
, (5.4)

where the leading corrections arise from virtual states with two left-pointing spins created
by the exchange term in HI .
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What about the excited states? For g=∞ these can also be listed exactly, and the lev-
els appear in groups as needed for the effective Hamiltonian method. The lowest excited
states are

|i〉 = | ←〉i
∏
j �=i

| →〉 j , (5.5)

obtained by flipping the state on site i to the other eigenstate of σ̂ x (the eigenstates of σ̂ x

were defined in (1.10)). There are M such states, and they are degenerate with energy E0+
2Jg. We will refer to them as the “single-particle” states. Similarly, the next degenerate
manifold of states is the two-particle states |i, j〉, obtained by flipping the spins at sites
i and j ; clearly, there are M(M − 1)/2 such states, and they have energy E0 + 4Jg.
Generalizing, we can construct the p particle states: there are M !/((M− p)!p!) states with
energy E0+2p Jg. Identifying the ground state as the p= 0 case, the values p= 0, 1 . . .M
clearly span the entire Hilbert space of 2M states. Of course, when p is of order M , this
particle labelling will not be particularly useful.

We now consider the nature of the effective Hamiltonian in the different particle number
subspaces in turn.

5.2.1 One-particle states

For the one-particle states, the exchange term σ̂ z
i σ̂

z
i+1 in HI is not diagonal in the basis of

the | →〉, | ←〉 states and leads only to the off-diagonal matrix element

〈i |HI |i + 1〉 = −J, (5.6)

which hops the “particle” between nearest-neighbor sites. As in the tight-binding mod-
els of solid state physics [28], the Hamiltonian is therefore diagonalized by going to the
momentum space basis

|k〉 = 1√
M

∑
j

eikx j | j〉. (5.7)

This eigenstate has energy

εk = Jg[2− (2/g) cos(ka)+O(1/g2)], (5.8)

where a is the lattice spacing, and we have dropped an additive term of the ground state
energy E0. Henceforth, all particle excitation energies will be measured relative to E0. The
lowest energy one-particle state is therefore at ε0= 2g J − 2J .

At next order in 1/g, HI mixes the one-particle states with the zero- and two-particle
states. Their influence on the one-particle subspace can be described by direct application
of (5.3): we find terms by which the particle can hop to second neighbors. (Actually, ini-
tially it appears that there are terms by which the particle can hop arbitrary distances, but
these cancel between the contributions of the zero- and two-particle subspaces.) The wave-
function (5.7) still diagonalizes the effective Hamiltonian in the one-particle subspace, and
then (5.8) improves to (Exercise 5.1)

εk = Jg[2− (2/g) cos(ka)+ (1− cos(2ka))/(2g2)+O(1/g3)]. (5.9)
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This is a convenient point to define another useful concept: the quasiparticle residue,
A. The operator σ̂ z

i flips the i th spin between | →〉 and | ←〉, and so moves states up
or down one step between the p-particle subspaces. So we can regard σ̂ z as the sum of a
particle creation and annihilation operator. It is useful to consider the operator at a definite
momentum k by defining, as in (5.7),

σ̂ z(k) = 1√
M

∑
j

eikx j σ̂ z
j . (5.10)

Then, the quasiparticle residue is defined by the overlap between the actual one-particle
state at momentum k= 0, and that obtained by creating a particle in the ground state by the
particle creation operator

A ≡ |〈k = 0|σ̂ z(k)|0〉|2. (5.11)

The computation of A in the 1/g expansion is discussed in Exercise 5.1. We see later that A
appears naturally in correlation functions associated with neutron scattering experiments.
Also, A is nonzero in the entire paramagnetic phase, but vanishes at the quantum critical
point for d ≤ 3.

5.2.2 Two-particle states

Now consider the two-particle states. At g=∞, the subspace of two-particle states is
spanned by the states (generalizing (5.5))

|i, j〉 = | ←〉i | ←〉 j

∏
h �=i, j

| →〉h, (5.12)

where i �= j . Also note that |i, j〉 = | j, i〉, and so we may restrict our attention to i > j .
Alternatively, we can say that the states are symmetric under interchange of the particle
positions i, j , and so we treat the particles as bosons. At first order in 1/g, these states will
be mixed by the matrix element (5.6); this will couple |i, j〉 to |i ± 1, j〉 and |i, j ± 1〉 for
all i > j+1, while |i, i−1〉 will couple only to |i+1, i−1〉 and |i, i−2〉. For i and j well
separated, we can ignore this last case, and the two particles will be independent of each
other, with the matrix elements for each particle identical to those considered above for
single particles. So the particles will acquire momenta k1, k2 (say), and the total energy of
the two-particle state will be Ek = εk1 + εk2 , with a total momentum k= k1+ k2. However,
when i and j approach each other, we have to consider mixing between these momentum
states arising from the restrictions in the matrix elements noted above. This is a problem in
ordinary scattering theory, treated in many elementary quantum mechanics texts.

Thus we have an important general result: among the two-particle states is a set of scat-
tering eigenstates. These states are labelled by a pair of momenta k1, k2 (their ordering is
unimportant), and their eigenenergy is exactly the sum of the single-particle energies deter-
mined in Section 5.2.1, εk1+εk2 . Clearly, this result is only true in the thermodynamic limit
M →∞ where it is always possible to separate the single-particle states in well separated
regions of the sample. It is also clear that this result holds in all d (integrability in d = 1
plays no role in this conclusion), and is also true for the p-particle states (when we will
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need p unordered momenta to label the states). The result fails only when p becomes of
order M , when it is no longer possible to find well separated regions. In other words, we
should take the limit M →∞ at fixed p.

In some cases, there will also be states other than scattering states among the multipar-
ticle states. These are bound states in which two or more particles move together as in
a “molecule.” Each bound state will be labelled by a single center-of-mass momentum,
independent of the number of particles in the bound state. Consideration of the multiparti-
cle Schrödinger equation in the 1/g expansion (discussed below) shows that there are no
bound states in the present situation. However, we will meet bound states shortly in the
discussion on the g� 1 expansion.

Let us now consider the two-particle scattering states in d = 1 more carefully. The scat-
tering of the two incoming particles with momenta k1, k2 will conserve total energy and, up
to a reciprocal lattice vector 2π/a, total momentum. For small k1, k2 (which is our primary
interest here), these conservation laws allow only one solution in d = 1: the momenta of
the particles in the final state are also k1 and k2. The existence of a single final state is a
special feature of d = 1, while a sum over an infinite number of momenta in the final state
is required for the problems in d > 1 we consider later. By this reasoning, we can conclude
that the wavefunction of the two-particle state will have the following form for i � j :(

ei(k1xi+k2x j ) + Sk1k2 ei(k2xi+k1x j )
)|i, j〉. (5.13)

The quantity Sk1k2 is of central importance and is the S matrix for two-particle scatter-
ing. Upon interpreting the stationary scattering state in (5.13) from the perspective of a
time-dependent scattering problem, in which particles scatter from an incoming wave cor-
responding to the first term in (5.13), to an outgoing wave corresponding to the second
term, the S matrix can be related (just as in familiar scattering theory) to the time-evolution
operator of HI from the infinite past to the infinite future; it must therefore be a unitary
matrix. In the present situation with a single final state, the S matrix is a complex number
of unit modulus. The computation of the S matrix from the Schrödinger equation at order
1/g is discussed in Exercise 5.2. The result turns out to be remarkably simple; we find

Sk1k2 = −1, (5.14)

for all momenta k1, k2. We will not give an explicit derivation of this result here (a detailed
discussion of the computation of such S matrices in general spin models may be found in
[107]). Instead, we present a simple argument in the next paragraph that shows that a result
such as (5.14) holds in the limit of small k1, k2 for a generic Ising chain with additional
further neighbor exchange couplings; the validity of (5.14) at all momenta is a special
feature of the nearest neighbor exchange model (5.1) (also considered later in (10.1)).
Our argument will also show that (5.14) continues to hold at higher orders in 1/g for
small k1, k2.

Transform to the center-of-mass frame of the two particles, and consider the Schrödinger
equation for their relative coordinates x = xi − x j . Taking, for simplicity, a repulsive delta
function potential uδ(x) between them (the result does not require this special form), we
can write down the schematic Schrödinger equation
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(
− d2

dx2
+ uδ(x)

)
ψ(x) = Eψ(x), (5.15)

where x is their relative coordinate and ψ(x) is the wavefunction in the center of mass
frame. We make a simple argument based upon dimensional analysis. Note from (5.15)
that u has the dimensions of inverse length. The S matrix is a dimensionless quantity, and
it can be a function only of u and the relative momentum k= k1 − k2. Dimensionally, this
can only be of the form S= f (u/k), where f is some unknown function. We are inter-
ested in the limit k → 0, which is given by the value of f (∞). However, conceptually,
it is much simpler to obtain f (∞) by taking u → ∞ at fixed k. Thus, to slowly moving
particles, the potential appears effectively impenetrable. This means that ψ(x) should van-
ish at x = 0, and its bosonic symmetry under particle exchange implies that it has the form
ψ ∼ sin(k|x |/2) for small x . Comparing with (5.13), we conclude that f (∞)= − 1, and
so (5.14) holds universally in the limit of small momenta.

Similar considerations can be applied to scattering states in dimensions d > 1. In general,
the coupling u in (5.15) has dimensions of (length)(d−2). So the S matrix is a dimensionless
function of ukd−2. For d > 2, this means that the k → 0 limit is equivalent to the u → 0
limit. Consequently, there is no scattering at low momenta, and the S matrix equals +1.
Note the striking contrast from d = 1, where the low momentum S matrix is generically
−1. The d = 2 case is marginal, and is discussed further in Chapter 16: there S matrix
reaches +1 at low momenta, but only logarithmically slowly.

We have now described the manner in which 1/g perturbations lift the degeneracy of
the g=∞ two-particle eigenstates (5.12). The energy of a two-particle state with total
momentum k is given by Ek = εk1 + εk2 , where k= k1 + k2. Note that, for a fixed k, there
is still an arbitrariness in the single-particle momenta k1,2 and so the total energy Ek can
take a range of values. There is thus no definite energy–momentum relation, and we have
instead a “two-particle continuum.” It should be clear, however, that the lowest energy
two-particle state in the infinite system (its “threshold”) is at 2ε0.

Most of the above analysis can be generalized to the p> 2 particle states: there are no
bound states, and the scattering states have thresholds at pε0.

After accounting for the finite bandwidth of the p-particle states, it is possible that as g
becomes smaller, the eigenenergies of states with different numbers of particles can start
to overlap. At this point, our effective Hamiltonian method must break down, because the
energy differences between states in two different groups can vanish. The most important
new phenomenon that appears now is the possibility of the decay of particles into multi-
particle final states: the rate of this decay can be determined by Fermi’s golden rule. The
simplest example of this is the decay of a single particle into a three-particle final state
(the decay to two particles is forbidden by the Z2 symmetry), and this becomes possi-
ble for a particle with sufficiently large momentum not too far from the quantum critical
point. However, the one-particle states with momenta over a finite range near k= 0 always
remain rigorously stable in the paramagnetic phase. This is because their decay is forbid-
den by energy–momentum conservation as long as the energy gap, ε0, is nonzero: there is
not enough kinetic energy to overcome the cost of creating two additional particles, each
costing energy at least ε0, at these low momenta.
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We present a more complete discussion of the stability of single particle states, and of
decay processes, after we have developed the field-theoretic methods for the vicinity of the
quantum critical point.

Upon explicitly carrying out these higher order computations for scattering between
multiparticle states for the particular nearest-neighbor model HI , some rather miraculous
features emerge for this special Hamiltonian in d = 1. As already noted, the result (5.14)
holds not only at small k1, k2, but at all momenta and at all orders in 1/g. There are
also no processes involving the decay of particles, even though this might be energetically
permitted. This remarkable fact appears quite mysterious at this stage, but is explained
rather simply in Section 10.1 using a mapping of HI to fermionic variables.

5.3 Small-g expansion

The g= 0 ground states were given in (1.12). They are twofold degenerate and possess
long-range correlations in the magnetic order parameter σ̂ z . The spontaneous magnetiza-
tion N0 equals ±〈σ̂ z〉 in the two ground states, corresponding to spontaneous breaking
of the Z2 symmetry (1.13). All of the statements made in this paragraph clearly hold
for g= 0, and they will hold for some g> 0 provided that the perturbation theory in g
has a nonzero radius of convergence. The exact solution of the d = 1 model discussed in
Chapter 10 verifies that this is indeed the case.

Much of the analysis in the small-g limit parallels that of the large-g expansion in the
previous section. The analog of the expansion in the ground state energy in (5.4) now yields

E0 = −M J
(

d + g2/(4d)+O(g3)
)
, (5.16)

in d dimensions, where the second term is the contribution of fluctuations to states with one
spin flipped from the majority direction. The spontaneous magnetization can be computed
by expanding (1.15), and yields (Exercise 5.3)

N0 = 1− g2/(8d2)+O(g4). (5.17)

We find that the states are labelled by particle number, but the physical interpretations
of the particles are now different from the large-g case. Indeed, the nature of the particle
states is very different for d ≥ 2 and d = 1, and so we consider these cases separately. The
d > 2 cases are, however, quite similar to d = 2, and so we only describe d = 2 and d = 1
in the subsections below.

5.3.1 d = 2

Here, and below, we only describe the excited states of the ferromagnetic state with
moment pointing up, | ↑〉 in (1.12). Those of the | ↓〉 state have the corresponding structure
after a global spin flip.

Throughout, our d = 2 analysis is carried out on the square lattice, although the general-
ization to other lattices is straightforward.
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The single-particle states are quite similar to those of Section 5.2.1, after a ninety degree
rotation in spin space. At g= 0, they consist of a single down spin in a background of up
spins. Following (5.5), we can write these as

|i〉 = | ↓〉i
∏
j �=i

| ↑〉 j . (5.18)

There are M such one-particle states on a lattice of M sites, and at g= 0 they all have
energy E0 + 8J .

At order g, we find that the transverse field term has vanishing matrix elements between
the single-particle states. This is different from the 1/g expansion, where (5.6) already
induced a nearest-neighbor hopping among the single-particle states. We therefore have to
use (5.3) to find a nearest-neighbor hopping at order g2. This involves using intermediate
states with zero or two particles; we find that their contributions to (5.3) cancel among
each other, except when the initial and final sites are nearest neighbors. (see Exercise 5.3).
Then, forming momentum eigenstates just as in (5.7), we find that the dispersion of the
one-particle states is (we subtract E0 from all energies from now on)

εk = J

[
8− g2

4
(1+ cos kx + cos ky)+O(g3)

]
. (5.19)

Next we turn to the two-particle states. When the two flipped spins are separated from
each other, the energy of such states at g= 0 is 16J . However, when the flipped spins
are nearest neighbors, their energy takes the smaller value of 12J . These nearest neigh-
bor states therefore form bound states below the two-particle continuum. There are 2M
such nearest neighbor states: after moving to momentum eigenstates, this means that there
will be two bound states at each momentum k. Again, we need the effective Hamilto-
nian method to compute the dispersion of these bound states at order g2: this is discussed
in Exercise 5.3. We find that the bound states are symmetric and antisymmetric com-
binations of the horizontal and vertical pairs of spins. In other words, the bound states
have an internal angular momentum, and are s and d wave pairs of the single-particle
states.

Apart from the 2M bound states, the remaining M(M − 1)/2− 2M two-particle states
form scattering states with energy 16J + O(g). We will not compute their scattering S
matrix, but it again involves application of (5.3).

Similar considerations apply to p> 2 particle states. Their scattering states are at 8p J ,
but there are always bound states at lower energies. As an example, we show three- and
four-particle bound states with energy 14J and 16J in Fig. 5.1.

The three-particle bound state with energy 14J is therefore below the two-particle con-
tinuum. In the present magnetically ordered state, there is no symmetry prohibiting a
nonzero matrix element between different particle number states at some high order in
the effective Hamiltonian. Nevertheless, for a finite range of small-g, energy conservation
will prevent decay of the three-particle bound state with energy 14J into the two-particle
continuum, and this bound state is therefore stable. However, the bound states with energy
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�Fig. 5.1 Three- and four-particle bound states in the magnetically ordered phase.

16J will decay into the two-particle continuum. For p-particle bound states with larger p,
there are many more channels for decay into scattering states, and so these are much less
likely to be stable.

5.3.2 d = 1

We can initially try to describe the low-lying excited states of the d = 1 Ising chain also by
the M states in (5.18), which have energy 4J . However, they are degenerate with ∼ M2

states of the following type:

| . . . ↑↑↑↓↓↓↓↑↑↑↑ . . .〉. (5.20)

These states can be interpreted as pairs of domain walls between the | ↑〉 and | ↓〉 ferro-
magnetic states. There is no additional energy cost to moving the domain walls apart from
each other (i.e. in changing the number of down spins in (5.20)), and we can also view
the state in (5.18) as a pair of domain walls on nearest neighbor links. It is not possible to
give a one-particle interpretation to these degenerate domain wall-pair states. Particle-like
states are labelled by a single momentum, and this can only take ∼ M values.

However, it is clear that a single domain wall (or “kink”) can serve as the needed ele-
mentary particle excitation. The one-particle state located between sites i and i + 1 is

· · · |↑〉i−2 |↑〉i−1 |↑〉i |↓〉i+1 |↓〉i+2 |↓〉i+3 |↓〉i+4 · · ·
At g= 0 the energy of such a state is 2J , and there are 2M such states. At nonzero g,
the transverse field term induces nearest neighbor hops between such domain wall states,
already at first order in g. Consequently, we can form momentum eigenstates, and these
have the dispersion

εk = J (2− 2g cos(ka)+O(g2)). (5.21)

A novel feature of these one-particle kink states is that they require a large deforma-
tion away from the ground state wavefunction: we needed to flip all spins to the right
(say) of the particle location. Therefore, they have a nonlocal “topological” character. As
a consequence, these particles do not show up as single particle-like excitations in experi-
ments with local probes: this will become clear in our subsequent discussion of correlation
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functions in Chapter 10. Nevertheless, they are necessary for a proper and complete under-
standing of the spectrum of the quantum Ising chain in its ferromagnetic phase.

At energies higher than 2J , the spectrum can be completely interpreted in terms of
p-particle scattering states of the kinks; this includes the state in (5.18) which is now part
of the two-particle continuum. The S matrix for the collision of two domain walls can be
computed in a perturbation theory in g, and we find results very similar to those in the
strong-coupling 1/g expansion: For the generic Ising chain we find Skk′ = − 1 in the low
momentum limit, but for the particular nearest-neighbor chain (10.1) we find that there is
no particle production, and Skk′ = − 1 at all momenta to all orders in g. These special fea-
tures are consequences of the integrability of the quantum Ising chain, which is discussed
in Chapter 10. There we will see that the kinks are best interpreted as free fermions.

5.4 Review

Our methods have so far given a satisfactory description of the two phases of the quantum
Ising model in all d. For g� 1, we have the paramagnetic phase, above which there are par-
ticle excitations consisting of “left”-pointing spins. For g� 1, we have the ferromagnetic
phase with a broken Z2 symmetry and two degenerate ground states with long-range mag-
netic order. Above these ground states we have excitations consisting either of “bubbles”
of spins oriented opposite to the ferromagnetic moment (in d ≥ 2) or of kinks (in d = 1).

We would now like to see how these descriptions meet at the quantum critical point at
g= gc between them. We will see that the two descriptions remain qualitatively valid at the
lowest energies all the way up to, but not including, the critical point. At higher energies,
and also exactly at the critical point, we need a new description.

We reach the needed description by a detour. We now establish the promised equivalence
between the d-dimensional quantum Ising model (5.1) and the D= d+1 dimensional clas-
sical Ising model (3.1). Then, we transfer the insights developed for the classical critical
point in Chapters 3 and 4 to the quantum case.

We begin in Section 5.5 by first considering the D= 1 case.

5.5 The classical Ising chain

Here we consider the D= 1, N = 1 classical spin ferromagnet, more commonly known as
the ferromagnetic Ising chain [238]. This chain has the partition function

Z =
∑

{σ z
�=±1}

exp (−H), (5.22)

where σ z
� are Ising spins on sites � of a chain, which take the values ±1, and H is given by

H = −K
Mτ∑
�=1

σ z
� σ

z
�+1 − h

Mτ∑
�=1

σ z
� . (5.23)
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In all of our discussion of classical statistical mechanics models we absorb “tempera-
ture” into the definition of the coupling constants, as we have done above for K and h;
in contrast, the temperature of quantum-mechanical models will always be explicitly indi-
cated, and we will reserve the symbol T for it (as we see below, the total length of the
classical model will determine T ). There are a total of Mτ Ising spins (Mτ large), and for
convenience we have also added a uniform magnetic field h acting on all the spins. We
assume periodic boundary conditions, and therefore σ z

Mτ+1 ≡ σ z
1 .

We evaluate the partition function exactly following the original solution of Ising [238].
The trick is to write Z as a trace over a matrix product, with one matrix for every site on
the chain. Note that the partition functions involve the exponential of a sum of terms on the
sites of the chain. Rewrite this as the product of exponentials of each term, and we easily
obtain

Z =
∑
{σ z
� }

Mτ∏
�=1

T1
(
σ z
� , σ

z
�+1

)
T2
(
σ z
�

)
, (5.24)

where T1(σ
z
1 , σ

z
2 ) = exp(Kσ z

1σ
z
2 ) and T2(σ

z) = exp(hσ z). Now note that (5.24) has
precisely the structure of a matrix product, if we interpret the two possible values of σ z

� as
the index labeling the rows and columns of a 2 × 2 matrix T1; T2 has only one index and
so should be interpreted as a diagonal matrix. Thus we have

Z = Tr (T1T2T1T2 · · ·Mτ times · · · ), (5.25)

where the summation over the {σ z
� } has been converted to a matrix trace because of the

periodic boundary conditions, and

T1 =
(

eK e−K

e−K eK

)
, T2 =

(
eh 0
0 e−h

)
. (5.26)

The matrix T1T2 is identified as the “transfer matrix” of the Ising chain, H (5.23), the
nomenclature suggesting that it transfers the trace over spins from each site to its neighbor.
We can manipulate (5.25) into

Z = Tr (T1T2)
Mτ

= Tr
(

T 1/2
2 T1T 1/2

2

)Mτ

= εMτ

1 + εMτ

2 , (5.27)

where ε1,2 are the eigenvalues of the symmetric matrix

T 1/2
2 T1T 1/2

2 =
(

eK+h e−K

e−K eK−h

)
, (5.28)

given by

ε1,2 = eK cosh(h)± (e2K sinh2(h)+ e−2K )1/2. (5.29)

With these eigenvalues, (5.27) leads to an exact result for the free energy F = − lnZ . We
will return to interpreting this result for F shortly.
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Now we show how the above approach can also lead to exact information on correlation
functions. For simplicity, we consider only the case h= 0 (the generalization to nonzero h
is not difficult) and describe the two-point spin correlator, like that in (3.39)

C(�− �′) ≡ 〈σ z
� σ

z
�′
〉 = 1

Z
∑
{σ z
� }

exp(−H)σ z
� σ

z
�′ . (5.30)

Going through exactly the same steps as those in the derivation of (5.27) we see that

〈
σ z
� σ

z
�′
〉 = 1

Z Tr
(

T Mτ−�′
1 σ̂ zT �

′−�
1 σ̂ zT �1

)
, (5.31)

where we have assumed that �′ ≥ �, and σ z (without a site index) is also interpreted as a
2× 2 diagonal Pauli matrix σ̂ z in (1.8). The trace in (5.31) can be evaluated in closed form
in the basis in which T1 is diagonal. The eigenvectors of T1 are the states in (1.10) and
the corresponding eigenvalues are ε1= 2 cosh(K ) and ε2= 2 sinh(K ). Using the matrix
elements 〈→ |σ z| →〉= 〈← |σ z| ←〉= 0 and 〈→ |σ z | ←〉= 〈→ |σ z| ←〉= 1 we obtain
from (5.27) and (5.31)

〈
σ z
� σ

z
�′
〉 = ε

Mτ−�′+�
1 ε�

′−�
2 + εMτ−�′+�

2 ε�
′−�

1

ε
Mτ

1 + εMτ

2

. (5.32)

Equations (5.31) and (5.32) are our main results on the Ising chain with an arbitrary
number of sites, Mτ . While simple, they contain a great deal of useful information, as we
will now show; much of the structure we extract below generalizes to more complex Ising
models with nonnearest-neighbor interactions.

Let us examine the form of the correlations in (5.32) in the limit of an infinite chain
(Mτ →∞); then we have 〈

σ z
� σ

z
�′
〉 = (tanh(K ))�

′−� . (5.33)

It is useful for the following discussion to label the spins not by the site index i , but by a
physical length coordinate τ ; we have chosen the symbol τ , rather than the more conven-
tional x , because we will shortly interpret this “length” as the imaginary time direction of
a quantum problem. So if we imagine that the spins are placed on a lattice of spacing a,
then σ z(τ ) ≡ σ z

� where

τ = �a. (5.34)

With this notation, we can write (5.33) as

C(τ ) ≡ 〈σ z(τ )σ z(0)〉 = e−|τ |/ξ , (5.35)

where the correlation length, ξ , is given by

1

ξ
= 1

a
ln coth(K ). (5.36)
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We emphasize that the symbol ξ always represents the actual correlation length at h= 0;
the actual correlation length for h �= 0 will, of course, be different. In the large-K limit,
the correlation length becomes much larger than the lattice spacing, a:

ξ

a
≈ 1

2
e2K � 1, K � 1. (5.37)

In the sequel, we shall primarily be interested in physics on the scale of order ξ , in the
regime where ξ is much greater than a. It is precisely in this situation that the concepts of
the scaling limit and universality become useful, and they are introduced in the following
subsections.

5.5.1 The scaling limit

The simplest way to think of the scaling limit is to first divide all lengths into “large” and
“small” lengths. For the Ising chain, we take the correlation length ξ , the observation scale
τ , and the system size

Lτ ≡ Mτa (5.38)

as our large lengths, and the lattice spacing, a, as the only small length. The scaling limit of
an observable is then defined as its value when all corrections involving the ratio of small
to large lengths are neglected.

There are two conceptually rather different, but equivalent, ways of thinking about the
scaling limit. We can either send the small length a to zero while keeping the large lengths
fixed (as particle physicists are inclined to do) or send all the large lengths to infinity
while keeping a fixed (as is more common among condensed matter physicists). Because
the physics can only depend upon the ratio of lengths, it is clear that the two methods are
equivalent. We shall choose among these points of view at our convenience and show that it
is often very useful to straddle this cultural divide and use the insights of both perspectives.

To complete the definition of the scaling limit, we also have to discuss the manner in
which the parameters K and h must be treated. From (5.36), we see that K can be expressed
in terms of the ratio of lengths ξ/a; we can use this to eliminate explicit dependence upon
K , and then the scaling limit is specified by the already specified ξ/a → ∞ limit. It
remains to discuss the behavior of h. In general, there is no a-priori way of determining
this and one has to examine the structure of the correlation functions to determine the
appropriate limit. Let us guess the answer here by a physical argument. The scaling limit
involves the study of large K , when the spin correlation length becomes large. Under these
conditions, spins a few lattice spacings apart invariably point in the same direction, and
they should therefore be sensitive to the mean magnetic field h per unit length. This is
measured by h̃, defined by

h̃ ≡ h

a
. (5.39)

So we take the scaling limit a → 0 while keeping h̃ fixed; any other choice would result in
a limiting theory with spins under the influence of a field with either infinite or vanishing
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strength. Alternatively stated, we have chosen 1/h̃, a quantity with the dimensions of
length, as one of our large length scales.

We have assembled all the necessary steps for the scaling limit. Express any observable
in terms of the physical length τ , replace the number of sites Mτ by Lτ /a, solve (5.36) to
express K in terms of ξ/a, and use (5.39) to replace h by h̃. Then take the limit a → 0 at
fixed τ , Lτ , ξ , and h̃.

We first describe the results for the free energy. The quantity with the finite scaling limit
should clearly be the free energy density, F :

F = −(lnZ)/(Mτa). (5.40)

First, from (5.29) we obtain in the scaling limit

ε1,2 ≈
(

2ξ

a

)1/2 [
1± a

2ξ
(1+ 4h̃

2
ξ2)1/2

]
. (5.41)

Inserting this into (5.29), and using the identity limy→∞(1+ c/y)y = ec, we obtain

F = E0 − 1

Lτ
ln

[
2 cosh

(
Lτ

√
1/(4ξ2)+ h̃

2
)]
, (5.42)

where E0= − K/a is the ground state energy per unit length of the chain in zero external
field.

In a similar manner, we can take the scaling limit of the correlation function in (5.32),
which we recall was in zero external field h̃= 0. We obtain

C(τ ) = 〈σ z(τ )σ z(0)〉 = e−|τ |/ξ + e−(Lτ−|τ |)/ξ

1+ e−Lτ /ξ
. (5.43)

The results (5.42) and (5.43) are the main conclusions of this subsection.

5.5.2 Universality

The assertion of universality is that the results of the scaling limit are not sensitive to the
precise microscopic model being used. This can be seen as the formal consequence of
the physically reasonable requirement that correlations at the scale of large ξ should not
depend upon the details of the interactions on the scale of the lattice spacing, a.

Let us describe this by an explicit example. Suppose, instead of using the model H in
(5.23), we worked with a Hamiltonian H1 with both first (K1) and second (K2) neighbor
exchanges between the Ising spins σ z . This model can also be solved by the transfer matrix
methods (one needs a basis of four sites corresponding to the four states of two near-
neighbor spins, and the transfer matrix is 4×4), but we will not present the explicit solution
here. From the solution we can determine the correlation length, ξ of H1, which will be a
function of both K1 and K2. Now, as in Section 5.5.1, express the free energy density in
terms of ξ , and take the limit a → 0 at fixed ξ , Lτ , and h̃. The implication of universality
is that the result will be precisely identical to (5.42), with E0 given by the ground state
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energy density of H1 in zero field: E0= −(K1+K2)/a. The reader is invited to check this
assertion for this simple example.

We can make the above assertion more precise by introducing the concept of a universal
scaling function. We write (5.42) in the form

F = E0 + 1

Lτ
�F

(
Lτ
ξ
, h̃Lτ

)
, (5.44)

where �F is the universal scaling function, whose explicit value can be easily deduced by
comparing with (5.42). Notice that the arguments of�F are simply the two dimensionless
ratios that can be made out of the three large lengths at our disposal: Lτ , ξ , and 1/h̃. The
prefactor, 1/Lτ , in front of�F is necessary because the free energy density has dimensions
of inverse length.

As its name implies, the scaling function �F is independent of microscopic details. In
contrast, E0, the ground state energy of the Ising chain, clearly depends sensitively on the
values of the microscopic exchange constants; it is therefore identified as a nonuniversal
additive contribution to F .

In a similar manner, we can introduce a universal scaling function of the two-point cor-
relation function of (3.39). We have

C(τ ) = 〈σ z(τ )σ z(0)〉 = �σ
(
τ

Lτ
,

Lτ
ξ
, h̃Lτ

)
, (5.45)

where �σ is another universal scaling function, and there is now no nonuniversal additive
constant. Again �σ is a function of all the independent dimensionless combinations of
large lengths; there is no prefactor because the correlator is clearly dimensionless. We can
read off the value of �σ (y1, y2, 0) by comparing (5.45) with (5.43), but determining the
full function �(y1, y2, y3) requires knowledge of the lattice correlator in the presence of
a nonzero h, which is somewhat tedious to obtain. A simpler method becomes apparent in
the following subsection.

5.5.3 Mapping to a quantum model: Ising spin in a transverse field

We show that the statistical mechanics of the Ising chain can be mapped onto the quan-
tum mechanics of a single Ising spin [152, 496]. Further, as stated in the introduction to
this chapter, correlators of the quantum spin precisely reproduce the scaling limit of the
classical Ising chain.

Let us return to the expressions (5.25) and (5.26) and write the transfer matrices T1, T2

in terms of ratios of “large” to small length scales. We have

T1 = eK (1+ e−2K σ̂ x )

≈ eK (1+ (a/2ξ)σ̂ x )

≈ exp(a(−E0 + (1/2ξ)σ̂ x )),

T2 = exp(ah̃σ̂ z), (5.46)
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where σ̂ x,z are the Pauli matrices in (1.8). Note that both T1,2 have the form eaO , where O
is some operator, acting on the | ↑,↓〉 states, that is independent of a. Using the fact that
eaO1 eaO2 = ea(O1+O2)(1+O(a2)), we can write (5.25) in the limit a → 0 as

T1T2 ≈ exp(−aHQ),

Z = (T1T2)
M ≈ Tr exp(−HQ/T ), (5.47)

where

HQ = E0 − �

2
σ̂ x − h̃σ̂ z, (5.48)

with

T ≡ 1

Lτ
, � ≡ 1

ξ
. (5.49)

We have introduced the fundamental quantum Hamiltonian HQ . It describes the dynamics
of a single Ising quantum spin, whose Hilbert space consists of the two states | ↑,↓〉,
and which is under the influence of a longitudinal field h̃ and a transverse field �; it is
the single-site version of (1.7) with an additional longitudinal field. Note, from the first
relation in (5.47), that the transfer matrix of the classical chain H is the quantum evolution
operator e−HQτ over an imaginary time τ = a, the lattice spacing. Thus the transfer from
one site to the next is similar to evolution in imaginary time, and length coordinates for the
classical chain translate into imaginary time coordinates for the quantum model HQ . The
energy� is also the gap between the ground and excited states of HQ in zero (longitudinal)
field, and it is precisely equal to the inverse of the correlation length of the classical Ising
chain, as expected from the length to time mapping. Further, the partition function of the
quantum spin is taken at a temperature T that precisely equals the inverse of the total
length of the classical chain. These correspondences between a gap of a quantum system
and a correlation length of the corresponding classical model along the “time” direction,
and between the temperature of the quantum system and the total length of the classical
model, are extremely general and apply to essentially all of the models we consider in this
book.

We can use (5.47) and (5.48) to quickly evaluate the free energy of the quantum spin,
F = −T lnZ . The eigenenergies of HQ are E0 ± [(�/2)2 + h̃2]1/2, and we have

F = E0 − T ln

[
2 cosh

(√
(�/2)2 + h̃2/T

)]
, (5.50)

which agrees precisely with the scaling limit of the classical Ising chain (5.42). Indeed,
the single spin quantum Hamiltonian HQ is precisely the theory describing the universal
scaling properties of the entire class of classical Ising chains with short-range interactions.
Statements of this type are often shortened to “HQ is the scaling theory of H .”

The correspondence between HQ and H also extends to correlation functions. Let us
define the time-ordered correlator, C , of HQ in imaginary time by

C(τ1, τ2) =
{ 1

Z Tr
(
e−HQ/T σ̂ z(τ1)σ̂

z(τ2)
)

for τ1 > τ2,

1
Z Tr

(
e−HQ/T σ̂ z(τ2)σ̂

z(τ1)
)

for τ1 < τ2,
(5.51)
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where σ̂ z(τ ) is defined by the imaginary time evolution under the HQ :

σ̂ z(τ ) ≡ eHQτ σ̂ ze−HQτ . (5.52)

Now, upon carrying through the mapping described above for the free energy for the case
of the correlation function, we find that the correlator C above is indeed the same as the
classical model correlation function in (3.39), (5.30), and (5.35)

C(τ1, τ2) = lim
a→0

〈σ z(τ1)σ
z(τ2)〉H , (5.53)

where we have emphasized by the subscript that the average on the right-hand side is for the
classical model with Hamiltonian H . The time-ordered functions appear in the quantum
problem for the same reason we had to assume �′ ≥ � in (5.31): as the transfer matrix
evolves the system from “earlier” sites to “later” sites, the earlier σ̂ z operators appear first
in the trace.

The representation (5.51) also makes the origin of the mapping between the quantum
gap, �, and the classical correlation length, ξ , in (5.49) quite clear. We can evaluate (5.51)
at T = 0 by inserting a complete set of HQ eigenstates and obtain the general representation

C(τ1, τ2) =
∑

n

|〈0|σ z |n〉|2e−(En−E0)|τ1−τ2|, (5.54)

where |n〉 are all the eigenstates of HQ with eigenvalues En , and |0〉 is the ground state. For
sufficiently large |τ1− τ2|, the sum over n will be dominated by the lowest energy state for
which the matrix element is nonzero, and this gives an exponential decay of the correlation
function over a “length” ξ = 1/(E1 − E0)= 1/�. Of course, in the present simple system
there are only a total of two states, but this result is clearly more general.

It is quite easy to evaluate (5.51) for HQ , and the direct quantum computation is much
simpler than the use of classical mapping in (5.53). We find

C(τ1, τ2) = �σ
(

T (τ1 − τ2),
�

T
,

h̃

T

)
, (5.55)

where �σ is precisely the same scaling function that appeared in (5.45) and can be com-
puted from (5.51) to be

�σ (y1, y2, y3) = 4y2
3

y2
2 + 4y2

3

+ y2
2

y2
2 + 4y2

3

cosh

(√
y2

2 + 4y2
3(1− 2|y1|)/2

)
cosh

(√
y2

2 + 4y2
3

/
2

) . (5.56)

It can be checked that the y3= 0 case of this result agrees with the combination of (5.43)
and (5.45).

5.6 Mapping of the quantum Ising chain to a classical Ising model

We now move beyond the single-site quantum case, and apply the methods of Section 5.5
to the original quantum Ising model in (5.1). We only consider the case d = 1, D= 2 here;
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the generalization to higher d is immediate, and does not involve any new subtleties. Our
presentation here is the inverse of that in Section 5.5: we begin with the quantum model
and derive an equivalent classical model.

As in (5.47), we consider the transfer matrix associated with imaginary time evolution
over a short time a. Thus we can write the partition function as

Z = Tr exp (−HI /T ) = Tr (exp (−aHI ))
Mτ , (5.57)

where, as in (5.38) and (5.49), Lτ =Mτa= 1/T . Referring to Fig. 2.1, we can view this as
the statistical mechanics of a system of Mτ rows in τ direction, with exp

(−aHQ
)

being the
transfer matrix from one row to the next. We have M sites in the quantum model along the
x direction, and hence this transfer matrix is 2M × 2M dimensional, much more complex
than the simple 2× 2 transfer matrices we met in Section 5.5.

As in Section 5.5, we are interested here in the limit of a → 0 and Mτ → ∞ at fixed
Mτa= 1/T . The exponential of the original Hamiltonian HI in (5.1) is difficult to evaluate,
so let us use the same trick as in (5.47) to write

exp (−aHI ) = T1T2 +O(a2), (5.58)

where

T1 = exp

(
Jga

∑
i

σ̂ x
i

)
, T2 = exp

(
Ja
∑

i

σ̂ z
i σ̂

z
i+1

)
. (5.59)

The matrix elements of the operators T1 and T2 can be evaluated exactly, and we will do
so shortly.

The last remaining step is to insert a complete set of states between each T1T2 term in
(5.57). It is convenient to choose these states to be eigenstates of all the σ̂ z

i . Let us denote
these states as |{mi }〉, where mi = ±1 are the eigenvalues of σ̂ z

i , and there are a total of 2M

such states. It is immediately evident that T2 is diagonal in this basis, whereas T1 is not; in
particular

T2 |{mi }〉 = exp

(
Ja
∑

i

mi mi+1

)
|{mi }〉. (5.60)

As in Section 5.5, we label the Mτ time steps in (5.57) by the index �, and so we write the
corresponding states as |{mi (�)}〉. Then (5.57) can be written as

Z =
∑
{mi (�)}

Mτ∏
�=1

〈{mi (�)}| T1T2 |{mi (�+ 1)}〉. (5.61)

Note that the summation above is over the 2M Mτ possible values of mi (�)= ± 1. So the
above expression is starting to look like that for a two-dimensional classical Ising model
as in (2.2), with i and � the coordinates along the x and τ directions, respectively. The
expression for the weights in the partition function does not yet look like that in (2.2). After
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evaluating the matrix element of T2 using (5.60), we need the following matrix element
of T1:

〈{mi (�)}| T1 |{mi (�+ 1)}〉 =
∏

i

〈{mi (�)}| exp
(
Jgaσ̂ x

i

) |{mi (�+ 1)}〉. (5.62)

Note that the right-hand side is a product of terms, each of which only involves the 2 × 2
Ising subspace at site i . Consequently, we can use the analog of the manipulations below
(5.26) and (5.46) to derive a useful identity valid for a single Ising spin:

〈m| exp
(
g Ja σ̂ x) ∣∣m′〉 = A exp

(
Bmm′

)
, (5.63)

where m,m′ = ±1 and

A = 1

2
cosh(2Jga), exp(−2B) = tanh(Jga). (5.64)

The identity (5.63) is easily verified by evaluating both sides at the four possible values of
m and m′.

Collecting the results in (5.60–5.63), we have our main expression for the partition func-
tion of the classical Ising model

Z =
∑
{mi (�)}

exp

⎛⎝∑
i,�

[
Ja mi (�)mi+1(�)+ B mi (�)mi (�+ 1)

]⎞⎠, (5.65)

where we have dropped an overall normalization associated with powers of A. This has
precisely the same structure as the Ising model in (2.2), with the only difference that the
“exchange” couplings along the x and τ directions are not equal. This was, however, to be
expected, because there is no fundamental equivalence between the space and imaginary
time directions for the quantum Ising models.

All of our discussion of classical statistical mechanics in Chapters 3 and 4 can now be
directly applied to (5.65): the anisotropic couplings do not cause important modifications
to any of the arguments. Thus we obtain a description of the critical point in terms of
the D-dimensional field theory in (3.25) with an N = 1 component for the field φα . The
only change appearing from the anisotropic coupling is that the coefficients of the gradient
terms along the space and time directions can be different. This finally maps (3.25) to the
d-dimensional quantum field theory described by the partition function in (2.11) at N = 1:
the anisotropy determines the value of the “velocity” c. It is clear now that c can be scaled
away by a change of the time or space coordinates, and so does not modify any properties
of the theory.

To complete our goal of describing the quantum critical properties of the quantum Ising
model (2.2), we now need to analyze the spectrum and correlations of the quantum field
theory (2.11) for N = 1. We defer this discussion to the end of Chapter 6, where we treat
the case of general N . The N > 1 cases will apply to the quantum rotor model, which we
also discuss in Chapter 6.
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Exercises

5.1 (a) Perform the standard Rayleigh–Schrödinger perturbation theory on the ground
state in (1.9) and the first excited state (5.7) to obtain the 1/g2 correction to the
quasiparticle energy in (5.9). In this perturbation theory, the unperturbed Hamil-
tonian H0 is the first term in (5.1), and the perturbation H1 is the second term in
(5.1). Note that because of momentum conservation 〈k|H1|k′〉 ∝ δkk′ . Thus the
perturbation theory splits into distinct sectors for k. Within each sector, the first
excited state is nondegenerate, and so this computation can use nondegenerate
perturbation theory, and not worry about the issues discussed in Section 5.1. The
latter issues do becomes important at higher order in 1/g.

(b) Compute the value of A in (5.11) to order 1/g. First note that σ̂ z(k)|0〉 has terms
of order 1 and of order 1/g in the one-particle sector, and only terms of order
1/g in the three-particle sector. Similarly for H1|k〉. Consequently, show that
all contributions to (5.11) from the three-particle sector are of order 1/g2. By
working within the one-particle sector show that

〈k|σ̂ z(k)|0〉 = 1+ cos k

2g
. (5.66)

A curious feature of the above result is that quasiparticle residue at k= 0 actually
increases initially as g is reduced from large values. We expect it to vanish at the
quantum critical point (see Chapter 10, and so A has a nonmonotonic approach
to the quantum critical point.

5.2 Consider the two-particle subspace described by the N (N − 1)/2 states (5.12) on
a d-dimensional lattice. At leading order in 1/g, we may consider the projection of
HI onto the two-particle subspace, and ignore all matrix elements to other states.
Thus HI only hops the particles between nearest-neighbor sites, with an on-site hard
core repulsion. Determine eigenstates of this projected Hamiltonian. This is done by
transforming to center-of-mass and relative coordinates, and solving the scattering
problem in the relative coordinates; this determines the S matrix. Verify (5.14) in
d = 1.

5.3 The questions below refer to the ferromagnetic phase of HI in (5.1) on the square
lattice, where g� 1, and we can perform perturbation theory in g. The lattice has N
sites, and you can assume periodic boundary conditions where needed.

(a) Compute the ground state energy per site to order g2.
(b) Compute the ferromagnetic moment N0=〈σ z

i 〉 to order g2, where i is any site.
You only need the ground state wavefunction to order g to do this, but you need
the normalization to order g2. More precisely, write the ground state wavefunc-
tion, |G ↑〉 as

|G ↑〉 = (1+ αg2)|all spins up〉 + g
∑

β|states with one down spin〉
+ g2

∑
γ |states with two down spins〉 + · · · (5.67)
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Argue that to determine N0 to order g2, you need the values of α and β, but do
not need to know the value of γ . Determine β by first-order perturbation theory,
and α by the requirement that the wavefunction is normalized.

(c) Find and diagonalize the effective Hamiltonian in the one-particle subspace to
order g2. This is the subspace with one flipped spin, and has N states with energy
8J above the ground state at leading order. You should find that the effective
Hamiltonian involves only local moves of the flipped spin. The effective Hamil-
tonian has contributions from intermediate states with two or zero flipped spins,
and those leading to nonlocal hops of the flipped spin exactly cancel against each
other.

(d) Find and diagonalize the effective Hamiltonian in the two-particle-bound-state
subspace to order g2. This is the subspace with two neighboring flipped spins,
and has 2N states with energy 12J above the ground state at leading order.



6 The quantum rotor model

This chapter analyzes the spectrum of the quantum rotor model (1.25), whose Hamiltonian
we reproduce here

HR = J g̃

2

∑
i

L̂
2
i − J

∑
〈i j〉

n̂i · n̂ j . (6.1)

Our analysis parallels that of the quantum Ising model in Chapter 10. We begin by a per-
turbative analysis of both phases: the paramagnetic phase at g̃� 1, and the magnetically
ordered phase at g̃� 1. We then describe the mapping of the partition function of the
quantum rotor model in d dimensions to the classical O(N ) spin model in (2.3) and (3.2).
This mapping allows us to address the vicinity of the critical point using the methods of
Chapters 3 and 4.

We begin with the perturbative analyses, which are expected to hold on either side of a
quantum critical point at g̃ = g̃c, which separates the ordered and the quantum paramag-
netic phases. We will see later that g̃c= 0 in d = 1, but g̃c> 0 for d > 1.

6.1 Large-g̃ expansion

The strong-coupling expansion was discussed in [197] and briefly noted in Section 1.4.2.
At g̃=∞, the exchange term in HR can be neglected, and the Hamiltonian decouples into
independent sites and can be diagonalized exactly. The eigenstates on each site are the
eigenstates of L2; for N = 3 these are the states of (1.24):

|�,m〉i �= 0, 1, 2, . . . , − � ≤ m ≤ �, (6.2)

and have eigenenergy J g̃�(� + 1)/2. The ground state of HR in the large g̃ limit consists
of the quantum paramagnetic state with �= 0 on every site:

|0〉 =
∏

i

|� = 0,m = 0〉i . (6.3)

Compare this with the strong-coupling ground state (1.9) of the Ising model. Indeed, the
remainder of the large g analysis of the quantum Ising model in Section 5.2 can be bor-
rowed here for the rotor model, and we can therefore be quite brief. The lowest excited state
is a “particle” in which a single site has �= 1, and this excitation hops from site to site.
An important difference from the Ising model is that this particle is three-fold degenerate,
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corresponding to the three allowed values m= − 1, 0, 1. The single-particle states are
labeled by a momentum k and an azimuthal angular momentum m and have energy

ε�k,m = J g̃

(
1− (2/3g̃)

∑
μ

cos(kμa)+O(1/g̃2)

)
, (6.4)

where the sum over μ extends over the d spatial directions. This result is the analog of
(5.8). Multiparticle states can be analyzed as in Section 5.2, the only change being that the
states and the S-matrices now carry O(N ) indices.

6.2 Small-g̃ expansion

For small g̃, the ground state breaks O(N ) symmetry, and all the n̂i vectors orient them-
selves in a common, but arbitrary direction. This is similar to the broken Z2 symmetry of
the quantum Ising model in Section 5.3.

Excitations above this state consist of “spin waves,” which can have an arbitrarily low
energy (i.e. they are “gapless”). This is a crucial difference from the Ising model in
Section 5.3, in which there was an energy gap above the ground state. The presence of
gapless spin excitations is a direct consequence of the continuous O(N ) symmetry of HR :
we can make very slow deformations in the orientation of 〈n̂〉, obtaining an orthogonal
state whose energy is arbitrarily close to that of the ground state. Explicitly, for N = 3 and
a ground state polarized along (0, 0, 1), we parameterize

n̂(x, t) = (u1(x, t), u2(x, t),
(
1− u2

1 − u2
2

)1/2)
, (6.5)

where |u1|, |u2|� 1. In this limit, the commutation relations (1.21) become

[L̂1, u2] = i, [L̂2, u1] = −i, (6.6)

i.e. u1, L̂2 and u2, −L̂1 are canonically conjugate pairs. Also, in the limit where u1,2 are
small, the rotor momenta are also in the 1, 2 plane, and hence the third component of
the rotor angular momentum is negligibly small, L̂3 ≈ 0; so by (1.21), L̂1 and L̂2 are
commuting variables. We now insert (6.5) into (6.1), and focus on the long-wavelength
excitations by taking the continuum limit: this yields the Hamiltonian

HR =
∫

dd x

ad

[
J g̃

2

(
L̂2

1 + L̂2
2

)
+ Ja2

2

(
(∇u1)

2 + (∇u2)
2
)]
, (6.7)

where a is the lattice spacing. The reader will now recognize that (6.7) and the commu-
tation relations (6.6) define the dynamics of a set of harmonic oscillators, two for each
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wavevector k. Explicitly, let us make the following normal mode expansion in terms of the
harmonic oscillator creation and annihilation operators:

uλ(x) =
∫

ddk

(2π)d
J g̃√

2adεk

(
aλ(k)e

i �k·�x + a†
λ(
�k)e−i �k·�x),

ελλ′Lλ′(x) = −i
∫

ddk

(2π)d

√
adεk

2J g̃

(
aλ(�k)ei �k·�x − a†

λ(
�k)e−i �k·�x), (6.8)

where λ= 1, 2 is a polarization index, ελλ′ is the unit antisymmetric tensor. Then it can
be verified that if the a(�k, t) operators satisfy the familiar harmonic oscillator equal-time
commutation relations [

aλ(�k), a†
λ′(
�k′)] = δλλ′(2π)dδd(�k − �k′),[

aλ(�k), aλ′(�k′)
] = 0, (6.9)

the commutation relations (6.6) are obeyed. Further, the Hamiltonian explicitly displays
the simple sum over independent harmonic oscillators

HR =
∑
λ

∫
ddk

(2π)d
εk
[
a†
λ(
�k)aλ(�k)+ 1/2

]
. (6.10)

Here the oscillation frequency is

εk = ck, c = Ja
√

g̃, (6.11)

where c is the spin-wave velocity.
Thus the excitation spectrum of the magnetically ordered phase consists of two polariza-

tions of quantized spin waves with dispersion εk = ck; for general N , there are N − 1 spin
waves. It is useful to recall how quantization of electromagnetic waves led to the concept
of a particle-like excitation called the photon: the particle is just a wavepacket. Similarly,
here we can interpret the quantized spin waves as a set of N − 1 quantized particles.

The reader should note the distinction between the N − 1 particles in the ordered phase
with the N particles obtained in the quantum paramagnet in the strong coupling expansion
above. In the ordered phase, rotations about the axis of 〈n̂〉 do not produce a new state, and
so there are only N − 1 independent rotations about axes orthogonal to 〈n̂〉 that lead to
gapless spin-wave modes.

The ground state wavefunction of the magnetically ordered state includes quantum zero-
point motion of the spin waves about the fully polarized state. One consequence of the
zero-point motion is that the ordered moment on each site is reduced at order g̃:〈

n̂3
〉 = 〈(1− u2

1 − u2
2)

1/2〉
≈ 1− (1/2)

〈
u2

1 + u2
2

〉
= 1−

√
g̃ad−1

2

∫
ddk

(2π)d
1

k
. (6.12)

In the last step we have evaluated the expectation value in the quantized harmonic oscillator
ground state after using the normal mode expansion (6.8). The integral over momenta k is
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cut off at large k by the inverse lattice spacing, but there is no cutoff at small k. We therefore
notice a small k divergence in d = 1, indicating an instability in the small-g̃ expansion. We
will see that the small g̃ prediction of a state with magnetic long-range order is never valid
in d = 1, and the physical picture of the quantum paramagnet introduced by the large-g̃
expansion holds for all g̃. In contrast, the small-g̃ expansion appears stable for d > 1, and
we do expect magnetically ordered states to exist. In this case, comparison of the small
and large-g̃ expansions correctly suggests the existence of a quantum phase transition at
intermediate g̃.

The above was an analysis in the linearized, harmonic limit. The nonlinearities neglected
above lead to nonzero spin-wave scattering amplitudes, which we show later are quite
innocuous at low enough energies in dimensions d > 1. Precisely in d = 1, spin-wave inter-
actions are very important and destroy the long-range order of the ground state, as was
already apparent from (6.12). For the classical ferromagnet (3.2), to which the present
model maps, this corresponds to the absence of long-range order in D= 2 and is known as
the Hohenberg–Mermin–Wagner theorem.

6.3 The classical XY chain and an O(2) quantum rotor

We will consider the D= 1, N = 2 classical ferromagnet; this is also referred to as the
XY ferromagnet. We generalize (5.22) and (5.23) to N = 2 by replacing σ z

� by a two-
component unit-length variable n�. This modifies (5.22) to

Z =
∏
�

∫
Dniδ

(
n2
� − 1

)
exp (−H). (6.13)

For H we modify (5.23) to

H = −K
Mτ∑
�=1

n� · n�+1 −
Mτ∑
�=1

h · n�, (6.14)

where, as in the Ising case, we have added a uniform field h= (h, 0). It is convenient to
parameterize the unit-length classical spins, n�, by

n� = (cos θ�, sin θ�), (6.15)

where the continuous angular variables, θ�, run from 0 to 2π . In these variables, H takes
the form

H = −K
Mτ∑
�=1

cos(θ� − θ�+1)− h
Mτ∑
�=1

cos θ�, (6.16)

and the partition function is

Z =
∫ 2π

0

Mτ∏
�=1

dθ�
2π

exp(−H). (6.17)
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We again assume periodic boundary conditions with θMτ+1 ≡ θ1. Note that in zero field, H
remains invariant if all the spins are rotated by the same angle φ, θ� → θ� + φ, and so our
results will not depend upon the particular orientation chosen for h. The partition function
can be evaluated by transfer matrix methods [144, 253] quite similar to those used for the
Ising chain. Although we will not use such a method to obtain our results, we nevertheless
describe the main steps for completeness. First write Z in the form

Z =
∫ 2π

0

Mτ∏
i=1

dθ�
2π
〈θ1|T̂ |θ2〉〈θ2|T̂ |θ3〉 · · · 〈θMτ |T̂ |θ1〉

= TrT̂ M
τ , (6.18)

where the symmetric transfer matrix operator T̂ is defined by

〈θ |T̂ |θ ′〉 = exp

(
K cos(θ − θ ′)+ h

2
(cos θ + cos θ ′)

)
, (6.19)

and the trace is clearly over continuous angular variable θ . As in the Ising case, we have to
diagonalize the transfer matrix T̂ by solving the eigenvalue equation,∫ 2π

0

dθ ′

2π
〈θ |T̂ |θ ′〉�μ(θ ′) = λμ�μ(θ), (6.20)

for the eigenfunctions �μ(θ) (with �μ(θ + 2π) = �μ(θ)) and corresponding eigenvalues
λμ. Then the partition function Z is simply

Z =
∑
μ

λMτ
μ , (6.21)

where the sum extends over the infinite number of eigenvalues λμ. The solution of (6.20)
is quite involved, and the present approach is a rather convoluted method of obtaining the
universal properties of H .

Instead, it is useful to approach the problem with a little physical insight and take the
scaling limit at the earliest possible stage. We anticipate, from our experience with the
Ising model, that the universal scaling behavior will emerge at large values of K . For this
case, θ� is not expected to vary much from one site to the next, suggesting that it should be
useful to expand in terms of gradients of θ�. So we define a continuous coordinate τ = �a,
where a is the lattice spacing, and the label τ anticipates its eventual interpretation as the
imaginary time coordinate of a quantum problem. Then, to lowest order in the gradients of
the function θ(τ = �a) ≡ θ�, the Hamiltonian H takes the continuum form Hc:

Hc[θ(τ )] =
∫ Lτ

0
dτ

[
ξ

4

(
dθ(τ )

dτ

)2

− h̃ cos θ(τ )

]
, (6.22)

where

ξ = 2K a, h̃ = h

a
, (6.23)

and as before Lτ =Mτa. The coefficient of the gradient squared term is clearly a length
(along the time direction) and we have written this length in terms of the symbol ξ : the
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parameterization anticipates some of our subsequent results where we see that ξ is the
h= 0 correlation length of an infinite XY chain. With this new form of H , the partition
function becomes a functional integral

Zc =
∞∑

p=−∞

∫
θ(Lτ )=θ(0)+2πp

Dθ(τ ) exp (−Hc[θ(τ )]) . (6.24)

The integral is taken over all functions θ(τ ) that satisfy the specified boundary conditions.
As we can continuously follow the value of θ from τ = 0 to τ = Lτ , its actual value, and
not just the angle modulo 2π , becomes significant; so we allow for an overall phase wind-
ing by 2πp in the boundary conditions. This boundary condition is the only remnant of the
periodicity of the original lattice problem as θ(τ ) is allowed to assume all real values. We
have also absorbed an overall normalization factor into the definition of the functional inte-
gral, and we will therefore not keep track of additive nonuniversal constant contributions
to the free energy, such as E0 of Section 5.5.

We now assert that Zc and Hc are the universal scaling theories of H and Z in (6.16)
and (6.17). Hence if we started with a different microscopic model, its universal properties
would also be described by Zc, with the only change being in the values of ξ and h̃. For
instance, if we had a Hamiltonian like (6.16), but with j th neighbor interactions K j , its
continuum limit would also be Hc, with the same value for h̃, but ξ modified to

ξ = 2a
∞∑
j=1

K j j2. (6.25)

This continuum limit is valid for all models in which the summation over j in (6.25)
converges. The universality of Hc also applies to models in which the constraint n2

i = 1 is
not imposed rigidly and fluctuations in the amplitude of ni are allowed about their mean
value. The prescription for determining the input value of ξ is, however, still very simple:
set the magnitude of ni to its optimum value and measure the energy change of a uniform
twist. Corrections due to the fluctuations in the magnitude of ni about this optimum value
will not modify the universal scaling theory (6.23).

Before turning to an evaluation of Zc and its associated correlators, let us describe the
scaling forms expected in the universal theory. These can be deduced by simple dimen-
sional analysis. In the present case ξ , Lτ , and h̃ are the large lengths of the theory, and we
simply make the appropriate dimensionless combinations. We thus have for the free energy
F = − (lnZc)/Lτ and the two-point correlator:

F = 1

Lτ
�F

(
Lτ
ξ
, h̃Lτ

)
,

〈n(τ ) · n(0)〉 = �n

(
τ

Lτ
,

Lτ
ξ
, h̃Lτ

)
, (6.26)

where �F and �n are universal functions, portions of which are determined explicitly
below.
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Let us evaluate Zc in zero field (h̃= 0). To satisfy the boundary conditions let us
decompose

θ(τ ) = 2πpτ

Lτ
+ θ ′(τ ), (6.27)

where θ ′(τ ) satisfies periodic boundary conditions θ ′(Lτ )= θ ′(0). Inserting this into (6.22)
we find that the cross term between the two pieces of θ(τ ) vanishes because of the periodic
boundary conditions on θ ′, and (6.24) becomes

Zc(h̃ = 0) =
⎛⎝ ∞∑

p=−∞
exp

(
−π

2 p2ξ

Lτ

)⎞⎠
×
∫
θ ′(Lτ )=θ ′(0)

Dθ ′(τ ) exp

(
−ξ

4

∫ Lτ

0
dτ

(
dθ ′

dτ

)2
)
. (6.28)

Now note that the last functional integral is simply the familiar Feynman path integral for
the amplitude of a single quantum mechanical free particle, of mass ξ/2 with coordinate
θ ′, to return to its starting position after imaginary time Lτ . Using the standard expression
for this we find finally

Zc(h̃ = 0) = (2π)
(

ξ

4πLτ

)1/2

A(πξ/Lτ ), (6.29)

where the factor of 2π comes from the integral over θ ′(0), and A(y) is the elliptic theta
function defined by

A(y) =
∞∑

p=−∞
e−πp2 y . (6.30)

This result is clearly consistent with the scaling form for the free energy density
F = − (lnZc)/Lτ in (6.26).

Let us push the analogy with the quantum mechanics of a particle a bit further and
complete the quantum–classical mapping by obtaining an explicit expression for the quan-
tum Hamiltonian, HQ , which describes the scaling limit. Note that Zc in (6.24), with the
summation over p included, can be interpreted as the Feynman path integral of a particle
constrained to move on a circle of unit radius; the angular coordinate of the particle is θ ,
and p represents the number of times the particle winds around the circle in its motion from
imaginary time τ = 0 to τ = Lτ . The term proportional to h̃ is then a potential energy term
that preferentially locates the particle at θ = 0. The Hamiltonian of this quantum particle is
then

HQ = −� ∂2

∂θ2
− h̃ cos θ, (6.31)

where, as we will see shortly, � is defined as in the Ising case to be the gap of HQ in
zero external field. As the mass of the quantum particle is 1/(2�), we have by comparing
with (6.22)
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� = 1

ξ
. (6.32)

This is precisely of the form (5.49), and it is another realization of the fact that the gap
of the quantum model is equal to the correlation “length” of the classical model along the
imaginary time direction. For some of our subsequent discussion it is useful to express HQ

solely in terms of quantum operators. Let n̂ be the Heisenberg operator corresponding to
n. Let us also define L̂ as the angular momentum operator of the rotor:

L̂ = 1

i

∂

∂θ
. (6.33)

Then we have the commutation relation

[L̂, n̂α] = iεαβ n̂β, (6.34)

where α, β extend over the two coordinate axes, x, y in the spin plane, and εxy =−εyx = 1,
with other components zero. These are precisely the N = 2 case of the commutation rela-
tions following from (1.17) and (1.20). The Hamiltonian HQ is clearly

HQ = �L̂2 − h̃ · n̂, (6.35)

which is simply the quantum rotor model (1.22) in the presence of field h̃, 1/(2�) is the
moment of inertia of the rotor, and commutation relation (6.34) is the N = 2 analog of
(1.21). We have established the needed result: the scaling limit of the D= 1 classical XY
ferromagnet is given exactly by the Hamiltonian of a single O(2) quantum rotor.

The Hamiltonian HQ is related to the transfer matrix T̂ (in (6.19)) of the lattice XY
model by a relationship identical to that found in (5.47). By a gradient expansion of (6.19)
the reader can verify that

T̂ ≈ exp(−aHQ) (6.36)

to leading order in the lattice spacing a. So again, the transfer matrix “evolves” the system
by an imaginary time a.

We can use the quantum–classical mapping and obtain explicit expressions for the uni-
versal scaling functions of the classical problem in (6.26). First, using the mapping (2.5)
T = 1/Lτ , let us write down the scaling forms (6.26) in the quantum language:

F = T�F

(
�

T
,

h̃

T

)
,

〈n(τ ) · n(0)〉 = �n

(
T τ,

�

T
,

h̃

T

)
. (6.37)

We see here a structure that was used in (5.55), and which is used throughout the book.
We characterize the universal properties by the “small” energy scales �, h̃ (these are the
analogs of the “large” length scales of the corresponding classical problem, while the
nonuniversal behavior at “small” length scales in the classical system maps onto high-
energy physics in the quantum system, which is not of interest here). These “small” energy
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scales then appear in universal scaling functions of dimensionless ratio of these energies
with the physical temperature, T .

Let us turn to evaluation of the scaling functions. The eigenstates, ψμ(θ), and eigenva-
lues, εμ, of HQ are determined by solving the Schrödinger equation

HQψμ(θ) = εμψμ(θ), (6.38)

subject to the boundary condition ψμ(0)=ψμ(2π). The equation (6.38) can be considered
as the continuum scaling limit of the eigenvalue equation (6.20), with the correspondence
in (6.36) and λμ= exp(−aεμ). The continuum limit partition function Zc can be expressed
directly in terms of HQ :

Zc = Tr exp(−HQ/T )

=
∑
μ

exp(−εμ/T ), (6.39)

where T = 1/Lτ . The two-point correlator of n̂ can also be expressed in the quantum lan-
guage

〈n(τ ) · n(0)〉 = 1

Zc
Tr
(

e−HQ/T eHQτ n̂e−HQτ · n̂
)

= 1

Zc

∑
μ,ν

|〈μ|n̂|ν〉|2e−εμ/T e−(εν−εμ)τ , (6.40)

where the summation over μ, ν extends over all the eigenstates of HQ , and we have
assumed τ > 0.

The solution of (6.38), combined with (6.39) and (6.40), provides the complete solution
of the universal scaling properties of the classical XY chain. An elementary solution of the
eigenvalue equation (6.38) is only possible at h̃= 0, to which we restrict our attention
from now on. In zero field, the eigenstates are ψm(θ) ∝ eimθ , where m is an arbitrary
integer, and the corresponding eigenvalues are �m2 (these are the states of (1.23)). The
ground state has zero energy (m= 0), and, as promised, the gap to the lowest excited states
(m= ± 1) is �. We can therefore evaluate the partition function

Zc( h̃ = 0) =
∞∑

m=−∞
exp

(
−�m2

T

)
= A(�/πT ), (6.41)

a result that satisfies (6.37); the function A(y) was defined in (6.30). If we compare this
with (6.29), and use (6.32) and (5.49), the equivalence of the two expressions for Zc is
not immediately obvious. However, equality can be established by use of the following
inversion identity, which the reader is invited to establish as a simple application of the
Poisson summation formula:

A(y) = A(1/y)√
y
. (6.42)

In terms of the original classical model, the expression (6.29) for Zc is useful for large
ξ (or large values of K , corresponding to a low classical “temperature,” which has been
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absorbed into the definition of K ) when its series converges rapidly; conversely the dual
expression (6.41) is most useful for small ξ (or small K and high classical “temperatures”).

Let us also discuss the form of the correlation functions at h̃= 0. Recalling (6.15), and
the wavefunction ψm(θ) ∝ eimθ , we have the very simple matrix element

|〈m|n̂|m + 1〉|2 = 1, (6.43)

and all others vanish; the correlation function follows simply from (6.40), and it is clear
that the result agrees with (6.37). In particular, at T = 0 or Lτ =∞ we have

〈n(τ ) · n(0)〉 = e−�|τ |, (6.44)

which establishes, as in the Ising chain, the inverse of the gap � as the correlation length
of the classical chain.

6.4 The classical Heisenberg chain and an O(3) quantum rotor

We now generalize the results of the previous section to the D= 1, N = 3 case. The N = 3
classical ferromagnet is also known as the classical Heisenberg chain. The partition func-
tion is still given by (6.13) and the classical Hamiltonian by (6.14), with the only change
being that n is now a three-component unit vector. Taking its continuum limit as for N = 2,
we replace (6.22) and (6.24) by the partition function

Zc =
∫

Dn(τ )δ(n2 − 1) exp (−Hc[n(τ )]) ,

Hc[n(τ )] =
∫ Lτ

0
dτ

[
(N − 1)ξ

4

(
dn(τ )

dτ

)2

− h̃ · n
]
, (6.45)

with n(0)= n(Lτ ); now ξ = 2K a/(N − 1) and h̃=h/a as in (6.23). We have chosen
the definition of ξ by anticipating a later computation in which ξ will be seen to be the
correlation length. We only consider the case N = 3 in this subsection and have quoted,
without proof, the form for general N ; note that (6.45) agrees with (6.22) for N = 2. Unlike
(6.22), it is not possible to evaluate the partition function (6.45) in this form. Recall that
for the N = 2 case of (6.22) we had a simple angular parameterization in which H became
purely quadratic in the angular variable. One could parameterize the three-component n
using spherical coordinates, but the resulting H is not simply quadratic.

Further progress toward the evaluation of Zc can, however, be made after the quantum–
classical mapping. To do this, note, as in (6.28), that the functional integral in (6.45) can be
interpreted as the imaginary-time Feynman path integral for a particle moving in a three-
dimensional space with coordinate n. Then the term with (∂n/∂τ)2 is its kinetic energy and
its mass is 1/ξ , and the term proportional to h̃ is like a “gravitational potential energy.” The
constraint that n2= 1 may be viewed as a very strong potential that prefers that the particle
move on the surface of a unit sphere. We can therefore perform the quantum–classical
mapping simply by writing down the Schrödinger Hamiltonian, HQ , for this particle. The



89 6.5 Mapping to classical field theories

restriction that the motion take place on the surface of a sphere simply means that the radial
kinetic energy term of the particle should be dropped. The resulting HQ generalizes (6.35)
to N = 3:

HQ = �

2
L̂2 − h̃ · n, (6.46)

where the angular momentum operator L̂ has three components (in general it has
N (N − 1)/2 components); again this is simply the N = 3 single rotor model HK in (1.22)
in the presence of a field h̃. The operators L̂ and n̂ obey the commutation relations in
(1.21). The parameter � is again the energy gap at h̃= 0, as we will see below, and is
given by �= 1/ξ , as in (6.32). If we determine all the eigenvalues εμ of HQ , then the
explicit expression for Zc is given by (6.39). Determination of the eigenvalues of HQ can,
for instance, be done by solving the Schrödinger differential equation for a wavefunction
ψμ(n) on the surface of a unit sphere. The Hamiltonian in Schrödinger’s equation is given
by HQ , with L̂ a differential operator:

Lα = −iεαβγ nβ
∂

∂nγ
. (6.47)

In summary, the complete solution of the classical partition function Zc is given by map-
ping the problem to the dynamics of an O(3) quantum rotor with Hamiltonian HQ defined
by Equations (2.69), (1.19), and (2.70), where the value of Zc is given by (6.39).

We conclude this section by explicitly determining the eigenvalues for h̃= 0. In this
case, it is evident that the eigenfunctions ψμ are simply the spherical harmonics, and the
eigenvalues are

(�/2)�(�+ 1), � = 0, 1, 2 . . .∞ (6.48)

with degeneracy 2�+ 1 (as in (1.24)), so that

Zc(h̃ = 0) = Tre−HQ/T

=
∞∑
�=0

(2�+ 1) exp

(
− �

2T
�(�+ 1)

)
, (6.49)

replacing (6.41), and as before T = 1/Lτ . The ground state is the nondegenerate �= 0
state, and it can be checked that the energy gap is �. The correlations continue to obey
(6.44), and so there is no long-range order in the classical Heisenberg chain, and the cor-
relation length = 1/�.

6.5 Mapping to classical field theories

Continuing our analysis parallel to that of the Ising model in Section 5.6, here we apply
the result of Sections 6.3 and 6.4 to obtain a representation of the original d-dimensional
quantum rotor model (6.1) as a classical statistical mechanics model in D dimensions.
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Here our analysis is actually simpler than that in Section 5.6 because we can keep the
imaginary time coordinate τ continuous at all stages. For the Ising model, we were forced
to discretize time into Mτ steps of size a: this is because the Ising spins could evolve only
in discrete steps. Here, we are dealing with continuous spin variables which can evolve in
continuous time, and so the limit a → 0 can be taken at the outset.

As in Section 5.6, we begin with the d-dimensional quantum rotor model, and then
apply the results of Sections 6.3 and 6.4 independently to the quantum rotor on each site i .
In particular, using the equivalence between (6.22) and (6.31) for N = 2, and that between
(6.45) and (6.46) for general N , we can now write

Z = Tr exp (−HR/T )

=
∏

i

∫
Dni (τ )δ(n2

i (τ )− 1) exp(−Sn),

Sn =
∫ 1/T

0
dτ

⎡⎣ 1

2J g̃

∑
i

(
dni (τ )

dτ

)2

− J
∑
〈i j〉

ni · n j

⎤⎦, (6.50)

along with the periodic boundary conditions ni (1/T )=ni (0). This expression is of the
needed form: it involves a summation over the orientation of a “classical” O(N ) spin
located on a D + 1-dimensional spacetime, with the temporal direction having the form
of a circle of circumference 1/T , i.e. the spacetime has the topology of a cylinder. After
discretizing the time direction, it takes the form of the model (3.2) considered in Chapter 3,
although we will not need to take that step here. A complementary mapping is obtained
by taking the spatial continuum limit of (6.50): then we obtain the D-dimensional O(N )
nonlinear sigma model in (2.12), with c given in (6.11) and the coupling g given by

g = N
√

g̃ad−1. (6.51)

Finally, we can apply the arguments of Chapter 3 to motivate the D-dimensional model
of the field φα (α= 1 . . . N ) given by (2.11) or (3.25). Just as was the case in Chapters 3
and 4, the quantum field theory in (2.11) will be the most convenient formulation to under-
stand the behavior of the quantum Ising and rotor models across the quantum critical point.

6.6 Spectrum of quantum field theory

We have finally assembled all ingredients to describe the quantum phase transition in the
quantum Ising and rotor models. We have argued that the quantum field theory (2.11)
completely describes all low energy properties in the vicinity of the quantum critical point:
in particular it captures the excitations of both phases and of the critical point.

Having used the classical analysis of Chapters 3 and 4 to motivate the “soft-spin” φα
continuum formulation in (2.11), let us now work backwards from this classical theory to
a Hamiltonian description in terms of a continuum quantum model. This will be a conve-
nient way of describing the ground state and its excitations. Just as was the case for the
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classical model, we can analyze the continuum quantum model perturbatively in powers
of the coupling u. As argued in Chapter 4, we can expect this perturbative computation to
fail at the quantum critical point for D< 4, and we will then have to invoke the renormal-
ization group analysis for a complete picture. However, in this section we will be satisfied
by the mean-field description at lowest order in u: as we saw in Chapter 3, this gives an
adequate description of both phases and of the critical point, failing mainly in the values
of the critical exponents for D< 4.

Applying the arguments used to obtain (6.50) in reverse, we conclude that (2.11) is
equivalent to the continuum quantum model with the Hamiltonian

H =
∫

dd x

{
1

2

[
π2
α + c2(∇xφα)

2 + rφ2
α(x)

]
+ u

4!
(
φ2
α(x)

)2
}
. (6.52)

Here πα(x, t) is the canonical momentum to the field φα , and they therefore satisfy the
equal-time commutation relations

[φα(x), πβ(x ′)] = iδαβδ(x − x ′). (6.53)

The remainder of this section analyzes the theory defined by (6.52) and (6.53), to leading
order in u. Our analysis is the quantum analog of the classical considerations in
Section 3.2.

6.6.1 Paramagnet

First, let us consider the paramagnetic phase, r > 0. The effective potential has a mini-
mum near φα = 0, and so the low-lying excitations are small fluctuations of φα about this
minimum. For these, we can ignore the quartic u term. Then (6.52) becomes a harmonic
theory, which we can diagonalize into normal modes just as we did earlier for (6.7). Now
the normal mode expansion in terms of harmonic oscillator operators is

φα(x) =
∫

ddk

(2π)d
1√
2εk

(
aα(k)e

i �k·�x + a†
α(
�k)e−i �k·�x),

πα(x) = −i
∫

ddk

(2π)d

√
εk

2

(
aα(�k)ei �k·�x − a†

α(
�k)e−i �k·�x), (6.54)

where the creation and annihilation operators satisfy the analog of the commutation rela-
tions in (6.9): [

aα(�k), a†
β(
�k′)] = δαβ(2π)dδd(�k − �k′),[

aα(�k), aβ(�k′)
] = 0. (6.55)

Again, these commutation relations ensure that (6.53) is obeyed, and the Hamiltonian is
just the sum of harmonic oscillators as in (6.10):

H =
∫

ddk

(2π)d
εk
[
a†
α(
�k)aα(�k)+ 1/2

]
. (6.56)
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The energy of these normal modes is

εk = (c2k2 + r)1/2. (6.57)

So our main result is that the low-lying excitations of the paramagnetic phase consist of N
particles, which transform under the fundamental representation of O(N ). This spectrum
is seen to be in perfect correspondence with earlier results from the g� 1 expansions. For
the N = 1 case, the particle in Section 5.2.1 is equivalent to the present excitations: both
are created by the action of the order parameter φα ∼ σ̂ z on the ground state. For N > 1,
we have the N -fold degenerate particles discussed in Section 6.1.

The energy gap above the paramagnetic state, from (6.57), is �=√r . Unlike our pre-
vious g� 1 analysis, we can now follow the evolution of this gap all the way up to the
quantum critical point at r = 0. This gap vanishes at the critical point as in (1.1), thus iden-
tifying the mean-field exponent zν= 1/2. Recall that we noted earlier in Section 2.1 that
the quantum Ising and rotor models have dynamic exponent z= 1.

6.6.2 Quantum critical point

Right at the critical point r = 0, we have our first result for the nature of the excitation
spectrum: there are N particles, all dispersing as

εk = ck. (6.58)

The linear dispersion is consistent with dynamic exponent z= 1. It should be contrasted
with the small momentum∼ k2 dispersion of particles in the paramagnetic phase in (6.57).
We see in Chapter 7 that the particles are not stable excitations of the critical point for
D< 4: the strong interactions from the quartic coupling u make them susceptible to decay
into multiple lower energy excitations, and the quasiparticle residue Z is equal to zero at
the quantum critical point. In contrast, the particles in (6.57) are stable in the paramagnetic
phase, with a nonzero Z .

6.6.3 Magnetic order

For r < 0, just as in Section 3.2, the potential in (6.52) is minimized at φα = N0δα,1, where
N0 was given in (3.23)

N0 =
√−6r

u
. (6.59)

We have arbitrarily chosen the magnetic order oriented along the α = 1 direction, without
loss of generality. Now let us write

φα(x) = N0δα,1 + φ̃α(x), (6.60)
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�Fig. 6.1 The longitudinal mode corresponding to the oscillations ofφ about the nonzero minimum value. There are also
N − 1 gapless transverse modes which move orthogonally to the plane of the page which are not shown.

and expand the Hamiltonian in (6.52) to quadratic order in the φ̃α . A straightforward com-
putation yields

H = 1

2

∫
dd x

{
N∑
α=1

(
π2
α + c2(∇x φ̃α)

2
)
+ 2|r |φ̃2

1

}
. (6.61)

We can now quantize just as in Section 6.6.1, and find two types of excitation:

εk = ck, N − 1 particles,

εk = (c2k2 + 2|r |)1/2, 1 particle. (6.62)

The gapless N − 1 particles are easy to identify: they are clearly the spin waves we met in
Section 6.2 in (6.11).

For N > 1, the single particle with energy gap
√

2|r | is not one we have met before.
It corresponds to small longitudinal oscillations of the φ1 field about the minimum at
φ1= N0, see Fig. 6.1. It is the analog of what is known in particle theory literature as the
Higgs particle. In general, this Higgs particle can decay into multiple lower-energy spin
waves. It has been argued that such decay processes dominate for d < 3, and the Higgs
particle is therefore not a stable excitation. However, in d = 3, the Higgs is stable; indeed
neutron scattering experiments [414] on TlCuCl3 have observed the Higgs excitation [430],
see Fig. 6.2.

For N = 1, we have only the particle excitation with the energy gap
√

2|r |. For d > 1,
we claim this is the same as the low-lying particle excitation found in Section 5.3.1 in
the small-g expansion. In the latter approach, the excitation was a “bubble” of a down
spin moving in a ferromagnetic background of up spins. In the present field-theoretical
analysis we have fluctuations of φ1 about N0, which also contribute to decrease in the local
ferromagnetic moment.

Finally, what about the case N = 1, d = 1? We found in the small-g expansion in
Section 5.3.2 that the stable excitations were domain walls or “kinks” that interpolated
between the ground states with magnetization ±N0. Here, such a domain wall involves
interpolating φ1 between the minima in the effective potential at ±N0 over the maximum
at φ1= 0, see Fig. 6.3. This domain wall is also a local minimum of the potential in the
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�Fig. 6.2 From Ref. [414]. Measurements of the excitation energies in TlCuCl3 across the quantum critical point induced by
applied pressure (horizontal axis). This transition is described by the O(3) quantum rotor model in d= 3. Below the
critical pressure, we are in the paramagnetic phase, and the three quasiparticle modes are shown by the symbols to
the left of the critical pressure. Above the critical pressure, in the magnetically ordered phase, the two spin wave
modes are shown by the symbols at zero energy. There is also an additional Higgs mode shown by the nonzero energy
symbols to the right of the critical pressure. The ratio of the energy of the Higgs mode to the triplet mode on the
paramagnetic side is close to

√
2, as predicted [430] by the ratio of (6.57) and (6.62).

�Fig. 6.3 A domain wall between two Ising ferromagnetic states interpolates from one minimum of the effective potential to
the other.

Hamiltonian but with a space-dependent φ1(x). Indeed, taking the variational derivative of
(6.52) with respect to variations in φ1(x), we obtain the saddle-point equation

−∂2
xφ1 − |r |φ1 + uφ3

1/6 = 0. (6.63)

This equation has the usual solutions φ1 = ±N0, but also the space-dependent solution

φ1(x) = ±N0 tanh
(
(x − x0)

√|r |/2), (6.64)

where x0 is abitrary. This is the domain wall centered at x = x0. Quantization of the motion
of x0 leads to the domain wall particle. The Higgs particle of small φ1 oscillations about
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±N0 is evidently unstable to decay into a pair of domain wall particles: we discussed this
phenomenon in Section 5.3.2. We study these domain walls more completely in Chap-
ter 10, where we will find that they are fermions, and provide a complete description of the
transition into the paramagnetic state.

Exercises

6.1 Establish the connection between the quantum rotor model of Section 1.4.2, and
the spin ladder model described in Section 1.4.3. Note that the matrix elements of
ni in the angular momentum eigenstates are equal to those of the position operator
between the spherical harmonics. Determine the spectrum of its angular momentum
�= 1 excitations to leading order in g. By mapping this spectrum to that of the spin
ladder, determine suitable values of K and g.

6.2 O(2) rotors with long-range interactions: An array of charged superconducting dots
at the sites i (with positions ri ) of a d-dimensional cubic lattice is described by the
Hamiltonian

H =
∑

i

n̂2
i

2C
+
∑
i< j

n̂i n̂ j
e∗2

|ri − r j | − J
∑
〈αα′〉

cos
(
φ̂i − φ̂ j

)
, (6.65)

where n̂i is the number operator for Cooper pairs on dot i (each Cooper pair has
charge e∗ = 2e), φ̂i is the conjugate phase operators, and the only nonvanishing com-
mutation relation is [

φ̂i , n̂ j

]
= iδαα′ . (6.66)

Assume we are in the large J superconducting phase where the phases are all aligned
at φ̂i = 0 (say). Obtain the Heisenberg equations of motion for φ̂i and n̂i , and lin-
earize them for small fluctuations about the ground state. By determining the normal
mode spectrum of these equations, obtain the long-wavelength form of the “plas-
mon” oscillations in d = 1, 2, 3.

6.3 Consider the two-particle sector of the quasiparticle excitations of the paramagnetic
state described in Section 6.6.1. The particles have a two-body interaction propor-
tional to u. Compute the matrix elements of this interaction 〈k1, α1|u|k2, α2〉. Set up
the two-body scattering problem, and discuss qualitative features of the low momen-
tum scattering amplitude in d = 1, 2, 3. Compare your results with those obtained in
the 1/g expansion of the Ising model in Exercise 5.5.2.



7 Correlations, susceptibilities, and the quantum
critical point

We have so far described our quantum phases and critical points in terms of the wave-
functions and energies of the eigenstates of the Hamiltonian. However, as we saw in our
treatment of D-dimensional classical statistical mechanics in Chapters 3 and 4, a more
subtle and complete characterization is obtained by considering correlation functions of
various observable operators. These correlation functions are also amenable to a Feynman
graph expansion and the renormalization group transformation, which was crucial in our
full treatment of the classical critical point. This chapter considers correlation functions of
the d-dimensional quantum model, and applies them to obtain an improved understanding
of the quantum phases and the quantum critical point.

Section 5.5.3 has already presented a detailed description of the connection between
the correlation functions of the D= 1 classical Ising chain and the single-site (i.e. d = 0)
quantum Ising model. This mapping is immediately extended to the general D case, fol-
lowing the reasoning in Sections 5.6 and 6.5. From this we obtain the fundamental result
that the two-point correlation function, C , of φα in (3.39) of the D-dimensional classi-
cal field theory (2.11) is precisely the same as the time-ordered correlation function of
the operator φα under the Hamiltonian H in (6.52). Specifically, the latter correlation
function is

Cαβ(x, τ1; y, τ2) =
⎧⎨⎩

1
Z Tr

(
e−H/T φ̂α(x, τ1)φ̂β(y, τ2)

)
for τ1 > τ2,

1
Z Tr

(
e−H/T φ̂β(y, τ2)φ̂α(x, τ1)

)
for τ1 < τ2,

(7.1)

where φ̂α(x, τ ) is defined by imaginary time evolution under the H:

φ̂α(x, τ ) ≡ eHτ φα(x)e−Hτ . (7.2)

This quantum correlator is then precisely the classical correlator C in (3.39) after the
coordinates (x, τ ) are mapped to the D-dimensional coordinate x in (3.39).

The quantum correlation function in (7.1) is thus a technically useful quantity. All the
methods developed in Chapters 3 and 4 can be immediately applied towards its computa-
tion: this leads to a very efficient method for determining key characteristics of the phase
diagram of the quantum model. However, C is not directly measurable in experiments on
the quantum system. The purpose of the first two sections below is to establish a connec-
tion between the imaginary-time correlation C and real-time correlation functions natu-
rally related to experimental probes. We then use these connections to better characterize
the phases and the critical point of the quantum model.

96
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7.1 Spectral representation

The first step in our analysis is to express C in (7.1) in the so-called spectral representation.
Actually, we have already used spectral representations at T = 0 in (5.54) and (6.40), and
present a more complete discussion here.

To clean up the notation, we drop the spin components in (7.1) because they play no
essential role, and consider the case N = 1. Because the correlator in (7.1) is periodic
in time with period 1/T , it is useful to define its Fourier transform at the “Matsubara”
frequency, ωn , which must be an integer multiple of 2πT , ωn = 2πnT , by

χ(x, ωn) ≡
∫ 1/T

0
dτeiωnτC(x, τ ; 0, 0)

= 1

Z

∫ 1/T

0
dτeiωnτTr

(
e−H/T φ̂(x, τ )φ̂(0, 0)

)
, (7.3)

where we have used spatial and temporal translation invariance to set the arguments of the
second φ̂ at the origin of spacetime.

Now imagine we know all the eigenstates and eigenenergies of the continuum Hamil-
tonian H in (6.52). In general, these states will occupy a continuum of energies, but by
placing the field theory in a d-dimensional cubic box of size L (we will eventually take
L → ∞) we can obtain a discrete spectrum in which the exact eigenstates are labeled by
the index m. Thus a complete set of orthonormal eigenstates is |m〉, and their eigenenergies
are m. These eigenstates satisfy the completeness identity:∑

m

|m〉〈m| = 1̂, (7.4)

where 1̂ is the identity operator. We now insert this identity before and after the first φ̂
operator to obtain

χ(x, ωn) =
∑
m,m′

〈m′|φ(x)|m〉〈m|φ(0)|m′〉
Z

∫ 1/T

0
dτe(iωn−Em+E ′m)τ−Em′/T

= 1

Z
∑
m,m′

〈m′|φ(x)|m〉〈m|φ(0)|m′〉
(
e−Em/T − e−Em′/T

)
(iωn − Em + Em′)

; (7.5)

in the last step we used the fact that eiωn/T = 1 at all Matsubara frequencies. We can now
write this in its final form, known as the spectral representation

χ(x, ωn) =
∫ ∞

−∞
d�

π

ρ(x,�)

�− iωn
, (7.6)

where the spectral density ρ(x,�) is given by

ρ(x,�) ≡ π

Z
∑
m,m′

〈m′|φ(x)|m〉〈m|φ(0)|m′〉

× (e−Em′/T − e−Em/T )δ(�− Em + Em′). (7.7)
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This spectral density is the key quantity connecting various correlation functions in both
real and imaginary time. Indeed, once we know the spectral density, we can easily obtain
all needed correlation functions. In particular, from (7.6) we immediately obtain the cor-
relation function at the Matsubara frequencies of imaginary time. The inverse problem is
much more difficult: from a knowledge of χ(x, ωn) at all ωn , it is not easy to find ρ(x,�).
Indeed, this problem is ill-posed: very small errors in the values of χ(x, ωn) lead to large
errors in ρ(x,�). However, when exact analytic expressions for χ(x, ωn) are available, it
is possible to determine ρ(x,�); we will use this method on a number of occasions.

7.1.1 Structure factor

Let us now turn to correlation functions in real time, t , which are directly observable in
the laboratory. We define time evolution of operators in the Heisenberg picture by (compare
(7.2))

φ̂α(x, t) ≡ eiHtφα(x)e
−iHt . (7.8)

Then the real-time analog of (7.1) is the correlation function

C̃αβ(x, t; x ′, t ′) = 1

Z Tr
(

e−H/T φ̂α(x, t)φ̂β(x
′, t ′)

)
. (7.9)

As above, we drop the indices α, β below, and deal only with the case N = 1.
The dynamic structure factor, S(k, ω) is defined by a Fourier transform of the real-time

correlation (compare (7.3)):

S(k, ω) =
∫

dd x
∫ ∞

−∞
dtC̃(x, t; x ′, t ′)e−i �k·(�x−�x ′)+iω(t−t ′). (7.10)

Note that the time integration extends over all real values of t , unlike the limited domain
between 0 and 1/T for imaginary time.

The dynamic structure factor is the quantity naturally measured in scattering experi-
ments, such as neutron, X-ray, or light scattering of solid-state systems. This becomes
clear from the spectral representation: proceeding as in (7.5) by repeated insertions of the
identity (7.4), it is easy to show that

S(k, ω) = 2π

ZV

∑
m,m′

e−Em′/T |〈m′|φ(�k)|m〉|2δ(ω − Em + Em′), (7.11)

where V is the volume of the system and φ(�k) is the spatial Fourier transform of the
operator φ(x). The expression (7.11) has the structure of a transition rate computed using
Fermi’s golden rule. The system is initially in the state |m′〉 with the thermal probability
e−Em′/T /Z; an external perturbation (the incoming photon or neutron) couples linearly
to the operator φ(�k), and (7.11) computes the transition probability per unit time to the
final state |m〉. The result is clearly proportional to the Born scattering cross-section of
the photon or neutron with momentum transfer �k and energy transfer ω. Note that we are
making the Born approximation only on the coupling between the probe and the system:
in principle, (7.11) treats all interactions within the system exactly.
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Comparing the expression (7.11) with the spectral density in (7.7), we obtain the exact
identity

S(k, ω) = 2

1− e−ω/T
ρ(k, ω), (7.12)

where ρ(k, ω) is the spatial Fourier transform of ρ(x, ω). This is the first of our needed
connections between real- and imaginary-time correlations, relating the dynamic struc-
ture factor to the spectral density, which in turn determines the correlator at the imaginary
Matsubara frequencies by (7.6). The identity (7.12) is one statement of the “fluctuation–
dissipation” theorem, and the reason for this terminology will become clearer in the fol-
lowing subsection.

7.1.2 Linear response

Now we consider another experimentally useful quantity: the time-dependent response to
an external perturbation. For simplicity, we consider an external time and space-dependent
“field” hα(x, t) which couples linearly to the field operator φ(x), and so changes the
Hamiltonian by

H→ H−
∫

dd xφα(x)hα(x, t). (7.13)

This perturbation is the analog of (3.40) in the classical model.
Because of the presence of hα(x, t), all observables now have space and time depen-

dence, and the system is no longer in thermal equilibrium. We would like to compute the
change in the observables from equilibrium to linear order in hα(x, t). This is given by a
very general expression known as the Kubo formula. Without any specific knowledge of
H, we can write the shift away from equilibrium for an arbitrary observable O(x) in the
following form

δ〈O(x)〉(t) =
∫

dd x ′
∫ ∞

−∞
dt ′χOα(x − x ′, t − t ′)hα(x ′, t ′), (7.14)

where the initial δ indicates “change due to external field,” and the expectation value on
the left-hand side is evaluated in the density matrix describing the state of the system in
the presence of h. The coefficient on the right-hand side is the dynamic susceptibility χ :
it is a characteristic of H in the absence of h, and so it is invariant under time and space
translations. Finally, the expression (7.14) must obey the important constraint of causality:

χ(x, t) = 0 for t < 0, (7.15)

because the response can only depend upon the values of h at earlier times. This identifies
χ as the so-called “retarded” response function.

The Kubo formula is a general result for the susceptibility χ . Its derivation involves a
simple exercise in first-order time-dependent perturbation theory: we start from an initial
thermal state described by a density matrix exp(−H/T )/Z , and compute its evolution
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under the change (7.13) by integrating the equations of motion to first order in h. The
computation is discussed further in Exercise 7.1, and leads to the main result

χOα(x − x ′, t − t ′) = iθ(t − t ′) 1

Z Tr
(

e−H/T [Ô(x, t), φ̂α(x ′, t ′)]
)
, (7.16)

where θ(t) is the unit step function, H is the Hamiltonian in the absence of h, and the time
evolution of the operators is specified as in (7.8).

For our subsequent analysis we focus on the observable O = φ, and drop the α index
by considering N = 1. Then the susceptibility of interest is

χ(x − x ′, t − t ′) = iθ(t − t ′) 1

Z Tr
(

e−H/T [φ̂(x, t), φ̂(x ′, t ′)]
)
. (7.17)

It is useful to consider this susceptibility in momentum and frequency space by defining

χ(k, ω) =
∫

dd x
∫ ∞

0
dt χ(x, t)e−i �k·�x+iωt . (7.18)

Note the limits on the time integration, which are a consequence of (7.16). Because of
these limits, if we consider ω as a complex number, the integral in (7.18) is well-defined
for ω in the upper half-plane: the oscillatory factor eiωt becomes a decaying exponential
for ω in the upper half-plane, and so the integral (7.18) converges. The function χ(k, ω)
is therefore an analytic function of ω in the upper half-plane, and we define its value on
the real ω axis by analytic continuation from the upper half-plane. Alternatively stated,
we map ω → ω + iη, where η is a small positive number, at intermediate stages of the
computation, and take the limit η→ 0 at the end; this procedure leads to convergent results
at all stages.

Let us now obtain a spectral representation of (7.17) and (7.18) as before. We insert (7.4)
around the φ operators, and perform the Fourier transform to obtain

χ(k, ω) = 1

ZV

∑
m,m′

|〈m′|φ(k)|m〉|2
(
e−Em′/T − e−Em/T

)
ω + iη − Em + Em′

(7.19)

in the limit η→ 0+. Now comparing (7.19) with (7.7), we obtain our main result

χ(k, ω) =
∫ ∞

−∞
d�

π

ρ(k,�)

�− ω − iη
(7.20)

connecting the retarded response function to the spectral density. The relations (7.6), (7.12),
and (7.20) are the key results of this section, connecting the spectral density to the imaginary-
time correlations, the real-time dynamic structure factor, and retarded susceptibility. Also
note that χ(k, ω= 0) ≡ χ(k) is the static susceptibility.

A key feature of our results is the close similarity between (7.6) and (7.20). They show
that the imaginary-time susceptibility χ(k, ωn) and the retarded response function χ(k, ω)
are part of the same analytic function χ(k, z) defined by

χ(k, z) =
∫ ∞

−∞
d�

π

ρ(k,�)

�− z
(7.21)

for a general complex frequency z. For z= iωn on the imaginary axis, χ(k, z) is the
imaginary-time correlation at the Matsubara frequencies. And for z=ω + iη, just above
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the real axis, we obtain the retarded response functions of the Kubo formula. Thus we can
map the imaginary-time correlation to the retarded response function by analytic continu-
ation. Also, our notation for the frequency argument of χ , ωn vs. ω, implicitly determines
whether we are considering response functions on the imaginary or real axis.

For the case where the Kubo formula (7.17) involves the commutator of a field with its
Hermitian conjugate, the associated spectral density ρ(k,�) in (7.7) is real. Then we can
write (7.20) as

ρ(k, ω) = Imχ(k, ω) = (1− e−ω/T )

2
S(k, ω), (7.22)

where we used (7.12). The structure factor on the right-hand side is a measure of fluctua-
tions of the field φ, while Imχ(k, ω)measures the response of φ which is out of phase with
the applied field (from (7.14)). As in the damped harmonic oscillator, it is the out-of-phase
component which measures the energy absorbed by the system from the external field, thus
justifying the name “fluctuation–dissipation” theorem.

We have now finally assembled all the tools necessary to make full use of the connection
between classical and quantum critical points. The following sections contain the payoff
in our understanding of quantum phase transitions. We are now able to take the imaginary-
time “classical” correlations in D dimensions discussed in Chapters 3 and 4 and use them
to understand the properties of the quantum Ising and rotor models of Chapters 5 and 6 at
a deeper level.

7.2 Correlations across the quantum critical point

This section addresses the same problem as Section 6.6: a description of the spectrum of the
quantum field theory (6.52) across the quantum critical point. Rather than using the pertur-
bative arguments of Section 6.6, here we are able to go further by analytically continuing
the RG-improved results of Chapter 4. As in Section 6.6, we consider the paramagnetic
phase, the magnetically ordered phase, and the quantum critical point in turn.

7.2.1 Paramagnet

We begin with the Gaussian result (3.44) for the D-dimensional classical theory. Analyti-
cally continuing this to the quantum theory in d dimensions, we map k2 → c2k2−ω2, and
so obtain the retarded response function

χ(k, ω) = 1

c2k2 + r − (ω + iη)2
. (7.23)

Taking its imaginary part, we have the spectral density

ρ(k, ω) = A
2εk

[δ(ω − εk)− δ(ω + εk)], (7.24)
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where εk = (c2k2 + r)1/2 is the same dispersion relation as in (6.57), and we have intro-
duced a “quasiparticle residue” A= 1. Thus the spectral density has delta functions at
precisely the energy of the N -fold degenerate quasiparticles of Section 6.6.

Now let us move beyond the Gaussian theory, and look at perturbative corrections in
u. Then the D-dimensional susceptibility is given by (3.45), which includes a self-energy
�(k). The perturbative expression for the self-energy to order u2 was given in (4.35). The
one-loop terms for the self-energy only contribute a renormalization of r , and the effects
we are interested in arise from the analytical continuation of (4.35) under k2 → c2k2−ω2,
so that

χ(k, ω) = 1

c2k2 + r − (ω + iη)2 −�(k, ω) . (7.25)

We continue to identify the position of the pole of χ(k, ω) (if present) as a function of ω
as a determinant of the spectrum of the quasiparticle, and the residue of the pole as the
quasiparticle residue A. The real part of the self-energy �(k, ω) will serve to modify the
quasiparticle dispersion relation, and the value of A, but will not remove the pole from
the real ω axis. To understand possible decay of the quasiparticle, we need to consider the
imaginary part of the self-energy.

We made general arguments for the absolute stability of the quasiparticle, provided that
k is not too large, in Chapters 5 and 6, and these continue to apply here. Their consequence
here is the relation

Im�(k, ω = εk) = 0 (7.26)

at T = 0. This can be explicitly verified by a somewhat lengthy evaluation of (4.35), and an
analytic continuation of the result: see Exercise 7.2. An immediate consequence is that the
dynamic susceptibility has a delta function contribution which is given exactly by (7.24).
All the higher order corrections only serve to renormalize r , and reduce the quasiparticle
residue A from unity; the dispersion relation continues to retain the form in (6.57) by
relativistic invariance. The stability of the delta function reflects the stability of the single
quasiparticle excitations: a quasiparticle with momentum k not too large cannot decay into
any other quasiparticle states and still conserve energy and momentum.

However, �(k, ω) does have some more interesting consequences at higher ω. We dis-
cussed in Sections 5.2.2 and 6.1 the existence of multiparticle continua. Here ω is the
energy inserted by φ into the ground state, and so for ω> pr , with p integer, we expect
the creation of p particle states. The global O(N ) or Z2 symmetry actually restricts p to
be odd, and so the lowest energy multiparticle states that will appear in χ are at ω= 3r .
Consonant with this, we find that the self-energy acquires a nonzero imaginary part at zero
momentum only for ω> 3r , i.e. there is a threshold for three-particle creation at ω= 3r .
The form of Im�(0, ω) at the threshold can be obtained by analytically continuing (4.35):
this is explored in Exercise 7.2 and leads to

Im�(0, ω) ∝ sgn(ω)θ(|ω| − 3r)(|ω| − 3r)(d−1) (7.27)

for ω around 3r .
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�Fig. 7.1 The spectral density in the paramagnetic phase at T = 0 and a small k. Shown are a quasiparticle delta function at
ω= εk and a three-particle continuum at higher frequencies. There are additional n-particle continua (n ≥ 5 and
odd) at higher energies, which are not shown.

Taking the imaginary part of (7.25), we obtain the generic form of the spectral density
shown in Fig. 7.1.

We now present a simple physical argument for the nature of the threshold singularity in
(7.27), to supplement the more formal computation in Exercise 7.2 from (4.35). Just above
threshold, we have a particle with energy 3r + δω which decays into three particles with
energies just above r . The particles in the final state will also have a small momentum, and
so we can make a nonrelativistic approximation for their dispersion: r+c2k2/(2r). Because
the rest mass contributions, r , add up to the energy of the initial state, we can neglect them
from now. The decay rate, by Fermi’s golden rule is proportional to the density of final
states, which yields

Im�(0, 3r + δω) ∝
∫ δω

0
d�1d�2

∫
dd p

(2π)d
ddq

(2π)d
δ

(
�1 − c2 p2

2r

)

×δ
(
�2 − c2q2

2r

)
δ

(
δω −�1 −�2 − c2(p + q)2

2r

)
∼ (δω)(d−1), (7.28)

in agreement with (7.27).
We expect this perturbative estimate of the threshold singularity to be exact in all d ≥ 2.

In d = 1, there are strong final state corrections from the interactions between the quasi-
particles, and these are better explored using the methods of Chapter 10.

7.2.2 Quantum critical point

Here our present methods yield a qualitatively new result, beyond the reach of the pertur-
bative arguments of Chapters 5 and 6.

We analytically continue the classical critical point result in (4.34) to obtain the dynamic
susceptibility at the quantum critical point at T = 0:

χ(k, ω) ∼ 1

(c2k2 − ω2)1−η/2
. (7.29)
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�Fig. 7.2 The spectral density at the quantum critical point. Note the absence of a quasiparticle pole, like that in Fig. 7.1

The key feature differentiating this result from (7.23) is that this susceptibility does not
have poles on the real frequency axis. Rather, there are branch cuts going out from
ω = ±ck to infinity. Taking the imaginary part, we obtain a continuous spectral weight
at |ω|> ck

Imχ(k, ω) ∼ sgn(ω)θ(|ω| − ck)

(ω2 − c2k2)1−η/2
, (7.30)

see Fig. 7.2. The absence of a pole indicates that there are no well-defined quasiparticle
excitations. Instead we have a dissipative continuum of critical excitations at all |ω|> ck:
any perturbation will not create a particle-like pulse, but decay into a broad continuum.
This is a generic property of a strongly-coupled quantum critical point.

More generally, we can use the scaling from (4.42) to describe the evolution of the spec-
trum as r approaches the critical point at r = rc from the paramagnetic phase at T = 0.
Because of the relativistic invariance, the energy gap �∼ ξ−z with z= 1, where the cor-
relation length ξ diverges as in the classical model ξ ∼ (r − rc)

−ν . In terms of �, analytic
continuation of (4.42) yields

χ(k, ω) = 1

�2−η F̃

(
ck

�
,
ω

�

)
. (7.31)

In the paramagnetic phase, the N quasiparticles have dispersion εk = (c2k2 +�2)1/2 (the
momentum dependence follows from relativistic invariance). Comparing (7.31) with (7.24),
we see that the two expressions are compatible if the quasiparticle residue scales as

A ∼ �η, (7.32)

so the quasiparticle residue vanishes as we approach the quantum critical point. Above the
quasiparticle pole, the susceptibility of the paramagnetic phase also has p particle con-
tinua having thresholds at ω= (c2k2 + p2�2)1/2, with p ≥ 3 and p odd. As �→ 0 upon
approaching the quantum critical point, these multiparticle continua merge to a common
threshold at ω= ck to yield the quantum critical spectrum in (7.30).

7.2.3 Magnetic order

Now r < rc, and we have to expand about the magnetically ordered saddle point (6.60).
The first important consequence of the magnetic order is that the nonzero limit in (1.14)
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combines with (7.10) to yield a delta function in the dynamic structure factor

S(k, ω) = N 2
0 (2π)

d+1δ(ω)δd(k)+ . . . , (7.33)

where the elli pses represent contributions at nonzero ω. This delta function is easily
detectable in elastic neutron scattering, and is a clear signature of the presence of mag-
netic long-range order.

We now discuss the finite ω contributions to (7.33). We assume the ordered moment is
oriented along the α= 1 direction. From Gaussian fluctuations about the saddle point in
(6.60) we obtain, as in (6.61), susceptibilities which are diagonal in the spin index, with
the longitudinal susceptibility

χ11(k, ω) = 1

c2k2 − (ω + iη)2 + 2|r | , (7.34)

and the transverse susceptibility

χαα(k, ω) = 1

c2k2 − (ω + iη)2
. α > 1 (7.35)

The poles in these expressions correspond to the N − 1 spin waves and the Higgs particle
of Section 6.6.3.

It now remains to study the perturbative corrections to (7.34) and (7.35). The N −1 spin
waves are expected to be generically stable and well-defined, as they owe their existence
to the broken symmetry. We study the general structure of the corrections to (7.35) in
Chapter 8. In contrast, as we noted in Section 6.6.3, there is nothing protecting the stability
of the longitudinal Higgs particle, and we now examine its decay into multiple spin-wave
excitations.

Let us return to the classical perspective, and expand the action in (3.25) in powers of
φ̃α defined in (6.60); then the corrections to (6.61) are

Sφ =
∫

d Dx

{
1

2

[
(∇x φ̃α)

2 + 2|r |φ̃2
1

]
+
√ |r |u

6
φ̃1φ̃

2
α +

u

4! (φ̃
2
α)

2

}
. (7.36)

Note the new cubic term, which plays a key role in our considerations below. We would like
to understand the influence of the nonlinearities in (7.36) on the pole at ω= (c2k2+2|r |)1/2
in (7.35). For this purpose, let us introduce the self-energy of the longitudinal mode

χ11(k) = 1

k2 + 2|r | −�11(k)
. (7.37)

To lowest order in u, the leading term in the self-energy comes from two cubic interactions,
as shown in Fig 7.3, and evaluates to

�11(k) = (N − 1)|r |u
3

�(k),

�(k) ≡
∫

d D p

(2π)D

1

p2(p + k)2
= CD

k4−D
, (7.38)
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�Fig. 7.3 Leading diagram for the self-energy of the longitudinal response. All internal lines involve propagators of φ̃α with
α > 1.

�Fig. 7.4 More singular terms in the self-energy of the longitudinal response. Again all internal lines involve propagators of φ̃α
withα > 1.

where in the last step we have given the answer for D< 4, with CD a phase space factor
dependent upon the spacetime dimension (C3= 1/8). For D> 4, the answer depends upon
the spacetime dimension, and at small k we can simply take �(k) to be a constant. For
D< 4, this contribution to the self-energy is divergent in the limit of low momentum. This
divergence is a consequence of the gapless spin-wave modes, which apparently have a
singular effect on the longitudinal response. This divergence should raise the concern that
higher order terms in the self-energy will be even more singular. This is indeed the case,
and we have shown some of the more singular graphs in Fig. 7.4. Fortunately, it is possible
to re-sum the most singular terms at each order in u because they form a geometric series.
We find

�11(k) = (N − 1)|r |u
3

�(k)

[
1− (N + 1)u

6
�(k)+ (N + 1)2u2

36
�2(k)+ . . .

]

= (N − 1)|r |u�(k)/3
1+ (N + 1)u�(k)/6

. (7.39)

Now note that for d < 3, the divergence of�(k → 0) and (7.39) imply that�11(k → 0)
is a finite constant. However, there are many other contributions to �11 which yield a
constant, and so this raises a natural concern on the extent to which we can trust (7.39). We
need a parameter other than the nonlinearity u to systematically control the computation.
A convenient choice is to take N , the number of components of φα , and to take the large
N limit. We study this expansion in much greater detail in Part III, starting in Chapter 11.
Here the N →∞ limit has to be taken after defining u= u/N , and keeping r and u fixed.
It can then be shown that (7.39) is the leading contribution to �11 in this limit, and that all
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other corrections are suppressed by a factor of 1/N (see Exercise 7.3). Taking the N →∞
limit in (7.39), we now write

�11(k) = |r |u�(k)/3
1+ u�(k)/6

. N →∞ (7.40)

Let us now analytically continue (7.37) and (7.40) to real frequencies to obtain the
retarded dynamic susceptibility. For d > 3, where we can take �(k) to be a constant,
there is little effect apart from a renormalization of r , and the “Higgs” pole in (7.17)
survives. However, there is a much stronger effect in d < 3 for N > 1. Here, after map-
ping k2 → c2k2 − ω2, we have at low momenta and frequency

χ11(k, ω) = 1

c2k2 − ω2 + 12|r |
Cd+1u

(c2k2 − ω2)(3−d)/2
. N →∞ (7.41)

The pole at the position of the Higgs energy ω= ± (c2k2 + 2|r |)1/2 has disappeared, and
we only have a branch cut having its onset at the spin-wave energy ω= ± ck. Thus, for
d < 3 and N > 1, there is no Higgs particle, and only a broad continuum of multiple spin-
wave excitations in the longitudinal response. Note also that, unlike the Gaussian result
in (7.34), the static longitudinal susceptibility χ(k → 0, ω= 0) ∼ kd−3 is divergent;
this is also a generic consequence [372, 426, 559] of the breaking of the continuous O(N )
symmetry in D< 4. The Higgs particle does survive at N = 1 for all d > 1, corresponding
to the excitation studied in Section 5.3.1.

The d = 3 case is marginal, and we will not evaluate the detailed form for �(k) in this
case. The Higgs particle is at the boundary of stability, and this accounts for its observation
in TlCuCl3, as discussed in Section 6.6.3.

Exercises

7.1 Write down the equation for motion of the density matrix, and integrate it to first
order in the external perturbation. Hence obtain the Kubo formula (7.16).

7.2 Evaluate the self-energy of the quasiparticle in the paramagnetic phase by computing
the Feynman graph in (4.35). Analytically continue the result to real frequencies to
obtain (7.26) and (7.27).

7.3 Write down the complete expression for �11(k) to order u2. Show that the result
agrees with (7.40) in the limit N →∞ at fixed N = Nu.
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This chapter continues our study of d-dimensional quantum field theory (2.11) by a closer
examination of the structure of the magnetically ordered phase. The considerations below
apply also to the D-dimensional classical model (3.25), and given our improved under-
standing of the close connections between the two models in Chapter 7, we will freely
move back-and-forth between the classical and quantum cases.

We have so far characterized the magnetically ordered phase by the presence of long-
range correlations in the two-point correlations of the order parameter field φα . After defin-
ing the two-point correlation function (without subtraction of the disconnected pieces as in
(3.39)) by

Cαβ(x − x ′) = 〈φα(x)φβ(x ′)〉, (8.1)

the magnetically ordered phase was identified by

lim|x |→∞Cαβ(x) �= 0. (8.2)

The right-hand side is the square of the spontaneous magnetization N0. The existence of
a nonzero N0 signals a spontaneous breakdown of the O(N ) symmetry of the underlying
degrees of freedom.

While this definition is formally adequate, we now explore another definition which
is closer to our physical intuition on the structure of a magnetically ordered state. We
often think of ordered phases as having an intrinsic “rigidity,” i.e. they respond little to
external perturbations, and prefer to revert to their original configuration. Thus, a solid,
with broken translational symmetry, is resistant to shear deformations, in contrast to a
liquid which preserves translational symmetry and shears freely. This chapter provides
a characterization of the rigidity of the magnetically ordered phase of the quantum field
theory (2.11).

8.1 Discrete symmetry and surface tension

Let us consider the Ising case first, as described by the N = 1 case of the d-dimensional
quantum Hamiltonian in (6.52). The key idea is to consider changes in its total free energy
under changes of the boundary conditions. We have so far considered infinite systems, but
now let us place the field theory on a d-dimensional cubic box of side L . We single out a
preferred direction, say x1, and take periodic boundary conditions of φ along all the (d−1)
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transverse directions x⊥. Let 0 ≤ x1 ≤ L , and we allow φ to vary freely as a function of
x1 but modify the Hamiltonian by the following boundary terms

H→ H− h�

∫
dd−1x⊥φ(x1 = 0, x⊥)− hr

∫
dd−1x⊥φ(x1 = L , x⊥). (8.3)

In other words, we apply a field h� on the left edge, and a field hr on the right edge.
Now follow the distinct behaviors of the system in the limit of large h�= hr , from that

for h�= − hr .
For h�= hr , the fields at the edges will pin φ along a common direction. In the para-

magnetic phase, the memory of this boundary pinning decays in a length of order ξ as
we move into the bulk of the system. However, in the magnetically ordered phase, the
“rigidity” ensures that preferred edge orientations of φ propagate all the way across the
system. Because the two edges are oriented in the same way, we will clearly have a smooth
polarization of the spontaneous magnetization along the common direction.

In contrast, for h�= − hr , we get new physics only on the magnetically ordered side.
Now the magnetic polarizations along the edges are oriented in opposite directions, and
they will have to reconcile this incompatibility somewhere in the middle of the system.
A domain wall, like that in (6.64), is forced in by the boundary conditions, and this will
clearly increase the free energy of the system.

It is now clear that the free energy difference, �F , between the two boundary condi-
tions contains useful information. It is dominated by the presence of the domain wall for
the h�= − hr boundary conditions, and includes information on all the quantum and ther-
mal fluctuations of the domain wall around the mean-field configuration of (6.64). From
the considerations above, we can conclude that the free energy difference behaves in the
following manner in the limit of large L

�F =
{ ∼ e−L/ξ for r > rc

� Ld−1 for r < rc
. (8.4)

The exponential decay in the paramagnetic phase characterizes its insensitivity to changes
in the boundary conditions. In contrast, in the magnetically ordered phase, the rigidity
forces in a domain wall whose free energy is proportional to Ld−1, the volume of its trans-
verse dimensions. The proportionality constant is the surface tension, �. The above defi-
nition makes it clear that � has dimensions of energy/(length)(d−1).

We can now use the scaling arguments of Chapter 4 to deduce the behavior of � as we
approach the critical point. The surface tension is directly related to the free energy F =
− T lnZ , and so its transformations under the renormalization group follow directly from
that of the partition function. As noted in (4.49), the RG is defined to leave Z invariant,
and so F scales, as expected, like an energy; in other words

dim[F ] = z, (8.5)

where z is called the dynamic critical exponent. We define z more carefully in Section 10.2,
and all the models considered so far have z= 1. Hence, from (8.4), we deduce that

dim[�] = d + z − 1. (8.6)



110 Broken symmetries

From this it follows that � vanishes as we approach the critical point r ↗ rc as

� ∼ ξ−(d+z−1). (8.7)

We can actually say more for the special case of the quantum Ising model under consider-
ation. Here z= 1, and energy scales are connected to length scales by the velocity c. After
use of this energy scale, there are no arbitrary scales left in the definition of �, and so we
can conclude that

� = ϒ1�cξ−d , (8.8)

where ϒ1 is a universal dimensionless number, i.e. it is the same for all quantum Ising
models at their quantum critical point.

The above arguments also allow us to deduce the behavior of �F precisely at the quan-
tum critical point r = rc. Here the only available length scale is L , and so �F ∼ L−z . For
the z= 1 quantum Ising model

�F = ϒ2�c/L , (8.9)

where, again, ϒ2 is a universal constant.

8.2 Continuous symmetry and the helicity modulus

We now generalize the considerations of Section 8.1 from N = 1 to N ≥ 2. The presence of
a continuous O(N ) symmetry dramatically modifies the response to changes in boundary
conditions. Rather than having a sharp domain wall between oppositely oriented states,
the optimal state can greatly lower its free energy by spreading out the difference between
the two edges over a gradual change in orientation of the magnetic order. Such a gradual
change was clearly not an option for the Ising case.

We present our remaining discussion for N = 2, although all the results below have an
immediate generalization to N > 2. We take the same geometry as in Section 8.1, and write
the boundary fields as

H→ H− h�α

∫
dd−1x⊥φα(x1 = 0, x⊥)− hrα

∫
dd−1x⊥φα(x1 = L , x⊥). (8.10)

Let us assume the fields have a common large magnitude h, and differ only in their orien-
tations:

h�α = h0(cos(θ�), sin(θ�)), hrα = h0(cos(θr ), sin(θr )). (8.11)

Thus we have imposed a twist in the phase of the XY order parameter. The twisted bound-
ary conditions are clearly characterized by the angular difference�θ = θr−θ�. Clearly, we
want �θ to have the smallest possible absolute value, and so we define the phases so that
−π ≤ �θ ≤ π . Now we can expect that the lowest free energy state will have the small-
est possible local phase gradient. So it pays to spread the twist across the entire sample,
yielding a local phase gradient of�θ/L . This phase gradient costs free energy: for large L
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the phase gradient is small, and so we can expand the local free energy density in powers
of �θ/L . By time-reversal symmetry, the free energy can only involve even powers of the
phase gradient, and so we conclude that the cost to the free energy density is proportional
to (�θ/L)2. Integrating the free energy density over the entire sample, we conclude that
for r < rc

�F = ρs

2

(
�θ

L

)2

Ld . (8.12)

This equation replaces the result (8.4) for N ≥ 2. There is no change in the results of
Section 8.1 between N = 1 and N > 1 for r ≥ rc.

The coefficient in (8.12) defines the helicity modulus, ρs . Depending upon the physical
context, it is also referred to as the spin stiffness or (as we will see below), the superfluid
density. The helicity modulus is nonzero only in the magnetically ordered phase, and is a
measure of the rigidity of the response to twists in the phase of the order parameter.

The behavior of ρs as we approach the critical point can be deduced as in Section 8.1
We have

dim[ρs] = d + z − 2, (8.13)

and hence the helicity modulus vanishes as ρs ∼ ξ−(d+z−2). For z= 1, we have

ρs = ϒ3�cξ−(d−1), (8.14)

where ϒ3 is a universal number.
Our considerations so far have defined ρs in terms of the full free energy, which is com-

puted by integrating out all degrees of freedom. However, the structure of (8.12) suggests
that we can use the RG to obtain a local definition of ρs after a partial integration of the
degrees of freedom. We have seen above that the dominant low-energy excitations in the
magnetically ordered phase are slow twists in the orientation of the local magnetic order.
In RG terms, this means that after we integrate out to length scales longer than the spin
correlation length ξ , the state of the system can be characterized by a slowly varying field
θ(r), representing the local twists in the order parameter. Thus, at long scales, we have an
effective Hamiltonian for an emergent field θ(x), which is given by

Heff = ρs

2

∫
dd x (∇xθ)

2. (8.15)

For the case of the quantum rotor model, we can use the relativistic invariance of (2.11) to
write down an effective Lagrangian for θ(x, τ ):

Leff = ρs

2

∫
dτ
∫

dd x

{
(∇xθ)

2 + 1

c2 (∂τ θ)
2
}
. (8.16)

So we have a simple and powerful result. At length scales larger than ξ , the quantum sta-
tistical mechanics of the magnetically ordered phase is described by quantum and thermal
fluctuations of the field θ(x, τ ), which is controlled by the Gaussian quantum field theory
in (8.16). The value of ρs in (8.16) is exactly the same as that in (8.12), and so its deter-
mination requires a full computation in the underlying field theory. The following section
provides a specific method by which ρs can be computed perturbatively from (2.11).
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8.2.1 Order parameter correlations

The structure of (8.15) also allows us to make a general and exact statement about the two-
point correlation functions of the field φα . As before, we derive the results for N = 2, but
the final result holds for all N .

We assume the magnetic order is in the α= 1 direction, with 〈φ1〉= N0. We now com-
pute the transverse susceptibility, χ22(k, 0) exactly in the limit k → 0; this susceptibility
will also be denoted as χ⊥. It is the response of the system to a very slowly varying static
field, h(x), which couples linearly to the α= 2 component of φα . The system will respond
to such an external field by a slowly varying shift in the angular orientation of the order
parameter, and the net energy cost will change from (8.15) to

Heff =
∫

dd x
[ρs

2
(∇xθ)

2 − hN0 sin θ
]
. (8.17)

Minimizing the energy cost with respect to variations in θ to linear order in h, we obtain
in Fourier space

〈φ2(k)〉 ≈ N0θ(k)

= N 2
0

ρsk2
h(k). (8.18)

This gives us the exact result

lim
k→0

χ⊥(k, 0) = N 2
0

ρsk2
. (8.19)

8.3 The London equation and the superfluid density

Here we use Leff in (8.16) as an effective description of the model of N = 2 quantum rotors
discussed in Section 1.4.3. There, we met the Hamiltonian (1.35) as a description of bosons
hopping between potential minima at the site i . These bosons could represent either Cooper
pairs of electrons in a superconducting array of Josephson junctions, or ultracold bosonic
atoms in an optical lattice. It is useful to imagine that each boson carries an electrical
charge e∗. For the Cooper pair, e∗ = 2e; the ultracold atoms are neutral, but it is useful to
endow them with a nonzero charge e∗ as a technical device for characterizing the physical
properties of the ordered state.

We now place the rotor model (1.35) in an external magnetic field associated with the
vector potential �A(x). The coupling of the underlying quantum particles to this vector
potential implies that the boson hopping term exp(i(θ j − θi )) in (1.35) will be modified by
the Aharanov–Bohm phase factor to

exp

(
iθ j − iθi − i

e∗

�c�

∫ x j

xi

d �x · �A(x)
)
. (8.20)
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Here c� is the actual velocity of light, not to be confused with the velocity c appearing
in the field theory (2.11). Naturally, the structure of (8.20) was fixed by requiring that the
theory be invariant under electromagnetic gauge transformations under which

�A → �A +∇xϑ, θi → θi + e∗

�c�
ϑ, (8.21)

where ϑ is an arbitrary gauge transformation. All our subsequent analyses of the rotor
model (1.35) should respect this gauge invariance: its mapping to the field theory (2.11),
and the subsequent RG procedure by which (8.16) is derived as the low-energy effective
field theory of the ordered phase. This gauge invariance immediately allows us to deduce
the form of the effective theory Leff in the presence of the externally imposed �A(x): we
simply demand that the effective theory also be gauge invariant, and this leads to the unique
result

Leff = ρs

2

∫
dτ
∫

dd x

{(
∇xθ − (e∗/(�c�)) �A

)2 + 1

c2 (∂τ θ)
2
}
. (8.22)

With (8.22) in our hands, we are now in a position to compute a number of interest-
ing response functions of the quantum rotor model. In particular, we can easily obtain the
electrical current �J that is induced by the external vector potential �A. As in standard elec-
tromagnetic theory, the current operator �J is defined by the functional derivative of the
action with respect to �A:

�J = −c�
δS
δ �A , (8.23)

which for (8.22) yields

�J = ρs
e∗

�

(
∇xθ − e∗

�c�
�A
)
. (8.24)

Just as in Section 7.1.2, we are now ready to define the expectation value of the current
using linear response in the perturbation imposed by �A, and to compute the associated
response function using a Kubo formula. Thus a Fourier transform of (7.14) yields (after
generalizing to both a spatial and imaginary time dependence in both �J and �A):

〈Ja(k, ωn)〉 = Kab(k, ωn)Ab(k, ωn), (8.25)

where a, b= x, y, . . . are indices representing spatial directions, and Kab is the linear
response function for the electrical current, which is often referred to as the current–current
correlation function. This function plays an important role in characterizing the properties
of the ordered state.

It is now a simple matter to evaluate the expectation value of (8.24) under the Gaussian
theory (8.22) and so obtain the low-energy structure of Kab in the ordered state; we find

Kab(k, ωn) = −ρse∗2

�2c�

(
δab − kakb

k2 + ω2
n/c

2

)
. (8.26)
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This result has a number of important physical implications, which we will now describe.
Before turning to these, let us note that (8.26) can be used to obtain another formal defini-
tion of ρs :

ρs = �
2c�

(d − 1)e∗2
lim
k→0

lim
ω→0

(
δab − kakb

k2

)
Kab(k, ω). (8.27)

The order of limits is significant, and this relationship identifies the helicity modulus as the
zero momentum limit of the static current–current correlation function. We use (8.27) to
provide an explicit computation of ρs in the quantum field theory of the rotor model.

Let us evaluate (8.26) at zero frequency, and insert the result into (8.9). In the Coulomb
gauge ∇x · �A= 0, we obtain

�J = −ρse∗2

�2c�
�A. (8.28)

This is the important London equation, characterizing the electromagnetic response of a
superconductor. It combines with the familiar Maxwell equation for the magnetic field
�B=∇x × �A

∇x × �B = 4π

c�
�J , (8.29)

to yield the equation which predicts the Meissner effect:

∇2
x
�B = 1

λ2
L

�B. (8.30)

The solution of this equation near the boundary between the system and free space shows
that the �B field decays exponentially to zero at a length-scale λL . This is the London
penetration depth, given here by

1

λ2
L

= 4πρse∗2

�2c2
�

. (8.31)

This is an exact relationship between the penetration depth and helicity modulus of the
superconductor. Note that it involves only fundamental constants of nature, and ρs is the
only material-dependent quantity. Thus, ρs provides a complete description of the response
to external magnetic fields, and can be directly measured by observations of the London
penetration depth.

Finally, (8.25) and (8.26) also contain information on the electrical conductivity of the
ordered phase. Recall that we can also induce an electrical field using the vector potential
by making it time-dependent: �E = −(1/c�)(∂ �A/∂t). So from (8.26) we see that the elec-
trical current is given by �J = σ �E , where the electrical conductivity is given by (for real
frequencies ω, and for a spatially isotropic system)

σ(ω) = c�
iω

Kxx (k → 0, ω). (8.32)

From (8.26), we have

Re[σ(ω)] = ρse∗2

�2
δ(ω). (8.33)
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The zero frequency delta function shows why the “magnetically” ordered phase of the
O(2) rotor model is a superconductor. For neutral particles, we can use similar arguments
to deduce the response to an external force (rather than an electrical field), and so identify
this phase as a superfluid. The relationship (8.33) also shows why ρs is identified as the
superfluid density.

8.3.1 The rotor model

Let us now evaluate the current response function for the quantum field theory (2.11). We
proceed using the perturbative expansion described in Sections 6.6.3 and 7.2.3, and obtain
the result to leading order in u. Corrections at higher order in u are discussed later in more
detail in Chapter 15.

For N = 2, we can introduce a complex fieldψ =φ1+iφ2. Then coupling to the external
vector potential is obtained by requirements of gauge invariance, under which the spatial
gradient term in the action is modified by

|∇xψ |2 → |(∇x − i(e∗/(�c�)) �A)ψ |2. (8.34)

Evaluating the current from (8.23), we obtain

�J = e∗

i�

(
ψ∗∇xψ − ∇xψ

∗ψ
)− e∗2

�2c�
2|ψ |2 �A. (8.35)

We can now evaluate 〈 �J 〉 using the Kubo formula, using the perturbation theory of
Section 6.6.3. We parameterize ψ = N0(1 + ρ)eiθ , and expand the resulting action in
powers of ρ. At leading order, we find that the effective action for θ has exactly the form
of (8.22), while the current (8.35) reduces to (8.24), provided that we identify

ρs = 2N 2
0 . (8.36)

The fluctuations in ρ lead to corrections to this expression at higher order in u, as described
in Chapter 15.

Exercises

8.1 Conductivity across the superconductor–insulator transition. This exercise antici-
pates results that are explored in more detail in Chapter 15. In the vicinity of the
superconductor–insulator transition (with no long-range Coulomb interactions), the
low-energy states are described by the N = 2 φ4

α field theory. We write this in terms
of a complex field � = (φ1 + iφ2)/

√
2 with action

S =
∫

dd xdτ
[
|∇x�|2 + |∂τ�|2 + r |�|2 + u

2
|�|4

]
. (8.37)
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Consider the response of this theory to an external vector potential �A(x, τ ) under
which

∇x� → (∇x − ie∗ �A)�. (8.38)

The imaginary-time current–current correlation function is then given by

Kαβ(x − x ′, τ − τ ′) = 〈Jα(x, τ )Jβ(x ′, τ ′)〉 = δ2 lnZ
δAα(x, τ )δAβ(x ′, τ ′)

∣∣∣∣∣ �A=0

,

(8.39)

where α, β are components of the spatial coordinate x . From the zero-momentum,
finite frequency component of K we can obtain the conductivity, σ , at imaginary
frequencies by (see e.g. the text by Mahan)

σ(ωn) = 1

ωn
K11(q = 0, ωn). (8.40)

After analytic continuation to real frequencies, we can obtain the physical conduc-
tivity σ(ω). Obtain expressions for Re[σ(ω)] at T = 0 to the leading nonvanishing
order in an expansion in u for the r > 0 (insulating) and r < 0 (superconducting)
phases, as described below:

(a) In the superconducting phase, r < 0, the leading contribution is of order 1/u, and
you are only required to obtain this. This contribution arises from the condensate,
and yields a Re[σ(ω)] ∼ δ(ω). Obtain only the coefficient of the delta function.

(b) In the insulating phase, r > 0, the leading contribution is of order u0, and you are
required only to obtain this. Your expression will have two terms, the
so-called “paramagnetic” (with two � propagators) and “diamagnetic” (with
one � propagator) contributions. First evaluate the integral over the internal
imaginary frequency. The paramagnetic term depends upon ωn , while the diag-
magnetic term is independent of ωn . Before evaluating the momentum integral,
analytically continue iωn →ω and determine Re[σ(ω)] – only the paramagnetic
term should contribute to this. Finally, examine the momentum integral in this
last expression – you should find that the integrand is nonzero only below a max-
imum momentum, and so the integral is always convergent.
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This chapter finally moves beyond the quantum rotor models which have been the complete
focus of our attention so far in Part II. Our motivation is two-fold: to introduce the coherent
state path integral, which plays an important role in developing the field theory for many
interesting quantum phase transitions; and to provide a deeper and more complete expla-
nation of our claimed connection between the N = 2 rotor model and the experiments on
ultracold bosonic atoms in an optical lattice which was claimed in Sections 1.3 and 1.4.3.
We do this by studying the boson Hubbard model, which has a direct connection to the
microscopic Hamiltonian of the ultracold atoms.

The Hubbard model was originally introduced as a description of the motion of electrons
in transition metals, with the motivation of understanding their magnetic properties. This
original model remains a very active subject of research today, and important progress
has been made in recent years by examining its properties in the limit of large spatial
dimensionality [160,165].

In this chapter, we examine only the much simpler “boson Hubbard model,” following
the analysis in an important paper by Fisher et al. [148]. As the name implies, the ele-
mentary degrees of freedom in this model are spinless bosons, which take the place of
the spin-1/2 fermionic electrons in the original Hubbard model. These bosons could repre-
sent Cooper pairs of electrons undergoing Josephson tunneling between superconducting
islands, helium atoms moving on a substrate, or ultracold atoms in an optical lattice. Pro-
cesses in which the Cooper pair boson decays into a pair of electrons are neglected in
this simple model, and this caveat must be kept in mind while discussing applications to
superconductors.

Many of the results discussed in this chapter were also obtained in early literature on
quantum transitions in anisotropic magnets in the presence of an applied magnetic field.
These are reviewed by Kaganov and Chubukov [256], who also gave an extensive discus-
sion of experimental applications. We will, however, not use their formulation here.

Apart from its direct physical applications, the importance of the boson Hubbard model
lies in providing one of the simplest realizations of a quantum phase transition that does
not map onto a previously studied classical phase transition in one higher dimension. The
continuum theory describing this transition includes complex Berry phase terms, which, in
the simplest formulation of the theory, do not become real even after analytic continuation
to imaginary time. We shall meet some genuinely new physical phenomena associated
with quantum critical points in a relatively simple context, and the insight will be generally
applicable to more complicated models in subsequent chapters.

However, as noted above, there are also quantum phase transitions in the boson Hubbard
model which map precisely onto those of the N = 2 quantum rotor model. We establish
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this here, and also show how the quantum rotor universality is destroyed as we vary
parameters.

Let us define the degrees of freedom of the model of interest. We introduce the boson
operator b̂i , which annihilates bosons on the sites, i , of a regular lattice in d dimensions.
These Bose operators and their Hermitian conjugate creation operators obey the com-
mutation relation [

b̂i , b̂
†
j

] = δi j , (9.1)

while two creation or annihilation operators always commute. It is also useful to introduce
the boson number operator

n̂bi = b̂†
i b̂i , (9.2)

which counts the number of bosons on each site. We allow an arbitrary number of bosons
on each site. Thus the Hilbert space consists of states |{m j }〉, that are eigenstates of the
number operators

n̂bi |{m j }〉 = mi |{m j }〉, (9.3)

and every m j in the set {m j } is allowed to run over all nonnegative integers. This includes
the “vacuum” state with no bosons at all |{m j = 0}〉.

The Hamiltonian of the boson Hubbard model is

HB = −w
∑
〈i j〉

(
b̂†

i b̂ j + b̂†
j b̂i
)− μ∑

i

n̂bi + (U/2)
∑

i

n̂bi (n̂bi − 1). (9.4)

The first term, proportional to w, allows hopping of bosons from site to site (〈i j〉 repre-
sents nearest neighbor pairs); if each site represents a superconducting grain, then w is the
Josephson tunneling that allows Cooper pairs to move between grains. The second term,
μ, represents the chemical potential of the bosons: changing the value of μ changes the
total number of bosons. Depending upon the physical conditions, a given system can either
be constrained to be at a fixed chemical potential (the grand canonical ensemble) or have
a fixed total number of bosons (the canonical ensemble). Theoretically it is much simpler
to consider the fixed chemical potential case, and results at fixed density can always be
obtained from them after a Legendre transformation. Finally, the last term, U > 0, repre-
sents the simplest possible repulsive interaction between the bosons. We have taken only
an on-site repulsion. This can be considered to be the charging energy of each supercon-
ducting grain. Off-site and longer-range repulsion are undoubtedly important in realistic
systems, but these are neglected in this simplest model.

There is a basic similarity between the boson Hubbard model and the O(N ) rotor
Hamiltonian HR in (1.25) that is useful in understanding their respective physical proper-
ties. First, let us consider the issue of symmetries. The rotor Hamiltonian HR was invariant
under global O(N ) rotation of the rotor fields n̂i and L̂i ; the present HB is invariant under
a global U(1) ≡ O(2) phase transformation under which

b̂i → b̂i e
iφ. (9.5)
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Now note that the w term in HB is quite similar to the J term in HR : both couple neighbor-
ing sites in a manner that prefers a state that breaks the global symmetry. However, these
terms compete with the Jg term in HR , or the U term in HB , both of which are completely
local and prefer states that are invariant under their respective symmetry transformations.
So, by analogy with HR , we may expect a quantum phase transition in HB as a function of
w/U between a state in which the U(1) symmetry (9.5) is unbroken to one in which it is
broken.

There is, however, a crucial difference between HR and HB that requires a more careful
discussion of the symmetries in the two models. Recall that a consequence of the O(N )
symmetry of HR was the conservation of total angular momentum in HR ; similarly we
have the conservation of the total number of bosons

N̂ b =
∑

i

n̂bi ; (9.6)

it is easily verified that N̂ b commutes with Ĥ . Note that to HR we can add an external field
H coupled to the conserved total angular momentum, as we do in (11.1); the term analogous
to this is the chemical potential μ in HB , which couples to N̂ b. This correspondence also
brings out the difference. Recall that all of our analysis of HR was carried out in zero
field, H = 0, and we examined only the linear response to an infinitesimal external field
H. However, the choice H = 0 was a natural one, as it was only for this value that the
remainder of HR was O(N ) invariant (at least for N ≥ 3). In contrast, note that the μ
term in HB does not break any symmetries, and HB remains invariant under (9.5) for
any value of μ. Hence there is no natural symmetry criterion by which we can prefer a
specific value of μ, and we have no choice but to examine HB for all μ. (Even for the
case N = 2, the choice H = 0 for HR can be made from the requirement of a “particle–
hole” symmetry under which ni → −ni , while Li remains invariant; there is no such
corresponding symmetry for HB .) It turns out that the results for HB for general μ also
allow us to understand HR for finite nonzero H.

We begin our study of HB by introducing a simple mean-field theory in Section 9.1.
The coherent state path integral representation of the boson Hamiltonian is then developed
in Section 9.2. The continuum quantum theories describing fluctuations near the quantum
critical points are introduced in Section 9.3.

9.1 Mean-field theory

The strategy, as in any mean-field theory, is to model the properties of HB by the best
possible sum, HMF, of single-site Hamiltonians:

HMF =
∑

i

(
−μn̂bi + (U/2) n̂bi (n̂bi − 1)−�∗Bb̂i −�Bb̂†

i

)
, (9.7)

where the complex number �B is a variational parameter. We have chosen a mean-field
Hamiltonian with the same on-site terms as HB and have added an additional term with
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a “field” �B to represent the influence of the neighboring sites; this field has to be self-
consistently determined. Note that this term breaks the U(1) symmetry and does not
conserve the total number of particles. This is to allow for the possibility of broken-
symmetric phases, whereas symmetric phases appear at the special value �B = 0. As
we saw in the analysis of HR , the state that breaks the U(1) symmetry will have a nonzero
stiffness to rotations of the order parameter; in the present case this stiffness is the super-
fluid density characterizing a superfluid ground state of the bosons.

Another important assumption underlying (9.7) is that the ground state does not sponta-
neously break a translational symmetry of the lattice, as the mean-field Hamiltonian is the
same on every site. Such a symmetry breaking is certainly a reasonable possibility, but we
ignore this complication here for simplicity.

We will determine the optimum value of the mean-field parameter �B by a standard
procedure. First, determine the ground state wavefunction of HMF for an arbitrary �B ;
because HMF is a sum of single-site Hamiltonians, this wavefunction is simply a product of
single-site wavefunctions. Next, evaluate the expectation value of HB in this wavefunction.
By adding and subtracting HMF from HB , we can write the mean-field value of the ground
state energy of HB in the form

E0

M
= EMF(�B)

M
− Zw

〈
b̂†〉〈b̂〉 + 〈b̂〉�∗B + 〈b̂†〉�B, (9.8)

where EMF(�B) is the ground state energy of HMF, M is the number of sites of the lattice,
Z is the number of nearest neighbors around each lattice point (the “coordination num-
ber”), and the expectation values are evaluated in the ground state of HMF. The final step
is to minimize (9.8) over variations in �B . We have carried out this step numerically and
the results are shown in Fig. 9.1.

Note that even on a single site, HMF has an infinite number of states, corresponding
to the allowed values m ≥ 0 of the integer number of bosons on each site. The numerical
procedure necessarily truncates these states at some large occupation number, but the errors
are not difficult to control. In any case, we will show that all the essential properties of the
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�Fig. 9.1 Mean-field phase diagram of the ground state of the boson Hubbard model HB in (9.4). The notation M.I. n refers
to a Mott insulator with n0(μ/U) = n.
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phase diagram can be obtained analytically. Also, by taking the derivative of (9.8) with
respect to �B , it is easy to show that at the optimum value of �B

�B = Zw〈b̂〉; (9.9)

this relation, however, does not hold at a general point in parameter space.
First, let us consider the limit w= 0. In this case the sites are decoupled, and the mean-

field theory is exact. It is also evident that �B = 0, and we simply have to minimize
the on-site interaction energy. The on-site Hamiltonian contains only the operator n̂, and
the solution involves finding the boson occupation numbers (which are the integer-valued
eigenvalues of n̂) that minimize HB . This is simple to carry out, and we get the ground
state wavefunction

|mi = n0(μ/U )〉 , (9.10)

where the integer-valued function n0(μ/U ) is given by

n0(μ/U ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, for μ/U < 0,

1, for 0 < μ/U < 1,

2, for 1 < μ/U < 2,
...

...

n, for n − 1 < μ/U < n. (9.11)

Thus each site has exactly the same integer number of bosons, which jumps discontin-
uously whenever μ/U goes through a positive integer. When μ/U is exactly equal to a
positive integer, there are two degenerate states on each site (with boson numbers differing
by 1) and so the entire system has a degeneracy of 2M . This large degeneracy implies a
macroscopic entropy; it will be lifted once we turn on a nonzero w.

We now consider the effects of a small nonzero w. As is shown in Fig. 9.1, the regions
with�B = 0 survive in lobes around eachw = 0 state (9.10) characterized by a given inte-
ger value of n0(μ/U ). Only at the degenerate point with μ/U = integer does a nonzero
w immediately lead to a state with �B �= 0. We consider the properties of this �B �= 0
later, but now we discuss the properties of the lobes with �B = 0 in some more detail.
In mean-field theory, these states have wavefunctions still given exactly by (9.10). How-
ever, it is possible to go beyond mean-field theory and make an important exact state-
ment about each of the lobes: the expectation value of the number of bosons in each site
is given by 〈

b̂†
i b̂i
〉 = n0(μ/U ), (9.12)

which is the same result one would obtain from the product state (9.10) (which, we empha-
size, is not the exact wavefunction for w �= 0). There are two important ingredients behind
the result (9.12): the existence of an energy gap and the fact that N̂ b commutes with HB .
First, recall that at w = 0, provided that μ/U was not exactly equal to a positive integer,
there was a unique ground state, and there was a nonzero energy separating this state from
all other states (this is the energy gap). As a result, when we turn on a small nonzero w, the
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ground state moves adiabatically without undergoing any level crossings with any other
state. Now the w = 0 state is an exact eigenstate of N̂ b with eigenvalue Mn0(μ/U ), and
the perturbation arising from a nonzero w commutes with N̂ b. Consequently, the ground
state will remain an eigenstate of N̂ b with precisely the same eigenvalue, Mn0(μ/U ),
even for small nonzero w. Assuming translational invariance, we then immediately have
the exact result (9.12). Note that this argument also shows that the energy gap above the
ground state will survive everywhere within the lobe. These regions with a quantized value
of the density and an energy gap to all excitations are known as “Mott insulators.” Their
ground states are very similar to, but not exactly equal to, the simple state (9.10): they
involve, in addition, terms with bosons undergoing virtual fluctuations between pairs of
sites, creating particle–hole pairs. The Mott insulators are also known as “incompressible”
because their density does not change under changes of the chemical potential μ or other
parameters in HB :

∂〈N̂ b〉
∂μ

= 0. (9.13)

It is worth re-emphasizing here the remarkable nature of the exact result (9.12). From
the perspective of classical critical phenomena, it is most unusual to find the expectation
value of any observable to be pinned at a quantized value over a finite region of the phase
diagram. However, as we will see, quantum field theories of a certain structure allow such
a phenomenon, and we meet different realizations of it in subsequent chapters. The exis-
tence of observables such as N̂ b that commute with the Hamiltonian is clearly a crucial
ingredient.

The numerical analysis shows that the boundary of the Mott insulating phases is a
second-order quantum phase transition (i.e. a nonzero �B turns on continuously). With
the benefit of this knowledge, we can determine the positions of the phase boundaries.
By the usual Landau theory argument, we simply need to expand E0 in (9.8) in powers
of �B ,

E0 = E00 + r |�B |2 +O(|�B |4), (9.14)

and the phase boundary appears when r changes sign. The value of r can be computed
from (9.8) and (9.7) by second-order perturbation theory, and we find

r = χ0(μ/U ) [1− Zwχ0(μ/U )] , (9.15)

where

χ0(μ/U ) = n0(μ/U )+ 1

Un0(μ/U )− μ +
n0(μ/U )

μ−U (n0(μ/U )− 1)
. (9.16)

The function n0(μ/U ) in (9.11) is such that the denominators in (9.16) are positive, except
at the points at which the boson occupation number jumps at w = 0. The solution of the
simple equation r = 0 leads to the phase boundaries shown in Fig. 9.1.

Finally, we turn to the phase with �B �= 0. The mean-field parameter �B varies contin-
uously as the parameters are varied. As a result all thermodynamic variables also change,
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and the density does not take a quantized value; by a suitable choice of parameters, the
average density can be varied smoothly across any real positive value. So this is a com-
pressible state in which

∂〈N̂ b〉
∂μ

�= 0. (9.17)

As we noted earlier, the presence of a �B �= 0 implies that the U(1) symmetry is broken,
and there is a nonzero stiffness to twists in the orientation of the order parameter. The fluc-
tuation analysis discussed in Section 9.3 can be combined with the methods of Chapters 8
and 15 to show that this state is a superfluid and that the stiffness is just the superfluid
density.

Corrections to the mean-field phase diagram of Fig. 9.1 have been considered by
Freericks and Monien [153, 154]. They find singularities in the shape of the Mott lobes
at the positions of the z = 1 transitions. Monte Carlo simulations of the phase diagram
have also been carried out [39,364], and confirm the physical picture discussed above.

We also note that extensions of the boson Hubbard model with interactions beyond
nearest neighbor can spontaneously break translational symmetry at certain densities. If
this symmetry breaking coexists with the superfluid order, one can obtain a “supersolid”
phase. These issues have been discussed in [21, 40, 155, 170, 352, 483, 520, 521]. See also
Exercise 9.1.

9.2 Coherent state path integral

This section applies to the boson Hubbard model the analog of the mapping described in
Section 6.5 for the quantum rotor model. We apply this using a general method called the
coherent state path integral. While the path integral in Section 6.5 is over all possible quan-
tum trajectories in the configuration space, ni (τ ), of the quantum rotor model, the coherent
state path integral is over phase space; we choose to work in phase space because there is
often no choice of configuration space which does not break some important symmetry of
the Hamiltonian. Thus the integral involves integrands which do not commute with each
other in the conventional Hamiltonian formulation, and this is reflected by the presence of
Berry phase terms in the action for the path integral. Consequently, the action is not real,
even in imaginary time. One subtle consequence of the presence of Berry phases is that the
path integral is not a well-defined mathematical quantity, unlike the integrals in Section 6.5
which can be rigorously defined by their connection to equivalent statistical models. So
formally, the coherent state path integral requires additional temporal derivative terms for
a proper regularization: we generally ignore such issues here, because the naive analysis
based upon assuming a well defined time continuum limit is invariably correct: the reader
is referred to [357] for a more complete discussion.

To avoid inessential indices, we present the derivation of the coherent state path integral
by focusing on a single site, and drop the site index. We first derive the result in a general
notation, to allow subsequent application to quantum spin systems in Section 19.1. So
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we consider a general Hamiltonian H(Ŝ), dependent upon operators Ŝ which need not
commute with each other. So for the boson Hubbard model, Ŝ is a two-dimensional vector
of operators b̂ and b̂† which obey (9.1). When we apply the results below to quantum spin
systems, Ŝ represents the usual spin operators Ŝx,y,z , which obey (1.29).

Our first step is to introduce the coherent states. These are an infinite set of states |N〉,
labeled by the continuous vector N (in two or three dimensions for the two cases above).
They are normalized to unity,

〈N|N〉 = 1, (9.18)

but are not orthogonal 〈N|N′〉 �= 0 for N �= N′. They do, however, satisfy a completeness
relation

CN

∫
dN |N〉〈N| = 1, (9.19)

where CN is a normalization constant. Because of their nonorthogonality, these states are
called “over-complete.” Finally, they are chosen with a useful property: the diagonal expec-
tation values of the operators Ŝ are very simple:

〈N|Ŝ|N〉 = N. (9.20)

This property implies that the vector N is a classical approximation to the operators Ŝ. The
relations (9.18), (9.19), and (9.20) define the coherent states, and are all we need here to
set up the coherent state path integral.

We also need the diagonal matrix elements of the Hamiltonian in the coherent state basis.
Usually, it is possible to arrange the operators such that

〈N|H(Ŝ)|N〉 = H(N); (9.21)

i.e. H(N) has the same functional dependence upon N as the original Hamiltonian has
on S. For the boson Hubbard model, this corresponds, as we will see, to normal-ordering
the creation and annihilation operators. In any case, the right-hand side could have a dis-
tinct functional dependence on N, but we will just refer to the diagonal matrix element
as above.

We proceed to the derivation of the coherent state path integral for the partition function

Z = Tr exp(−H(Ŝ)/T ). (9.22)

The transformation of Z into a path integral proceeds along the same lines as in Section 5.6.
We break up the exponential into a large number of exponentials of infinitesimal time
evolution operators

Z = lim
M→∞

M∏
i=1

exp(−�τi H(Ŝ)), (9.23)
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where�τi = 1/MT , and insert a set of coherent states between each exponential by using
the identity (9.19); we label the state inserted at a “time” τ by |N(τ )〉. We can then evaluate
the expectation value of each exponential by use of the identity (9.20)

〈N(τ )| exp(−�τH(Ŝ))|N(τ −�τ)〉
≈ 〈N(τ )|(1−�τH(Ŝ))|N(τ −�τ)〉
≈ 1−�τ 〈N(τ )| d

dτ
|N(τ )〉 −�τH(N)

≈ exp

(
−�τ 〈N(τ )| d

dτ
|N(τ )〉 −�τH(N)

)
. (9.24)

In each step we have retained expressions correct to order �τ . Because the coherent states
at time τ and τ +�τ can in principle have completely different orientations, a priori, it is
not clear that expanding these states in derivatives of time is a valid procedure. This is a
subtlety that afflicts all coherent state path integrals and has been discussed more carefully
by Negele and Orland [357]. The conclusion of their analysis is that except for the single
“tadpole” diagram where a point-splitting of time becomes necessary, this expansion in
derivatives of time always leads to correct results. In any case, the resulting coherent state
path integral is a formal expression that cannot be directly evaluated, and in case of any
doubt one should always return to the original discrete time product in (9.23).

Keeping in mind the above caution, we insert (9.24) into (9.23), take the limit of small
�τ , and obtain the following functional integral for Z:

Z =
∫

N(0)=N(1/T )
DN(τ ) exp

{
−SB −

∫ 1/T

0
dτH(N(τ ))

}
, (9.25)

where

SB =
∫ 1/T

0
dτ 〈N(τ )| d

dτ
|N(τ )〉, (9.26)

and H(SN) is obtained by replacing every occurrence of Ŝ in the Hamiltonian by SN.
The promised Berry phase term is SB , and it represents the overlap between the coherent
states at two infinitesimally separated times. It can be shown straightforwardly from the
normalization condition, 〈N|N〉 = 1, that SB is pure imaginary.

9.2.1 Boson coherent states

We now apply the general formalism above to the boson Hubbard model. As before, we
drop the site index i .

For the state label, we replace the two-dimensional vector N by a complex number ψ ,
and so the coherent states are |ψ〉, with one state for every complex number. A state with
the properties (9.18), (9.19), and (9.20) turns out to be

|ψ〉 = e−|ψ |2/2 exp
(
ψ b̂†

)
|0〉, (9.27)
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where |0〉 is the boson vacuum state (one of the states in (9.3)). This state is normalized as
required by (9.18), and we can now obtain its diagonal matrix element

〈ψ |b̂|ψ〉 = e−|ψ |2 ∂

∂ψ∗
〈0| eψ∗b̂ eψ b̂† |0〉

= e−|ψ |2 ∂

∂ψ∗
e|ψ |2 = ψ, (9.28)

which satisfies the requirement (9.20). For the complete relation, we evaluate∫
dψdψ∗|ψ〉〈ψ | =

∞∑
n=0

|n〉〈n|
n!

∫
dψdψ∗|ψ |2ne−|ψ |2

= π
∞∑

n=0

|n〉〈n|, (9.29)

where |n〉 are the number states in (9.3), dψdψ∗ ≡ dRe(ψ)dIm(ψ), and we have picked
only the diagonal terms in the double sum over number states because the off-diagonal
terms vanish after the angular ψ integration. This result identifies CN = 1/π . So we have
satisfied the properties (9.18), (9.19), and (9.20) required of all coherent states.

For the path integral, we need the Berry phase term in (9.26). This is a path integral over
trajectories in the complex plane, ψ(τ), and we have

〈ψ(τ)| d

dτ
|ψ(τ)〉 = e−|ψ(τ)|2〈0|eψ∗(τ )b̂| d

dτ
|eψ(τ)b̂† |0〉 = ψ∗ dψ

dτ
. (9.30)

We are now ready to combine (9.30) and (9.25) to obtain the coherent state path integral of
the boson Hubbard model.

9.3 Continuum quantum field theories

Returning to our discussion of the boson Hubbard model, here we describe the low-energy
properties of the quantum phase transitions between the Mott insulators and the superfluid
found in Section 9.1. We find that it is crucial to distinguish between two different cases,
each characterized by its own universality class and continuum quantum field theory. The
important diagnostic distinguishing the two possibilities is the behavior of the boson den-
sity across the transition. In the Mott insulator, this density is of course always pinned
at some integer value. As one undergoes the transition to the superfluid, depending upon
the precise location of the system in the phase diagram of Fig. 9.1, there are two possible
behaviors of the density: either (A) the density remains pinned at its quantized value in the
superfluid in the vicinity of the quantum critical point, or (B) the transition is accompa-
nied by a change in the density. We show below that case (A) is described by the N = 2
case of the quantum rotor field theory (3.25) which we have already studied, and study in
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greater detail in Part III. Case (B) leads to a different field theory whose properties are
examined further in Chapter 16.

We begin by writing the partition function of HB , ZB = Tre−HB/T in the coherent state
path integral representation derived in Section 9.2:

ZB =
∫

Dbi (τ )Db†
i (τ ) exp

(
−
∫ 1/T

0
dτLb

)
,

Lb =
∑

i

(
b†

i
dbi

dτ
− μb†

i bi + (U/2) b†
i b†

i bi bi

)
− w

∑
〈i j〉

(
b†

i b j + b†
j bi
)
. (9.31)

Here we have changed notation ψ(τ) → b(τ ), as is conventional; we are dealing exclu-
sively with path integrals from now on, and so there is no possibility of confusion with the
operators b̂ in the Hamiltonian language. Also note that the repulsion proportional to U in
(9.4) becomes the product of four boson operators above after normal ordering, and we can
then use (9.21).

It is clear that the critical field theory of the superfluid–insulator transition should be
expressed in terms of a spacetime-dependent field �B(x, τ ), which is analogous to the
mean-field parameter�B appearing in Section 9.1. Such a field is most conveniently intro-
duced by the well-known Hubbard–Stratanovich transformation on the coherent state path
integral. We decouple the hopping term proportional to w by introducing an auxiliary field
�Bi (τ ) and transforming ZB to

ZB =
∫

Dbi (τ )Db†
i (τ )D�Bi (τ )D�†

Bi (τ ) exp

(
−
∫ 1/T

0
dτL′b

)
,

L′b =
∑

i

(
b†

i
dbi

dτ
− μb†

i bi + (U/2) b†
i b†

i bi bi −�Bi b
†
i −�∗Bi bi

)
+
∑
i, j

�∗Biw
−1
i j �B j .

(9.32)

We have introduced the symmetric matrix wi j whose elements equal w if i and j are near-
est neighbors and vanish otherwise. The equivalence between (9.32) and (9.31) can be
established easily by simply carrying out the Gaussian integral over �B ; this also gener-
ates some overall normalization factors, but these have been absorbed into a definition of
the measure D�B . Let us also note a subtlety we have glossed over: strictly speaking, the
transformation between (9.32) and (9.31) requires that all the eigenvalues of wi j be posi-
tive, for only then are the Gaussian integrals over �B well defined. This is not the case for,
say, the hypercubic lattice, which has negative eigenvalues for wi j . This can be repaired
by adding a positive constant to all the diagonal elements of wi j and subtracting the same
constant from the on-site b part of the Hamiltonian. We will not explicitly do this here as
our interest is only in the long-wavelength modes of the �B field, and the corresponding
eigenvalues of wi j are positive.
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For our future purposes, it is useful to describe an important symmetry property of
(9.32). Note that the functional integrand is invariant under the following time-dependent
U(1) gauge transformation:

bi → bi e
iφ(τ),

�Bi → �Bi e
iφ(τ),

μ→ μ+ i
∂φ

∂τ
. (9.33)

The chemical potential μ becomes time dependent above, and so this transformation takes
one out of the physical parameter regime; nevertheless (9.33) is very useful, as it places
important restrictions on subsequent manipulations of ZB .

The next step is to integrate out the bi , b†
i fields from (9.32). This can be done exactly in

powers of �B and �∗B : the coefficients are simply products of Green’s functions of the bi .
The latter can be determined in closed form because the�B-independent part of L′b is sim-
ply a sum of single-site Hamiltonians for the bi : these were exactly diagonalized in (9.10),
and all single-site Green’s functions can also be easily determined. We re-exponentiate
the resulting series in powers of �B , �∗B and expand the terms in spatial and temporal
gradients of �B . The expression for ZB can now be written as [148]

ZB =
∫

D�B(x, τ )D�∗B(x, τ ) exp

(
−VF0

T
−
∫ 1/T

0
dτ
∫

dd xLB

)
,

LB = K1�
∗
B
∂�B

∂τ
+ K2

∣∣∣∣∂�B

∂τ

∣∣∣∣2 + K3 |∇�B |2 + r̃ |�B |2 + u

2
|�B |4 + · · · (9.34)

Here V = Mad is the total volume of the lattice, and ad is the volume per site. The quantity
F0 is the free energy density of a system of decoupled sites; its derivative with respect to
the chemical potential gives the density of the Mott insulating state, and so

− ∂F0

∂μ
= n0(μ/U )

ad
. (9.35)

The other parameters in (9.34) can also be expressed in terms of μ, U , and w but we will
not display explicit expressions for all of them. Most important is the parameter r̃ , which
can be seen to be

r̃ad = 1

Zw
− χ0(μ/U ), (9.36)

where χ0 was defined in (9.16). Notice that r̃ is proportional to the mean-field r in (9.15);
in particular, r̃ vanishes when r vanishes, and the two quantities have the same sign. The
mean-field critical point between the Mott insulator and the superfluid appeared at r = 0,
and it is not surprising that the mean-field critical point of the continuum theory (9.34) is
given by the same condition.

Of the other couplings in (9.34), K1, the coefficient of the first-order time derivative also
plays a crucial role. It can be computed explicitly, but it is simpler to note that the value of
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K1 can be fixed by demanding that (9.34) be invariant under (9.33) for small φ: a simple
calculation shows that we must have

K1 = − ∂ r̃

∂μ
. (9.37)

This relationship has a very interesting consequence. Note that K1 vanishes when r̃ is
μ-independent; however, this is precisely the condition that the Mott insulator–superfluid
phase boundary in Fig. 9.1 have a vertical tangent (i.e. at the tips of the Mott insulating
lobes). This is significant because at the value K1 = 0 it is evident that (9.34) is nothing
but the N = 2 rotor model field theory action in (3.25), which is further studied in Part III.
So the Mott insulator to superfluid transition is in the universality class of the O(2) quantum
rotor model phase transition for K1 = 0. In contrast, for K1 �= 0 we have a rather different
field theory. We can now drop the K2 term as it involves two time derivatives and so is
irrelevant with respect to the single time derivative in the K1 term. The resulting field
theory is examined in some detail in the following chapter.

To conclude this discussion, we would like to correlate the above discussion on the
distinction between the two universality classes with the behavior of the boson density
across the transition. This can be evaluated by taking the derivative of the total free energy
with respect to the chemical potential, as is clear from (9.4):〈

b̂†
i b̂i
〉 = −ad ∂F0

∂μ
− ad ∂FB

∂μ

= n0(μ/U )− ad ∂FB

∂μ
, (9.38)

where FB is the free energy resulting from the functional integral over �B in (9.34). We
examine the properties of (9.34) for general K1, including fluctuations, in the following
chapter. Here let us be satisfied by a simple mean-field treatment.

In mean-field theory, for r̃ > 0, we have �B = 0, and therefore FB = 0, implying〈
b̂†

i b̂i
〉 = n0(μ/U ), for r̃ > 0. (9.39)

This clearly places us in a Mott insulator. As argued in Section 9.1, (9.39) is an exact result,
and we obtain another verification of this in our analysis of the fluctuations of (9.34) in
Chapter 16.

For r̃ < 0, we have �B = (−r̃/u)1/2, as follows from a simple minimization of LB ;
computing the resulting free energy we have

〈
b̂†

i b̂i
〉 = n0(μ/U )+ ad ∂

∂μ

(
r̃2

2u

)

≈ n0(μ/U )+ adr̃

u

∂ r̃

∂μ
. (9.40)

In the second expression, we ignored the derivative of u as it is less singular as r̃ approaches
0; we will comment on the consequences of this shortly. Thus at the transition point at
which K1 = 0, by (9.37) we see that the leading correction to the density of the superfluid
phase vanishes, and it remains pinned at the same value as in the Mott insulator. So, as
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claimed earlier, the transition with no density change is in the universality class of the
O(2) quantum rotor model. Conversely, for the case K1 �= 0, the transition is always
accompanied by a density change. This is a separate universality class, which is considered
in the next chapter, and we will see there that we can also consider the density itself as an
order parameter for the transition in this case.

We close by commenting on the consequences of the omitted higher order terms in (9.40)
to the discussion above. Consider the trajectory of points in the superfluid with their density
equal to some integer n. The implication of the above discussion is that this trajectory will
meet the Mott insulator with n0(μ/U ) = n at its lobe. The O(2) quantum rotor model
phase transition then describes the transition out of the Mott insulator into the superfluid
along a direction tangent to the trajectory of density n. The approximations made above
merely amounted to assuming that this trajectory was a straight line.

Exercises

9.1 Supersolids. Consider a double-layer boson Hubbard model of bosons b̂1i and b̂2i on
two parallel layers 1,2:

H2B = −w
∑
〈i j〉

(
b̂†

1i b̂1 j + b̂†
1 j b̂1i + b̂†

2i b̂2 j + b̂†
2 j b̂2i

)− w∑
i

(
b̂†

1i b̂2i + b̂†
2i b̂1i

)
+
∑

i

(
−μ
[
n̂b1i + n̂b2i

]
+ U

2

[
n̂b1i (n̂b1i − 1)+ n̂b2i (n̂b2i − 1)

])
+ V

∑
i

n̂b1i n̂b2i +W
∑
〈i j〉

[
n̂b1i n̂b1 j + n̂b2i n̂b2 j

]
. (9.41)

Thus bosons on the same layer have an on-site repulsion U > 0, bosons on oppo-
site layers have a repulsion V > 0. Bosons on the same layer also have a nearest-
neighbor interaction W , and we allow W to have either sign. We consider the case
where the average boson density per site and per layer is exactly 1/2, and we take
the limit U → ∞: thus no site can have more than one boson. Use a variational
approach to determine the ground state of H2B as a function of V/w and W/w. The
proposed mean-field variational wavefunction is

|G〉 =
∏

i

(
α1 + α2b̂†

1i + α3b̂†
2i + α4b̂†

1i b̂
†
2i

)
|0〉, (9.42)

where |0〉 is the empty state, and α1, α2, α3, and α4 are variational parameters. Nor-
malization of the wavefunction implies that

|α1|2 + |α2|2 + |α3|2 + |α4|2 = 1. (9.43)

(a) Show that the average density of 1/2 implies

|α2|2 + |α3|2 + 2|α4|2 = 1. (9.44)
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(b) Compute 〈G|H2B |G〉 for a lattice with same-layer coordination number Z . Then
minimize this as a function of the α1,2,3,4 subject to the constraints (9.43) and
(9.44). The results yield a phase diagram, and the phases can be identified as
discussed below.

(c) Argue that any phase with α1 �= 0 must be a superfluid.
(d) Similarly, show that any phase with α1 = α4 = 0 is an insulator.
(e) The model H2B has a layer interchange symmetry, and our mean-field allows

this symmetry to be spontaneously broken. Show that this symmetry is broken
in phases in which |α2| �= |α3|. As such phases break a lattice symmetry, it is
natural to refer to them as “solids.”

(f) Are there any regimes which are both solids and superfluids? Such a phase would
be a supersolid.

(g) Determine the order (first or second) of all quantum phase transitions in the phase
diagram.
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Part II analyzed the properties of quantum Ising and rotor models in some detail at T = 0.
We related the quantum phase transitions in these models to the N -component relativistic
field theory (2.11), and used it to understand the critical properties.

The purpose of Part III is to extend this understanding to T > 0. We will demonstrate
that the T = 0 quantum critical point controls a wide “quantum critical” region at T > 0,
as illustrated in Fig. 1.2. We are especially interested in dynamic properties in this region:
an interesting feature is that many “friction” coefficients are universal and depend only on
fundamental constants of nature. We also explore the other regions of the phase diagrams
in Fig. 1.2, including behavior in the vicinity of the phase transition at T > 0.

We begin this chapter by extending results of the d = 1 quantum Ising model of Chap-
ter 5 to T > 0. This model does not have any phase transition at any T > 0, and so the
crossover structure of the phase diagram is in the class in Fig. 1.2a. Phase transitions at
T > 0 appear in models to be studied in the following chapter.

All of the results in this section are believed to be exact, but the physically oriented
reader should not be turned off by this: we will keep technical details to a minimum and
show how the exact results can be obtained by physical arguments that do much to illustrate
the main underlying principles. Most of the important concepts of this book appear in the
simple model under consideration; much of Part III is a description of similar phenomena
in more complicated settings. This is thus one of the central chapters of Part III, and a
careful reading is urged.

We will study the d = 1 case of (1.7), which is

HI = −J
∑

i

(
gσ̂ x

i + σ̂ z
i σ̂

z
i+1

)
. (10.1)

As we have discussed in Part I and Chapter 5, HI exhibits a phase transition at T = 0
between an ordered state with the Z2 symmetry broken and a quantum paramagnetic state
where the symmetry remains unbroken. The quantum–classical mapping QC ensures that
this transition is in the universality class of the D = 2 classical Ising model.

There has been a great deal of theoretical work on the ground state correlations of
HI [34,299,330,378]. However, properties of the order parameter σ̂z at T > 0, which are
our primary interest here, have been studied much less. Methods relying upon knowledge
of all the exact eigenstates and eigenfunctions of HI do yield explicit results for equal-time
correlators [36,299,327,420], but results for unequal-time correlators have been restricted
to T = ∞ [67, 376, 377] or to precisely the critical coupling [241, 331] (seen below to be
g = 1). There is also an approach that relies upon deriving nonlinear partial differential
equations satisfied by the T > 0 unequal-time correlators [278, 289, 332], but these have
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not yet been solved to yield the physical correlators. Our discussion of the low-T dynamics
here follows the intuitive phenomenological approach developed recently in [442]. Despite
its seeming inexactness, its results are believed to be asymptotically exact, and this will be
supported by evidence from numerical computations.

In our discussion of the quantum critical point of HI , we have occasion to meet again
the scaling concepts encountered before in Chapter 4. These are extended here to define the
dynamic critical exponent z. Another very useful, but much less familiar, concept
is that of the reduced scaling function, and it is introduced as an essential tool toward
understanding the mechanism of emergence of classical behavior in limiting regimes of
the phase diagram.

We describe the properties of HI using the analog of the correlation functions introduced
in Chapter 7 for the quantum field theory. In the present context, this includes the dynamic
two-point correlations of the order parameter σ̂ z :

C(xi , t) ≡ 〈σ̂ z(xi , t)σ̂
z(0, 0)〉

= Tr
(
e−HI /T ei HI t σ̂ z

i e−i HI t σ̂ z
0

)/
Z, (10.2)

where Z = Tr(e−HI /T ) is the partition function, and xi = ia is the x-coordinate of the
i th spins with a the lattice spacing. As before, we always use the symbol t to represent
real physical time. Occasionally we also find it convenient to consider the correlation at
an imaginary time τ ; this is defined by the analytic continuation i t → τ from (10.2)
with τ > 0:

C(xi , τ ) = Tr
(
e−HI /T eHI τ σ̂ z

i e−HI τ σ̂ z
0

)/
Z. (10.3)

Compare this definition with (5.51); from the discussion in Chapter 3 it should be clear
that C(x, τ ) is the correlator of the classical D = 2 Ising model (3.1) on an infinite strip
of width 1/T and periodic boundary conditions along the “imaginary-time” direction. We
also deal with the dynamic structure factor, S(k, ω); as in (7.10) this is the Fourier trans-
form of C(x, t) to wavevectors and frequencies:

S(k, ω) =
∫

dx
∫

dt C(x, t)e−i(kx−ωt). (10.4)

This is a useful quantity because it is directly proportional to the cross-section in scatter-
ing experiments in which the probe (usually neutrons) couples to σ z . If the energy of the
scattered neutron is integrated over, then the cross-section is proportional to the equal-time
structure factor, S(k), defined by

S(k) ≡
∫

dω

2π
S(k, ω), (10.5)

which is clearly also the spatial Fourier transform of C(x, 0). The number of arguments of
S will specify whether we are referring to the dynamic or equal-time structure factor. The
identity (σ̂ z

i )
2 = 1 implies that C(0, 0) = 1 and leads to the following sum rule for the

dynamic structure factor: ∫
dkdω

(2π)2
S(k, ω) = 1. (10.6)
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Finally, as in Chapter 7 we have the dynamic susceptibilities, χ(k, ω) at real frequencies,
and χ(k, ωn) at the Matsubara frequencies, which are related to the structure factor by the
fluctuation–dissipation theorem. The spectral representation shows that χ(k, ω) is an odd
function of ω. The dynamic susceptibility measures the response of the magnetization σ z

to an external field that couples linearly to σ z and is oscillating at a wavevector k and
frequency ω. In the limit that the external field becomes time independent, the response is
given by the static susceptibility, χ(k), defined by

χ(k) ≡ χ(k, ω = 0). (10.7)

Again, the number of arguments of χ will specify whether we are referring to the dynamic
or static susceptibility.

The nature of the spectrum of HI in the limits of small and large g has already been
presented in Chapter 5. The distinct structures of these spectra implied that there had to
be at least one quantum critical point at an intermediate g. The exact spectrum is deter-
mined here in Section 10.1 and this shows the existence of a unique quantum critical point
at g = 1. The universal continuum quantum theory of the vicinity of g= 1 in d = 1 is
obtained in Section 10.2. Equal-time correlators for T > 0 are discussed in Section 10.3,
and the dynamical properties of the different T > 0 regimes are examined in Section 10.4.

We note that the reader may also wish to examine the recent book by Chakrabarti,
Dutta, and Sen [74], which discusses aspects of quantum Ising models in one and higher
dimensions.

10.1 Exact spectrum

The qualitative considerations of the previous section are quite useful in developing an
intuitive physical picture. We now take a different route and set up a formalism that even-
tually leads to an exact determination of many physical correlators; these results vindicate
the approximate methods for g > 1, g < 1 and also provide an understanding of the novel
physics at g = 1.

The essential tool in the solution is the Jordan–Wigner transformation [251, 299]. This
is a very powerful mapping between models with spin-1/2 degrees of freedom and spinless
fermions. The central observation is that there is a simple mapping between the Hilbert
space of a system with a spin-1/2 degree of freedom per site and that of spinless fermions
hopping between sites with single orbitals. We may associate the spin-up state with an
empty orbital on the site and a spin-down state with an occupied orbital. If the canoni-
cal fermion operator ci annihilates a spinless fermion on site i , then this simple mapping
immediately implies the operator relation

σ̂ z
i = 1− 2c†

i ci . (10.8)

It is also clear that the operation of ci is equivalent to flipping the spin from down to up,
or the operation of σ̂+i = (σ̂ x

i + i σ̂ y
i )/2; similarly, creating a fermion by c†

i is equivalent
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to lowering the spin by σ̂−i = (σ̂ x
i − i σ̂ y

i )/2. Although this equivalence works for a single
site, we cannot yet equate the fermion operators with the corresponding spin operators for
the many-site problem; this is because while two fermionic operators on different sites
anticommute, two spin operators commute. The solution to this dilemma was found by
Jordan and Wigner, who showed that the following representation satisfied both on-site
and inter-site (anti)commutation relations:

σ̂+i =
∏
j<i

(
1− 2c†

j c j
)
ci ,

σ̂−i =
∏
j<i

(
1− 2c†

j c j
)
c†

i . (10.9)

The naive single-site correspondence has been modified by a “string” of operators, whose
value is +1 (−1) if the total number of fermions on the sites to the left of site i are even
(odd). Note that the spin operators have a highly nonlocal representation in terms of the
fermion operators. This feature is also found in the inverse of (10.9):

ci =
⎛⎝∏

j<i

σ̂ z
j

⎞⎠ σ̂+i ,
c†

i =
⎛⎝∏

j<i

σ̂ z
j

⎞⎠ σ̂−i . (10.10)

It can be verified that (10.8), (10.9), and (10.10) are consistent with the relations{
ci , c

†
j

} = δi j , {ci , c j } =
{
c†

i , c
†
j

} = 0,

[σ̂+i , σ̂−j ] = δi j σ̂
z
i ,

[
σ̂ z

i , σ̂
±
j

] = ±2δi j σ̂
±
i , (10.11)

where the curly brackets represent anticommutators and square brackets are commutators.
The above formulation of the Jordan–Wigner transformation is the conventional one, but

in analysis of the Ising model it is convenient to rotate spin axes by 90 degrees about the
y-axis so that

σ̂ z → σ̂ x , σ̂ x →−σ̂ z . (10.12)

The mapping becomes

σ̂ x
i = 1− 2c†

i ci ,

σ̂ z
i = −

∏
j<i

(
1− 2c†

j c j
)(

ci + c†
i

)
. (10.13)

Inserting (10.13) into HI , we find that the resulting Hamiltonian is quadratic in the Fermi
operators [325]:

HI = −J
∑

i

(
c†

i ci+1 + c†
i+1ci + c†

i c†
i+1 + ci+1ci − 2gc†

i ci + g
)
. (10.14)

This fermionic Hamiltonian has terms such as c†c† that violate the fermion conservation
number; from (10.13), this means that

∑
i σ̂

x
i is not conserved and | →〉 spins can be
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flipped in pairs under time evolution, as we saw in the perturbation theory in Section 5.2.
Hence the eigenstates of HI will not have a definite fermion number. Nevertheless, the
new terms are still quadratic in the fermion operators, and HI can be diagonalized by
elementary means. First, use the momentum eigenstates

ck = 1√
M

∑
j

c j e
−ikr j . (10.15)

where M is the number of sites, to get

HI = J
∑

k

(
2 [g − cos(ka)] c†

k ck + i sin(ka)
[
c†
−kc†

k + c−kck
]− g

)
. (10.16)

Next, use the Bogoliubov transformation to map into a new set of fermionic operators (γk)
whose number is conserved. These new operators are defined by a unitary transformation
on the pair ck, c

†
−k :

γk = ukck − ivkc†
−k, (10.17)

where uk , vk are real numbers satisfying u2
k+v2

k = 1, u−k = uk , and v−k = −vk . It can be
checked that canonical fermion anticommutation relations for the ck imply that the same
relations are also satisfied by the γk , that is,{

γk, γ
†
k′
} = δk,k′ ,

{
γ

†
k , γ

†
k′
} = {γk, γk′ } = 0. (10.18)

We also note the inverse of (10.17):

ck = ukγk + ivkγ
†
−k . (10.19)

We insert (10.19) into (10.16) and demand that HI not contain any terms like γ †γ † that
violate conservation of the γ fermions. The as yet undefined constants uk , vk can always be
chosen to ensure this: we define uk = cos(θk/2), vk = sin(θk/2), and a simple calculation
then shows that the choice

tan θk = sin(ka)

g − cos(ka)
(10.20)

satisfies our requirements. The final form of HI is

HI =
∑

k

εk
(
γ

†
k γk − 1/2

)
, (10.21)

where

εk = 2J (1+ g2 − 2g cos k)1/2 (10.22)

is the single-particle energy. As εk ≥ 0, the ground state, |0〉, of HI has no γ fermions
and therefore satisfies γk |0〉 = 0 for all k. The excited states are created by occupying the
single-particle states; they can clearly be classified by the total number of occupied states,
and an n-particle state has the form γ

†
k1
γ

†
k2
· · · γ †

kn
|0〉, with all the ki distinct.
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The above structure of the spectrum confirms the approximate considerations of
Sections 5.2 and 5.3. We have found that the particles are in fact free fermions, and two
fermions will not scatter even when they are close to each other; alternatively they can
be considered as hard-core bosons, which have an S matrix that does not allow parti-
cle production and that equals −1 at all momenta. We shall find it much more useful
to take the latter point of view, as the bosonic particles have a simple, local interpreta-
tion in terms of the underlying spin excitations: for g � 1 the bosons are simply spins
oriented in the | ←〉 direction, whereas for g � 1 they are domain walls between the
two ground states. The fermionic representation is useful for certain technical manipula-
tions, but the bosonic point of view is much more useful for making physical arguments,
as we see below.

It is also reassuring to see that the exact single-particle excitation energy (10.22) agrees
with (5.8) in the limit g � 1, and with (5.21) in the limit g � 1.

10.2 Continuum theory and scaling transformations

The excitation energy εk in (10.22) is nonzero and positive for all k provided g �= 1. The
energy gap, or the minimum excitation energy, is always at k = 0 and equals 2J |1 − g|.
This gap vanishes at g = 1, and it is natural to expect that g = 1 marks the phase boundary
between the two qualitatively different phases discussed in Sections 5.2 and 5.3. Precisely
at g = 1, fermions with low momenta can carry arbitrarily low energy, and they therefore
must dominate the low-temperature properties. These properties suggest that the state at
g = 1 is critical, and there is a universal continuum quantum field theory that describes the
critical properties in its vicinity.

In Chapters 3 and 4 we mapped the classical Ising model to a field theory, which was
then used to develop scaling and renormalization group ideas. A key to this analysis was
the existence of the Gaussian field theory (4.2), which gave an analytically tractable fixed
point of the RG, and then allowed a systematic analysis of corrections to the critical the-
ory near dimension D = 4. We have obtained an exact solution of a quantum critical
point above, for the quantum Ising model in d = 1. We therefore have the opportunity
to subject it to an analysis which parallels that carried out earlier for the classical model.
Upon taking its continuum limit, we find that the d = 1 quantum model is also described
by a free (or “Gaussian”) quantum field theory, but which is now expressed in terms of
fermions. This free fermion theory is easily amenable to an RG analysis, just like that in
Section 4.1 for the bosonic theory, and has a fixed point describing the quantum phase
transition of the quantum Ising model. Unlike the situation in Section 4.1, we find here that
the free fermion fixed point is in fact stable to all non-Gaussian interaction corrections.
This allows us to obtain exact results for the critical properties of a generic quantum Ising
model in one dimension.

A natural question then arises of the connection between the free fermion fixed point
found below in d = 1, and the fixed points found in Chapter 4 for d < 3 (or D < 4). One
of the central points of Parts I and II was that the D-dimensional classical Ising model,
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and (d = D − 1)-dimensional quantum Ising models are formally equivalent near their
respective critical points. Should their RG fixed points then not be the same? The only
reasonable conclusion from this equivalence, if correct, is that the d = 1 free fermion
RG fixed point below is in fact the same as the Wilson–Fisher fixed point of the quan-
tum field theory (2.11) for N = 1, when the latter is extended from d close to 3, all
the way down to d = 1. There is a great deal of evidence that this remarkable claim is
true: numerical analysis of the (3− d) expansion of the Wilson–Fisher fixed point at large
orders yields results for critical properties which are strikingly close to the exact results
presented below.

So let us turn to obtaining the critical theory of the d = 1 quantum Ising model. Because
the important excitations are near k = 0, we expect that a naive gradient expansion will
yield the required theory. We define the continuum Fermi field

�(xi ) = 1√
a

ci , (10.23)

where the normalization has been chosen so that � has units of inverse square root of
length and

{�(x),�†(x ′)} = δ(x − x ′), (10.24)

with the right-hand side a Dirac delta function in the continuum limit. We express HI in
terms of �, and expand in spatial gradients, to obtain from (10.16) the continuum HF :

HF = E0 +
∫

dx

[
c

2

(
�† ∂�

†

∂x
−� ∂�

∂x

)
+��†�

]
+ · · · , (10.25)

where the ellipses represent terms with higher gradients, and E0 is an uninteresting additive
constant. The coupling constants in HF are

� = 2J (1− g), c = 2Ja. (10.26)

Note that at the critical point g = 1, we have � = 0, and we have � > 0 in the magneti-
cally ordered phase and � < 0 in the quantum paramagnet.

The continuum theory HF in (10.25) can be viewed as having been obtained by replacing
the dependence of the Hamiltonian on ci , J , and g by�,�, and c and then taking the limit
a → 0 at fixed �,�, and c. Note from (10.26) that this limit requires J →∞ and g → 1.
Note also the similarity to the discussion in Section 5.5.1.

It is convenient to perform our subsequent scaling analysis in a path integral representa-
tion of the dynamics of HF . The path integral is derived using the analog of the coherent
state path integral discussed in Section 9.2, but applied to the Fock space of fermions.
This procedure involves fermion coherent states, and leads to a path integral involving
Grassman numbers. A full description of Grassman numbers, and of the fermion coherent
states, would lead us on a long detour. Fortunately, there are many excellent discussions of
the Grassman path integral in the literature, e.g. the book by Negele and Orland [357] or
the text by Shankar [464]), and we refer the reader to them. In the end, the final form of the
coherent state path integral is identical to that derived for bosons in Section 9.2: the only
difference is that the variables of integration are noncommuting Grassman numbers rather
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than commuting complex numbers. In this manner, we obtain for the partition function
Z = Tre−HF/T :

Z =
∫

D�D�† exp

(
−
∫ 1/T

0
dτdx LI

)
, (10.27)

where the functional integral is over complex Grassman fields �, �† in space (x) and
imaginary time (τ ), and the Lagrangean density LI is

LI = �† ∂�

∂τ
+ c

2

(
�† ∂�

†

∂x
−� ∂�

∂x

)
+��†�. (10.28)

The continuum theory LI can be diagonalized much like the lattice model HI , and the
excitation energy now takes a “relativistic” form

εk = (�2 + c2k2)1/2, (10.29)

which shows that |�| is the T = 0 energy gap (we chose the sign of � to be differ-
ent on the two sides of the critical value of g) and c is the velocity of the excitations,
both measurable quantities. The form of εk correctly suggests that LI is invariant under
Lorentz transformations. This can be made explicit by writing the complex Grassman
field � in terms of two real Grassman fields, when the action becomes what is known
as the field theory of Majorana fermions of mass �/c2 [244]; we do not explicitly display
this here.

The key to establishing that LI is a universal critical theory is to examine its behavior
under the scaling transformations of Chapter 4. Let us restate the physical meaning of
this transformation in the present context. We think of LI as an effective theory of an
underlying lattice problem, applicable only at length scales larger than some lattice spacing
a or with momenta smaller than � = π/a. We are ultimately interested in long-distance
physics, and so it is useful to think of eliminating some short-distance degrees of freedom
from LI : say all modes of the field � with momenta between � and �e−�, where e−� is
a dimensionless rescaling factor. As (10.27) involves only a Gaussian functional integral,
integrating these modes out will only add an overall additive constant to the free energy.
We are left with a new theory having the same action as LI but valid only at length scales
larger than ae�. We complete the scaling transformation by rescaling lengths, times, and
fields so that the resulting LI has the same form and short-distance cutoff as the original
LI . To this end we define (compare (4.1) and (4.3))

x ′ = xe−�,
τ ′ = τe−z�,

� ′ = �e�/2. (10.30)

The reader can easily check that the new LI expressed in terms of x ′, τ ′, and � ′, has the
same form, and the same short-distance cutoff a, as the original LI had in terms of x , τ ,
and � at the position of the quantum critical point � = T = 0. The parameter z is the
dynamic critical exponent and determines the relative rescaling factors of space and time.
In the present case, only the choice z = 1 leaves the velocity c invariant. Indeed, all the
quantum rotor models will have z = 1 because they are related to classical problems that
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are fully isotropic in D spatial dimensions, as noted in Section 2.1. When viewed as a
transformation on the continuum theory (i.e. for the case a → 0), it is evident that (10.30)
is an exact invariance of LI , and this is often a useful point of view to take.

Let us move away from the critical point � = 0, T = 0, by changing � but keeping
T = 0. Under the rescaling (10.30) the action LI remains invariant only if we introduce a
new �′:

�′ = �e�. (10.31)

We see that any initially nonzero � grows indefinitely as one transforms to larger scales
(larger �); so it is a relevant perturbation, It destroys scale invariance at the largest scales.

Let us re-express the above results in terms of scaling dimensions. We have

dim[�] = 1. (10.32)

As in Chapter 4, we define the exponent ν as the inverse of the scaling dimension of the
most relevant perturbation about a quantum critical point; in the present case, this will turn
out to be �, and so

ν = 1. (10.33)

For the fermion field operator we have

dim[�] = 1/2, (10.34)

while the spacetime dimensions have

dim[x] = −1, dim[τ ] = −z. (10.35)

The temperature, T , is just an inverse time, and therefore

dim[T ] = z. (10.36)

This is positive, and so, not surprisingly, T is also a relevant perturbation at the quantum
critical point. Let us also consider the scaling dimension of the free energy density F̃ of
the system; we apply the tilde here, because earlier we had used F for the total free energy,
not the free energy density (also, we always subtract out from F̃ the ground state energy
at the quantum critical point � = 0 and consider the singular behavior of the remainder).
This is given by F̃ = −(T/V ) lnZ , where V is the volume and Z is the partition function.
As the logarithm is dimensionless, and clearly dim[V ] = d dim[x], we have

dim[F̃ ] = d + z, (10.37)

which is the generalization of the classical result in (4.49).
Finally, we also need the scaling dimension of the order parameter σ̂ z . This is not a

simple local function of the Fermi field � and is therefore quite difficult to determine. We
describe a relatively elaborate calculation in Section 10.3 that shows that

dim[σ̂ z] = 1/8. (10.38)

This is the first example here of an anomalous dimension. Indeed, the connection to the
classical Ising model discussed in Chapter 5 suggests that the operator σ̂ z maps directly
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onto field φ of the field theory (2.11): both are the Ising order parameters which mea-
sure the broken symmetry across the phase transition. From (4.32), we have dim[φ] =
(D − 2+ η)/2 = η/2. So we conclude from (10.38) that the d = 1 quantum Ising model
has η = 1/4. We expect that η = 1/4 is also the exact result at the Wilson–Fisher fixed
point in D = 2; i.e. the value of (4.37) for ε = 2 and N = 1.

All previous scaling dimensions of the d = 1 Ising model coincided with their so-
called engineering dimension, that is, that obtained by the familiar dimensional analysis
of lengths and times in meters and seconds, with the additional freedom to use powers
of the velocity c to convert all times into lengths; the anomalous dimension is defined by
the difference of the scaling and engineering dimensions, and so all previous anomalous
dimensions were 0. The engineering dimension of σ̂ z , a dimensionless matrix, is clearly
0. Nevertheless, we see that it has a nonzero scaling dimension. This can happen without
violating equality of engineering dimensions (which must always be preserved) because
we have the additional freedom to use powers of the lattice energy scale J (or the lattice
spacing, a) in defining the continuum limit of observables. Indeed, (10.38) implies that
only the combination J 1/8σ̂ z has correlators that are finite in the continuum limit a → 0
discussed below (10.26).

Armed with the knowledge of these scaling dimensions, we can put important general
constraints on the structure of various universal scaling forms. We follow a simple, gen-
eral convention in presenting these scaling forms. First pick the observable of interest and
determine its scaling dimension. Then write down as a prefactor that power of T which has
the same scaling dimension as the observable. This multiplies a dimensionless universal
scaling function of a number of arguments; each argument should be a coupling or coor-
dinate times a power of T so that the combination has net scaling dimension 0. Finally,
powers of innocuous variables such as c with zero scaling dimension are inserted so that
the engineering dimensions of the expressions are consistent.

As an example of such considerations, let us consider the scaling form satisfied by the
two-point correlator C(x, t) defined in (10.2):

C(x, t) = Z T 1/4�I

(
T x

c
, T t,

�

T

)
. (10.39)

Here Z is an overall noncritical normalization constant, with zero scaling dimension, which
depends on the details of the microscopic physics; its presence is related to the anomalous
dimension of σ̂ z and consistency of (10.39) requires Z to have engineering dimension
−1/4. We shortly relate Z to observable properties of the ground state. The scaling function
�I depends universally on its three arguments. The power of T in the front follows from
(10.38) and (10.36). Note that the physics depends completely on the ratio of two energy
scales, that of the T = 0 energy gap to temperature: �/T . The central purpose of this
chapter is to present a fairly complete description of the physical properties of �I as a
function of �/T .

It is very important to note that the scaling form (10.39) will not satisfy the relationship
C(0, 0) = 1, which is exactly obeyed by the lattice model; this short-distance property is
lost once the continuum limit has been taken. Alternatively stated, the sum rule (10.6) will
not be obeyed by the Fourier transform of (10.39).
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We can also describe rather explicitly the sense in which �I is universal; that is, what
happens if we generalize HI or LI to include other short-range couplings? There are two
different types of perturbation to LI that are possible. The first type arises from higher
spatial gradients in the mapping from the particular Hamiltonian HI , and the simplest of
these is

λ1�
† ∂

2�

∂x2
. (10.40)

The second type comes from additional terms we could add to HI , such as σ̂ x
i σ̂

x
i+1, that

respect the symmetry (1.13) and are therefore not expected to modify qualitative features of
the transition; after the Jordan–Wigner transformation, and expansion in spatial gradients,
such a term induces in the continuum limit a term

λ2�
† ∂�

†

∂x

∂�

∂x
�; (10.41)

note that two spatial gradients are required because the term with only one would vanish
because of the Fermi statistics identity �2 = 0. A simple computation shows that

dim[λ1] = −1, dim[λ2] = −2, (10.42)

and so these couplings are irrelevant, they can be neglected in a discussion of the leading
long-distance and low-T properties. This is in striking contrast to the bosonic Gaussian
fixed point of Section 4.1, which was unstable to perturbations via the φ4 interaction.

The absence of other relevant perturbations at � = 0 implies that LI is the universal
continuum quantum field theory describing crossovers near the � = 0, T = 0 quantum
critical point. It is fortunate that this universal theory happens to be expressible as a free
fermion model. Although our original motivation for examining HI was its solvability,
the arguments of this section have shown that this choice also happily coincides with that
required for obtaining a universal critical theory.

There are two types of consequence of the irrelevant couplings. The first is that the
values of the parameters Z , �, and c appearing in the scaling form (10.39) change; this
change is quite difficult to compute, and therefore we should consider Z , �, and c to
be defined by some experimental observable at T = 0: � is defined to be the energy
gap at T = 0, c is the velocity of excitations at � = 0, and Z is shown later to be
related to certain amplitudes at T = 0. The second is that there are subleading cor-
rections to the whole scaling form itself. The form of these corrections can be deduced
from the general rules stated earlier, and we find that the result (10.39) has multiplicative
corrections like

(1+ λ1T + λ2T 2 + · · · ). (10.43)

These corrections are expected to be unimportant at low enough T .
Let us compute finite-temperature correlators of the free fermion field�. These correla-

tors are not related to any local observable of the Ising chain, and therefore they cannot be
measured experimentally. Our main purpose in discussing them is to further illustrate the
present scaling ideas in a simple context. The two-point � correlators can be computed by
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performing the analog of the lattice Bogoliubov transformation on the continuum theory.
We found for imaginary time τ > 0〈
�(x, τ )�†(0, 0)

〉
= 1

2

∫ ∞

−∞
dk

2π

eikx

ec|k|/T + 1

(
ec|k|(1/T−τ) + ec|k|τ )

=
(

T

4c

)(
1

sin(πT (τ − i x/c))
+ 1

sin(πT (τ + i x/c))

)
. (10.44)

In a similar manner, we can find

〈�(x, τ )�(0, 0)〉 =
(

iT

4c

)(
1

sin(πT (τ − i x/c))
− 1

sin(πT (τ + i x/c))

)
. (10.45)

The results (10.44) and (10.45) have precisely the scaling forms that would have been
expected under the scaling dimensions in (10.30). At T = 0, (10.44) simplifies to〈

�(x, τ )�†(0, 0)
〉
= 1

4π

(
1

cτ − i x
+ 1

cτ + i x

)
. (10.46)

Now note that the transformation

cτ ± i x → c

πT
sin

(
πT

c
(cτ ± i x)

)
(10.47)

connects the T = 0 and T > 0 results. This mapping is actually an example of a very
general connection between all T = 0 and T > 0 two-point correlators of the contin-
uum theory LI . The existence of this mapping is due to a larger conformal symmetry of
LI [68]. (The reader is referred to [244] for further discussion on this point.) Here we defer
discussion of this mapping to Chapter 20 where it arises as a simple consequence of the
bosonization method.

10.3 Equal-time correlations of the order parameter

This section is of a technical nature. Its main purpose is to show how one may obtain the
result (10.38) that dim[σ̂ z] = 1/8. We also obtain explicit expressions for certain crossover
functions that cannot be obtained otherwise. The limiting forms of these crossover func-
tions, and all of the interesting dynamical properties of the system, are obtained again later
in Section 10.4 using simple physical arguments that rely on the bosonic picture of the
excitations developed in Sections 5.2 and 5.3 using the large and small-g expansions. Most
readers may therefore glance at the next paragraph where we outline the main results and
omit the remainder of this section.

We begin by writing down the main result and then outline how it is obtained. The equal-
time two-point correlation of the order parameter has the following long-distance limit at
any T > 0 [420]:

lim|x |→∞C(x, 0) = Z T 1/4G I (�/T ) exp

(
−T |x |

c
FI (�/T )

)
, (10.48)
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where Z is the nonuniversal constant introduced earlier in (10.39), and FI (s) and G I (s) are
universal scaling functions. Notice that (10.48) is completely consistent with the general
scaling form (10.39). A crucial property of (10.48) is the prefactor of T 1/4, which estab-
lishes that dim[σ̂ z] = 1/8. A second important property is that the two-point correlations
decay exponentially to zero at large enough x . Thus the T = 0 long-range order discussed
in Section 5.3 disappears at any T > 0 (we will later give a simple physical explanation of
this). The exponential decay defines a correlation length ξ that obeys

ξ−1 = T

c
FI

(
�

T

)
. (10.49)

The exact, self-contained expression for the universal function FI is [420]

FI (s) = |s|θ(−s)+ 1

π

∫ ∞

0
dy ln coth

(y2 + s2)1/2

2
. (10.50)

The s > 0 (s < 0) portion of FI describes the magnetically ordered (paramagnetic) side.
Despite its appearance, the function FI (s) is smooth as a function of s for all real s and
is analytic at s = 0. The analyticity at s = 0 is required by the absence of any ther-
modynamic singularity at finite T for � = 0. This is a key property, which was in fact
used to obtain the answer in (10.50). The exact expression for the function G I (s) is also
known [420]:

ln G I (s) =
∫ 1

s

dy

y

[(
d FI (y)

dy

)2

− 1

4

]
+
∫ ∞

1

dy

y

(
d FI (y)

dy

)2

, (10.51)

and its analyticity at s = 0 follows from that of FI . For the solvable model HI , we chose
the overall normalization of G I such that Z = J−1/4. In general, the value of Z is set by
relating it to an observable, as we show below. Also note that Z has no dependence on �;
it is therefore nonsingular at the quantum critical point.

We show a plot of the universal functions FI and G I in Fig. 10.1. Notice that they are
perfectly smooth at � = 0 (s = 0).

We now outline how to establish (10.48). We work with the lattice model HI and con-
sider the evaluation of 〈σ̂ z

i σ̂
z
i+n〉. The continuum limit for the correlators of LI can only be

taken at a relatively late stage. Using the fermionic representation (10.13) and the simple
identity 1− 2c†

i ci = (c†
i + ci )(c

†
i − ci ), we obtain [299]

〈
σ̂ z

i σ̂
z
i+n

〉 = 〈(c†
i + ci

)⎡⎣i+n−1∏
j=i

(
c†

j + c j
)(

c†
j − c j

)⎤⎦ (c†
i+n + ci+n

)〉

=
〈(

c†
i − ci

)⎡⎣i+n−1∏
j=i+1

(
c†

j + c j
)(

c†
j − c j

)⎤⎦ (c†
i+n + ci+n

)〉
. (10.52)
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�Fig. 10.1 The crossover functions for the correlation length (FI) and the amplitude (GI) as a function of s = �/T .

Note that the string extends only between the sites i and i + n, with the operators on sites
to the left of i having cancelled between the two strings. Now, using the notation

Ai = c†
i + ci , Bi = c†

i − ci , (10.53)

we have 〈
σ̂ z

i σ̂
z
i+n

〉 = 〈Bi Ai+1 Bi+1 · · · Ai+n−1 Bi+n−1 Ai+n〉. (10.54)

Since the expectation values are with respect to a free Fermi theory, the expression on the
right-hand side can be evaluated by the finite-temperature Wick’s theorem [136], which
relates it to a sum over products of expectation values of pairs of operators. The expectation
value of any such pair is easily calculated:

〈Ai A j 〉 = δi j ,

〈Bi B j 〉 = −δi j ,

〈Bi A j 〉 = −〈A j Bi 〉 = Di− j+1, (10.55)

with

Dn ≡
∫ 2π

0

dφ

2π
e−inφ D̃(eiφ), (10.56)

and

D̃(z = eiφ) ≡
(

1− gz

1− g/z

)1/2

tanh

[
J

T
((1− gz)(1− g/z))1/2

]
; (10.57)

note that the argument of the tanh (which arises from the thermal Fermi distribution func-
tion) is simply εφ/2T . In determining 〈Bi A j 〉, we have used the representation (10.19)
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and evaluated expectation values of the γk under the free fermion Hamiltonian (10.22).
Collecting the terms in the Wick expansion, we find

〈
σ̂ z

i σ̂
z
i+n

〉 = Tn ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D0 D−1 · · · D−n+1

D1

·
·
· D0 D−1

Dn−1 D1 D0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (10.58)

We are now faced with the mathematical problem of evaluating the determinant Tn : to
obtain the universal scaling limit answer we need to take the limit n → ∞ while keeping
the system close to its critical point. The expression for Tn is in a special class of deter-
minants known as Toeplitz determinants, and the limit Tn→∞ can indeed be evaluated in
closed form using a fairly sophisticated mathematical theory. We do not present the details
of this evaluation here, but refer the reader to the literature [36, 327, 332, 420]. The final,
universal, result has already been quoted at the beginning of this section.

10.4 Finite temperature crossovers

The key result of the previous section is that equal-time correlations of the order parameter,
C(x, 0), decay exponentially to zero at any T > 0. The expression for the correlation
length as a function of �/T is given in (10.49). From this result we can easily obtain the
following important limiting forms, which are also rederived in this section using simpler
physical arguments:

ξ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c

√
π

2�T
e�/T , for �� T

4c

πT
, for |�| � T

c

|�| . for �� −T

(10.59)

Note that for � > 0, the correlation length diverges exponentially as T → 0. As we show
explicitly in Section 10.4.1 below, this is a characteristic property of a state with long-range
order only at T = 0. Precisely at � = 0, the correlation length diverges as ∼ 1/T , which
agrees with the naive analysis of scaling dimensions at a quantum critical point ∼ T−1/z .
Finally, for � < 0, the correlation length reaches a finite value as T → 0, suggesting
a quantum paramagnetic ground state. These dependencies imply the important crossover
phase diagram shown in Fig. 10.2. There are three distinct universal regimes, character-
ized by the limiting forms in (10.59), determined by the largest of the two characteristic
energy scales, � or T , as we discussed near Fig. 1.3. A closely related phase diagram was
discussed by Chakravarty, Halperin, and Nelson [75] in the context of a model we study
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�Fig. 10.2 Finite-T phase diagram of the d = 1 quantum Ising model, HI , as a function of the coupling g and temperature T ;
compare Figs. 1.2a and 1.3. There is a quantum phase transition at T = 0, g = gc = 1 with exponents z = 1,
ν = 1. Magnetic long-range order (N0 = 〈σ̂z〉 �= 0) is present only for T = 0 and g < gc . The ground state for
g > gc is a quantum paramagnet. There is an energy gap above the ground state for all g �= gc . We use an energy
scale� ∼ gc − g such that the energy gap is |�|. The dashed lines are crossovers at |�| ∼ T . The low-T region
on the magnetically ordered side (� > 0, g < gc ) is studied in Section 10.4.1, and the low-T region on the quantum
paramagnetic side (� < 0, g > gc ) is studied in Section 10.4.2. The continuum high-T (or “quantum-critical”)
region is studied in Section 10.4.3; its properties are universal and determined by the continuum theory in (10.28).
Finally there is also a “lattice high-T” region with T � J where the properties are nonuniversal and determined by
the lattice scale Hamiltonian.

in Chapter 13, with a different terminology for the various regimes. We find our choices
more appropriate and convenient, although we briefly recall their notation in the following
subsections.

We note that we finally have a first realization of the generic crossover phase diagram of
the vicinity of the quantum critical point illustrated in Fig. 1.2a.

There are two low-T regimes with T � |�|. The one for � > 0, on the magnetically
ordered side, has an exponentially diverging correlation length ξ as T → 0; it is studied in
Section 10.4.1. The other low-T regime with � < 0 has a correlation length that saturates
at a finite value as T → 0; it is studied in Section 10.4.2. Then there is a novel continuum
high-T regime, T � |�|, where the physics is controlled primarily by the quantum critical
point � = 0 and its thermal excitations and is described by the associated continuum
quantum field theory; its properties are discussed in Section 10.4.3. This is the analog of
the “quantum-critical” regime of [75], but we prefer the term “high-T ” as a more accurate
description of the dynamical properties of this regime. It is implicit in our high-T limit here
that we are not taking the temperature so high that the mapping to the universal continuum
model breaks down, and we have to allow for corrections like those in (10.43): this implies
that we should always satisfy T � J . There is therefore a second, nonuniversal high-T
limit of the lattice model, also shown in Fig. 10.2, where T � J , but we have little to say
about this regime here. The dynamic T = ∞ Ising model results of [67,376,377] fall into
this last regime; more generally discussions of dynamics at T = ∞ may be found in [168]
and references therein.

The three subsections below describe the universal dynamics of the Ising chain in the
regions of Fig. 10.2. We pay particular attention to the central concept of the phase
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coherence time τϕ , which was introduced in Section 2.2, where it was defined loosely
as the time over which the wavefunction of the system retains phase memory, and so quan-
tum interference is observable between local measurements separated by times up to τϕ .
We use more precise definitions here. We show that τϕ obeys

τϕ ∼ �/kB T in the “Continuum High-T” region, T � �,

τϕ ∼ (�/kB T )e|�|/kB T in the “Low-T” regions, T � |�|. (10.60)

Note that τϕ always diverges as T → 0, for, as we argued in Section 2.2, the ground
state of the system has perfect phase memory. On the magnetically ordered side (� > 0,
g < 1), the divergence of τϕ is not surprising as it is also accompanied by divergence of
the correlation length, as we saw in (10.59). However, on the quantum paramagnetic side
(� < 0, g > 1), the correlation length saturates as T → 0; this clearly does not give a
complete physical picture as the divergence of τϕ indicates a certain temporal coherence.
Therefore, as already noted in Section 2.2, the commonly used description of the� < −T
region as “quantum disordered” is quite misleading: there are quite precise long-range
correlations in time that characterize the perfect coherence of the paramagnetic ground
state. Finally, in the continuum high-T region, we see that the lower bound on τϕ in (2.13)
is saturated – this is therefore the most incoherent region.

10.4.1 Low T on the magnetically ordered side, �> 0, T ��

In their study of the model of Chapter 13, Chakravarty, Halperin, and Nelson [75] called
the analogous regime “renormalized classical” [75]. The reasons for this name become
clear below; however, this is not the only regime that displays classical behavior, as we see
in Section 10.4.2.

First, let us consider the results for the equal-time correlations. Assuming that it is valid
to interchange the limits T → 0 and x → ∞ in (10.48), we can use the limiting values
FI (∞) = 0, G I (s →∞) = s1/4 to deduce that (recall (1.14)):

N 2
0 ≡ lim|x |→∞C(x, 0) = Z�1/4, at T = 0. (10.61)

Thus, as claimed earlier, there is long-range order in the g < 1 ground state of HI , with the
order parameter N0 = 〈σ̂ z〉 = Z1/2�1/8. (Note that N0 vanishes as g approaches gc from
below with the exponent β = 1/8.) We can also use the relationship (10.61) to relate the
parameter Z to the observables N0 and �. Turning next to nonzero T , for small T � �,
we obtain from the large s behavior of FI (s) (see (10.50)) that

C(x, 0) = N 2
0 e−|x |/ξc , large |x |, (10.62)

where the correlation length

ξ−1
c =

(
2|�|T
πc2

)1/2

e−|�|/T (10.63)

is finite at any nonzero T , showing that long-range order is present only precisely at T = 0.
We have put a subscript c on the correlation length to emphasize that the system is expected
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to behave classically in this low-temperature region. This is a crucial characteristic of this
region and the reason for classical behavior is quite simple and familiar. The excitations
consist of particles (the kinks and antikinks of Section 5.3) whose mean separation (∼ ξc ∼
e�/T ) is much larger than their de Broglie wavelengths (∼ (c2/�T )1/2), which is obtained
by equating the kinetic energy εk −� ∼ c2k2/2� to the thermal equipartition value T/2
as T → 0, which is precisely the canonical condition for the applicability of classical
physics. It is also reassuring to note that (10.62) has the form of equal-time correlations in
the classical Ising chain at low T , which were discussed in Section 5.5. The prefactor N 2

0
is the true ground state magnetization including the effects of quantum fluctuations, and
this is the reason for the adjective “renormalized” in the name for this region.

We show that it is possible to give a simple physical interpretation for the value of ξc

in (10.63). The energy of a domain wall with a small momentum k is � + c2k2/2�, and
therefore classical Boltzmann statistics tells us that their density, ρ, is

ρ =
∫

dk

2π
e−(�+c2k2/2�)/T =

(
T�

2πc2

)1/2

e−�/T . (10.64)

Comparing with (10.63), we see that ξc = 1/2ρ. This result follows if we assume that
the domain walls are classical point particles, which are distributed independently with
a density ρ. Consider a system of size L � |x |, and let it contain M thermally excited
particles; then ρ = M/L . Let q be the probability that a given particle will be between 0
and x . Clearly,

q = |x |
L
. (10.65)

The probability that a given set of j particles are the only ones between 0 and x is then
q j (1 − q)M− j ; as each particle reverses the orientation of the ground state, in this case
σ̂ z(x, 0)σ̂ z(0, 0) = N 2

0 (−1) j . Summing over all possibilities we have

C(x, 0) = N 2
0

M∑
j=0

(−1) j q j (1− q)M− j M !
j !(M − j)!

= N 2
0 (1− 2q)M ≈ N 2

0 e−2q M = N 2
0 e−2ρ|x |, (10.66)

thus establishing the desired result.
This semiclassical picture can also be extended to compute unequal-time correlations. In

this computation it is essential to consider the collisions between the particles. Even though
the particles are very dilute, they cannot really avoid each other in one dimension, and
neighboring particles will always eventually collide (this is not true in higher dimensions
where sufficiently dilute particles can be treated as noninteracting). During their collisions,
the particles are certainly closer than their de Broglie wavelengths, and so the collisions
must be treated quantum mechanically. Indeed, these collisions will be characterized by
the two-particle S matrix, which was considered earlier in Section 5.3.2; however, the
diluteness does allow us to consider the collisions of only pairs of particles.

To study dynamic correlations, let us re-examine the explicit expression for C(x, t) in
(10.2). We can show how it can be evaluated essentially exactly using some simple physical
arguments. The key is to recall that classical mechanics emerges from quantum mechanics
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(0,0)

(x,t )

x

t

�Fig. 10.3 A typical semiclassical contribution to the double time path integral for 〈σ̂ z(x, t)σ̂ z(0, 0)〉. Full lines are thermally
excited particles that propagate forward and backward in time. The± signs are significant only for g < gc and
denote the orientation of the order parameter. For g > gc , the dashed line is a particle propagating only forward in
time from (0, 0) to (x, t).

as a stationary phase evaluation of a first-quantized Feynman path integral. We therefore
attempt to evaluate the expression in (10.2) by such a path integral. It is clear that the inte-
gral is over a set of trajectories moving forward in time, representing the operator e−i HI t ,
and a second set moving backwards in time, corresponding to the action of ei HI t . In the
semiclassical limit, a stationary phase is achieved when the backward paths are simply the
time reverse of the forward paths, and both sets are the classical trajectories. An example
of a set of paths is shown in Fig. 10.3. Now observe that:

(i) The classical trajectories remain straight lines across collisions because the momenta
before and after the collision are the same. This follows from the requirement of con-
servation of total momentum (k1+ k2 = k′1+ k′2) and energy (εk1 + εk2 = εk′1 + εk′2 ) in
each two-particle collision, which has the unique solution k1 = k′1 and k2 = k′2 (or its
equivalent permutation, which need not be considered separately because the particles
are identical) in one dimension.

(ii) For each collision, the amplitude for the path acquires a phase Sk1k2 along the for-
ward path and its complex conjugate along the backward path. The net factor for the
collision is therefore |Sk1k2 |2 = 1.

These two facts imply that the trajectories are simply independently distributed straight
lines, placed with a uniform density ρ along the x-axis, with an inverse slope

vk ≡ dεk

dk
, (10.67)

and with their momenta chosen with the Boltzmann probability density e−εk/T /ρ

(Fig. 10.3).
Computing dynamic correlators is now an exercise in classical probabilities. As each

particle trajectory is the boundary between domains with opposite orientations of spins,
the value of σ̂ z(0, 0)σ̂ z(x, t) is the square of the magnetization renormalized by quan-
tum fluctuations (N 2

0 ) times (−1) j , where j is the number of trajectories intersecting the
dashed line in Fig. 10.3. Now it remains to average N 2

0 (−1) j over the classical ensemble
of trajectories defined above. This average can be carried out in a manner quite similar to
that in the equal-time computation earlier. Again choosing a system size L � |x | with M
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particles, the probability q that a given particle with velocity vk is between the points (0, 0)
and (x, t) in Fig. 10.3 is (compare (10.65))

q = |x − vk t |
L

. (10.68)

We have to average over velocities and then evaluate the summation in (10.66). This gives
one of the central results of this chapter [442]:

C(x, t) = N 2
0 R(x, t),

R(x, t) ≡ exp

(
−
∫

dk

π
e−εk/T |x − vk t |

)
. (10.69)

(This relaxation function also appeared in [115, 316] in a phenomenological analysis of
related models by exponentiating a short-time expansion that ignored collisions.) The
equal-time or equal-space form of the relaxation function R(x, t) is quite simple:

R(x, 0) = e−|x |/ξc ,
R(0, t) = e−|t |/τϕ ; (10.70)

for general x, t the function R also decreases monotonically with increasing |x | or |t |,
but the decay is not simply an exponential. The spatial correlation length ξc is given in
(10.63). We have identified the equal-space correlation time as the phase coherence time
for obvious reasons: the long-range order in the ground state is clearly a manifestation of
phase coherence, and its decay in time is a natural measure of τϕ . We can determine τϕ
from (10.69), and remarkably we find that τϕ is independent of the functional form of εk

and depends only on the gap:

1

τϕ
= 2

π

∫ ∞

0
dk

dεk

dk
e−εk/T

= 2

π

∫ ∞

|�|
dεke−εk/T

= 2kB T

π�
e−|�|/kB T , (10.71)

where we have momentarily inserted the fundamental constants � and kB in the last step to
emphasize the universality of the result.

In the limit T � � we are now able to completely specify the form of the scaling func-
tion�I in (10.39). The behavior of�I is characterized by the concept of a reduced scaling
function, which is determined entirely by classical physics; we have several occasions to
use this concept later in this book. Note that the original function �I had three arguments:
the scales of space and time relative to T and the ratio�/T . For T � � the last argument
disappears, and we find that the scales of space and time are determined by the large clas-
sical scales ξc and τϕ , respectively. By an analysis of (10.69) we find that the correlations
can be written in the following reduced classical scaling form:

C(x, t) = N 2
0�R

(
x

ξc
,

t

τϕ

)
, (10.72)
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where clearly R(x, t) satisfies the scaling form

R(x, t) = �R

(
x

ξc
,

t

τϕ

)
. (10.73)

These scaling forms are valid only for T � �, and they must be consistent with the
fully quantum �I in (10.39), which is valid for all �/T . This requirement implies that
the scales ξc and τϕ must be universal functions of �/T , as we have already seen in the
expressions (10.63) and (10.71). Evaluating (10.69) we can obtain an explicit closed form
expression for �R :

ln�R(x̄, t̄) = −x̄ erf

(
x̄

t̄
√
π

)
− t̄ e−x̄2/(π t̄2). (10.74)

Note that the characteristic time τϕ and length ξc both diverge as ∼ e�/T , and so we can
define an effective classical dynamic exponent zc = 1 (there is no fundamental reason why
zc and z should have the same value). We also note here that the classical dynamic scaling
function obtained above is unrelated to the dynamic scaling functions associated with a
popular classical statistical model for dynamics of Ising spins – the Glauber model [169].
The present underlying quantum dynamics leads to a rather different effective classical
model in which energy and momentum conservation play a crucial role, the time evolution
is deterministic, and the average is over the set of initial conditions.

All of the results above have been compared with exact numerical computations and
the agreement is essentially perfect. We show a typical comparison in Fig. 10.4. This

0

0.2

0.4

0.6

0 50 100 150
t

�Fig. 10.4 Theoretical and numerical results from [442] for the real part of the correlator
〈
σ̂ z(x, t)σ̂ z(0, 0)

〉
of HI at x = 20

with J = 1, g = 0.6 (therefore� = 0.8), T = 0.3; the system is thus in the low-T region on the magnetically
ordered side of Fig. 10.2. The numerical data (shown in circles) were obtained for a lattice size L = 512 with free
boundary conditions. This is compared with the theoretical prediction in (10.69). The imaginary part of the correlator
was numerically found to be negligibly small, and the semiclassical theoretical prediction is that it vanishes.
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agreement gives us confidence that the physical, “hand-waving,” quasi-classical particle
approach to dynamical properties outlined above is in fact exact.

The Fourier transform of (10.72) and (10.74) yields the portion of the dynamic structure
factor, S(k, ω) (defined in (10.4)), describing the T > 0 broadening of the T = 0 delta
function in (7.33). We expect this broadening to occur on a frequency scale of order 1/τϕ ,
and so the predominant weight in S(k, ω) is at frequencies ω � T . Under this condition,
some simplifications occur in the relationships between the response functions introduced
in the opening of this chapter. In particular, for ω � T , the fluctuation–dissipation theorem
(7.12) reduces to its simpler, “classical” form

S(k, ω) = 2T

ω
Imχ(k, ω). (10.75)

As Imχ(k, ω) is always an odd function of ω, in the limit that (10.75) is obeyed, S(k, ω)
becomes an even function of ω (the reader should keep in mind that this last fact is not
generally true). Applying (10.75) to (10.5), we see that the equal-time structure factor is
simply T times the static susceptibility,

S(k) =
∫

dω

π

Imχ(k, ω)

ω

= Tχ(k), (10.76)

where the second equation relies on the Kramers–Kronig transform in (7.20). So we see
that the static, zero-frequency response to an external field contains information on the
equal-time spin correlations; however, it must be remembered that this is only true for
effectively classical systems in which the predominant weight in the spectral density is at
frequencies smaller than T ; it is not true in general. For the present situation, the value of
S(k) follows immediately from (10.69) and (10.70):

Tχ(k) = S(k) = N 2
0

2ξc

1+ k2ξ2
c
. (10.77)

Thus the delta function in S(k) implied by (7.33) has been broadened on a momentum
scale ξ−1

c , and S(0) takes an exponentially large value proportional to ξc ∼ e�/T .
Turning to the broadening in S(k, ω), we find it useful to introduce the parameterization

2T

ω
Imχ(k, ω) = S(k, ω) = Tχ(k)τϕ�Sc(kξc, ωτϕ), (10.78)

where �Sc is a universal scaling function whose form follows from a Fourier transform of
(10.74). We have inserted the prefactors in front of�Sc because then it follows easily from
(10.76) that its frequency integral has a fixed normalization∫

dω̄

2π
�Sc(k̄, ω̄) = 1. (10.79)

We use scaling forms such as (10.78) at several other occasions in this book. We perform
a numerical Fourier transform of (10.74) and the result for �Sc is shown in Fig. 10.5. We
see that the dynamic structure factor has a large peak of order N 2

0 ξcτϕ ∼ e2�/T and decays
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�Fig. 10.5 The scaling function�Sc(k̄, ω̄), appearing in (10.78), as a function of ω̄ at k̄ = 0 (full line) and k̄ = 1.5 (dashed

line). This describes the broadening of the delta function in the dynamic structure factor in (7.33) at 0 < T � �.

monotonically to zero on a frequency scale ∼ τ−1
ϕ and on a momentum scale ∼ ξ−1

c . The
frequency width of �Sc broadens with increasing wavevector, but its maximum remains
at ω̄ = 0.

The existence here of a classical reduced scaling function describing relaxation of the
order parameter reflects an important underlying physical property: the clear separation of
scales at which quantum and thermal fluctuations are dominant. Quantum fluctuations are
paramount at distance scales up to c/� and these cause a reduction in the ordered moment
from unity to N0. The influence of thermal fluctuations is not felt until the much larger
scale ξc, where the excitations behave classically except during collisions.

10.4.2 Low T on the quantum paramagnetic side, �< 0, T � |�|
In a study of the model of Chapter 13, Chakravarty, Halperin, and Nelson [75] called the
analogous regime “quantum disordered” [75]. However, as we have already noted and
as we show below, this nomenclature does not capture the long-range time correlations
associated with the exponentially large τϕ in this regime.

We begin by describing the equal-time correlations. We need to take the s →−∞ limit
of the functions FI (s), G I (s); from these limits we find

C(x, 0) = Z T

|�|3/4 e−|x |/ξ , |x | → ∞ at fixed 0 < T � |�|, (10.80)

with the correlation length ξ given by

ξ−1 = |�|
c
+
(

2|�|T
πc2

)1/2

e−|�|/T . (10.81)

Hence correlations decay exponentially on a scale ∼ c/|�|, and there is no long-range
order.
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The equal-time correlations at T = 0 behave in a similar manner, although the limits
T → 0 and |x | → ∞ do not commute for the prefactor of the exponential decay. Let
us first use a simple argument to determine the overall large-x dependence of the T = 0
correlation. We have already argued in the strong-coupling analysis of Section 5.2 that an
important feature of the quantum paramagnet was a stable quasiparticle that was created
and annihilated by the operator σ̂ z . Further, we showed in Section 7.2.1 that this quasipar-
ticle would lead to a pole in the dynamic susceptibility. From the relativistic invariance of
the continuum theory HF in (10.25), and the result (7.23) we conclude that the dynamic
susceptibility of the Ising model must have the form

χ(k, ω) = A
c2k2 +�2 − (ω + iδ)2

+ · · · , T = 0, (10.82)

where δ is a positive infinitesimal. Apart from the pole, there will also be a continuum
of excitations above the three-particle threshold of ω = 3�, as indicated by (7.27); these
are represented by the ellipses in (10.82). The scale factor A is the quasiparticle residue,
and we will obtain its value shortly. First, we use (10.82) to deduce the T = 0 equal-time
correlations. This is most simply done by first analytically continuing (10.82) to imaginary
frequencies ωn , and then using the inverse of the definition (7.3). This gives us

C(x, 0) = A
∫

dω

2π

∫
dk

2π

e−ikx

ω2 + c2k2 +�2

= A√
8πc|�||x |e

−�|x |/c , |x | → ∞ at T = 0. (10.83)

Comparing this result with (10.80) and (10.81), we see that the two results differ in the
power of |x | that appears in the prefactor of the exponential. This is acceptable because
the two cases involve different orders of limits of T → 0 and |x | → ∞, and there is
no mathematical requirement that the orders of limit commute – in (10.83) we have sent
T → 0 first, whereas the limit |x | → ∞ was taken first in (10.80).

To complete the description of the equal-time correlators we need to specify the value of
A. This requires a microscopic lattice calculation of the type considered in Section 10.3;
an analysis of the large-n limit of Tn at T = 0 was carried out by McCoy [327] and
Pfeuty [378], and comparing their results with (10.83) we can deduce that

A = 2cZ |�|1/4, (10.84)

where we recall that Z = J−1/4 for the nearest-neighbor model HI in (10.1). Hence
the residue vanishes at the critical point � = 0, where the quasiparticle picture breaks
down, and we have a completely different structure of excitations. The relationship (10.84)
also defines the value of Z on the quantum paramagnetic side in terms of the observ-
ables A and �; this complements the result (10.61), which defined Z on the magnetically
ordered side.

The above is an essentially complete description of the correlations and excitations of
the quantum paramagnetic ground state. We turn to the dynamic properties at T > 0.
At nonzero T , there will be a small density of quasiparticle excitations that will behave
classically for the same reasons as in Section 10.4.1: their mean spacing is much larger
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than their de Broglie wavelength. The collisions of these thermally excited quasiparticles
lead to a broadening of the delta function pole in (10.82). The form of this broadening can
be computed exactly in the limit T � |�| using a semiclassical approach similar to that
employed for the ordered side [442]. The argument again employs a semiclassical path-
integral approach to evaluating the correlator in (10.2). The key observation is that we may
consider the operator σ̂ z to be given by

σ̂ z(x, t) = (2cZ |�|1/4)1/2(ψ(x, t)+ ψ†(x, t))+ · · · , (10.85)

where ψ† is the operator that creates a single-particle excitation from the ground state, and
the ellipses represent multiparticle creation or annihilation terms, which are subdominant
in the long-time limit. This representation may also be understood from the g � 1 picture
discussed earlier, in which the single-particle excitations were |−〉 spins: the σ̂ z operator
flips spins between the ±x directions, and therefore creates and annihilates quasiparticles.

Because the computation of the nonzero T relaxation is best done in real space and time,
let us first write down the T = 0 correlations in this representation. We define K (x, t) to
be the T = 0 correlator of the order parameter:

K (x, t) ≡ 〈σ̂ z(x, t)σ̂ z(0, 0)〉T=0

=
∫

dk

2π

cZ |�|1/4
εk

ei(kx−εk t)

= Z |�|1/4
π

K0(|�|(x2 − c2t2)1/2/c), (10.86)

where K0 is the modified Bessel function. This result is obtained by the Fourier transform
of (10.82) and (7.20). Note that for t > |x |/c, the Bessel function has imaginary argument
and is therefore complex and oscillatory. Indeed, (10.86) has a simple interpretation as the
spacetime Feynman propagator of a single relativistic particle in one dimension; this can
be made more evident by looking at the nonrelativistic limit of (10.86) well within the light
cone x � ct ; in this case (10.86) reduces to

K (x, t) = Z |�|1/4ei�t
(

1

2π i�t

)1/2

exp

(
i
|�|x2

2c2t

)
, (10.87)

which is the familiar Feynman propagator of a nonrelativistic particle of mass |�|/c2; the
leading oscillatory term ∼ei�t represents the common “rest mass” energy of all the par-
ticles. Well outside the light cone, x � ct , (10.86) reduces to the equal-time correlator
obtained earlier in (10.83); here the correlations become exponentially small. Our primary
interest is the T > 0 properties of the correlations within the light cone, where the cor-
relations are large and oscillatory (corresponding to the propagation of real particles) and
display interesting semiclassical dynamics.

Now we consider the T �= 0 evaluation of (10.2) in the same semiclassical path-integral
approach that was employed earlier in Section 10.4.1. Again we are dealing with semi-
classical particles, although the physical interpretation of these particles is quite differ-
ent: they are quasiparticle excitations above a quantum paramagnet, and not domain walls
between magnetically ordered regions. As in Section 10.4.1 the path-integral representa-
tion of (10.2) leads to two sets of paths: one forward and the other backwards in time.
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However, there is a special trajectory that moves only forward in time: This is the trajec-
tory representing the particle that is created by the first σ̂ z

0 and annihilated at the second
σ̂ z

i . The inverse process in which the first σ̂ z
0 annihilates a pre-existing thermally excited

particle can be neglected because the probability of finding such a particle at a given loca-
tion is exponentially small. Also, as in the semiclassical limit, the forward and backward
trajectories of the thermally excited particles are expected to be the same; the particle on
the trajectory created by the σ̂ z

0 must be annihilated at the σ̂ z
i , for otherwise the initial and

final states in the trace in (10.2) will not be the same. This reasoning leads to a spacetime
snapshot of the trajectories that is the same as in Fig. 10.3, but its physical interpretation
is very different. The dashed line represents the trajectory of a particle created at (0, 0)
and annihilated at (x, t), and ± signs in the domains should be ignored. In the absence of
any other particles this dashed line would contribute the T = 0 Feynman propagator above,
K (x, t), to 〈σ̂ z(x, t)σ̂ z(0, 0)〉. The scattering of the background thermally excited particles
(represented by the full lines in Fig. 10.3 (which are not domain walls)) introduces factors
of the S matrix element Sk1k2 in (5.14) at each collision; as the dashed line only propagates
forward in time, the S matrix elements for collisions between the dashed and full lines are
not neutralized by a complex conjugate partner. All other collisions occur both forward and
backward in time, and therefore they contribute |Sk1k2 |2 = 1. Using the low momentum
value Sk1k2 = −1, we see that the contribution to 〈σ̂ z(x, t)σ̂ z(0, 0)〉 from the set of tra-
jectories in Fig. 10.3 equals (−1) j K (x, t), where j is the number of full lines intersecting
the dashed line. Remarkably, the (−1) j factor is precisely the term that appeared in the
analysis at low T on the magnetically ordered side in Section 10.4.1, although for very
different physical reasons. We can carry out the averaging over all trajectories as in the
analysis leading to (10.69), thereby obtaining one of our main results for low-T dynamic
correlations on the paramagnetic side [442]:

C(x, t) = K (x, t)R(x, t), (10.88)

with K (x, t) given by (10.86), and R(x, t) again specified by the second result of (10.70).
Now note that in going from the magnetically ordered to the quantum paramagnetic side
the only change in parameters has been the change in sign of �. The dispersion spectrum
εk is invariant under this change of sign, and so we can use precisely the same expressions
for the relaxation function R(x, t) as before: the result (10.70) still applies, and we can
continue to use the expression (10.74) for the scaling function �R . Furthermore, the char-
acteristic space and time scales, ξc and τϕ , on which R varies are still given by (10.63) and
(10.71), respectively. (Note that we were careful to insert the absolute value |�| in these
expressions, even though that was not needed for the magnetically ordered side.)

An interesting feature of the result (10.88) is that it clearly displays the separation in
scales at which quantum and thermal effects act. Quantum fluctuations determine the oscil-
latory, complex function K (x, t), which gives the T = 0 value of the correlator. Exponen-
tial relaxation of spin correlations occurs at longer scales ∼ ξc, τϕ and is controlled by
the classical motion of particles and a purely real relaxation function. This relaxation is
expected to lead to a broadening of the quasiparticle pole with widths of order ξ−1

c , τ−1
ϕ in

momentum and energy space. We can consider the presence of a quasiparticle delta func-
tion in the spectral density of excitations above the ground state as a representation of the
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�Fig. 10.6 Theoretical and numerical results from [442] for the correlator
〈
σ̂ z(x, t)σ̂ z(0, 0)

〉
of HI at x = 30 with J = 1,

g = 1.1 (therefore� = −0.2), T = 0.1; thus the system is in the low T region on the paramagnetic side of
Fig. 10.2. The numerical data were obtained for a lattice size L = 512 with free boundary conditions; it has a “ringing”
at high frequency owing to the lattice cutoff. The theoretical prediction is from the continuum theory prediction in
(10.88) and is represented by the smoother curve. The envelope of the numerical curve fits the theoretical
prediction well.

perfect quantum coherence in the ground state, and so for T > 0 its width in energy is
a natural measure of the inverse phase relaxation time 1/τϕ . In Fig. 10.6 we compare the
predictions of (10.88) with numerical results on a lattice of size L = 512. As expected,
there is a rapid oscillatory part representing the Feynman propagator of a single particle
and an envelope that decays exponentially at a much slower rate. The theoretical curve was
determined from the continuum expression for K (x, t), but the full lattice form for εk was
used. The theory agrees well with the numerics; some differences are visible for small x ,
outside the light cone, but this is outside the domain of validity of (10.88).

We can also compute the structure factor S(k, ω) from (10.88) by taking the Fourier
transform as in (10.4). This will mainly have weight at positive frequencies ω ≈ εk ≈
|�| + c2k2/(2|�|), corresponding to the creation of a quasiparticle by the external probe.
It is not possible to analytically perform the Fourier transform in general, but the leading
term in an asymptotic expansion in T/|�| can be obtained in closed form. For reasons
discussed in [107], it turns out that because ξc/cτϕ = (2T/π |�|)1/2 � 1, the slower
relaxation in time dominates the Fourier transform, and we can simply evaluate the Fourier
transform while ignoring the x dependence of R:

S(k, ω) ≈
∫

dt
∫

dx K (x, t)R(0, t)e−i(kx−ωt)

=
(

2cZ |�|1/4
εk

)
1/τϕ

(ω − εk)2 + (1/τϕ)2 . (10.89)

This result holds for k close enough to the band minimum, with |k| � √
T�/c; for larger k

there is no alternative to complete numerical evaluation of the Fourier transform. The result
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(10.89) verifies our earlier expectation based upon the physical interpretation of 1/τϕ : the
T > 0 relaxation merely modifies the delta function into a Lorentzian of width 1/τϕ in
energy space.

10.4.3 Continuum high T , T �|�|
We turn finally to the universal continuum high-T region of Fig. 10.2, where T � |�|
(this is also known as the “quantum-critical” region). We do not have anything to say about
the lattice high-T region and so implicitly assume that T � J .

In our study of the two low-T regions of Fig. 10.2 we found that it was possible to
develop a semiclassical particle picture of phase relaxation because 1/τϕ � T . The present
high-T region turns out to be quite different. We find that no effective classical model can
provide an adequate description of the dynamics because the phase relaxation time is quite
short. In particular we find that 1/τϕ ∼ T , so that, as noted earlier, this regime is maximally
incoherent. The de Broglie wavelength of the effective excitations is of the same order as
their spacing; this holds whether we consider the excitations to be the domain walls of the
magnetically ordered phase or the flipped spins of the quantum paramagnet. Consequently,
it is difficult to disentangle quantum and thermal effects because they both play an equally
important role. The large class of classical models discussed in the review of Hohenberg
and Halperin [223] cannot, therefore, be applied in the present context. This novel regime
of dynamics was first discussed in [440] and [86] in the context of the model of Chapter 13
and was dubbed quantum relaxational. We find it more convenient to introduce it in this
book in the simpler context of the Ising chain.

As in the previous subsections, we begin by understanding the structure of the equal-time
correlations. Right at the critical point, � = 0, g = gc, this high-T regime extends all the
way down to T = 0. At the T = 0, g = gc quantum critical point, we can deduce the form
of the correlator by a simple scaling analysis. As the ground state is scale invariant at this
point, the only scale that can appear in the equal-time correlator is the spatial separation x ;
from the scaling dimension of σ̂ z in (10.38), we then know that the correlator must have
the form

C(x, 0) ∼ 1

(|x |/c)1/4 , at T = 0, � = 0. (10.90)

Actually, we can also include time-dependent correlations at this level without much addi-
tional work. We know that the continuum theory (10.28) is Lorentz invariant, and so we
can easily extend (10.90) to the imaginary-time result

C(x, τ ) ∼ 1

(τ 2 + x2/c2)1/8
, at T = 0, � = 0. (10.91)

This result can also be understood by referring to the classical D = 2 Ising model in
(3.1). In this context, (10.91) is simply the statement that correlations are isotropic with
all D dimensions, and so the long-distance correlations depend only upon the Euclidean
distance between two points.
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We extend the result (10.91) to T > 0 by a trick that we quote without proof. (Later
in Chapter 20 we note an explicit derivation using the bosonization method.) The basic
point is that the � = 0 continuum theory (10.28), in addition to being scale and Lorentz
invariant, is also invariant under conformal transformations of spacetime [244]. Turning on
a T > 0 is equivalent, in imaginary time, to placing the theory LI on a spacetime manifold
that is a cylinder of circumference 1/T . However, it is known that one can conformally
map the cylinder to the infinite plane, which allows one to obtain a remarkable and exact
relationship between T = 0 and T > 0 correlators in imaginary time at the critical cou-
pling � = 0. This mapping was explicitly obtained in (10.47) where we simply noted it
as an interesting property of a fermionic correlator we were able to obtain explicitly for
T > 0. The implication of this discussion is that the same mapping can also be applied to
(10.91), allowing us to obtain the correlators at T > 0:

C(x, τ ) ∼ T 1/4 1

[sin(πT (τ − i x/c)) sin(πT (τ + i x/c))]1/8
� = 0. (10.92)

We can obtain an independent confirmation of this result by specializing to the equal-time
case again and comparing to our earlier results in Section 10.3; we have from (10.92)

C(x, 0) ∼ T 1/4

[sinh(πT |x |/c)]1/4

∼ T 1/4 exp

(
−πT |x |

4c

)
, as |x | → ∞. (10.93)

Compare this with the precise results for this regime quoted earlier in (10.48), where using
the values FI (0) = π/4 (from evaluation of (10.50)) and G I (0) = 0.858714569 . . . we
have

lim|x |→∞C(x, 0) = Z T 1/4G I (0) exp

(
−πT |x |

4c

)
at � = 0. (10.94)

The two results, obtained by very different methods, are in perfect agreement. We can
combine (10.94) with (10.92) to determine the prefactor in (10.92) and thus obtain our
final closed-form result for the universal two-point correlator at � = 0:

C(x, τ ) = Z T 1/4 2−1/4G I (0)

[sin(πT (τ − i x/c)) sin(πT (τ + i x/c))]1/8
. (10.95)

As expected, this result is of the scaling form (10.39), and indeed it completely determines
the function �I for the case where its last argument is zero. It is the leading result every-
where in the continuum high-T region of Fig. 10.2. Note that this result has been obtained
in imaginary time. Normally, as we have noted earlier, such results are not terribly useful
in understanding the long real-time dynamics at T > 0 because the analytic continuation
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is ill-posed. However, in the present case, we have the exact expression, and so the analytic
continuation is a useful tool.

Now let us turn to a physical interpretation of the main result (10.95). Consider first the
case T = 0. By a Fourier transformation of (10.91), and using the normalization constant
implied by (10.95), we obtain the dynamic susceptibility

χ(k, ω) = Z(4π)3/4G I (0)
�(7/8)

�(1/8)

c

(c2k2 − (ω + iδ)2)7/8
, T = 0, � = 0 (10.96)

with δ a positive infinitesimal. Note that this function has a branch cut in the complex ω
plane at ω = ck; this is to be contrasted with the simple pole-like structure that appeared in
the quantum paramagnet at T = 0 in (10.82). Instead the answer corresponds precisely to
our expectations from Section 7.2.2, from where we see that the branch cut at the quantum
critical point is a direct consequence of the anomalous dimension of σ̂ z in (10.38), which
led to the noninteger powers in (10.91) and (10.96). We plot Imχ(k, ω) in Fig. 10.7, which
should be compared to Fig. 7.2. There are no delta functions in the spectral density, as
there were in the quantum paramagnet in Section 7.2.1, indicating that the σ̂ z operator has
negligible overlap with the single fermion quasiparticle state of Section 10.1. Instead, we
have a critical continuum above a branch cut arising from a superposition of states with
an arbitrary number of fermionic quasiparticles. However, the presence of sharp thresholds
and singularities indicates that there is still perfect phase coherence, as there must be in the
ground state. It is also interesting to think about how the T = 0 spectral density crosses
over from the form of delta-function+multi-particle continua discussed in Section 7.2.1 as
characteristic of the quantum paramagnet, to the critical continuum in Fig. 10.7. Consider,
for instance, the case k = 0. In the quantum paramagnet, we have a quasiparticle delta
function at ω = �, a continuum above the three-particle threshold at ω = 3�, another
above the five-particle threshold at ω = 5�, and so on. As we approach the critical point
with �→ 0, all these continua come crashing down in energy and their limiting superpo-
sition leads to the critical form shown in Fig. 10.7.
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�Fig. 10.7 Spectral density, Imχ(k, ω)/Z, of HI at its critical point g = 1 (� = 0) at T = 0, as a function of frequencyω,
for a set of values of k.



165 10.4 Finite temperature crossovers

4

3

2

1

0

0

1

2

3

1.5

1

0.5

0

w / T

ck / T

T7/4Imc

Z

�Fig. 10.8 The same observable as in Fig. 10.7, T7/4Imχ(k, ω)/Z, but for T �= 0. This is the leading result for Imχ for
T � |�| (i.e. in the high-T region of Fig. 10.2). All quantities are scaled appropriately with powers of T , and the
absolute numerical values of both axes are meaningful.

Now let us turn to T > 0. We Fourier transform (10.95) to obtain χ(k, ωn) at the
Matsubara frequencies ωn and then analytically continue to real frequencies. This gives
us the leading result for χ(k, ω) in the high-T region:

χ(k, ω) = Zc

T 7/4

G I (0)

4π

�(7/8)

�(1/8)

�
(

1
16 − i ω+ ck

4πT

)
�
(

1
16 − i ω− ck

4πT

)
�
(

15
16 − i ω+ ck

4πT

)
�
(

15
16 − i ω− ck

4πT

) . (10.97)

We show a plot of Imχ in Fig. 10.8. This result is the finite-T version of Fig. 10.7. Note that
the sharp features of Fig. 10.7 have been smoothed out on the scale T , and there is nonzero
absorption at all frequencies. For ω, ck � T there is a well-defined “reactive” peak in
Imχ at ω ≈ ck (Fig. 10.8) rather like the T = 0 critical behavior of Fig. 10.7. However,
the low-frequency dynamics is quite different, and for ω, ck � T we cross over to the
quantum relaxational regime [86]. This is made clear by an examination of the quantity
Imχ(k, ω)/ω as a function ofω/T and ck/T ; note from (7.20) that forω � T this quantity
is proportional to the dynamic structure factor, S(k, ω) (defined in (10.4)), which is in turn
proportional to the neutron scattering cross-section. (We prefer to work with Imχ(k, ω)/ω
rather than S(k, ω) because the former is an even function of ω, while the latter is not;
in any case, the two are practically indistinguishable for low frequencies.) We show a
plot of Imχ(k, ω)/ω in Fig. 10.9 (notice that Fig. 10.9 is simply Fig. 10.8 divided by ω).
Now the reactive peaks at ω ∼ ck are just about invisible, and the spectral density is
dominated by a large relaxational peak at zero frequency. We can understand the structure
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�Fig. 10.9 The spectral density T11/4Imχ(k, ω)/ωZ as a function ofω/T and ck/T . Note that this is simply the quantity in
Fig. 10.8 divided byω. The reactive peaks atω ≈ ck in Fig. 10.8 are essentially invisible, and the plot is dominated by
a large relaxational peak at zero wavevector and frequency.

of Fig. 10.9 by expanding the inverse of (10.97) in powers of k and ω; this expansion
has the form

χ(k, ω) = χ(0)

1− i(ω/ω1)+ k2ξ̃2 − (ω/ω2)2
, (10.98)

where ω1,2 and ξ̃ are parameters characterizing the expansion, and where we recall from
(10.97) that χ(0) ∼ T−7/4. For k not too large, the ω dependence in (10.98) is simply the
response of a strongly damped harmonic oscillator: this is the reason we have identified the
low-frequency dynamics as “relaxational.” The function in (10.98) provides an excellent
description of the spectral response in Fig. 10.9. We determine the best fit values of the
parameters ω1,2 and ξ̃ by minimizing the mean square difference between the values of
Imχ(k, ω)/ω given by (10.98) and (10.97) over the range 0 < ω < 2T and 0 < ck < 2T
and obtain:

ω1 = 0.396 T,

ω2 = 0.795 T,

ξ̃ = 1.280 c/T . (10.99)

The quality of the fit is shown in Figs. 10.10 and 10.11, where we compare the predictions
of (10.97) and (10.98) for Imχ(k, ω)/ω at ω = 0 as a function of ck/T , and at ck/T =
0, 1.5 as a function of ω/T , respectively. For k = 0 (ω = 0) there is a large overdamped
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�Fig. 10.10 Comparison of the predictions of (10.97) (dots) and (10.98) (solid line) for Imχ(k, ω)/ω atω = 0 as a function of
ck/T . The best-fit parameters in (10.99) were used. The function (10.98) yields the square of a Lorentzian as a function
of k; a best fit by just a Lorentzian is also shown (dashed line) and is much poorer.

�Fig. 10.11 Comparison of the predictions of (10.97) (dots) and (10.98) (line) for (T/ω)Imχ(k, ω)/χ(k) as a function ofω/T
at ck/T = 0, 1.5. The dispersion relation (7.20) implies that the area under both curves for−∞ < ω <∞ is
exactlyπ . Notice also the similarity of the quantity plotted to the scaling function considered in (10.78) and Fig. 10.5;
however, in the present case S(k) �= Tχ(k) as the dynamics is not effectively classical – in particular
S(0) = 1.058Tχ(0). The overall magnitude of Imχ at ck/T = 1.5 is smaller than this figure would suggest, as
χ(k = 1.5)/χ(0) = 0.216.

peak at ω = 0 (k = 0), but a weak reactive peak at ω ∼ ck makes an appearance at larger
wavevectors or frequencies.

For an alternative, and more precise, characterization of the relaxational dynamics we
can introduce the relaxation rate �R defined by

�−1
R ≡ iχ(0)

∂χ−1(0, ω)

∂ω

∣∣∣∣∣
ω=0

= S(0, 0)

2Tχ(0)
, (10.100)
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where the second relation follows from (7.20). We have chosen this definition for the infor-
mative functional form (10.98), �R = ω1, the frequency characterizing the damping. How-
ever, using (10.97) we determine:

�R =
(

2 tan
π

16

) kB T

�

≈ 0.397825
kB T

�
, (10.101)

where we have inserted physical units to emphasize the universality of the result. Note that
the value of �R is quite close to the value ofω1 determined by the least square minimization
discussed above.

The rate �R is a satisfactory measure of how thermal effects have rounded out the sharp,
T = 0 phase-coherent structure in the dynamic susceptibility in Fig. 10.7: we can therefore
identify it with the phase coherence rate 1/τϕ . At the scale of the characteristic rate �R ,
the dynamics of the system involves intrinsic quantum effects that cannot be neglected.
Description by an effective classical model (as was appropriate in both the low-T regions
of Fig. 10.2) would require that �R � kB T/�, which is thus not satisfied in the high-T
region of Fig. 10.2 under discussion here. As noted earlier, the reason for the quantum
nature of the relaxation is simply that the mean spacing between the thermally excited
particles (considered either as the domain walls of the magnetically ordered state or the
flipped spins of the quantum paramagnet) is of the order of their de Broglie wavelength,
and so the classical thermal and quantum fluctuations must be treated on an equal footing.
It is these quantum effects that lead to the intricate universal numerical relation between
the relaxational and reactive parameters determining the response in (10.97) and (10.98).

10.4.4 Summary

Our detailed study of the T > 0 crossovers in the vicinity of the quantum critical point
of the Ising chain has led to a rich variety of different physical regimes, and so it is useful
to summarize their main properties. Such a summary is contained in our earlier Fig. 10.2
and in Fig. 10.12 and Table 10.1. At short enough times or distances in all three regions
of Fig. 10.2, the systems display critical fluctuations characterized by the dynamic sus-
ceptibility (10.96). The regions are distinguished by their behaviors at the low frequencies
and momenta. In both the low-T regimes of Fig. 10.2 (on the magnetically ordered and
quantum paramagnetic sides), the long-time dynamics is relaxational and is described by
effective models of quasi-classical particles; however, the physical interpretation of the
particles is quite different between the two low-T regimes: they are domain walls on the
magnetically ordered side but are flipped spins in the quantum paramagnet. The relaxation
time, or equivalently, the phase-coherence time, is of order (�/kB T )e(energy gap)/kB T and is
therefore much longer than �/kB T ; it is this condition which ensures that quantum thermal
effects act at very different scales and allows for a semiclassical description of the low-
frequency dynamics. In contrast, the dynamics in the high-T region is also relaxational,
but it involves quantum effects in an essential way, as was described above. In this region,
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Table 10.1 Summary of physical regimes.
Values of the correlation length, ξ (defined from the exponential decay of the

equal-time correlations of the order parameter), and the phase coherence time, τϕ
(defined as discussed in the respective sections), in the regimes of Fig 10.2. The two

low-T regimes have interpretations in terms of quasi-classical particles, but the physical
interpretations of the two particles are very different, as indicated.

Low T Low T
(magnetically ordered) T (quantum paramagnetic),
quasi-classical particles Continuum high quasi-classical particles

–domain walls (quantum critical) –flipped spins

ξ

(
πc2

2�T

)1/2

e�/T 4c

πT

c

|�|
τϕ

π

2T
e�/T cot(π/16)

2T

π

2T
e|�|/T

Continuum high T (quantum critical)

Low T (quantum paramagnetic)

Low T (magnetically ordered)
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�Fig. 10.12 Crossovers as a function of frequency for the Ising model in the different regimes of Fig. 10.2. The high frequency
critical fluctuations are present in all regimes and are characterized by (10.96). The two classical relaxational regimes
are described by multiple collisions of thermally excited quasi-classical particles; the physical correlations in these two
regimes are quite different but are described by the same relaxation function R in (10.69). The quantum relaxation is
described by (10.97) and the relaxation rate by (10.100). The “ordered” regime is in quotes, because there is no
long-range order, and the system only appears ordered between spatial scales c/� and cτϕ . In the low-T regions
1/τϕ ∼ Te−|�|/T .
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the spacing between the thermally excited particles is of the order of their de Broglie wave-
length, and the phase relaxation time is of the order of �/kB T .

The ease with which our expressions for the phase coherence times τϕ in (10.71) and
(10.101) have been obtained belies their remarkable nature. Note that we have worked in
a closed Hamiltonian system, evolving unitarily in time with the operator e−i HI t/�, from
an initial density matrix given by the Gibbs ensemble at a temperature T . Yet, we have
obtained relaxational behavior at low frequencies and determined exact values for a dissi-
pation constant. In contrast, in the theory of dynamics near classical critical points [223],
a statistical relaxation dynamics is postulated in a rather ad hoc manner, and the relax-
ational constants are treated as phenomenological parameters to be determined by com-
parison with experiments. Our subsequent discussions of more complicated models in
higher dimensions also only consider deterministic unitary evolution from an initial density
matrix, but we are only able to obtain approximate values of dissipation constants.

It is also worth contrasting the small k, ω behavior of the dynamic structure factor,
S(k, ω), in the three regimes of Fig. 10.2. At low T on the quantum paramagnetic side,
there is a sharp quasiparticle peak at ω ∼ |�| whose frequency width is exponentially
small (∼ T e−|�|/T ); this peak arises from the creation of a “flipped spin” quasiparticle,
and its width is a consequence of collisions with a dilute gas of pre-existing quasiparticles.
It is strong for the case of energy absorption, ω > 0, and has exponentially small weight
on the energy emission side, ω < 0. In the low-T regime on the magnetically ordered side,
the peak in S(k, ω) is at ω, k = 0, but it is now symmetric in ω and has an exponentially
large amplitude (∼ e2�/T ) and exponentially small widths in frequency (∼T e−�/T ) and
wavevector (∼ (c/

√
T�)e−�/T ). Now the thermally excited particles are domain walls,

and their low-energy collisional dynamics leads to the frequency broadening of the peak.
Finally, in the high-T regime, S(k, ω) is not a symmetric function of ω, but its dominant
structure is near ω = 0 and has a width of order T . There are two “dual” physical perspec-
tives on the form of S(k, ω) at high T . First, we can imagine raising the T on the quantum
paramagnetic side, so that the spacing of the thermally excited quasiparticles becomes of
the order of their de Broglie wavelength, and then the quasiparticle peak at ω = � broad-
ens down to ω = 0. In contrast, we can imagine raising T on the magnetically ordered side,
so that the domain wall spacing is of the order of their de Broglie wavelength, in which
case the quasiparticle motion has a relaxation rate of the order of T .

We conclude this chapter by mentioning some experimental applications. We have
already highlighted the experiments on CoNb2O6 [90] in Section 1.3. We also mention
here earlier studies on the insulators CsCoBr3 and CsCoCl3. The Co ions form chains of
antiferromagnetically interacting Ising spins. Their effective Hamiltonian is not the Ising
chain in a transverse field, but the dynamics and structure of the domain-wall excitations
above the magnetically ordered ground state are essentially identical to those described in
our discussion in Section 10.4.1. Neutron scattering studies [171, 355, 549] have focused
on the temperature induced broadening of the T = 0 delta function in (7.33).



11 Quantum rotor models: large-N limit

This chapter turns to the O(N ) quantum rotor studied earlier in Chapter 6. We extend the
earlier results to T > 0 aided by an exact solution obtained in the N →∞ limit.

The quantum Ising model studied in Chapter 10 had a discrete Z2 symmetry. An impor-
tant new ingredient in the rotor models is the presence of a continuous symmetry: the
physics is invariant under a uniform, global O(N ) transformation on the orientation of
the rotors, which is broken in the magnetically ordered state. Thus we have to use ideas on
the spin stiffness which were introduced in Chapter 8. Apart from this, much of the technol-
ogy and the physical ideas introduced earlier for the d = 1 Ising chain generalize straight-
forwardly, although we are no longer able to obtain exact results for crossover functions at
finite N . The characterization of the physics in terms of three regions separated by smooth
crossovers, the high-T and the two low-T regions on either side of the quantum critical
point, continues to be extremely useful and is again the basis of our discussion. Because
we consider models in spatial dimensions d > 1, it is possible to have a thermodynamic
phase transition at a nonzero temperature, as in Fig. 1.2b. We are particularly interested in
the interplay between the critical singularities of the finite-temperature transition and those
of the quantum critical point.

The large-N expansion [60, 310, 311, 485] was developed earlier in the context of the
classical model, and is extended here to the quantum rotor model at T > 0. This chapter
largely confines itself to the results obtained at N =∞. The results so obtained give an
adequate description of gross features of the phase diagram and some static observables,
but they are quite inadequate for dynamical properties at nonzero temperatures. The latter
problems are addressed in subsequent chapters.

We examine here a slight extension of the quantum rotor model (6.1):

HR = J g̃

2

∑
i

L̂
2
i − J

∑
〈i j〉

n̂i · n̂ j −H ·
∑

i

L̂i . (11.1)

Recall that the N -component vector operators n̂i , with N geq 2, are of unit length, n̂2
i = 1,

and represent the orientation of the rotors on the surface of a sphere in N -dimensional rotor
space, while the operators L̂i are the N (N − 1)/2 components of the angular momentum.
We phrase our physical discussion using the physically important case N = 3, in which
case these operators satisfy the commutation relations (1.21) on each site (the operators on
different sites commute); the generalization to other values of N is immediate but will not
be discussed explicitly for simplicity. The form (11.1) for HR differs from that in (6.1) by
a field H, which couples to the total angular momentum; this field should not be confused
with the field h̃ in (6.46), which coupled to the rotor orientation n. As we see later, the

171
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field H does not have a familiar analog upon inverting the mapping to (3.2). It is, however,
an important perturbation of the quantum rotor model that arises in many experimental
applications. The total angular momentum is conserved in zero field as it commutes with
HR at H= 0, and we will see that this has important implications for its scaling properties.

The study of the quantum rotor model HR in (11.1) occupies a substantial portion of
Part III of this book. The motivation for this is primarily theoretical, but important experi-
mental connections also exist. These were discussed in Section 1.4.2 and Chapters 9, and
further connections are made in Chapter 19.

The large-N expansion is set up in Section 11.1; this is followed by descriptions of the
N =∞ solution for T = 0 and T > 0 in Sections 11.2 and 11.3, respectively.

Most of our results are expressed in terms of the dynamic susceptibility χαβ(�k, ω) of
the order parameter n. As in (7.1) and (7.3), this is defined most conveniently in imaginary
time:

Cαβ(x, τ ) ≡ 〈nα(�x, τ )nβ(0, 0)〉,

χαβ(�k, ωn) ≡
∫ 1/T

0

∫
dd xCαβ(x, τ )e

−i(�k·�x−ωnτ), (11.2)

where n(xi , iτ) is the imaginary-time representation of the quantum operator n̂i . The
dynamic structure factor Sαβ(�k, ω) is then defined as in (10.4) and related to χαβ by a
relationship analogous to (7.12). For the most part, we compute χ in zero field (H= 0).
Our analysis of the consequences of H is restricted here to determining its linear response
susceptibility. For reasons that will become evident when we consider the relationship
between quantum rotors and quantum antiferromagnets, we call this susceptibility the uni-
form susceptibility, χu . It is defined by the small-H expansion of the free energy density
F = − T lnZ:

F(H) = F(H = 0)− 1

2
χuαβHαHβ + · · · (11.3)

11.1 Continuum theory and large-N limit

Both the continuum analysis and the study of the large-N limit are most easily done in
the imaginary time path integral. At H= 0, the path integral can be derived by the inverse
of the mapping discussed in Section 6.4 and indeed leads to the expression (2.12) already
presented. The modification necessary for H �= 0 can be deduced by a simple trick that
relies on the fact that H couples to the conserved total angular momentum. It is easy to see
that the only effect of H is to cause a uniform Bloch precession of all the rotors and that
this precession can be “removed” by transforming to a rotating reference frame. Because
of a nonzero H each rotor acquires an additional precession δn̂α(t)= − εαβγ Hβ n̂γ (t)δt
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in a small time δt . Including this extra precession in imaginary time in (2.12) we get the
partition function

Z = Tr exp

(
−HR

T

)
≈
∫

Dn(x, τ )δ(n2 − 1) exp(−Sn),

Sn = N

2cg

∫
dd x

∫ 1/T

0
dτ [(∂τn− iH× n)2 + c2 (∇x n)2]. (11.4)

We have written the coupling to H in the form special for N = 3, but it should be clear
that for general N one writes a term that generates rotations of O(N ). Note also the i in
the precession term, which therefore contributes a complex phase to the weights in the
partition function. As a result the field H has no analog in classical statistical mechanics
problems in D dimensions. We will be satisfied in this chapter by simply examining the
linear response of the system to a small H, as specified by the susceptibility χu in (11.3).
Properties beyond linear response require examining the partition function (11.4) with a
nonzero H , including the complex weights. This problem is of a class we examine only in
Part IV, and we defer the analysis to Section 19.4. The coupling constant

g = N
√

g̃ad−1 (11.5)

was defined in (6.51); it has the dimensions of (length)d−1 and is the primary coupling we
change to vary the physical properties of the rotor model.

Because the above action is valid only at long distances and times, there is an implicit
cutoff above momenta of order � ∼ 1/a and frequencies of order c�. Our main interest
here is the universal physics at scales much smaller than �. The following large-N anal-
ysis makes it clear that such a universal regime does exist for d < 3 but that additional
information on cutoff scale physics is necessary for d ≥ 3. This identifies d = 3 as the
so-called upper-critical dimension of the model. The large-N analysis is especially suited
for describing the universal physics in d < 3, and we restrict our attention to these cases
here. Properties in dimensions d ≥ 3 are more easily analyzed by other methods and are
discussed later.

The framework of the N =∞ solution [58, 79, 85, 86, 100, 214, 385, 440, 475] is quite
easy to set up, at least in the phase without long-range order in the order parameter n;
we consider the case with long-range order later in this chapter. We impose the n2= 1
constraint by a Lagrange multiplier, λ. The action (11.4) then becomes at H= 0 (which is
assumed throughout the remainder unless explicitly stated otherwise)

Z =
∫

Dn(x, τ )Dλ(x, τ ) exp(−Sn1),

Sn = N

2cg

∫
dd x

∫ 1/T

0
dτ [(∂τn)2 + c2 (∇x n)2 + iλ(n2 − 1)]. (11.6)

We rescale the n field to

ñ = √Nn, (11.7)
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and, as (11.6) is quadratic in the ñ field, it can be integrated out to yield

Z =
∫

Dλ(x, τ ) exp

[
−N

2

(
Tr ln

(
−c2∇2 − ∂2

τ + iλ
)
− i

cg

∫ 1/T

0
dτ
∫

dd xλ

)]
.

(11.8)

(See [357] for further discussion on interpretation of the functional determinant above.)
The action has a prefactor of N , and the N =∞ limit of the functional integral is therefore
given exactly by its saddle-point value. We assume that the saddle-point value of λ is space
and time independent and given by iλ=m2. The saddle-point equation determining the
value of the parameter m2 is∫ � ddk

(2π)d
T
∑
ωn

1

c2k2 + ω2
n + m2

= 1

cg
, (11.9)

where the sum over ωn extends over the Matsubara frequencies ωn = 2nπT , n integer. It
is also not difficult to evaluate the order parameter susceptibility at N =∞ by inserting
an appropriate source term in (11.6): as expected, the result is given simply by the prop-
agator of the n field in (11.6) with λ replaced by its saddle-point value. The result obeys
χαβ =χδαβ , where

χ(k, ω) = cg/N

c2k2 − (ω + iδ)2 + m2
(11.10)

is also the propagator of the n field. The large-N limit of the uniform susceptibility, χu , can
also be evaluated by first expanding F in powers of H , and evaluating the resulting four-
and two-point correlators of n at tree level using the propagator in (11.10). This gives

χu = 2T
∑
ωn

∫
ddk

(2π)d
c2k2 + m2 − ω2

n(
c2k2 + m2 + ω2

n

)2 . (11.11)

Equations (11.9)–(11.11) apply only when the system does not have long-range spatial
order (at T = 0 or T > 0) and O(N ) symmetry is preserved; they are the central results of
the N =∞ theory, and most of the remainder of this chapter is spent on analyzing their
consequences. In spite of their extremely simple structure, these equations contain a great
deal of information, and it takes a rather subtle and careful analysis to extract the universal
information contained in them [85,86,440]. We begin by characterizing the T = 0 ground
states and comparing the results to the strong- and weak-coupling analyses noted earlier.
Then we turn to the finite-temperature crossovers.

11.2 Zero temperature

At T = 0, we can make use of the relativistic invariance of the action (11.4) to simplify
our analysis. The summation over Matsubara frequencies in (11.9) turns into an integral,
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and after introducing spacetime momentum p ≡ (k, ω/c), the constraint equation (11.9)
becomes ∫ � dd+1 p

(2π)d+1

1

p2 + (m/c)2 =
1

g
. (11.12)

The integral on the left-hand side increases monotonically with decreasing m; as m→ 0,
it diverges as ln(1/m) in d = 1, and it has a maximum finite value at m= 0 in d > 1. It is
then clear that it is always possible to find a solution for (11.12) in d = 1, and for d > 1
there is no solution to (11.12) for g< gc where∫ � dd+1 p

(2π)d+1

1

p2
= 1

gc
. (11.13)

We have chosen the symbol gc for the boundary point where the solution ceases to exist,
following the discussion in Chapter 10. As we will see shortly, the regime where the solu-
tion exists describes a quantum paramagnetic ground state, and gc is the quantum critical
point for a transition to the g< gc magnetically ordered state. In d = 1 a solution exists for
all g, and so the general d discussion for g> gc below can be applied to all g in d = 1. This
indicates that the d = 1 ground state is always a quantum paramagnet. This is a large-N
result and is manifestly incorrect for N = 1 as we saw in Chapter 10; it is also not true at
N = 2, but we will see that the large-N theory leads to adequate results for all N ≥ 3 in
d = 1. For g> gc there is a unique solution of the saddle-point equation (11.12) describing
a quantum paramagnetic ground state; we study its properties in the following subsection
and find that they are quite similar to those of the quantum paramagnetic state of the Ising
chain. The d > 1 critical point at g= gc is studied in the next subsection. Determination
of the d > 1 ground state for g≤ gc requires a reanalysis of the derivation of the large-
N saddle equation. This is done in Section 11.2.3, where we find a state with magnetic
long-range order and spontaneous breakdown of the O(N ) symmetry.

11.2.1 Quantum paramagnet, g > gc

For d > 1, subtract (11.12) from (11.13) and obtain

1

gc
− 1

g
=
∫ � dd+1 p

(2π)d+1

(
1

p2
− 1

p2 + (m/c)2
)
. (11.14)

Now note that for d < 3 it is possible to send the upper cutoff � to infinity and still obtain
a finite result. Thus, provided that we measure quantities in terms of deviations from their
values at g= gc, we see that observables are insensitive to the nature of the cutoff (i.e.
they are universal). For d ≥ 3 it is necessary to retain the upper cutoff, and observables
have additional � dependence. (As briefly noted earlier, this identifies d = 3 as the upper-
critical dimension.) The remaining analysis of this chapter is implicitly restricted to d < 3,
and we examine d ≥ 3 by other, more convenient, methods in subsequent chapters; in the
language of the classical model (3.2), this restriction is equivalent to D< 4, where D= 4
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is its upper-critical dimension. For 1< d < 3 we can evaluate the integral in (11.14) with
an infinite cutoff and obtain

1

gc
− 1

g
= Xd+1(m/c)

d−1, (11.15)

where the constant Xd ≡ 2�((4 − d)/2)(4π)−d/2/(d − 2). This equation can be easily
solved to obtain the required value of m. In d = 1, we have gc= 0, and evaluating (11.12)
directly, we find for small m and small g

1

2π
ln

(
c�

m

)
= 1

g
, (11.16)

which also has a simple solution for m= c�e−2π/g . Apart from the difference in the
expression in the value of m above, the remaining discussion in this subsection applies
equally to d = 1 and d > 1.

A key step in the analysis of any ground state of a continuum theory is the determination
of an energy scale that characterizes it. In this case, the quantum paramagnet has a gap,
�+, given by

�+ ≡ m(T = 0). (11.17)

We emphasize that, by definition, the gap �+ is a temperature-independent quantity; it
equals the temperature-dependent value of m only at T = 0. The presence of a gap is appar-
ent in the structure of the spectral density Imχ(k, ω), which from (11.10) is
given by

Imχ(k, ω) = A π

2
√

c2k2 +�2+

(
δ

(
ω −

√
c2k2 +�2+

)

−δ
(
ω +

√
c2k2 +�2+

))
, (11.18)

which has weight only at frequencies greater than�+. The spectral weight appears entirely
in the form of delta functions, which indicate the presence of magnon quasiparticles; the
quantity

A = cg

N
(11.19)

is the quasiparticle residue. This magnon is obviously the same as the three-fold degen-
erate particle that appeared earlier in the strong-coupling analysis of the O(3) model in
Section 6.1, and in Section 7.2.1. The spectral density (11.18) is also identical in form to
the exact result for the quantum paramagnetic phase of the Ising chain obtained by taking
the imaginary part of (10.82). The n-particle continua (n≥ 3, odd) are absent here in the
N =∞ theory, but they appear later when we study fluctuation corrections.

We can also evaluate the uniform susceptibility χu by converting the frequency sum-
mation in (11.11) to an integral and then evaluating the frequency integral. This gives the
simple result

χu = 0. (11.20)
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This result could have been anticipated. The ground state is a spin singlet; the lowest
excited state is a triplet separated by a gap. In a small H field there is no change in the
energy of the singlet, whereas one of the triplet states lowers its energy but remains above
the singlet for H <�+. The ground state therefore remains unchanged and has vanishing
uniform susceptibility.

Also justifying our identification of this phase as a quantum paramagnet is that equal-
time n correlations decay exponentially in space:

1

N
〈n(x, 0) · n(0, 0)〉 = A

c

∫
dd+1 p

(2π)d+1

eip·x

p2 + (�+/c)2

= A
2c(2π)d/2(�+/c)(2−d)/2

e−x�/c

xd/2
, (11.21)

which identifies �/c as the inverse correlation length. Note again the precise agreement
of this result with that for the quantum paramagnetic phase of the Ising chain in (10.83),
where 2cZ�1/4 played the role of the quasiparticle residue, A.

11.2.2 Critical point, g = gc

This subsection applies only for 1< d < 3. There is no critical point in d = 1, and there are
violations of naive scaling hypotheses for d ≥ 3.

As g approaches gc from above, we see from (11.15) that the energy gap, �+,
vanishes as

�+ ∼ (g − gc)
1/(d−1). (11.22)

The critical state at g= gc turns out to be scale invariant at scales much longer than �−1,
as expected by analogy with the Ising model. The coupling g is the parameter that tunes the
system away from this scale-invariant point, and as �+ is an energy (inverse time) scale,
the definition (10.35), the definition of the exponent ν above it, and the result (11.22)
identifies the exponent

zν = 1

d − 1
. (11.23)

The equal-time correlations decay as

〈n(x, 0) · n(0, 0)〉 ∼
∫

dd+1 p

(2π)d+1

eikx

p2

∼ 1

xd−1
, (11.24)

which is a power law, as expected for a scale-invariant theory; the decay as a function of
time has the same exponent, and so

z = 1, (11.25)

as must be the case for a Lorentz-invariant theory. The application of the scaling transfor-
mation on (11.24) also tells us that as in (4.32)
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dim[n] = d + z − 2+ η
2

, (11.26)

with η, the “anomalous dimension” of the field, vanishing in the N =∞ theory. We see
later in (13.51) that 1/N corrections induce a nonzero η, as in (4.37). The anomalous
dimension also determines the scaling dimension of the quasiparticle residue A: (11.26)
implies that dim[χ(k, ω)] = −2+η, and demanding consistency of this with the expression
(11.18), we conclude dim[A]= η. Therefore, as g approaches gc from above,

A ∼ (g − gc)
ην, (11.27)

(i.e. in general, the quasiparticle residue vanishes as the system approaches the critical
point). Again this scaling is consistent with the Ising model in which A = 2Z�1/4 ∼
(g − gc)

1/4 (see (10.84)). In the present N =∞ theory, the quasiparticle residue Acg/N
was nonzero all the way up to g= gc. This is consistent with the N =∞ result of η= 0:
there is no dynamic scattering of the quasiparticle excitations at N =∞ but such scattering
appears upon including 1/N corrections, which also induce a nonzero η.

If there are no quasiparticles for η �= 0, what do the excitations look like? As in the Ising
chain, there is a critical continuum of excitations, whose spectral density is determined
by η. Combining the Lorentz invariance of the theory with a simple analysis of scaling
dimensions, we see that the dynamic susceptibility must have the form

χ(k, ω) ∼ 1

(c2k2 − ω2)1−η/2
(11.28)

(compare (10.96)), and its imaginary part looks much like Fig. 10.7. The η= 0 case is
of course special, in that the spectral density has a single delta function at ω= ck, and
the critical excitations have a particle-like nature. This is clearly an artifact of the N =∞
theory and is one of its major failings.

We can also use simple scaling arguments to determine the exact scaling dimension of
H and therefore from (11.3) that of χu . Note that in (11.4) H appears intimately coupled
with a time derivative. As we discussed earlier, this is related to the fact that the only effect
of H is to uniformly precess all the rotors, and this precession is not visible in a rotating
reference frame. This is an exact property of theory, and therefore the precession angle
must be invariant under scaling transformation. As a result the scaling dimension of H
must be that of inverse time, which implies from (10.35) that

dim[H] = z, (11.29)

and, using (10.37) and (11.3), that

dim[χu] = d − z. (11.30)

11.2.3 Magnetically ordered ground state, g < gc

This subsection necessarily applies only for d > 1, as there is no ordered state in d = 1.
Our analysis so far has shown no meaningful solution of the saddle-point equations in

the large-N limit for g< gc. The culprit for this shortcoming lies in the step before (11.8),
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where we indiscriminately integrated out all N components of the n field [61]. As we
expect a magnetically ordered phase to appear for g< gc, it seems sensible to allow for
the possibility that fluctuations of n along the direction of the ordered ground state will be
different from those orthogonal to it. So we write

n = (√Nr0, π1, π2, . . . , πN−1), (11.31)

where it is assumed that the order parameter is polarized along the 1 direction. Inserting this
and (11.7) into (11.4), imposing the constraint with a Lagrange multiplier λ, and integrating
out only the π1,...,N−1 fields, we find

Z =
∫

DλDr0 exp

[
− N − 1

2
Tr ln

(−c2∂2
i − ∂2

τ + iλ
)

+ i N

cg

∫ 1/T

0
dτ
∫

dd xλ
(

1− r2
0

) ]
. (11.32)

In the large-N limit, we can ignore the difference between N − 1 and N and obtain the
saddle-point equations with respect to variations in λ and r0. As before, m2 is taken to be
the saddle-point value of iλ. The mean value of r0 determines the spontaneous magnetiza-
tion at N =∞, which we denote by N0; so

N0 = 〈n1〉 =
√

Nr0. (11.33)

The saddle-point equations are

N 2
0 + g

∫ � dd+1 p

(2π)d+1

1

p2 + (m/c)2 = 1,

m2 N0 = 0, (11.34)

where we have set T = 0. One solution of the second equation is N0= 0, but then the first
equation for m becomes identical to the one considered earlier, which is known to fail for
g< gc. Therefore we choose the other solution, where

m = 0,

N 2
0 = 1− g

∫ � dd+1 p

(2π)d+1

1

p2

= 1− g

gc
. (11.35)

It is satisfying to find that N0 is nonzero precisely for g< gc, reinforcing our belief in
the correctness of our procedure in finding the saddle point. Note that N0 vanishes as
(gc − g)1/2 as g approaches gc. It is conventional to define the critical exponent β by the
dependence N0 ∼ (gc− g)β , and we therefore have β = 1/2 in the present N =∞ theory.
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More generally, the scaling dimension of N0 must be the same as the scaling dimension of
n, and we therefore have from (11.26) that (see also (4.47)

2β = (d + z − 2+ η)ν, (11.36)

an exponent relation that is satisfied by the N =∞ theory.
The above approach also determines the two-point correlator of spin components orthog-

onal to the axis of the spontaneous magnetization. We denote the corresponding suscepti-
bility by χ⊥(k, ω), and it is the Fourier transform of the n2, n2 correlator (say); we have at
N =∞

χ⊥(k, ω) = cg/N

c2k2 − (ω + iδ)2
. (11.37)

Note that there is a quasiparticle pole at ω= ck, and the energy of this excitation vanishes
as k→ 0. These are the spin-wave excitations discussed earlier in the weak-coupling anal-
ysis. These spin waves survive fluctuation corrections as k→ 0, although the nature of the
spectral density becomes different at larger k, as we discuss shortly.

We can now compute the spin-stiffness by combining the N =∞ results ((11.35) and
(11.37)) with (8.19):

ρs = cN

(
1

g
− 1

gc

)
. (11.38)

In general, from (8.13), ρs is expected to vanish as (gc− g)(d−1)ν , and the result (11.38) is
consistent with the N =∞ values of the exponents.

With the spin stiffness ρs in hand, we can now construct the energy scale, which we
denote �−, that characterizes the ground state for g< gc. The requirement is that �−
should have scaling dimension z and physical units of (time)−1. Such an object has to
be made out of powers of ρs , whose scaling dimension is in (8.13), and whose physical
units are (length)2−d(time)−1, and the velocity c, whose scaling dimension is 0 and whose
physical units are (length)(time)−1; the unique combination is

�− ≡ (ρs/N )1/(d−1)c(d−2)/(d−1). (11.39)

The factor of N has been chosen for future convenience.
We conclude this subsection by remarking on two features of the response functions of

the ordered ground state that depend upon having a nonzero η and are therefore absent in
the N =∞ theory. First, from (8.19), we deduce that the residue at the spin-wave pole (for
k→ 0) is N 2

0 /ρs ; as g approaches gc, this vanishes as (gc − g)ην , unlike the result (11.37)
in which the spin-wave residue remains nonzero all the way up to gc. Second, with energy
scale �− in hand, we can also define a corresponding length scale ξJ :

ξJ = c

�−
. (11.40)

This is known as the Josephson length. The forms (8.19) and (11.37), which are charac-
teristic long-wavelength transverse responses of a phase with spontaneously broken con-
tinuous symmetry, remain valid at length scales larger than ξJ and times longer than �−1− .
At shorter scales, the responses cross over to the isotropic response of the critical points as
in (11.28).
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11.3 Nonzero temperatures

We have shown in the previous section that (for d > 1) there are two distinct ground states
separated by a quantum critical point at g= gc, and each ground state is characterized by
a single energy scale �+ or �−, which vanishes as |g − gc|zν near the critical point (in
d = 1 we only have one phase characterized by �+).

We can combine the insights gained from the solution of the Ising chain in Chapter 10
with some simple physical considerations, and also by partly anticipating some N =∞
results to be discussed below, and sketch the T > 0 phase diagrams in Figs. 11.1–11.3.
Compare these phase diagrams with those in Section 1.2.

First we show the phase diagram for d = 1 in Fig. 11.1 [250]. There is only one phase
in d = 1: a quantum paramagnetic ground state with a gap�+. The energy scale�+ is the
only one characterizing the universal physics, and therefore we expect a qualitative change
in the nature of the physics at T ∼ �+ ∼ exp(−2π/g) (using (11.16)). We identify the
region T <�+ as the low-temperature limit of the continuum theory, which will be similar
to the low-T region on the quantum paramagnetic side of the Ising model in Fig. 10.2.
The region �+< T < J is the high-temperature limit of the continuum theory; it differs
from the high-T region of the Ising chain in Fig. 10.2, as we see in the next chapter,
by the presence of logarithmic corrections that modify some key dynamic properties and
their physical interpretation. Finally there is a lattice high-T region, T > J (not shown in
Fig. 11.1), where microscopic details matter. This region is not of interest to us here.

Turning next to d = 2, we show the anticipated large-N phase diagram in Fig. 11.2. The
crossover phase boundaries and the physical interpretations of the regimes are essentially
identical to those for the Ising chain in Fig. 10.2, both of which realize the phase diagrams
in Fig. 1.2a and 1.3. There is an ordered magnetic state at T = 0, but the long-range order
disappears at any nonzero T . This is similar to the Ising chain, but the physics behind the
destruction of long-range order by thermal fluctuations is quite different and is discussed
in more detail in subsequent chapters.

Finally, we also consider the large-N limit for 2< d < 3 in Fig. 11.3. Although these
dimensions are unphysical, examining these cases is useful as we can deal with systems

g

CONTINUUM
HIGH T

T

LOW T

0
0

Quantum paramagnet

�Fig. 11.1 Large-N phase diagram for the O(N) rotor model in d= 1. This phase diagram applies for all N≥ 3. The dashed line
is a crossover. Our interest is in the two universal regions, which are the low- and high-T limits of the continuum
quantum field theory. The crossover boundary is at T ∼ �+ ∼ exp(−2π/g).
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g

Magnetic long-range order

T

gc
0

Quantum paramagnet

LOW TLOW T

CONTINUUM
HIGH T

or
QUANTUM
CRITICAL

�Fig. 11.2 Large-N phase diagram for the O(N) rotor model for d= 2; compare with Figs. 1.2a and 1.3. As in Fig. 11.1, this is
expected to apply for all N≥ 3, and the lower dashed lines are crossovers determined by the conditions�± ∼ T . As
g approaches the critical coupling gc ,�+ ∼ (g− gc)

zν for g> gc and�− ∼ (gc − g)zν for g< gc . The
physical interpretation of the regimes is identical to those for the Ising chain in Fig. 10.2, and realizes the phase
diagram in Fig. 1.2a. As in Fig. 10.2, there is also an additional, nonuniversal, lattice high-T region for T > J (which is
not shown here).

T

g
gc

0

MAGNETIC
LONG RANGE
ORDER

LOW T

Quantum paramagnet

CONTINUUM
HIGH T

or
QUANTUM
CRITICAL

�Fig. 11.3 Large-N phase diagram for the O(N) rotor model with 2< d< 3, realizing the phase diagrams in Fig. 1.2b and 1.3.
Qualitative features of the phase diagram apply for N> 2 and 2< d< 3, or 1≤ N≤ 2 and 2≤ d< 3. The dashed
lines are crossovers determined by�± ∼ T (�± ∼ |g− gc|zν ), while the full line is the locus of
finite-temperature phase transitions with Tc given by (11.67). There is true magnetic long-range order at all
temperatures below the full line. The shaded region shows where the reduced classical scaling functions apply.

whose long-range order survives until a nonzero temperature, as is required for phase
diagrams like those in Fig. 1.2b. Also, the behavior for the physical cases N = 1, 2, d = 2
is quite similar to these large-N limits. The nonzero T phase transition is within the region
T <�−, and the nature of the singularity in its vicinity is discussed below.

The crossovers in these phase diagrams can be described by scaling functions closely
analogous to (10.39). It is more convenient to work in frequency and wavevector space,
and we can obtain the scaling form by arguments similar to those used to obtain (10.39).
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First, we can use the definition (11.2) and the scaling dimension (11.26) to conclude
dim[χ(k, ω)]= 2dim[n]−d− z=−(2−η). Then recalling dim[T ]= z, we can obtain the
scaling form

χ(k, ω) = Z

T (2−η)/z
�±

(
ck

T 1/z
,
ω

T
,
�±
T

)
, (11.41)

where the upper (lower) sign applies for g≥ gc (g≤ gc). Also, it should be clear that in
d = 1 only the upper sign can apply. The functions �± are completely universal and com-
plex valued. They are chosen to have finite limits at all k and ω as �±→ 0 at fixed T
(although there is an exception to this in d = 1, where, as we see in Chapter 12, the func-
tion �+ diverges logarithmically as �+/T → 0; this logarithmic divergence is, however,
absent in the present N =∞ theory). There are strong restrictions that arise from the con-
sistency of the two functions as they approach the common point g= gc from the two
sides; not only their values must agree, but also the fact that χ(k, ω) must be analytic as a
function of g at g= gc for T > 0 places many additional restrictions (the reasons for this
analyticity and its consequences are discussed in more detail in Section 14.2.1). For the
Ising chain we were able to work with a single function by defining a �=�+> 0 for
g≥ gc and �= − �−< 0 for g≤ gc, but this is difficult to do in the present case as the
definitions of �± are quite different. Also, for the Ising chain, � was a simple, analytic
linear function of g, and so the analyticity requirement was simply that � was analytic as
a function of � at �= 0.

The prefactor Z is a nonuniversal constant that is nonsingular at the T = 0 quantum crit-
ical point. It can be defined through (11.41) by relating it to some observable that depends
upon the scale of the order parameter field. For g> gc, by demanding that the form of
χ(k, ω) near the quasiparticle pole at T = 0 in (11.18) (which holds even beyond N =∞,
as we saw in the Ising chain) be consistent with the scaling form (11.41), we can specify

Z = (constant)
A
�
η/z
+
. (11.42)

The constant can be chosen at our convenience and merely changes the definition of the
�±. Alternatively, we could approach the critical point from g< gc and use (8.19) to define

Z = (constant)
N 2

0 c2

ρs�
η/z
−
. (11.43)

A similar scaling form can be written for the uniform susceptibility from a knowledge
of the scaling dimension in (11.30):

χu = T d/z−1

cd
�u±

(
�±
T

)
. (11.44)

Unlike (11.41), there is no nonuniversal prefactor such as Z in front. This is because the
unknown field scale and the anomalous exponent η do not appear in the definition of χu ;
rather χu is related by (11.3) to the free energy density.

The remainder of this section presents explicit results for these scaling functions at
N =∞. In this limit, the expressions in (11.10) and (11.11) specify χ and χu , respectively.
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These are consistent with the scaling forms (11.41) and (11.44) for η= 0 and z= 1, if the
Lagrange multiplier m satisfies

m = T F±
(
�±
T

)
, (11.45)

where F± are universal functions obtained from the solution of (11.9), as we show below.
The resulting predictions for the physical properties at T > 0 are quite simple. By Fourier
transforming (11.10), we see that m/c is the correlation length. The imaginary part of
(11.10) also implies that there is a gap in the spectrum equal to m. This feature is an artifact
of the N =∞ limit: the response of any interacting system at T > 0 has a nonzero spectral
density at all frequencies (in certain cases, the response could vanish above some large
ultraviolet cutoff ∼ c�), as there are essentially no restrictions on the set of frequencies at
which all the possible thermally excited states can absorb energy. A particular objective of
the remaining chapters in Part II is to describe a dynamical theory for the filling of this gap
at finite temperatures.

The uniform susceptibility is obtained by evaluating the frequency summation in (11.11)
by standard methods, which the reader can find in text books such as [136] and [314]; the
result is

χu = 1

2T

∫
ddk

(2π)d
1

sinh2(
√

c2k2 + m2/2T )
, (11.46)

with m given by (11.45).
We now determine the universal functions F± and subsequently turn to a description of

the physics in the various regions of Figs. 11.1–11.3. The method used here introduces
a number of useful tricks for the extraction of universal, cutoff-independent crossover
functions.

We present first the calculation on the disordered side where g≥ gc. The first step is to
subtract, from (11.9) the corresponding equation (11.12) at the same coupling constants at
T = 0; this gives us∫ � ddk

(2π)d
T
∑
ωn

1

c2k2 + ω2
n + m2

− 1

c

∫ � dd+1 p

(2π)d+1

1

p2 + (�+/c)2 = 0, (11.47)

where �+ is the gap at the current value of g. A trick we often use is to subtract, from the
summation over frequencies of any quantity, the integration over frequencies of precisely
the same function; so we rewrite (11.47) as∫ � ddk

(2π)d

(
T
∑
ωn

1

c2k2 + ω2
n + m2

−
∫

dω

2π

1

c2k2 + ω2 + m2

)

+ 1

c

∫ � dd+1 p

(2π)d+1

(
1

p2 + (m/c)2 −
1

p2 + (�+/c)2
)
= 0. (11.48)

Now we use the general relation

T
∑
ωn

1

ω2
n + a2

−
∫

dω

2π

1

ω2 + a2
= 1

a

1

ea/T − 1
, (11.49)
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which is valid for any positive a (again this can be established by standard frequency
summation methods [136, 314]). Note that the right-hand side falls off exponentially as a
becomes large. This is a key property and was the reason for considering the combination
in (11.49). Applying this identity to (11.48), we see that the first integration over k has
an integrand that is exponentially small for large k, and hence it is quite insensitive to
�, which can safely be sent to infinity. The integration over p in the second term is also
ultraviolet convergent, again allowing � to be set to infinity. The resulting expression is
then cutoff independent and hence universal; we obtain for d > 1∫

ddk

(2π)d
1√

c2k2 + m2

1

e
√

c2k2+m2/T − 1
− Xd+1

cd

(
md−1 −�d−1+

) = 0, (11.50)

where the number Xd was defined below (11.15). When d = 1, this equation is modified to∫
dk

(2π)

1√
c2k2 + m2

1

e
√

c2k2+m2/T − 1
− ln(m/�+)

2πc
= 0. (11.51)

The solution of these equations is clearly of the form (11.45); after rescaling momenta by
c/T in (11.50), we find that the function F+(s) is determined implicitly by solution of the
equation ∫

ddk

(2π)d
1√

k2 + F2+

1

e

√
k2+F2+ − 1

− Xd+1
(
Fd−1+ − sd−1) = 0, (11.52)

for d > 1, and similarly for d = 1. We discuss asymptotic features of the solution of these
equations in the subsections below. We note here that precisely when d = 2, the equation
(11.52) has a simple, explicit solution [86]:

F+(s) = 2 sinh−1

(
es/2

2

)
, d = 2. (11.53)

Now we turn to the ordered side, g≤ gc, which implicitly means that we have d > 1. We
assume that T is large enough such that the magnetization is zero; the case of the mag-
netized state with T �= 0 can be treated similarly and is referred to below. Subtract, from
(11.9), the value of ρs/N in (11.38), and insert the value of 1/gc in (11.13). Evaluating the
frequency summation as above we find∫

ddk

(2π)d
1√

c2k2 + m2

1

e
√

c2k2+(m/c)2/T − 1

+ 1

c

∫
dd+1 p

(2π)d+1

(
1

p2 + m2
− 1

p2

)
= ρs

Nc2
. (11.54)

The solution of this is also in the form (11.45), and the function F−(s) is given by∫
ddk

(2π)d
1√

k2 + F2−

1

e

√
k2+F2− − 1

− Xd+1 Fd−1− − sd−1 = 0. (11.55)
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Again, there is a simple explicit solution when d = 2 [86]:

F−(s) = 2 sinh−1

(
e−2πs

2

)
, d = 2. (11.56)

With expressions for the crossover functions F± in hand, let us discuss the physical
properties of the system in different regimes of the g–T plane for different values of d .

11.3.1 Low T on the quantum paramagnetic side, g > gc, T ��+

The discussion here also applies when d = 1.
Properties of this phase are essentially identical to those of the low-T quantum para-

magnetic region of the Ising model in Section 10.4.2. The ground state has a gap, and
nonzero T induces an exponentially small density of thermally excited triplet magnons.
For the parameter m we have

m = �+ +O(e−�+/T ). (11.57)

Hence there is a finite correlation length c/m that has exponentially small corrections from
its T = 0 value c/�+. The N =∞ expression (11.10) has a quasiparticle peak that remains
infinitely sharp at T > 0. This is clearly incorrect for finite N , as damping must be present,
and is described in subsequent chapters. The uniform susceptibility can be computed from
(11.46), and we find that it is exponentially small:

χu = O(e−�+/T ). (11.58)

11.3.2 High T , T � �+,�−

Again, properties are similar to those of the continuum high-T (or quantum critical) region
of the Ising chain as discussed in Section 10.4.3. Now we have, for d > 1,

m = T F+(0) = T F−(0), (11.59)

where F+(0) and F−(0) are pure numbers. This represents a correlation length ∼ c/T . In
d = 1, the correlation length has an additional logarithmic correction [250], as can be seen
from the solution of (11.51),

m = πT

ln(CT/�+)
, (11.60)

where

C = 4πe−γ = 7.055507955 . . . (11.61)

In a similar manner we find for the uniform susceptibility from (11.46) that when d > 1

χu = T d−1

cd
�u+(0) = T d−1

cd
�u−(0), (11.62)
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where �u± are universal pure numbers, which can be determined by solutions of (11.46)
and (5.69); when d = 2 we have the simple result �u±(0) = (

√
5/π) ln((

√
5 + 1)/2).

Again, when d = 1 there are log corrections [250]

χu = 1

πc
ln(CT/�+), (11.63)

which will be better understood in the following chapter.
By analogy with the Ising chain, we expect that the dynamics is quantum relaxational

with a phase coherence time ∼ 1/T . However, damping and relaxation are completely
absent at N =∞ and are further discussed later.

11.3.3 Low T on the magnetically ordered side, g < gc, T ��−

This section applies only for d > 1, as there is no such region for d = 1. The properties for
d = 1 are analogous to the low-T ordered region of the Ising chain in Section 10.4.1, but
there are important differences for 2< d < 3.

Let us assume first that T is large enough so that 〈n〉= 0 and so (11.55) can be used to
determine F−. For d = 2, one finds that there is a solution of (11.55) for all T , and even as
T → 0 (s=�−/T →∞). We find that as T → 0

m = T exp(−2π�−/T ) = T exp(−2πρs/N T ). (11.64)

Hence the correlation length ∼ c/m diverges as T → 0 but remains finite for all nonzero
T . This was exactly the situation as in the Ising chain, and the phase diagram for this
model is therefore as shown in Fig. 11.2. We see in subsequent chapters that, as in the case
of the Ising chain, because of the very large correlation length, it is possible to develop
an effective classical dynamical model of the system and to express the result in terms of
reduced scaling functions. Let us also note (from (11.46)) that the uniform susceptibility
for d = 2 is given as T → 0 by

χu = 2�−
c2

= 2ρs

Nc2
. (11.65)

This is actually an exact result even for finite N , as we see later.
Now let us consider the case 2< d < 3. Although there is no physical dimension in this

region, the results obtained below will apply for d = 3 with cutoff-dependent logarithmic
corrections we do not want to discuss here. Further, the physics of the quantum Ising model
in d = 2 is expected to be similar to that of the large-N solution with 2< d < 3. The key
observation in this case is that there is no solution of (11.55) for F−(s) above a critical
value s= sc, where F−(sc)= 0. The value of sc is given by

sd−1
c =

∫
ddk

(2π)d
1

k

1

ek − 1

= 2�(d − 1)ζ(d − 1)

�(d/2)(4π)d/2
. (11.66)
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Just as was the case in the T = 0 analysis at the beginning of Section 11.2, the absence of
a solution for the Lagrange multiplier m (related to F−(s) by (11.45)) implies that there
must be magnetic order for s> sc. This defines a critical temperature Tc given precisely by

Tc ≡ �−/sc, (11.67)

such that the system is in the paramagnetic phase only for T > Tc. The resulting phase
diagram is shown in Fig. 11.3. There is a finite-temperature phase transition at T = Tc and
a magnetically ordered phase for T < Tc. As T approaches Tc, the conventional classi-
cal phase transition theory becomes applicable in the region |T − Tc|� Tc. The classical
scaling functions of this transition emerge as reduced scaling functions of the quantum
functions, in a manner very similar to the discussion on the quantum Ising chain in Sec-
tion 10.4.1. One consequence of this behavior is that all the scale factors of the classical
scaling functions, which are usually considered nonuniversal, are universally determined
by the parameters�−, c, and N0 of the quantum crossover functions. We have already seen
an example of this in (11.67), where Tc was universally determined by �− [422].

Let us explicitly observe the collapse of the scaling function (11.45) in this classi-
cal region. Because the primary quantum crossover function has only one argument, the
reduced function would have no arguments, that is, it is a pure power law. Indeed, solution
of (11.55) for s close to but above sc gives us

m = Tc

[(
T − Tc

Tc

)
(d − 1)sd−1

c

Xd

]1/(d−2)

. (11.68)

The correlation length c/m diverges with the classical exponent νc= 1/(d − 2) with an
amplitude that is universal.

The above is part of a very general lesson. Quantum critical scaling forms such as (11.41)
hold everywhere in the vicinity of the quantum critical point, including at or close to
any finite-temperature phase transition lines that may be approaching the quantum criti-
cal point. The classical critical singularities of these finite-temperature transitions appear
as singularities of the quantum critical scaling function. Further, the amplitudes of the
classical transitions, which are normally nonuniversal, become universal when expressed
in terms of the arguments of the quantum critical scaling function.

11.4 Numerical studies

We close this chapter by briefly mentioning computer studies of quantum spin models
which exhibit quantum phase transitions in the universality class of the O(3) quantum
rotor model. As discussed in Section 1.4.3, a variety of dimerized (or “double layer”)
antiferromagnets have transitions from a Néel state to a quantum paramagnet which are
described by the O(3) quantum rotor model. Quantum Monte Carlo studies of such antifer-
romagnets [129,163,323,324,443,444,509,539], have yielded accurate estimates for crit-
ical exponent, with results in excellent agreement with theoretical expectations. Numerical
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results for the uniform susceptibility χu are in good agreement with (11.62) and its 1/N
corrections [86].

Normand and Rice [365,366] have proposed an interesting recent experimental realiza-
tion of the quantum critical point of the d = 3 quantum rotor model in LaCuO2.5. This is
a spin-ladder compound in which the ladders are moderately coupled in three dimensions.
By varying the ratio of the intraladder to interladder exchange it is possible to drive such an
antiferromagnet across a d = 3 quantum critical point separating Néel ordered and quan-
tum paramagnetic phases. The uniform susceptibility has a T 2 dependence at intermediate
T , which is characteristic of the “high-T ” dependence in (11.62) for d = 3. The entire T
dependence of χu has been computed in Monte Carlo simulations of an S= 1/2 antiferro-
magnet on the LaCuO2.5 lattice [511] and the results are in good agreement with quantum
rotor model computations like those discussed here.
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This and the following chapter are at a more advanced level, and some readers may wish
to skip ahead to Chapter 14.

In Chapter 11 we studied the O(N ) quantum rotor model in the large-N limit for a
number of values of the spatial dimensionality, including d = 1. We noted that the results
provided an adequate description of the static properties when d = 1 for N ≥ 3. This is jus-
tified in the present chapter where we obtain a number of exact results for the same static
observables. We also noted that the large-N limit did a very poor job of describing dynam-
ical properties at nonzero temperatures. This is repaired in this chapter by simple physical
arguments that lead to a fairly complete (and believed exact) description of the long-time
behavior. Some of the discussion in this chapter is specialized to the O(N = 3) model,
which is also the case of greatest physical importance; the properties of the O(N > 3)
models are very similar, and many of our results are quoted for general N . Of the remain-
ing cases, the d = 1, N = 1 model has already been considered in Chapter 10, and study of
the d = 1, N = 2 model is postponed to Section 20.3.

The physical picture of the T = 0, N = 3 state that emerged in Chapter 11 was very
simple. The ground state was a quantum paramagnet, which did not break any symmetries.
There was an energy gap,�+, above the ground state, and the low-lying excitations were a

triplet of particles with dispersion εk =
√

c2k2 +�2+; this picture is verified here by a more
complete renormalization group analysis in Section 12.1. These triplet particle excitations
lead to a quasiparticle pole in the dynamic susceptibility χ(k, ω), which has the form
(11.18) near the pole. This form contains the quasiparticle residue, A, which sets the overall
scale of the order parameter field.

Turning next to nonzero temperatures, we obtained the crossover phase diagram shown
in Fig. 11.1, a modified version of which is reproduced in Fig. 12.1. The primary purpose
of this chapter is to give a fairly complete description of the dynamical properties in the
two universal regions of Fig. 11.1 and Fig. 12.1: these are the low-T (T ll�+) and high-T
(�+� T � J ) regions of the continuum quantum field theory. As indicated in Fig. 12.1,
the dynamics of the low-T region are described by an effective model of quasi-classical
particles in Section 12.2, closely related to the particle model developed in Section 10.4.2
for the Ising chain. For the high-T region, we develop a new, “dual,” description in a model
of quasi-classical waves, which is introduced in Section 12.3. As indicated in Section 1.4.3,
and discussed more extensively in Chapter 19, the d = 1, O(3) rotor model describes a
large class of quantum spin chains. The low-T regime of Fig. 12.1 is applicable to all such
spin chains, while the high-T , quasi-classical wave regime applies only if the continuum
quantum field theory description for the lattice model holds at these elevated temperatures
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g

QUASI-CLASSICAL
WAVES

T

QUASI-CLASSICAL
PARTICLES

0
0

�Fig. 12.1 Crossover phase diagram of the d= 1, N≥ 3 rotor model (11.1, 11.4) as a function of the temperature and the
coupling g. The continuum theory description fails above some T , as in Fig. 10.2, but this has not been indicated. The
quasi-classical particle model is developed in Section 12.2, while the quasi-classical wave model is discussed in
Section 12.3.

(the precise restrictions this imposes are discussed in [65], but they will not be entered into
here).

As we noted in Chapter 11, the dynamic susceptibility, χ(k, ω), in the regions of Fig. 12.1
is completely determined by the parameters A, c, and �+ and obeys the scaling form
(11.41) with η= 0, z= 1. The uniform susceptibility, χu , depends only on �+ and c as
shown in (11.44). We also examine here an important new observable that characterizes the
transport of the conserved angular momentum of the rotor model in space: this is the spin
diffusion constant, Ds . To compute this we need spacetime-dependent correlation func-
tions of the angular momentum density L(x, t) (for a lattice model with spacing between
sites, a, the continuum field L(xi , t)= L̂i (t)/a); by analogy with (11.2) we define

Cu,αβ(x, τ ) ≡ 〈Lα(x, τ )Lβ(0, 0)〉,

χu,αβ(k, ωn) ≡
∫ 1/T

0

∫
dxCu,αβ(x, τ )e

−i(kx−ωnτ). (12.1)

Computations in this chapter show that χu,αβ has the following form at small k and ω:

χu,αβ(k, ω) = δαβχu
Dsk2

−iω + Dsk2
. (12.2)

For simplicity, we have set the external field H= 0. This is done throughout this chapter,
although it is not difficult to extend the results to a small H �= 0. The relationship (12.2)
defines the value of the spin diffusion constant Ds . Actually the structure of (12.2) is a
very general consequence of the conservation of L, as we see in Chapter 15, and has been
discussed in considerable detail in the book by Forster [150].

Note that the static uniform susceptibility is defined by

χu ≡ lim
k→0

lim
ω→0

χu(k, ω), (12.3)

and the order of limits is important. It should also be clear that the full wavevector and
frequency-dependent χu(k, ω) obeys a scaling form quite analogous to (11.44); one simply
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adds additional arguments of ω/T and ck/T 1/z to (11.44). This in turn implies a scaling
form for Ds :

Ds = c2T−2/z+1�Ds

(
�+
T

)
; (12.4)

therefore, as we see in this chapter, the T dependence of Ds is also completely and univer-
sally specified by the values c and �+ in the regions of Fig. 11.1.

12.1 Scaling analysis at zero temperature

This section briefly reviews a well-known argument [61, 359, 384] that the large-N result
for the T = 0 gap in (11.16), �+ ∼ c� exp(−2π/g), is basically correct for all N ≥ 3.

Our method is to examine the behavior of the coupling g under an RG transformation
similar to that carried out in Chapter 4. However, rather than working with the field theory
(2.11) with an unconstrained field φα , we work with the “nonlinear sigma model,” in which
the field n always obeys the fixed length constraint n2= 1.

We work in a field theory with a momentum space cutoff�, and integrate out the degrees
of freedom at momentum scales between �e−� and �e� by the background field method
of Polyakov [384,385]. Let n<(x, τ ) represent a “background” configuration of fields with
wavevectors less than �e−�. The fluctuations in the scales between �e−� and � must
not violate the constraint n2= 1, and they can therefore be parameterized by their N − 1
components along the directions orthogonal to n<(x, τ ). Specifically, we write

n(x, τ ) = √1− πaπan<(x, τ )+
N−1∑
a=1

πaea(x, τ ), (12.5)

where �π is an N − 1 component field with wavevectors between �e−� and �e�, and
ea(x, τ ), n<(x, τ ) are N mutually orthogonal unit vectors in the N -dimensional rotor
space. We insert (12.5) into (11.4) and expand the resulting action in powers of �π at H = 0.
This gives the spatial gradient terms

cN

2g
[(∇n<)2(1− πaπa)+ (∇πa)

2 + πaπb∇ea · ∇eb + 2πa∇πbeb · ∇ea], (12.6)

and also time derivative terms with an identical structure. Terms linear in π do not appear
because they vanish upon spatial integration, as the momenta carried by the πa are differ-
ent from those of the background fields. Now the πa fields are integrated out, and all terms
containing up to two derivatives of the background fields are retained in the results. This
results in an effective action for the fields n< and ea ; after using the orthonormality condi-
tion between these fields, all explicit dependence upon the ea disappears, and the action for
the n< has precisely the form of (11.4) but with a modified coupling g′. Finally, we per-
form the rescaling (10.30) – this has no effect on the coupling g, which is dimensionless in
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d = 1. We have now completed the required scaling transformation and it maps the original
coupling g to a new coupling g′ given by

1

g′
= 1

g
− c(N − 2)

N

∫ �

�e−�
dk

π

∫
dω

2π

1

c2k2 + ω2
+O(g). (12.7)

The integrals in (12.7) can be easily carried out, and we can then represent the effects of
successive application of this transformation (as in (4.22) and (4.24)) by the differential
equation

dg

d�
= N − 2

2πN
g2 +O(g3). (12.8)

This is a key flow equation that helps us understand the properties of (11.4) at small g. By
integrating (12.8) we can easily see that a system with a small initial value of g will flow
into a system with a g of order unity at a scale

� = 2πN

(N − 2)g
+O(g0), (12.9)

where the coefficient of the leading g−1 term does not depend upon the value of the order
unity constant chosen, but that of the O(g) term does. We expect from the strong-coupling
analysis of (6.1) that a system with a g of order unity will have a gap�+ of the order of its
cutoff c�′. Undoing the rescaling transformation (10.30), we know that the original cutoff
� is related to the new cutoff by �′/�= e−� ∼ �/c�, and therefore from (12.9)

ln

(
c�

�+

)
= 2πN

(N − 2)g
+O(g0), (12.10)

where again, the uncertainty in the precise value of �+ relative to �′ does not modify
the leading g−1 term. This result has precisely the same form as the large-N result (11.16),
establishing our earlier claims on the correctness of the large-N theory for static and equal-
time properties – the only change in the present exact treatment has been the replacement
of �+ ∼ c� exp(−2π/g) by �+ ∼ c� exp(−2πN/(N − 2)g). This also shows that the
large-N results break down badly at N = 2 but are quite reasonable for N ≥ 3.

We have been rather sloppy in the above discussion about various constants of order
unity. It is possible to be quite precise about these using a more sophisticated field-theoretic
renormalization group analysis, which we discuss later in this chapter.

12.2 Low-temperature limit of the continuum theory, T � �+

This T > 0 region was shown in Figs. 11.1 and 12.1. All of the analysis of this section is
specialized to N = 3, although the generalization to other N ≥ 3 is straightforward.

The approach followed [107,433] for T ��+ is very similar to that taken for the corre-
sponding low-T region on the quantum paramagnetic side of the Ising chain in
Section 10.4.2. The central difference here is that the quasiparticle excitations are triplets,
and therefore they have an additional spin label, m= −1, 0, 1. This label is associated with
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the eigenvalues of the conserved total angular momentum and leads to important qualitative
differences to be discussed below.

There are two key observations that allow our computation for T � �+. The first, as
in the Ising chain, is that the density of thermally excited particles is so low that they
can be treated, when well separated, as classical particles. In particular, as their density
∼ e−�+/T , their mean spacing ∼ e�+/T is exponentially large at low T . Moreover, their
thermal velocities are also small at low T , and so their typical wavelength becomes large;
however, the divergence of the thermal de Broglie wavelength is only ∼ c/

√
T�+ and is

therefore much smaller than the particle spacing at low enough T . The density of particles
with each spin m (m= − 1, 0, 1 for N = 3), ρm , is given by expression (10.64), and the
total density, ρ, therefore equals ρ1 + ρ0 + ρ−1, which is

ρ = 3

(
T�+
2πc2

)1/2

e−�+/T . (12.11)

This classical picture also allows us to simply obtain the value of the uniform susceptibility
χu . In the presence of a field, the energy of a particle with spin component m simply
acquires the Zeeman shift of−m H . This implies that in a field ρm → ρmem H/T , expanding
to linear order in the field we obtain [433,510,512]

χu = 2ρ

3T
= 1

c

(
2�+
πT

)1/2

e−�+/T . (12.12)

Let us think about the dynamics of these classical particles. While well-separated par-
ticles behave classically, in one dimension these particles are forced to collide with their
near neighbors and cannot avoid each other even in the extremely dilute limit. The colli-
sion must clearly be treated quantum mechanically, and we therefore need the two-particle
S matrix. Because of the presence of the particle labels m, this S matrix can be a rather
complicated object, and not simply a pure phase factor, as was the case in the Ising chain.
Fortunately, we do not need the full S matrix, but only its value in the limit of vanishing
momenta since the particles have thermal velocities that vanish, as noted above, in the low-
T limit as vT = c(T/�+)1/2. Furthermore, this zero-momentum S matrix turns out to have
a remarkably “super-universal” structure for d = 1. For the process shown in Fig. 12.2, the
S matrix in the limit of vanishing momenta is

Sm1m2
m′1,m′2

= (−1)δm1m′2δm2m′1 . (12.13)

In other words, the excitations behave like impenetrable particles that preserve their spin in
a collision. As in the Ising chain, energy and momentum conservation in d = 1 require that

x

t

m 2

m 2

m 1

m 1

�Fig. 12.2 Two-particle collision described by the S matrix (12.13). The momenta before and after the collision are the same,
and so the figure also represents the spacetime trajectories of the particles.
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these particles simply exchange momenta across a collision (Fig. 12.2). This result can be
obtained in a variety of ways, which are explored in some detail in [107]. The simplest is
to compute it in the strong-coupling expansion of Section 6.1: one solves the two-particle
Schrödinger equation order-by-order in 1/g and finds that (12.13) holds at each order.
Alternatively, one can take the low-momentum limit of the exact S matrix obtained by
Zamolodchikov and Zamolodchikov [553] for the continuum theory (11.4) and find that
(12.13) is valid. The first method shows that (12.13) holds even for lattice models and
is thus not a special property of continuum relativistic theories. Indeed, (12.13) holds for
practically every d = 1 model with a gap and excitations that have a quadratic dispersion at
low momenta; exceptions arise only in specially fine-tuned cases when certain bound states
happen to have exactly zero energy. The reasons for the “super-universality” are explored
in more detail elsewhere [107], but the underlying physics can be seen to be a simple
consequence of the arguments made below (5.15) in Section 5.2.2. We argued there that to
a slowly moving particle, with a very long wavelength, any short-range repulsive potential
can be approximated by an impenetrable delta function (i.e. a potential uδ(x)with u→∞).
The wavefunctions of the two particles on either side of this potential therefore vanish as
they approach x = 0. Exchange of spin requires actual overlap of the wavefunction, which
we have shown becomes negligible in the low-momentum limit. Hence the spins of the two
particles are preserved and we have the result (12.13).

We can now proceed to computation of correlation functions. As in Sections 10.4.1
and 10.4.2, we compute correlators as a “double time” path integral, and in the classical
limit, stationary phase is achieved when the trajectories of the particles are time-reversed
pairs of classical paths as shown in Fig. 12.3. Each trajectory has a spin label, m, which
obeys (12.13) at each collision. The label, m, is assigned randomly at some initial time
with equal probability but then evolves in time as discussed above (Fig. 12.3). We label the
particles consecutively from left to right by an integer k; then their spins mk are indepen-
dent of t , and we denote their trajectories xk(t). The velocities of the particles are chosen
independently at the initial time from the classical Boltzmann distribution P(v):

x

t

1

1

1
0

0

0

0

0

0

0

–1

–1

–1

–1

�Fig. 12.3 A typical set of particle trajectories contributing to C(x, t). Each trajectory represents paths moving both forward and
backward in time, and the (−1) phase at each collision is neutralized by its time-reversed contribution. The particle
coordinates are xk(t), with the labels k chosen so that xk(t)≤ xl(t) for all t and k<�. Shown on the trajectories are
the values of the particle spins mk , which are independent of t in the low-T limit.
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P(v) =
(

�+
2πc2T

)1/2

exp

(
−�+v

2

2c2T

)
. (12.14)

We first discuss evaluation of the correlations of the conserved angular momentum den-
sity, Cu,αβ , defined in (12.1); this has no analog in the Ising case, as the latter model did
not have a conserved charge associated with a continuous symmetry. In the absence of an
external field H, this correlator is rotationally invariant, and it is convenient to compute
the correlator of the component of the angular momentum whose eigenstates we labeled
in Fig. 12.3: we therefore compute Cu,33. The operator L3 has a particularly simple effect
on the particle trajectories in Fig. 12.3. It simply reports the azimuthal angular momentum
of the particle it is operating on but does not create or annihilate any particles (this is evi-
dent from the strong-coupling expansion of Section 6.1). We therefore need only to sum
over the trajectories shown in Fig. 12.3; for these every collision has a time-reversed pair,
and therefore the −1s from the S matrix are completely neutralized. We are left then with
a purely classical ensemble of point particles labeled with three “colors” (the azimuthal
angular momentum). The observable L3(x, t) can be written in this ensemble as

L3(x, t) =
∑

k

mkδ(x − xk(t)). (12.15)

We have to determine its correlators under the average over a set of initial conditions of
random, uncorrelated values of mk and xk , and over velocities given by the distribution
(12.14). In particular we have

Cu,33(x − x ′, t − t ′) =
∑
k,k′
〈mkm′kδ(x − xk(t))δ(x

′ − xk′(t
′))〉

= 2

3

∑
k

〈δ(x − xk(t))δ(x
′ − xk(t

′))〉. (12.16)

In the second step (which is a crucial one), we have used the fact that the x ′k and m′ks are
uncorrelated and also that different m′ks are mutually independent. We are now left with a
well-defined problem in classical statistical mechanics. Place point particles independently
and uniformly along an infinite line with a density ρ. Give each an initial velocity from the
distribution (12.14). Tag a particle, k, and determine its position autocorrelation function,
averaged over the set of all possible initial conditions. (Notice that such a particle tagging
would seem quite unphysical a priori, but we have shown above how it is a natural con-
sequence of the average over the spins mk .) This tagged particle problem can be solved
exactly, as was first shown by Jepsen [249] and a little later by Lebowitz and Percus [288].
The following paragraph presents the exact evaluation of (12.16) using a method drawn
from the latter authors.

The key to the solution is to note that the trajectories in Fig. 12.3 are quite simple: they
are simply straight lines. Let us label the straight line “trajectories” (as opposed to the
“particles”) by the symbol μ. Then the μth trajectory is simply

xμ(t) = xμ + vμt, (12.17)

where xμ are the trajectory positions at t = 0, and vμ are their velocities, and both of
these have to be averaged over. Now, at a given time t , each trajectory μ will “belong” to a
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particle kμ(t), where kμ is a rather complicated integer-valued function of time. Its explicit
expression is

kμ(t) =
M∑
μ′=1

θ(xμ(t)− xμ′(t)), (12.18)

where we have assumed there are a total of M trajectories (we will send M → ∞ at a
later stage), and θ(x) is the unit step function. It should be clear that (12.18) simply counts
the trajectories to the left of a given trajectory at a time t , and this identifies the particle
number. We can now rewrite (12.16) as a sum over trajectories, rather than particle number:

Cu,33(x, t) =
M∑

μ,μ′=1

〈
δ(x − xμ(t))δ(xμ′)δkμ(t),kμ′ (0)

〉

=
M∑

μ,μ′=1

∫ 2π

0

dφ

2π

〈
δ(x − xμ(t))δ(xμ′)

× exp

⎡⎣i
∑
μ′′
(θ(xμ(t)− xμ′′(t))− θ(xμ′ − xμ′′))

⎤⎦〉, (12.19)

where in the second step we have introduced a Fourier representation of the Kronecker
delta function. The average in (12.19) represents the multidimensional integral

〈·〉 ≡
M∏
μ=1

∫ L/2

−L/2

dxμ
L

∫ ∞

−∞
dvμP(vμ). (12.20)

We have assumed the particles are on a line of length L , and we are being quite sloppy
about the boundary conditions. We ultimately want to take the limit M →∞ and L →∞
with the density ρ=M/L fixed, and the result can be shown to be quite insensitive to
the boundaries in this limit. Now the advantage of the Fourier representation in (12.19)
should be quite evident: the 2M-dimensional integral factorizes into products of M inte-
grals. These integrals can be evaluated in closed form, and the subsequent limit M →∞,
L →∞, ρ=M/L fixed can be easily taken. We skip these intermediate steps and present
the final results.

The final results satisfy the scaling forms discussed below (12.3), but they are, as
expected, more usefully expressed in terms of reduced scaling forms that describe the
semiclassical physics of the dilute gas of triplet magnons. The characteristic length and
time scales of these reduced scaling functions are closely analogous to those found for the
Ising chain in (10.63) and (10.71). In particular, we choose

ξc = 1

ρ
= 1

3

(
2πc2

T�+

)1/2

e�+/T ,

τϕ = ξc√
2vT

=
√
π

3T
e�+/T . (12.21)
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Note that ξc is the mean spacing between the particles and τϕ is a typical time between
particle collisions, which is naturally identified also as phase coherence time. The final
result for Cu is then

Cu,αβ(x, t) = 2ρ2

3
F

( |x |
ξc
,
|t |
τϕ

)
δαβ, (12.22)

where F is a universal scaling function given by

F(x̄, t̄) =
[(

2G1(u)G1(−u)+ e−u2
/(t̄
√
π)
)

I0

(
2t̄
√

G2(u)G2(−u)
)

+ G2
1(u)G2(−u)+ G2

1(−u)G2(u)√
G2(u)G2(−u)

I1

(
2t̄
√

G2(u)G2(−u)
)]

× exp(−(G2(u)+ G2(−u))t̄), (12.23)

with u ≡ x̄/t̄ , G1(u) = erfc(u)/2, and G2(u) = e−u2
/(2
√
π) − uG1(u). These expres-

sions satisfy
∫∞

0 dx̄ F(x̄, t̄)= 1/2, which ensures the conservation of the total magnetiza-
tion density with time and yields∫

dxCu,33(x, t) = 2ρ

3
= Tχu, (12.24)

with the uniform susceptibility, χu , given by (12.12); this relationship between the spatial
integral of Cu and χu follows from the conservation of total magnetization (which implies
that the spatial integral of Cu is t independent), and the analog of the relation (10.76) (to be
derived shortly) applied to correlators of the angular momentum density. For short times,
F has the ballistic form

F(x̄, t̄) ≈ e−x̄2/t̄2
/t̄
√
π, (12.25)

which is the autocorrelator of a classical ideal gas for d = 1 and holds for |t̄ | � |x̄ | � 1.
In contrast, for |t̄ | � 1, |x̄ | it crosses over to the diffusive form

F(x̄, t̄) ≈ e−
√
π x̄2/2t̄

(4π t̄2)1/4
. (12.26)

In the original dimensionful units, (12.21) and (12.26) imply a spin diffusion constant, Ds ,
given exactly by

Ds = c2e�+/T

3�+
. (12.27)

While this is an exact spin diffusion coefficient of the semiclassical model introduced
above, it is not immediately clear that this result is also exact for the underlying quan-
tum rotor model. There is a subtle question of orders of limits, which makes the above less
than rigorous, and the reader is referred to [107] for further discussion. Also, let us note
that the Fourier transform of (12.26) yields the diffusive form (12.2) with the susceptibility
χu given by (12.12).
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We turn to the correlations of the order parameter field n(x, t). These are very closely
related to the computations of the N = 1 case in Section 10.4.2. The basic observation is
that, like σ̂ z , the field n(x, t) is the creation and annihilation operator for magnon exci-
tations above the ground state. In other words, a relationship analogous to (10.85) holds.
This can be seen explicitly from the strong-coupling expansion in Section 6.1. Then, by
arguments analogous to those in Section 10.4.2, we expect for the two-point correlator
Cαβ = Cδαβ in (11.2)

K (x, t) ≡ C(x, t)|T=0

=
∫

dk

2π

cA
2εk

eikx−iεk t

= A
2π

K0(�+(x2 − c2t2)1/2/c), (12.28)

where A is the quasiparticle residue. The Bessel function is the Feynman propagator of a
relativistic particle, and its properties were discussed below (10.86). The T > 0 computa-
tion proceeds as in Section 10.4.2. We have to augment the trajectories in Fig. 12.3 by an
additional trajectory created and annihilated by the n fields. This is the only trajectory that
moves only forward in time and hence picks up additional−1 signs at each of its collisions.
The T > 0 modification is then a matter of averaging over these −1 signs. Unlike the Ising
case, this cannot be done analytically, as the “colors” on the lines introduce additional com-
plications. This problem and its numerical solution have been discussed elsewhere [107];
the answer has a structure closely analogous to that in Section 10.4.2. We find, as in
(10.88), that

C(x, t) = K (x, t)R (x, t) , (12.29)

where R(x, t) is a relaxation function very similar, although not exactly equal, to that found
in (10.88). It obeys a scaling form identical to (10.73), and so R decays exponentially on
the spatial scale ∼ ξc, and on the temporal scale ∼ τϕ . As in Section (10.4.2), we can
also Fourier transform (12.29) to obtain the structure factor S(k, ω). This has to be done
numerically, and it is found that, for |k|<√�T /c, the frequency dependence of the answer
is reasonably well approximated by the following Lorentzian form:

S(k, ω) ≈ A
ε||

0.72/τϕ
(ω − εk)2 + (0.72/τϕ)2

. (12.30)

This result is the analog of (10.89).

12.3 High-temperature limit of the continuum theory, �+ � T � J

If we continue to push the analogy with the Ising chain further, we would expect that the
present region (Figs. 11.1 and 12.1) should be similar to the universal high-T region of
the Ising chain discussed in Section 10.4.3. There, we found a novel regime of “quan-
tum relaxational” dynamics for which no classical description was possible: the thermally
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excited particles had a spacing that was of the order of their de Broglie wavelength. The
physics in the present region of the O(3) model is similar, but the presence of logarithms
associated with the flow (12.8) does lead to a new twist. In particular, we find that loga-
rithms of (T/�+) make the classical thermal fluctuations marginally more important than
the quantum fluctuations. If one is satisfied with results to leading logarithm accuracy (i.e.
where one neglects all corrections of order 1/ ln(T/�+)), then it is possible to develop an
effective classical model of the dynamical properties. This classical model is quite different
from that of the low-T region (T ��+), where we had a description in terms of classical
particles. In contrast, the present description is in terms of classical waves. Our discussion
here borrows heavily from the original analysis in [107].

There are a number of ways to make the basic argument. One is to note that the large-N
result (11.60) predicts a correlation length for n correlations

ξ ∼ (c/T ) ln(T/�+). (12.31)

(We will shortly obtain the exact correlation length to leading logarithmic accuracy, and
this has the same form as (12.31)). At distances of the order of, or shorter than, this correla-
tion length we may crudely expect that the weak-coupling, spin-wave picture of Section 6.2
will hold, and the typical spin-wave excitations will have energy of order, or smaller than,
cξ−1, which is logarithmically smaller than the thermal energy T ; in other words

cξ−1

T
∼ 1

ln(T/�+)
< 1. (12.32)

So the occupation number of these spin-wave modes will then be

1

ecξ−1/T − 1
≈ T

cξ−1
> 1. (12.33)

The last occupation number is precisely that appearing in a classical description of ther-
mally excited spin waves, which is the approach we follow here.

Another way to state the dominance of classical effects is to run the flow equation
(12.8) backwards: going to higher T means that we are exploring shorter scales and higher
energies, at which (12.10) implies an effective coupling g∼ 1/ ln(T/�+), which is small.
The coupling g controls the strength of the quantum fluctuations, and these are therefore
expected to be subdominant. This latter argument is made more precise in the following
discussion.

We begin our analysis by first focusing on the static and thermodynamic correlations in
this region. We shall use a method introduced by Luscher [307], and the same method is
of considerable use to us in subsequent chapters. The main idea is to develop an effective
action for only the zero Matsubara frequency (ωn = 0) components of n after integrating
out all the ωn �= 0 modes. We do this first for the correlation length in this and the following
subsection. We turn to the thermodynamic uniform susceptibility in Section 12.3.2, and to
the dynamical properties in Section 12.3.3.

The effective action for the zero-frequency modes can be obtained in the same back-
ground field method discussed in Section 12.1: we just identify the n< modes with the
zero-frequency components and the �π fields with all finite-frequency components. Then
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it is easily seen that the effective action for n< has precisely the same form as the d = 1
classical ferromagnet discussed in Section 6.4, with partition function (6.45) at h̃= 0; for
our purposes we write this as

Z =
∫

Dn(x)δ(n2 − 1) exp

(
− (N − 1)ξ

4

∫
dx

(
dn(x)

dx

)2
)
, (12.34)

where ξ is already known from Section 6.4 to be the spatial correlation length. (Actually
we have usually reserved ξ to be the symbol for the equal-time correlations, whereas the
present approach gives the correlation length for the zero-frequency correlations; as we will
see in Section 12.3.3, these two lengths are asymptotically equal because of the dominance
of classical thermal fluctuations.) Generalizing (12.7) to the present situation we have

(N − 1)ξT

2
= cN

g
− c2(N − 2)

∫ � dk

2π
T
∑
ωn �=0

1

c2k2 + ω2
n
+ · · ·

≈ cN

g
− c(N − 2)

2π
ln

(
�

T

)
, (12.35)

where in the second equation we have ignored constants of order unity. Now we can use
(12.10) to eliminate �, and we find

ξ = c(N − 2) ln(T/�+)
Tπ(N − 1)

, (12.36)

in agreement with (11.60). Notably, dependence on g has also disappeared. This is not an
accident – the renormalization group was designed to make this happen order-by-order in
g, and all physical properties depend only upon the measurable ratio �+/T .

Actually, it is possible to be quite precise about the omitted constants of order unity
in the argument of the logarithm in (12.36). To do this requires use of the field-theoretic
renormalization group, and this is done in Section 12.3.1. The same method is applied to
the uniform susceptibility, χu , in Section 12.3.2.

12.3.1 Field-theoretic renormalization group

We introduced the renormalization group in Chapter 4, and implemented it by the “momen-
tum shell” method in Section 4.2. This method is adequate for most purposes. However, in a
few cases, involving higher loop computations or the determination of universal amplitude
ratios, a more formal field-theoretic approach is needed. While physically not as transpar-
ent, it does allow for efficient computations in which all nonuniversal features are automat-
ically suppressed.

A full description of this sophisticated approach is already available in a number of
reviews in the literature [59, 244, 557] (we especially recommend the article by Brézin et
al. [59] for a physical exposition), and the uninitiated reader is referred to these works
for an in-depth treatment. Here we are satisfied by noting the essential points and quickly
reviewing the computations necessary for our purposes.
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To understand the low-energy and long-distance limit of the d = 1 O(N ) rotor model,
it is necessary to understand the behavior of the couplings under changes of the cutoff �.
Computationally, it is advantageous to replace the cutoff by a new renormalization scale,
μ, defined in the following manner. We define the coupling constants and the scale of the
fields by relating them to the values of suitably chosen Green’s functions (computed in
the presence of a cutoff �) at external momenta proportional to μ. This statement is often
shortened to “define the couplings at the scale μ.” Now if we take an arbitrary observable,
and re-express it in terms of couplings defined at the scale μ, we find that the resulting
expressions are finite in the limit�→∞ (this is a consequence of the “renormalizability”
of the field theory). So we take just this limit in all Green’s function, and we are left with
�-independent expressions in which we no longer have to deal with the (messy) details of
the short-distance cutoff. As an added bonus, the independence of the underlying physics
on the arbitrary scale μ also yields the required renormalization group equations. For the
case of the O(N ) rotor model, only two redefinitions of coupling constants or field scales
(“renormalizations”) are necessary [61]: one renormalizing the coupling g to gR(μ), and
the other rescaling the overall field scale (related to the quasiparticle residue A) by a factor
Z̄ . Let us consider just the coupling constant renormalization for now. There is a multi-
plicative factor that relates gR to the bare coupling constant, g, in the theory with a cutoff
�; in an expansion in powers of gR , this factor is a function of ln(�/μ). However, it
is advantageous to regulate the ultraviolet behavior by dimensional regularization (which
means evaluating all momentum integrals in d = 1− ε spatial dimensions), in which case
the logarithms turn into poles in ε. The explicit relationship between the bare and renor-
malized coupling was shown by Brézin and Zinn-Justin [61] to be

g = gR(μ)μ
−ε
(

1+ N − 2

2πN

gR(μ)

ε
+O

(
g2

R

))
. (12.37)

Similarly, the field rescaling factor is shown to be [61]

Z̄ = 1− N − 1

2πN
gR(μ)+O

(
g2

R

)
. (12.38)

It is now possible to state the simple, field-theoretic recipe for computing correlators of
(11.4) for d = 1. First, obtain formal expressions for any rotationally invariant, physically
observable correlator of the bare theory in an expansion in powers of g, and leave all
the Feynman integrals as formal, unevaluated expressions. Next, perform the substitution
(12.37) to replace g by gR , and also multiply the correlator by a power of Z̄−1 for each
power of the field n in the correlator. Now, evaluate all the integrals in d = 1−ε dimensions,
in powers of ε. The constants in (12.37) and (12.38) have been cleverly chosen so that
all poles in ε cancel. The resulting expressions for the correlators of the theory are now
expressed in terms of gR and the momentum scale μ, with no explicit dependence on �.

It would seem that not much has been achieved with this rather sophisticated transfor-
mation. We began with a theory with a dimensionless coupling g and a cutoff �. This
cutoff was rather hard to deal with in computing Feynman graphs, especially multiloop
ones. We have ended up with a closely related theory with the same universal low-energy
properties. This theory is expressed in terms of a dimensionless coupling gR and a scale
μ, which plays the physical role of an ultraviolet cutoff. The latter theory is much easier
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to compute with, and so it seems that all we have done is to devise a clever and convenient
short-distance regularization that allows us to compute properties to a high order in gR .

However, there is an additional advantage to the second approach: by using the indepen-
dence of the original bare theory on μ, it is possible to easily derive an exact renormal-
ization group equation for the flow of gR(μ), and all observables, under rescalings of the
“cutoff” μ → μe�. Indeed, simply differentiating (12.37) with respect to μ at a fixed g
gives us the flow equation

dgR

d�
= N − 2

2πN
g2

R, (12.39)

which is of course the same equation obtained earlier in (12.8). We are dealing with the
coupling gR rather than g, but this is physically innocuous as it is simply the consequence
of trading the momentum cutoff � for a renormalization scale μ (which effectively plays
the role of the cutoff). Similarly, the field-scale renormalization, Z̄ , also implies an exact
statement on the behavior of correlation functions under changes of μ. (Again we are not
terribly concerned with the physical consequences of changing the scale of correlators of n
as we eventually set the overall amplitude of the structure factor using the physically mea-
surable quasiparticle amplitude A.) This is also discussed by Brézin and Zinn-Justin [61];
for the two-point correlator of n defined in (11.2) their result takes the form

Z̄−1C(x, t; gR(μ1), μ1) =
[

ln

(
μ1

μ2

)] (N−1)
(N−2)

Z̄−1C(x, t; gR(μ2), μ2). (12.40)

We have several occasions to use this fundamental relation later.
Let us return to the physical problem of computing the correlation length using the

present field-theoretic approach. The consequences of the above recipe are simple: we take
the formal expression represented by the first equation in (12.35), perform the substitution
in (12.37) to replace g by gR(μ), and then evaluate the integrals in d = 1− ε dimensions.
Let us specify a few steps required in the latter evaluation:

T
∑
ωn �=0

∫
d1−εk
(2π)1−ε

1

c2k2 + ω2
n

=
∫

d1−εk
(2π)1−ε

⎡⎣T
∑
ωn �=0

1

c2k2 + ω2
n
−
∫

dω

2π

1

c2k2 + ω2 + T 2

⎤⎦
+ c1−ε

∫
d2−ε p

(2π)1−ε
1

c2 p2 + T 2

= 1

c

(
T

c

)−ε {∫ d1−εk
(2π)1−ε

[
1

2k
coth

k

2
− 1

k2
− 1

2
√

k2 + 1

]
+ �(ε/2)

(4π)1−ε/2

}
. (12.41)

We are only interested in the poles in ε and the accompanying constants, and to this accu-
racy the first integral on the right-hand side can be evaluated directly at ε= 0, while the
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� function yields a 1/ε term. Now inserting (12.41) and (12.37) into the first equation in
(12.35), we find that all the poles in ε cancel in the resulting expression, and we get

(N − 1)ξT

2c
= N

gR(μ)
− (N − 2)

2π
ln(μ/T

√
C), (12.42)

where the constant C was defined in (11.61). Rather than leave this expression in terms of
μ and gR(μ), it is conventional to express the result in terms of the so-called renormaliza-
tion group invariant �M S . This is a somewhat unfortunate conventional notation for this
quantity, as it suggests that �M S is some sort of cutoff. In fact it is not; it is really a quan-
tity that is closely analogous to the momentum scale �+/c, which is related to the energy
gap, or the T = 0 correlation length. In the language of Section 5.5.1, �−1

M S
is a “large”

length scale, rather than a “short” scale. The basic idea behind the definition of �M S is
as follows. Choose any physically measurable length scale associated with a d = 1 rotor
model at T = 0 you wish. By simple dimensional analysis, this scale must be of the form
(1/μ)× some function of gR(μ). Because this scale is physically measurable, it must not
depend upon the choice of μ, that is, the resulting combination should be invariant under
the flow equation (12.37). This turns out to be a very strong restriction: up to an arbitrary
overall numerical factor, it turns out there is only one such function. We choose this overall
factor by convention and call the result �M S : by integration of the two-loop version of the
flow equation, we define, following [307],

�M S = μ
√
C
(
(N − 2)

2πN
gR

)−1/(N−2)

exp

(
− 2πN

gR(N − 2)

)
. (12.43)

The constant C in the prefactor is purely for convenience and arbitrarily chosen.
Now the implication of the reasoning above is that all T = 0 measurable length scales

are universal numbers times �−1
M S

, and they cannot depend separately upon μ and gR(μ);

similarly, all measurable length scales at T > 0 are �−1
M S

times universal functions of the
dimensionless ratio c�M S/T . It is easy to verify that this holds for our expression for the
correlation length in (12.42). Solving (12.43) for gR(μ) and substituting in (12.42) we find

ξ(T ) = c(N − 2)

Tπ(N − 1)

{
ln

[ CT

c�M S

]

+ 1

(N − 2)
ln ln

T

c�M S
+O

(
ln ln(T/c�M S)

ln(T/c�M S)

)}
. (12.44)

As expected, the scale μ has completely dropped out.
However, the expression (12.44) is not very useful as it stands because it involves the

scale �M S , which was defined by convention in the dimensional regularization scheme
and is not a priori known for any physical system. To make it useful, we need to relate
�M S to some other physical observable. We have consistently been using the T = 0 energy
gap �+ to characterize the ground state, and so it would be useful to know the universal
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dimensionless ratio�/c�M S . This was computed recently by Hasenfratz and collaborators
[205–207] using the Bethe ansatz solution of the σ -model; they obtained

�+
c�M S

= (8/e)1/(N−2)

�(1+ 1/(N − 2))
. (12.45)

The results (12.44) and (12.45) constitute the more precise form of (12.36). Explicitly, for
the case N = 3 we have the exact leading result for the correlation length

ξ(T ) = c

2πT
ln

(
32πe−(1+γ )T

�+

)
, (12.46)

where γ is Euler’s constant.

12.3.2 Computation of χ u

This section determines the uniform susceptibility, χu , by a strategy similar to that
employed above in the computation of ξ(T ): place the system in an external magnetic
field H, integrate out the nonzero-frequency modes, and then perform the average over the
zero-frequency fluctuations. We choose an H that rotates n in the 1–2 plane, and use (12.5)
to integrate out the nonzero frequencies. Therefore the fields n<, ea are independent of τ ,
while the πa have no zero-frequency components. It is also clear that the fields n<(x) are
simply the n(x) fields appearing in (12.34). We expand the partition function to quadratic
order in H, drop all terms proportional to the spatial gradients of n(x) or ea(x) (these
can be shown to yield logarithmically subdominant contributions to χu), and find that the
H-dependent terms in the free energy density are

− NH2

2cg

[(
n2

1 + n2
2

)(
1−

∑
a

〈
π2

a

〉)+∑
ab

(ea1eb1 + ea2eb2) 〈πaπb〉

− N

cg

∑
abcd

(ea1eb2 − ea2eb1)(ec1ed2 − ec2ed1)

×
∫

dxdτ 〈πa∂τπb(x, τ );πc∂τπd(0, 0)〉
]
. (12.47)

Evaluating the expectation values of the π fields, and using orthonormality of the vectors
n, ea , we can simplify the expression (12.47) to

− NH2

2cg

⎡⎣(n2
1 + n2

2

)⎛⎝1− c(N − 2)g

N
T
∑
ωn �=0

∫
dk

2π

1

c2k2 + ω2
n

⎞⎠
+ 2cg

N

(
1− n2

1 − n2
2

)
T
∑
ωn �=0

∫
dk

2π

c2k2 − ω2
n

(c2k2 + ω2
n)

2

⎤⎦. (12.48)

Finally, to obtain the susceptibility χu , we have to evaluate the expectation value of
the zero-frequency field n under the partition function (12.34). This simply yields
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〈n2
1〉= 〈n2

2〉= 1/N . The first frequency summation is precisely the same as that evaluated
earlier for ξ in the first equation in (12.35), while the second is explicitly finite in d = 1
and can be directly evaluated; in this manner we obtain our final result for χu :

χu(T ) = 2

N

[
(N − 1)T ξ

2c2
− (N − 2)

2πc

]
= (N − 2)

Nπc
ln

( CT

c�M Se

)
. (12.49)

We have omitted the form of the subleading logarithms, which are the same as those in
(12.44). Again, let us quote the explicit expression for χu for N = 3:

χu(T ) = 1

3πc
ln

(
32πe−(2+γ )T

�+

)
. (12.50)

It is useful to compare the T ��+ expression (12.50) for χu with the T ��+ result in
(12.12): the two expressions are roughly equal for T ≈ �, suggesting that one or the other
of the two asymptotic limits is always reasonable.

12.3.3 Dynamics

We have now assembled all the ingredients necessary for a complete description of the
low-frequency dynamics. The key observation, made above (12.33), is that the energy, ω,
of the characteristic excitation obeys ω� T . We expect the spectral density, Imχ(k, ω), to
be dominated by weight at such frequencies, and the fluctuation–dissipation theorem (7.22)
then takes its “classical” form in (10.75). We work here with an effective theory in which
(10.75) is obeyed exactly, and so the equal-time structure factor, S(k), is related to the static
susceptibility, χ(k), by S(k)= Tχ(k), as in (10.76). However, the static susceptibility is
given by the two-point correlator of the ωn = 0 components of the n field, and these are
determined by the effective action (12.34). Then we arrive at the important conclusion that
(12.34) yields the equal-time correlators of n in the limit that the classical fluctuation–
dissipation theorem in (10.75) is obeyed.

How do we extend (12.34) to unequal-time correlations? Recall that in classical statis-
tical mechanics equal-time correlations are given by an integral over configuration space
(as in

∫
dq), while an extension to dynamics requires an integral over phase space (as in∫

dpdq). Furthermore, the integral over the conjugate momenta simply factorizes, and for
equal-time correlations we can return to the configuration space formalism. So here, we
need to extend (12.34) by finding the appropriate integral over conjugate momenta. The
conjugate momentum of the rotor orientation n is clearly the rotor angular momenta L.
Therefore we treat L also as a classical variable and generalize (12.34) to a “

∫
dqdp”
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integral of the form (we particularize the remainder of the discussion to the special case
N = 3):

Z =
∫

Dn(x)DL(x)δ(n2 − 1)δ(L · n) exp

(
−Hc

T

)
,

Hc = 1

2

∫
dx

[
T ξ

(
dn
dx

)2

+ 1

χu⊥
L2

]
, (12.51)

where L and n are classical commuting variables. The second term in Hc was absent
in (12.34) and represents the kinetic energy of the classical rotors. Integrating out L we
obtain (12.34) as we should. The value of the coupling χu⊥ in the kinetic energy can be
determined by a simple argument. It is clear that an external field H will couple to the total
angular momentum and will therefore modify the classical Hamiltonian by

Hc → Hc −
∫

dxH · L. (12.52)

Evaluating the linear response of (12.51) shows that

χu = 2

N
χu⊥, (12.53)

with N = 3 (we have given, without proof, the expression for general N ); the factor of
2/3 comes from the constraint L · n= 0. Using (12.49), we then have the value of χu⊥.
It should also be clear from this discussion that χu⊥ has a simple physical interpretation:
it is the susceptibility to a field oriented perpendicular to the local direction of the order
parameter n.

Finally, to proceed to unequal-time correlations, we need the equations of motion obeyed
by the classical n, L fields. A direct approach is to compute the quantum equations of
motion and then to simply treat the quantum operators n̂ and L̂ as classical c-numbers.
This is valid because the expectation value of any term will be dominated by large values
as in (12.33), and any effects from noncommutativity will be suppressed. A quicker way
to obtain the answer is to realize that the same result is obtained by replacing the quantum
commutators by Poisson brackets and generating the Hamilton–Jacobi equations of the
Hamiltonian Hc. The required Poisson brackets here are the continuum classical limit of
the commutation relations (1.21):

{Lα(x), Lβ(x
′)}P B = εαβγ Lγ (x)δ(x − x ′),

{Lα(x), nβ(x ′)}P B = εαβγ nγ (x)δ(x − x ′),

{nα(x), nβ(x ′)}P B = 0. (12.54)
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From this, and (12.51), we obtain directly the equations of motion for the quasi-classical
waves:

∂n
∂t
= {n,Hc}P B

= 1

χu⊥
L× n,

∂L
∂t
= {L,Hc}P B

= (T ξ)n× ∂2n
∂x2

. (12.55)

To compute the needed unequal-time correlation functions, pick a set of initial conditions
for n(x), L(x) from the ensemble (12.51). Evolve these deterministically in time using the
equations of motion (12.55). The value of the correlator is then the product of the appro-
priate time-dependent fields, averaged over the set of all initial conditions. We also note
here that simple analysis of the differential equations (12.55) shows that small disturbances
about a nearly ordered n configuration travel with a characteristic velocity c(T ) given by

c(T ) = (T ξ(T )/χu⊥(T ))1/2, (12.56)

which is a basic relationship between thermodynamic quantities and the velocity c(T ).
Note from (12.44) and (12.49) that to leading logarithms c(T ) ≈ c, but the second term in
the first equation of (12.49) already shows that this result is not satisfied by the subleading
terms.

Before relating the required correlators of the quantum model for T ��+ to the classi-
cal model defined above, we need to settle one final issue: that of the overall scale of the
fields n, L. The scale of L is easy to set – it is specified completely by the coupling to the
field H in (12.52), and by the first of the Poisson bracket relations in (12.54). These take
the same values in the underlying quantum model and undergo no renormalization upon
integrating out the finite-frequency degrees of freedom. We have therefore

Cu,αβ(x, t) = 〈Lα(x, t)Lβ(0, 0)〉c, (12.57)

where the subscript c represents the averaging procedure discussed below (12.55). The
argument for the field scale of n is somewhat more subtle. So far the only parameter that
has been sensitive to the scale of the order parameter has been the quasiparticle amplitude,
A, which was defined from the residue of the quasiparticle pole at T = 0. In contrast,
we need the overall scale of n at a temperature T ��+. The matching between these two
scales can, however, be performed with the aid of the renormalization group invariance
equation (12.40) noted earlier. Now the quasiparticle amplitude A is naturally defined at
a scale μ1∼�+, where the coupling gR is of order unity. However, integrating out the
finite-frequency modes and deriving the effective action for the zero-frequency modes is
most easily done at μ2∼ T , as the coupling gR ∼ 1/(ln(T/�+) and the perturbation theory
will be free of large logarithms. The two scales can be related via (12.40), and in this way
we obtain the required result



209 12.3 High-temperature limit of the continuum theory,�+� T � J

Cαβ(x, t) = A C̃
[

ln

(
T

�+

)] (N−1)
(N−2) 〈nα(x, t)nβ(0, 0)〉c. (12.58)

The constant C̃ is an unknown pure, universal number, which cannot be obtained by the
present methods. It could, in principle, be obtained from the Bethe-ansatz solution.

Let us now examine the structure of the classical dynamics problem defined by (12.51)
and (12.55). It obeys the crucial property of being free of all ultraviolet divergences. This
is clear from the analysis of equal-time correlations in Section 6.4 and the unequal-time
perturbation theory discussed in [65]. Consequently, we may determine its characteristic
length and time scales by simple engineering dimensional analysis, as no short-distance
cutoff scale is going to transform into an anomalous dimension. Indeed, a straightforward
analysis shows that this classical problem is free of dimensionless parameters and is a
unique, parameter-free theory. This is seen by defining

x̄ = x

ξ
,

t̄ = t

τϕ
,

L̄ = L

√
ξ

Tχu⊥
, (12.59)

where we have anticipated that the characteristic time, τϕ , will be the phase coherence
time, and it is given by

τϕ =
√
ξχu⊥

T
; (12.60)

then inserting these into (12.51) and (12.55), we find that all parameters disappear and the
partition function and equations of motion acquire a unique, dimensionless form, given by
setting T = ξ =χu⊥ = 1 in them.

The above transformations allow us to obtain scaling forms for the dynamic observables
in terms of, as yet undetermined, universal functions.

First, consider the correlators of n. The equal-time two-point correlations of (12.34) are
known from Section 6.4 to decay simply as e−|x |/ξ /3; from these and (12.58), we deduce
that the equal-time structure factor S(k) (defined in (10.5)) is given by

Tχ(k) = S(k) = A C̃
[

ln

(
T

�+

)]2 2ξ/3

(1+ k2ξ2)
. (12.61)

For the dynamic structure factor, S(k, ω), (12.59) implies a scaling form similar to (10.78),

2T

ω
Imχ(k, ω) = S(k, ω) = S(k)τϕ�Sc(kξ, ωτϕ), (12.62)

where �Sc is a universal scaling function, normalized as in (10.79). Also, because the
equations of motion are classical, the relation (10.75) is obeyed exactly, and �Sc is an
even function of ω̄. For further information on the structure of �Sc we refer to a recent
paper [65], which used a combination of analytic and numerical methods. At sufficiently
large kξ , we expect a pair of broadened, reactive, “spin-wave” peaks at ω ≈ c(T )k (with



210 The d= 1, O(N≥ 3) rotor models
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�Fig. 12.4 Numerical results of [65] for the scaling function�Sc(0, ω̄) appearing in (12.62).

c(T ) given in (12.56) and an exact expression for the linewidth given in [65]), which are
similar to those found in the high-T limit of the quantum Ising chain in Fig. 10.11. For
the opposite limit of small kξ , we present the numerical results of [65] for �Sc(0, ω̄) in
Fig. 12.4. There is a sharp relaxational peak at ω̄= 0, which is again similar to that found
in the high-T limit of the quantum Ising chain in Fig. 10.11. However, there is now a well-
defined shoulder at ω̄ ≈ 0.7, which was not found in the Ising case. This shoulder is a
remnant of the large-N result (11.10), which predicts a delta function at ω= ±m, with m
given by (11.60) in d = 1. So N = 3 is large enough for this finite-frequency oscillation to
survive in the high-T limit.

There is an alternative, helpful way to view this oscillation frequency. The underlying
degree of freedom in our dynamical field theory has a fixed amplitude, with |n| = 1. How-
ever, correlations of n decay exponentially on a length scale ξ ; consequently, if we imagine
coarse-graining out to ξ , it is reasonable to expect significant amplitude fluctuations in the
coarse-grained field. It is now useful to visualize an effective field φα with no length con-
straint, as we discussed in Section 2.1. On a length scale of order ξ , we expect the effective
potential controlling fluctuations of φα to have a minimum at a nonzero value of |φα| but
to also allow fluctuations in |φα| about this minimum. The finite frequency in Fig. 12.4 is
due to the harmonic oscillations of φα about this potential minimum, while the dominant
peak at ω= 0 is due to angular fluctuations along the zero-energy contour in the effective
potential. This interpretation is also consistent with the large-N limit, in which we freely
integrate over all components of n, and so angular and amplitude fluctuations are not dis-
tinguished. The above argument could also have been applied to the quantum Ising chain
(in this case, angular fluctuations are replaced by low-energy domain wall motion, consid-
ered in Section 10.4.1), but the absence of such a reactive, finite-frequency peak at k= 0
in Fig. 10.11 indicates that N = 1 is too far from N =∞ for any remnant of this large-
N physics to survive. We meet related phenomena in our study of a quasi-classical wave
model for the high-T limit for d = 2 in Section 14.3.

We turn next to the correlators of L. The long-time behavior of these was examined
numerically in [65], and it was found to be consistent with the diffusive form (12.2). We
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already know the value of the uniform susceptibility, χu . For the spin diffusion constant,
Ds , we can deduce simply from the fact that it has dimension (length)2/time, and from
(12.59), that it must obey

Ds = B T 1/2ξ3/2

χ
1/2
u⊥

, (12.63)

where B is a universal number. The numerical estimate [65] is B ≈ 3.3.

12.4 Summary

We summarize the basic properties of the two regimes in Figs. 11.1 and 12.1 and in
Table 12.1. We also recall that in the low-T region, the dynamic structure factor, S(k, ω),
has most of its weight in a frequency window about ω=�+ of width 1/τϕ . In the high-T
region, S(k, ω) becomes an even function of ω and most of its weight is in a window of
width 1/τϕ centered around ω= 0.

Finally, we mention some application to experiments.
We have already seen in Section 1.4.3 that the d = 1, O(3) quantum rotor model describes

the so-called two-leg ladder antiferromagnets [33, 102]. There are materials, such as
SrCu2O3 [33], that consist of two adjacent S= 1/2 spin chains, with neighboring spins

Table 12.1 Basic properties of low-T and high-T regimes.
Values of the correlation length, ξ (defined from the exponential decay of the

equal-time correlations of n), the uniform spin susceptibility,χu, the phase
coherence time, τϕ , and the spin diffusion constant, Ds, for the two regimes in

Figs. 11.1 and 12.1. Results are for N= 3, although many results for general N≥ 3
appear in the text. There is a large length scale, ξc , in the low-T region, which was

given in (12.21) and does not appear below; this is the spacing between the
thermally excited particles.

Low-T , High-T ,
quasi-classical particles quasi-classical waves

ξ
c

�+
c

2πT
ln

(
32πe−(1+γ )T

�+

)

χu
1

c

(
2�+
πT

)1/2
e−�+/T 1

3πc
ln

(
32πe−(2+γ )T

�+

)

τϕ

√
π

3T
e�+/T

(
3ξχu

2T

)1/2

Ds
c2e�+/T

3�+
2.7ξ

(
T ξ

χu

)1/2
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on the two chains coupled to each other like the rungs of a ladder; thus, they are modeled
by (1.28) for the case where the sum over i, j extends a simple one-dimensional chain.
Actually, as we see in Section 19.3.1, a much broader class of d = 1 antiferromagnets is
described by the O(3) rotor model, including spin chains in which the individual spins have
integer spin S. The mapping to the rotor model requires that all of these antiferromagnets
have an energy gap above the ground state.

There have been a very large number of experimental studies of such one-dimensional
antiferromagnets. For example, in a neutron scattering study of the S= 1 spin chain com-
pound Y2BaNiO5, Xu et al. [544, 545] present clear evidence for a triplet particle in the
low-T spectral density, along with the long phase coherence time associated with its pres-
ence [4,544]. The most recent measurements [545] are in quantitative agreement with the
results in Section 12.2. Thermodynamic and NMR measurements on S= 1 spin chains and
spin ladders have been surveyed by Itoh and Yasuoka [239]: a striking feature of the data
is that the energy gaps measured in activation plots of the NMR relaxation rate 1/T1 are
about 1.5 times the measured gap in a thermodynamic measurement of the uniform suscep-
tibility. It is argued in [107] that this feature can be quite generally explained by the picture
of low-T spin diffusion developed in Section 12.2 and the value of the spin diffusivity in
(12.27). Detailed comparisons [107] of the ballistic to diffusive crossover in (12.23) have
been made against NMR experiments by Takigawa et al. [498] on the S= 1 spin chain
compound AgVP2S6.

As we see in Chapter 19, the high-T analysis of Section 12.3 applies to spin chains with
larger values of S, or to spin ladders with greater than two legs, at intermediate tempera-
tures; the precise limits on experimental applicability are discussed in [65]. Explicit com-
parisons of the thermodynamic predictions in Section 12.3 have been made against Monte
Carlo data for S= 2 chains by Kim et al. [269], with reasonable agreement. Experimental
studies of S= 2 chains have also been undertaken [174], and there are interesting prospects
for confrontation between theory and experiments on dynamical properties in future work.
Dynamical measurements have been made on two-leg ladder compounds at higher temper-
atures [265] and the results have an interesting qualitative similarity to (12.63).
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The large-N limit of quantum rotor models for d = 2 was examined in Chapter 11 and led to
the phase diagram shown in Fig. 11.2. There we claimed that the large-N results provided
a satisfactory description of the crossovers in the static and thermodynamic observables for
N ≥ 3. We establish this claim in this chapter and also treat the dynamic correlations of n at
nonzero temperatures. The discussion of the dynamics takes place in a physical framework
suggested by the modified version of Fig. 11.2 shown in Fig. 13.1. The low-T region on
the quantum paramagnetic side can be described in an effective model of quasi-classical
particles that is closely related to those developed in Sections 10.4.2 and 12.2. In the other
low-T region on the magnetically ordered side, we obtain a “dual” model of quasi-classical
waves, which is connected to that developed in Section 12.3. Finally, in the intermediate
“quantum critical” or “continuum high-T ” region, neither of these descriptions is adequate:
quantum and thermal behavior, as well as particle- and wavelike behavior, all play impor-
tant roles, and we use a melange of these concepts to obtain a complete picture in this and
the following two chapters.

The results for the quasi-classical wave regime described in this chapter are obtained by
a combination of analytical and numerical techniques, which become exact in the low-T
limit. For the other two regions, we use the large-N expansion. This approximate approach
is satisfactory for most purposes, but it fails in the very low-frequency regime, ω� T . A
proper description of the low-frequency dynamical correlators of n must await alternative
techniques, which are developed in Chapter 14 and Section 14.3.

The cases N = 1, 2, d = 2 are special because they permit phase transitions at nonzero
temperatures, and their crossover phase diagrams are of the form in Fig. 11.3. We do not
treat the ordered phases or the vicinity of the nonzero-temperature transition in this chapter
but defer their discussion to Chapter 14. In principle, the results obtained for the low-
T region on the quantum paramagnetic side, and for the continuum high-T region (see
Fig. 11.3), apply for all N , including N = 1, 2. However, the caveats mentioned in the
previous paragraph on the failure of the large-N expansion at low frequencies apply even
more strongly to N = 1, 2, and the dynamics for these cases is best understood using the
methods of Chapters 14 and 15. Nevertheless, we quote our results in this chapter for these
two regions for all values of N .

We do not consider time-dependent correlations of the angular momentum L in this
chapter. The conservation of the total L implies that its low-frequency dynamics obeys
the diffusive form (12.2). So the problem reduces to determination of a “transport coeffi-
cient” (the spin diffusion constant Ds), and we defer discussion of the transport problem
to Chapter 15.
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�Fig. 13.1 Modified version of Fig. 11.2 for the crossovers for the rotor model (11.1, 11.4) for d= 2, N≥ 3; see also Fig. 1.3.
While quasi-classical descriptions of the dynamics and transport can be developed in the two low-T regions, the
behavior in the “quantum critical” or “continuum high-T” region is more complex, with contributions from both
thermal and quantum phenomena, and from both particle- and wave-like phenomena. We show in Section 14.3 that,
to leading order in ε= 3− d, the low-frequency correlators of n in the quantum critical region are described by an
effective quasi-classical wave model. In contrast, the transport of the conserved L in the quantum critical region is
dominated by higher energy excitations and requires a particle-like description in a quantum Boltzmann equation,
which is discussed in Chapter 15.

The main purpose of this chapter is a more complete description of the basic scaling
forms for nonzero-temperature correlations of n introduced in Section 11.3. For d = 2, on
the magnetically ordered side (g< gc), the scaling ansatz (11.41) is

χ(k, ω) = Z

T (2−η)
�−

(
ck

T
,
ω

T
,
ρs

N T

)
, (13.1)

where we have set z= 1 and used the expression (11.39) for�−, which for d = 2 is simply

�− = ρs/N ; (13.2)

that is, the T = 0 spin stiffness ρs is an energy that serves as a measure of the deviation of
the magnetically ordered ground state from the quantum critical point; the factor of 1/N
(13.2) is for future convenience, as ρs is naturally of order N in the large-N limit. Clearly
ρs is defined only for the case of models with a continuous symmetry, and so (13.1) applies
only for N ≥ 2. For g> gc we have

χ(k, ω) = Z

T (2−η)
�+

(
ck

T
,
ω

T
,
�+
T

)
, (13.3)

characterizing the nonzero-temperature behavior on the quantum paramagnetic side for
all N .

We begin in Section 13.1 by treating the low-T region on the magnetically ordered
side of the d = 2 phase diagram in Fig. 11.2; note that in this figure the magnetic long-
range order disappears at any nonzero T . This is shown below to happen for all N ≥ 3,
and we only consider these cases. Section 13.2 then considers dynamical properties of the
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continuum high-T and quantum-paramagnetic low-T regions of Figs. 11.2 and 11.3 and
describes the structure of the scaling function in (13.3); in principle, these results apply
for all N .

13.1 Low T on the magnetically ordered side, T � ρs

As noted above, we only consider the case where magnetic order disappears at any nonzero
T , and this happens (as shown below) for all N ≥ 3. Recall that the quantum Ising chain,
considered in Chapter 10, also had the feature of losing magnetic order at any nonzero
T (compare the phase diagrams in Figs. 10.2 and 11.2). We find here that the static and
dynamic properties of the d = 2 N ≥ 3 rotor models in this low-T region are very simi-
lar to those discussed earlier for the corresponding region of the quantum Ising chain in
Section 10.4.1. However, our analysis uses techniques that are very similar to those devel-
oped earlier in the “classical wave” description of the high-T region of the d = 1 rotor
model in Section 12.3. The reader is urged to review these sections before
proceeding.

The key property of this region is the very large value of the correlation length, obtained
earlier in (11.64) in the large-N limit:

ξc ∼ (c/T ) exp(2πρs/N T ). (13.4)

We can use an argument similar to that following (12.31) for the d = 1 model, to establish
the effective classical wave behavior of the system in this region; indeed the subscript c
in (13.4) anticipates this. The typical wave excitations of the n field will have an energy
∼cξ−1

c and hence a thermal occupation number

1

ecξ−1
c /T − 1

≈ T

cξ−1
c
≈ exp

(
2πρs

N T

)
� 1. (13.5)

Therefore, as in Section 12.3, we can treat these waves classically. Note that the classical
thermal fluctuations are exponentially preferred, unlike the much weaker logarithmic pref-
erence in Section 12.3. The exponential preference is similar to that found for the quantum
Ising chain in Section 10.4.1, although there the reason was the energy gap toward creation
of domain walls.

This low-T region was studied in the influential paper of Chakravarty, Halperin, and
Nelson [75], where they called it “renormalized classical,” as seems natural from the rea-
soning above. We have not used this name here to prevent confusion with other types of
effectively classical behavior that appear in different regions of the phase diagram.

As in the Ising case, we can expect that static and dynamic correlations obey a reduced
scaling form of two arguments. The analog of the expression (10.72) turns out to be

C(x, t) = N 2
0

(
T

ρs

) (N−1)
(N−2)

�c

(
x

ξc
,

t

τϕ

)
, (13.6)
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where N0 is the ground state ordered moment, �c is a completely universal function to be
determined by some effective classical model, and, as before, τϕ is a characteristic phase
coherence time, which is determined below. Unlike the Ising case, it is not possible to
determine �c exactly, although most of its qualitative properties can be described. There
is an additional prefactor of a power of T/ρs in (13.6) that is not present in (10.72); note
that this is a rather weak prefactor on the scale of ξc as ln ξc ∼ ρs/T . As we discuss below,
its origin is in the “wavefunction renormalization” of the D= 2 nonlinear σ -model, which
also led to the logarithmic prefactor in (12.58) in the classical wave region of the d = 1
quantum rotor model. It is also easy to check from (11.43) that (13.6) is consistent with
the global scaling form (13.1). Finally, note that (13.6) is consistent with the large-N result
obtained from (11.10), (11.35), and (11.38). Also, by matching scaling forms at N =∞
we obtain the value τϕ = ξc/c; however, we had no damping in the dynamic susceptibility
(11.10) at N =∞, and so τϕ cannot even be interpreted as a phase coherence time. We shall
find that the value of the phase coherence time at finite N is different: τϕ ∼ (ρs/T )1/2ξc/c;
this result is actually quite similar to that for the quantum Ising chain, where, in (10.63)
and (10.71), we obtained τϕ ∼ (�/T )1/2ξc/c.

We describe the computation of the exact values of ξc and τϕ in the following subsec-
tions. A description of the function �c then follows.

13.1.1 Computation of ξ c

The exact value of ξc, in the limit T � ρs , was obtained by Hasenfratz and Niedermayer
[207] building upon foundations laid in [75]. Here we obtain the result by a different
method, which has the advantage of connecting with results already obtained for the d = 1
case and also allowing for a streamlined discussion of dynamic properties in subsequent
subsections.

We begin by precisely defining ξc: the definition (13.6) leaves it undefined up to an
overall constant, which could be absorbed into a redefinition of �c. It is then clear that
demanding

lim| x̄ |→∞�c( x̄, 0) ∼ e− x̄

√
x̄

(13.7)

fixes ξc as the exponential decay rate of the long-distance equal-time correlations. The
x̄-dependent prefactor in (13.7) is the familiar “Ornstein–Zernicke” form expected in the
long-distance decay of a classical, two-dimensional disordered system (the expression
(11.21) is of this form in D= d + 1 dimensions). The missing coefficient in (13.7) is
universal, but its value is not known exactly, although estimates have been made in the
1/N expansion [86] and in numerical simulations [75,470].

As in Section 12.3, the inequality (13.5) suggests that we develop an effective action
for the ωn = 0 component of n to describe its equal-time correlations. A simple argument
then suggests the form of the effective action. Recall that we have true long-range order
in n at T = 0, and we have denoted the exact spin stiffness of this ordered state as ρs

(Section 11.2.3). The energy cost of any sufficiently slowly varying static deformation n(x)



217 13.1 Low T on the magnetically ordered side, T� ρs

can be computed using this stiffness, and so we obtain the following partition function for
the equal-time correlations:

Z =
∫

Dn(x)δ(n2 − 1) exp

(
− ρs

2T

∫
d2x (∇n)2

)
. (13.8)

This has the same form as the d = 1 classical wave model (12.34). The relationship of
ρs to the couplings in the underlying quantum action (11.4) is not known exactly and in
general is quite difficult to determine. At N =∞ we obtained the relationship specified
by (11.38) and (11.13). For our purposes here, it is useful to have an expression for ρs of
the quantum model (11.4) in powers of g. Such an expansion can be obtained by a simple
extension of the methods of Section 12.1. We take for n< in (12.5) an externally imposed,
long-wavelength, static deformation of n and then account for the quantum fluctuations by
integrating out π fields at all wavevectors and frequencies at T = 0. The energy cost of
such a deformation defines ρs , and this is obtained by generalization of (12.7):

ρs = cN

g

[
1− (N − 2)g

N

∫ � d3 p

(2π)3
1

p2
+O(g2)

]
, (13.9)

where, as in Section 11.1, p ≡ (�k, ω/c), and the nature of the ultraviolet cutoff, �, was
discussed below (11.4). We do not need to specify the precise form of this cutoff, for the
scaling properties of the quantum critical point at g= gc imply that all observables become
cutoff independent once expressed in terms of ρs and the ordered moment N0, in place of
the bare couplings in (11.4). Hence we shall really require the inverse of (13.9): a series
for g in powers of 1/ρs , which can, of course, be easily generated from (13.9). Note also
that the large-N limit of (13.9) is consistent with (11.38) and (11.13).

Having determined ρs , let us return to the properties of the effective partition function
(13.8) for the static fluctuations for d = 2. A little thought exposes a crucial difference
from the corresponding model (12.34) for d = 1. In the latter case, the continuum theory
(12.34) was ultraviolet finite and needed no short-distance regularization, and so the exact
correlation length appeared as a coupling constant in (12.34) and completely specified the
equal-time correlations of n. In contrast, (13.8) is not well defined as it stands. Indeed,
the action (13.8) has precisely the same form as the d = 1 quantum rotor model at T = 0
studied in Section 12.1, and it was shown there to require some short-distance regulariza-
tion (see the expression (12.10) for the energy gap). In the present situation, we do not
have the luxury of choosing the form of this regularization. The partition function (13.8) is
only an effective classical theory and cannot be applied at distances so short that quantum
effects become important. In particular, it cannot hold at wavevectors larger than where
the energy of a spin wave ∼ck becomes of order T . Thus quantum mechanics acts as an
underlying high-momentum regularization of (13.8), at momenta of order �c ∼ T/c. We
have added a subscript c to emphasize that this is a cutoff for the classical theory; �c is
completely unrelated to the cutoff of the quantum theory,�, noted in (13.9). The latter has
a nonuniversal nature, while the cutoff at momenta of order�c has a universal form, which
is elucidated below.

An important property of the model (13.8) emerged in the renormalization group anal-
ysis of Chapter 12. We showed that its long-distance properties did not depend separately



218 The d= 2, O(N≥ 3) rotor models

upon its coupling ρs/T and its cutoff ∼�c, but only upon a single renormalization group
invariant�M S . Therefore the central task facing us is determination of a precise expression
for �M S as a function of ρs/T and the momentum scale T/c. With this at hand, we obtain
ξc by the analog of the Bethe-ansatz relation [205,206] (12.45)

ξ−1
c = �M S

(8/e)1/(N−2)

�(1+ 1/(N − 2))
, (13.10)

as the gap of the d = 1 quantum model at T = 0 becomes the exponential decay rate of
correlations of the d = 2 classical model (13.8). We could also proceed, in principle, to use
(13.8) to determine the entire function �c( x̄, 0).

One way to determine �M S is to return to the underlying quantum model (11.4) and
to directly compute the long-distance form of its equal-time correlators. This gives an
expression for ξc in terms of c, g, and �; re-expressing g in terms of ρs using the inverse
of (13.9), and matching against (13.10), we could then obtain the needed expression for
�M S . This is clearly an intractable route, as it involves the physics of (13.8) in its strong-
coupling regime. Instead, we use a simple trick that does the matching between the two
theories in a weak-coupling regime.

Recall from our discussion in Chapter 12 that the theory (13.8) is strongly coupled at
length scales longer than�−1

M S
and weakly coupled at shorter scales. Clearly, we should do

the matching between (13.8) and (11.4) in the latter regime. To do this, imagine restrict-
ing the spatial coordinate, x , of both theories to an infinite cylinder of circumference
L (the temporal direction of (11.4) remains unchanged). If we choose L��−1

M S
then

we are in the weak-coupling regime, and we can compute properties of both theories
using perturbation theory. At the same time, we have to ensure that L� c/T so that
all length scales are longer than the inverse classical cutoff �−1

c , allowing us to remain
in the regime of effective classical behavior in model (11.4). Because �−1

M S
∼ ξc is

exponentially large in 1/T , these two conditions are easily compatible. Thus we have
modified (13.8) to

Z =
∫

Dn(x)δ(n2 − 1) exp

(
− ρs

2T

∫
dx1

∫ L

0
dx2 (∇n)2

)
, (13.11)

with periodic boundary conditions on n along the x2 direction. However, precisely such a
model, in the regime L��−1

M S
, was studied in Section 12.3: we simply have to identify

x2 with the imaginary-time direction τ of a fictitious d = 1 quantum model, and then L is
just its inverse temperature. This model was analyzed by a further dimensional reduction
in which we integrate out all modes of n that have a nonzero wavevector along the x2

direction, obtaining an effective one-dimensional model:

Z =
∫

Dn(x1)δ(n2 − 1) exp

(
− (N − 1)ξc(L)

4

∫
dx1
(
∂x1 n

)2)
. (13.12)

We have written the coefficient of the gradient coupling in a form such that ξc(L) is pre-
cisely the correlation length of a two-point n correlator along the x1 direction (this follows
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from (6.45). Indeed, we can read off the value of ξc(L) as a function of �M S and L from
the result (12.44):

ξc(L) = L(N − 2)

π(N − 1)
ln

( C
L�M S

)
+ · · · , (13.13)

where C is the constant defined in (11.61). We expect a universal scaling form ξc(L)=
L F(L�M S) for general L , and (13.13) specifies the leading term in the small-u limit of
F(u). The u → ∞ limit is the strong-coupling regime, with ξc ≡ ξc(L → ∞) given by
the Bethe-ansatz result (13.10).

Let us compute the expression corresponding to (13.13) for the quantum model (11.4).
We do this by performing the dimensional reduction to (13.12) in one step, in a pertur-
bation theory in g (i.e. we will integrate out all modes with either a nonzero wavevector
in the x2 direction, or a nonzero frequency in the τ direction, but not both). By a simple
generalization of (12.7) or (12.35) to this spacetime geometry, we get

ξc(L) = 2

(N − 1)

[
cN L

gT
−

′∑
n,m

∫
dk

2π

(N − 2)

k2 + (2πm/L)2 + (2πnT/c)2

]
, (13.14)

plus corrections of order g, where the prime indicates the sum is over all integers n,m
excluding the single point n=m= 0. The integral and summation in (13.14) are badly
divergent in the ultraviolet. However, expressing g in terms of ρs using (13.9) makes the
resulting expression free of divergences, as we now show. The basic technical tool is to
lift the denominators in the integrands of (13.9) and (13.14) up into exponentials using the
simple identity

1

a
=
∫ ∞

0
dλe−λa . (13.15)

Then the combination of (13.14) and (13.9) yields, after a suitable rescaling of λ,

ξc(L) = 2Lρs

(N − 1)T

[
1− (N − 2)T

4πρs

∫ ∞

0

dλ√
λ

(
A(λ)A(λv2)− 1− 1

λv

)]
, (13.16)

where v= T L/c and the function A(y) was defined in (6.30). By simple use of the identity
(6.42) and (6.30) it is easy to show that the λ integral in (13.16) is convergent. As noted
earlier, we are interested in the classical regime L� c/T and therefore in the v → ∞
limit of the integral in (13.16). It is not difficult to show that the integral ∼ ln(v) in this
limit; we determined the additive constant associated with this logarithm numerically and
found

ξc(L) = 2Lρs

(N − 1)T

[
1− (N − 2)T

2πρs
ln

(
LT

Cc

)
+O

(
T

ρs

)2
]
, (13.17)

where the constant C (given in (11.61), was again found to appear.
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We are now prepared to perform the matching between the two approaches to computing
ξc(L). Comparing (13.13) and (13.17) we find that the L dependencies are consistent, as
required, and that

�M S =
T

c
exp

(
− 2πρs

(N − 2)T

)
. (13.18)

This is the result to one-loop order. It is possible to improve this result to two-loop order
by using the relationship (12.43) between �M S and the coupling gR at an arbitrary scale
μ. Matching (13.18) with (12.43) by choosing μ = T/c (∼�c) we find that

1

gR(T/c)
= ρs

N T
+ (N − 2)

4πN
ln C +O

(
T

ρs

)
. (13.19)

Inserting this back into (12.43), we obtain the final result [207]

�M S =
T

c

(
2πρs

(N − 2)T

)1/(N−2)

exp

(
− 2πρs

(N − 2)T

)[
1+O

(
T

ρs

)]
. (13.20)

Combined with (13.10), we have the promised exact result for ξc.

13.1.2 Computation of τϕ

We follow the same strategy employed in Section 13.1.1 for ξc. We extend to dynami-
cal properties the static mapping of the model (11.4) on a cylinder of circumference L ,
c/T � L��−1

M S
, onto the effective one-dimensional classical rotor model. By exactly the

same arguments as those leading to (12.51), we have to supplement the partition function
(13.12) by an additional kinetic energy term for the classical rotors. We therefore consider

Z =
∫

Dn(x1)DL(x1)δ(n2 − 1)δ(L · n) exp

(
−Hc

T

)
,

Hc = 1

2T

∫
dx1

[
(N − 1)T ξc(L)

2

(
dn
dx1

)2

+ 1

Lχu⊥(L)
L2

]
, (13.21)

where Lχu⊥(L) is the uniform susceptibility per unit length of the model (11.4) on a
cylinder of circumference L . The equations of motion of this one-dimensional classical
rotor model follow from the Poisson brackets (12.54). The structure of these was analyzed
in Section 12.3, and by (12.59) they imply a characteristic time

τϕ(L) ∼
(
ξc(L)Lχu⊥(L)

T

)1/2

. (13.22)

The value of τϕ(L) is undetermined up to an overall constant, which we will choose later
at our convenience.

It remains to compute χu⊥(L), and then to use scaling arguments to extrapolate pertur-
bative results from the regime L�M S → 0 to the required L�M S →∞.
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The uniform susceptibility follows from a straightforward generalization of (12.48) to
the present geometry. We obtain after a rotational average of the two terms in (12.48):

χu⊥(L) = N

cg

⎡⎣1− (N − 2)g

cN

T

L

∑
ωn �=0

∑
m

∫
dk

2π

1

k2 + (2πm/L)2 + (ωn/c)2

+ (N − 2)g

cN

T

L

∑
ωn �=0

∑
m

∫
dk

2π

k2 + (2πm/L)2 − (ωn/c)2

(k2 + (2πm/L)2 + (ωn/c)2)2

⎤⎦.
(13.23)

We can eliminate g in favor of ρs using (13.9) and obtain an expression for χu⊥ in terms
of ρs , c, T , and L . This expression can then be analyzed in a manner very similar to
that used for (13.14) and (13.16). We will not describe the details of this but simply note
that an important difference emerges from the structure of the earlier result (13.17): we
find that there are no singular logarithmic terms in χu⊥(L) in the limit T L/c → ∞.
The dependence on T L/c is exponentially small in this limit, and we can therefore expli-
citly take the L → ∞ limit already in the expression (13.23), by converting the sum-
mation over m into an integral. Taking this limit, and carrying out the summation over
ωn , we get

χu⊥(L) = ρs

c2
− (N − 2)

∫
d2k

(2π)2

(
1

ck

1

(eck/T − 1)
− T

c2k2

)
+ (N − 2)

∫
d2k

(2π)2

(
1

4T sinh2(ck/2T )
− T

c2k2

)
. (13.24)

The two integrals in (13.24) are individually logarithmically divergent, but the combination
is finite. This is a verification that the L → ∞ limit was smooth, and that unlike (13.17),
it was not necessary to keep L finite to obtain a finite answer. We can easily carry out the
integral over the difference of the integrands in (13.24) and obtain a result χu⊥(L) that is
independent of L to the accuracy we need:

χu⊥(L) = ρs

c2

[
1+ (N − 2)T

2πρs
+O

(
T

ρs

)2
]
. (13.25)

Note that, combined with χu = (2/N )χu⊥, this result agrees with our earlier large-N
result (11.65).

We have assembled all the ingredients necessary to estimate τϕ . Inserting the results
(13.13) and (13.25) into (13.22) we get (ignoring numerical prefactors)

τϕ(L) ∼
(ρs

T

)1/2 L

c

[
ln

( C
L�M S

)]1/2

(13.26)

for small L�M S .
As the final step, we have to extrapolate the result (13.26) from L�M S → 0 to L�M S →

∞. This can be done by a relatively straightforward scaling argument. The phase relaxation
time τϕ(L) is expected to be given by a natural time scale times a dimensionless function
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of the ratio of the system width L to the only scale, �−1
M S

, that characterized the two-
dimensional nonlinear sigma model (13.11); in other words we expect

τϕ = AL

c
G(L�M S), (13.27)

where A is some prefactor and G is a universal scaling function. Clearly (13.26) is of this
form, and the comparison allows us to fix the value of A. In the limit L�M S → ∞ we
expect τϕ(L) to become independent of the system width L , and therefore we must have
G(u →∞) ∼ 1/u. Using this, we get our desired final result for τϕ ≡ τϕ(L →∞) [75]:

τϕ ∼
(ρs

T

)1/2 �
−1
M S

c

=
(ρs

T

)1/2 ξc

c
; (13.28)

in the last step we have arbitrarily chosen the prefactor and the relationship holds as an
equality. This is the promised result for τϕ . As we noted earlier, this result has an interesting
similarity to that obtained in the corresponding low-T region of the quantum Ising chain
in Section 10.4.1; there we found in (10.63) and (10.71) that τϕ ∼ (�/T )1/2ξc/c.

13.1.3 Structure of correlations

We turn to a discussion of the structure of the reduced classical scaling function �c

in (13.6).

Equal-time correlations

For the equal-time case, t = 0, it is possible to make exact analytic statements in cer-
tain asymptotic limits, which we now discuss (the full functional form of �c( x̄, 0) can
be obtained in a 1/N expansion, as discussed in [86]). We have already noted the long-
distance form in (13.7). We now discuss the behavior as x̄ → 0. As we are restricting
ourselves to the classical regime, we do not want to examine distances shorter than the
thermal de Broglie wavelength of the spin waves – we are therefore examining the regime
c/T � x� ξc. The overall dependence upon x in this regime follows immediately from
the homogeneity relation (12.40); indeed by the precise analog of the argument used to
obtain (12.58), but using distances rather than energies, we have

C(x, 0) ∼ [ln(ξc/x)]
(N−1)/(N−2), c/T � x� ξc. (13.29)

We can also precisely fix the prefactor of the term in (13.29) by a simple argument. At
the lower boundary, x ∼ c/T thermal fluctuations are no longer important, and the model
crosses over into its quantum fluctuation-dominated ground state correlations. Because the
ground state is ordered, the correlations are very simple: we must have C(x, 0)= N 2

0 /N
for x ∼ c/T (the factor of N comes from the average over all orientations of the ground
state magnetization). Demanding that (13.29) match smoothly with this criterion, using the
value ξc ∼ �−1

M S
in (13.20), and working to leading order in T/ρs , we find that the prefactor
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of the logarithm in (13.29) is uniquely determined. The resulting dependence of C(x, 0)
obeys the scaling form (13.6) (indeed, it requires the prefactor of (T/ρs)

(N−1)/(N−2) in
(13.6), and this is the reason for its presence) and gives us the small x̄ = x/ξc limit of the
scaling function:

�c( x̄ � 1, 0) = 1

N

[
(N − 2)

2π
ln(1/ x̄)

] (N−1)
(N−2)

. (13.30)

It is also useful to present these results in momentum space, in terms of the equal-time
structure factor S(k) defined in (10.5):

S(k) =
∫

d2xe−i �k·�x C(x, 0). (13.31)

For small k, the scaling form (13.6) implies that

S(0) ∼ N 2
0 ξ

2
c

(
T

ρs

) (N−1)
(N−2)

, (13.32)

where the missing coefficient is a universal number given by the spatial integral of �c at
t = 0 (its numerical estimate [515] for N = 3 is ≈1.06). For larger k, we Fourier transform
(13.30) and find that for kξc� 1, but ck� T [75,86],

S(k) =
(

N − 1

N

)
T N 2

0

ρsk2

[
(N − 2)T

2πρs
ln(kξc)

]1/(N−2)

. (13.33)

Note that for k ∼ c/T , the term in the square brackets evaluates to 1+O(T/ρs), and so

S(k) =
[

N − 1

N

]
T N 2

0

ρsk2
, k ∼ c/T . (13.34)

This can be understood in terms of the response (8.19), with an additional factor of
(N − 1)/N representing the fact that this response appears only in N − 1 directions trans-
verse to the local ordered state.

It is instructive at this point to assemble all the known results for the equal-time correla-
tor C(x, 0) in the present low-T region, T � ρs . We have

C(x, 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 N 2
0

[
c

ρs x

]1+η
, x � c

ρs
,

N 2
0

N
,

c

ρs
� x � c

T
,

N 2
0

N

[
(N − 2)T

2πρs
ln(ξc/x)

](N−1)/(N−2)

,
c

T
� x � ξc,

a2 N 2
0

(
T

ρs

)(N−1)/(N−2) e−x/ξc
√

x/ξc
, ξc � x, (13.35)

where a1, a2 are universal constants known only via 1/N expansion or numerical sim-
ulations. It is reassuring to note that all four asymptotic forms in (13.35) are perfectly
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compatible at the boundaries of their regions of applicability. The first result in (13.35) fol-
lows from a Fourier transform of (11.28), combined with prefactor constraints implied by
(11.41), (11.43), and (11.39). In this region the correlations are those of the T = 0 quantum
critical point at g= gc, and the η is the anomalous dimension of the (2 + 1)-dimensional
theory. The region c/ρs � x� c/T is where the system appears to have the long-range
order of the g< gc ground state (thermal fluctuations have not yet become apparent).
A T = 0 quantum analysis of (11.4) is required to describe the crossover between these
first two regimes. Finally, the last two regimes in (13.35) are those discussed in the present
section and are contained in the reduced classical scaling function �c.

Dynamic correlations

Let us turn to unequal-time correlations. A reasonable picture has been obtained through
numerical simulations, combined with scaling arguments and matched to limiting weak-
coupling regimes [515,516]; these results are also supported by other analytic approaches
[75,86,176]. By arguments similar to those in Section 12.3.3, the dynamics can be mapped
onto the obvious two-dimensional generalization of the classical nonlinear wave problem
defined by (12.51) and (12.55). This is a problem of classical rotors with orientation n(x, t)
and angular momentum L(x, t). The equal-time correlations of n, as already discussed, are
given by the classical partition function (13.8). Those of L are defined, as in (12.51), by
the kinetic energy term L2/(2χu⊥) with χu⊥ given by (13.25). An initial condition is cho-
sen from this ensemble and then evolved deterministically under the equations of motion
following from the Poisson brackets (12.54). This classical problem was numerically sim-
ulated by Tyc, Halperin, and Chakravarty [515] and we now describe their results.

It is convenient to express the results in terms of the dynamic structure factor S(k, ω)
defined by (10.4). As in (10.78) and (12.62), we can incorporate the already determined
information on the equal-time correlations and the scaling form (13.6) by writing

2T

ω
Imχ(k, ω) = S(k, ω) = S(k)τϕ�Sc(kξc, ωτϕ), (13.36)

where the first relation is the classical fluctuation–dissipation theorem (10.75), and the
universal scaling function �Sc is an even function of frequency and has a unit integral of
frequency, as in (10.79). The function �Sc was determined numerically by Tyc, Halperin,
and Chakravarty [515]. They found that over a wide range of frequency and wavevectors,
the frequency dependence of the results could be described by the simple functional form

�Sc(k̄, ω̄) = γ (k̄)

(ω̄ − ν(k̄))2 + γ 2(k̄)
+ γ (k̄)

(ω̄ + ν(k̄))2 + γ 2(k̄)
, (13.37)

where ν(k̄) and γ (k̄) are functions of a wavevector that were determined numerically.
This dynamic response consists of a peak at a spin-wave (rescaled) frequency ν(k̄) with a
damping rate γ (k̄).

For small k̄, a best fit was obtained with a ν(k̄)→ 0 as k̄ → 0, while γ (k̄) approached
a nonzero constant. Hence the spin waves are overdamped for kξc� 1, and the dynam-
ics is purely relaxational. There is no analog of the nonzero-frequency “shoulder” found
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in Fig. 12.4 for the classical wave dynamics for d = 1. Thus amplitude fluctuations are
weaker for d = 2, and the relaxation is better considered as arising from angular fluctua-
tions about an ordered state. This is physically sensible as it indicates that the n field is
“more ordered” in the present d = 2, low-T region than it was in the d = 1 high-T region
of Section 12.3.

For large k̄ (more precisely, for kξc� 1 and ck/T � 1) we expect that the system should
cross over into the T = 0 spin-wave spectrum at ω= ck. Using the values of ξc in (13.20),
and that of τϕ in (13.28), it is easy to see that this is consistent with the dimensionless
frequency ω̄= ν(k̄) for T � ρs only if

ν(k̄ →∞) = k̄

[
(N − 2)

2π
ln k̄

]1/2

. (13.38)

The large-k̄ limit of the damping γ (k̄) was examined in a self-consistent perturbation the-
ory in [516] and it was found to be only logarithmically smaller than ν(k̄).

13.2 Dynamics of the quantum paramagnetic and high-T regions

We turn to the dynamical properties of the remaining two universal regions in Figs. 11.2
and 11.3. There is no signature of the ordered state in these regions at any length or time
scale. Instead, the basic physics is of the critical ground state or of the quantum paramag-
net eventually losing phase coherence at times longer than τϕ , owing to the thermal effects.
The qualitative nature of all the physics turns out not to be particularly sensitive to the pre-
cise value of N , and all of our results below apply to all N , including the cases N = 1, 2,
which were excluded in the low-T discussion of Section 13.1. Indeed, the physical phe-
nomena also turn out to be essentially identical to those in the corresponding regions of
the d = 1, N = 1 quantum Ising chain, which were discussed in Sections 10.4.2 and 10.4.3.
The dynamical properties of this latter model were summarized in Fig. 10.12, and the
“high-T ” and “low-T (quantum paramagnetic)” portions of this figure apply unchanged
to the d = 2 models of interest here for all N . Exact dynamic response functions were
obtained in Sections 10.4.2 and 10.4.3 for all the distinct dynamical regimes of the quan-
tum Ising chain. The same response functions of the d = 2 models have a very similar
form, but it is no longer possible to obtain exact results. In this section, we demonstrate
how this structure emerges at first order in 1/N . However, as we noted at the beginning of
this chapter, the 1/N expansion breaks down at very low frequencies, and for this regime
we provide an alternative approach in Section 14.3. In a sense, the purpose of this sec-
tion is somewhat technical. The basic physical concepts are perhaps better appreciated in
the simpler, and exact, discussion of Sections 5.2, 10.4.2, and 10.4.3, which the reader is
urged to review.

We also note that the computations for d = 1 in Chapters 10 and 12, and for d = 2 here,
treat interactions in opposing limits. In the N =∞, d = 2 results of Chapter 11 we found
a description in terms of N noninteracting massive particles with a self-consistently deter-
mined temperature-dependent energy gap; at first order in 1/N we find that these particles
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weakly scatter off each other with a T matrix that is of order 1/N . In contrast, the collisions
of the excitations for d = 1 are described by the S matrices (5.14), (12.13), describing full
reflection of particles with a phase shift of π , and these are as far as one can get from the
free-particle result S= 1, while being consistent with unitarity; the d = 1 case is therefore
properly considered as a strong scattering limit. The qualitative similarity in χ(k, ω) of the
weak-coupling results below and the earlier strong-coupling results for d = 1 is reassuring
and indicates that we have correctly understood the physics.

We begin by setting up the mechanics of the 1/N expansion for the dynamic suscep-
tibility. The N =∞ result was given in (11.10). At order 1/N , it is necessary to include
fluctuations in the λ field about the saddle point of (11.8), which is determined by the solu-
tion of (11.9). We insert a source term in the original action (11.6) for n and then expand
the modified (11.8) up to cubic order in the deviation of λ about its saddle point (all higher
order terms can be dropped at this order in 1/N ). The term purely quadratic in λ defines a
propagator for the λ fluctuations, the structure of which is discussed in some detail below.
We integrate out the λ fluctuations to order 1/N , and this leads to the corrections to the n
field correlator, χ(k, ω), shown schematically in Fig. 13.2. This leads finally to the follow-
ing expression for χ(k, ω), which replaces (11.10) at order 1/N [86] (the reader can also
consult [29,504] for more explicit details on the mechanics of computing 1/N corrections
for related models):

χ(k, ω) = cg/N

c2k2 − (ω + iε)2 + m2 +�(k, ω) , (13.39)

where the self-energy � is given by

�(k, ωn) = �̃(k, ωn)− 1

�(0, 0)
T
∑
εn

∫
d2q

4π2
G2

0(q, εn)�̃(q, εn), (13.40)

the two terms representing the contributions of the two graphs in Fig. 13.2; these graphs
should be compared with the discussion in Section 7.2.1 and the perturbative expression

�Fig. 13.2 Feynman diagrams which contribute to the self-energy of n at order 1/N. The n propagator is a straight line,
while theλ propagator, 1/�, is a dashed line.
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(4.35). The frequency- and momentum-dependent contribution to the self-energy is �̃,
which is given by

�̃(k, ωn) = 2

N
T
∑
εn

∫
d2q

4π2

G0(�k + �q, ωn + εn)− G0(q, iεn)

�(q, ε)
, (13.41)

with 1/� the propagator of the λ field,

�(q, εn) = T
∑
�n

∫
d2q1

4π2
G0(�q + �q1, εn +�n)G0(q1,�n), (13.42)

and with G0 proportional to the susceptibility of n at N =∞,

G0(k, ωn) ≡ 1

c2k2 + ω2
n + m2

. (13.43)

The “mass” m in the propagators is the saddle-point value of the λ field, which was deter-
mined earlier in (11.53) to be

m = 2T ln

(
e�+/2T + (4+ e�+/T )1/2

2

)
+O(1/N ), (13.44)

where, as usual, �+ represents the gap of the quantum-paramagnetic ground state. We
also recall the important limiting forms, m=�+ for T ��+ (11.57) and m= 2 ln((

√
5+

1)/2)T for T ��+ (11.59). The value of m we are using in (13.44) is actually precisely
the same as in the N =∞ expression (11.53), when expressed in terms of the bare coupling
constant g. The 1/N correction in (13.44) represents the change necessary because of the
new value of the ground state energy gap �+ at this order. At N =∞, the gap �+ was
related to the bare coupling constant g in (11.15) and (11.17). The 1/N correction to the
value of �+ is obtained by solving the following equation for the location of the pole in
the zero momentum n propagator in (13.39) at T = 0:

m2 −�2+ +�(0, ω = �+). (13.45)

The equation relating�+ and the coupling g must then be inverted to express g in terms of
�+ and the result inserted into the expression for m. This leads to the corrections at order
1/N in the expression (13.44), and these are crucial in obtaining universal answers for the
physical response function χ(k, ω).

We study the properties of (13.39) at T = 0 in Section 13.2.1 and at nonzero tempera-
tures in Section 13.2.2.

13.2.1 Zero temperature

The propagator of the λ field in (13.42) can be evaluated in closed form at T = 0. We find

�(q, ω) = 1

4πc2
√

c2q2 − (ω + iε)2
tan−1

(√
c2q2 − (ω + iε)2

2�+

)
. (13.46)
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Note that � is purely real for |ω|<(c2q2 + 4�2+)1/2 but acquires an imaginary part for
larger |ω|. The threshold corresponds to the minimum energy required to create two par-
ticles with total momentum q , in agreement with the expression (13.42) for � as a two-
particle propagator. We can insert (13.46) into (13.41) and determine the self-energy �.
It is simpler to first consider only its imaginary part. This is obtained by using a spectral
representation for Im(1/�) and evaluating the summation over εn in the limit of zero T ;
taking the imaginary part of the result we obtain

Im�(k, ω) = 1

2π2 N

∫
d2q

ε�k+�q

∫ ∞

0
d� Im

(
1

�(q,�)

)
δ(ω − ε�k+�q −�), (13.47)

for ω> 0 (for ω< 0 we use the fact that Im�(k, ω) is an odd function of ω), with

ε�q ≡
√

c2q2 +�2+ (13.48)

the energy spectrum of the quasiparticle. Actually, there is a little subtlety in obtaining
(13.47) that we have glossed over: for large �, Im(1/�(q,�)) ∼ �, and so its Kramers–
Kronig transform is not well defined. This issue is discussed more carefully in [86], and
it is shown there that for the imaginary part of �, the naive result obtained by simply
ignoring this potential divergence is in fact correct. Now, the relativistic invariance of the
T = 0 theory implies that (13.47) is a function only of c2k2 − ω2, and so its general form
can be deduced by evaluating it at k= 0. For this case, the q integral can be performed, and
then changing variables from� to y with y2= 2ω�−ω2+�2+, we get our final expression
for Im�:

Im�(k, ω) = − 4π

N
√
ω2 − c2k2

∫ √ω2−c2k2−�+

2�+
dyy2

× [π2 + ln2((y + 2�+)/(y −�+))]−1, (13.49)

for ω2> c2k2+ 9�2+, and Im� is zero otherwise. Thus we have a threshold at the creation
of three particles, above which Im� is nonzero: the O(N ) symmetry of the model only
allows the N -fold degenerate particle with momentum k and energy ω to decay into a
three-particle continuum if its energy is sufficiently large. We also note here the behavior
of (13.49) for ω2 − c2k2��2+:

Im�(k, ω) = −πη
2
(ω2 − c2k2), (13.50)

where η is

η = 8

3π2 N
. (13.51)

In fact, η is precisely the same critical exponent that appeared in (11.28), as becomes clear
from the discussion below.

Inserting (13.49) into (13.39), we see that the resulting structure in Imχ(k, ω) is iden-
tical to that discussed in Section 7.2.1 and in Section 10.4.2 for the quantum Ising chain.
Near the quasiparticle energy ω= εk , � is purely real, there is no broadening of the quasi-
particle spectral weight, and it remains a pure delta function. The real part of � does
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contribute a shift in the position of the pole, but this was already accounted for by our
defining �+ as the exact T = 0 energy gap in (13.45). The next nonzero spectral weight
in χ arises at the three-particle threshold from the imaginary part of � discussed above,
and also mentioned in (7.27). At next order in 1/N we will also find a threshold at 5�+
and so on.

Let us return to the quasiparticle pole and consider the value of its residue at order 1/N .
For this we have to evaluate � at the pole position. This is most conveniently done by
initially going to imaginary frequencies and explicitly using the relativistic invariance of
the theory. In fact, if we define K = (k2 + ω2

n/c
2)1/2, the relativistic invariance implies that

� is a function only of K . By an angular average of (13.41) in three-dimensional Euclidean
spacetime, this function can be reduced to a one-dimensional integral

�(K ) = 1

2π2cN

∫ �

0

Q2d Q

�(Q)

[
1

2K Q
ln

(
(K + Q)2 +�2+
(P − Q)2 +�2+

)
− 2

Q2 +�2+

]
, (13.52)

where �(Q) is the relativistically invariant, imaginary frequency form of (13.46). A sim-
ple analysis shows that the integral is logarithmically divergent at large Q, and so we have
introduced a relativistically invariant hard cutoff at momentum �; the same cutoff appears
in other intermediate expressions below, but our final, universal, results are cutoff indepen-
dent. Now, from (13.39), the quasiparticle residue A is given by

A = cg

N

(
1− d�(K 2 = −�2+)

d K 2

)
, (13.53)

that is, we have to evaluate (13.52) and its derivatives at an imaginary K = i�+; this is
quite easily done inside the integral in (13.52), and after a numerical evaluation of the
resulting integrand we find

A = cg

N

(
1− η ln

(
�

�+

)
+ X

N

)
, (13.54)

with the constant X = 0.481740823 . . . , where the same η defined in (13.51) makes an
appearance, and where we have omitted terms of order �+/�, which can be neglected
in the limit � → ∞, which will eventually be taken. To order 1/N , we can rewrite
(13.54) as

A = cg

N

(
�+
�

)η (
1+ X

N

)
, (13.55)

which indicates that the quasiparticle residue vanishes as�η+ as the coupling g approaches
gc from above. That this is the correct form follows from the general scaling arguments
made earlier in Section 11.2.2, which led to the result (11.27), and cannot be completely
justified at any finite order in the 1/N expansion. The earlier arguments showed how such
power laws appear as a general consequence of the vicinity of the system to a scale-
invariant critical point. The exponents in the power laws can be expanded in powers of
1/N , and so they are appearing here as logarithms in the computation of observables. We
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introduce the constant Z , which is precisely that appearing in the basic scaling form (13.3),
by writing

A = Z�η+
(

1+ X
N

)
, (13.56)

so that by (13.55)

Z =
(cg

N

)
�−η, (13.57)

and (13.56) corresponds to a particular choice of the numerical constant in (11.42). Note
that Z is a nonuniversal constant, dependent upon the nature of the cutoff, and it is
nonsingular as the coupling g goes through gc. However, as neither g nor� is measurable,
we should regard (13.56) as the definition of Z , where it is related to the T = 0 observables
A and�+. Indeed (13.56) is the analog of the relation (10.84) for the quantum Ising chain.
In a similar manner, Z can also be related to observables of the ordered ground state (as in
(10.61) for the Ising chain); we simply quote the result obtained in [86]:

N 2
0

ρs
= Z

(ρs

N

)η
(1+ η ln 16). (13.58)

We reiterate that while the relations (13.56) and (13.58) relate Z to ground state observ-
ables that vanish in a singular manner at the critical point g= gc, Z itself is nonsingular
and finite.

One of the central implications of universal scaling forms like (13.3) is that when the
overall scale of the susceptibility χ is expressed in terms of the quasiparticle residue A, or
the closely related nonsingular constant Z , the remaining expression becomes universal. In
particular, the cutoff dependence in the self-energy � in (13.52) must disappear. Using the
value of Z above, we can rewrite (13.39) as

χ(k, ω) = Z T η
[

c2k2 − ω2 + lim
�→∞

(
m2 +�(k, ω)− η(c2k2 − ω2) ln

(
�

T

))]−1

.

(13.59)

Provided the limit above exists, it is then evident that (13.59) is precisely of the scaling
form (13.3) and defines the scaling function �+. Conversely we can use the scaling argu-
ments by which (13.3) was derived to argue that the limit must exist; indeed, it is not
difficult to show explicitly that the limit exists at this order in 1/N at all T . Notice also that
the subtraction in � affects only its real part, and this is why we saw no divergent terms
in the computation earlier of its imaginary part. The constant m2 has been included within
the large-� limit because the O(1/N ) corrections in (13.44) are � dependent, and these
terms are required to obtain a finite limit.

A complete expression for χ at T = 0 is now available by combining (13.52) and (13.59).
The integral over P cannot be simplified further, but explicit evaluation is however possi-
ble in the limit �+ → 0, which we now consider. We can obtain this limit by approaching
the critical point at fixed momenta and frequency, or by examining the large-energy regime
ω2 − c2k2��+. From the former point of view, we have a picture of 1, 3, 5, . . . parti-
cle continua in the spectral weight coming down in energy, and we can ask, what does
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their superposed spectral weight look like? From (13.52) and (13.46), we have in the limit
�+→ 0

lim
�→∞

(
�(K )− η ln

(
�

T

))
= 4

π2 N

∫ ∞

0
d Q

[
Q2

K
ln

∣∣∣∣K + Q

K − Q

∣∣∣∣− 2Q − 2K 2 Q

3(Q2 + T 2)

]

= K 2
[
η ln

(
T

K

)
+ 8

9π2 N

]
. (13.60)

Taking the imaginary part of (13.60) for real frequencies, we immediately get (13.50) for
ω> ck. This explains why we parameterized the spectral weight in terms of the exponent
η. Inserting (13.60) into (13.59) we get

χ(k, ω) = Z

(
1− 8

9π2 N

)
1

(c2k2 − ω2)1−η/2
. (13.61)

Reassuringly T has dropped out. So as we move to the critical point at T = 0, the resultant
of the superposition of the multiparticle continua is a single critical continuum character-
ized by the exponent η. This spectral weight has precisely the form sketched in Fig. 10.7
for the Ising chain (the latter model had η= 1/4). Indeed the entire structure of the T = 0
crossover from the quasiparticle pole and multiparticle continua to the critical continuum
is essentially identical to that obtained earlier for the Ising model.

13.2.2 Nonzero temperatures

Turning on a nonzero temperature introduces additional thermal damping to the spectral
functions computed above, and results in a finite phase coherence time, τϕ . We find that
the structure of these effects is again remarkably similar to those studied earlier for the
quantum Ising chain in Sections 10.4.2 and 10.4.3.

First, we note some intermediate steps associated with the mechanics of the computation.
We are particularly interested in imaginary parts of Green’s functions. From (13.42) we get
at T > 0

Im (�(q, ω)) =
∫

d2q1

16πε�q1+�qε�q1

[∣∣n(ε�q1+�q
)− n

(
ε�q1

)∣∣δ(ω − ∣∣ε�q1+�q − ε�q1

∣∣)
+ (1+ n

(
ε�q1+�q

)+ n
(
ε�q1

))
δ
(
ω − ε�q1+�q − ε�q1

)]
, (13.62)

where n(ε) is the Bose function

n(ε) = 1

eε/T − 1
, (13.63)

and the dispersion spectrum ε�q is given by

ε2
�q = c2q2 + m2. (13.64)

Note that the T dependence of (13.62) arises from two sources: that contained in the Bose
function (13.63), reflecting the T -dependent occupation of the modes, and that due to the
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T dependence of the “mass” m in (13.44), which changes the quasiparticle dispersion. We
also need the generalization of (13.47) to finite temperature, where it becomes

Im�(k, ω) = 1

2π2 N

∫
d2q

ε�k+�q

∫ ∞

0
d�Im

(
1

�(q,�)

)
× [|n(ε�k+�q)− n(�)|δ(ω − |ε�k+�q −�|)
+ (1+ n(ε�k+�q)+ n(�))δ(ω − ε�k+�q −�)

]
. (13.65)

We first discuss the physical properties of the above results in the limit T ��+ (i.e.
in the low-T regions on the quantum paramagnetic side of Figs. 11.2 and 11.3). In this
case, it is easy to see from (13.62) and (13.65) that all effects of temperature are expo-
nentially suppressed (i.e. they are of order e−�+/T or smaller); also the “mass” m ≈ �+
in this region. This is easy to understand since there is a gap �+ to all excitations above
the ground state, and all thermal effects are exponentially suppressed. One of the most
important consequences of a nonzero T is broadening of the quasiparticle pole in χ(k, ω).
We explicitly describe the nature of this broadening at k= 0. The T = 0 pole is then at
ω= ε0=�+, and for ω ≈ �+ we can write χ as

χ(0, ω) = A
2ε0

1

(ε0 − ω − i/τϕ)
, (13.66)

where

1

τϕ
= − 1

2ε0
Im�(0, ε0). (13.67)

Note the similarity of (13.66) to the Ising chain result (10.89) and the d = 1 rotor model
result (12.30). As in the previous cases we have chosen to define the inverse phase coher-
ence time, 1/τϕ , as the width of the quasiparticle pole. We have included only the
T -dependent corrections to Im� and neglected those to Re�. This is because the former
are much more important for broadening at ω ≈ �+, whereas the latter contribute only a
negligible correction to the overall spectral weight of the quasiparticle feature. Evaluating
1/τϕ from (13.46), (13.62), and (13.65), we find for T ��+

1

τϕ
= 2πT e−�+/T

N

[
1+ 2

∫ ∞

0
dy

e−y

π2 + ln2(8�+/T y)

]
. (13.68)

Comparing this with the exact result (10.71) in the corresponding region of the quantum
Ising chain (our definition of τϕ there was slightly different) we see that the T depen-
dence is essentially identical, and only the numerical prefactors differ. The latter need not
agree, of course, as we are comparing models in different dimensions, and the prefactor
in (13.68), unlike that in (10.71), is not exact and contains only the leading term in a 1/N
expansion. There is also a subleading term with a 1/ ln2(�+/T ) dependence in (13.68).
This logarithm is due to the T -matrix structure of a dilute Bose gas in two dimensions
(which the thermally excited quasiparticles form), and its origin will be understood better
in Chapters 15 and 16.
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Finally, let us turn to the high-T region, T ��+. In this case T becomes the most
important energy scale and controls the entire structure of the response functions. This is
already apparent from the value of m in this limit: from (13.44) we have

m = #T, (13.69)

where #= 2 ln[(√5 + 1)/2] ≈ 0.962424 . . . Thus the two energy scales that determined
spectral functions such as (13.62) and (13.65), the mass m and the temperature T in the
Bose function, both become of order T . As a result, it is evident by a simple rescaling of
the variables of integration in (13.62) that the propagator � satisfies

�(k, ω) = 1

T
��

(
ck

T
,
ω

T

)
. (13.70)

Determination of the scaling function � requires complete evaluation of (13.62), and it
is not possible to make any further simplifications. We therefore have to resort to numerical
computation. In the limit ck, ω� T , however, it is clear that� reduces to the�+ = 0 limit
of (13.46). Very similar considerations also apply to the expression for Im� in (13.65). The
case of Re� is, however, somewhat more subtle. We already saw this in the computation at
T = 0 where we encountered a logarithmic cutoff dependence. This was cured by express-
ing χ in terms of the quasiparticle residue A, or the amplitude Z , which led to the result
(13.59) with a subtraction that cancelled the cutoff dependence in Re�. Indeed, we can
use (13.59) also to evaluate χ for T > 0. Precisely the same subtraction is still adequate to
cancel the cutoff dependence. The expression for (13.59) has to be evaluated numerically,
and we do not present the details of this here; they may be found in [86]. The result sat-
isfies the scaling form (13.3) and yields numerical values for the complex-valued scaling
function �+ at �+/T = 0.

We show the results of such a numerical evaluation in Fig. 13.3. Note the strong sim-
ilarity to the corresponding result for the quantum Ising chain in Fig. 10.8, for which we
had the exact expression (10.97). There are quasiparticle-like peaks with a width of order
T . The typical excitation has an energy of order T and also a width of order T , and so
the quasiparticles are, strictly speaking, not well defined. At very large ω, ck� T , the
spectrum crossovers to the T = 0 result in (13.61), whose form was sketched in Fig. 10.7.

It should also be clear from the above discussion that the phase coherence rate, 1/τϕ , is
of order T , as it is the only energy scale around. We want to choose a definition that yields
τϕ =∞ at N =∞ as there is no damping in this limit. Indeed, as quasiparticles are well
defined at large, but finite N , even in the high-T limit, we may continue to use (13.67) as
our definition of τϕ . Numerical evaluation yields

1

τϕ
= 0.904

kB T

N�
, (13.71)

where we have inserted a factor of kB/� to emphasize that this result depends only on
fundamental constants.

Finally, we attempt to use the same expansion above to understand the low frequency
behavior of the spectral density Imχ(k, ω→ 0), as was done in Fig. 10.9 for the quantum
Ising chain. On general grounds, for an interacting system at nonzero temperatures that
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�Fig. 13.3 Imaginary part of the scaling function�+ in (13.3) as a function of ck/T andω/T evaluated in the high-temperature
limit�+/T= 0. The function was computed in the 1/N expansion and evaluated at N= 3. Compare with the
exact answer for the d= 1 Ising model in Fig. 10.8.

has internal relaxational dynamics, we expect that χ(k, ω) is analytic as a function of ω at
ω= 0; so the odd function Imχ(k, ω) ∼ ω, and limω→0 Imχ(k, ω)/ω is nonzero. This was
found to be the case for the Ising chain in Fig. 10.9. However, the present large-N expan-
sion does not obey this requirement; evaluation of (13.65) shows that a low-frequency
spectral density comes only from collisions of particles with very high momenta, and
their contributions are suppressed by exponentially small thermal factors. Specifically, we
find [440] Imχ(k, ω → 0) ∼ sgn(ω) exp(−c/|ω|), for some constant c. This result is an
artifact of the 1/N expansion, which places undamped intermediate states in the decay rate
computation in (13.65). Alternatively stated, even though the quasiparticles scatter weakly
in the large-N limit, the low frequency relaxational dynamics of the order parameter n is
strongly coupled. This dynamics is discussed by alternative methods in Section 14.3.

13.3 Summary

As in previous chapters, we summarize the physical properties of the regions of Fig. 11.2
and Fig. 13.1 in Table 13.1. The evolution of the dynamic structure factor S(k, ω) between
the three regimes is quite similar to that discussed for the d = 1 Ising model in Section
10.4.4. In the quasi-classical particle regime, we have a narrow peak of width 1/τϕ at a
frequency ω ≈ �+. Conversely, in the quasi-classical wave regime, S(k, ω) becomes a
symmetric function of ω and is sharply peaked near k= 0, ω= 0 with an exponentially
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Table 13.1 Physical propertiesis in three regimes.
Values of the correlation length, ξ (defined from the exponential decay of the equal-time correlations of
n), the uniform spin susceptibility,χu, the phase coherence time, τϕ , and the spin diffusion constant, Ds,
for the two regimes in Figs. 11.2 and 13.1. The results in the quasi-classical wave regime are quoted only
for N= 3 and are asymptotically exact as T/ρs → 0; other results are obtained in a 1/N expansion and
are applicable in principle to all N. The 1/N corrections to the values forχu and ξ in the high-T region

were not explicitly computed here and are taken from [86]. The values for Ds in the quantum critical and
quasi-classical particle regimes anticipate results from Chapter 15, in particular from (15.11), (15.64),
and (15.68). The order of magnitude of Ds in the quasi-classical wave regime follows from the general
scaling arguments in Section 13.1. Finally,χu in the quasi-classical particle regime anticipates (15.14).

Low T Low T
(magnetically (quantum

ordered), paramagnetic),
quasi-classical Continuum high T quasi-classical

waves (quantum critical) particles

ξ
ec

16πρs
e2πρs/T

[
2 ln

(√
5+ 1

2

)(
1+ 0.2373

N

)
c

T

]−1
c

|�|

χu
2ρs

3c2

[
1+ T

2πρs
+ · · ·

] √
5

π
ln

(√
5+ 1

2

)(
1− 0.6189

N

)
T

c2

�+
πc2

e−�+/T

τϕ

(ρs

T

)1/2 ξ

c

N

0.904T

N

2πT
e�+/T

Ds ∼ ξ
2

τϕ

0.1077N

χu
∼ (ln(�+/T ))2

χu

large height and an exponentially small width. In the high-T regime there is an interesting
structure for ω, ck of order T , and this is discussed in Chapter 14.

We close with a discussion of experimental applications.
The primary application of the d = 2 O(3) quantum rotor model has been as a continuum

theory of the square lattice Heisenberg antiferromagnet. The connection between these
models becomes clearer in Chapter 19, but the link between antiferromagnets and quantum
rotors has already been motivated in Section 1.4.3.

In the low-T region, T � ρs , careful tests of the exact results (13.10) and (13.20) for
the correlation length have been made. The agreement with neutron scattering measure-
ments on the square lattice insulating antiferromagnets La2CuO4 [263] and Sr2CuO2Cl2 is
impressive. Much higher precision comparisons can be performed against state-of-the-art
quantum Monte Carlo simulations and these have been discussed in [44] and [267]. The
low-T dynamical properties discussed in Sections 13.1.2 and 13.1.3 were applied to NMR
relaxation rates in [77] and compared against measurements in La2CuO4 in [234].

We turn next to the “high-T ” region of the continuum quantum rotor model. Refer-
ence [85] argued for the existence of such a region in the intermediate temperature prop-
erties of the S= 1/2 square lattice antiferromagnet. The high-T computations discussed
in Section 13.2 were used to compute NMR relaxation rates [86, 88] and found to be in
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good agreement with measurements on La2CuO4 [234, 235]. It is not expected that the
crossover from low T to high T would be visible in experimental measurements of the cor-
relation length, as was pointed out early on in [85]; this has been discussed further in [179]
and [267]. The issue of the “low-T ” to “high-T ” crossover in square lattice antiferromag-
nets was also examined in series expansion studies by Sokol, Glenister, and Singh [478]
and Elstner et al. [128], and evidence was obtained for its existence in a number of static
correlators for spin S= 1/2. Interestingly, no such evidence was found for the S= 1 case,
which (as expected) is clearly too far from the quantum critical coupling.

The results of this chapter can also be applied, along with suitable reinterpretation, to
the superconducting states of the doped cuprates. For a recent discussion of this, see [431].
As discussed in this chapter, the low-T quantum paramagnet has a sharp, N -fold degen-
erate, quasiparticle pole given by (13.66), with an exponentially small linewidth specified
by (13.68). This is interpreted [431] as the “resonance peak” observed in neutron scatter-
ing experiments on high-temperature superconductors [53, 149, 345, 411]. Also, near the
magnetic ordering transition, inelastic neutron scattering measurements [210, 263] have
observed an ω/T scaling in their frequency-dependent susceptibility, which is consis-
tent with the general scaling forms (13.1) and (13.3) for a vanishing value for their third
arguments.



14 Physics close to and above the upper-critical
dimension

We discussed the concept of the upper-critical dimension in Chapters 3 and 4 in the con-
text of the classical models in D dimensions. There we showed that the critical physics for
D> 4 was accessible in a perturbative analysis, while the D< 4 case required a renormal-
ization group analysis. The latter case required an expansion in the parameter ε defined in
(4.25). Here we discuss application of the ε expansion to physical issues associated with
the quantum phase transition, where now

ε = 3− d. (14.1)

The physics described by this perturbative method can, in most cases, also be elucidated
by the large-N expansion we have developed in the previous chapters. However, there are
a number of instances where the underlying principles are most transparently illustrated by
studies close to and above d = 3. Our specific reasons for undertaking such an analysis are:

• As we have noted earlier, the quantum critical point at T = 0, g= gc extends out to a
line of finite-temperature phase transitions for the cases d = 2, N = 1, 2. The ε expansion
offers a controlled method for obtaining the structure of the crossovers in the vicinity of
this line.

• We have not yet found a successful description of the low-frequency dynamics of the
order parameter (n or σ z) in the high-T regime for d = 2, although we did succeed for
d = 1 in Chapters 10 and 12. We show in Section 14.3 that the ε expansion leads to an
appealing quasi-classical wave description of this dynamics.

• For the quantum rotor models being studied here, the crossovers above the upper-critical
dimension, with d > 3, are obviously in a physically inaccessible dimension. However,
the basic structure that emerges is quite generic to quantum critical points above their
upper-critical dimension. The results are therefore useful in Part IV, where we consider
other models with a lower upper-critical dimension, so that dimensions above the upper-
critical can be experimentally studied.

• The following Chapter 15 studies transport properties of the quantum rotor models in
the high-T and quantum-paramagnetic low-T regions for d = 2. While it is possible
to do this within the 1/N expansion, the computation is simplest, and most physically
transparent, using the ε expansion we develop here.

The study in this chapter uses the “soft-spin” formulation of the continuum theory of
the vicinity of the quantum critical point that was noted in Section 2.1, and also used in
Section 6.6 and Chapter 7.

237
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The theory is expressed in terms of an N -component field φα(x, τ ) (α= 1 . . . N ), which
is related to the lattice quantum rotor field ni by the coarse-graining transformation (3.18);
for N = 1, a similar relationship holds between the Ising spin σ̂ z

i and a one-component
field φ. We study the quantum mechanics of the φα field as specified by the Hamilto-
nian in (6.52), or the imaginary-time path integral in (3.25), which is reproduced here for
completeness:

Z =
∫

Dφα(x, τ ) exp(−Sφ),

Sφ =
∫

dd x
∫

�/kB T

0
dτ

{
1

2

[
(∂τφα)

2 + c2(∇xφα)
2+

rφ2
α(x, τ )

]
+ u

4!
(
φ2
α(x, τ )

)2}
. (14.2)

The structure of this field theory is similar to that of the continuum theory (2.12) or (11.4)
for the fixed-length n field, with the main difference being that the fixed-length constraint
has been dropped and replaced instead by a quartic self-interaction u. The equivalence of
the universal properties of these two formulations is a well-established principle in the the-
ory of classical critical phenomena [59, 61]. This equivalence can be expected on general
universality grounds, as the two models display a quantum critical point between a mag-
netically ordered and a quantum-paramagnetic phase with precisely the same symmetry
structures and spectrum of low-lying excitations. We also explicitly see examples of the
equivalence in our computations with (14.2) in this chapter. In practical terms, this equiva-
lence means that the susceptibility χ(k, ω), defined as the two-point correlator of the field
φα , satisfies, for d < 3, the scaling forms (13.1) and (13.3), with precisely the same scaling
function�±. We compute here some features of these scaling functions in an expansion in
ε, whereas they were computed in a 1/N expansion in Chapter 13. The approaches have
been compared in the overlapping region of validity where both ε and 1/N are small, and
exact agreement is found (although this is not shown explicitly here).

We restrict ourselves in this chapter to results to the leading order in ε or u. The structure
of the quantum/classical crossovers is quite complicated at higher orders, and the reader is
referred to [422] for a discussion of this subtle issue; alternative approaches are also avail-
able [156,287,367]. Further, we limit our discussion to regions of the phase diagram where
there is no spontaneous magnetization and complete O(N ) symmetry is preserved (the
extension to ordered phases is straightforward). We are therefore approaching the finite-
temperature phase boundaries from their high-temperature side.

We begin in Section 14.1 by a discussion of the T = 0 properties of (14.2); these are
simply related to those obtained in Chapters 3 and 4 for the classical problem in D= d+1
dimensions. Section 14.2 then provides a description of the ε expansion for the crossovers
in the static properties of (14.2) at T > 0; although this expansion gives a useful qualitative
picture, it is not particularly accurate for d = 2 and also fails for low-frequency dynamical
properties. These deficiencies are repaired in Section 14.2, where we use the ε expansion
to motivate an effective model for statics and dynamics that is solved exactly for d = 2.

We use units in which the velocity c= 1 throughout the remainder of this chapter only.
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14.1 Zero temperature

We work in imaginary time throughout this section. We express the response functions in
terms of a D= (d + 1)-dimensional wavevector Q= (iω, �q). At T = 0, all correlators of
the action (14.2) are invariant under D-dimensional rotations in Euclidean space; they are
therefore only functions of Q2= q2+ (iω)2= q2−ω2. Dynamic quantum response func-
tions are obtained by analytically continuing to negative Q2. For positive Q2 the responses
are, of course, those associated with interpreting (14.2) as a classical statistical mechanics
problem.

Recall our discussion in Section 3.3.2 of the computation of the two-point correlator of
φα in ordinary perturbation theory in u, where we found that the results were adequate for
D> 4 but suggested that higher orders had to be re-summed for D< 4. Below we need
the explicit re-summation of this series for small u: this is done using the 1/N expan-
sion in Subsection 14.1.1, where we also introduce the concept of the so-called tricritical
crossover functions. Finally, in Subsection 14.1.2 we present a very concise review of the
field-theoretic renormalization group approach to re-summing the perturbation theory in u.

14.1.1 Tricritical crossovers

Our main perturbative result for the susceptibility was presented in (3.57). Extended to
nonzero wavevectors, and adapted to our present notation, this result is

χ−1(Q) = Q2 + s

[
1−

(
N + 2

6

)
2�((4− D)/2)

(D − 2)(4π)D/2

u

s(4−D)/2

]
. (14.3)

We are now interested in estimating the structure of the higher order corrections in u,
especially for D< 4. For D< 4, the structure of (14.3) suggests that we can express the
most important terms at higher order in u for the static susceptibility in the form

χ−1(Q) = s�D

(
Q

s1/2
,

u

s(4−D)/2

)
, (14.4)

where�D(q, v) is a universal crossover function. This form is consistent with naive dimen-
sional analysis and the expectation that it is permissible to send �→∞ in all the singular
terms at higher orders. The result (14.3) gives us the small-v behavior of �D(q, v):

�D(q, v) = q2 + 1−
(

N + 2

6

)
2�((4− D)/2)

(D − 2)(4π)D/2
v +O(v2). (14.5)

To get the critical properties of the model for D< 4, however, we need its large-v behavior.
The function �D(q, v) is the “tricritical crossover” function of [369] and [68]. (This

terminology is motivated by considerations unrelated to those of interest here and will
not be explained.) Computation of �D(q, v) by various methods is described in the lit-
erature [64, 360]. We simply treat �D(q, v) as a known function and find that some key
properties of the T > 0 crossovers near the quantum critical point can be expressed in terms
of it. For completeness, we note how�D(q, v)may be computed in the large-N limit, with
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vN fixed. The computation proceeds by a familiar approach: we decouple the quartic term
in (14.2) by a Hubbard–Stratanovich field λ so that

Z =
∫

DλDφα(x, τ ) exp(−S̃φ),

S̃φ =
∫

d Dx

{
1

2

[
(∂τφα)

2 + c2(∇xφα)
2 + (r + iλ)φ2

α(x)
]
+ 3λ2

2u

}
. (14.6)

Now, integrate out the φα fields, which appear only as quadratic terms in (14.6); evaluating
the integral over λ as a saddle point, we obtain the required large-N limit. Expressing the
result in terms of s using (3.54), we can easily show that �D(q, v) is given by

�D(q, v) = q2 +�D(v), (14.7)

where the function �D(v) is given by the solution of the following nonlinear equation:

�D(v)+ Nv
�((4− D)/2)

3(D − 2)(4π)D/2
[�D(v)]

(D−2)/2 = 1. (14.8)

Note that as v → ∞, �D(v) ∼ v−2/(D−2), and therefore (14.7) and (14.4), imply that
χ−1(0) ∼ s2/(D−2) as s → 0. This result agrees with our earlier large-N result in (11.22)
and the N =∞ relation χ−1(0) ∼ �+.

14.1.2 Field-theoretic renormalization group

While most of our renormalization group computations can be performed using the
“momentum shell” method introduced in Section 4.2, some results involving crossover
functions are obtained by a field-theoretic approach. This is physically not as transparent,
but is technically elegant and simpler to compute in. The basic ideas behind this approach
have already been presented in Section 12.3.1 in the context of the d = 1 quantum rotor
model, along with suggestions for further reading in the literature. Readers who skipped
Chapter 12 should now read Section 12.3.1 up to (12.40).

As before, it is advantageous to replace the cutoff � by a renormalization scale, μ, at
which various observable parameters are defined. At the scaleμwe introduce renormalized
couplings, which then replace the bare couplings in all expressions for observable quanti-
ties. Once this substitution has been performed, it is possible to send the cutoff � → 0,
order-by-order in an expansion in the nonlinearities. In practice, one never needs to intro-
duce � at intermediate stages as all integrals are performed in dimensional regularization
in D= 4 − ε dimensions. We work only to first order in ε here, in which case only two
renormalized couplings are necessary: sR , a renormalized measure of the deviation of the
system from the quantum critical point, and u R , a renormalized four-point interaction. The
explicit relationships between the bare and renormalized couplings are [59]

u = u R
με

SD

(
1+ N + 8

6ε
u R

)
,

s = sR

(
1+ N + 2

6ε

)
. (14.9)
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A factor of με has been scaled out of u so that u R is dimensionless, and SD = 2/[�(D/2)
(4π)D/2] is a standard phase-space factor, introduced for notational convenience.

We can state the simple, field-theoretic recipe for computing correlators of (14.2). First,
obtain formal expressions for the bare theory in terms of s and u, leaving integrals uneval-
uated. Then, perform the substitution in (14.9) to expressions in terms of u R and sR . Now,
evaluate all the integrals in D= 4− ε dimensions, in powers of ε. The constants in (14.9)
have been cleverly chosen so that all poles in ε cancel. The resulting expressions for the
correlators of the theory are expressed in terms of sR , u R , and the momentum scale μ.

Exact renormalization group equations for all observables can be obtained by the fact
that no physical quantity can depend upon the value of μ. By studying the behavior of the
first equation in (14.9) under μ→ μe� we obtain the flow equation

du R

d�
= εu R −

(
N + 8

6

)
u2

R . (14.10)

This equation is, of course, the present field-theoretic form of the flow equation obtained
earlier in (4.24) by the simpler momentum-shell method. A simple analysis of this dif-
ferential equation shows that, at long distances (� → ∞), the coupling u R flows to the
attractive fixed point at

u∗R =
6ε

(N + 8)
, (14.11)

as also found in (4.26). This implies that a theory with u R = u∗R and s= 0 does not flow
under rescaling transformations and is therefore scale invariant. This specifies the univer-
sal quantum critical point of theory. Turning on an s> 0 induces flow along the leading
relevant direction and therefore determines the T = 0 energy gap. Deviations in u from u R

correspond to allowing corrections associated with the leading irrelevant operator; these
can therefore be ignored in computations of the universal scaling functions.

Let us apply the above approach explicitly to the computation of χ(Q). We begin with
the expression (3.55) and make the substitution in (14.9). Working to linear order in u R ,
and evaluating the integrals in an expansion in ε= 4 − D, we can write the result in the
form

χ(Q) = 1

Q2 +�2+
, (14.12)

where �+ is the T = 0 gap of the quantum paramagnetic phase with s> 0. The explicit
expression for �+ is

�2+ = sR

[
1+ u R

(N + 2)

12
ln

(
sR

μ2

)]
, (14.13)

where there is no additive term of order u R associated with the logarithm. Precisely at
u R = u∗R the scale invariance of the theory implies that it is permissible to re-exponentiate
the logarithm (as was done in the large-N expansion in (13.55)), in which case we can
write

�+ = μ
(

sR

μ2

)ν
, (14.14)
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where ν is the usual correlation length exponent, defining how the gap vanishes at sR = 0
(recall that this theory has z= 1); it is given to this order in ε by

ν = 1

2
+ (N + 2)

4(N + 8)
ε, (14.15)

a result which agrees with (4.29) and (4.41). These results imply, from (14.4), that�D(v→
∞) ∼ v−2(2ν−1)/(4−D) ∼ v−(N+2)/(N+8) to leading order for 4− D.

14.2 Statics at nonzero temperatures

This section describes the results of the ε expansion on the nonzero-temperature properties
of (14.2). The results are helpful in exposing the general structure of the theory, but they are
not expected to be very accurate for d = 2 (ε= 1). An improved and quantitatively more
accurate treatment appears in Section 14.2.1, which also considers dynamic properties.

The description of the T > 0 static correlators proceeds [422] by a method adapted from
an approach developed by Luscher [307] (related methods have also been applied by others
to study classical systems in finite geometries [62, 413]). Readers of Chapters 12 and 13
will recall that a similar method was used in Sections 12.3 and 13.1. The main idea is to
integrate out the components of φα(x, τ ) with a nonzero frequency along the imaginary-
time direction by a straightforward ε expansion to the vicinity of the quantum critical point.
This will result in an effective action for the zero-frequency component φα(x) (which is
independent of τ ), which must subsequently be analyzed more carefully. The correlators
of this zero-frequency effective action yield the static susceptibility, χ(k). It must be noted
that, unlike the situation in Section 10.4.1, this static susceptibility does not yield the equal-
time correlations, as the relationship (10.75) does not hold in general.

As we are only interested in the universal crossovers in the vicinity of the point s= 0,
T = 0, for D< 4, we can set u R = u∗R at the outset; further, as u R ∼ ε, the derivation of
the effective action for φα(x) can be performed in an expansion in powers of the nonlinear
coupling u R . For D> 4 the mean-field behavior of the system at T = 0 suggests that an
expansion in powers of u should be adequate for T > 0, and we indeed find that this is the
case. A simple, one-loop, perturbative calculation then gives the following effective action
for the static correlators:

Z =
∫

Dφα(x) exp(−Sφ,eff),

Sφ,eff = 1

T

∫
dd x

{
1

2

[
(∇xφα)

2 + R̃φ2
α(x)

]
+ U

4!
(
φ2
α(x)

)2}
. (14.16)

The couplings R̃ and U can be expressed in terms of the bare couplings in the quantum
action (14.2):
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R̃ = r + u

(
N + 2

6

)
T
∑
εn �=0

∫
ddk

(2π)d
1

ε2
n + k2 + r

,

U = u − u2
(

N + 8

6

)
T
∑
εn �=0

∫
ddk

(2π)d
1

(ε2
n + k2 + r)2

. (14.17)

The result for R̃ arises from the first diagram in Fig. 4.1, and that for U from the second
diagram in Fig. 4.1, where the internal lines carry only nonzero Matsubara frequencies. We
discuss the evaluation of these expressions shortly. For the moment, let us simply retain the
formal expressions in (14.17) and proceed a bit further. Now note that the effective action
(14.16) has precisely the same form as the original theory (14.2) at T = 0. The only, and
crucial, difference is that the spacetime dimension D has been replaced by the spatial
dimension d. Therefore, the theory (14.16) can be analyzed by the perturbative method of
Section 3.3.2, or by the tricritical formulation of Section 14.1.1 simply by performing the
replacement D → d , and by a relabeling of the coupling constants. Using these methods,
it is easy to get formal expressions for the equal-time correlators resulting from Sφ,eff. We
first define a shift in the value of the mass, as in (3.53) and (3.54):

R = R̃ +U

(
N + 2

6

)∫
ddk

(2π)d
T

k2
. (14.18)

Then the response function (14.4) of (14.2) tells us that the static susceptibility, defined in
(10.7), is given by

χ(k) = 1

R
�−1

d

(
k

R1/2
,

T U

R(4−d)/2

)
. (14.19)

As noted earlier, we regard �d as a known function, and so (14.19) construes the final
solution of the crossovers of the static observables (14.2) at finite temperature in the region
without long-range order. We emphasize again that �d has to be computed in the spatial
dimension d, and not the spacetime dimensions D= d+1 considered in Section 14.1. The
large-N solution of �d(q, v) was given in (14.7) and (14.8) and is valid for all values of
v; however, we find below that the exact perturbative result (14.5) (valid for small v) is in
fact sufficient over a substantial portion of the phase diagram.

The transition to the phase with long-range order is signaled by a divergence in χ(k= 0).
The general structure of (14.19) tells us that this will happen at a value R= Rc, with
Rc ∼ (T U )2/(4−d) (the missing coefficient is a universal number determined by the func-
tion �d ). The N =∞ result (14.8) has Rc= 0, and this is also found to leading order
in the 4 − d expansion for tricritical crossovers. In our discussion in this section below,
we assume Rc= 0 and that corrections due to a nonzero Rc are higher order in ε. So the
result (14.19) is valid provided R> 0, and the condition R= 0 gives the boundary of the
finite-temperature phase transition to the ordered phase.

It remains to compute the values of the couplings R, U to complete our description of
static correlations and the associated phase diagram of (14.2) in the r–T plane. We consider
the cases d < 3 and d > 3 separately, as the results are substantially different.
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14.2.1 d < 3

We first determine the value of R for d < 3. The expression for R is given in (14.17)
and (14.18), and to evaluate it in the scaling limit, we use precisely the same prescription
discussed earlier in Section 14.1.2 for the T = 0 computation: the spatial integrals are eval-
uated in d = 3 − ε dimensions, the couplings are expressed in terms of the renormalized
parameters as defined in (14.9), an expansion is made in powers of ε, and finally the result-
ing expression is evaluated at the fixed-point value (14.11). Just as at T = 0, the poles in ε
cancel also at T > 0, and to first order in ε, the result is

R = sR

[
1+ ε

(
N + 2

N + 8

)
ln

(
T

μ

)]
+ εT 2

(
N + 2

N + 8

)
G
( sR

T 2

)
, (14.20)

where the function G(y) is given by

G(y) = y ln y

2
+ 4

∫ ∞

0
k2dk

(
1√

k2 + y

1

e
√

k2+y − 1
− 1

k2 + y
+ 1

k2

)
. (14.21)

We have obtained this expression assuming that sR > 0 (and therefore y= sR/T 2> 0), and
the result for G(y) appears to have some singularity at y= 0. We shall shortly establish that
this is not the case: a crucial property of the function G(y) is that it is analytic at y= 0 and
can therefore be analytically continued to y< 0. There is an important physical reason for
this analyticity, and it is a key step in our analysis. Recall that, at T = 0, there was a quan-
tum phase transition in (14.2) at sR = 0 (r = rc from (3.54)), and so all response functions
are certainly nonanalytic at sR = 0. However, we are considering the case T > 0, and we
expect that there is no thermodynamic singularity at r = rc. The critical fluctuations surely
get quenched at a nonzero T , and all observables should have a smooth, well-behaved
dependence on r at r = rc for T > 0, as we saw in the case of the Ising chain in Chapter 10.
There is eventually a nonzero T phase transition for some sR < 0 (r < rc) as in Fig. 11.3,
and so there should be a thermodynamic singularity at this point. However, the latter sin-
gularity is a property of the scaling function �d in (14.19), and not a singularity in the
value of the coupling R. Hence if our physical interpretation is correct, G(y) should be
analytic at y= 0, and it should be possible to analytically continue G(y) to all y< 0 until
the point when we hit the transition to the ordered phase where R, as defined in (14.20),
first vanishes.

We explicitly demonstrate that the expectation above is indeed satisfied by (14.21)
(indeed, our entire analysis of the crossover problem was carefully designed so that this
would occur). After an integration by parts under the integral in (14.21), and some elemen-
tary manipulations, it can be shown that G(y) can be transformed into the following:

G(y) = −
∫ ∞

0
dk

[
4 ln

(
k

sinh(
√

k2 + y/2)√
k2 + y/2

)
− 2k − y√

k2 + 1/e

]
. (14.22)

In this form, it is not difficult to see that G(y) is analytic at y= 0; the function sinh(
√

z)/√
z is a smooth function of z near z= 0, and equals sin(

√|z|)/√|z| for z< 0, and so there
is no singularity in the integrand as y goes through zero. Indeed G(y) is smooth for all
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y> − 2π , with the singularity arising at −2π when the argument of the logarithm first
turns negative. We find below that the transition to the ordered phase occurs for y ∼ −ε;
thus the singularity at y= − 2π occurs well within the ordered phase, where the present
results cannot be used, and is therefore of no physical consequence. We also note here
some limits of (14.22) that will be useful later:

G(y) =
{

2π2/3+ 2.45381y, |y| � 1

(y/2) ln y + 2π
√

y + y1/4
√

8πe−
√

y . y � 1
(14.23)

While we have a fairly complete picture of the function G(y), the result (14.20) for R is
still not ready to be used as it involves the unknown momentum scale μ. To remedy this,
we recall a basic strategy used throughout this book: all correlators should be expressed in
terms of observable parameters characterizing the T = 0 ground state. In the present situ-
ation we should clearly replace sR as a measure of the deviation from the T = 0 quantum
critical point at sR = 0 by the energy scales �± discussed in Chapter 11. We do this here
only for sR > 0 (the case sR < 0 is discussed in [422]). The relationship between sR and the
energy gap of the quantum paramagnet, �+, was obtained in (14.14). Substituting (14.14)
into (14.20) we find

R = �2+
[

1+ ε
(

N + 2

N + 8

)
ln

(
T

�+

)]
+ εT 2

(
N + 2

N + 8

)
G

(
�2+
T 2

)
. (14.24)

The dependence on the arbitrary scale μ has disappeared, and we have the required univer-
sal dependence of R on�+ and T for sR > 0 (r > rc). A similar relationship exists between
the scale �− and R for r < rc [422].

A closely related computation can be performed for the quartic coupling U in (14.16)
using the expression in (14.17). At the fixed point u R = u∗R we again find that the μ
dependence disappears:

U = 6εT ε

SD(N + 8)

[
1+ ε 20+ 2N − N 2

2(N + 8)2
+ εG ′

( sR

T 2

)]
, (14.25)

where G ′(y) is the derivative of G(y), and we have actually used the expression for u∗R to
order ε2 to obtain the complete result above. For sR > 0 we can simply substitute sR =�2+
in the argument of G ′ to get the universal expression for U .

We have assembled all the ingredients to obtain the full crossover structure for the static
susceptibility at T > 0. We use the expressions (14.20) or (14.24) for R and the expression
(14.25) for U , and substitute them into (14.19), with results for the tricritical crossover
function �d obtained in Section 14.1.1. A straightforward examination of the resulting
expressions yields the phase diagram shown in Fig. 14.1, which is closely related to the
phase diagram obtained earlier in the large-N limit in Fig. 11.3. The physical properties of
the regimes have already been discussed in Section 11.3, and we note their properties for
small ε in turn below.
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QUANTUM
CRITICAL

LOW T QUANTUM
PARAMAGNET

Quasi-classical particles

Quasi-classical
particles (N=1)
or waves (N>1)

�Fig. 14.1 Phase diagram of the theory (14.2) for d< 3 (compare with the large-N phase diagram in Fig. 11.3, and Figs. 1.2b
and 1.3). The qualitative features are expected to apply to d> 1 for N= 1, d≥ 2 for N= 2, and d> 2 for N≥ 3.
The quantum critical point is at T= 0 with coupling r= rc (this is also the coupling where s= sR= 0). All properties
are however analytic as a function of r at r= rc for T > 0. The dashed lines are crossovers at T ∼ |r− rc|zν , as is the
full line, which is the locus of finite-temperature phase transitions at Tc(r). The shaded region is where the reduced
classical scaling functions apply. The region T > Tc(r), but r< rc , is accessed in our calculation by analytic
continuation from r> rc , T > 0. The simple perturbative expression in (14.3) can be used in (14.19) for the static
susceptibility everywhere in the paramagnetic region, except for the shaded portion. The low-T region for r> rc has a
quasi-classical particle description as in Section 10.4.2 and is discussed in Chapter 15. In the magnetically ordered
low-T region for r< rc and N≥ 2, the long-wavelength spin waves about the ordered state behave classically, while
for N= 1, the amplitude oscillations inφα about its nonzero mean value lead to a quasi-classical particle. As we
noted in Fig. 13.1, “the continuum high-T” or “quantum critical” region is more complex, with both thermal and
quantum phenomena, and both particle- and wave-like phenomena, playing equal roles. In Section 14.3 we show
that, to leading order in ε= 3− d, the low-frequency correlators ofφα in this region are described by an effective
quasi-classical wave model; however, the transport of the conserved angular momentum is dominated by higher
energy excitations, and requires a particle-like description in a quantum Boltzmann equation which is discussed in
Chapter 15.

The low-T regime on the quantum paramagnetic side was discussed in Section 11.3.1:
it is present for T ��+ ∼ (r − rc)

ν . Using (14.23)–(14.25), we have for this case

R ∼ �2+,

U ∼ ε�ε+,
T U/R(4−d)/2 ∼ εT/�+ � 1. (14.26)

The last quantity is that appearing in the argument of the tricritical scaling function, �d ,
in (14.19). As it is small, it is evident that a simply perturbative evaluation of �d in (14.5)
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is adequate for analyzing static properties in this regime. Using (14.5) and (14.23)–(14.25)
in (14.19) we get

χ−1(k) = k2 +�2+ + ε
(

N + 2

N + 8

)
T (8πT�+)1/2e−�+/T . (14.27)

Thus there is only a correction of the order e−�+/T to the T = 0 response; similar results
were obtained in the large-N limit in Section 11.3.1. This exponentially small correction
arises from the small density of pre-existing thermally excited particles. For the same rea-
sons as those discussed in Section 10.4.2 (and also in Section 12.2), we expect that these
particles form a Boltzmann gas, whose static and dynamic properties can be described
by standard classical methods. We see this in our discussion of transport properties in
Chapter 15.

Next we turn to the high-T regime of the continuum theory T �|r − rc|ν . Now, the
analogs of the estimates (14.26) are

R ∼ εT 2,

U ∼ εT ε,

T U/R(4−d)/2 ∼ √ε � 1. (14.28)

So again, the second argument of �d is small, and a perturbative evaluation is permissible.
Using (14.5) and (14.23)–(14.25) in (14.19) we get

χ−1(k) = k2 + ε
(

N + 2

N + 8

)
2π2T 2

3
(14.29)

to leading order in ε, which implies a correlation length ξ ∼ 1/
√
εT . The almost free

nature of this static result suggests that thermal fluctuations are noncritical and can be
treated in an effectively Gaussian theory. However, when the present perturbative approach
is extended to dynamical properties, one finds that it fails in the low-frequency limit [422]
(just as we found for the 1/N expansion in Section 13.2.2). The strongly coupled dynam-
ical problem is treated in Section 14.3, and associated transport properties are detailed in
Chapter 15.

Finally, we turn to a novel part of the analysis using the ε expansion: the region of the
phase without long-range order for r < rc. Here sR < 0, and it is possible for R to vanish.
Using (14.20), we find that this happens at sR = sRc given by

sRc = −ε
(

N + 2

N + 8

)
2π2T 2

3
(14.30)

to leading order in ε; this relationship can be translated into a universal proportionality
between Tc and �−, but we will not discuss that here. The value of sRc determines the
phase transition line T = Tc(r) shown in Fig. 14.1. The order of magnitude estimates of
the couplings in (14.28) remain valid for T > Tc(r) except that the omitted coefficient in
the first expression of R vanishes as one approaches Tc(r) from above. A simple estimate
of the dimensionless coupling in the argument of�d then shows that the perturbative com-
putation of �d fails when T − Tc(r) ∼ εTc(r). This condition delineates the boundary
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of the shaded region shown in Fig. 14.1. Within this region the well-understood classi-
cal physics of a finite-temperature phase transition in d spatial dimensions applies. It is
described by the appropriate classical singularity of �d discussed in Section 14.1.2. (We
note again that these latter results have to be used in d rather than D dimensions; thus this
emergence of classical statistical mechanics is completely unrelated to the QC mapping of
Section 2.2, which mapped d-dimensional quantum mechanics to D-dimensional classical
statistical mechanics.) From the perspective of the global quantum scaling functions such
as (11.41), the shaded regime is where the reduced classical scaling functions apply.

Although (14.30) contains the leading prediction of the ε expansion for the value of
the critical temperature Tc(r), the result is not satisfactory in one important respect. Note
that we find a Tc> 0 for all N . This is the correct result for 2< d < 3, but it is incorrect
precisely when d = 2, the dimensionality of physical interest. For d = 2 we should find
Tc= 0 for all N ≥ 3, as we found in the large-N expansion in Chapters 11 and 13. This
failure suggests that the estimate (14.30) for Tc is not very accurate for d = 2, N = 1, 2.
We rectify this failure in Section 14.3, where we treat the effective theory (14.16) directly
in d = 2. This can be done by a variety of analytical and numerical methods [426], which
lead to quite accurate results for d = 2, N = 1, 2.

14.2.2 d > 3

This is obviously an unphysical regime, but we discuss it briefly to note the physics of
models above their upper-critical dimension. We later meet models whose quantum crit-
ical points have a lower value for the upper-critical dimension, and their properties are
quite similar to those found here. We assume here that d < 4, so that the classical finite-
temperature transition remains below its upper-critical dimension. (There is little physical
interest in discussing the case where both the quantum and classical transition are above
their respective upper-critical dimensions.)

The basic results are already contained in the expression (3.53) for the position of
the T = 0 critical point, the definition (3.54), and the values (14.17) and (14.18) for the
effective coupling R. It is always sufficient to use just the first-order result U = u for the
nonlinear coupling. It is not necessary to renormalize the values of any coupling, and we
can simply express the results in terms of bare parameters. The expressions also have a
dependence upon the nonuniversal upper-cutoff �, and the main subtlety in the evaluation
of the results is the separation of this nonuniversality from the T dependence, which we
find is universal. Furthermore, this separation of � dependence must be done in a manner
which maintains analyticity in s at s= 0 for T > 0.

The first step is evaluation of the frequency summation in the expressions noted above
for R. This leads to a form for R closely related to expressions (14.20) and (14.21) for
d < 3:

R = s + u

(
N + 2

6

)[∫
ddk

(2π)d

(
1√

k2 + s

1

e
√

k2+s/T − 1
− T

k2 + s
+ T

k2

)

+
∫ � d D K

(2π)D

(
1

K 2 + s
− 1

K 2

)]
. (14.31)
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We observe that the cutoff dependence is isolated entirely in the second integrand, which
is a property of the T = 0 theory: this is why the T dependence, which depends only upon
the low-energy excitations, is universal. We can remove this ultraviolet divergence by sub-
tracting s/K 4 from the second integrand. (Note that this correction term is smooth in s so
that the analyticity properties of the expression for R in terms of s will not be spoiled.) The
correction term leads to a cutoff-dependent term that is also linear in s, and the remaining
integral is convergent at high momenta. In this way we get our final result:

R = s
(
1− c1u�d−3)+ uT d−1

(
N + 2

6

)
G̃d

( s

T 2

)
, (14.32)

where c1 is the same nonuniversal constant that appeared in (3.56), and the universal func-
tion G̃d(y) is given by

G̃d(y) = Sd

∫ ∞

0
kd−1dk

(
1√

k2 + y

1

e
√

k2+y − 1
− 1

k2 + y
+ 1

k2

+ 1

2
√

k2 + y
− 1

2k
+ y

4k3

)
. (14.33)

Despite appearances, this function is analytic as a function of y at y= 0. This can be
established by studying the small-k behavior of the integrand and using the fact that the
function 1/(ex − 1)− 1/x + 1/2 has an expansion about x = 0 that involves only positive,
odd powers of x . Consequently, (14.33) can also be analytically continued to y< 0, but we
will not present the details of this.

With the result for R available in (14.32), and the value U = u, we obtain the static
susceptibility by simply evaluating (14.19) and thence obtain the nonzero-T crossovers
near the quantum critical point T = 0, s= 0. The structure of the results is very similar to
those obtained in Section 14.2.1, and so we only state the main conclusions. Provided that
there is no long-range order the static susceptibility takes the form

χ−1(k) = k2 + ξ−2, (14.34)

where ξ is the correlation length. For s> 0 and T �√s we have

ξ−2 = s(1− c1u�d−3)+ u

(
N + 2

6

)(
T

2π

)d/2

s(d−2)/4e−
√

s/T ; (14.35)

thus the T -dependent correction to the correlation length is exponentially small, as expected
for a system with an energy gap. At higher temperatures, T �√|s|, we have the limiting
behavior

ξ−2 = s
(
1− c1u�d−3)+ uT d−1

(
N + 2

6

)
Sd�(d − 1)ζ(d − 1), (14.36)

where ζ(x) is the Reimann zeta function; so for s> 0 and
√

s� T � (s/u)1/(d−1) the first
T = 0 term in (14.36) dominates, while for higher T the second T -dependent term takes
over. For s< 0, setting ξ−2= 0 gives us the condition for the transition to the ordered
phase, Tc ∼ (|s|/u)1/(d−1), which is analogous to the result (14.30) for d < 3.



250 Physics close to and above the upper-critical dimension

We draw the reader’s attention to an important property of the above results. Note that
in the high-T limit, T �√|s|, the correlation length does not obey the relation ξ ∼ T−1/z

that might be expected from general scaling arguments; instead we have the result of
(14.36) where ξ ∼ T−(d−1)/2, which agrees with the naive scaling estimate only in the
upper-critical dimension d = 3. The violations of scaling are a consequence of the prefactor
of the irrelevant coupling u in the T -dependent term in (14.36). In the strict scaling limit,
we should set this irrelevant coupling to zero, but then we would have a T -independent
correlation length. So, unlike the case for d < 3, irrelevant couplings have to be included to
obtain the leading T dependence. Such couplings, which cannot be neglected even though
they are formally irrelevant, are called dangerously irrelevant.

Apart from the above explicit computation, the power of temperature appearing in the
correlation length in the quantum critical region can be easily deduced from a knowledge
of the scaling dimension of the irrelevant coupling, u. We know from the structure of the
perturbation theory that ξ−2 depends linearly on u. So let us assume

ξ−2 ∼ uT p. (14.37)

Now using dim[ξ ]= − 1, dim[u]= 3 − d, and dim[T ]= 1, and matching scaling dimen-
sions in (14.37), we conclude p= d − 1, which is consistent with (14.36).

It should also be evident (we briefly discuss this issue further in the following section)
that such violations of scaling also appear in the characteristic time for dynamic fluctua-
tions in the high-T regime. They are no longer simply universal numbers times �/kB T but
are proportional to higher powers of 1/T times a prefactor involving the nonuniversal bare
value of the coupling u.

14.3 Order parameter dynamics in d = 2

We begin by formulating an effective theory for the low-energy, long-wavelength fluc-
tuations of the order parameter φα . This model is then used to compute the behavior of
Imχ(k, ω) at small k and small ω. An important limitation of the resulting model is that it
cannot be used to compute universal transport properties (i.e. correlators of L, the uniform
susceptibility χu , and the spin diffusion constant Ds). These turn out to be dominated by
larger k and ω, because although the small k and ω fluctuations of φα have large ampli-
tudes, they carry very little angular momentum current. A separate model for transport
properties is developed in Chapter 15.

We mostly limit our attention here to dynamics in the continuum high-T (“quantum crit-
ical”) region of Fig. 14.1 (which applies to N = 1, 2 for d = 2) and Fig. 11.2 (which applies
to N ≥ 3 for d = 2; see also Fig. 13.1) but consider all values of N . Dynamical properties
in this region were studied by the large-N expansion in Section 13.2 and led to Fig. 13.3
for Imχ(k, ω) (which is the analog of Fig. 10.8 for the Ising chain). The large-N expansion
was found to be adequate near the position of the quasi-particle pole (ω ≈ ε�k), but it failed
badly for ω� T , ck� T . It is this failure we can rectify here; our aim is to obtain the
analog of the Ising chain results for Imχ(k, ω)/ω in Figs. 10.9–10.11 for dimension d = 2.
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As we shall see, there are some significant, qualitative physical differences between d = 1
and d = 2.

The basis of our approach depends upon the ε-expansion values of the coupling con-
stants in the effective theory Sφ,eff, (14.16), for the static φα fluctuations. In particular, this
theory is characterized by a “mass,” R (defined in (14.18)), which in the high-T region is
(from (14.20) and (14.29))

R = ε
(

N + 2

N + 8

)
2π2T 2

3
. (14.38)

The characteristic wavevector and energy of the dominant φα fluctuations both equal
√

R
(in units with c= 1, which we are using in this chapter). Observe that from small ε,√

R� T , and so the occupation number of φα modes with this energy is large:

1

e
√

R/T − 1
≈ T√

R
∼ 1√

ε
� 1. (14.39)

The second term above is the classical equipartition value and suggests that predominant
fluctuations are classical waves in the magnitude and orientation of φα .

How can we extend the model (14.16) to describe the dynamics of these classical waves?
(The reasoning here is almost identical to that presented in Section 12.3.3 for the high-
T regime of the d = 1 rotor model; readers who have skipped Chapter 12 may wish to
read Section 12.3.3 until (12.55), but this is not essential.) The predominance of fluctua-
tions with energy smaller than T implies that the classical fluctuation–dissipation theorem
(10.75) applies, and (10.76) allows us to obtain the equal-time correlations of φα from the
static susceptibility of (14.16). For unequal-time correlations, we need to account for the
kinetic energy of the φα fluctuations. To this end, we introduce a canonically conjugate
momentum, πα , so that we have the following standard Poisson bracket relations between
the φα , πα: {

φα(x), πβ(x
′)
}

P B = δαβδ(x − x ′),{
φα(x), φβ(x

′)
}

P B = 0,{
πα(x), πβ(x

′)
}

P B = 0. (14.40)

The Hamiltonian implied by (14.16) contains only “potential energy” terms, and it has
to be extended to include the kinetic energy. At the low order in ε that we are work-
ing with here, there are no renormalizations of the gradient terms in (14.2), and so the
kinetic energy is simply the standard

∫
dd xπ2

α/2 implied by the Hamiltonian form of the
quantum Lagrangean in (14.2); in this respect, the present situation is simpler than that in
Section 12.3.3, where a careful computation of the temperature dependence of the uniform
susceptibility was necessary to obtain the proper kinetic energy. In this manner we are
led to the following classical phase space integral (as in “

∫
dqdp”), which generalizes the

configuration space integral in (14.16):
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Z =
∫

Dφα(x)Dπα(x) exp

(
−Hc

T

)
,

Hc =
∫

dd x

{
1

2

[
π2
α + (∇xφα)

2 + R̃φ2
α

]
+ U

4!
(
φ2
α(x)

)2}
. (14.41)

Observe that we can freely integrate out the πα in a Gaussian integral, and the functional
integral over the φα and its equal-time correlations then reduce to those implied by (14.16),
as they should. This argument shows that the couplings R̃ and U above are precisely those
computed in Section 14.2 in the ε expansion.

For unequal-time correlations, we compute the classical Hamilton–Jacobi equations
implied by (14.41) and the Poisson brackets (14.40):

∂φα

∂t
= {φα,Hc}PB

= πα,
∂πα

∂t
= {πα,Hc}PB

= ∇2
xφα − R̃�α − U

6

(
φ2
β

)
φα. (14.42)

Determination of the dynamic correlations now reduces to a problem of the form also dis-
cussed in Section 12.3.3. Pick a set of initial conditions for φα , πα from the ensemble
implied by (14.41). Then evolve forward in time, according to the deterministic equations
(14.42). Finally, compute unequal-time correlations by averaging products of fields at dif-
ferent times over the set of initial conditions in (14.41).

(Readers familiar with the theory of classical critical dynamics [223] should be warned
that the equations above look deceptively similar to those found in the classical model
considered by Halperin, Hohenberg, and Ma [194,195]. However, in the present situation,
(14.42) is a set of deterministic Hamiltonian equations that preserve total energy (and other
quantities). In contrast, the equations of [194] and [195] are stochastic equations with a
damping coefficient inserted by hand.)

The scaling structure of the deterministic continuum dynamical problem defined above
has been discussed carefully in [426], and the central result is simple and quite easy to
understand. First, let us discuss the equal-time correlations computed in Section 14.2 in
a slightly different language. The continuum statistical mechanics problem defined by the
functional integral in (14.16) requires some consideration of the dependence of correlators
on the short-distance cutoff, �−1. For d < 3, the answer is very simple: introduce a new
renormalized “mass” R as in (14.18), and then send the ultraviolet cutoff, �, to infinity;
a finite, universal, continuum answer is obtained, which is, of course, that specified in the
tricritical crossover function in (14.19). Notice that the integral in (14.18) is divergent in
the ultraviolet for d close to 3. What we are saying is that this is the only short-distance
singularity in the problem for ε= 3 − d > 0 and small, and that this singularity can be
removed by a simple, linear shift in the value of the mass R. After such a shift, the contin-
uum limit is well defined, and we can then deduce the form of all correlators by a simple
engineering analysis of dimensions. The claim of [426] (which we accept here without
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proof) is that this same shift is also sufficient for unequal-time correlations; readers who
have read Chapter 12 will recall that a very similar claim was made in Section 12.3.3.

Let us, then, perform the straightforward engineering analysis of dimensions. We trans-
form to dimensionless spatial, time, and field variables by the substitutions

x̄ = x R1/2,

t̄ = t R1/2,

φ̄α = R(2−d)/4T−1/2φα,

π̄α = R−d/4T−1/2πα, (14.43)

in (14.41) and (14.42). All dimensional couplings in (14.41) and (14.42) disappear, and
they acquire a universal form dependent only on a single dimensionless parameter multi-
plying the quartic (cubic) term in (14.41) ((14.42)), which is

G ≡ T U

R(4−d)/2
. (14.44)

This is, of course, precisely the dimensionless parameter that appeared in crossover func-
tions such as (14.19); we have now given it a separate symbol, which represents its role as
a “Ginzburg parameter” [312], controlling the strength of thermal fluctuations. The scaling
form (14.19) can now be immediately deduced from the mappings (14.43), but the present
approach also allows us to write down the form of the dynamic structure factor in a manner
similar to that used in (10.78), (12.62), and (13.36):

2T

ω
Imχ(k, ω) = S(k, ω) = Tχ(k)√

R
�Sc

(
k

R1/2
,
ω

R1/2
,G
)
. (14.45)

The first relation is the classical fluctuation–dissipation theorem (10.75), and �Sc is a uni-
versal scaling function. The prefactor of the static susceptibility, χ(k), satisfies (14.19) and
has already been computed in Section 14.2.1; it has been inserted so that the Kramers–
Kronig relation (10.75) implies that �Sc has a fixed integral over frequency,∫

dω̄

2π
�Sc(k̄, ω̄,G) = 1, (14.46)

as in Fig. 10.11 and (10.79). The value of �Sc(0, 0,G) is of particular importance because
it determines the relaxational rate, �R , of long-wavelength order parameter fluctuations, as
in (10.100).

Our task is now clear. Solve the continuum equations of motion (14.42) for initial con-
ditions specified by (14.41), and so determine the scaling function �Sc. For the high-T
region, this solution should be obtained at the value of G determined in Section 14.2.1,
which is

G = 48π
√

3√
2(n + 2)(n + 8)

√
ε, (14.47)

and this is small for small ε. In general, as implied by the discussion in Section 14.2.1, G is
a smooth, dimensionless function of sR/T 1/zν (and can be rewritten as a universal function
of �+/T on the quantum paramagnetic side, and similarly for the magnetically ordered
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side); it decreases (increases) from the high-T value in (14.47) as we decrease T toward
the quantum paramagnetic (magnetically ordered) region. For G= 0, the dynamic problem
is one of linear waves and can be easily solved. For small G, equal-time correlations can be
obtained in perturbation theory, and this was discussed in Section 14.2.1. However, as we
have already noted, perturbation theory fails for dynamic properties in the low-frequency
limit [422] for any nonzero G.

The only remaining possibility is to numerically solve the strong-coupling dynamical
problem specified by (14.41) and (14.42). Formally, we are carrying out an ε expansion,
and so the numerical solution should be obtained for d just below 3. However, it is naturally
much simpler to simulate directly in d = 2, which is also the dimensionality of physical
interest. Therefore, the approach to the solution of the dynamic problem in the quantum
critical region breaks down into two systematic steps: (i) use the ε= 3 − d expansion to
derive an effective classical nonlinear wave problem characterized by the couplings R and
G; (ii) obtain the exact numerical solution of the classical nonlinear wave problem at these
values of R and G directly for d = 2. This division of the problem into two rather disjointed
steps is also physically reasonable. The dimensionality d = 2 plays a special role, primarily
for the classical thermal fluctuations, and the cases N = 1, 2 and N ≥ 3 are strongly distin-
guished, and so it is important to treat these exactly; in contrast, the ε= 3 − d expansion
provides a reasonable treatment of the quantum fluctuations down to d = 2 for all N .

Before embarking on a description of this numerical solution, let us make some periph-
eral remarks. First, the relationship (14.18) between R̃ and R cannot be used when d = 2
because there is now an infrared divergence in the momentum integral. To cure this, we
replace (14.18) by

R̃ = R −U

(
N + 2

6

)∫
ddk

(2π)d
T

k2 + R
, (14.48)

which is a nonlinear relationship between R and R̃. The change in the propagator makes
no difference at large momenta, and so the cancellation of ultraviolet divergences goes
through as before [303]. The value of R as computed in the ε expansion is now different,
but the leading order results in (14.38) and (14.47) remain unchanged. The new relationship
(14.48) does have some important consequences for the structure of the static properties at
large G, but we will not go into this here. In particular, the present approach can be used
to reliably obtain physically important crossovers for d = 2 (such as those in the static
susceptibility χ(k, ω= 0) and in the superfluid density ρs for N = 2) between the high-T
and low-T regions of Fig. 14.1; this is discussed elsewhere [426] in some detail.

Figures 14.2–14.4 contain the results of a recent numerical computation of the scaling
functions in (14.45) at k= 0 (i.e. for S(0, ω)). These results are the analog of Fig. 10.11
for the Ising chain (and Fig. 12.4 for the d = 1, N = 3 rotor model, for those who have
read Chapter 12). Because (14.47) evaluates to a moderately large value of G for d = 2,
the perturbation theory results of Section 14.2.1 for χ(k) are no longer accurate, and we
also numerically computed the exact values of �d(0,G) for d = 2 (see (14.19)), and these
are reported in the captions to the figures. The results show a consistent trend from smaller
values of G and larger values of N to larger values of G and smaller values of N , and we
discuss the physical interpretation of the two limiting cases in turn.



255 14.3 Order parameter dynamics in d= 2

0

3

6

9

12

0 0.4 0.8 1.2 1.6w

ΦSc
N =1

�Fig. 14.2 Numerical results from [426] for the zero-momentum scaling function�Sc(0, ω̄,G) appearing in (14.45) for N= 1.
Results are shown forG= 25 (dots),G= 30 (short dashes),G= 35 (long dashes), andG= 40 (full line). The static
susceptibility takes the values (see (14.19)) Rχ(k)=�−1

2 (0,G)= 1.95, 2.45, 3.37, and 4.78 atG= 25, 30, 35,
and 40, respectively. The high-T limit value ofG in (14.47) evaluates toG= 35.5 at ε= 1 and N= 1.
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�Fig. 14.3 Numerical results as in Fig. 14.2 but for N= 2. The values ofG are nowG= 20 (short dashes),G= 30 (long
dashes), andG= 40 (full line). The static susceptibility takes the values (see (14.19))
Rχ(k)=�−1

2 (0,G)= 1.67, 2.65, and 4.73 atG= 20, 30, and 40, respectively. The high-T limit value ofG in
(14.47) evaluates toG= 29.2 at ε= 1 and N= 2.

For smaller G and larger N , we observe a peak in S(0, ω) at a nonzero frequency. This
peak is the remnant of the delta function in the large-N result (11.10), where the value
of m was given by (11.45), (11.53), and (11.56) (the same peak also appears in the 1/N
computation in Fig. 13.3 in Chapter 13). In the present computation, it is clear that the peak
is due to amplitude fluctuations as φα oscillates about the minimum in its effective poten-
tial at φα = 0. As G is reduced, we move out of the high-T region into the low-T region
on the quantum paramagnetic side (see Fig. 14.1), and this finite-frequency, amplitude
fluctuation peak connects smoothly with the quantum paramagnetic quasiparticle peak.
Of course, once we are in the quantum paramagnetic region, the wave oscillations get
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�Fig. 14.4 Numerical results as in Fig. 14.2 but for N= 3. The values ofG are nowG= 20 (short dashes),G= 25 (long
dashes), andG= 30 (full line). The static susceptibility takes the values (see (14.19))
Rχ(k)=�−1

2 (0,G)= 1.73, 2.17, and 2.75 atG= 20, 25, and 30, respectively. The high-T limit value ofG in
(14.47) evaluates toG= 24.9 at ε= 1 and N= 3.

quantized, and the amplitude and width of the peak can no longer be computed by the
present quasi-classical wave description – we need a quasi-classical particle approach, like
that in Section 10.4.2.

In addition to the peak at finite frequency, there is weight in S(0, ω) down to zero fre-
quency, with S(0, 0)> 0, and so Imχ(0, ω) ∼ ω for small ω (and a finite relaxation rate �R

as defined in (10.100)); direct analytic computations of Imχ(0, ω) in either the ε or 1/N
expansions give different, unphysical, low-frequency limits for Imχ(0, ω) (as was seen in
Section 13.2.2); thus the present exact dynamical computation directly for d = 2 with N
finite has cured this sickness.

For larger G and smaller N , the peak in S(0, ω) shifts down to ω= 0. The resulting
spectrum is then closer to the exact solution for d = 1, N = 1 presented in Fig. 10.11.
As G increases further, the zero-frequency peak becomes narrower and taller. How do we
understand the dominance of this low-frequency relaxation? For N ≥ 2, there is a natural
direction for low-energy motion of the order parameter: by angular or phase fluctuations
of φα in a region where the value of |φα| is nonzero. Of course, the fully renormalized
effective potential controlling fluctuations of φα has a minimum only at φα = 0, as we
are examining a region with no long-range order. However, for these values of G, there is a
significant intermediate length scale over which the local effective potential has a minimum
at a |φα| �= 0, and the predominant fluctuations of φα consist of a relaxational phase
dynamics. This interpretation is also consistent with an analysis of the limit G → ∞ for
N = 3 that was carried out in [426]. Then we expect to be well into the low-T region on the
magnetically ordered side in Fig. 11.2, and so the analysis of Section 13.1.3 should apply.
Indeed, it was shown that in the limit G → ∞, the three-argument scaling form (14.45)
reduces to precisely the two-argument scaling form in (13.36). As readers of Chapter 13
will recall, this latter scaling form is described by a classical wave model in which |φα| is
fixed to be unity and its zero momentum dynamic structure factor has a large relaxational
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peak at zero frequency. The same “phase fluctuation”-dominated peak evidently survives
at the moderate values of G we are considering here.

All of the above reasoning has been for cases with continuous symmetry, N ≥ 2. How-
ever, closely related arguments can also be made for N = 1. In this case, in a region where
|φα| locally takes a nonzero value, there are low-energy modes corresponding to motions
of domain walls between oppositely oriented magnetic phases. Indeed, precisely such a
domain wall motion was considered for the d = 1, N = 1 case in Section 10.4.1, and it led
to the zero-frequency relaxational peak in the structure factor in Fig. 10.5.

Even in a region dominated by angular (or domain wall) fluctuations about a locally
nonzero value of |φα|, there could still be higher frequency amplitude fluctuations of |φα|
about its local potential minimum. This would be manifested by peaks in S(0, ω), both
at ω= 0 and at a nonzero frequency. A glance at Figs. 14.2–14.4 shows that this never
happens in a well-defined manner. However, for N = 1, we do observe a nonzero fre-
quency shoulder in S(0, ω) at G= 35, along with a prominent peak at ω= 0, indicating
the simultaneous presence of domain wall relaxational dynamics and amplitude fluctua-
tions in |φα|. Readers of Chapter 12 will also recognize the similarity of this with the
shoulder in Fig. 12.4 describing the high-T limit of the d = 1, N = 3 case. For the other
cases in d = 2, we do not see a clear signal of the concomitant amplitude and angular fluc-
tuations. It seems, therefore, that once angular fluctuations appear with increasing G, the
nonlinear couplings between the modes reduce the spectral weight in the amplitude mode
to a negligible amount.

It is interesting to examine the above results at the value of the high-T limit for G in
(14.47) evaluated directly in ε= 1. We find G= 35.5, 29.2, 24.9 for N = 1, 2, 3, and these
values are very close to the position where the crossover between the above behaviors
occurs. The N = 1 case has a clear maximum in S(0, ω) at ω= 0 (along with a finite
frequency shoulder), while there is a more clearly defined finite frequency peak for N = 3.

We add a final parenthetic remark. Readers may recognize a passing resemblance
between the above crossover in dynamical properties as a function of G and a well-studied
phenomenon in dissipative quantum mechanics [294, 295, 537] – the crossover from
“coherent oscillation” to “incoherent relaxation” in a two-level system coupled to a heat
bath. However, here we do not rely on an arbitrary heat bath of linear oscillators, and the
relaxational dynamics emerges on its own from the underlying Hamiltonian dynamics of
an interacting many-body, quantum system. Our description of the crossover has been car-
ried out in the context of a quasi-classical wave model here, but, as we noted earlier, the
“coherent” peak connects smoothly to the quasiparticle peak in the low-T paramagnetic
region; here the wave oscillations get quantized into discrete lumps, which must then be
described by a “dual” quasi-classical particle picture.

14.4 Applications and extensions

Bitko, Rosenbaum, and Aeppli [49] have studied the vicinity of the quantum phase tran-
sition in the Ising spin system LiHoF4 in the presence of a transverse magnetic field.
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Thus Ising spins have long-range dipolar exchange, and this puts the quantum critical point
above its upper-critical dimension because long-range forces tend to make the mean-field
approximation better. The resulting exponents are therefore similar to those of the mean
field, and physical properties can be computed in a manner very similar to Section 14.2.2.

We argued in Section 14.2.1 that for systems below the upper-critical dimension with a
finite-temperature phase transition (the cases N = 1, 2; d = 2), the critical temperature of
the transition is universally related to the ground state energy scale�−. For the case d = 2,
N = 2, we may choose�− = ρs , the ground state spin stiffness, and so Tc/ρs is a universal
constant. Indeed the universality applies to the entire temperature dependence of ρs , and
thus

ρs(T ) = ρs�ρ

(
T

ρs

)
, (14.49)

where ρs ≡ ρs(0), and �ρ is a universal function, which can be computed by the methods
of Section 14.2.1 in an ε expansion or by a direct numerical computation in d = 2 [426].
The value of Tc is determined by the argument at which �ρ first vanishes. In d = 2,
the function �ρ will display a discontinuity at T = Tc to allow for the Nelson–Kosterlitz
jump [358] in the superfluid density. For experimental comparisons, it is easy to see that
(14.49) implies the slightly weaker result

ρs(T )

ρs(0)
= �̃ρ

(
T

Tc

)
, (14.50)

with the function �̃ρ computable from �ρ . The numerically exact computations for d = 2
discussed in Section 14.3 have been used to obtain explicit computations of the functions
�ρ , �̃ρ for the model (14.2), and these results contain the jump in superfluid density. It is
quite intriguing that the data [131, 202, 518] on high-temperature superconductors satisfy
the relation (14.50), suggesting the proximity of a quantum critical point at which the
superfluid density vanishes at T = 0.

We have not explicitly considered the case of the upper-critical dimension d = 3 in our
discussion in this chapter. In this case there are logarithmic corrections, involving a nonuni-
versal upper cutoff scale in the argument of the logarithm, which can be computed using
renormalization group arguments similar to those considered in Sections 12.3 and 13.1.1.
We assume the system begins with a positive coupling u of order unity at a microscopic
scale �. Then, as in Sections 12.3 and 13.1.1, it pays to use the renormalization group
invariance to renormalize to a scale μ= T/c; from the flow equation (14.10) we see that
for ε= 0 and T ��

u R =
(

6

N + 8

)
1

ln(c�/T )
. (14.51)

Hence the quartic coupling u is logarithmically small. The ωn �= 0 modes can be integrated
out by precisely the methods of Section 14.2 to derive an effective action for the ωn = 0
modes. This step should be carried out at the scale μ= T/c, as this ensures that u R is
small and also that there are no large logarithms generated in the perturbation theory in
u R (the only scale running through the Feynman diagrams is T , and so dimensionally all
logarithms must be order ln(cμ/T ), which is small). The subsequent analysis of the action
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for the ωn = 0 modes then proceeds as before. To lowest order, the physical results can be
obtained from the d < 3 computation by the replacement ε → 1/(ln(c�/T )).

Irkhin and Katanin [237] have applied the methods of this chapter to crossovers in
anisotropic magnetic systems and have made comparisons to experimental and numeri-
cal data.

We have discussed the realization of the d = 3, N = 3 rotor quantum critical point in
TlCuCl3 by Ruegg et al. [414] in Sections 1.3 and 6.6. In particular, neutron scattering
observations have reported a low-lying amplitude fluctuation mode (or the “Higgs parti-
cle”) in the spectrum of the ordered phase, in addition to the usual spin-wave modes. The
universal properties of such a mode can be obtained directly from the approach devel-
oped in this chapter; we can examine (14.2) for r < rc in an expansion in the nonlinear
coupling u, which will be logarithmically small for d = 3 as in (14.51). The longitudinal
fluctuations in |φα| about a nonzero mean value lead to a mode whose energy vanishes as
|r − rc| → 0. It should also be mentioned that such an amplitude fluctuation mode is not
expected to be visible as T → 0 for r < rc for d = 2, as is clear from the large-G computa-
tions in Section 14.3, and from the large-N expansion at T = 0 in [97] and [439] because
the cross-section for the decay of the amplitude mode into multiple spin-wave excitations
is too large in low dimensions.
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This chapter turns to a systematic analysis of transport of conserved charges in the quantum
rotor model. We introduced some general concepts in Section 8.3, and these are illustrated
here by explicit computations at higher orders.

For d = 1, we considered time-dependent correlations of the conserved angular momen-
tum, L(x, t), of the O(3) quantum rotor model in Chapter 12. We found, using effective
semiclassical models, that the dynamic fluctuations of L(x, t) were characterized by a dif-
fusive form (see (12.26)) at long times and distances, and we were able to obtain values
for the spin diffusion constant Ds at low T and high T (see Table 12.1). The purpose of
this chapter is to study the analogous correlations in d = 2 for N ≥ 2; the case N = 1 has
no conserved angular momentum, and so there is no possibility of diffusive spin corre-
lations. Rather than thinking about fluctuations of the conserved angular momentum in
equilibrium, we find it more convenient here to consider instead the response to an exter-
nal space- and time-dependent “magnetic” field H(x, t) and to examine how the system
transports the conserved angular momentum under its influence.

In principle, it is possible to address these issues in the high-T region using the nonlinear
classical wave problem developed in Section 14.3 in the context of the ε= 3−d expansion.
However, an attempt to do this quickly shows that the correlators of L contain ultraviolet
divergences when evaluated in the effective classical theory. Physically, this is a signal that,
for small ε, transport properties are not dominated by excitations with energy � T (while
the order parameter fluctuations, considered in Section 14.3, were), and it is necessary to
include fluctuations with higher energy, which must then be treated quantum mechanically.
It is this quantum transport problem we address here. We show that it is necessary to solve
a quantum transport equation for the quantized particle excitations to describe diffusion
in the high-T and in the low-T quantum paramagnetic regions. We note, in passing, a
proposal [439] applying classical wave models to transport directly for d = 2.

It is useful to begin by introducing some basic formalism. We mostly adopt the
“soft-spin” approach to the quantum critical point discussed in Chapter 14, and so it is
useful to set up the machinery of transport theory using its notation. For general N , the
magnetic field H has N (N − 1)/2 components (as in (1.20)); this field generates rota-
tions of the φα order parameter, and the number of components equals the number of
ways of choosing independent planes of rotation in the N -dimensional order parameter
space. Only for the case N = 3 considered earlier do the order parameter and magnetic
field have the same number of components. We denote this generalized field by Ha , with
a= 1 . . . N (N − 1)/2. Note that for N = 2, a has only one allowed value and is therefore
redundant. (We later apply the N = 2 model to the superfluid–insulator transition and see
there that Ha represents the electrostatic potential.) In (11.4), we have already seen the

260
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form of the imaginary time effective action for the N = 3 rotor model in the presence of a
nonzero Ha in the fixed-length n field formulation. By the precise analog of the arguments
made in Section 11.1 in deriving (11.4), we may conclude that the generalization of the
soft-spin theory (14.2) in the presence of an external field Ha is

Z =
∫

Dφα(x, τ ) exp(−Sφ),

Sφ =
∫

dd x
∫ 1/T

0
dτ

{
1

2

[ (
∂τφα − i HaT a

αβφβ

)2 + c2(∇xφα)
2 + rφ2

α(x)
]

+ u

4!
(
φ2
α(x)

)2
}
. (15.1)

Note that Ha merely causes a precession of the φα field. The T a are N × N real antisym-
metric matrices that generate the O(N ) rotation (they are i times the generators of the Lie
algebra of O(N )). There are N (N − 1)/2 such linearly independent matrices. It is con-
venient to choose the basis in which all but two matrix elements of a given T a are zero,
with the nonvanishing elements equaling ±1. In this functional language, the observable
corresponding to the conserved angular momentum density is given by

La(x, t) = − δSφ
δHa(x, t)

. (15.2)

Note that there are N (N − 1)/2 components of this density, and their spatial integrals are
all constants of the motion.

Many of the physical arguments are actually clearer in a Hamiltonian formalism. For
the fixed-length model (11.4), we had the lattice Hamiltonian in (11.1). We can apply the
inverse of the transformation used in going from (11.1) to (11.4) to obtain the Hamiltonian
form of (15.1). If we interpret φa as the coordinate of a “particle” with unit mass moving
in N dimensions (no longer constrained to move on a sphere), as discussed in Section 6.6,
we obtain the following continuum Hamiltonian:

H =
∫

dd x

{
1

2

[
π2
α + c2(∇xφα)

2 + rφ2
α(x)

]
+ u

4!
(
φ2
α(x)

)2 − Ha(x, t)T a
αβπαφβ

}
. (15.3)

Here πα(x, t) is the canonical momentum to the field φα , which therefore satisfy the equal-
time commutation relations

[φα(x, t), πβ(x ′, t)] = iδαβδ(x − x ′). (15.4)

Equations (15.3) and (15.4) are, of course, the quantized Hamiltonian versions of the clas-
sical Hamiltonian problem defined by (14.40) and (14.41). The operator representation of
the angular momentum density is obtained by the analog of (15.2), and therefore

La(x, t) = T a
αβπα(x, t)φβ(x, t). (15.5)

It can be verified that the fields La , φα satisfy commutation relations that are the continuum
limit of the relations (1.21) for the fixed-length rotor model.
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The basic purpose of this chapter is an analysis of the time evolution of the expectation
value of La(x, t) in situations close to thermal equilibrium. Let us first examine the exact
Heisenberg equation of motion of the operator in (15.5) under the Hamiltonian in (15.3);
an elementary computation using the commutation relation (15.4) gives a result that can be
written in the form

∂La

∂t
= −�∇ · �J a + fabc Hb Lc, (15.6)

where fabc are the structure constants of the Lie algebra of O(N ) defined by the commu-
tation relations

[T a, T b] = fabcT c. (15.7)

These structure constants are totally antisymmetric in a, b, c; for N = 3, fabc= εabc, while
for N = 2, fabc= 0. The term proportional to fabc in (15.6) represents the Bloch precession
of the angular momentum about the external field. The quantity �J a in (15.6) is the angular
momentum current. An expression for �J a can easily be obtained by generating the equation
of motion as noted above; however, as the equations of motion involve only the divergence
of �J a , this expression will be uncertain up to the curl of an arbitrary vector. It is customary
to choose this arbitrary vector to obtain the transport current �J a

tr so that the expectation
value 〈 �J a

tr〉 vanishes in thermal equilibrium. In this case a nonzero 〈 �J a
tr〉 will describe bulk

transport of the angular momentum density 〈La〉 across macroscopic distances when the
system is driven out of equilibrium by an external perturbation.

Let us introduce some phenomenological considerations for a system close to ther-
mal equilibrium. We imagine that weak perturbations from unspecified sources deform
a thermal equilibrium state into one characterized by a nonzero, space-dependent angular
momentum density 〈La〉. In addition a slowly varying “magnetic” field Ha(x, t) is also
present. Both these perturbations tend to induce a nonzero transport current 〈 �J a

tr〉, and pro-
vided that the perturbations are weak and very slowly varying, we can write down the
following phenomenological expression for the current:〈 �J a

tr(x, t)
〉 = σ �∇Ha(x, t)− Ds �∇〈La(x, t)〉. (15.8)

We have introduced two transport coefficients in the above equation. The first, σ , is the
conductivity: a uniform Ha is expected to induce only a nonzero magnetization density,
and so any induced current can only be due to gradients of Ha . The second, Ds , is the
spin diffusion constant we met in the discussion of the fluctuations of La(x, t) for d = 1 in
Chapter 12: the combination of (15.6) and (15.8) shows that for the external field Ha = 0,
〈La(x, t)〉 satisfies the diffusion equation

∂〈La(x, t)〉
∂t

= Ds∇2〈La(x, t)〉, (15.9)

and identifies Ds as the diffusion constant.
Continuing our phenomenological analysis, we discuss the important Einstein relation

between σ and Ds . Imagine we are considering a closed system in which Ha is time
independent but a slow function of x . Eventually the system reaches thermal equilibrium
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in which the local angular momentum density is simply given by the equilibrium response
to a uniform field,

〈La〉 = χu Ha(x), (15.10)

where χu was defined in (11.3) (we have arranged the initial conditions so that this result
is compatible with conservation of the total angular momentum). Under this condition of
equilibrium the transport current should also vanish. This is compatible with the defining
transport relation (15.8) only if

σ = χu Ds . (15.11)

This is the basic Einstein relation between the diffusion coefficient characterizing fluctua-
tions and the conductivity representing the response of the system to an external field.

Using (15.11), we can obtain the basic scaling properties of the conductivity σ . Recall
from (11.30) that the scaling dimension of χu is d − z (we henceforth use the value z= 1
for the rotor models in the remainder of this chapter), and χu satisfies the scaling forms
(11.44):

χu = T d−1

cd
�u±

(
�±
T

)
(15.12)

on the two sides of the quantum critical point (recall that �± are energy scales measur-
ing the deviation of the ground state from the T = 0 quantum critical point). For d = 2,
the N =∞ result for the scaling functions �u± can be obtained by inserting (11.45),
(11.53), and (11.56) into (11.46). We note here some asymptotic limits, also mentioned
in Table 13.1: on the ordered side, where�− = ρs , the ground state spin stiffness, we have
the exact result for T � ρs obtained in (13.25), which shows that χu reaches a nonzero
value as T → 0:

χu = 2ρs

Nc2

[
1+ (N − 2)T

2πρs
+O

(
T

ρs

)2
]
; (15.13)

on the quantum paramagnetic side, we expect an exponentially small uniform susceptibility
for T ��+, and we can again obtain an exact result for d = 2 by the same dilute gas of
quasiparticles argument that led to (12.12):

χu = �+
πc2

e−�+/T ; (15.14)

finally, in the high-T limit, T ��±, we must rely on the large-N expansion to obtain the
value of the constant �u±(0), and the N =∞ result is

χu = T

c2

√
5

π
ln

(√
5+ 1

2

)
. (15.15)

Turning to the diffusion constant, no explicit scaling results have yet been obtained (indeed,
that is the primary purpose of this chapter), but we can deduce its scaling dimension by a
simple argument. A glance at (15.9) shows that Ds has the dimensions of (length)2/time.
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There is no field scale that appears in the definition of Ds , and as the scaling dimension
has to respect the conservation law for La , we have the scaling dimensions

dim[Ds] = z − 2,

dim[σ ] = d − 2, (15.16)

where the second relation follows from (11.30). Using dim[T ]= z, and matching engi-
neering dimensions with those of c and T , we then see that Ds must equal c2/T times a
universal function of �±/T . Combining this with (15.11) and (15.12) we have the main
scaling form for the conductivity [70,106,145,147,417,538]:

σ(ω) = Q2

�

(
kB T

�c

)d−2

�σ±
(

�ω

kB T
,
�±
kB T

)
, (15.17)

where �σ± are completely universal scaling functions. We have momentarily returned to
physical units by reinserting factors of �, kB , and the charge of the carriers, Q (this had
been absorbed into our definition of Ha ; Q= 2e for the superfluid–insulator transition);
we do this occasionally below when quoting results for σ . For future use, we have gener-
alized the conductivity to a dynamical frequency-dependent conductivity σ(ω) represent-
ing the response in the current at frequency ω to an external field at the same frequency
(σ ≡ σ(0)); the scaling dependence on ω/T then follows from now familiar arguments.
We focus in this chapter mainly on the high-T regime, T ��±, and therefore on the value
of �σ±(ω/T, 0). Also note an important and remarkable property of (15.17): in spatial
dimension d = 2, the prefactor of the power T disappears, and the conductivity is entirely
given by the scaling function �σ± times the fundamental constants Q2/�. In the high-
T limit, we are then left with the dimensionless scaling function �σ±(ω/T, 0), which
depends on no system parameters at all.

We work, throughout this chapter, in the high-T and quantum paramagnetic low-T
regions of Fig. 14.1. We do not study the crossover in the shaded classical region of
Fig. 14.1 near the finite-temperature transition for N = 2. Although transport properties
in this region are of considerable practical interest, the methods developed here are not
adequate to describe them. One consequence of restricting ourselves out of the shaded
region is that we are always in a regime where the perturbative expansion for the tricritical
crossover function in (14.5) is adequate.

15.1 Perturbation theory

We begin our computation of σ by a simple perturbative evaluation of the leading order
term in both the ε= 3− d and 1/N expansions [106].

First, let us specify more carefully the configuration of the system. We begin, at some
time in the remote past, with an infinite d-dimensional quantum rotor system in thermal
equilibrium at a temperature T . A small “magnetic field” with a uniform spatial gradient,
and oscillating with a frequency ω, is turned on, also in the remote past. We are interested in
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the eventual steady state in which there is a spatially uniform angular momentum current
present, also oscillating with the frequency ω. The proportionality constant between the
current and the field gradient defines the conductivity σ(ω). As the current is spatially
uniform, the magnetization density is zero at all times (so the term proportional to Ds in
(15.8) is not present).

It should be evident that this physical situation has a translational symmetry. However, in
considering the response to the field, we need a uniform gradient, and therefore it appears
necessary to consider a response at a nonzero wavevector. Because this is slightly inconve-
nient, we use an alternative method that should be familiar to most readers in the context
of discussion of the Kubo formula in many-body systems [136]. The basic point is to note
that Ha appears in (15.1) in the same form as the time component of an O(N ) non-Abelian
gauge field. It is then useful to generalize (15.1) to also introduce a fictitious spatial com-
ponent of this gauge field, denoted �Aa , by changing only the gradient terms in (15.1) to

1

2

[(
∂τφα + i HaT a

αβφβ

)2 + c2( �∇φα − �AaT a
αβφβ

)2]
. (15.18)

One advantage of introducing �Aa is that we can check that the current �J a appearing in
(15.6) is given by the simple expression

�J a = − δSφ
δ �Aa

; (15.19)

this result is the analog of (15.2). The action Sφ is seen to be invariant under the non-
Abelian gauge transformation

φα → φα +�aT a
αβφβ,

�Aa → �Aa + �∇�a,

Ha → Ha + i∂τ�
a, (15.20)

where �a is an arbitrary infinitesimal function of space and time. We can use this gauge
invariance to transform away the field Ha appearing with the time component, leaving us
with only a nonzero �Aa . From (15.20) we see that a system with a nonzero Ha and �Aa = 0
is equivalent to a system with Ha = 0 and �Aa = �∇�a , where ∂τ�a = i Ha . So if we have
a uniform, time-dependent, spatial gradient in Ha , we can define the space-independent
�Ea = �∇Ha and we see, in imaginary frequencies, that �Aa(ωn)= �Ea(ωn)/ωn in the gauge-
transformed system.

The above mapping allows us to present a simple prescription to compute σ(ωn). Work
with an Sφ with Ha = 0 and a nonzero space-independent �Aa(ωn). (Note that the external
source �Aa is explicitly at zero momentum.) Compute the expectation value of (15.19) under
this Sφ . Then the conductivity is given by the linear response to a nonzero �Aa by

σ(ωn) = − 1

ωn

δ

δ �Aa

〈
δSφ
δ �Aa

〉∣∣∣∣ �Aa=0
. (15.21)

It is a simple matter to use (15.21) to compute σ(iωn), either to first order in u or in
the N =∞ limit (in this case one simply uses the self-consistent large-N propagator in
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�Fig. 15.1 Feynman diagrams leading to the two terms in (15.22). The dark circle represents the term linear in �Aa in (15.18),
while the dark square is the term quadratic in �Aa.

(11.10), and otherwise ignores interactions). In both cases the answer can be written in the
following form:

σ(ωn) = −2c2T

ωn

∑
εn

∫
ddk

(2π)d

[
2c2k2

x

(ε2
n + c2k2 + m2)((εn + ωn)2 + c2k2 + m2)

− 1

ε2
n + c2k2 + m2

]
. (15.22)

The first term is the “paramagnetic” contribution, while the second is the “diamagnetic”
term, and these arise from the diagrams shown in Fig. 15.1. Here we have taken the gradient
of Ha along the x direction and kx is the x component of the d-dimensional momentum
k. The “mass” m has been computed in earlier chapters: the ε and large-N results differ
only in their T -dependent values for m. At N =∞ we have the result in (13.44). The ε
expansion was considered in Chapter 14, and for the high-T and quantum paramagnetic
low-T regions of interest here, we have from (14.19), (14.5), and (14.25) that

m2 = R − ε
(

N + 2

N + 8

)
2πT

√
R, (15.23)

where R is given in (14.24); in the high-T limit we have m2= ε((N+2)/(N+8))2π2T 2/3
to leading order in the ε expansion.

Now insert 1= ∂kx/∂kx in front of the diamagnetic term in (15.22) and integrate by
parts. The surface terms vanish in dimensional or lattice regularization, and the expression
for the conductivity becomes

σ(ωn) = −2c2

ωn
T
∑
εn

∫
ddk

(2π)d
2c2k2

x

ε2
n + c2k2 + m2

×
[

1

(εn + ωn)2 + c2k2 + m2
− 1

ε2
n + c2k2 + m2

]
. (15.24)

We evaluate the summation over Matsubara frequencies and analytically continue to real
frequencies. The resulting σ(ω) is complex, and we decompose it into its real and imag-
inary parts, σ(ω)= σ ′(ω) + iσ ′′(ω). We only present results for the real part σ ′(ω); the
imaginary part σ ′′(ω) can be obtained via the standard dispersion relation.
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We find that the result for σ ′(ω) has two distinct contributions [106, 522] of very diff-
erent physical origin. We separate these by writing

σ ′(ω) = σ ′I (ω)+ σ ′I I (ω). (15.25)

The first part, σ ′I (ω), is a delta function at zero frequency:

σ ′I (ω) = 2πc4δ(ω)

∫
ddk

(2π)d
k2

x

ε2
k

(
−∂n(εk)

∂εk

)
, (15.26)

where n(ε) is the Bose function in (13.63) and the excitations have the energy momen-
tum relation εk given in (13.64). We discuss the physical meaning of the delta function in
(15.26) in Section 9.1.1, and obtain a separate and more physical derivation of its weight
in Section 15.2. The second part, σ ′I I (ω), is a continuum above a threshold frequency
of 2σ :

σ ′I I (ω) = πc4
∫

ddk

(2π)d
k2

x

2ε3
k

(1+ 2n(εk))δ(|ω| − 2εk)

= π Sd

d
θ(|ω| − 2m)

(
ω2 − 4m2

4ω2

)d/2

[1+ 2n(ω/2)]
∣∣∣ω

c

∣∣∣d−2
, (15.27)

where Sd was defined below (14.9). It can be verified that the above results for σ(ω) obey
the scaling form (15.17).

We now discuss the physical and scaling properties of the two components of the con-
ductivity in turn; the results are also sketched in Fig. 15.2.

0

0.05

0.1

0 10
w / T

Φ's +

�Fig. 15.2 The real part,�′σ+, of the universal scaling function�σ+ in the high-T limit (T ��±) (see (15.17)) at the
one-loop level. The numerical values are obtained from (15.26) and (15.27) with d= 2 (ε= 1). There is a delta
function precisely atω/T = 0 represented by the heavy arrow. The weight of this delta function is given in (15.28)
and (15.29). The delta function contributes toσI , and the higher frequency continuum toσII .
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15.1.1 σ I

This is a zero-frequency delta function and is present only for T > 0. It is interpreted
as the contribution of thermally excited particles that propagate ballistically without any
collisions with other particles. This becomes evident when we re-derive this delta func-
tion contribution later in Section 15.2 using a transport equation formalism. Indeed, to first
order in ε (Chapter 14), or at N =∞ (Section 13.2), the excitations are simply undamped
particles with an infinite lifetime and energy momentum relation εk . As we saw in Section
13.2.2, it is necessary to go to first order in 1/N , to include collisions that give the quasi-
particles a finite lifetime and lead to a finite phase coherence time τϕ ; a similar analysis
in the ε expansion shows that such effects appear at order ε2. We show in Section 15.3
that these collisions also broaden the delta function in σI . The magnitude of the broad-
ening is expected to be determined by the inverse lifetime of the quasiparticles; in the
high-temperature limit, this inverse lifetime is of order ε2T [422] in the ε expansion, or of
order T/N in the large-N theory (see (13.68)). The typical energy of a quasiparticle at the
critical point is of order T , and so the quasiparticles are well defined, at least within the ε
or 1/N expansion. Note, however, that the quasiparticle interpretation breaks down at the
physically important values of ε= 1, N = 2, 3.

Let us evaluate the expression (15.26) for σI in its limiting regimes.
First, consider the high-T region, looking first at the ε expansion. The coefficient of the

delta function is a function of the ratio m/T , but note from (15.23) and below that m� T
for small ε. Evaluating (15.26) in this limit we find for ε small

σ ′I (ω) = 2πc2−d T d−1δ(ω)

[
1

18
− m

8πT
+ · · ·

]
= 2πc2−d T d−1δ(ω)

[
1

18
−
√
ε

8

(
2(N + 2)

3(N + 8)

)1/2

+ · · ·
]
. (15.28)

Actually the expression (15.26) is good to order ε but we have refrained from displaying the
next term as it is rather lengthy. The first term in (15.28) is obtained by evaluating (15.26)
at m= 0, d = 3; the second term is from an integral dominated by small ck ∼ m� T and
hence the Bose function can be replaced by its classical limit. It is important to note that
the current carried by the thermally excited carriers is dominated by the leading term of
(15.28), which arises from momenta k ∼ T �m (this is the reason we are not allowed to
use the classical wave model of Section 14.2.1 for transport properties). This will be useful
to us in the analysis of collisions in Section 15.3 where we will simply be able to set m= 0
to obtain the leading term. In the large-N theory, the corresponding expression for d = 2 is

σ ′I (ω) =
T

2
δ(ω)

[∫ ∞

#

dε

(
1+ #2

ε2

)
1

eε − 1

]

= T

2
δ(ω)× 0.68940 . . . , (15.29)

where #= 2 ln((
√

5+ 1)/2). Notice that, as m∼ T , we have now been unable to approxi-
mate εk ≈ k to get the leading result, as was done in the ε expansion. The spectral weight of
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the delta function to leading order in the ε expansion is, from (15.28), πT/9= 0.3491 . . . T
whereas the N =∞, d = 2 result is 0.3447 . . . T , which is remarkably close.

Next consider the low-T regime on the quantum paramagnetic side of the transition,
T ��+. Here both the ε and large-N expansions give the following result for d = 2:

σ ′I (ω) = T

(
�+T

2πc2

)(d−2)/2

e−�+/T δ(ω). (15.30)

Hence the spectral weight of the delta function is exponentially small, since free quasi-
particles are thermally activated.

15.1.2 σ II

This is the continuum contribution to σ that vanishes for ω< 2m. At this order in ε (or
1/N ) there is a sharp threshold at ω= 2m, but we expect that this singularity will be
rounded out when collisions are included at order ε2 (1/N ) (but we will not describe this
rounding out here). Although collisions have a strong effect at the threshold, they are not
expected to significantly modify the form of σ ′I I (ω) at higher frequencies where the trans-
port is predominantly collisionless. In particular, the ω → ∞ limit is precisely the T = 0
result [70]

σ ′I I (ω→∞) = π Sd

2dd

∣∣∣ω
c

∣∣∣d−2
. (15.31)

15.2 Collisionless transport equations

The low-order perturbative result for σ(ω) in Section 15.1 is clearly not physically satis-
factory. Owing to the absence of any collisions between the thermally excited particles, we
found a singular delta function at ω= 0 and a sharp threshold at ω= 2m. Before we can
repair these singularities, we present an alternative derivation of the delta function contribu-
tion at ω= 0. This is carried out using an equation of motion analysis that clearly exposes
the role of collisionless transport of thermally excited particles [106]. The advantage of
this new approach is that subsequently we can readily include the effects of collisions.

We saw in the previous section that, at the one-loop level, the only effect of the (φ2
α)

2

interaction was in inducing the T -dependent mass m in the propagators. This suggests
that we perform our equation of motion analysis with the following simplification of the
Hamiltonian in (15.3):

H′ = H0 +Hext. (15.32)

The first term, H0, is the free particle part in (6.52), but with a renormalized mass m:

H0 = 1

2

∫
dd x

[
π2
α + c2(∇xφα)

2 + m2φ2
α

]
, (15.33)
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and Hext contains the coupling to the external magnetic field Ha :

Hext = −
∫

dd x Ha(x, t)T a
αβπα(x, t)φβ(x, t). (15.34)

As noted earlier, we are interested only in the linear response of the current to the gradient,
�Ea = − �∇x Ha(x, t), and it is assumed below that �Ea is independent of x . Note that, unlike
in Section 15.1, we are making the gauge choice of coupling to Ha rather than the vector
potential �Aa ; this is for convenience and should not change the final gauge-invariant results.
Strictly speaking, the renormalized mass m that appears in H0 also depends upon �Ea ;
however, to linear order in �Ea , and for the case of a momentum-independent interaction,
this “vertex correction” can be neglected, and we do so here without proof. The explicit
form of the angular momentum current �J a can be obtained by computing the equation of
motion for the angular momentum density and putting it in the form (15.6). In the present
situation of an x-independent �Ea , the choice

�J a = c2T a
αβφα

�∇xφβ (15.35)

ensures that 〈 �J a〉 vanishes when �Ea = 0. Moreover, 〈 �J a〉 is independent of x for �Ea

nonzero. For completeness, let us also note here the expression for the total momentum
density, �P , of the quantum field theory H; this can be derived by studying the response of
the action to translations, as is discussed in standard graduate texts [245]:

�P = πα �∇xφα. (15.36)

Notice that it is quite distinct from �J a . In particular, in the absence of an external potential,

�P is conserved (i.e. it obeys an equation of the form ∂t �P + �∇· ↔Q = 0 for some local

second rank tensor field
↔
Q), whereas �J a is not.

The subsequent analysis is simplest in terms of the normal modes that diagonalize H0.
Using the standard approach of diagonalizing harmonic oscillator Hamiltonians we make
the mode expansions which generalize (6.54) to arbitrary time dependence:

φα(x, t) =
∫

ddk

(2π)d
1√
2εk

(
aα(k, t)e

i �k·�x + a†
α(
�k, t)e−i �k·�x),

πα(x, t) = −i
∫

ddk

(2π)d

√
εk

2

(
aα(�k, t)ei �k·�x − a†

α(
�k, t)e−i �k·�x), (15.37)

where the a(�k, t) operators satisfy the equal-time commutation relations in (6.55). It can
be verified that (15.4) is satisfied, and H0 is given by the analog of (6.10)

H0 =
∫

ddk

(2π)d
εk
[
a†
α(
�k, t)aα(�k, t)+ 1/2

]
. (15.38)

We also need the expression for the current �J a in terms of the a and a†. We are only
interested in the case where the system carries a position-independent current. For this
case, inserting (15.37) into (15.35), we find
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�J a(t) = �J a
I (t)+ �J a

I I (t),

�J a
I (t) = ic2La

αβ

∫
ddk

(2π)d
�k
εk

〈
a†
α(
�k, t)aβ(�k, t)

〉
,

�J a
I I (t) = −ic2La

αβ

∫
ddk

(2π)d
�k

2εk

〈
a†
α(−�k, t)a†

β(
�k, t)〉+ H.c. (15.39)

It should be evident that processes contributing to �J a
I I require a minimum frequency of

2m, and so �J a
I I contributes only to σI I (ω). We therefore drop the �J a

I I contribution below
and approximate �J a ≈ �J a

I . The ease with which the high-frequency components of σ(ω)
can be separated out is an important advantage of the present formulation of the quantum
transport equations. Of course, at this simple free-field level it is not difficult to include
�J a

I I also and rederive the complete results for σI and σI I obtained in Section 15.1. We
do not do so in the interest of simplicity, but urge the reader to carry out this instructive
computation.

The central object in our presentation of transport theory is the mean, time-dependent
occupation number of the normal modes:

fαβ(�k, t) =
〈
a†
α(
�k, t)aβ(�k, t)

〉
, (15.40)

in terms of which the expectation value of current is

〈 �J a(t)〉 = ic2T a
αβ

∫
ddk

(2π)d
�k
εk

fαβ(�k, t). (15.41)

The corresponding expression for the momentum density is

〈 �P(t)〉 =
∫

ddk

(2π)d
�k fαα(�k, t). (15.42)

Note the difference in the structure of the O(N ) indices between (15.41) and (15.42).
For the subsequent analysis it is convenient to choose a definite orientation for the field

Ha in the O(N ) space. As in Section 12.3, and the discussion above (12.47), we choose the
field that generates rotations in the 1−2 plane, that is, Ha = 0 except for the component
a, which couples to the generator of O(N ) with T a

1,2= − T a
2,1= 1. We henceforth denote

this nonzero component simply by H (and �E = �∇H ) and the index a is dropped. Similarly,
the current �J a is nonzero only for this component and denoted �J . It is also not difficult to
see that to linear order in �E , the distribution functions in (15.40) do not get modified for
all components α > 2. This is because any change in these components must be even in �E .
This conclusion is also true to all orders in the interaction u in H. We have therefore

fαβ(�k, t) = δαβn(εk), α > 2 or β > 2, (15.43)

where n(ε) is the Bose function in (13.63).
The interesting transport phenomena all occur within the 1, 2 components of fαβ(�k, t).

Within this subspace, it is helpful to transform to a basis where the external field is diago-
nal. We therefore define

a±(�k, t) ≡ a1(�k, t)± ia2(�k, t)√
2

, (15.44)
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Particles Holes

P

J

�Fig. 15.3 The contribution of the particle-like and hole-like excitations to the total momentum �P and the angular momentum
current �J. The particles are moving to the right, while the holes are moving to the left. Their contributions to �P
cancel out, while their contributions to �J add.

and we occasionally refer to a+ (a−) as the annihilation operators for the particles (holes).
The Hamiltonian H0 can also be expressed in terms of the a±, and it remains diagonal,
with the same form as in (15.33). The current becomes

〈 �J 〉 =
∫

ddk

(2π)d
∑
λ

λ
�c2k

εk

〈
a†
λ(
�k, t)aλ(�k, t)

〉
=
∫

ddk

(2π)d
∑
λ

λ
c2�k
εk

fλ(�k, t), (15.45)

where the index λ is assumed here and below to extend over the values ±1, and fλ ≡ fλλ
are the particle distribution functions (the components of f that are off-diagonal in this λ
space can easily be shown to vanish). Let us also note the expression for the momentum
density

�P =
∫

ddk

(2π)d
∑
λ

�k fλ(�k, t). (15.46)

An important difference between (15.45) and (15.46) is the λ inside the summation in
(15.45), which is absent from (15.46). Thus the angular momentum current is proportional
to the difference of the particle and hole number currents, while the momentum density is
proportional to their sum, see Fig. 15.3.

We have introduced all the basic formalism necessary to formulate the transport equa-
tions, which are the equations of motion of the distribution functions fλ(�k, t). These are
obtained by computing the Heisenberg equations of motion of a± under the Hamiltonian
H′ in (15.32). In deriving these equations we make approximations similar to those made
for �J : we drop all terms involving the product of two as or a†s as these contribute only
to the high frequency σI I (the mixing of these modes with the fλ can also be neglected
to linear order in �E). A straightforward computation then gives the central result of this
section: (

∂

∂t
+ λ �E(t) · ∂

∂ �k
)

fλ(�k, t) = 0. (15.47)

Let us solve (15.45) and (15.47) in linear response. In the absence of �E , the distribution
function has the equilibrium value given by the Bose function fλ(�k, t)= n(εk). We Fourier
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transform from time, t , to frequency, ω, and parameterize to linear order in �E :

fλ(�k, ω) = 2πδ(ω)n(εk)+ λ�k · �E(ω)ψ(k, ω), (15.48)

where we have used the fact that only �E breaks spatial rotation invariance and O(N ) sym-
metry to conclude that ψ is independent of �k/k and λ. Now inserting (15.48) in (15.47),
and using ∂εk/∂ �k= �k/εk it is simple to solve for ψ to leading order in �E :

ψ(k, ω) = c2

−iω

1

εk

(
−∂n(εk)

∂εk

)
. (15.49)

Finally, we insert this result in (15.45) and deduce the conductivity

σ(ω) = 2c4

−iω

∫
ddk

(2π)d
k2

x

ε2
k

(
−∂n(εk)

∂εk

)
. (15.50)

The real part of this agrees with (15.26). Note that the leading factor of 2 comes from the
sum over λ. The current is therefore carried equally by the thermally excited particles and
holes; they move in opposite directions to create a state with vanishing momentum but
nonzero charge current. We see in the next section that this charge current can be relaxed
by collisions among the particles and holes.

15.3 Collision-dominated transport

We proceed to improve (15.47) by including collisions among the excitations. These colli-
sions were previously considered in Section 13.2.2, where they led to a finite lifetime for
the excitations. Here we study how the same collisions degrade the transport of angular
momentum current.

A full analysis and derivation [104] of the collision contributions to the transport equa-
tion is quite lengthy and involved, and is beyond the scope of our discussion here. However,
the physical interpretation of the final result is quite straightforward, and with the benefit
of hindsight, it is possible to guess the collision terms by a simple application of Fermi’s
Golden Rule. We follow this latter route here and omit presentation of a complete, formal
derivation. We begin, in Section 15.3.1, by using the ε expansion on the Hamiltonian H in
(15.3). The large-N approach is considered later in Section 15.3.2.

15.3.1 ε expansion

The basic idea is to treat (15.47) as a rate equation for the occupation probability of particle
states with momentum �k and polarization λ. The terms present in (15.47) then represent
the flow of particles with their momenta obeying “Newton’s Law” d�k/dt = λ �E . Collisions
can therefore be accounted for by including terms that represent the rate at which particles
in state �k collide with other particles (the “out” terms) and also the rate at which particles
in other states scatter into the state �k (the “in” terms). Thus, if there is a matrix element M
for scattering of two particles with momenta and polarizations �k, λ and �k1, λ1 into states
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�k2, λ2 and �k3, λ3, then Fermi’s Golden Rule implies that the right-hand side of the transport
equation will acquire the term

− |M|2(2π)δ(εk + εk1 − εk2 − εk3)

× { fλ(�k, t) fλ1(
�k1, t)

[
1+ fλ2(

�k2, t)
][

1+ fλ3(
�k3, t)

]
− fλ2(

�k2, t) fλ3(
�k3, t)

[
1+ fλ(�k, t)

][
1+ fλ1(

�k1, t)
]}

(15.51)

summed over momenta �k1,2,3 and polarizations λ1,2,3. The expression outside the curly
brackets is clearly the collision rate as specified by Fermi’s Golden Rule. Inside the curly
brackets we have the factors associated with the out and in processes, respectively: particles
entering into a collision are being annihilated and have associated with them the average
Bose matrix element 〈|〈nk − 1|ak |nk〉|2〉= f (k) (where nk is the occupation of state k in
one realization of the thermal ensemble), while those emerging from a collision have the
Bose factor 〈|〈nk + 1|a†

k |nk〉|2〉= 1+ f (k) .
Applying the rules discussed above, we pursue a lengthy, but straightforward computa-

tion to give us the following rather formidable transport equation [106]:(
∂

∂t
+ λ �E · ∂

∂ �k
)

fλ(�k, t)

= −u2

9

∫
ddk1

(2π)d
ddk2

(2π)d
ddk3

(2π)d
1

16εkεk1εk2εk3

× (2π)dδ(�k + �k1 − �k2 − �k3)2πδ(εk + εk1 − εk2 − εk3)

×
{

4
{

fλ(�k, t) f−λ(�k1, t)[1+ fλ(�k2, t)][1+ f−λ(�k3, t)]

− [1+ fλ(�k, t)][1+ f−λ(�k1, t)] fλ(�k2, t) f−λ(�k3, t)
}

+ 2
{

fλ(�k, t) fλ(�k1, t)[1+ fλ(�k2, t)][1+ fλ(�k3, t)]

− [1+ fλ(�k, t)][1+ fλ(�k1, t)] fλ(�k2, t) fλ(�k3, t)
}

+ (N − 2)
{

fλ(�k, t)n(εk1)[1+ fλ(�k2, t)]
[
1+ n(εk3)

]
− [1+ fλ(�k, t)]

[
1+ n(εk1)

]
fλ(�k2, t)n(εk3)

}
+ (N − 2)

2

{
fλ(�k, t) f−λ(�k1, t)

[
1+ n(εk2)

][
1+ n(εk3)

]
− [1+ fλ(�k, t)][1+ f−λ(�k1, t)]n(εk2)n(εk3)

}}
, (15.52)

with λ= ± 1. Fortunately, interpreting the individual terms is quite simple. The first two
pairs of collision terms represent processes within those with polarizations in the 1–2 plane,
while the last two pairs (proportional to (N − 2)) represent collisions with particles with
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polarizations with α > 2; in linear response, the latter have their distribution function given
simply by the Bose function, as was noted earlier in (15.43).

In writing down (15.52), we have omitted terms associated with collisions that involve
creation or annihilation of particle–hole pairs, as they have a negligible contribution in
both the high- and low-T limits in the ε expansion (such processes are included in our
later discussion of the 1/N expansion). Thus a collision in which, for example, a positively
charged particle of momentum �k turns into two positively charged particles and a negatively
charged hole with momenta �k1, �k2, and �k3, respectively, is permitted by the symmetries of
the problem. However, it remains to evaluate the phase space over which such collisions
conserve total energy and momentum. In the low-T quantum paramagnetic region, we
need a particle with energy of at least 3�+ to have sufficient energy to emit a particle–
hole pair, and such particles are exponentially rare. In the opposite high-T region, note
that the “mass” m of the particles/holes is of order

√
εT (below (15.23)), whereas their

momentum is of order T . Consequently, to leading order in ε we may just replace the
energy momentum relation (13.64) by εk = ck (see also the discussion below (15.28)). The
particle–hole pair-creation collision requires that �k= �k1+�k2+�k3 and k= k1+k2+k3. This
is only possible if all three momenta are collinear, and this process therefore has vanishing
phase space in the high-T limit. More generally, for a nonzero m, the phase space vanishes
as ε → 0.

We analyze the solutions of (15.52) separately in the high-T and low-T paramagnetic
regions of Figs. 11.2, 11.3, and 14.1.

High T , T � �+
To obtain the T ��+ limit of the scaling results for conductivity as encapsulated in
(15.17), it is sufficient to replace the interaction strength u on the right-hand side of (15.52)
by the fixed point value discussed in Chapter 14 and in (14.11). For the result to leading
order in ε, we can set

u = 48π2c3

(N + 8)
εμε. (15.53)

The prefactor of c3 has been deduced by dimensional analysis; it did not appear in Chap-
ter 14 because we used units with c= 1 there. We expect that in the high-T limit, μ ∼ T/c,
as that is the only natural scale in the problem; in any case, to leading order in ε, the precise
value of μ is not needed.

The next step is to linearize the transport equation (15.52) by using the ansatz (15.48)
and to examine the structure of its solution in the limit of small ε. First, we find that the
λ dependencies in (15.48) and (15.52) are completely compatible, in that the linearized
equation for the unknown function ψ(k, ω) is independent of λ. Then we perform a simple
dimensional analysis of the linear integral equation satisfied by ψ . The dependencies on ε
(for small ε), T , and c, can all be scaled out, and it is not difficult to show that the solution
of the linear integral equation can be written in the form
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high-T region, T��±, as a function of ω̄=ω/T in the limit of small ε. The peak at small ω̄ has a width of order
ε2 and a height of order 1/ε2; this feature of the conductivity is denoted byσI . The collisionless contribution
(denotedσII) begins at ω̄ of order ε1/2; as ω̄→∞, this contribution is a number of order unity times ω̄1−ε .

ψ(k, ω) = c2

ε2T 3
�

(
ω

ε2T
,

ck

T

)
, (15.54)

where the dimensionless complex function� satisfies a parameter-free and universal linear
integral equation. This equation has to be solved numerically [106], and we will not discuss
the details of the numerical analysis here. Finally, computing the current by using (15.45)
and (15.48) we see that the conductivity σI can be written in the form

σI (ω) = (T/c)d−2

ε2
�σ I

( ω

ε2T

)
, (15.55)

where the scaling function �σ I is simply related to �. This result is clearly compatible
with the scaling form (15.17) for the total conductivity. Note that the natural frequency
scale in (15.54) and (15.55) is of order ε2T : this is the scale over which the delta function
in σ ′I was expected to be broadened. Furthermore, the peak value of the zero frequency
conductivity, which diverged at the one-loop level, is seen to be of order 1/ε2. (These
features are sketched in the schematic of the frequency-dependent conductivity in the high-
T limit in Fig. 15.4.)

The function �σ I therefore defines the smoothing of the delta function in (15.26) and
has the same total spectral weight. From (15.28) we see that it satisfies∫ ∞

0
dω̃Re�σ I (ω̃) = π

18
(15.56)

in the high-T limit. It should be noted that this sum rule is special to the leading order in ε
being considered here. For ε of order unity, there is no sharp distinction between σI and σI I

and there is no sum rule. Indeed the integral in (15.56) when carried out over the total σ will
be divergent. For any realistic lattice model there is a large microscopic energy scale (∼ J )
beyond which the universal scaling results do not apply, and the entire spectral weight
(including frequencies beyond J ) is not divergent; this latter spectral weight satisfies a
sum rule related to nonuniversal microscopic quantities and is unrelated to the universal
result (15.56).
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�Fig. 15.5 The real part of the universal function�σ I as a function of ω̃=ω/ε2T , defined in (15.55) in the high-T limit
�+/T = 0. This function describes the inelastic collision-induced broadening of theω= 0 delta function in
Fig. 15.2 at a frequency scale of order ε2T . The conductivity has an additional continuum contribution (σII(ω)) at
frequencies larger thanω ∼ ε1/2T , which is not shown above (see Fig. 15.4).

A complete numerical solution for the function �′σ I has been carried out in the high-T
limit in [106] for the case N = 2, and the solution is sketched in Fig. 15.5. Most important
is the value of �′σ I (0), which gives the value of the d.c. conductivity [106]

σ(0) = Q2

�

(
T

c

)d−2 0.1650

ε2
, N = 2, T ��±. (15.57)

As noted earlier, the result is a pure number times Q2/� for d = 2 (recall that Q is the
charge of the carriers, which we usually absorb into the definition of H ). These are among
the main results for low-frequency transport in this chapter.

Low T , T ��+
First, we have to determine the value of u that must be used in the transport equation
(15.52). Now�+ is the largest scale in the problem, and so the generalization of the result
(15.53) suggests that

u ∼ εc3(�/c)ε. (15.58)

However, this result is not adequate, as we now argue that the limits T → 0 and ε → 0
do not commute. For T ��+, as in Sections 10.4.2 and 12.2, all the thermally excited
particles are at energies just above the gap, and so we can approximate their dispersion by

εk = �+ + c2k2

2�+
. (15.59)

The typical value of the particle momentum is k ∼ √�+T /c. The coupling (15.58) would
imply that these quadratically dispersing, slowly moving particles scatter with a T matrix



278 Transport in d= 2

that is independent of momentum at low momentum. However, we know from elemen-
tary quantum mechanics [502] that this Born approximation result is incorrect; the full T
matrix scales as ∼ kd−2 as the momentum transfer k → 0, and so we should really use a
momentum-dependent coupling u of order

u ∼ kd−2�5−2d+ c2d−2, (15.60)

where the powers of �+ and c were deduced by a dimensional comparison with (15.58).
(Note that (15.60) diverges as k → 0 in d = 1, where the present perturbative transport
equation cannot be applied; there, we should instead use the exact S matrix in (12.13),
along with the exact transport analysis developed in Section 12.2.) We do not attempt
a complete solution of (15.52) with a momentum-dependent u here but will be satisfied
with a dimensional analysis that exposes the T dependence of physical observables. By
an analysis similar to that leading to (15.54), it is not difficult to show that in the limit
T ��+, the solution of the linearized integral equation satisfied by ψ takes the form

ψ(k, ω) = c2τϕe−�+/T

�+T
�

(
ωτϕ,

ck√
�+T

)
, (15.61)

where the particle scattering time, τϕ , is deduced by a dimensional analysis of the collision
term in (15.52) with the momentum-dependent coupling u in (15.60):

1

τϕ
∼ T

(
T

�+

)2(d−2)

e−�+/T . (15.62)

Note that this result for τϕ is consistent with the d = 2 result in (13.68). Now we can
compute the current by inserting (15.61) into (15.45) and (15.48), and the result for σI

takes the form

σI (ω) = T τϕ

(
�+T

2πc2

)(d−2)/2

e−�+/T�σ+I (ωτϕ). (15.63)

This is consistent with (15.30) in the collisionless limit τϕ → ∞. The scaling function
�σ+I is expected to be a constant when its argument vanishes, and so the d.c. conductivity
can be obtained from (15.62) and (15.63):

σI (0) ∼
(

T

�+

)−3(d−2)/2 (
�+
c

)(d−2)

. (15.64)

This result is valid for d > 2, where we see that the d.c. conductivity actually diverges as
T → 0. The total spectral weight in the “Drude” peak of the d.c. conductivity, σI , is expo-
nentially small, ∼e−�+/T , but the weak inelastic scattering between the thermally excited
particles is also exponentially rare; the two exponential factors cancel each other out, and
we get a power-law divergent conductivity. For d = 2, because of the logarithmic factors
obtained in (13.68), we expect σI (0) to diverge as (ln(�+/T ))2; recall that this logarith-
mic divergence was absent in the high-T limit (T ��+), where the d.c. conductivity was
a completely universal constant in d = 2. Finally, as we have already noted, these meth-
ods do not apply for d = 1, but it is interesting to note that the Einstein relation (15.11),
when combined with our earlier results (12.12) and (12.27), gives us a d.c. conductivity,
σ ∼ T−1/2, which also diverges as T → 0.
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15.3.2 Large-N limit

A closely related analysis of collisions can also be carried out in the large-N limit. It has
the advantage of working directly for d = 2 at all stages, and so we briefly discuss its
formulation here [425].

The central simplification of the large-N limit is apparent by a glance at the right-hand
side of (15.52): the �E field changes the distribution of particles only with polarization
α= 1, 2, but their scattering is dominated completely by collisions with particles with
polarization α > 2 (note the prefactor of (N − 2) in some of the collision terms). The col-
lisions with these particles actually appear in the form of interactions with the fluctuations
of the λ field, which were considered in Section 13.2. The propagator, �, of this λ field
was given in (13.42), and the upshot of the result (15.43) is that this propagator remains
unchanged in the presence of the �E field. To leading order in 1/N we can then simply
consider the Gaussian fluctuations of the λ field as an infinite set of harmonic oscillators
with density of modes given by the imaginary part of 1/�. These harmonic oscillators are
coupled to the normal modes of the order parameter n by the λn2 vertex in (11.6). The
collision terms arise entirely from this vertex, and their form can be deduced from Fermi’s
Golden Rule as discussed earlier. The resulting generalization of (15.47) is then

(
∂

∂t
+ λ �E · ∂

∂ �k
)

fλ(�k, t)

= − 2

N

∫ ∞

0

d�

π

∫
d2q

(2π)2
Im

(
1

�(�q,�)
)

×
{
(2π)δ(εk − ε|�k+�q| −�)

4εkε|�k+�q|

[
fλ(�k, t)(1+ fλ(�k + �q, t))(1+ n(�))

− fλ(�k + �q, t)(1+ fλ(�k, t))n(�)
]

+ (2π)δ(εk − ε|�k+�q| +�)
4εkε|�k+�q|

[
fλ(�k, t)(1+ fλ(�k + �q, t))n(�)

− fλ(�k + �q, t)(1+ fλ(�k, t))(1+ n(�))
]

+ (2π)δ(εk + ε|−�k+�q| −�)
4εkε|−�k+�q|

[
fλ(�k, t) f−λ(−�k + �q, t)(1+ n(�))

− (1+ f−λ(−�k + �q, t))(1+ fλ(�k, t))n(�)
]}
, (15.65)

where the function� is defined by analytic continuation from (13.42). Note that this equa-
tion is formulated directly in d = 2 and is entirely free of parameters, other than the energy
scales T and �+ (through the value of εk in (13.64)). Hence it is already in the scaling
limit, and its solution leads to a σ consistent with the scaling form (15.17).
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Equation (15.65) can of course also be formulated for arbitrary d, and it is reassuring to
verify that in their overlapping regions of validity (N large and ε small) the results (15.52) and
(15.65) are in precise agreement with each other. However, there are important differences
between the d = 2, large-N analysis of (15.65) and the small-ε analysis of (15.52) discussed
earlier. Now we have to use the full dispersion εk = (c2k2 + m2)1/2 in (13.64), and in no
regime is it possible to approximate it by εk = ck. Also, unlike (15.52), (15.65) does contain
terms corresponding to collisions that cause production of new particle–hole pairs.

As in the case of the ε expansion, it is useful to scale out the small parameter 1/N from
the transport equation (15.65). Using the ansatz (15.48), and obtaining the linear integral
equation for ψ , it can be shown that its solution can be written in the form

ψ(k, ω) = Nc2

T 3
�

(
Nω

T
,

ck

T
,
�+
T

)
, (15.66)

where again the dimensionless complex function� satisfies a parameter-free and universal
linear integral equation. If we compute the current by using (15.45) and (15.48), it follows
that the analog of (15.55) and (15.63) is in d = 2

σI (ω) = N�σ+I

(
Nω

T
,
�+
T

)
. (15.67)

The natural frequency scale in (15.66) and (15.67) is of order T/N – this is the scale, from
(13.71), over which the delta function in σ ′I was expected to be broadened. A schematic of
the large-N frequency-dependent conductivity in the high-T limit is shown in Fig. 15.6.

The sum rule on �′σ+I corresponding to (15.56) is specified by (15.29).
A complete numerical solution for the function�′σ+I has been carried out in the high-T

limit in d = 2 and the solution is shown in Fig. 15.7.
The large-N value of �′σ+I (0, 0), which gives the value of the d.c. conductivity, was

obtained as

σ(0) = Q2

�
0.1077N , d = 2, T ��±. (15.68)

These results complement similar results discussed earlier in the ε expansion.
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�Fig. 15.6 The analog of Fig. 15.4 for the large-N limit in d= 2.
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�Fig. 15.7 The real part of the large-N universal function�σ+I as a function of ω̃= Nω/T , defined in (15.67) in the high-T
limit�+/T= 0. This function describes the inelastic collision-induced broadening of theω= 0 delta function in
Fig. 15.2 at a frequency scale of order T/N. The conductivity has an additional continuum contribution (σII(ω)) at
frequencies larger thanω ∼ T , which is not shown above (see Fig. 15.6).

15.4 Physical interpretation

This is a convenient point to emphasize some interesting physical features of the above
computations of the universal behavior of the conductivity near a quantum critical point in
d = 2. The central property is the basic scaling form (15.17) and the above computations
have all been aimed at describing the structure in the scaling function �σ+. A remark-
able property of the result emerges in the high-T region of Fig. 14.1. Here the dynamical
conductivity in d = 2 depends upon no material parameters at all and is given by the pure
universal function �σ+(0, ω/T ).

We focus on two limiting regions of this result in the high-T region.

First, consider the high-frequency regime, ω� T . Here we found that the perturbative
analysis considered in Section 15.1 gave an adequate description of the physics. The main
result is contained in (15.31) and has a simple physical interpretation. The system is in
its ground state, and the oscillating external field creates a particle–hole pair. The con-
ductivity is then determined by the subsequent motion of this particle–hole pair. As we
are effectively at the critical coupling, there is a gapless spectrum, and this particle–hole
pair will also create a cascade of lower energy particle–hole pairs. Such processes lead to
corrections to (15.31) that are higher order in ε (computed in [134]) or 1/N (computed
in [70]). It is clear, however, that all these processes are essentially coherent. The system
was originally in its phase-coherent ground state, and the particle–hole pairs created move
coherently in response to the external field. This coherent transport is characterized by the
universal number �σ+(∞, 0).
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Now, consider the low-frequency regime, ω� T , which also includes the d.c. case.
Here, the interpretation is completely different. The system is initially at finite tempera-
ture, with an incoherent density of pre-existing particle–hole pairs already present. The
external field accelerates the particles and holes in opposing directions, but their repeated
collisions cause them to relax to local equilibrium. The transport is therefore due to a
collision-dominated drift of these excitations and is controlled entirely by inelastic pro-
cesses. Now, clearly, the low-frequency transport is entirely incoherent. However, because
the collision cross-section between the excitations has a universal form near a quantum
critical point, the remarkable fact is that the d.c. conductivity remains universal: it is given
by the number �σ+(0, 0). Results for this number appear in (15.57) in the ε expansion,
and in (15.68) in the 1/N expansion.

The distinct physical interpretations of �σ+(∞, 0) and �σ+(0, 0) make it clear that,
in general, there is no reason for them to have equal values. This difference leads to an
unusual structure in the T → 0 limit of the conductivity for d = 2. In Fig. 15.8 we show
the universal value of σ(ω, T → 0). For all ω> 0 we have a frequency-independent con-
ductivity given by the number �σ+(∞, 0) describing coherent transport; however, only
the single point ω= 0 is given by the value �σ+(0, 0), which characterizes incoherent
transport. For laboratory measurements, we note that a degree Kelvin in temperature con-
verts approximately to 20 GHz frequency by the factor kB/h; so even a radio frequency
measurement is usually comfortably in the regime �ω� kB T , and will therefore measure
�σ+(0, 0), given by the isolated ω= 0 point in Fig. 15.8.

In the first edition of this book it was noted that we could not rule out the existence
of exotic models or symmetries that may cause the collision-dominated and collisionless
limits (specified by �σ+(0, 0) and �σ+(∞, 0), respectively) to be equal. Remarkably,
since then, precisely such an “exotic” model has been found [219]: it is the N →∞ limit
of a SU(N ) gauge theory with maximal possible supersymmetry in 2+1 dimensions (this is
one of the phases of M theory). The transport properties of this model are obtained via the
AdS/CFT correspondence. We briefly review these recent developments in Section 15.5
below.
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�Fig. 15.8 The value ofσ(ω, T → 0) in d= 2 at the quantum critical coupling s= 0 (in the notation of Chapter 14) or
g= gc (in the notation of Chapter 11). The value�σ+(0, 0) characterizes the single pointω= 0.
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In physical applications of the N = 2 transport analysis of this chapter (discussed a bit
more explicitly in Section 15.6), we interpret σ as the electrical conductivity of carriers of
charge Q (Q= 2e for the superconductor–insulator transition); then, in laboratory units,
the conductivity is the quantum unit of conductance, Q2/�, times the scaling functions
computed here. So, when d = 2, the high-T region has a d.c. conductivity that is Q2/�

times a universal number. The reader may be familiar with other physical situations in
which universal conductances of order e2/h have been discussed previously. These include
Landauer transport in one-dimensional microstructures [19], universal conductance fluctu-
ations [18,291], or critical points in noninteracting electron models of transitions between
quantum Hall plateaus [78, 227, 229]. However, in all these cases, the transport is phase
coherent and the phase-breaking length is assumed to be larger than the sample size. In
contrast, the conductivity studied here near an interacting quantum critical point is domi-
nated entirely by inelastic processes; it is therefore quite remarkable that the d.c. conduc-
tivity is universal despite being entirely incoherent.

15.5 The AdS/CFT correspondence

All our explicit computations so far of quantum critical transport have begun from a quasi-
particle picture. Then we have included interactions to destroy the quasiparticles, and
moved towards a generic quantum critical description. One consequence of this weak-
coupling approach was the parametrically strong frequency dependence of the conductiv-
ity, as illustrated in Fig. 15.6.

It would clearly be valuable to have a complementary description which avoids any ref-
erence to quasiparticle excitations: of the quantum-critical region of a strongly-coupled
theory, these are not well-defined excitations at any scale. Remarkably, just such a descrip-
tion has emerged [219] from what is known as the AdS/CFT correspondence in string
theory.

Before describing these results, we rephrase the general discussion of transport pre-
sented at the beginning of this chapter. First, let us generalize the uniform susceptibility χu

appearing in (15.10) to χu(k, ω), describing the response to a space- and time-dependent
magnetic field. Using the Kubo formula for the dynamic conductivity in (8.32) or (15.21),
and relating correlations of the current to those of the conserved density via the equation
of motion (15.6), we conclude that σ(ω), is given by

σ(ω) = lim
k→0

−iω

k2
χu(k, ω). (15.69)

The correlation function χu(k, ω) allows us to concisely describe the essence of the
crossover from “phase-coherent” or “collisionless” dynamics at high frequencies ω� T ,
to “phase-incoherent” or “collision-dominated” dynamics at low frequencies, ω� T . The
ω and k dependence takes distinct forms in the two limits, as we now describe.

First, consider the collisionless regime, ω� T . Here, we may as well set T = 0, and the
form of χu(k, ω) is then strongly restricted by scale and relativistic invariance. Here it pays
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to use a fully relativistic notation, and use spacetime indices (μ, ν= t, x, y), and consider
the general form of χu,μν(pμ), where pμ= (ω, ck) is a spacetime momentum; note that
χu ≡ χu,t t . The two essential constraints on χu are (i) its scaling dimension dim[χu]= d−z
which follows from (15.16) and (15.11), and (ii) the conservation equation (15.6), which
implies pμχu,μν = 0. There is a unique relativistically covariant function which satisfies
these constraints (we restrict our attention to d = 2):

χu,μν = Q2

�c2
K
√

p2

(
ημν − pμ pν

p2

)
, (15.70)

where p2 = ημν pμ pν with ημν = diag(−1, 1, 1), and only the universal dimensionless
constant K is undetermined. For χu ≡ χu,t t , we can write this as

χu(k, ω) = Q2

�
K

k2√
c2k2 − (ω + iη)2

. (15.71)

Thus collisionless transport at relativistic quantum critical points in d = 2 is described com-
pletely by the single number K . Combining (15.69) with (15.71), we obtain the
conductivity

σ(ω) = Q2

�
K ; �ω � kB T , (15.72)

and so the number K is that determined in (15.31) to leading order in the ε expansion [70].
Now let us turn to the collision-dominated regime, ω� T . Here we may no longer use

relativistic invariance, because thermal fluctuations have strongly broken the relativistic
invariance of the ground state. Instead, the form of χu is now dictated by the constraints
of “hydrodynamics”: this is the idea that perturbations relax back to thermal equilibrium
under the transport equation (15.8). We may now use (15.6) and (15.8) to directly compute
the linear response in the density La to an applied field Ha : we assume that the field is
oriented along a single direction in spin space, and so drop the index a and the structure
constants fabc. In this manner, we obtain the response function

χu(k, ω) = χu
Dsk2

Dsk2 − iω
, (15.73)

where χu is the static susceptibility, and Ds is the diffusion constant in (15.9). Note the
strong contrast in the functional forms in (15.71) and (15.73) between the collisionless and
collision-dominated behaviors. Applying (15.69) to (15.73), we can verify the Einstein
relation in (15.11) for the conductivity at zero frequency:

σ(ω) = χu Ds, �ω � kB T . (15.74)

We have already presented the scaling form for χu in (15.12); that for Ds follows similarly

Ds = c2

T
�s±

(
�±
T

)
, (15.75)

and then (15.74) implies (15.17). Note that the resulting value of σ(0) has nothing to do
with the constant K in the collisionless dynamics in (15.71).
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15.5.1 Exact results for quantum critical transport

Now we are ready to describe the solvable model obtained from the AdS/CFT correspon-
dence, which fully confirms the structure of χu(k, ω) obtained in (15.71) and (15.73).

The solvable model may be viewed as a generalization of the gauge theory we consider
in (19.80) when we discuss the criticality of antiferromagnets on the square lattice in Sec-
tion 19.3.5. We take the same basic structure of critical matter fields coupled to a gauge
field, and generalize it to a relativistically invariant model with a non-Abelian SU(N ) gauge
group and the maximal possible supersymmetry. The resulting supersymmetric Yang-Mills
(SYM) theory has only one independent coupling constant g, which is the analog of the
couplings gμ in (19.80). The matter content is naturally more complicated than the com-
plex scalar wa in (19.80), and also involves relativistic Dirac fermions as in Chapter 17.
However, all the terms in the action for the matter fields are also uniquely related by super-
symmetry to the single coupling constant g. Under the renormalization group, it is believed
that g flows to an attractive fixed point at a nonzero coupling g= g∗; the fixed point then
defines a supersymmetric conformal field theory in 2+1 dimensions (a SCFT3). We are
interested here in computing the transport properties of the SCFT, as a paradigm of quan-
tum critical transport at a strongly interacting quantum critical point.

A remarkable recent advance has been the exact solution of this SCFT3 in the N →∞
limit using the AdS/CFT correspondence [243]. The solution proceeds by a dual formu-
lation as a four-dimensional supergravity theory on a spacetime with uniform negative
curvature: anti-de Sitter space, or AdS4. The solution is also easily extended to nonzero
temperatures, and allows direct computation of the correlators of conserved charges in real
time. At T > 0 a black hole appears in the gravity theory, resulting in an AdS-Schwarzschild
spacetime, and T is the Hawking temperature of the black hole; the real-time solutions also
extend to T > 0.

A description of the derivation of the results is beyond the scope of the present treatment,
and the reader is referred to the original paper [219] and reviews cited therein. The results
of a full computation of the density correlation function, χu(k, ω) are shown in Fig. 15.9
and 15.10. The most important feature of these results is that the expected limiting forms
in the collisionless (15.71) and collision-dominated (15.73) are obeyed. Thus the results do
display the collisionless to collision-dominated crossover at a frequency of order kB T/�,
as we expected from the physical discussion in Section 15.4.

At this point, we describe some technical aspects of the results which turn out to have
important physical implications. For this, let us generalize the arguments leading to χu,μν

in (15.70) to T > 0. At T > 0, we do not expect χμν to be relativistically covariant, and
so can only constrain it by spatial isotropy and density conservation. Setting the velocity
c= 1 for the remainder of this subsection, these two constraints lead to the most general
form

χu,μν(�k, ω) = Q2

�

√
p2
(

PT
μν K T (k, ω)+ P L

μν K L(k, ω)
)
, (15.76)
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where PT
μν and P L

μν are orthogonal projectors defined by

PT
00 = PT

0i = PT
i0 = 0, PT

i j = δi j − ki k j

k2
, P L

μν =
(
ημν − pμ pν

p2

)
− PT

μν, (15.77)

with the indices i, j running over the two spatial components. Thus, in the general case
at T > 0, the full density and current response functions as a function of k and ω are
described in terms of two functions K L ,T (k, ω), representing current fluctuations longi-
tudinal and transverse to the momentum. The results in (15.73) and (15.71) are obtained
by taking suitable limits of these functions. These two functions are not entirely indepen-
dent. At T > 0, we expect all correlations to be smooth functions at k= 0: this is because all
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correlations are expected to decay exponentially to zero as a function of spatial separation.
However, this is only possible from (15.76) if we have the additional relation

K T (0, ω) = K L(0, ω). (15.78)

The relations of the previous paragraph are completely general and apply to any theory.
Specializing to the AdS-Schwarzschild solution of SYM3, the results were found to obey
a simple and remarkable identity [219]:

K L(k, ω)K T (k, ω) = K2, (15.79)

where K is a known pure number, independent of ω and k. Let us give some more details on
the origin of (15.79). In the AdS/CFT correspondence, every globally conserved quantity in
the CFT gets mapped onto a gauge field in AdS. Moreover, in the leading classical gravity
theory on AdS, different global charges commute with each other, and so can be considered
separately. In the end, we have a U(1) gauge field on AdS for every global conservation
law of the CFT. The low-energy effective field theory on AdS4 has the standard Einstein–
Maxwell action for gravity+electromagnetism. The Maxwell action is in 3+1 dimensions,
and this is well-known to have a self-dual structure corresponding to the exchange of elec-
tric and magnetic fields. Thus we have the important and key result that every global charge
in a CFT3 maps onto a self-dual theory in the leading gravity approximation on AdS4. The
identity in (15.79) is a consequence of this emergent self-duality of CFT3s.

The combination of (15.79) and (15.78) now fully determines the response functions
at zero momenta: K L(0, ω) = K T (0, ω) = K. Then, from (15.69) we have for the
conductivity

σ(ω) = Q2

�
K. (15.80)

This result is an important surprise: the conductivity of the classical gravity theory on AdS4

is frequency-independent. Furthermore, its value is fixed by self-duality to be the constant
K appearing in the self-duality relation (15.79). All these remarkable results are a direct
consequence of the self-duality of the U(1) Maxwell theory on AdS4.

It is also possible to go beyond the simplest Einstein–Maxwell theory on AdS4, which
corresponds to the N →∞ limit of SYM3. In [354], Myers et al. argued that the leading
corrections away from N → ∞ could be incorporated into corrections to the Einstein–
Maxwell action for the U(1) gauge field. They showed that such corrections did induce a
universal frequency dependence in σ(ω), so that for a wide parameter regime the results
acquired features bearing some similarity to Fig. 15.4.

It is also natural to ask whether anything like the self-duality relation (15.79) applies to
the O(N ) rotor model considered in the rest of this chapter. For N = 2, there have been
extensive discussions in the literature of a “particle–vortex” duality [109]. Under this dual-
ity, the theory of particles given by (2.11) for the N = 2 rotor model maps onto a relativistic
theory of vortices. However this is not a self -duality: the theory of vortices has an emer-
gent U(1) gauge field, and is described by the theory of quantum electrodynamics in the
presence of a complex scalar field representing the vortex excitations. Reference [219]
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considered the action of this particle–vortex duality on the correlation functions in (15.76),
and found the following interesting relations:

K L(k, ω)K̃ T (k, ω) = (2π)2, K T (k, ω)K̃ L(k, ω) = (2π)2, (15.81)

where K̃ L ,T determine the correlators of the vortex current as in (15.76), as opposed to the
particle current determined by K L ,T . Because of the lack of self-duality the vortex current
correlators do not equal the particle current correlators. Unlike (15.79), (15.81) does not
fully determine the correlation functions at k= 0: it only serves to reduce the four unknown
functions K L ,T , K̃ L ,T to two unknown functions. Thus, in general, there is no exact self-
duality, and we expect σ(ω) to be frequency dependent. We believe that the self-duality
arises only in the classical gravity approximation of the dual theory on AdS4.

15.5.2 Implications

Let us summarize the lessons we have learnt from the AdS theory of quantum critical
transport in strongly interacting systems in 2+1 dimensions. This theory should be viewed
as complementary to the quasiparticle-based theory, whose implications were discussed in
Section 15.4.

The lessons are:

• There is a large class of strongly interacting 2+1 dimensional “nearly perfect” fluids
which are able to relax back to thermal equilibrium in a time of order �/(kB T ), as we
indicated in (1.5). They are “nearly perfect” because this relaxation time is the shortest
possible, as noted in (2.13).

• The quasiparticle transport theory of Sections 15.2 and 15.3 starts from the free theory
with an infinite thermal equilibration time, and includes the effect of weak interactions
using the Boltzmann equation. Complementary to this is the quantum-critical transport
theory applicable for the shortest possible equilibration time of order �/(kB T ), which is
the classical Einstein-Maxwell theory on AdS4.

• The Einstein–Maxwell theory exhibits collisionless dynamics for ω� T , and collision-
dominated dynamics for ω� T , as shown in Figs. 15.9 and 15.10.

• All continuous global symmetries are represented by a self-dual Einstein–Maxwell
theory.

• This emergent self-duality implies that σ(ω) is frequency-independent in the Einstein–
Maxwell theory and equal to the self-dual value.

• A frequency-dependent conductivity is obtained [354] upon considering corrections to
the effective Einstein–Maxwell theory.

• Such “nearly perfect” fluids also have universal momentum transport. By extending the
scaling arguments to momentum transport we conclude that the ratio of the shear vis-
cosity to the entropy density η/s should equal a universal number characterizing the
collision-dominated regime. This number was computed in the Einstein–Maxwell the-
ory by Kovtun, Son, and Starinets [281] and found to equal �/(4πkB).

It is a remarkable fact that many experiments on the superfluid–insulator transition [490]
do exhibit a critical conductivity very close to the self-dual value obtained by setting
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K L ,T = K̃ L ,T in (15.81): i.e. σ(ω)= Q2/h. We suggest that this indicates a reasonable
description of the low-energy physics by the Einstein–Maxwell theory.

15.6 Applications and extensions

An important application of the transport results of this chapter is for the N = 2 case,
which describes a superfluid to insulator transition in lattice models of bosons. This con-
nection is clearer from the discussion in Chapter 9. An intuitive understanding can be
gained by returning to the lattice Hamiltonian representation in (11.1) and interpreting it as
an effective Hamiltonian for a regular two-dimensional array of mesoscopic superconduct-
ing quantum dots [20, 76, 83, 121, 125, 252, 450]. For N = 2, there is only one component
of the angular momentum operator, L̂i (see (6.33)). We interpret L̂i as the number oper-
ator for bosonic Cooper pairs on a superconducting quantum dot at site i , minus a fixed
integer that equals the number of Cooper pairs on an isolated island (the role of this integer
should be clear from Chapter 9). The term proportional to g J in (11.1) is a caricature of
the additional Coulomb energy required for deviation in the number of Cooper pairs on a
dot from its optimum value. The angle, θ , defining the orientation of n̂ (as in (6.15)), is
taken as the phase of the superconducting order parameter. Then the term proportional to
J represents Josephson tunneling of Cooper pairs between neighboring dots. The phase of
the rotor model with long-range order in n represents the superfluid, while the quantum
paramagnet is the Mott insulator of Cooper pairs.

A large number of experiments have measured d.c. transport on granular films,
Josephson junction arrays, and homogeneously disordered superconductors undergoing
a zero-temperature transition from a superconductor to an insulator; one of the earliest
such experiments was carried out by Strongin et al. [495] and there are reviews of more
recent works in [211] and [301]. However, these experiments cannot be quantitatively
modeled by the simple models we have considered here because all experimental systems
have an appreciable amount of randomness, and this is surely a relevant perturbation on
the simple, clean, quantum critical point we have studied here. (A d = 1+ ε expansion
for finite-temperature transport in a disordinal system has been described recently by
Herbut [215, 216].) Further, we have entirely ignored fermionic excitations [447, 508],
and these could be important near the critical point, although there are indications in
recent simulations [166] that neglect of fermionic excitations is justified. In some inter-
esting experiments [405], a disordered superconducting film was coupled to a tunable,
dissipative metallic bath, and some initial theoretical attempts to explain the result have
also appeared [450, 534]. (We briefly consider the general consequences of fermionic
excitations in Chapter 18.) Finally, the long-range part of the Coulomb interaction is prob-
ably also relevant at the superfluid–insulator transition. This issue has been addressed
in [146], [547], and [546]. Nevertheless, the scaling forms for the conductivity, and
our general discussion on the crossover between coherent and incoherent transport at a
frequency scale of order kB T/�, is expected to apply to these more complex systems
as well.
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Dynamical measurements of the conductivity at frequencies of order kB T/� in systems
near a superfluid–insulator transition are not yet available. However, such measurements
have been made for a system near a metal–insulator transition by Lee et al. [290], and they
nicely exhibit scaling as a function of ω/T . Related measurements [132] have also been
made near quantum Hall transitions in d = 2, and these are again consistent with scaling
as a function of ω/T . As we discussed at the conclusion of Section 14.2.2, universal time
scales of order �/kB T require that the quantum critical theory have nonvanishing inter-
actions between its thermal excitations, for otherwise the interactions are “dangerously
irrelevant” and the characteristic times are higher powers of 1/T . These quantum Hall
measurements therefore indicate that the noninteracting electron models for these transi-
tions [227,481] have to be extended to include interactions.

Recently, exciting prospects have emerged for measuring the dynamic conductivity near
the superfluid–insulator transition in ultracold atom systems [164,175].

For these ultracold atom systems, and more generally, it is essential for the theory to
move beyond the strict relativistic theories considered in the present chapter. We need
to allow for generic chemical potentials, where, as we showed in Chapter 9, the theory
acquires deviations from the z= 1 critical theory. It would also be useful to allow for
weak applied magnetic fields, as well as scattering off impurities. A general theory for
such perturbations in the quantum critical region was presented by Hartnoll et al. [203]: a
number of universal results were obtained in the collision-dominated regime, and verified
by exact solutions using the AdS/CFT correspondence.
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OTHER MODELS





16 Dilute Fermi and Bose gases

We consider a number of different models in this chapter, but they share some important
unifying characteristics. They all have a global U(1) symmetry. We are particularly inter-
ested in the behavior of the conserved density, generically denoted as Q, associated with
this symmetry. All the models exhibit a quantum phase transition between two phases with
a specific T = 0 behavior in the expectation value of Q. In one of the phases, 〈Q〉 is pinned
precisely at a quantized value and does not vary as microscopic parameters are varied. This
quantization ends at the quantum critical point with a discontinuity in the derivative of 〈Q〉
with respect to the tuning parameter, and 〈Q〉 varies smoothly in the other phase; there is
no discontinuity in the value of 〈Q〉, however.

We have already met a transition of the above type in Chapter 9: the Mott insulator to
superfluid transition at points excluding the tips of the lobes in Fig. 9.1, where the coupling
K1 in (9.34) did not vanish. In this case Q was just the boson density b̂†

i b̂i/ad . We will
find it convenient to shift the definition of Q by a constant so that the quantized value is
zero: in this case, Q equals (b̂†

i b̂i − n0(μ/U ))/ad . In this chapter, we study the universal
properties of the continuum theory of this transition, which, following (9.34), we write in
the following form:

ZB =
∫

D�B(x, τ ) exp

(
−
∫ 1/T

0
dτ
∫

dd xLB

)
,

LB = �∗B
∂�B

∂τ
+ 1

2m
|∇�B |2 − μ|�B |2 + u0

2
|�B |4. (16.1)

We have dropped the second-order time derivative (proportional to K2) from (9.34) and
have not included any nonlinearity beyond the quartic, as these will all be shown to be
irrelevant near the transition. We have rescaled �B by a factor of the square root of K1 so
that the first-order time derivative has coefficient unity. This sets the normalization of the
continuum field �B , which is always consistently maintained in this chapter. This time-
derivative term is the same as that arising in the coherent state path integral for canonical
bosons, where it is the “Berry phase” associated with the adiabatic evolution of the coher-
ent states, which were described in Section 9.2.1. Physically, the Berry phase term here
accounts for the Josephson precession in the phase of a condensate of the bosons in the
presence of an external chemical potential. So the normalization of �B is determined by
its Berry phase, a feature we see in other models. With the above rescaling of �B it is easy
to see from (9.37) and (9.34) that, close to the quantum critical point, the coefficient of
|�B |2 is the negative of the chemical potential, μ, up to an additive constant. We absorb
this unimportant additive constant into a redefinition of μ, and this leads to the |�B |2 term

293
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shown in (16.1). We can also identify the charge Q with �∗B�B as

〈Q〉 = −∂FB

∂μ
= 〈|�B |2〉, (16.2)

with FB = −(T/V ) lnZB . With the form of the quadratic term in (16.1), we also see from
the mean-field results in Chapter 9 that the quantum critical point is precisely at μ = 0 and
T = 0. We see in this chapter that there are no fluctuation corrections to this location from
the terms in LB (the K2 term in (9.34) does lead to shifts in the position of the quantum
critical point, but we have already set it to zero here as it is not important for the critical
theory). So at T = 0, 〈Q〉 takes the quantized value 〈Q〉 = 0 for μ < 0, and 〈Q〉 > 0
for μ > 0; we are particularly interested in the nature of the onset at μ = 0 and finite-T
crossovers in its vicinity. We have also assumed here that K1 > 0, and so, from (9.37) and
(9.40), 〈Q〉 increases from its quantized value away from the quantum critical point. The
opposite case of decreasing Q can be treated after a particle–hole transformation and has
essentially identical properties.

After our study of ZB , we find it useful to introduce a closely related model that also
displays a quantum phase transition with the same behavior in a conserved U(1) density
〈Q〉 and has many similarities in its physical properties. The model is exactly solvable
and is expressed in terms of a continuum canonical spinless fermion field �F ; its partition
function is

ZF =
∫

D�F (x, τ ) exp

(
−
∫ 1/T

0
dτ
∫

dd xLF

)
,

LF = �∗F
∂�F

∂τ
+ 1

2m
|∇�F |2 − μ|�F |2. (16.3)

The functional integral is over fluctuations of an anticommuting Grassman field �F (x, τ )
(see the discussion in [357] for an introduction to Grassman numbers and their functional
integrals). Note that the terms in LF are in one-to-one correspondence with those in LB in
(16.1), except that there is no quartic |�F |4 term. Such a term vanishes because the square
of a Grassman number is zero, which is just a mathematical representation of the Pauli
exclusion principle. As a result, LF is just a free-field theory. Like ZB , ZF has a quantum
critical point at μ = 0, T = 0 and we discuss its properties in this chapter; in particular,
we show that all possible fermionic nonlinearities are irrelevant near it. The reader should
not be misled by the apparently trivial nature of the model in (16.3); using the theory
of quantum phase transitions to understand free fermions might seem like technological
overkill. We will see that ZF exhibits crossovers that are quite similar to those near far
more complicated quantum critical points, and observing them in this simple context leads
to considerable insight.

In a general spatial dimension, d, the continuum theories ZB and ZF have different,
though closely related, universal properties. However, we argue here that the quantum crit-
ical points of these theories are exactly equivalent in d = 1. This is one of the important
results of this chapter. We will see that the bosonic theory ZB is very strongly coupled in
d = 1, and we present compelling evidence that the solvable fermionic theory ZF is its
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exactly universal solution in the vicinity of the μ = 0, T = 0 quantum critical point. We
are also able to make a correspondence between the operators of the two theories, and this
allows us to obtain certain exact results for experimentally measurable bosonic correlation
functions of ZB , including some for the nonzero-temperature dynamical properties that
are an important focus of this book. Of course, all fermionic correlators of ZF are exactly
known in arbitrary d , but these are not of significant practical interest.

The last major topic of this section is a discussion of the dilute spinful Fermi gas in
Section 16.4. This generalizes ZF to a spin S = 1/2 fermion �Fσ , with σ =↑,↓. Now
Fermi statistics do allow a contact quartic interaction, and so we have

ZFs =
∫

D�F↑(x, τ )D�F↓(x, τ ) exp

(
−
∫ 1/T

0
dτ
∫

dd x LFs

)
,

LFs = �∗Fσ
∂�Fσ

∂τ
+ 1

2m
|∇�Fσ |2 − μ|�Fσ |2 + u0�

∗
F↑�∗F↓�F↓�F↑. (16.4)

This theory conserves fermion number, and has a phase transition as a function of increas-
ingμ from a state with fermion number 0 to a state with nonzero fermion density. However,
unlike the above two cases of ZB and ZF , the transition is not always at μ = 0. The prob-
lem defined in (16.4) has recently found remarkable experimental applications in the study
of ultracold gases of fermionic atoms. These experiments are also able to tune the value
of the interaction u0 over a wide range of values, extended from repulsive to attractive.
For the attractive case, the two-particle scattering amplitude has a Feshbach resonance
where the scattering length diverges, and we obtain the unitarity limit. This Feshbach res-
onance plays a crucial role in the phase transition obtained by changing μ, and leads to a
rich phase diagram of the so-called “unitary Fermi gas.”

Our treatment of ZFs in the important experimental case of d = 3 shows that it defines
a strongly coupled field theory in the vicinity of the Feshbach resonance for attractive
interactions. It therefore pays to find alternative formulations of this regime of the unitary
Fermi gas. One powerful approach is to promote the two-fermion bound state to a separate
canonical Bose field. This yields a model, ZF B , with both elementary fermions and bosons;
i.e. it is a combination of ZB and ZFs with interactions between the fermions and bosons.
We define ZF B in Section 16.4, and use it to obtain a number of experimentally relevant
results for the unitary Fermi gas.

We begin in Section 16.1 by discussing a simple solvable model in d = 1: the spin-1/2
quantum X X chain. This allows us to motivate the physical origin of the fermionic theory
ZF and indicate the relationship between ZB and ZF in the context of a lattice model.
Then Section 16.2 presents a thorough discussion of the universal properties of ZF . This
is followed by an analysis of ZB in Section 16.3, where we use renormalization group
methods to obtain perturbative predictions for universal properties. The perturbation theory
for ZB becomes strongly coupled in d = 1, but we are able to obtain exact results for this
case by the d = 1 mapping between ZB and ZF . This is discussed in Section 16.3.3. This
section also contains further discussion of the properties of the X X chain of Section 16.1.
The spinful Fermi gas is discussed in Section 16.4.
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16.1 The quantum XX model

This model is obtained by taking the U → ∞ limit of the boson Hubbard model HB in
(9.4). This is then a model of “hard-core” bosons with an infinite on-site repulsion energy.
The only states with a finite energy are those with n̂bi = 0 or 1 on every site of the lattice.
The Mott insulating states in Fig. 9.1 with n0 > 1 have therefore been expelled, and only
the two Mott insulators with n0 = 0 or n0 = 1 are permitted. Precisely at w = 0, we have
the n0 = 1 Mott insulator for μ > 0, while for μ < 0 we have the n0 = 0 Mott insulator,
which is a fanciful term for a bare vacuum with no particles.

This model of hard-core bosons can also be written as a magnet of S = 1/2 spins with
nearest-neighbor exchange interactions. The idea is to associate the two states on each site
with the up and down states of an S = 1/2 spin degree of freedom. In operator language,
we can identify

σ̂ x
j = b̂ j + b̂†

j ,

σ̂
y
j = −i

(
b̂ j − b̂†

j

)
,

σ̂ z
j = 1− 2b̂†

j b̂ j . (16.5)

Then the boson commutation relations (9.1) and the hard-core restriction imply that the
σ̂

x,y,z
j obey the commutation relations of the Pauli matrices and satisfy σ̂ α2

j = 1 (no sum
over α). We may therefore consider them to be the Pauli matrices. With this mapping, the
fully polarized state with all spins up is the n0 = 0 Mott insulator, while that with all spins
down is the n0 = 1 Mott insulator. Inverting (16.5), we see that the Hamiltonian HB in
(9.4) becomes (up to an uninteresting additive constant)

HX X = −w
2

∑
〈i j〉

(
σ̂ x

i σ̂
x
j + σ̂ y

i σ̂
y
j

)+ μ

2

∑
i

σ̂ z
i . (16.6)

This is the so-called X X model; it describes spin-1/2 degrees of freedom on the lattice sites
with a nearest-neighbor ferromagnetic exchange w/2> 0 confined to the x–y plane in spin
space, and in a magnetic field μ/2 in the −z direction in spin space. We argue later that
additional exchange in the z direction in spin space (this corresponds to nearest-neighbor
interactions in the boson Hubbard model) does not modify the universal properties of the
Mott insulator to superfluid transitions. Note also that both the simple fully polarized n0 =
0 and n0 = 1 Mott insulators are exact eigenstates of HX X for arbitrary w. For the n0 = 1
state this is a consequence of having sent U →∞, which eliminates virtual particle–hole
pair fluctuations.

Now we specialize to the one-dimensional case, d = 1. In this case exact expressions for
the thermodynamic properties of HX X can be easily obtained. The basic tool is the Jordan–
Wigner transformation introduced in Section 10.1 for the solution of the Ising chain in
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d = 1. This transforms the spin-1/2 model into a model of spinless fermions. Inserting
(10.8) and (10.9) into (16.6), we get

HX X = −
∑

i

(
w
(
c†

i+1ci + c†
i ci+1

)+ μc†
i ci
)
. (16.7)

Note that HX X is simply a free spinless fermion Hamiltonian and its spectrum can therefore
be easily determined. Adding non-on-site interactions to the original HB would lead to
fermion interactions in HX X , which are shown below to be irrelevant. Fourier transforming
as in (10.15) we get the simple diagonal form

HX X =
∑

k

εkc†
k ck, (16.8)

with the free fermion dispersion εk = −2w cos(ka) − μ. So for μ < −2w, the energy
of all the fermions is positive and the ground state has no fermions present: this is clearly
the Mott insulator with n0 = 0. For μ > 2w all the fermions have negative energy and
every fermion state is occupied, leading to the Mott insulator with n0 = 1. At intermediate
values of μ there is partial occupation, which can be easily computed at T = 0:

〈
b̂†

i b̂i
〉 = 1

2

(
1− 〈σ̂ z

i

〉) = 〈c†
i ci
〉 =

⎧⎪⎪⎨⎪⎪⎩
0, μ ≤ −2w,

1− (1/π) cos−1(μ/2w), |μ| ≤ 2w,

1, μ ≥ 2w.

(16.9)

We show a plot of the boson number as a function of μ in Fig. 16.1. The state with
intermediate occupation number has a nonzero superfluid stiffness but only “quasi-long-
range order” in the superfluid order parameter in d = 1, as discussed in Section 16.3.3.
We continue to refer to it as a superfluid, however. Hence the result (16.9) displays two
superfluid–Mott insulator transitions: one at μ=− 2w and the other at μ= 2w. We focus

0

0.5

1

–3 –1 1 3m/w

�Fig. 16.1 The boson number per site as a function of the chemical potentialμ for the U →∞ limit of the boson Hubbard
model HB in (9.4) in dimension d = 1. There are Mott insulator to superfluid transitions atμ = ±2w.
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on the one atμ=− 2w, where the transition is from a simple vacuum state with no particles
(a Mott insulator with n0 = 0) to a low-density superfluid.

Forμ close to 2w, the density of bosons is seen to vanish from (16.9) as∼(1+μ/2w)1/2.
We may identify the power of 1/2 as an exact critical exponent of the quantum critical point
at μ = −2w. Compare this with the mean-field result (9.40), which has the value 1 for this
critical exponent. We see that the mean-field result applies for d > 2.

We can derive a continuum theory for the quantum critical point at μ = −2w, T = 0
using an analysis very similar to that in Section 10.2. The low-energy fermionic states that
are occupied across the transition are near k = 0. Therefore we may take the continuum
limit simply by taking spatial gradients of the fields. We define the continuum field �F as
in (10.23), and we expand HX X in spatial gradients. This leads to the Hamiltonian

HF =
∫

dx

(
− 1

2m
�

†
F (x)∇2�F (x)− μ�†

F (x)�F (x)

)
, (16.10)

where the fermion mass m = 1/(2wa2). The coherent state path integral of HF is, of
course, the fermionic theory ZF (16.3).

We have thus presented evidence that the critical theory of the transition in the X X
model in d = 1 is given by ZF . A complete demonstration requires that there are no
further relevant perturbations that can appear in HF , and this is taken up in the following
section. Recall also that HX X was derived from the boson Hubbard model (9.4), which
was shown to be related to ZB in (16.1) in Chapter 9. These mappings therefore equate the
universal critical properties of ZB , HX X , and ZF in d = 1. These universal correlators are
described explicitly in the subsequent sections.

For dimensions d > 1 the analysis of this section and the arguments of Chapter 9 have
established that HX X has Mott insulator–superfluid transitions (or transitions between fully
polarized and partially polarized spin states) that are described by ZB . These models are,
however, not equivalent to ZF in this case.

16.2 The dilute spinless Fermi gas

This section studies the properties of ZF in the vicinity of its μ = 0, T = 0 quantum
critical point. As ZF is a simple free-field theory, all results can be obtained exactly and are
not particularly profound in themselves. Our main purpose is to show how the results are
interpreted in a scaling perspective and to obtain general lessons on the nature of crossovers
at T > 0. Some of the analysis is quite similar to that for a different free fermion theory in
Section 10.2, and so we can be relatively brief.

First, let us review the basic nature of the quantum critical point at T = 0. A useful
diagnostic for this is the conserved density Q, which in the present model we identify as
�

†
F�F . As a function of the tuning parameter μ, this quantity has a critical singularity

at μ = 0:
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〈
�

†
F�F

〉 = {(Sd/d)(2mμ)d/2, μ > 0,

0, μ < 0,
(16.11)

where the phase space factor Sd was defined below (14.9). When d = 1, this result is
clearly the universal continuum limit of (16.9).

We now proceed to a scaling analysis. Note that at the quantum critical point μ = 0,
T = 0, the theory LF is invariant under the scaling transformations closely related to those
in (10.30):

x ′ = xe−�,
τ ′ = τe−z�,

� ′F = �F ed�/2, (16.12)

provided that we make the choice of the dynamic exponent

z = 2. (16.13)

The parameter m is assumed to remain invariant under the rescaling, and its role is simply
to ensure that the relative physical dimensions of space and time are compatible (a role
rather analogous to that of the velocity c in Section 10.2). The transformation (16.12) also
identifies the scaling dimension

dim[�F ] = d/2. (16.14)

Now turning on a nonzero μ, it is easy to see that μ is a relevant perturbation with

dim[μ] = 2. (16.15)

There are no other relevant perturbations at this quantum critical point, and so by the defi-
nition of ν above (10.33) we have

ν = 1/2. (16.16)

We can now examine the consequences of adding interactions to LF . A contact interac-
tion such as

∫
dx(�†

F (x)�F (x))2 vanishes because of the fermion anticommutation rela-
tion. (A contact interaction is however permitted for a spin-1/2 Fermi gas and is discussed
in Section 16.4.) The simplest allowed term for the spinless Fermi gas is

L1 = λ
(
�

†
F (x, τ )∇�†

F (x, τ )�F (x, τ )∇�F (x, τ )
)
, (16.17)

where λ is a coupling constant measuring the strength of the interaction. However, a simple
analysis shows that

dim[λ] = −d. (16.18)

This is negative and so λ is irrelevant and can be neglected in the computation of universal
crossovers near the point μ = T = 0. In particular, it modifies the result (16.11) only
by contributions that are higher order in μ. The arguments show the sense in which the
fermionic theory LF is the universal critical theory describing the phase transition in HX X

in d = 1. Additional exchange couplings in the z direction, or further neighbor interactions,
can only lead to terms like that in (16.17), and all of these are irrelevant.
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Turning to nonzero temperatures, we can write down scaling forms by the same argu-
ments that led to (10.39). Let us define the fermion Green’s function

G F (x, t) =
〈
�F (x, t)�

†
F (0, 0)

〉; (16.19)

then the scaling dimensions above imply that it satisfies

G F (x, t) = (2mT )d/2�G F

(
(2mT )1/2x, T t,

μ

T

)
, (16.20)

where �G F is a fully universal scaling function. For this particularly simple theory LF we
can of course obtain the result for G F in closed form:

G F (x, t) =
∫

ddk

(2π)d
eikx−i(k2/(2m)−μ)t

1+ e−(k2/(2m)−μ)/T
, (16.21)

and it is easy to verify that this obeys the scaling form (16.20). Similarly the free energy
FF obeys the scaling dimension (10.37), and we have

FF = T d/2+1�FF

(μ
T

)
, (16.22)

with �FF a universal scaling function; the explicit result is, of course,

FF = −T
∫

ddk

(2π)d
ln
(
1+ e(μ−k2/(2m))/T ), (16.23)

which clearly obeys (16.22). The crossover behavior of the fermion density

〈Q〉 = 〈�†
F�F

〉 = −∂FF

∂μ
(16.24)

follows by taking the appropriate derivative of the free energy. Examination of these results
leads to the now familiar crossover phase diagram of Fig. 16.2. We examine each of the
regions of the phase diagram in turn, beginning with the two low-temperature regions.

16.2.1 Dilute classical gas, kBT� |μ|, μ <0

The ground state for μ < 0 is the vacuum with no particles. Turning on a nonzero tempera-
ture produces particles with a small nonzero density ∼e−|μ|/T . The de Broglie wavelength
of the particles is of order T−1/2, which is significantly smaller than the mean spacing
between the particles, which diverges as e|μ|/dT as T → 0. This implies that the particles
behave semiclassically. These properties are quite similar to those of the low-T region on
the quantum paramagnetic side of the Ising chain in Section 10.4.2. To leading order from
(16.21), the fermion Green’s function is simply the Feynman propagator of a single particle

G F (x, t) =
( m

2π i t

)d/2
exp

(
− imx2

2t

)
, (16.25)

and the exclusion of states from the other particles has only an exponentially small effect.
Note that G F is independent of μ and T and (16.25) is the exact result for μ = T = 0.
The free energy, from (16.22) and (16.23), is that of a classical Boltzmann gas

FF = −T

(
mT

2π

)d/2

e−|μ|/T . (16.26)
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0

T

0

Lattice high T

Continuum
high T

Fermi liquidDilute classica
gas

l

�Fig. 16.2 Phase diagram of the dilute Fermi gasZF , (16.3), as a function of the chemical potentialμ and the temperature T .
The regions are separated by crossovers denoted by dashed lines, and their physical properties are discussed in the
text. The full lines are contours of equal density, with higher densities above lower densities; the zero density line is
μ < 0, T = 0. The lineμ > 0, T = 0 is a line of z = 1 critical points that controls the longest scale properties of
the low-T Fermi liquid region. The critical end pointμ = 0, T = 0 has z = 2 and controls the global structure of the
phase diagram. In d = 1, the Fermi liquid is more appropriately labeled a Tomonaga–Luttinger liquid. The hatched
region marks the boundary of applicability of the continuum theory and occurs atμ, T ∼ w.

16.2.2 Fermi liquid, kBT� μ, μ >0

The behavior in this regime is quite complex and rich. As we see, and as noted in Fig. 16.2,
the line μ > 0, T = 0 is itself a line of quantum critical points. The interplay between
these critical points and those of the μ = 0, T = 0 critical end point is displayed quite
instructively in the exact results for G F and is worth examining in detail. It must be noted
that the scaling dimensions and critical exponents of these two sets of critical points need
not be (and indeed are not) the same. The concept of a reduced scaling function, used
earlier (e.g. in Section 10.4.1 for the quantum Ising chain) to describe the emergence of
effective classical models now comes in useful to obtain the critical behavior of the μ > 0,
T = 0 critical line out of the global scaling functions of the μ = 0, T = 0 critical end
point. Precisely the same structure is also present in the physically measurable bosonic
correlators of ZB in d = 1 (discussed in Section 16.3.3) but there the results are far more
complicated and only available in restricted regimes. In this case the closed form results
(16.21) and (16.23) contain all the structure, and so these are worth examining explicitly.

First it can be argued, for example, by studying asymptotics of the integral in (16.21),
that for very short times or distances, the correlators do not notice the consequences of
other particles present because of a nonzero T or μ and are therefore given by the single-
particle propagator, which is the T = μ = 0 result in (16.25). More precisely we have

G(x, t) is given by (16.25) for |x | � (2mμ)−1/2 , |t | � 1

μ
. (16.27)

With increasing x or t , the restrictions in (16.27) are eventually violated and the conse-
quences of the presence of other particles, resulting from a nonzero μ, become apparent.
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Note that because μ is much larger than T , it is the first energy scale to be noticed, and as
a first approximation to understand the behavior at larger x we may ignore the effects of T .

Let us therefore discuss the ground state for μ > 0. It consists of a filled Fermi sea of
particles (a Fermi liquid) with momenta k < kF = (2mμ)1/2. An important property of
this state is that it permits excitations at arbitrarily low energies (i.e. it is gapless). These
low-energy excitations correspond to changes in occupation number of fermions arbitrarily
close to kF . As a consequence of these gapless excitations, the points μ > 0 (T = 0) form
a line of quantum critical points, as claimed earlier. We now derive the continuum field
theory associated with this line of critical points. We are interested here only in x and
t values that violate the constraints in (16.27), and so in the occupation of states with
momenta near ±kF . So let us parameterize, in d = 1,

�(x, τ ) = eikF x�R(x, τ )+ e−ikF x�L(x, τ ), (16.28)

where �R,L describe right- and left-moving fermions and are fields that vary slowly on
spatial scales ∼1/kF = (1/2mμ)1/2 and temporal scales ∼1/μ. A similar parameteriza-
tion can be used for d > 1, and we discuss it in Section 18.1; most of the results discussed
below hold, with small modifications, in all d . Inserting the above parameterization in
LF , and keeping only terms of lowest order in spatial gradients, we obtain the “effective”
Lagrangean for the Fermi liquid region, LF L in d = 1:

LF L = �†
R

(
∂

∂τ
− ivF

∂

∂x

)
�R +�†

L

(
∂

∂τ
+ ivF

∂

∂x

)
�L , (16.29)

where vF = kF/m = (2μ/m)1/2 is the Fermi velocity. The Lagrangean LF L also describes
a massless Dirac field in one spatial dimension and (like (10.28) for � = 0) is invariant
under relativistic and conformal transformations of spacetime. (These facts are of some use
to us later.) Now note that LF L is invariant under a scaling transformation, which is rather
different from (16.12) for the μ = 0, T = 0 quantum critical point:

x ′ = xe−�,

τ ′ = τe−�,

� ′R,L(x ′, τ ′) = �R,L(x, τ )e
�/2,

v′F = vF . (16.30)

The above results imply

z = 1, (16.31)

unlike z = 2 (16.13) at the μ = 0 critical point, and

dim[�R,L ] = 1/2, (16.32)

which actually holds for all d and therefore differs from (16.14). Further note that vF , and
therefore μ, are invariant under rescaling, unlike (16.15) at the μ = 0 critical point. Thus
vF plays a role rather analogous to that of m at the μ = 0 critical point: it is simply the
physical units of spatial and length scales. The transformations (16.30) show that LL F is
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scale invariant for each value of μ, and we therefore have a line of quantum critical points
as claimed earlier. It should also be emphasized that the scaling dimension of interactions
such as λ will also change; in particular not all interactions are irrelevant about the μ �= 0
critical points. These new interactions are, however, small in magnitude providedμ is small
(i.e. provided we are within the domain of validity of the global scaling forms (16.20) and
(16.22)), and so we neglect them here. Their main consequence is to change the scaling
dimension of certain operators, but they preserve the relativistic and conformal invariance
of LF L . This more general theory of d = 1 fermions is known as a Tomonaga–Luttinger
liquid, and we discuss it in Chapter 20.

The action (16.29) and the scaling transformations (16.30) can be considered as defin-
ing scaling forms on their own, independent of any derivation from the original LF . By
complete analogy with the arguments presented earlier, we may deduce that

G R,L(x, t) =
〈
�R,L(x, t)�

†
R,L(0, 0)

〉
=
(

T

vF

)
φR,L

(
T x

vF
, T t

)
, (16.33)

where the powers of T follow from the scaling dimensions of G, x , and t ; the factors of vF

merely keep track of physical units; and φR,L are universal scaling functions. The result
is a reduced scaling form of (16.20) in the sense of the discussion in Section 10.4.1; the
former has three arguments, and in the limit μ/T →∞ it collapses into (16.33), which is
itself described by the quantum critical theory (16.29).

Explicit expressions for G R,L can of course easily be obtained from the definition
(16.33) and the theory LF L in (16.29); however, let us proceed from an instructive deriva-
tion from the globally valid expression (16.21). For |x |� (1/2mμ)1/2, |t |� 1/μ, and
T �μ, the integral in (16.21) is dominated by contributions near the Fermi points k= ±
kF . So, near kF let us parameterize k= kF + p, expand terms in the integrand to linear
order in p, and to leading order let the integral extend over all real p; a similar procedure
can be carried out near −kF . In this manner the expression (16.21) for G F reduces to

G(x, τ ) = eikF x
∫ ∞

−∞
dp

2π

ep(i x−vF τ)

1+ e−vF p/T
+ e−ikF x

∫ ∞

−∞
dp

2π

ep(−i x−vF τ)

1+ e−vF p/T
. (16.34)

The integrals over p can be evaluated exactly, and we obtain

G F (x, t) = eikF x G R(x, t)+ e−ikF x GL(x, t), (16.35)

with

G R,L(x, τ ) =
(

T

vF

)
1

2 sin(πT (τ ∓ i x/vF ))
. (16.36)

This result is clearly consistent with the scaling form (16.33). For T > 0, the equal-time
G R,L decay exponentially with a correlation length ξ = vF/πT , and the power of T is
consistent with the z= 1 dynamic exponent of LF L . At T = 0, these fermionic
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Green’s functions take the scale-invariant power-law decay characteristic of the μ > 0
critical ground state,

G R,L(x, τ ) = 1

2πvF (τ ∓ i x/vF )
; (16.37)

note that this is consistent with the scaling transformations (16.30). Note also that the
T > 0 result (16.36) and the T = 0 result (16.37) of LF L are related by the mapping
(10.47) (with the replacement c → vF ) asserted to be a general property of conformally
invariant theories with z = 1 in d = 1.

16.2.3 High-T limit, kBT� |μ|
This is the last, and in many ways the most interesting, region of Fig. 16.2. Now T is the
most important energy scale controlling the deviation from the μ = 0, T = 0 quantum
critical point, and the properties will therefore have some similarities to the continuum
high-T regions discussed in Part II. As always, it should be emphasized that while the
value of T is significantly larger than |μ|, it cannot be so large that it exceeds the limits of
applicability for the continuum action LF : this implies that T � w.

We discuss first the behavior of the fermion density. In the high-T limit of the continuum
theory LF , |μ| � T � w, we have from (16.23) and (16.24) the universal result〈

�
†
F�F

〉 = (2mT )d/2
∫

dd y

(2π)d
1

ey2 + 1

= (2mT )d/2 ζ(d/2)
(1− 2d/2)

(4π)d/2
. (16.38)

This density implies an interparticle spacing that is of order the de Broglie wavelength
= (1/2mT )1/2. Hence, thermal and quantum effects are equally important, and neither
dominates, as we found in corresponding regions in Chapters 10, 11, and 13.

For completeness, let us also consider the fermion density for T � w (the region above
the hatched marks in Fig. 16.2), to illustrate the limitations on the continuum description
discussed above. Now the result depends upon the details of the nonuniversal fermion
dispersion: on a hypercubic lattice with dispersion εk − μ, we obtain〈

�
†
F�F

〉 = ∫ π/a

−π/a
ddk

(2π)d
1

e(εk−μ)/T + 1

= 1

2ad
− 1

4T

∫ π/a

−π/a
ddk

(2π)d
(εk − μ)+O(1/T 2). (16.39)

The limits on the integration, which extends from −π/a to π/a for each momentum com-
ponent, had previously been sent to infinity in the continuum limit a → 0. In the presence
of lattice cutoff, we are able to make a naive expansion of the integrand in powers of 1/T ,
and the result therefore only contains negative integer powers of T . Contrast this with the
universal continuum result (16.38), where we had noninteger powers of T dependent upon
the scaling dimension of �.
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We return to the universal high-T region, |μ| � T � w, and describe the behavior of
the fermionic Green’s function G F , given in (16.21). At the shortest scales we again have
the free quantum particle behavior of the μ = 0, T = 0 critical point:

G F (x, t) is given by (16.25) for |x | � (2mT )−1/2 , |t | � 1

T
. (16.40)

Note that the limits on x and t in (16.40) are different from those in (16.27), in that they are
determined by T and not μ. At larger |x | or t the presence of the other thermally excited
particles becomes apparent, and G F crosses over to a novel behavior characteristic of the
high-T region. We illustrate this by looking at the large-x asymptotics of the equal-time G
in d = 1 (other d are quite similar):

G F (x, 0) =
∫

dk

2π

eikx

1+ e−k2/2mT
. (16.41)

For large x this can be evaluated by a contour integration, which picks up contributions
from the poles at which the denominator vanishes in the complex k plane. The dominant
contributions come from the poles closest to the real axis, and give the leading result

G F (|x | → ∞, 0) = −
(
π2

2mT

)1/2

exp
(
−(1− i) (mπT )1/2 x

)
. (16.42)

Thermal effects therefore lead to an exponential decay of equal-time correlations, with a
correlation length ξ = (mπT )−1/2. Note that the T dependence is precisely that expected
from the exponent z = 2 associated with the μ = 0 quantum critical point and the general
scaling relation ξ ∼ T−1/z . The additional oscillatory term in (16.42) is a reminder that
quantum effects are still present at the scale ξ , which is clearly of order the de Broglie
wavelength of the particles.

16.3 The dilute Bose gas

This section studies the universal properties of the quantum phase transition of the dilute
Bose gas model ZB in (16.1) in general dimensions. We begin with a simple scaling anal-
ysis that shows that d = 2 is the upper-critical dimension. The first subsection analyzes
the case d < 2 in some more detail, while the next subsection considers the somewhat
different properties in d = 3. Some of the results of this section were also obtained by
Kolomeisky and Straley [273,274].

We begin with the analog of the simple scaling considerations presented at the beginning
of Section 16.2. At the coupling u = 0, the μ = 0 quantum critical point of LB is invariant
under the transformations (16.12), after the replacement�F → �B , and we have as before
z = 2 and

dim[�B] = d/2, dim[μ] = 2; (16.43)
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�Fig. 16.3 The ladder series of diagrams that contribute to the renormalization of the coupling u inZB for d < 2.

these results are shortly seen to be exact in all d . We can easily determine the scaling
dimension of the quartic coupling u at the u = 0, μ = 0 fixed point under the bosonic
analog of the transformations (16.12); we find

dim[u0] = 2− d. (16.44)

Thus the free-field fixed point is stable for d > 2, in which case it is suspected that a
simple perturbative analysis of the consequences of u will be adequate. However, for
d < 2, a more careful renormalization group-based resummation of the consequences of
u is required, for reasons similar to those presented in Section 3.3.2 for the case of the
quantum Ising/rotor models. This identifies d = 2 as the upper-critical dimension of the
present quantum critical point.

Our analysis of the case d < 2 for the dilute Bose gas quantum critical point is very
similar to that in Section 14.1.2. However, we find, somewhat surprisingly, that all the
renormalizations, and the associated flow equations, can be determined exactly in closed
form. We begin by considering the one-loop renormalization of the quartic coupling u0 at
the μ = 0, T = 0 quantum critical point. It turns out that only the ladder series of Feynman
diagrams shown in Fig. 16.3 need be considered (the T matrix). Evaluating the first term
of the series in Fig. 16.3 for the case of zero external frequency and momenta, we obtain
the contribution

−u2
0

∫
dω

2π

∫
ddk

(2π)d
1

(−iω + k2/(2m))

1

(iω + k2/(2m))
= −u2

0

∫
ddk

(2π)d
m

k2
, (16.45)

(the remaining ladder diagrams are powers of (16.45) and form a simple geometric series).
Note the infrared singularity for d < 2, which is cured, as in Section 3.3.2, by moving
away from the quantum critical point, or by external momenta.

We can proceed further by a simple application of the momentum shell RG of Chapter 4,
but extended here to a quantum problem. Note that we apply cutoff � only in momentum
space. The RG then proceeds by integrating all frequencies, and momentum modes in the
shell between�e−� and�. The renormalization of the coupling u0 is then given by the first
diagram in Fig. 16.3 (see also the second diagram in Fig. 4.1), and leads here to the analog
of the flow equation in (4.24). First, it is useful to absorb some phase space factors by a
redefinition of interaction coupling:

u0 = �2−d

2mSd
u, (16.46)
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and then we obtain [139,148]

du

d�
= εu − u2

2
. (16.47)

Here Sd = 2/(�(d/2)(4π)d/2) is the usual phase space factor, and

ε = 2− d. (16.48)

Note that for ε > 0, there is a stable fixed point at

u∗ = 2ε, (16.49)

which controls all the universal properties of ZB .
We now state a very important and surprising feature of the above results, which is not

shared by the corresponding calculations in Chapter 14. The flow equation (16.47), and the
fixed-point value (16.49) are exact to all orders in u or ε, and it is not necessary to consider
u-dependent renormalizations to the field scale of �B or any of the other couplings in ZB .
This result is ultimately a consequence of a very simple fact: the ground state of ZB at
the quantum critical point μ = 0 is simply the empty vacuum with no particles. So any
interactions that appear are entirely due to particles that have been created by the external
fields. In particular, if we introduce the bosonic Green’s function (the analog of (16.21))

G B(x, t) =
〈
�B(x, t)�

†
B(0, 0)

〉
, (16.50)

then for μ ≤ 0 and T = 0, its Fourier transform G(k, ω) is given exactly by the free-field
expression

G B(k, ω) = 1

−ω + k2/(2m)− μ. (16.51)

The field �†
B creates a particle that travels freely until its annihilation at (x, t) by the field

�B ; there are no other particles present at T = 0, μ ≤ 0, and so the propagator is just
the free-field one. The simple result (16.51) implies that the scaling dimensions in (16.43)
are exact. Turning to the renormalization of u, it is clear from the diagram in Fig. 16.3
that we are considering the interactions of just two particles. For these, the only nonzero
diagrams are the ones shown in Fig. 16.3, which involve repeated scattering of just these
particles. Formally, it is possible to write down many other diagrams that could contribute
to the renormalization of u; however, all of these vanish upon performing the integral over
internal frequencies for there is always one integral that can be closed in one half of the
frequency plane where the integrand has no poles. This absence of poles is of course just a
more mathematical way of stating that there are no other particles around.

We consider application of these renormalization group results separately for the cases
below and above the upper-critical dimension of d = 2.

16.3.1 d < 2

The approach and analysis here are very similar to those carried out in Chapter 14 below
the upper-critical dimension (d < 3) for the quantum rotor/Ising models.
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First, let us note some important general implications of the theory controlled by the
fixed-point interaction (16.49). As we have already noted, the scaling dimensions of �B

and μ are given precisely by their free-field values in (16.43), and the dynamic exponent z
also retains the tree-level value z = 2. All these scaling dimensions are identical to those
obtained for the case of the spinless Fermi gas in Section 16.2. Further, the presence of a
nonzero and universal interaction strength u∗ in (16.49) implies that the bosonic system
is stable for the case μ > 0 because the repulsive interactions prevent condensation of an
infinite density of bosons (no such interaction was necessary for the fermion case, as the
Pauli exclusion was already sufficient to stabilize the system). These two facts imply that
the formal scaling structure of the bosonic fixed point being considered here is identical to
that of the fermionic one considered in Section 16.2, and that the scaling forms of the two
theories are identical. In particular, G B obeys a scaling form identical to that for G F in
(16.20) (with a corresponding scaling function�G B ), while the free energy, and associated
derivatives, obey (16.22) (with a scaling function �FB ). The universal functions �G B and
�FB can be determined order by order in the present ε = 2 − d expansion, and this will
be illustrated shortly.

Although the fermionic and bosonic fixed points share the same scaling dimensions,
they are distinct fixed points for general d < 2. However, the arguments already presented
in Section 16.1 suggest that these two fixed points are identical precisely in d = 1 [438].
Further evidence for this identity was presented in [105], where the anomalous dimen-
sion of the composite operator �2

B was computed exactly in the ε expansion and was
found to be identical to that of the corresponding fermionic operator. Assuming the iden-
tity of the fixed points, we can then make a stronger statement about the universal scaling
function: those for the free energy (and all its derivatives) are identical, �FB = �FF

in d = 1. In particular, from (16.23) and (16.24) we conclude that the boson density is
given by

〈Q〉 = 〈�†
B�B

〉 = ∫ dk

2π

1

e(k2/(2m)−μ)/T + 1
, (16.52)

for d = 1 only. The operators �B and �F are still distinct and so there is no reason for the
scaling functions of their correlators to be the same. (We compute numerous exact prop-
erties of the scaling function �G B for G B in the following Section 16.3.3.) The crossover
diagram of Fig. 16.2 also applies to ZB in d = 1. The critical Fermi liquid state for μ > 0,
T = 0 is expected to become a critical superfluid state. As we show in Section 16.3.3, the
bosonic correlation functions decay with a power law in space implying “quasi-long-range”
superfluid order at T = 0. However, correlations decay exponentially at any nonzero T ,
implying the absence of any finite-T phase transition. This is again consistent with the
T > 0 behavior of Fig. 16.2.

As not all observables can be computed exactly in d = 1 by the mapping to the free
fermions, we now consider the ε = 2 − d expansion. We present a simple ε expansion
calculation [437] for illustrative purposes. We focus on the density of bosons at T = 0.
Knowing that the free energy obeys the analog of (16.22), we can conclude that a relation-
ship like (16.11) holds:
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〈
�

†
B�B

〉 = {Cd(2mμ)d/2, μ > 0,

0, μ < 0,
(16.53)

at T = 0, with Cd a universal number. The identity of the bosonic and fermionic theories in
d = 1 implies from (16.11) or from (16.52) that C1 = S1/1 = 1/π . We will show how to
compute Cd in the ε expansion; similar techniques can be used for almost any observable.

Even though the position of the fixed point is known exactly in (16.49), not all observ-
ables can be computed exactly because they have contributions to arbitrary order in u.
However, universal results can be obtained order-by-order in u, which then become a power
series in ε = 2−d. As an example, let us examine the low-order contributions to the boson
density. To compute the boson density for μ > 0, we anticipate that there is a condensate
of the boson field �B , and so we write

�B(x, τ ) = �0 +�1(x, t), (16.54)

where �1 has no zero wavevector and frequency component. Inserting this into LB in
(16.1), and expanding to second order in �1, we get

L1 =− μ|�0|2 + u0

2
|�0|4 −�∗1

∂�1

∂τ
+ 1

2m
|∇�1|2

− μ|�1|2 + u0

2

(
4|�0|2|�1|2 +�2

0�
∗2
1 +�∗2

0 �
2
1

)
. (16.55)

This is a simple quadratic theory in the canonical Bose field �1, and its spectrum and
ground state energy can be determined by the familiar Bogoliubov transformation. Carry-
ing out this step, we obtain the following formal expression for the free-energy density F
as a function of the condensate �0 at T = 0:

F(�0) =− μ|�0|2 + u0

2
|�0|4

+ 1

2

∫
ddk

(2π)d

[⎧⎨⎩
(

k2

2m
− μ+ 2u0|�0|2

)2

− u2
0|�0|4

⎫⎬⎭
1/2

−
(

k2

2m
− μ+ 2u0|�0|2

)]
. (16.56)

To obtain the physical free-energy density, we have to minimize F with respect to varia-
tions in�0 and to substitute the result back into (16.56). Finally, we can take the derivative
of the resulting expression with respect to μ and obtain the required expression for the
boson density, correct to the first two orders in u0:

〈
�

†
B�B

〉 = μ

u0
+ 1

2

∫
ddk

(2π)d

[
1− k2√

k2(k2 + 4mμ)

]
. (16.57)

To convert (16.57) into a universal result, we need to evaluate it at the coupling appropri-
ate to the fixed point (16.49). This is most easily done by the field-theoretic RG employed
in Chapter 14. So let us translate the RG equation (16.47) into this language. As in (14.9),
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we introduce a momentum scale μ̃ (the tilde is to prevent confusion with the chemical
potential) and express u0 in terms of a dimensionless coupling u R by

u0 = u R
(2m)μ̃ε

Sd

(
1+ u R

2ε

)
. (16.58)

The motivation behind the choice of renormalization factor in (16.58) is the same as that
behind (14.9): the renormalized four-point coupling, when expressed in terms of u R , and
evaluated in d = 2−ε, is free of poles in ε as can easily be explicitly checked using (16.45)
and the associated geometric series. Then, we evaluate (16.57) at the fixed-point value
of u R , following the basic recipe as in Section 14.1.2: compute any physical observable
as a formal diagrammatic expansion in u0, substitute u0 in favor of u R using (16.58),
and expand the resulting expression in powers of ε. All poles in ε should cancel, but the
resulting expression depends upon the arbitrary momentum scale μ̃. At the fixed-point
value u∗R , dependence upon μ̃ then disappears and a universal answer remains. In this
manner we obtain from (16.57) a universal expression in the form (16.53) with

Cd = Sd

[
1

2ε
+ ln 2− 1

4
+O(ε)

]
. (16.59)

16.3.2 d = 3

Although we only discuss the case d = 3 here, precisely the same manipulations and
results hold for all 2 < d < 4. The same methods can also be used to compute the logarith-
mic corrections in d = 2, along the lines of the discussion in Section 14.4; this was carried
out elegantly by Prokof’ev’ Ruebenacker, and Svistunov [388]. Related results, obtained
through somewhat different methods, are available in the literature [139,386,387,438].

The quantum critical point at μ = 0, T = 0 is above its upper-critical dimension, and
we expect mean-field theory to apply. The analog of the mean-field result in the present
context is the T = 0 relation for the density

〈
�

†
B�B

〉 = {μ/u0 + · · · , μ > 0,

0, μ < 0,
(16.60)

where the ellipsis represents terms that vanish faster as μ → 0. Note that this expression
for the density is not universally dependent upon μ; rather it depends upon the strength
of the two-body interaction u0 (more precisely, it can be related to the s-wave scattering
length a by u0 = 4πa/m).

We turn to the crossovers and phase transitions at T > 0. These are sketched in Fig. 16.4.
These crossovers were computed by Rasolt et al. [394], Weichman et al. [536] and also
addressed in earlier work [96, 473, 474]; we do not follow their approach here, however.
Instead, we show that the results can be obtained by a direct application of the method
used in Section 14.2.2 to study the quantum rotor/Ising models above their upper-critical
dimension.

The basic approach is one used several times in this book: integrate out the modes with a
nonzero Matsubara frequency to obtain an effective action for the static, time-independent
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�Fig. 16.4 Crossovers of the dilute Bose gas in d = 3 as a function of the chemical potentialμ and the temperature T . The
regimes labeled A, B, C are described in the text. The solid line is the finite-temperature phase transition where the
superfluid order disappears; the shaded region is where the classical D = 3, N = 2 theory describes thermal
fluctuations. The contours of constant density are similar to those in Fig. 16.2 and are not displayed.

modes. In the present situation it is clear that in the nonsuperfluid phase, the effective action
again has the form of Sφ,eff in (14.16) for the case N = 2 after the identification

�(x) = √m(φ1(x)+ iφ2(x)) (16.61)

of the static modes. The values of the couplings, R and U , can be obtained by a simple
perturbation theory in u. From expressions analogous to (14.17), (14.18), and (14.31) we
obtain

R = −2mμ+ 4mu0

∫
d3k

(2π)3

[
1

e(k2/2m−μ)/T − 1
− 2mT

k2 − 2mμ
+ 2mT

k2

]
,

(16.62)

and

U = 12m2u0. (16.63)

Armed with a knowledge of the values of R and U we can then proceed precisely as in
Section 14.2.2: we simply insert these values into the form (14.19) involving the tricritical
crossover function (the susceptibility χ in the present case is the boson Green’s function
G B defined in (16.50)), and we use the results for the tricritical crossovers in Section 14.1.1
for the case N = 2. Hence a clear understanding of the functional form of R is useful, and
we now discuss this.

Let us first rewrite R in the form analogous to (14.32):

R = −2mμ+ 4mu0(2mT )3/2 K
(μ

T

)
, (16.64)

where the universal function K (y) is given by (compare (14.21) and (14.33))

K (y) = 1

2π2

∫ ∞

0
k2dk

(
1

ek2−y − 1
− 1

k2 − y
+ 1

k2

)
. (16.65)

Note that the result for R depends explicitly on the bare value of the coupling u, as is
expected for a system above its upper-critical dimension, and as we also found in Sec-
tion 14.2.2. A crucial property of K (y) (as was the case for (14.21) and (14.33)) is that it
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is analytic as a function of y at y = 0. This is clear from the fact that the only possible
singularity of the integrand is the pole at k2 = y, but its residue vanishes because of can-
cellation between the first two terms in (16.65). We quote some limiting forms for K (y)
analogous to (14.23):

K (y) =
{
ζ(3/2)/(4π)3/2 − 0.0327826y, |y| � 1,
√|y|/(4π)+ e−|y|/(4π)3/2, y � −1.

(16.66)

We have not presented the limiting form for y = μ/T � 1 as that is not needed. This limit
puts the system within the superfluid phase (see Fig. 16.4) and the present results are valid
only for the normal phase.

Inserting the above results into (14.19) and performing some straightforward analysis
allows one to construct the phase diagram in Fig. 16.4. We can characterize the nonsuper-
fluid regions of Fig. 16.4 by the behavior of the zero-frequency limit of the boson Green’s
function G B ; following (14.34) we parameterize this as

G B(k, iωn = 0) = 2m

k2 + ξ−2
, (16.67)

where ξ can be identified as the correlation length of the superfluid order parameter. An
expression for ξ follows from (14.19) and (14.5) at N = 2:

ξ−2 = R − T U
√

R

6π
. (16.68)

As in Section 14.2 the condition for the boundary to the ordered superfluid phase is sim-
ply R = 0. Using (16.64)–(16.66) we therefore obtain, to leading order in u, the critical
temperature

Tc = 2π

m

(
μ

2u0ζ(3/2)

)2/3

, (16.69)

which describes the phase boundary shown in Fig. 16.4; note thatμ/Tc ∼ μ1/3u2/3
0 m � 1,

and so the μ/Tc � 1 case of (16.66) was not necessary. Before discussing the var-
ious normal state regimes in Fig. 16.4, however, we also obtain an expression for the
free-energy density, F ; the boson density then follows immediately from the identity
〈�†

B�B〉 = −∂F/∂μ. The free energy is computed by adding the contribution of the
ωn �= 0 modes to that of the ωn = 0 modes as described by Sφ,eff in (14.16). In this
manner we obtain

F = T
∫

d3k

(2π)3
ln
(
1− e−(k2/(2m)−μ)/T )+ T

∫ �

0

d3k

(2π)3
ln

(
k2 + ξ−2

k2 − 2mμ

)
. (16.70)

The integral over the ωn �= 0 terms yields the first logarithm and the denominator in the
argument of the second logarithm. Note that this combination is well defined even for
μ > 0, and the singularity at k2 = 2mμ is illusory; the expression (16.70) is analytic at
μ = 0 and can be straightforwardly numerically evaluated in the present form for all real
values of μ. The integral over the φα modes in Sφ,eff gives the numerator of the second
logarithm. Note also that the second integral requires a large momentum cutoff �. It is
natural to take this cutoff of order the de-Broglie wavelength

√
2mT , because the zero
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frequency theory (14.16) is valid only at such scales. However, more precisely, there can be
no cutoff dependence because the problem of the dilute Bose gas is ultraviolet finite after
the two-body interaction has been expressed in terms of the two-body scattering length,
a (this connection is given later in (16.93)). Seeing this cutoff-independence requires a
systematic expansion in powers of u0 or in 1/N (for an N -component Bose gas), which
we have not carried out here. From a knowledge of F , and therefore of the boson density
〈�†

B�B〉, we can, in principle, convert the μ–T phase diagram in Fig. 16.4 into a density–
T phase diagram. Such a procedure also yields an expression for Tc in terms of the density:
this was studied in [41,42,224], which also give cutoff-independent expressions using the
1/N expansion. The constant density contours in Fig. 16.4 have a shape quite similar to
those in Fig. 16.2. However, the theoretical analysis and the manner in which the present
problem fits into the general theory of crossovers near quantum phase transitions are much
more transparent in the μ–T plane, and this representation continues to be the basis of our
remaining discussion. We turn to a separate description of the normal state regions in turn
(the discussion parallels that below (14.34)).

(A) μ < 0, T � |μ|, Dilute classical gas: We use the y � −1 limit of (16.66) in (16.64)
and (16.68) to obtain

ξ−2 = 2m|μ| + mu0

2

(
2mT

π

)3/2

e−|μ|/T . (16.71)

So the correlation length is given by its T = 0 value and all T -dependent corrections
are exponentially small. The density of bosons follows from theμ derivative of (16.70)
and we obtain 〈

�
†
B�B

〉 = (mT

2π

)3/2

e−|μ|/T + · · · (16.72)

The ellipsis represents small corrections that depend upon the strength of the weak
interaction u0, and we invite the reader to work them out from (16.70). This density is
very small and, as in Section 16.2.1, the spacing between the particles is much larger
than their thermal de Broglie wavelength. We therefore expect an effective classical
Boltzmann gas description to apply. Although (16.67) and (16.71) give an adequate
description of the static correlations, dynamic properties require further analysis fol-
lowing that presented in Chapters 13 and 15 for the quantum rotor models.

(B) μ< 0, |μ|� T � (|μ|/u0)
2/3/m: As in (A), the correlation length is dominated by its

T = 0 value of (2m|μ|)−1/2 but the form of the T -dependent corrections differs from
the exponentially small corrections in (A); we have instead, power-law corrections
that follow from the |y|� 1 limit of (16.66) inserted in (16.64) and (16.68):

ξ−2 = 2m|μ| + mu0

2

(
2mT

π

)3/2

ζ(3/2). (16.73)

The density is no longer exponentially small, and (16.70) gives

〈
�

†
B�B

〉 = (mT

2π

)3/2

ζ(3/2)+ · · · , (16.74)
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where again the ellipsis represents u0-dependent corrections, which are somewhat
messy but easy to compute from the expressions provided above. For this density the
spacing between the particles is of order their thermal de Broglie wavelength, and in
this respect this regime is similar to the high-T limit of the Fermi gas discussed in
Section 16.2.3. Of course, there are nonuniversal u-dependent corrections here, which
were absent for the Bose gas for d < 2 and for the spinless Fermi gas in all d . Again,
a description of dynamics in this region (B) requires extension of the computations of
Chapters 13 and 15.

(C) T � (|μ|/u0)
2/3/m, High T : This is of course the true high-T limit of the continuum

theory ZB . Its physical properties are similar to those of (B) but with some significant
differences. The expression (16.73) for the correlation length still applies, but it is
clear that the second T -dependent term is the larger one. Thus the correlation length
ξ ∼ T−3/4, which does not agree with the naive scaling estimate ξ ∼ T−1/z ; as we
discussed in Section 14.2.2, this is because the interaction u is dangerously irrelevant,
and its bare value appears in the high-T limit of (16.73). The leading term in the
density is also as in (16.74), but the omitted u-dependent corrections have a rather
different structure.

16.3.3 Correlators of ZB in d = 1

Readers not interested in the details of correlations in d = 1, may skip ahead to the next
section.

The study of the bosonic correlators of ZB is of some interest because they can be mea-
sured directly in neutron scattering or NMR experiments on spin systems that undergo a
quantum phase transition of the type studied here. Explicit realizations include the X X
chain of Section 16.1 or gapped antiferromagnets in a strong field (discussed in Chap-
ter 19). In all of these cases, the bosonic field �B has a simple, local relationship to the
spin operators (as in (16.5)), allowing its correlators to be simply related to measurable
quantities. In contrast, the fermionic correlators of �F (discussed in Section 16.2) have no
physical interpretation in such applications.

We have argued in Sections 16.1, 16.2, and 16.3.1 that the theories ZB and ZF are
equivalent for smallμ. The universal expression for the boson density was given in (16.52).
Here we discuss how to map the two theories at the operator level. For the case of the
transition from a Mott insulator with n0 = 0, there are no background particles to account
for, and we can derive the theory ZB simply by the naive continuum limit of the lattice
boson coherent state path integral (9.31). Such a procedure leads to the exact operator
correspondence �B = b̂i/a. We know from Section 16.1 that b̂i = (σ̂ x

i + i σ̂ y
i )/2 and,

further, that the Pauli matrices are related to the lattice fermion field by (10.9) and thence
to the continuum Fermi field �F via (10.23). Combining these transformations, and taking
the naive continuum limit, we obtain the formal operator correspondence

�B(x, t) = exp

(
iπ
∫ x

−∞
dy�†

F (y, t)�F (y, t)

)
�F (x, t). (16.75)
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So our task is, in principle, well defined: all correlators of �F under LF are known –
use these to compute those of �B using the mapping (16.75). In practice, this evaluation
cannot be carried out in the continuum as severe short-distance divergences appear. We
have to return to the underlying lattice degrees of freedom, evaluate the expectation values
under the lattice Hamiltonian, and then return to the continuum limit. A calculation such as
this was discussed in Section 10.3 for equal-time correlators of the quantum Ising model. A
very similar analysis can also be performed for the present X X model. We refer the reader
to the literature for details [420] and present the main results.

We are interested here in the two-point bosonic correlation function G B in (16.50). As
discussed in Section 16.3.1, we know that this satisfies a scaling form identical to (16.20),
but the bosonic scaling function�G B will be quite different from�G F . The large-distance
limit of the equal-time case can be obtained by the methods of Section 10.3. We use the
mapping

G B(x, 0) = 1

2a

〈
σ̂ x

i σ̂
x
0

〉
, (16.76)

where x = ia and the latter expectation value is evaluated under HX X at a temperature
T . This can be performed using essentially the same analysis as in Section 10.3, and we
obtain for T > 0 that [420]

lim|x |→∞G B(x, 0) =
(

mT

2

)1/2

G X (μ/T ) exp
(
−FX (μ/T )(2mT )1/2|x |

)
, (16.77)

where the universal crossover functions FX (y) and G X (y) are given by

FX (y) =
∫ ∞

0

ds

π
ln coth

|s2 − y|
2

+ θ(−y)
√−y, (16.78)

ln G X (y) = 2
∫ −1

−∞
ds

[(
d FX (s)

ds

)2

+ 1

4s

]
+ 2

∫ y

−1
ds

(
d FX (s)

ds

)2

. (16.79)

Note the similarity of these results to (10.50) and (10.51) for the Ising chain. As in the
Ising case, both functions FX and G X are analytic (despite appearances) for all real values
of y, as must be the case owing to the absence of thermodynamic singularities at nonzero
T . We show a plot of these functions in Fig. 16.5. These results for FX and G X have
also been obtained in [294], [279], [240], and [278] by the rather different, and far more
sophisticated, quantum inverse scattering method.

Let us look at the physical implications of the above results for G B in the different
regimes of Fig. 16.2.

Dilute classical gas, kBT� |μ|, μ < 0

We need the y → −∞ limits of the FX and G X scaling functions. From (16.78) and
(16.79) we get FX (y → −∞) = √−y and G X (y → −∞) = 1/

√−y, and so we have
for the equal-time correlator

G B(x, 0) = T

2

(
2m

|μ|
)1/2

exp
(
− (2m|μ|)1/2 |x |

)
as |x | → ∞. (16.80)
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�Fig. 16.5 The universal scaling functions FX(y) for the inverse correlation length and the amplitude GX(y) (defined in (16.77)),

as a function of y = μ/T .

This equal-time result has a very simple interpretation. It is precisely the Fourier transform
of T G B(k, ωn = 0) with the G B given in (16.67), the prefactor of T coming from the
classical limit of the fluctuation–dissipation theorem as in (10.76), and with the leading
low-temperature value for ξ from (16.71), ξ−2 = 2m|μ|. Classical behavior is of course
expected, because, as in Section 16.2.1, the spacing between the particles is much larger
than their thermal de Broglie wavelength.

Long-time correlators can be obtained by a simple physical argument that relies on the
similarity of this regime to the low-T regime on the paramagnetic side of the quantum Ising
chain, discussed in Section 10.4.2. In that case, and here, we have an exponentially dilute
concentration of particles and are interested in the single-particle boson Green’s function.
Semiclassical arguments to compute these were advanced in Section 10.4.2, and those led
to the main result in (10.88). Its analog in the present case is

G B(x, t) = G F (x, t)R(x, t). (16.81)

Here G F is the result given in (16.25) with d = 1 (this result is also the Fourier transform of
(16.51)) and is the Feynman propagator for a single particle moving quantum mechanically
from (0, 0) to (x, t). The factor R represents the consequence of collisions with the expo-
nentially dilute background of thermally excited particles. As argued in Section 10.4.2,
G B picks up a (−1) from the S matrix of each collision, and the result of averaging over
such collisions leads to R(x, t) given in (10.69); the only change here is in the dispersion
spectrum of the particles, εk = k2/(2m)+ |μ|:

R(x, t) = exp

(
−
∫

dk

π
e−εk/T

∣∣∣∣x − dεk

dk
t

∣∣∣∣). (16.82)

The explicit structure of the function R was described in Section 10.4.1: equal-time corre-
lations decay exponentially in space with the length ξc, whereas equal-space correlations
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decay exponentially in time with the time τϕ (see (10.70)), and the general function obeys
the scaling from (10.73) with the scaling function given in (10.74). The only change is in
the specific values of the characteristic scales ξc and τϕ , which are given by

ξc =
( π

2mT

)1/2
e|μ|/T ,

τϕ = π

2T
e|μ|/T .

Note that both scales are exponentially large at low T .
The dynamic structure factor can be obtained by a Fourier transform of (16.81). Its phys-

ical properties are very similar to those in Section 10.4.2, with a well-defined quasiparticle
pole at ω = εk , which is broadened by collisions with other particles on the spatial and
temporal scales given in (16.83).

The results (16.81) and (16.82) have also been obtained in [242] and [278] and by a
more rigorous and much lengthier method. The precise agreement gives us confidence that
the simple semiclassical arguments used above are essentially exact.

Tomonaga–Luttinger liquid, kBT� μ, μ > 0

This is the region labeled a Fermi liquid in Fig. 16.2. In d = 1 the generic state with
interaction among the fermions away from the critical point is a Tomonaga–Luttinger liquid
(as we discuss in Chapter 20), and we use this more general and standard terminology.

In our discussion of the correlators of �F in this region (Section 16.2.2) we showed that
the long-distance properties were described by a line of z = 1 critical points at μ > 0,
T = 0 and that this manifested itself in a collapse of the fermion scaling functions into a
reduced scaling form. A similar collapse must also occur for the G B correlator, and indeed
for all other observables. To describe this, we need the scaling dimension of �B under the
continuum critical theory of this line of critical points, which was LF L in (16.29).

This dimension can be easily obtained from the equal-time results above. Using, from
(16.78) and (16.79), FX (y →∞) = π/4√y and G X (y →∞) = 1.042828 . . . we get for
T � μ

G B(x, 0) = G X (∞)
(

mT

2

)1/2

exp

(
−π

2

T

vF
|x |
)

as |x | → ∞. (16.83)

The prefactor ∼ T 1/2, along with quantities invariant under the scaling transformation
(16.30) and the exponent z = 1, fixes

dim[�B] = 1/4 (16.84)

along the μ > 0 critical line; recall that dim[�B] = 1/2 at the μ = 0 critical end point.
The results (16.83) and (16.84) are key, for they allow us to deduce the entire space and

time dependence of G B in this regime using a simple argument. The main point is that the
long-distance and time correlators are controlled by the theory LF L , which is conformally
invariant. Then we may use arguments essentially identical to those in Section 10.4.3 where
we considered the high-T limit of the quantum Ising chain. The latter was controlled by
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the conformally invariant, z = 1, theory LI in (10.28) at � = 0. As we showed in Sec-
tion 10.4.2, the T > 0 equal-time long-distance decay in (10.94) allowed us to deduce the
complete spacetime-dependent correlation function in (10.95) and also the exact T = 0
correlator at the critical point in (10.91). Proceeding in precisely the same manner here, we
may conclude that the T = 0 bosonic correlator obeys, for μ > 0,

G B(x, τ ) ∼ 1

(x2 + v2
Fτ

2)1/4
, (16.85)

where the normalization constant will be fixed shortly. Indeed (16.85) follows simply from
(16.84) and the relativistic invariance of LF L . Therefore, as noted earlier, the bosonic
superfluid correlations decay with a power law in the μ > 0 ground state. At finite T ,
the analog of (10.95) is

G B(x, τ ) =
(

mT

2

)1/2 2−1/2G X (∞)
[sin(πT (τ + i x/vF )) sin(π(τ − i x/vF ))]1/4

. (16.86)

Note that this result obeys the reduced scaling form characteristic of the scaling dimensions
of the theory LF L in (16.30):

G B(x, t) =
(

mT

2

)1/2

φX

(
T x

vF
, T t

)
. (16.87)

From this expression we can also explicitly relate the reduced scaling function φX to the
global scaling function �G B (this is the scaling function of G B defined as the bosonic
analog of (16.20)) by the μ/T →∞ of the latter:

φX (x̄, t̄) = lim
y→∞�G B (2

√
yx̄, t̄, y). (16.88)

The physical properties of these dynamical correlations are essentially identical in form
to the dynamic responses discussed in Section 10.4.3, and particularly in Figs. 10.7 and 10.8,
and so need not be described here. Correlations decay exponentially with a length ξ ∼
vF/T and on a phase coherence time τϕ ∼ 1/T . Both these scales are those expected in
the “high-T ” limit of a critical theory with z = 1. In the present case this is the theory LF L

characterizing the line of μ > 0 critical points. Remember, though, that the present region
is a low-T region of the global theory LB .

High-T limit, kBT � |μ|
Now we have from (16.78) and (16.79)

G B(x, 0) = G X (0)

(
mT

2

)1/2

exp
(
−FX (0) (2mT )1/2 |x |

)
as |x | → ∞, (16.89)

where FX (0) = ζ(3/2)(1− 1/
√

8)/
√
π = 0.952781471 . . . and G X (0) = 0.86757 . . . are

pure numbers. All scales are set by T , and the correlation length∼T−1/2, as expected from
the z = 2 value at the μ = 0 critical point. Notice also the similarity of this correlation
length to that of the fermionic correlator in (16.42); only the numerical factors are different.
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Asymptotics of dynamic correlation functions in this regime have been obtained by
Korepin and collaborators [242, 278] by the quantum inverse scattering method. How-
ever, this is the one limiting regime where their approach appears indispensable, and an
alternative derivation using the simpler physical arguments employed here does not exist;
finding such a derivation remains an important open problem. (Korepin and collabora-
tors [242,278] also give the dynamic analogs of (16.77) containing the crossovers between
the different finite-T regimes; the methods discussed here cannot give these either.) Their
results are quite lengthy and are not reproduced here. We will just be satisfied by not-
ing that, as expected by scaling arguments in the high-T regime of a continuum theory,
time-dependent correlations decay exponentially on a phase coherence time of order 1/T .

Summary

We summarize all of the structure in the dynamic correlations of ZB in Fig. 16.6; note the
similarity to (and some differences from) the corresponding figure for the Ising chain in
Fig. 10.12. First, in all the three universal regions of Fig. 16.2, the short-time properties
are essentially the same: a free nonrelativistic particle propagating quantum mechanically,
without yet having felt the influence of any other particle. The interactions with other
particles appear at longer times, and their consequences are rather different in the various
regimes.

In the low-T regime for μ< 0 (T � |μ|), the concentration of other particles is expo-
nentially small, and so the decoherence and spectral line broadening due to collisions are
not felt until the very long time τϕ ∼ (1/T )e|μ|/T .

In the opposing low-T regime for μ > 0 (T � μ) the behavior is rather different. Now
the particles are dense and degenerate, and at times longer than 1/μ, the Pauli exclusion
principle leads to the quantum coherence of a Fermi liquid ground state (more generally
for large μ, a Tomonaga–Luttinger liquid; see Chapter 20). This state is described by the
separate z = 1 theory LF L in (16.29), and for a while the systems appear to be in the
ground state of LF L . However, eventually thermal effects cause decoherence and relaxation

High T

Fermi liquid

w
0 m

FREE PARTICLE
FERMI
LIQUID

QUANTUM
RELAXATION

z = 1

T

w
0 T

QUANTUM
RELAXATION

z = 2 FREE PARTICLE

�Fig. 16.6 Crossovers as a function of frequency for the boson modelZB (in (16.1)) in d = 1 in the regimes of Fig. 16.2; this
model is equivalent toZF (in (16.3)) in d = 1.
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at a time τϕ ∼ 1/T and a length scale ξ ∼ 1/T . This last crossover is entirely a property
of LF L and is characterized by its z = 1 critical exponents.

Finally, in the high-T regime, we have a completely different behavior. Now the value
of μ is unimportant, and we may as well set μ = 0. The crossover from the free particle
behavior to relaxational dynamics happens at a time τϕ ∼ 1/T and a length scale ξ ∼
1/
√

T , which are characteristic of the z = 2 critical point at μ = 0. The mean spacing
between the particles is of order their de Broglie wavelength, and thermal and quantum
effects are equally important.

16.4 The dilute spinful Fermi gas: the Feshbach resonance

This section turns to the case of the spinful Fermi gas with short-range interactions; as
we noted in the introduction, this is a problem which has acquired renewed importance
because of new experiments on ultracold fermionic atoms.

The partition function of the theory examined in this section was displayed in (16.4).
The renormalization group properties of this theory in the zero density limit are identical
to those of the dilute Bose gas considered in Section 16.3. The scaling dimensions of the
couplings are the same, the scaling dimension of �Fσ is d/2 as for �B in (16.43), and
the flow of the u is given by (16.47). Thus for d < 2, a spinful Fermi gas with repulsive
interactions is described by the stable fixed point in (16.49).

However, for the case of a spinful Fermi gas, we can consider another regime of parame-
ters which is of great experimental importance. We can also allow u to be attractive: unlike
the Bose gas case, the u < 0 case is not immediately unstable, because the Pauli exclusion
principle can stabilize a Fermi gas even with attractive interactions. Furthermore, at the
same time we should also consider the physically important case with d > 2, when ε < 0.
The distinct nature of the RG flows predicted by (16.47) for the two signs of ε are shown
in Fig. 16.7.

0 u*

u

0u*

u

(a)

(b)

d < 2

d > 2

�Fig. 16.7 The exact RG flow of (16.47). (a) For d < 2 (ε > 0), the infrared stable fixed point at u = u∗ > 0 describes
quantum liquids of either bosons or fermions with repulsive interactions which are generically universal in the
low-density limit. In d = 1 this fixed point is described by the spinless free Fermi gas (“Tonks” gas), for all statistics
and spin of the constituent particles. (b) For d > 2 (ε < 0) the infrared unstable fixed point at u = u∗ < 0
describes the Feshbach resonance which obtains for the case of attractive interactions. The relevant perturbation
(u− u∗) corresponds to detuning from the resonant interaction.
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Note the unstable fixed point present for d > 2 and u < 0. Thus accessing the fixed
point requires fine-tuning of the microscopic couplings. As discussed in [362, 363], this
fixed point describes a Fermi gas at a Feshbach resonance, where the interaction between
the fermions is universal. For u < u∗, the flow is to u →−∞: this corresponds to a strong
attractive interaction between the fermions, which then bind into tightly bound pairs of
bosons, which then Bose condense; this corresponds to the so-called “BEC” regime. On
the other hand, for u > u∗, the flow is to u ↗ 0, and the weakly interacting fermions then
form the Bardeen–Cooper–Schrieffer (BCS) superconducting state.

Note that the fixed point at u = u∗ for ZFs has two relevant directions for d > 2. As
in the other problems considered in this chapter, one corresponds to the chemical potential
μ. The other corresponds to the deviation from the critical point u − u∗, and this (from
(16.47)) has RG eigenvalue −ε = d − 2 > 0. This perturbation corresponds to “detuning”
from the Feshbach resonance, ν (not to be confused with the symbol for the correlation
length exponent); we have ν ∝ u − u∗. Thus we have

dim[μ] = 2 , dim[ν] = d − 2. (16.90)

These two relevant perturbations have important consequences for the phase diagram, as
we see shortly.

For now, let us understand the physics of the Feshbach resonance better. For this, it is
useful to compute the two-body T matrix exactly by summing the graphs in Fig. 16.3,
along with a direct interaction first order in u0. The second-order term has already been
evaluated for the bosonic case in (16.45) for zero external momentum and frequency, and
has an identical value for the present fermionic case. Here, however, we want the off-shell
T -matrix, for the case in which the incoming particles have momenta k1,2, and frequencies
ω1,2. Actually for the simple momentum-independent interaction u0, the T matrix depends
only upon the sums k = k1+k2 and ω = ω1+ω2, and is independent of the final state of the
particles, and the diagrams in Fig. 16.3 form a geometric series. In this manner we obtain

1

T (k, iω)
= 1

u0

+
∫

d�

2π

∫
dd p

(2π)d
1

(−i(�+ ω)+ (p + k)2/(2m))

1

(i�+ p2/(2m))

= 1

u0
+
∫ �

0

dd p

(2π)d
m

p2
+ �(1− d/2)

(4π)d/2
md/2

[
−iω + k2

4m

]d/2−1

. (16.91)

In d = 3, the s-wave scattering amplitude of the two particles, f0, is related to the T matrix
at zero center of mass momentum and frequency k2/m by f0(k) = −mT (0, k2/m)/(4π),
and so we obtain

f0(k) = 1

−1/a − ik
, (16.92)

where the scattering length, a, is given by

1

a
= 4π

mu0
+
∫ �

0

d3 p

(2π)3
4π

p2
. (16.93)
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For u0 < 0, we see from (16.93) that there is a critical value of u0 where the scattering
length diverges and changes sign: this is the Feshbach resonance. We identify this critical
value with the fixed point u = u∗ of the RG flow (16.47). It is conventional to identify the
deviation from the Feshbach resonance by the detuning ν

ν ≡ −1

a
. (16.94)

Note that ν ∝ u − u∗, as claimed earlier. For ν > 0, we have weak attractive interactions,
and the scattering length is negative. For ν < 0, we have strong attractive interactions, and
a positive scattering length. Importantly, for ν < 0, there is a two-particle bound state,
whose energy can be deduced from the pole of the scattering amplitude; recalling that the
reduced mass in the center of mass frame is m/2, we obtain the bound state energy, Eb,

Eb = −ν
2

m
. (16.95)

We can now draw the zero temperature phase diagram [362] of ZFs as a function of μ
and ν, and the result is shown in Fig. 16.8.

For ν > 0, there is no bound state, and so no fermions are present for μ < 0. At μ = 0,
we have an onset of nonzero fermion density, just as in the other sections of this chapter.
These fermions experience a weak attractive interaction, and so experience the Cooper
instability once there is a finite density of fermions for μ > 0. So the ground state for
μ > 0 is a paired Bardeen–Cooper–Schrieffer (BCS) superfluid, as indicated in Fig. 16.8.
For small negative scattering lengths, the BCS state modifies the fermion state only near

Superfluid

Vacuum

BCS

BEC

�Fig. 16.8 Universal phase diagram at zero temperature for the spinful Fermi gas in d = 3 as a function of the chemical potential
μ and the detuning ν . The vacuum state (shown hatched) has no particles. The position of the ν < 0 phase
boundary is determined by the energy of the two-fermion bound state in (16.95):μ = −ν2/(2m). The density of
particles vanishes continuously at the second-order quantum phase transition boundary of the superfluid phase,
which is indicated by the thin continuous line. The quantum multicritical point atμ = ν = 0 (denoted by the filled
circle) controls all the universal physics of the dilute spinful Fermi gas near a Feshbach resonance. The universal
properties of the critical lineμ = 0, ν > 0 map onto the theory of Section 16.2, while those of the critical line
μ = −ν2/(2m), ν < 0 map onto the theory of Section 16.3. This implies that the T > 0 crossovers in Fig. 16.2
apply for ν > 0 (the “Fermi liquid” region of Fig. 16.2 now has BCS superconductivity at an exponentially small T),
while those of Fig. 16.4 apply for ν < 0.
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the Fermi level. Consequently as μ ↘ 0 (specifically for μ < ν2/m), we can neglect the
pairing in computing the fermion density. We therefore conclude that the universal critical
properties of the lineμ = 0, ν > 0 map precisely on to two copies (for the spin degeneracy)
of the noninteracting fermion model ZF studied in Section 16.2. In particular the T > 0
properties for ν > 0 map onto the crossovers in Fig. 16.2. The only change is that the BCS
pairing instability appears below an exponentially small T in the “Fermi liquid” regime.
However, the scaling functions for the density as a function of μ/T remain unchanged.

For ν < 0, the situation changes dramatically. Because of the presence of the bound
state (16.95), it pays to introduce fermions even for μ < 0. The chemical potential for a
fermion pair is 2μ, and so the threshold for having a nonzero density of paired fermions is
μ = Eb/2. This leads to the phase boundary shown in Fig. 16.8 at μ = −ν2/(2m). Just
above the phase boundary, the density of fermion pairs is small, and so these can be treated
as canonical bosons. Computations of the interactions between these bosons [362] show
that they are repulsive. Therefore we map their dynamics onto those of the dilute Bose gas
studied in Section 16.3. Thus the universal properties of the critical line μ = −ν2/(2m)
are equivalent to those of ZB . Specifically, this means that the T > 0 properties across this
critical line map onto those of Fig. 16.4.

Thus we reach the interesting conclusion that the Feshbach resonance at μ = ν = 0 is
a multicritical point separating the density onset transitions of ZF (Section 16.2) and ZB

(Section 16.3). This conclusion can be used to sketch the T > 0 extension of Fig. 16.8, on
either side of the ν = 0 line.

We now need a practical method of computing universal properties of ZFs near the
μ = ν = 0 fixed point, including its crossovers into the regimes described by ZF and ZB .
The fixed point (16.47) of ZFs provides an expansion of the critical theory in the powers
of ε = 2 − d . However, observe from Fig. 16.7, the flow for u < u∗ is to u → −∞. The
latter flow describes the crossover into the dilute Bose gas theory, ZB , and so this cannot
be controlled by the 2 − d expansion. The following subsections propose two alternative
analyses of the Feshbach resonant fixed point which address this difficulty.

16.4.1 The Fermi–Bose model

One successful approach is to promote the two-fermion bound state in (16.95) to a canoni-
cal boson field �B . This boson should also be able to mix with the scattering states of two
fermions. We are therefore led to consider the following model

ZF B =
∫

D�F↑(x, τ )D�F↓(x, τ )D�B(x, τ ) exp

(
−
∫

dτdd x LF B

)
,

LF B = �∗Fσ
∂�Fσ

∂τ
+ 1

2m
|∇�Fσ |2 − μ|�Fσ |2

+�∗B
∂�B

∂τ
+ 1

4m
|∇�Fσ |2 + (δ − 2μ)|�B |2

− λ0

(
�∗B�F↑�F↓ +�B�

∗
F↓�∗F↑

)
. (16.96)
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Here we have taken the bosons to have mass 2m, because that is the expected mass of
the two-fermion bound state by Galilean invariance. We have omitted numerous possible
quartic terms between the bosons and fermions above, and these turn out to be irrelevant
in the analysis below.

The conserved U(1) charge for ZF B is

Q = �∗F↑�F↑ +�∗F↓�F↓ + 2�∗B�B, (16.97)

and so ZF B is in the class of models being studied in this chapter. The factor of 2 in
(16.97) accounts for the 2μ chemical potential for the bosons in (16.96). For μ sufficiently
negative it is clear that ZF B will have neither fermions nor bosons present, and so 〈Q〉 =
0. Conversely for positive μ, we expect 〈Q〉 �= 0, indicating a transition as a function
of increasing μ. Furthermore, for δ large and positive, the Q density will be primarily
fermions, while for δ negative the Q density will be mainly bosons; thus we expect a
Feshbach resonance at intermediate values of δ, which then plays the role of detuning
parameter.

We have thus argued that the phase diagram of ZF B as a function of μ and δ is quali-
tatively similar to that in Fig. 16.8, with a Feshbach resonant multicritical point near the
center. The main claim of this section is that the universal properties of ZF B and ZFs are
identical near this multicritical point [362,363]. Thus, in a strong sense, the theories ZF B

and ZFs are equivalent. Unlike the equivalence between ZB and ZF , which held only in
d = 1, the present equivalence applies for d > 2.

We establish the equivalence by an exact RG analysis of the zero density critical the-
ory. We scale the spacetime coordinates and the fermion field as in (16.12), but allow an
anomalous dimension ηb for the boson field relative to (16.43):

x ′ = xe−�,
τ ′ = τe−z�,

� ′Fσ = �Fσ ed�/2,

� ′B = �Be(d+ηb)�/2,

λ′0 = λ0e(4−d−ηb)�/2, (16.98)

where, as before, we have z = 2. At tree level, the theory ZF B with μ = δ = 0 is invariant
under the transformations in (16.98) with ηb = 0. At this level, we see that the coupling λ0

is relevant for d < 4, and so we have to consider the influence of λ0. This also suggests, as
in Chapter 4, that we may be able to obtain a controlled expansion in powers of (4− d).

Upon considering corrections in powers of λ0 in the critical theory, it is not difficult to
show that there is a non-trivial contribution from only a single Feynman diagram: this is
the self-energy diagram for �B which is shown in Fig. 16.9. All other diagrams vanish in
the zero-density theory, for reasons similar to those discussed for ZB below (16.49). This
diagram is closely related to the integrals in the T -matrix computation in (16.91), and leads
to the following contribution to the boson self-energy �B :
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�Fig. 16.9 Feynman diagram contributing to the RG. The dark triangle is theλ0 vertex, the full line is the�B propagator,
and the dashed line is the�F propagator.

�B(k, iω)

= λ2
0

∫
d�

2π

∫ �

�e−�
dd p

(2π)d
1

(−i(�+ ω)+ (p + k)2/(2m))

1

(i�+ p2/(2m))

= λ2
0

∫ �

�e−�
dd p

(2π)d
1

(−iω + (p + k)2/(2m)+ p2/(2m))

= λ2
0

∫ �

�e−�
dd p

(2π)d
m

p2
− λ2

0

(
−iω + k2

4m

(
2− 4

d

))∫ �

�e−�
dd p

(2π)d
m2

p4
. (16.99)

The first term is a constant that can be absorbed into a redefinition of δ. For the first time,
we see above a special role for the spatial dimension d = 4, where the momentum integral
is logarithmic. Our computations below turn out to be an expansion in powers of (4− d),
and so we evaluate the numerical prefactors in (16.99) with d = 4. The result turns out
to be correct to all orders in (4 − d), but to see this explicitly we need to use a proper
Galilean-invariant cutoff in a field-theoretic approach [362]. The simple momentum shell
method being used here preserves Galilean invariance only in d = 4.

With the above reasoning, we see that the second term in the boson self-energy in (16.99)
can be absorbed into a rescaling of the boson field under the RG. We therefore find a
nonzero anomalous dimension

ηb = λ2, (16.100)

where we have absorbed phase space factors into the coupling λ by

λ0 = �2−d/2

m
√

Sd
λ. (16.101)

With this anomalous dimension, we use (16.98) to obtain the exact RG equation for λ:

dλ

d�
= (4− d)

2
λ− λ3

2
. (16.102)

For d < 4, this flow has a stable fixed point at λ = λ∗ = √(4− d). The central claim of
this subsection is that the theory ZF B at this fixed point is identical to the theory ZFs at
the fixed point u = u∗ for 2 < d < 4.

Before we establish this claim, note that at the fixed point, we obtain the exact result for
the anomalous dimension of the boson field

ηb = 4− d. (16.103)
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�Fig. 16.10 Feynman diagram for the mixing between the renormalization of the�†
F �F and�†

B�B operators. The filled
circle is the�†

F �F source. Other notation is as in Fig. 16.9.

Let us now consider the spectrum of relevant perturbations to the λ = λ∗ fixed point.
As befits a Feshbach resonant fixed point, there are two relevant perturbations in ZF B , the
detuning parameter δ and the chemical potential μ. Apart from the tree-level rescalings, at
one loop we have the diagram shown in Fig. 16.10. This diagram has a �†

Fσ�Fσ source,
and it renormalizes the coefficient of �†�: it evaluates to

2λ2
0

∫
d�

2π

∫ �

�e−�
dd p

(2π)d
1

(−i�+ p2/(2m))2(i�+ p2/(2m))

= 2λ2
0

∫ �

�e−�
dd p

(2π)d
m2

p4
. (16.104)

Combining (16.104) with the tree-level rescalings, we obtain the RG flow equations

dμ

d�
= 2μ,

d

d�
(δ − 2μ) = (2− ηb)(δ − 2μ)− 2λ2μ, (16.105)

where the last term arises from (16.104). With the value of ηb in (16.100), the second
equation simplifies to

dδ

d�
= (2− λ2)δ. (16.106)

Thus we see that μ and δ are actually eigen-perturbations of the fixed point at λ = λ∗, and
their scaling dimensions are

dim[μ] = 2 , dim[δ] = d − 2. (16.107)

Note that these eigenvalues coincide with those of ZFs in (16.90), with δ identified as
proportional to the detuning ν. This, along with the symmetries of Q conservation and
Galilean invariance, establishes the equivalence of the fixed points of ZF B and ZFs .

The utility of the present ZF B formulation is that it can provide a description of universal
properties of the unitary Fermi gas in d = 3 via an expansion in (4− d). Further details of
explicit computations can be found in [363].
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16.4.2 Large-N expansion

We now return to the model ZFs in (16.4), and examine it in the limit of a large number of
spin components [362, 525]. We also use the structure of the large-N perturbation theory
to obtain exact results relating different experimental observables of the unitary Fermi gas.

The mechanics of the large-N expansion turn out to be quite similar to those in Chap-
ter 11, although here we are dealing with fermionic fields. The basic idea is to endow the
fermion with an additional flavor index a = 1 . . . N/2, so that the fermion field is �Fσa ,
where we continue to have σ =↑,↓. Then, we write ZFs as

ZFs =
∫

D�Fσa(x, τ ) exp

(
−
∫ 1/T

0
dτ
∫

dd x LFs

)
,

LFs = �∗Fσa
∂�Fσa

∂τ
+ 1

2m
|∇�Fσa |2 − μ|�Fσa |2

+ 2u0

N
�∗F↑a�

∗
F↓a�F↓b�F↑b, (16.108)

where there is an implied sum over a, b = 1 . . . N/2. The case of interest has N = 2, but
we consider the limit of large even N , where the problem becomes tractable.

As written, there is an evident O(N/2) symmetry in ZFs corresponding to rotations
in flavor space. In addition, there is U(1) symmetry associated with Q conservation, and
an SU(2) spin rotation symmetry. Actually, the spin and flavor symmetry combine to
make the global symmetry U(1)×Sp(N ), but we do not make much use of this interesting
observation.

The large-N expansion proceeds by decoupling the quartic term in (16.108) by a
Hubbard–Stratanovich transformation (last seen in (9.32)). For this we introduce a complex
bosonic field �B(x, τ ) and write

ZFs =
∫

D�Fσa(x, τ )D�B(x, τ ) exp

(
−
∫ 1/T

0
dτ
∫

dd x L̃Fs

)
,

L̃Fs = �∗Fσa
∂�Fσa

∂τ
+ 1

2m
|∇�Fσa |2 − μ|�Fσa |2

+ N

2|u0| |�B |2 −�B�
∗
F↑a�

∗
F↓a −�∗B�F↓a�F↑a . (16.109)

Here, and below, we assume u0 < 0, which is necessary for being near the Feshbach
resonance. Note that�B couples to the fermions just like the boson field in the Bose–Fermi
model in (16.96), which is the reason for choosing this notation. If we perform the integral
over�B in (16.109), we recover (16.108), as required. For the large-N expansion, we have
to integrate over �Fσa first and obtain an effective action for �B ; this is the analog of the
integration over n in Chapter 11. Because the action in (16.109) is Gaussian in the �Fσa ,
the integration over the fermion field involves evaluation of a functional determinant, and
has the schematic form

ZFs =
∫

D�B(x, τ ) exp (−NSeff [�B(x, τ )]) , (16.110)
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where Seff is the logarithm of the fermion determinant of a single flavor. The key point is
that the only N dependence is in the prefactor in (16.110), and so the theory of �B can
controlled in powers of 1/N , just as in Chapter 11.

We can expand Seff in powers of �B : the pth term has a fermion loop with p external
�B insertions. Details can be found in [362, 525]. Here, we note only the expansion to
quadratic order at μ = δ = T = 0, in which case the coefficient is precisely the inverse of
the fermion T matrix in (16.91):

Seff [�B(x, τ )] = −1

2

∫
dω

2π

ddk

(2π)d
1

T (k, iω)
|�B(k, ω)|2 + . . . (16.111)

Given Seff, we then have to find its saddle point with respect to �B . At T = 0, we find the
optimal saddle point at a �B �= 0 in the region of Fig. 16.8 with a nonzero density: this
means that the ground state is always a superfluid of fermion pairs. The traditional expan-
sion about this saddle point yields the 1/N expansion, and many experimental observables
have been computed in this manner [362,525,526].

We conclude our discussion of the unitary Fermi gas by deriving an exact relationship
between the total energy, E , and the momentum distribution function, n(k), of the fermions
[500,501]. We do this using the structure of the large-N expansion. However, we drop the
flavor index a below, and quote results directly for the physical case of N = 2. As usual,
we define the momentum distribution function by

n(k) = 〈�†
Fσ (k, t)�Fσ (k, t)〉, (16.112)

with no implied sum over the spin label σ . The Hamiltonian of the system in (16.108) is
the sum of kinetic and interaction energies: the kinetic energy is clearly an integral over
n(k) and so we can write

E = 2V
∫

ddk

(2π)d
k2

2m
n(k)+ u0V 〈�†

F↑�
†
F↓�F↓�F↑〉

= 2V
∫

ddk

(2π)d
k2

2m
n(k)− u0

∂ lnZFs

∂u0
, (16.113)

where V is the system volume, and all the �F fields are at the same x and t . Now let us
evaluate the u0 derivative using the expression for ZFs in (16.109); this leads to

E

V
= 2

∫
ddk

(2π)d
k2

2m
n(k)+ 1

u0

〈
�∗B(x, t)�B(x, t)

〉
. (16.114)

Now using the expression (16.93) relating u0 to the scattering length a in d = 3, we can
write this expression as

E

V
= m

4πa

〈
�∗B�B

〉+ 2
∫

d3k

(2π)3
k2

2m

(
n(k)−

〈
�∗B�B

〉
m2

k4

)
. (16.115)

This is the needed universal expression for the energy, expressed in terms of n(k) and the
scattering length, and independent of the short-distance structure of the interactions.

At this point, it is useful to introduce “Tan’s constant” C , defined by [500,501]

C = lim
k→∞ k4n(k). (16.116)
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The requirement that the momentum integral in (16.115) is convergent in the ultraviolet
implies that the limit in (16.116) exists, and further specifies its value

C = m2 〈�∗B�B
〉
. (16.117)

We now note that the relationship n(k)→ m2
〈
�∗B�B

〉
/k4 at large k is also as expected

from a scaling perspective. We saw in Section 16.4.1 that the fermion field �F does not
acquire any anomalous dimensions, and has scaling dimension d/2. Consequently n(k) has
scaling dimension zero. Next, note that the operator �∗B�B is conjugate to the detuning
from the Feshbach critical point; from (16.107) the detuning has scaling dimension d − 2,
and so �∗B�B has scaling dimension d + z − (d − 2) = 4. Combining these scaling
dimensions, we explain the k−4 dependence of n(k).

It now remains to establish the claimed exact relationship in (16.117) as a general prop-
erty of a spinful Fermi gas near unitarity. As a start, we can examine the large k limit of
n(k) in the BCS mean-field theory of the superfluid phase: the reader can easily verify
that the textbook BCS expressions for n(k) do indeed satisfy (16.117). However, the claim
of [55, 479] is that (16.117) is exact beyond mean-field theory, and also holds in the non-
superfluid states at nonzero temperatures. A general proof was given in [479], and relied
on the operator product expansion (OPE) applied to the field theory (16.109). The OPE is
a general method for describing the short-distance and time (or large momentum and fre-
quency) behavior of field theories. Typically, in the Feynman graph expansion of a corre-
lator, the large momentum behavior is dominated by terms in which the external momenta
flow in only a few propagators, and the internal momentum integrals can be evaluated after
factoring out these favored propagators. For the present situation, let us consider the 1/N
correction to the fermion Green’s function given by the diagram in Fig. 16.11. Represent-
ing the bare fermion and boson Green’s functions by G F and G B , respectively, Fig. 16.11
evaluates to

G2
F (k, ω)

∫
dd p

(2π)d
d�

2π
G B(p,�)G F (−k + p,−ω +�). (16.118)

Here G B is the propagator of the boson action Seff specified by (16.111). In the limit of
large k and ω, the internal p and � integrals are dominated by p and � much smaller than
k and ω; so we can approximate (16.118) by

G2
F (k, ω)G F (−k,−ω)

∫
dd p

(2π)d
d�

2π
G B(p,�)

= G2
F (k, ω)G F (−k,−ω) 〈�∗B�B

〉
. (16.119)

�Fig. 16.11 Order 1/N correction to the fermion Green’s function. Notation is as in Fig. 16.9.
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This analysis can now be extended to all orders in 1/N . Among these higher order contri-
butions are terms which contribute self-energy corrections to the boson propagator G B in
(16.119): it is clear that these can be summed to replace the bare G B in (16.119) by the
exact G B . Then the value of

〈|�B |2
〉

in (16.119) also becomes the exact value. All remain-
ing contributions can be shown [479] to fall off faster at large k and ω than the terms in
(16.119). So (16.119) is the exact leading contribution to the fermion Green’s function in
the limit of large k and ω after replacing

〈|�B |2
〉

by its exact value. We can now inte-
grate (16.119) over ω to obtain n(k) at large k. Actually the ω integral is precisely that in
(16.104), which immediately yields the needed relation (16.117).

Similar analyses can be applied to determine the spectral functions of other observables
[56,92,209,448,449,479,526].

Determination of the specific value of Tan’s constant requires numerical computations
in the 1/N expansion of (16.110). From the scaling properties of the Feshbach resonant
fixed point in d = 3, we can deduce that the result obeys a scaling form similar to (16.20):

C = (2mT )2�C

(
μ

T
,

ν√
2mT

)
, (16.120)

where �C is a dimensionless universal function of its dimensionless arguments; note that
the arguments represent the axes of Fig. 16.8. The methods of [362, 525] can now be
applied to (16.117) to obtain numerical results for �C in the 1/N expansion. We illustrate
this method here by determining C to leading order in the 1/N expansion at μ = ν = 0.
For this, we need to generalize the action (16.111) for �B to T > 0 and general N . Using
(16.91) we can modify (16.111) to

Seff = N T
∑
ωn

∫
d3k

8π3 [D0(k, ωn)+ D1(k, ωn)] |�B(k, ωn)|2, (16.121)

where D0 is the T = 0 contribution, and D1 is the correction at T > 0:

D0(k, ωn) = m3/2

16π

√
−iωn + k2

4m
,

D1(k, ωn) = 1

2

∫
d3 p

8π3

1

(ep2/(2mT ) + 1)

1(−iω + p2/(2m)+ (p + k)2/(2m)
) . (16.122)

We now have to evaluate
〈
�∗B�B

〉
using the Gaussian action in (16.121). It is useful to

do this by separating the D0 contribution, which allows us to properly deal with the large
frequency behavior. So we can write

〈
�∗B�B

〉 = 1

N
T
∑
ωn

∫
d3k

8π3

[
1

D0(k, ωn)+ D1(k, ωn)
− 1

D0(k, ωn)

]
+ D00. (16.123)

In evaluating D00 we have to use the usual time-splitting method to ensure that the bosons
are normal-ordered, and evaluate the frequency summation by analytically continuing to
the real axis:
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D00 = 1

N

∫
d3k

8π3
lim
η→0

T
∑
ωn

eiωnη

D0(k, ωn)

= 16π

Nm3/2

∫
d3k

8π3

∫ ∞
k2
4m

d�

π

1

(e�/T − 1)

1√
�− k2/(4m)

= 8.37758

N
T 2. (16.124)

The frequency summation in (16.123) can be evaluated directly on the imaginary frequency
axis: the series is convergent at large ωn , and is easily evaluated by a direct numerical
summation. Numerical evaulation of (16.123) now yields

C = (2mT )2
(

0.67987

N
+O(1/N 2)

)
(16.125)

at μ = ν = 0.

16.5 Applications and extensions

Experiments on the loss of superfluidity of 4He adsorbed in aerogel [98, 99, 402] provide
a realization of the dilute Bose gas theory in the presence of a random external poten-
tial [148]. There are few analytic results on this random problem, although some detailed
numerical studies have been undertaken [484,535]; however, a reconciliation between the-
ory and experiments has not yet occurred. The experiments have been carried out both in
bulk (d = 3) and in films (d = 2).

Quantum antiferromagnets in the presence of an external magnetic field provide some of
the best experimental realizations of the dilute Bose gas quantum critical point. We defer
discussion of experiments on this case until Chapter 19 where the connection is explicitly
discussed.

Corrections to the Tc of a dilute Bose gas in d = 3 beyond the result (16.69) have been
studied numerically [183] and by a renormalization group method somewhat different from
our analysis here [47]. It would be interesting to compare these results with those obtained
here, after accounting for the fact that the critical point is at a nonzero Rc ∼ (T U )1/2 (see
the discussion below (14.19)); this has not yet been done.
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Parts II and III focus on quantum phase transitions in which the primary degrees of free-
dom are bosonic. However, many of the experimentally most interesting transitions involve
fermions in a crucial way. We met the examples of the dilute Fermi gases in Chapter 16,
where the quantum critical point itself was at zero fermion density. Consequently, the sin-
gularities in the fermion Green’s function are at momentum �k = 0, the point at which
the single-particle energy vanishes quadratically. This and the following chapter explore
fermion systems at nonzero density; the systems have different types of singularity in
momentum space. The present chapter explores fermion systems with fermionic excita-
tions with a relativistic Dirac spectrum with an energy which vanishes linearly at isolated
points in the Brillouin zone. We find that this leads to field theories which can be studied by
methods similar to those developed earlier for bosonic systems. Chapter 18 turns to Fermi
liquids, whose zero energy excitations lie along an extended Fermi surface in the Brillouin
zone, and their transitions have numerous qualitative new features. The methods developed
in the present chapter for Dirac fermions prove useful in our analysis of Fermi surfaces in
Chapter 18.

Further motivation for the study of Dirac fermions is provided by numerous new exper-
imental realizations. These include d-wave superconductors, graphene, and topological
insulators. Here we present the theory in the context of d-wave superconductors, but the
methods are easily extended to the other situations [217,254].

We begin in Section 17.1 with a discussion of the origin of d-wave superconductivity in
correlated electron systems, and the appearance of Dirac fermions in their spectrum. Then
we consider two quantum phase transitions, both involving a simple Ising order parameter.
The first in Section 17.2, with time-reversal symmetry breaking, leads to a relativistic quan-
tum field theory closely related to the so-called Gross–Neveu model. The second model of
Section 17.4 involves breaking of a lattice rotation symmetry, leading to “Ising-nematic”
order. The theory for this model is not relativistically invariant: it is strongly coupled, but
can be controlled by a 1/N expansion.

17.1 d-wave superconductivity and Dirac fermions

We begin with a review of the origin of d-wave superconductivity in correlated electron
models with antiferromagnetic exchange interactions on the square lattice [344, 446]. We
then show that the theory of low-energy electronic excitations can be expressed in terms of
a continuum theory of Dirac fermions.

332
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We apply the standard Bardeen–Cooper–Schrieffer (BCS) mean-field theory of super-
conductivity to the following Hamiltonian for electrons hopping between the sites of the
square lattice

Ht J =
∑

k

εkc†
kacka + J1

∑
〈i j〉

Ŝi · Ŝ j , (17.1)

where c ja is the annihilation operator for an electron on site j with spin a =↑↓, cka is
its Fourier transform to momentum space, and εk is the dispersion of the electrons; we
can include first- and second-neighbor hopping to obtain εk = −2t1(cos(kx )+ cos(ky))−
2t2(cos(kx + ky) + cos(kx − ky)) − μ, with μ the chemical potential (the Fermi surface
associated with this dispersion appears in Fig. 18.1). The J1 term is the nearest-neighbor
antiferromagnetic exchange interaction with

Ŝ jα = 1

2
c†

jaσ
α
abc jb (17.2)

and σα the Pauli matrices. We consider the consequences of the further neighbor exchange
interactions for the superconductor in Section 17.2 below.

It is now useful to re-express the exchange interaction in (17.1) in a different form, using
simple mathematical identities obeyed by the Pauli matrices:

Ŝi · Ŝ j = −1

2

(
εαγ c†

iαc†
jγ

)(
εβδc jδciβ

)
+ 1

4

(
c†

iαciα

) (
c†

jβc jβ

)
, (17.3)

where εαβ is the unit antisymmetric tensor. Note that the first term on the right-hand side
is of the form of an attractive interaction between singlet pairs of electrons: it is this attrac-
tion which leads to superconductivity. The second term is a nearest-neighbor repulsion
which, in mean-field theory, only renormalizes the chemical potential: we therefore neglect
it below. Inserting (17.3) into (17.1), and performing a BCS mean-field factorization of the
attractive interaction leads to the Bogoliubov Hamiltonian

HBC S =
∑

k

εkc†
kacka − J1

2

∑
j,μ=x,y

�μ

(
c†

j↑c†
j+μ̂,↓ − c†

j↓c†
j+μ̂,↑

)
+ H.c. (17.4)

Here �x and �y are mean-field variational parameters which have to be determined by
solution of the self-consistency equations

�μ = −
〈
c j↑c j+μ̂,↓ − c j↓c j+μ̂,↑

〉
. (17.5)

We can diagonalize HBC S by a Bogoliubov transformation similar to that applied to (10.16),
and so obtain the ground state energy, and the spectrum of Bogoliubov fermion excitations
γka . The ground state energy is

EBC S = J1

2

(
|�x |2 + |�y |2

)
−
∫

d2k

4π2 [Ek − εk] , (17.6)

and this is expressed in terms of the excitation energy of the fermionic quasiparticles, γka ,

Ek =
[
ε2

k +
∣∣J1(�x cos kx +�y cos ky)

∣∣2]1/2
. (17.7)
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It now remains to determine the parameters �x and �y . These are determined either
by solving (17.5), or by minimizing (17.7); when generalized to T > 0, both yield the
equation

�μ =
∫

d2k

4π2

(�x cos kx +�y cos ky)

Ek
tanh

(
Ek

2T

)
cos kμ. (17.8)

For the band structure εk appropriate to the cuprates (specified below (17.1)), numerical
analysis shows that the optimum choice is always �x = −�y . This is the dx2−y2 pairing
solution. Qualitatively, we can understand this by noting [463] that the energy in (17.6) is
efficiently minimized if we can choose the gap function�k ≡ �x cos kx +�y cos ky to be
as large as possible near the region of the Brillouin zone where |εk | is small, i.e. near the
Fermi surface; for the cuprate Fermi surface (see Fig. 18.1), this happens for �x = −�y .
We therefore set �x = −�y = �x2−y2 below, and the value of �x2−y2 is determined by
the solution of (17.8).

Now we show that the above d-wave superconductor has quasiparticle excitations which
are Dirac fermions. With the choice �x = −�y , the energy of the quasiparticles, Ek ,
vanishes at the four points (±Q,±Q) at which εk = 0, shown at the left of Fig. 17.2; these
points are determined by the crossing of the diagonals (where cos kx = cos ky) with the
Fermi surface in Fig. 18.1 (where εk = 0). We are especially interested in the low-energy
quasiparticles in the vicinity of these points, and so we perform a gradient expansion of
HBC S near each of them. We label the points �Q1 = (Q, Q), �Q2 = (−Q, Q), �Q3 =
(−Q,−Q), �Q4 = (Q,−Q) and write

c ja = f1a(�r j )e
i �Q1·�r j + f2a(�r j )e

i �Q2·�r j + f3a(�r j )e
i �Q3·�r j + f4a(�r j )e

i �Q4·�r j , (17.9)

while assuming the f1−4,a(�r) are slowly varying functions of x . We also introduce the
bispinors

�1 =

⎛⎜⎜⎜⎝
f1↑
f †
3↓

f1↓
− f †

3↑

⎞⎟⎟⎟⎠, �2 =

⎛⎜⎜⎜⎝
f2↑
f †
4↓

f2↓
− f †

4↑

⎞⎟⎟⎟⎠, (17.10)

and then express HBC S in terms of �1,2 while performing a spatial gradient expansion.
This yields the following effective action for the fermionic quasiparticles:

S� =
∫

dτd2r

[
�

†
1

(
∂τ − i

vF√
2
(∂x + ∂y)τ

z − i
v�√

2
(−∂x + ∂y)τ

x
)
�1

+�†
2

(
∂τ − i

vF√
2
(−∂x + ∂y)τ

z − i
v�√

2
(∂x + ∂y)τ

x
)
�2

]
, (17.11)

where the τ x,z are 4× 4 matrices which are block diagonal, the blocks consisting of 2× 2
Pauli matrices. The velocities vF,� are given by the conical structure of Ek near the Q1−4:
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we have vF =
∣∣∇kεk |k=Qa

∣∣ and v� = |J1�x2−y2

√
2 sin(Q)|. In this limit, the energy of

the �1 fermionic excitations is

Ek = (v2
F (kx + ky)

2/2+ v2
�(kx − ky)

2/2)1/2, (17.12)

(and similarly for �2), which is the spectrum of massless Dirac fermions.
We can now study the influence of short-range interactions between the Dirac fermions,

using arguments similar to those in Section 16.2. The free Dirac theory in (17.11) is invari-
ant under the scaling transformation

x ′ = xe−�, τ ′ = τe−�, � ′ = �e�. (17.13)

Let us assume there is a contact four Fermi interaction, u; unlike (16.17), a term without
spatial gradients is now allowed because the multiple indices on the Dirac fermion allow us
to evade the exclusion principle. Simple power-counting shows that dim[u] = −1, and so
the interaction is irrelevant. Using the arguments similar to those around (14.37), we con-
clude therefore that the self-energy of the Dirac fermions scales as Im�(k = 0, ω) ∼ u2ω3.
This is a weak perturbation on the bare Green’s function, and so the Dirac quasiparticles
remain well defined.

Interesting departures from the free Dirac fermion behavior appear only upon consid-
ering the vicinity of quantum phase transitions which change the nature of the fermionic
spectrum. We consider two such examples in the remainder of this chapter.

17.2 Time-reversal symmetry breaking

We have now shown that the low-energy spectrum of a BCS d-wave superconductor on
a square lattice consists of two massless 4-component Dirac fermions (see (17.11)). We
now consider a quantum phase transition involving the breaking of time-reversal symmetry
within the superconducting state. The superconducting order itself will only be weakly
affected by this transition, and so will be regarded as a spectator to the analysis below: the
main role of the superconductivity is to provide the low-energy Dirac fermions, and they
control the critical fluctuations. This is why similar theories apply to symmetry-breaking
transitions in graphene [217,254].

We consider a simple model of time-reversal symmetry breaking in which the pairing
symmetry of the superconductor changes from dx2−y2 to dx2−y2 ± idxy . The choice of the
phase between the two pairing components leads to a breaking of time-reversal symmetry.

The mean-field theory of this transition can be explored entirely within the context of
BCS theory, as we review below. However, fluctuations about the BCS theory are strong,
and lead to nontrivial critical behavior involving both the collective order parameter and
the Bogoliubov fermions: this is probably the earliest known example [527, 528] of the
failure of BCS theory in two (or higher) dimensions in a superconducting ground state.
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We extend Ht J in (17.1) so that BCS mean-field theory permits a region with dxy super-
conductivity. With a J2 second-neighbor interaction, (17.1) is modified to:

H̃t J =
∑

k

εkc†
kσ ckσ + J1

∑
〈i j〉

Si · S j + J2

∑
nnn i j

Si · S j . (17.14)

We follow the evolution of the ground state of H̃t J as a function of J2/J1. It is worth noting
here that the model in (17.14) has been argued [463] to describe the pnictide superconduc-
tors, with εk modified to realize the band structure of these compounds.

The mean-field Hamiltonian is now modified from Eq. (17.4) to

H̃BC S =
∑

k

εkc†
kσ ckσ − J1

2

∑
j,μ

�μ

(
c†

j↑c†
j+μ̂,↓ − c†

j↓c†
j+μ̂,↑

)
+ h.c.

− J2

2

∑
j,ν

′
�ν

(
c†

j↑c†
j+ν̂,↓ − c†

j↓c†
j+ν̂,↑

)
+ h.c., (17.15)

where the second summation over ν is along the diagonal neighbors x̂+ ŷ and−x̂+ ŷ. We
have now a total of four variational parameters: �x , �y , �x+y , �−x+y . For εk as in the
cuprates, the optimum solution has�x = −�y = �x2−y2 as before, and dxy pairing along
the diagonals with �x+y = −�−x+y = �xy : these choices for the spatial structure of
the pairing amplitudes (which determine the Cooper pair wavefunction) are summarized in
Fig 17.1. For the pnictide band structure, the appropriate choices turn out to be �x = �y

and �x+y = �−x+y , which realizes a form of extended-s pairing [326, 463]. We do not
consider the latter choice here, and focus on the dx2−y2 and dxy pairing shown in Fig. 17.1.

The values of the pairing amplitudes �x2−y2 and �xy are to be determined by minimiz-
ing the ground state energy (generalizing (17.6))

EBC S = J1|�x2−y2 |2 + J2|�xy |2 −
∫

d2k

4π2 [Ek − εk] , (17.16)

where the quasiparticle dispersion is now (generalizing (17.7))

Ek =
[
ε2

k +
∣∣J1�x2−y2(cos kx − cos ky)+ 2J2�xy sin kx sin ky

∣∣2]1/2
. (17.17)

−Δxy

−Δxy

Δxy

Δxy −Δx 2–y 2

Δx 2–y 2

−Δx 2–y 2

Δx 2–y 2

�Fig. 17.1 Values of the pairing amplitudes,−〈ci↑cj↓ − ci↓cj↑〉with i the central site, and j one of its eight near neighbors;
for the band structure of the cuprates (Fig. 18.1).
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�Fig. 17.2 BCS solution of the phenomenological Hamiltonian H̃tJ in (17.14). Shown are the optimum values of the pairing
amplitudes |�x2−y2 | and |�xy| as a function of J2 for t1 = 1, t2 = −0.25,μ = −1.25, and J1 fixed at
J1 = 0.4. The relative phase of the pairing amplitudes was always found to obey (17.18). The dashed lines denote
locations of phase transitions between dx2−y2 , dx2−y2 + idxy , and dxy superconductors. The pairing amplitudes
vanish linearly at the first transition corresponding to the exponentβBCS = 1 in Eq. (17.21). The Brillouin zone
location of the gapless Dirac points in the dx2−y2 superconductor is indicated by filled circles. For the dispersion εk

appropriate to the cuprates, the dxy superconductor is fully gapped, and so the second transition is ordinary Ising.

Note that the energy depends upon the relative phase of �x2−y2 and �xy : this phase is
therefore an observable property of the ground state.

It is a simple matter to numerically carry out minimization of (17.17), and the results for
a typical choice of parameters are shown in Fig. 17.2 as a function J2/J1. One of the two
amplitudes �x2−y2 or �xy is always nonzero and so the ground state is always supercon-
ducting. The transition from pure dx2−y2 superconductivity to pure dxy superconductivity
occurs via an intermediate phase in which both order parameters are nonzero. Furthermore,
in this regime, their relative phase is found to be pinned to ±π/2, i.e.

arg(�xy) = arg(�x2−y2)± π/2. (17.18)

The reason for this pinning can be seen intuitively from (17.17): only for these values of
the relative phase does the equation Ek = 0 never have a solution. In other words, the
gapless nodal quasiparticles of the dx2−y2 superconductor acquire a finite energy gap when
a secondary pairing with relative phase ±π/2 develops. With a level repulsion picture,
we can expect that gapping out the low-energy excitations should help lower the energy
of the ground state. The intermediate phase obeying (17.18) is called a dx2−y2 + idxy

superconductor.
The choice of the sign in (17.18) leads to an overall two-fold degeneracy in the choice of

the wavefunction for the dx2−y2 + idxy superconductor. This choice is related to the break-
ing of time-reversal symmetry, and implies that the dx2−y2 + idxy phase is characterized
by the nonzero expectation value of a Z2 Ising order parameter; the expectation value of
this order vanishes in the two phases (the dx2−y2 and dxy superconductors) on either side
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of the dx2−y2 + idxy superconductor. As is conventional, we represent the Ising order by a
real scalar field φ. Fluctuations of φ become critical near both of the phase boundaries in
Fig. 17.2. As we explain below, the critical theory of the dx2−y2 to dx2−y2 + idxy transi-
tion is not the usual φ4 field theory which describes the ordinary Ising transition in three
spacetime dimensions. (For the dispersion εk appropriate to the cuprates, the dxy super-
conductor is fully gapped, and so the dx2−y2 + idxy to dxy transition in Fig. 17.2 will be
ordinary Ising.)

Near the phase boundary from dx2−y2 to dx2−y2 + idxy superconductivity it is clear that
we can identify

φ = i�xy, (17.19)

(in the gauge where �x2−y2 is real). We can now expand EBC S in (17.16) for small φ
(with �x2−y2 finite) and find a series with the structure [285,298]

EBC S = E0 + rφ2 + v|φ|3 + . . . , (17.20)

where r , v are coefficients and the ellipses represent regular higher order terms in even
powers of φ; r can have either sign, whereas v is always positive. Note the nonanalytic
|φ|3 term that appears in the BCS theory – this arises from an infrared singularity in
the integral in (17.16) over Ek at the four nodal points of the dx2−y2 superconductor,
and is a preliminary indication that the transition differs from that in the ordinary Ising
model, and that the Dirac fermions play a central role. We can optimize φ by minimiz-
ing EBC S in (17.20) – this shows that 〈φ〉 = 0 for r > 0, and 〈φ〉 �= 0 for r < 0. So
r ∼ (J2/J1)c − J2/J1 where (J2/J1)c is the first critical value in Fig. 17.2. Near this
critical point, we find

〈φ〉 ∼ (−r)β, (17.21)

and the present BCS theory yields the exponent βBC S = 1; this differs from the usual
mean-field exponent βM F = 1/2, and this is of course due to the nonanalytic |φ|3 term in
(17.20).

The form of (17.20) and the unusual β exponent are tell-tale signatures that the time-
reversal symmetry breaking transition is not described by the universality class of the quan-
tum Ising model studied in Parts II and III. We need a new field theory, and an associated
RG analysis, and this is described in the following section.

17.3 Field theory and RG analysis

We perform our analysis of the critical point by going back to the basic strategy of
Chapters 3 and 4: identify the complete set of low-energy degrees of freedom, and write
down the most general local action of these degrees of freedom, while being consistent
with all global symmetries. Clearly, the Ising order parameter, φ, should remain as one
of our degrees of freedom. However, we also have to keep the Dirac fermions alive, even
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though they are not directly related to the order parameter; they are responsible for the
nonanalyticity in (17.20), and so we should not eliminate them from the low-energy theory.

Thus we need a local field theory expressed in terms of both φ and�. Clearly, the action
is still allowed to have the terms of the pure Ising model of Part II. So we include the terms
in (2.11) for N = 1, which we write here as

Sφ =
∫

dd xdτ

[
1

2

(
(∂τφ)

2 + c2(∇xφ)
2 + c2(∂yφ)

2 + rφ2
)
+ u

24
φ4
]
, (17.22)

where for the RG analysis we consider the general case of d spatial dimensions. Note that,
unlike (17.20), we do not have any nonanalytic |φ|3 terms in the action: this is because we
have not integrated out the low-energy Dirac fermions, and the terms in (17.22) are viewed
as arising from high-energy fermions away from the nodal points.

For the Dirac fermions, we already have the low-energy excitations described by the
field theory of massless Dirac fermions, S� in (17.11).

Finally, we need to couple the φ and �1,2 excitations. Their coupling is already con-
tained in the last term in (17.15): expressing this in terms of the�1,2 fermions using (17.9)
we obtain

S�φ = λ
∫

dd xdτ
[
φ
(
�

†
1τ

y�1 −�†
2τ

y�2

)]
, (17.23)

where λ is a coupling constant.
Collecting all terms, we obtain the needed field theory for the time-reversal symmetry

breaking transition from a dx2−y2 superconductor to a dx2−y2 + idxy superconductor:

Zdid =
∫

DφD�1D�2 exp
(−S� − Sφ − S�φ

)
. (17.24)

It can now be checked that if we were to integrate out the �1,2 fermions for a spacetime
independent φ using the above theory, we would indeed obtain a |φ|3 term in the effective
potential for φ.

Note that the field theory defined above has a formal similarity to that proposed for the
spinful Fermi gas near a Feshbach resonance in Section 16.4.1: both theories have bosonic
and fermionic degrees of freedom coupled together in a trilinear term. In the previous case,
the dispersion of the particles was quadratic in momentum, whereas here it is linear.

Let us now analyze Zdid using the momentum shell RG described in Chapter 4, and also
used in Section 16.4.1. First, we rescale coordinates as in (4.1), (10.30), and (17.13):

x ′ = xe−�; τ ′ = τe−z�. (17.25)

At the mean-field level, the dynamic exponent z = 1 is appropriate for both the boson and
fermion actions. At higher orders, we choose z to maintain a constant coefficient for the
spatial derivative of the φ field; we can therefore choose units to set c = 1 from now on.
The fermionic velocities vF and v� flow under RG, as we see below.

The corresponding renormalizations of the fields parallel those in (4.3), (10.30), and
(17.13):

φ′ = φ e(d−1+ηb)�/2, � ′ = � e(d+η f )�/2, (17.26)
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and these are chosen to keep the temporal derivative terms of both the bosons and fermions
invariant. Note that there are separate anomalous dimensions, ηb and η f , for the bosons
and fermions, and these become nonzero and important once we include loop corrections.

At the level of the mean-field action, let us now examine the flow of the quartic coupling,
u, and the “Yukawa” coupling, λ. Ignoring the anomalous dimensions, which vanish at this
level, and setting z = 1, we have

u′ = u e(3−d)�, λ′ = λ e(3−d)�/2. (17.27)

The change in u is as in (4.10). The key observation we can now make is that the coupling
between the fermions and the bosons, λ, is relevant for d < 3. Thus we need to control the
expansion in powers of λ using the RG, just as we did earlier for the expansion in powers
of u. The relevancy of λ also explains why βBC S was not equal to the mean-field value
above.

To proceed further we need the one-loop RG equations, the analog of those in (4.24).
Note that the scaling dimensions of both u and λ become small as d approaches 3: this
implies that we are able to control the RG flow in an expansion in powers of (3 − d), as
was the case for (4.24).

There is one important difference from (4.24) here. We now find that the boson and
fermion self-energies depend upon external momenta and frequencies already at the one-
loop level. Thus we find nonvanishing contributions to the anomalous dimensions η f and
ηb even in our one-loop computation, along with nontrivial flows of the velocities c, vF ,
and v�. In addition to the boson graphs already considered in Fig. 4.1, we also have to
consider the Feynman graphs in Fig. 17.3. The computation of the Feynman graphs is
straightforward, but lengthy: the details are presented in [528]. The main subtlety arises
from the non-Lorentz invariant structure of the propagators which leads to spacetime inte-
grals which are not rotationally invariant. The rotational averages over spacetime momenta
were performed directly in d = 2, and the radial momentum integrals were then performed
for d close to 4.

An analysis of the RG equations so obtained showed [528] that on the critical sur-
face (r = 0 to leading order), there was only one stable fixed point, and that this fixed
point had relativistic invariance with vF = v� = c and z = 1. Thus even if the three

�Fig. 17.3 Feynman diagrams which contribute to the one-loop RG, along with those in Fig. 4.1. The dark triangle is the
λ vertex, the full line is theφ propagator, and the dashed line is the� propagator.
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velocities are distinct to begin with, they are attracted by renormalization to the same com-
mon value, leading to emergent relativistic invariance at the critical point. The Yukawa
coupling in (17.23) can also be written in a relativistically invariant form, after transform-
ing to a representation using the Dirac gamma matrices, which we are not using here.

Here, we will be satisfied by presenting the form of the RG flow equations assuming
relativistic invariance with vF = v� = c = 1 and z = 1. Then, evaluating the trace over
the Dirac matrices in d − 2, and performing the momentum space integrals close to d = 3,
we obtain the flow equations (which generalize (4.24)):

du

d�
= εu − 3

2
u2 − 8λ2u + 48λ4,

dλ

d�
= ε

2
λ− 7

2
λ3, (17.28)

where, as in (4.25), ε = 3− d . We have rescaled the coupling constants by u → u/S4 and
λ2 → λ2/S4, where the phase space constant S4 is defined below (4.24). This relativisti-
cally invariant theory has z = 1, and anomalous dimensions given by

ηb = 4λ2, η f = λ2/2. (17.29)

We can now solve (17.28), and conclude that phase transition is described by the fixed
point

λ∗2 = ε

7
, u∗ = 16ε

21
; (17.30)

the values of the anomalous dimensions now follow from using these fixed point values in
(17.29).

The same fixed point can also be accessed in the 1/N expansion [264], where N is the
number of fermion species. It has also been studied in the particle physics literature [410],
where the relativistic theory is known as the Higgs–Yukawa or Gross–Neveu model: a
quantum Monte Carlo simulation of this model also exists [260], and provides probably
the most accurate estimate of the exponents.

This nontrivial fixed point has strong implications for the correlations of the fermionic
excitations of the superconductor. By analogy with the arguments made in Chapter 7 for
the boson field φ, we conclude that the quantum critical fermion correlation function G1 =
〈�1�

†
1 〉 obeys

G1(k, ω) = ω + vF kxτ
z + v�τ x

(v2
F k2

x + v2
�k2

y − ω2)(1−η f )/2
. (17.31)

Away from the critical point, in the dx2−y2 superconductor with r > 0, (17.31) holds
with η f = 0, and this is the BCS result, with sharp quasiparticle poles in the Green’s
function. At the critical point s = sc, (17.31) holds with the fixed point values for the
velocities (which satisfy vF = v� = c) and with the anomalous dimension η f �= 0,
and the spectral function resembles Fig. 7.2. This is clearly non-BCS behavior, and the
fermionic quasiparticle pole in the spectral function has been replaced by a branch-cut
representing the continuum of critical excitations.
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The corrections to BCS theory extend also to correlations of the Ising order φ: its expec-
tation value vanishes as (17.21) with the Monte Carlo estimate β ≈ 0.877 [260]. The
critical point correlators of φ have the anomalous dimension η ≈ 0.754 [260], which is
clearly different from the very small value of the exponent η at the unstable λ = 0 fixed
point found in Part II. The value of β is related to η by the usual scaling law β = (1+η)ν/2,
with ν ≈ 1.00 the correlation length exponent (which also differs from the exponent ν of
the Ising model of Part II).

17.4 Ising-nematic ordering

We now consider an Ising transition associated with “Ising-nematic” ordering in the d-
wave superconductor. This is associated with a spontaneous reduction of the lattice sym-
metry of the Hamiltonian from “square” to “rectangular.” Our study is motivated by experi-
mental observations of such a symmetry breaking in the cuprate superconductors
[23,108,221].

One of the main purposes of this section is to describe briefly a quantum critical point
which is not relativistically invariant. The model in Section 17.2 had an order parameter
which coupled to the Dirac fermions in a manner compatible with relativistic invariance,
but this is not the case with most symmetry breaking possibilities.

The ingredients of Ising-nematic ordering are actually already present in our simple
review of BCS theory in Section 17.1. In (17.4), we introduce two variational pairing
amplitudes �x and �y . Subsequently, we assumed that minimization of the energy led
to a solution with dx2−y2 pairing symmetry with �x = −�y = �x2−y2 . However, it is
possible that upon including the full details of the microscopic interactions we are led to
a minimum where the optimal solution also has a small amount of s-wave pairing. Then
|�x | �= |�y |, and we can expect all physical properties to have distinct dependencies
on the x and y coordinates. Thus, one measure of the Ising-nematic order parameter is
|�x |2 − |�y |2.

The derivation of the field theory for this transition follows closely our presentation in
Section 17.2. We allow for small Ising-nematic ordering by introducing a scalar field φ and
writing

�x = �x2−y2 + φ; �y = −�x2−y2 + φ. (17.32)

The evolution of the Dirac fermion spectrum under such a change is indicated in Fig. 17.4.
Note that the gapless Dirac particles survive on both sides of the transition, and behave
like essentially free fermions, as discussed at the end of Section 17.1. However, the gapless
fermions reside at different locations in the Brillouin zone on the two sides of the transition.
As we approach the quantum critical point, there are precursor fluctuations of the motion
of the gapless points, and these lead to interesting effects on the fermionic spectra that we
now briefly discuss.

A description of these fluctuations requires an effective action for φ and the Dirac
fermions�1,2. The result is essentially identical to that in Section 17.2, apart from a change
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ssc

or

�Fig. 17.4 Phase diagram of Ising-nematic ordering in a d-wave superconductor as a function of the coupling s inSφ . The filled
circles indicate the location of the gapless fermionic excitations in the Brillouin zone. The two choices for s < sc are
selected by the sign of 〈φ〉.

in the structure of the Yukawa coupling. Thus we obtain a theory S� +Sφ +S�φ , defined
by (17.11) and (17.22), and where (17.23) is now replaced by

S�φ = λI

∫
d2rdτ

[
φ
(
�

†
1τ

x�1 +�†
2τ

x�2

)]
. (17.33)

The seemingly innocuous change between (17.23) and (17.33), however, has strong con-
sequences. This is linked to the fact that S�φ cannot be relativistically invariant even after
all velocities are adjusted to equal. A weak-coupling renormalization group analysis in
powers of the coupling λI was performed in (3−d) dimensions in [527,528], as described
in Section 17.3, and led to flows to strong coupling with no accessible fixed point: thus no
firm conclusions on the nature of the critical theory were drawn.

This problem remained unsolved until the recent works of [228, 266]. The main real-
ization was that the critical point should not be described in an expansion in powers of
the fermion–boson coupling λI , and the critical theory should be formulated at fixed λI .
The approach described below can also be applied to the transition of Section 17.2, but
we chose there to use the simpler perturbative analysis in the coupling λ which works
only in that case. Also, the analysis described below parallels that for the Fermi gas near a
Feshbach resonance in Section 16.4.2.

Consider the leading contribution to the self-energy of φ from the fermions �: this
is conveniently expressed as a contribution to the Gaussian effective action for φ after
integrating out the �:

δSφ = N

2

∫
d2k

4π2

∫
dω

2π
�2(k, ω)|φ(k, ω)|2. (17.34)

Here we have generalized to a model with N spin components (N = 2 is the physical
case). The function �2 is given by one fermion loop Feynman graphs with two insertions
of the external φ vertices, as shown in Fig. 17.5. The explicit form of �2(k, ω) for the
Ising-nematic case can be written as

�2(k, ω) = λ2
I

(
�2(kx , ky, ω)+�2(ky, kx , ω)

)
, (17.35)

with the two terms representing the contributions of the �1 and �2 fermions, respectively.
The one fermion loop diagram yields
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�Fig. 17.5 Feynman graph for the effective action δSφ . The smooth lines are fermion propagators, while the wavy lines
areφ insertions.

�2(kx , ky, ω) =
∫

d2 p

4π2

∫
d�

2π
Tr
[(−i�+ vF pxτ

z + v� pyτ
x)−1

× τ x (−i(�+ ω)+ vF (px + kx )τ
z + v�(py + ky)τ

x)−1
τ x
]

= 1

16vFv�

(ω2 + v2
F k2

x )

(ω2 + v2
F k2

x + v2
�k2

y)
1/2
. (17.36)

Here, we have omitted a constant which can be absorbed into the value of r in Sφ . Now
the key observation is that the momentum and frequency dependence in δSφ implied by
(17.36) is more important in the infrared than that in the bare action in (17.22): the above
result for �2 scales with one power of momentum/frequency, while that in (17.22) has two
powers. Thus, for the critical theory, it seems reasonable simply to drop the spatial and
temporal gradients in (17.22).

Working with the Gaussian action δSφ has immediate and important consequences for
the RG analysis. At tree level, the scaling of � remains the same as before, while that for
φ becomes

φ′ = φed�/2. (17.37)

Comparing with (17.26), we see that we have the anomalous exponent ηb = 1 at the outset.
The corresponding rescaling of the fermion–boson coupling now becomes

λ′I = λI e(2−d)�/2, (17.38)

replacing that in (17.27). We now observe that λI does not flow in d = 2. It therefore pays
to work in a theory with a fixed λI . Furthermore, we find u′ = ue(1−d)�: so u is irrelevant,
and we can set u = 0 from now on.

It is useful to interpret these ideas in an RG picture. We have decided to drop the bare
gradient terms in Sφ because they are not as important as the induced terms. Normally,
such gradient terms are used to set the normalization of the field scale of φ. Now, we can
use this new-found freedom to set the field scale by choosing λI = 1. In other words, we
use the fermion–boson Yukawa coupling to set the field scale for φ, and work in a theory
in which this coupling remains fixed at all scales. This will lead to a theory in which the
boson anomalous dimension ηb = 1 at the start of the computation.

As shown in [228], higher order loop corrections can be computed in powers of 1/N .
These lead to further RG flows in the field scales and the coupling constants. Actually, after
setting λI = 1 and u = 0, the only remaining couplings in the theory are the velocities
vF and v�. And the only dimensionless coupling characterizing the theory is the velocity
ratio v�/vF . The RG equation for this ratio was derived in [228], and showed that the
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flow at long scales was v�/vF → 0; the approach to zero was roughly with the inverse
logarithm of the length or time scale. Thus the Ising-nematic critical point is character-
ized by a highly anisotropic velocity ratio, in strong contrast to the relativistic theory of
Section 17.2. One important consequence of this anisotropic critical point was the pres-
ence of “arc-like” spectra for the Dirac fermions, see [266], where other experimental
implications for the cuprate superconductors are also discussed. Associated singularities in
the thermal conductivity have also been computed [158].



18 Fermi liquids, and their phase transitions

The Fermi liquid is perhaps the most familiar quantum many-body state of solid state
physics; we met it briefly in Section 16.2.2. It is the generic state of fermions at nonzero
density, and is found in all metals. Its basic characteristics can already be understood in
a simple free fermion picture. Noninteracting fermions occupy the lowest energy single-
particle states, consistent with the exclusion principle. This leads to the fundamental con-
cept of the Fermi surface: a surface in momentum space separating the occupied and empty
single fermion states. The lowest energy excitations then consist of quasiparticle excita-
tions which are particle-like outside the Fermi surface, and hole-like inside the Fermi sur-
face. Landau’s Fermi liquid theory is a careful justification for the stability of this simple
picture in the presence of interactions between fermions. Just as we found in Chapters 5
and 7 for the quantum Ising and rotor models, interaction corrections modify the wave-
function of the quasiparticle and so introduce a quasiparticle residue A; however, they do
not destabilize the integrity of the quasiparticle, as we review in Section 18.1.

The purpose of this chapter is to describe two paradigms of symmetry breaking quantum
transitions in Fermi liquids. In the first class, studied in Section 18.2, the broken symmetry
is related to the point-group symmetry of the crystal, while translational symmetry is pre-
served; consequently, the order parameter resides at zero wavevector. In the second class,
studied in Section 18.3, the order parameter is at a finite wavevector, and so translational
symmetry is also broken. We find that these transitions have distinct effects on the Fermi
surface, and so lead to very different critical theories. We study both critical theories using
a simple example in each class, both motivated by the physics of the cuprate superconduc-
tors. For the first class we consider the case of Ising-nematic ordering, while in the second
class we consider the onset of spin density wave order.

Among our aims is to understand the possible breakdown of Landau’s Fermi liquid the-
ory in Fermi gases. The most prominent example of this breakdown is in spatial dimension
d = 1, where we generically obtain (not necessarily near any quantum phase transitions)
a different quantum state known as the Tomonaga–Luttinger liquid: this is described in
Chapter 20. We meet examples of Fermi liquid breakdown in d ≥ 2 in the present chap-
ter: in the examples considered here, and unlike Chapter 20, the breakdown occurs only at
quantum critical points assciated with symmetry breaking transitions.

A comprehensive theoretical treatment of symmetry breaking transitions in a Fermi liq-
uid was given by Hertz [218], although many important points were anticipated in ear-
lier work [43, 347, 348, 391]. We review this treatment here, adapted to our field-theoretic
approach. A key step in Hertz’s work is to completely integrate out the fermionic exci-
tations near the Fermi surface, resulting in an effective action for the order parameter
characterizing the symmetry breaking alone. Such an approach seems natural from the
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perspective of the classical phase transitions considered in Chapter 3, in which we need
only pay attention to the low-energy fluctuations of the order parameter. However, here
we also have the low-energy quasiparticles near the Fermi surface: they are not associated
directly with the broken symmetry, but their existence is protected by the requirement of
the presence of a Fermi surface. It seems dangerous to integrate them out, and it would be
preferable to make them active participants in the critical theory. This is a subtle question
which we address carefully in the present chapter. The main conclusion is that the Hertz
strategy remains largely correct in d ≥ 3, but that it fails badly in the important case of
d = 2. This conclusion applies to both classes of symmetry breaking transitions in a Fermi
liquid, with order parameters at zero and nonzero momentum.

After a presentation of the critical theories at zero temperature, we also briefly address
the nature of the crossovers at nonzero temperatures. We limit this discussion to the case of
the spin density wave transition using the framework of the Hertz theory in Section 18.3.3.
These crossovers were computed by Millis [336] who pointed out the universal features
and emphasized the basic similarities of the crossovers to those in the dilute Bose gas;
related results, not using the perspective of quantum phase transitions, were also available
in the earlier work of Moriya [204, 347–349], Ramakrishnan and Mishra [341, 390, 391],
and others. Many results for finite-temperature crossovers near a magnetic quantum phase
transition in Fermi liquids were also anticipated by Lonzarich and Taillefer [304, 305].
We have already studied the dilute Bose gas in Section 16.3.2, where we also noticed
the similarity to the quantum Ising/rotor models above their upper-critical dimension as
treated in Section 14.2.2. Here we are able to use the techniques developed in these earlier
sections to arrive rapidly at the needed generalization. The study of the finite-temperature
crossovers is restricted here to those above the Fermi liquid state and in the high-T regime.

18.1 Fermi liquid theory

Let us begin with a review of some basic ideas from the Fermi liquid theory of interacting
fermions in d dimensions. We consider spin-1/2 fermions cka with momentum k and spin
a =↑,↓ and dispersion εk . Thus the noninteracting fermions are described by the action

Sc =
∫

dτ
∫

ddk

(2π)d
c†

ka

(
∂

∂τ
+ εk

)
cka . (18.1)

As an example, it is useful to keep in mind the dispersion εk appropriate for the cuprate
superconductors, which is shown in Fig. 18.1. The fermion Green’s function under the free
fermion action Sc has the simple form

G0(k, ωn) = 1

−iωn + εk
. (18.2)

After analytically continuing to real frequencies, we observe that this Green’s function has
a pole at energy εk with residue 1. Thus there are quasiparticle excitations with residue
A = 1, much like those found in the strong- or weak-coupling expansions of the quantum
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Hole
states
occupied

Electron
states
occupied

�Fig. 18.1 Two views of the Fermi surface of the cuprate superconductors (hole and electron doped). We use the dispersion εk

specified below (17.1). The chemical potential is included in the dispersion εk , and so the Fermi surface is determined
by εk = 0. The left panel has the momentum k = (0, 0) (the “� point”) in the center of the square Brillouin zone,
while the right panel has the� point at the left edge. The momenta with both up and down electron states occupied
are shaded gray.

Ising model in Chapter 5. However, unlike those excitations, these quasiparticles can have
both positive and negative energies, as εk can have either sign; the Fermi surface is the
locus of points where εk changes sign. The positive energy quasiparticles are electron-like,
while those with negative energy are hole-like, i.e. they correspond to the absence of an
electron. Note that the existence of negative energy quasiparticles is not an indication of the
instability of the ground state. All true excitation energies are positive: the excitations are
electron-like on one side of the Fermi surface, and hole-like on the other side. It is just con-
venient to combine the electron and hole quasiparticles within a single Green’s function,
by identifying hole-like quasiparticles with negative energy electron-quasiparticles.

We now wish to examine the stability of quasiparticles to interactions between them. In
keeping with the strategy followed in this book, this should be preceded by an effective
action for the low-energy quasiparticles. The latter is usually done by a gradient expan-
sion, leading to an effective field theory. However, here we face a unique difficulty: there
are zero-energy quasiparticles along a d−1 dimensional Fermi surface identified by εk = 0.
It would therefore seem that we should expand about all points on the Fermi surface. This
is indeed the strategy followed in textbook treatments of Fermi liquid theory: we measure
momenta, k⊥, from the Fermi surface, choose a cutoff so that |k⊥| < �, and then perform
an RG which reduces the value of � [465]. This procedure is illustrated in Fig. 18.2. For-
mally, for each direction n̂, we define the position of the Fermi surface by the wavevector
�kF (n̂), so that n̂ = �kF (n̂)/|�kF (n̂)|. Then we identify wavevectors near the Fermi surface
by

�k = �kF (n̂)+ k⊥ n̂. (18.3)

Now we should expand in small momenta k⊥. For this, we define the infinite set of fields
ψn̂a(k⊥), which are labeled by the spin a and the direction n̂, related to the fermions c by

c�ka =
1√
SF
ψn̂a(k⊥), (18.4)

where �k and k⊥ are related by (18.3), and SF is the area of the Fermi surface. Note that this
parameterization can be considered to be a generalization of (16.28), where we had only
the two fields �L , �R , rather than the infinite number of fields labeled by the direction n̂.
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�Fig. 18.2 Traditional low-energy limit of Fermi liquid theory. The Fermi surface has one-dimensional chiral fermions on every
point, moving along the direction x⊥. There fermions are present for momenta |k⊥| < �; i.e. in a momentum shell
of width 2� around the Fermi surface.

Inserting (18.4) into (18.1), expanding in k⊥, and Fourier transforming to real space x⊥,
we obtain the low-energy theory

SFL =
∫

d�n̂

∫
dx⊥ψ†

n̂a(x⊥)
(
∂

∂τ
− ivF (n̂)

∂

∂x⊥

)
ψn̂a(x⊥), (18.5)

where the Fermi velocity is the energy gradient on the Fermi surface vF (n̂) = |∇kε�kF (n̂)
|.

For each n̂, (18.5) describes fermions moving along the single dimension x⊥ with the
Fermi velocity: this is a one-dimensional chiral fermion, which we met in Section 16.2.2,
and will meet again in (20.6); the “chiral” refers to the fact that the fermion only moves in
the positive x⊥ direction, and not the negative x⊥ direction. In other words, the low-energy
theory of the Fermi liquid is an infinite set of one-dimensional chiral fermions, one chiral
fermion for each point on the Fermi surface.

Apart from the free Fermi term in (18.5), Landau’s Fermi liquid theory also allows
for contact interactions between chiral fermions along different directions [465]. These
are labeled by the Landau parameters, and lead only to shifts in the quasiparticle ener-
gies which depend upon the densities of the other quasiparticles. Such shifts are important
when computing the response of the Fermi liquid to external density or spin perturbations.
However, the resulting fixed-point action of Fermi liquid theory does not offer a route
to computing the decay of quasiparticles: the stability of the quasiparticles is implicitly
assumed in the fixed-point theory. Our primary purpose here is to verify the stability of the
quasiparticles, so that we are prepared for the breakdown of Fermi liquid theory at quan-
tum critical points. So we refer the reader to the many textbook treatments of the traditional
formulation of Landau’s Fermi liquid theory, and turn to an alternative analysis below.

A shortcoming of the effective action (18.5) is that it includes only the dispersion of
the fermions transverse to the Fermi surface. Thus, if we discretize the directions n̂, and
pick a given point on the Fermi surface, the Fermi surface is effectively flat at that point.
We shortly see that the curvature of the Fermi surface is important in understanding the
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�Fig. 18.3 Alternative low-energy formulation of Fermi liquid theory. We focus on an extended patch of the Fermi surface, and
expand in momenta about the point�k0 on the Fermi surface. This yields a theory of d-dimensional fermionsψ in
(18.7), with dispersion (18.14). The coordinate y represents the d − 1 dimensions parallel to the Fermi surface.

decay and breakdown of quasiparticles. Thus we have to take the continuum scaling limit
in a manner which keeps the curvature of the Fermi surface fixed, and does not scale it
to zero. For this, as shown in Fig. 18.3, we focus attention on a single arc of the Fermi
surface in the vicinity of any chosen point �k0. We show in Section 18.1.1 that the results
are independent of the choice of �k0 on the Fermi surface, but we defer that issue for now.
Then we choose our cutoff � to scale towards the single point k0 (the cutoff is defined
more carefully below), rather than scaling to all points on the Fermi surface, as we did
for (18.5).

With �k0 chosen as in Fig. 18.3, let us now define our low-energy theory and scaling limit
[333]. Unlike the one-dimensional chiral fermions which appeared in (18.5), we now use a
d-dimensional fermion ψa(x, y). Here x is the one-dimensional coordinate orthogonal to
the Fermi surface, and �y represents the (d − 1)-dimensional transverse coordinates. After
Fourier transformations, this fermion is related to the underlying fermions cka simply by

ψa(k) = c�k0+�k,a . (18.6)

In other words, we only shift the origin of momentum space from �k = 0 to �k = �k0.
Inserting (18.6) in (18.1), and expanding the dispersion in the vicinity of �k0 (contrast to the
expansion away from all points on the Fermi surface in (18.5)), we obtain the low-energy
theory

S0 =
∫

dτ
∫

dx
∫

dd−1 y ψ†
a

(
ζ
∂

∂τ
− ivF

∂

∂x
− κ

2
∇2

y

)
ψa . (18.7)

We have added a coefficient ζ to the temporal gradient term for future convenience: we are
interested in ζ = 1, but see later that in non-Fermi liquid states it is convenient to allow ζ

to renormalize. Note the additional second-order gradients in y which were missing from
(18.5): the coefficient κ is proportional to the curvature of the Fermi surface at �k0. Also,
as we have already noted, the fermion field in (18.7) is d-dimensional, while that in (18.5)
in one-dimensional. One benefit of (18.7) is now immediately evident: it has zero energy
excitations when

vF kx + κ
k2

y

2
= 0, (18.8)
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and so (18.8) defines the position of the Fermi surface, which is then part of the low-
energy theory including its curvature. Note that (18.7) now includes an extended portion
of the Fermi surface; contrast that with (18.5), where the one-dimensional chiral fermion
theory for each n̂ describes only a single point on the Fermi surface.

The gradient terms in (18.7) define a natural momentum space cutoff, and associated
scaling limit. We take such a limit at fixed ζ , vF , and κ . Note that momenta in the x
direction scale as the square of the momenta in the y direction, and so we can choose
v2

F k2
x + κ2k4

y < �4. As we reduce �, we scale towards the single point �k0 on the Fermi
surface, as we required above.

It is now a simple matter to apply the RG analysis to the fermion theory in (18.7): the
analysis closely parallels that in Section 16.2. At fixed ζ , vF , and κ , the action (18.7) is
invariant under the following rescalings of spacetime:

x ′ = xe−2�, y′ = ye−�, τ ′ = τe−2�. (18.9)

Note that we have chosen the directions parallel to the Fermi surface as the ones defining
the primary length scale, with dim[y] = −1, and the transverse direction has dim[x] = −2.
The temporal direction rescaling implies that we have the dynamic exponent z = 2 when
measured relative to the y spatial directions. The RG invariance of (18.7) also requires the
field rescaling

ψ ′ = ψe(d+1)�/2. (18.10)

We now have the tools needed to determine the role of fermion interactions. The simplest
contact interaction has the form

S1 = u0

∫
dτ
∫

dx
∫

dd−1 y �†
a�

†
b�b�a . (18.11)

Applying the RG rescalings in (18.10), we find

u′0 = u0e(1−d)�. (18.12)

In other words, the interaction between the fermions u0 is irrelevant in all dimension d > 1.
This strongly suggests that the Fermi liquid picture of noninteracting fermions is indeed
RG stable.

Let us understand the stability of Fermi liquid theory a bit better by computing correc-
tions to the fermion Green’s function in (18.2) using the methods of Section 7.2.1. Let us
write the interaction corrected Green’s function as

G(k, ω) = 1

−ζω + εk −�(k, ω) , (18.13)

where now

εk = vF kx + κ
k2

y

2
. (18.14)

To first order in u0, the fermion self-energy is real (for real frequencies), and so only
modifies the quasiparticle dispersion and residue, A, but does not destabilize the existence
of the quasiparticle pole.
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�Fig. 18.4 Feynman diagram for the decay of quasiparticles at order u2
0. The dashed line is the interaction u0, and a, b are spin

labels.

So let us move to second order in u0. First, we use the analog of the RG argument used
around (14.37). We are interested in the imaginary part of the self-energy, and let us assume
for now at small ω

Im�(k = 0, ω) ∼ u2
0ω

p. (18.15)

As in (14.37), we determine p by scaling arguments. From (18.13) we know that dim[�] =
z = 2, and so conclude from matching dimensions in (18.15) that p = d . However, there
is a subtlety here: scaling arguments only yield the power laws of singular corrections, and
do not say anything about analytic backgrounds that may be allowed from the structure of
the theory. Here, a term with p = 2 is permitted because Im� is an even function of ω. So
the proper conclusion is

p = min(d, 2). (18.16)

The above scaling argument is fine as it stands, but cannot substitute for the insight
gained by an explicit computation. The Feynman diagram contributing to the quasiparticle
decay at order u2

0 is indicated in Fig. 18.4. We evaluate it in two stages. First we evaluate
the fermion loop of the fermions with spin label b; this gives us the fermion polarizability

�(q, ωn) =
∫

ddk

(2π)d

∫
dεn

2π
G0(k + q, εn + ωn)G0(k, εn), (18.17)

which is the analog of the polarizability of the rotor model used extensively in Section 13.2.
This enters the self-energy by

�(k, εn) = u2
0

∫
ddq

(2π)d

∫
dωn

2π
�(q, ωn)G0(k + q, εn + ωn), (18.18)

which is the analog here of (13.41).
We first explicitly evaluate�(q, ωn). We are only interested in terms that are singular in

q and ωn , and drop regular contributions from regions of high momentum and frequency.
In this case, it is permissible to reverse the conventional order of integrating over frequency
first in (18.17), and to first integrate over kx . It is a simple matter to perform the integration
over kx in using the method of residues to yield

�(q, ωn) = 1

2vF

∫
dd−1ky

(2π)d−1

∫
dεn

2π

sgn(εn + ωn)− sgn(εn)(
ζωn + ivF qx + iκq2

y/2+ iκ �qy · �ky

)
= |ωn|

2πvF

∫
dd−1ky

(2π)d−1

1(
ζωn + ivF qx + iκq2

y/2+ iκ �qy · �ky

) . (18.19)
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We now integrate along the component of �ky parallel to the direction of �qy to obtain

�(q, ωn) = |ωn|
2πvFκ|qy |

∫
dd−2ky

(2π)d−2

= |ωn|
2πvFκ|qy |�

d−2. (18.20)

Note that in d = 2 the last nonuniversal factor is not present, and the result for � is
universal with�d−2 = 1. Note also that ζ has dropped out of the result�: this is important
in our subsequent treatment of quantum critical points.

Now we insert (18.20) into (18.18). After evaluating the integral over qx we obtain

�(k, ωn) = i
u2

0

2πv2
Fκ

∫
dd−1qy

(2π)d−1

∫
dεn

2π

sgn(εn + ωn)|εn|
|qy |

= i sgn(ωn)ω
2
n

u2
0

4πv2
Fκ

∫
dd−1qy

(2π)d−1

1

|qy |

= i sgn(ωn)ω
2
n

u2
0

4πv2
Fκ
�d−2. d > 2 (18.21)

Again, ζ has dropped out. This result is in perfect accord with the scaling arguments in
(18.15) and (18.16).

Let us consider the important case d = 2. There is an infrared divergence in the qy inte-
gral in (18.21) at small qy . This is only cut off after we include a self-consistent damping
of the quasiparticle propagators in the Feynman diagram of Fig. 18.4, rather than the bare
propagators we have used above. After including this damping, we expect that (18.15) will
be modified to

Im�(k, ω) ∼ u2
0ω

2 log

(
�

u0|ω|
)
, d = 2 (18.22)

thus the scaling result is modified by a logarithm in d = 2.
With Im� ∼ u2

0ω
2 (up to logarithms), we can now easily examine the fate of the quasi-

particles from (18.13). The situation differs somewhat from what we found for the rotor
model in Section 7.2.1. There we found that the quasiparticle pole remained infinitely
sharp for a finite range of momenta, to all orders in the interactions. Here, from (18.13),
we see that the quasiparticle pole is always broadened: the width of the quasiparticle peak
is ∼ u2

0ε
2
k for a quasiparticle with energy ω = εk . Thus the quasiparticle width vanishes

as the square of the distance from the Fermi surface. Asymptotically close to the Fermi
surface, the quasiparticle width is much smaller than the quasiparticle energy: this is suffi-
cient to regard the quasiparticle as a sharp excitation, and confirm the validity of Landau’s
Fermi liquid theory.

An important and frequently used diagnostic of the stability of the quasiparticle is the
discontinuity in the fermion momentum distribution function n(k) = 〈c†

kacka〉. This can be
computed from the real frequency Green’s function G(k, ω) by (here we set ζ = 1)

n(k) =
∫ 0

−∞
dω

(2π)
ImG(k, ω). (18.23)
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Assuming a pole in the Green’s function of the form

G(k, ω) = A
−ω + εk + icω2

+ . . . , (18.24)

we find a step discontinuity in the momentum distribution function at the Fermi surface

n(k) = Aθ(−εk)+ . . . , (18.25)

of strength A.

18.1.1 Independence of choice of�k0

Our theory of the Fermi liquid state is now contained in the action S0+S1 defined by (18.7)
and (18.11). It focused on an arc of the Fermi surface, as shown in Fig. 18.3, and then
expanded in gradients about the point �k0 on the Fermi surface. To complete our discussion,
we now wish to show that the theory is independent of the choice of �k0.

As shown in Fig. 18.5, we could equally well have defined the theory about the point �k′0
on the Fermi surface. Consistency requires that the fermion Green’s function at the point
P should have the same value whether it is computed using the theory at �k0 or at �k′0. This
section shows that this is indeed the case.

Note that such a consistency requirement is not present for the representation in terms
of chiral one-dimensional fermions in Fig. 18.2. There, each point in the momentum space
is associated only with a single one-dimensional theory. It is our use of a d-dimensional
theory which induces our redundant description.

Let us choose our momentum space coordinates centered at �k0, and let �k′0 = (kx , ky)

in this coordinate system. Because �k′0 is on the Fermi surface, (18.8) is obeyed. Now let
the point P in Fig. 18.5 have coordinates (px , py) relative to �k0, and coordinates (p′x , p′y)
relative to �k′0. The latter are obtained from the old coordinates by a shift in origin followed
by a rotation by an angle θ , where tan θ = κky/vF ; this yields

p′x = px − kx + (κ/vF )�ky · ( �py − �ky),

�p ′y = �py − �ky, (18.26)

P

�Fig. 18.5 The fermion correlator at the point P can be described either in terms of the field theoryS0 + S1 at�k0, or that at�k1.
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where we only keep terms to the needed accuracy of O(x, y2). The equality of the physics
in the two coordinate systems implies that the Green’s function of the theory S0+S1 must
satisfy

G((px , py), ω) = G((p′x , p′y), ω), (18.27)

for any momenta p, p′ related by (18.26) and any k obeying (18.8). A simpler statement
of the constraint follows from the easily verified identity

vF px + κ

2
p2

y = vF p′x +
κ

2
p′2y . (18.28)

Thus, the Green’s function should not depend separately on the momenta, but on the quasi-
particle energy in (18.14) alone:

G((px , py), ω) = G(εp, ω). (18.29)

We now prove (18.29) is true. The result relies upon the invariance of S0 + S1 on the
following transformation

ψ(x, �y)→ exp

(
−i
vF

κ

(
�θ · �y + θ2

2
x

))
ψ(x, �y + �θ x), (18.30)

where θ is an arbitrary (d − 1)-dimensional vector; this invariance is easily verified by
direct substitution in (18.7) and (18.11). The change in the arguments of ψ shows that
this transformation corresponds to a local rotation of the Fermi surface, which effectively
moves the point �k0 to a neighboring point. Now taking the Fourier transform of (18.30),
we immediately establish (18.27) and (18.29).

18.2 Ising-nematic ordering

Having established the stability of quasiparticles in the Fermi liquid, we turn to the first of
the symmetry breaking transitions of this chapter. We consider one of the simplest order
parameters at zero wavevector: the breaking of lattice rotation symmetry. In two dimen-
sions, a simple choice is the change from “square” to “rectangular” symmetry considered
in Section 17.4 for a d-wave superconductor. In higher dimensions, we consider the same
symmetry breaking in the x-y plane embedded in the higher-dimensional space.

As in Section 17.4, we consider an Ising-nematic transition driven by strong interactions
between the electrons. The symmetry breaking is characterized by the real scalar field φ,
which is described as before by the action Sφ in (17.22), reproduced here for completeness

Sφ =
∫

dd xdτ

[
1

2

(
(∂τφ)

2 + c2(∂xφ)
2 + c2(∂yφ)

2 + rφ2
)
+ u

24
φ4
]
. (18.31)

The key difference from Section 17.4 is that the electrons are not in a d-wave supercon-
ducting state, but in a metallic Fermi liquid. Thus, there is a Fermi surface of fermions cka ,
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�Fig. 18.6 Phase diagram of Ising-nematic ordering in a metal as a function of the coupling s inSφ and temperature T . The Fermi
surface for r > 0 is as in the overdoped region of the cuprates, with the shaded region indicating the occupied hole (or
empty electron) states (compare Fig. 18.1). The choice between the two quadrapolar distortions of the Fermi surface is
determined by the sign of 〈φ〉. The line of T > 0 phase transitions at Tc is described by Onsager’s solution of the
classical two-dimensional Ising model. We are interested here in the quantum critical point at r = rc , which controls
the quantum-critical region.

described here by Sc in (18.1). Finally, we need to couple the Ising order φ to the fermions.
This can be deduced by symmetry considerations, as in (17.33). A convenient choice is

Scφ =
∫

dτ
∫

ddkddq

(2π)2d
d(k)φ(q)c†

k+q/2,ack−q/2,a . (18.32)

The momentum-dependent form factor, d(k), can be any even parity function which changes
sign under x ↔ y, as is required by the symmetry properties of φ; a simple choice is
d(k) ∼ cos kx − cos ky . The integral over q is over small momenta, while that over k
extends over the entire Brillouin zone.

The theory for the nematic ordering transition is now described by Sc + Sφ + Scφ in
(18.1), (18.31), and (18.32), and forms the basis of the discussion in the remainder of this
chapter. A schematic phase diagram as a function of the coupling s in Sφ and temperature
T is shown in Fig. 18.6. Note that there is a line of Ising phase transitions at T = Tc: this
transition is in the same universality class as the classical two-dimensional Ising model.
However, quantum effects and fermionic excitations are crucial at the T = 0 critical point
at r = rc and its associated quantum critical region.

18.2.1 Hertz theory

As indicated in the introduction, Hertz’s strategy is to integrate out all the fermionic exci-
tations, and derive an effective action for the Ising order parameter φ. The same strategy
was the starting point of the analysis in Section 17.4.

The integration is easily performed using our Fermi liquid theory results in Section 18.1.
The important term is the fermion loop contribution to the φ2 term in the effective action,
and this is given by the Feynman diagram in Fig. 18.7. We can determine the structure
of the fermion loop integral by taking the continuum limit of fermion theory in a Fermi
surface patch about �k0 as in (18.7), and then adding up the contributions of all the patches.
For a given patch, the fermion loop contributes d2(k0)�(q, ω), where � is the fermion
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�Fig. 18.7 Fermion loop contribution to the action of the order parameterφ. The wavy line isφ.

polarizability in (18.17). Using the result for� in (18.20), averaging over different patches
on the Fermi surface, and combining with the terms of the φ action in (18.31), we obtain
the Hertz action for the order parameter at the Ising-nematic quantum critical point in d
dimensions:

SH =
∫

ddk

(2π)d
T
∑
ωn

1

2

[
k2 + γ |ωn|

|k| + r

]
|φ(k, ωn)|2

+ u

24

∫
dd xdτφ4(x, τ ). (18.33)

Compared to (18.31), the crucial new term is the one proportional to γ , which represents
the nonlocal consequences of low-energy particle–hole excitations near the Fermi surface;
the value of γ is determined from an average of the coefficient in (18.20) over the Fermi
surface. In a system with a spherical Fermi surface, the |k| in the denominator is simply√�k2, arising from the average of (18.20) over different patches. However, without spherical
symmetry, it is a more complex function which depends upon the details of the Fermi
surface structure. Nevertheless, it retains the property of being an even function of k with
scaling dimension 1, and that is all that we need below.

We are now ready to perform an RG analysis of SH , just as we did for (17.34) in the
Dirac fermion case. As in Chapter 4, we begin with an analysis of the Gaussian part of SH ,
which is scale-invariant at r = 0, under the transformations:

x ′ = xe−�, τ ′ = τe−z�, φ′ = φe(d+z−2)�/2, (18.34)

with dynamic critical exponent z = 3. This exponent can also be understood from the
characteristic frequency scale ω ∼ k3 emerging from a comparison of the first two terms
in SH . With the transformations in (18.34), we see that the quartic coupling has scaling
dimension

dim[u] = 4− d − z. (18.35)

In other words, with z = 3, the Gaussian fixed point is stable for all d > 1. All computa-
tions in this chapter have implicitly assumed that d > 1, and the present approach is not
sensible in d = 1 (which is discussed separately in Chapter 20). So the Gaussian theory
appears to describe the quantum critical point for all values of d. This is one of Hertz’s
primary conclusions.

We argue below that the above conclusion is not correct. The Gaussian fixed point does,
in fact, yield a proper description in d = 3. However, in the physically important case of
d = 2, the Hertz approach fails.
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18.2.2 Fate of the fermions

Our analysis of the stability of the Gaussian fixed point of the Hertz theory relied on the
irrelevance of the quartic coupling u between the bosons. However, there are also fermionic
quasiparticle excitations in the underlying theory, and it is important to apply the RG to
these excitations too. In particular, they couple to φ via the “Yukawa” coupling of Scφ in
(18.32), and to establish the stability of the Gaussian fixed point we need to examine the
scaling dimension of d(k) on the Fermi surface.

Answering this question requires a continuum theory for the fermionic sector also, and
its coupling to the bosonic sector. Fortunately, we can now directly use the continuum limit
presented in Section 18.1. We pick a Fermi surface patch centered at the momentum �k0,
and describe the low-energy fermionic quasiparticles by S0 in (18.7). Next, we apply the
substitution (18.6) to (18.32), and obtain the Yukawa coupling

Sψφ = λ
∫

dτ
∫

dx
∫

dd−1 y φ ψ†
aψa, (18.36)

where λ = d(k0). Finally, we also need to distinguish the directions parallel and transverse
to the Fermi surface in SH , and so write its Gaussian part as

SH G = 1

2

∫
dkx

(2π)

∫
dd−1ky

(2π)d−1

∫
dωn

2π

[
k2

y + γ
|ωn|
|ky | + r

]
|φ(k, ωn)|2. (18.37)

We have dropped the kx dependence in (18.18) because it is irrelevant compared to the ky

dependence under the rescaling (18.9).
Now our task is to determine the scaling dimension of λ under the theory S0+SH G+Sψφ

defined in (18.7), (18.37), and (18.36).
We scale x and y as in (18.9). For the rescaling of time, we clearly need to focus on the

critical excitations of the Ising-nematic order, which have dynamic exponent z = 3. Thus
we choose

x ′ = xe−2�, y′ = ye−�, τ ′ = τe−3�. (18.38)

An immediate consequence is that the coefficient ζ of the temporal derivative term in S0

in (18.7) is no longer invariant under the RG: it has scaling dimension

dim[ζ ] = −1, (18.39)

and so scales to zero. Thus this temporal derivative is irrelevant at the Ising-nematic quan-
tum critical point. It is important at this point that our derivation of SH in (18.33) showed
that all terms had a finite limit as ζ → 0: in fact, the damping coefficient γ was shown to be
independent of ζ in (18.20). Thus setting ζ = 0 seems safe now, although this conclusion
has to be re-examined at higher orders.

With these choices for the spacetime rescalings, it is a simple matter to compute the
rescalings of the fields from their respect Gaussian actions:

dim[ψ] = (d + 2)/2, dim[φ] = (d + 2)/2. (18.40)
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Finally, we obtain the needed renormalization of the fermion–boson coupling in (18.36)

dim[λ] = (2− d)

2
. (18.41)

So, only for d > 2 is the Gaussian action stable to the presence of the cubic nonlinear-
ity associated with the fermion–boson coupling. This is the primary conclusion of this
subsection.

For d > 2, the above arguments suggest that we can estimate the fate of the fermionic
quasiparticles in a perturbation theory in λ. Let us first try to guess the structure of the
answer using scaling arguments similar to those used in (14.37) and (18.15); we expect

Im� ∼ λ2ωp. (18.42)

Matching scaling dimensions with dim[�]= 2 (because dim[kx ]= dim[k2
y]= 2),

dim[ω] = 3 and (18.41), we obtain

p = d

3
. (18.43)

In d = 3, the integer value of p suggests that there should be additional logarithms,
and we indeed see this in an explicit computation below. Examination of the quasiparticle
spectral weight using (18.13), and as discussed below (18.22) shows that the quasiparti-
cles are only marginally well defined with a width of the same order as the quasiparticle
energy upon approaching the Fermi surface. Such states have been named “marginal Fermi
liquids” [523], but the present argument shows this terminology is a misnomer in the RG
sense: the coupling λ is irrelevant and not marginal. The RG argument also has a bonus in
implying that higher orders in λ will only produce higher powers of ω in the self-energy;
perturbation theory about the Gaussian fixed point directly yields the terms most important
in the infrared already at low order in the expansion.

The situation is very different in d = 2. In this case Im� ∼ ω2/3, and so it is now clear
from (18.22) that the quasiparticle is no longer well defined, and we are dealing with a non-
Fermi liquid. Applying (18.23), we find that the momentum distribution function does not
have a step discontinuity on the Fermi surface; there is a weaker power-law singularity with

n(k) ∼ sgn(−εk)|εk |1/3. (18.44)

Importantly, the scaling dimension of the boson–fermion coupling λ is 0, and so it is not
clear whether perturbation theory in λ is reliable. By analogy with the similar situation
in Section 17.4 for Dirac fermions, the implication is that the critical theory should be
formulated at a fixed λ, and that the perturbative Hertz approach has broken down. We turn
to a discussion of the needed critical field theory in Section 18.2.3.

However, before we turn to that crucial question, we need to verify the scaling estimate
for the self-energy in (18.42) by an explicit computation. The needed contribution to the
self-energy at order λ2 is given by the Feynman diagram in Fig. 18.8, which evaluates to

�(k, ωn) = λ2
∫

ddq

(2π)d

∫
dεn

2π

1

q2
y + γ |εn|/|qy |G0(k + q, εn + ωn). (18.45)
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�Fig. 18.8 Orderλ2 contribution to the fermion self-energy.

This can be evaluated by the same methods used for (18.18). Integrating over qx , we find
the analog of (18.21)

�(k, ωn) = i
λ2

vF

∫
dd−1qy

(2π)d−1

∫
dεn

2π

sgn(εn + ωn)|qy |
|qy |3 + γ |εn|

= i
λ2

πvFγ
sgn(ωn)

∫
dd−1qy

(2π)d−1
|qy | ln

(
|qy |3 + γ |ωn|

|qy |3
)
. (18.46)

Evaluation of the qy integral yields a result which agrees with (18.42) and (18.43) in d = 2,
and with the expected logarithmic corrections in d = 3. In the physically important case
of d = 2, the qy integral evaluates to

�(k, ωn) = λ2

πvFγ 1/3
√

3
sgn(ωn)|ωn|2/3, d = 2 (18.47)

in agreement with (18.43).

18.2.3 Non-Fermi liquid criticality in d = 2

Section 18.2.2 established that a perturbative analysis in the fermion–boson coupling λ, in
the spirit of the familiar “random-phase-approximation” (RPA) of many body physics, led
to a valid theory of the Ising-nematic quantum critical point in d = 3. However, the RPA-
like Hertz approach broke down in d = 2. Here we provide a field-theoretic description of
the quantum criticality in d = 2, using the approach proposed in [333].

An important feature of the discussion in Section 18.2.2 was that the low-energy fermion
modes at the Fermi surface point �k0 coupled most strongly to φ fluctuations with momenta
parallel to the Fermi surface. This is clear from the ky dependence of SH G in (18.37).
Physically, this is because a fermion at �k0 scattered by φ by momentum k tangent to the
Fermi surface only changes its energy ∼ k2, while in all other directions its energy change
∼ k. Consistent with this, if we compute the induced four-point φ vertex in the theory S0+
SH G +Sψφ , we find an enhancement dependent upon the φ momenta only if the momenta
are parallel or anti-parallel. This suggests that all couplings between φ fluctuations with
noncollinear momenta, such as, e.g., those induced by the u term in (18.33), are formally
irrelevant, just as in the Hertz theory. This asymptotic decoupling indicates that we may
treat noncollinear directions of φ in separate critical theories. Thus we end up with an
infinite number of 2+1 dimensional field theories, labeled by the momentum direction
of φ.

The reader will recall our discussion of an infinite number of 1+1 dimensional field
theories of chiral fermions in our discussion of Fermi liquid theory associated with (18.5).



361 18.2 Ising-nematic ordering

�Fig. 18.9 Aφ fluctuation at wavevector�q couples most efficiently to the fermionsψ± near the Fermi surface points±�k0.

A crucial difference here is that we have an infinite number of 2+1 dimensional field
theories: this is needed because, as discussed above, the dominant scattering processes for
the fermions are tangent to the Fermi surface. The present description necessarily induces
a redundant description: however, by a simple generalization of the arguments in Sec-
tion 18.1.1, we see that the redundant description is consistent.

So let us focus on a given direction �q of the momentum carried by φ and derive the
associated critical theory, as illustrated in Fig. 18.9. Such a φ field couples most strongly
to fermions near two points on the Fermi surface: those at �k0 and at −�k0. We generalize
(18.6) by introducing two fermionic fields ψ±a by

ψ+a(�k) = c�k0+�k,a, ψ−a(�k) = c−�k0+�k,a . (18.48)

We allow the spin index a to extend over the N values: the physical case is N = 2, but the
large-N expansion provides a useful computational tool.

Now we expand all terms in Sc + Sφ + Scφ (defined in (18.1), (18.31), and (18.32))
in spatial and temporal gradients. Using the coordinate system illustrated in Fig. 18.9,
performing appropriate rescaling of coordinates, and dropping terms which can later be
easily shown to be irrelevant, we obtain the 2+1 dimensional Lagrangian

L = ψ†
+a

(
ζ
∂

∂τ
− i

∂

∂x
− ∂2

∂y2

)
ψ+a + ψ†

−a

(
ζ
∂

∂τ
+ i

∂

∂x
− ∂2

∂y2

)
ψ−a

− λφ
(
ψ

†
+aψ+a + ψ†

−aψ−a

)
+ N

2
(∂yφ)

2 + Nr

2
φ2. (18.49)

Here ζ , λ, and r are coupling constants, with r the tuning parameter across the transition;
we will see that all couplings apart from r can be scaled away or set equal to unity.

A first crucial property of L is that it continues to have fermion Green’s functions with
singularities on the original Fermi surface, as established in Section 18.1.1. This follows
from generalizing the symmetry (18.30) to

φ(x, y)→ φ(x, y + θx), ψs(x, y)→ e−is( θ2 y+ θ2
4 x)ψs(x, y + θx), (18.50)

where θ is now one-dimensional and s = ±. This is an emergent symmetry of L for
arbitrary shapes of the Fermi surface. An immediate consequence of (18.50) is that (18.29)
is obeyed by bothψ±, so that all singularities slide without change along the Fermi surface.
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Furthermore, the φ Green’s function, D, obeys

〈|φ(q, ω)|2〉 ≡ D(qx , qy, ω) = D(qy, ω), (18.51)

indicating that no singular qx dependence of φ is generated by the theory L. As in Sec-
tion 18.1.1, the symmetries in (18.50) also help establish the consistency of our description
in terms of an infinite number of 2+1 dimensional field theories.

Scaling theory

We now generalize the scaling analysis of Section 18.2.2 to the continuum field theory L.
Because L is strongly coupled, we have to allow for anomalous dimensions at all stages.

As before we choose

dim[y] = −1, dim[x] = −2. (18.52)

The invariance in (18.29) implies that no anomalous dimension appears in the relative
scaling of x and y. However, we do have to allow for an anomalous dimension in time, and
so keep the rescaling of the temporal coordinate general:

dim[τ ] = −z. (18.53)

Note that the dynamic critical exponent z is defined relative to the spatial coordinate y tan-
gent to the Fermi surface (other investigators sometimes define it relative to the coordinate
x normal to the Fermi surface, leading to a difference by a factor of 2). We define the engi-
neering dimensions of the fields so that coefficients of the y derivatives remain constant.
Allowing for anomalous dimensions ηφ and ηψ from loop effects, we have

dim[φ] = (1+ z + ηφ)/2, dim[ψ] = (1+ z + ηψ)/2. (18.54)

Using these transformations, we can examine the scaling dimensions of the couplings in L
at tree level

dim[ζ ] = 2− z − ηψ, dim[λ] = (3− z − ηφ − 2ηψ)/2. (18.55)

We have seen from our low-order loop computations in Sections 18.2.1 and 18.2.2 that
z = 3. Assuming that the anomalous dimensions ηφ and ηψ are small, we see that the cou-
pling ζ is strongly irrelevant. Thus we can send ζ → 0 in all our computations. However,
we do not set ζ = 0 at the outset, because the temporal derivative term is needed to define
the proper analytic structure of the frequency loop integrals [292].

Also note that these estimates of the scaling dimensions imply dim[λ] ≈ 0. Thus the
fermion and order parameter fluctuations remain strongly coupled at all scales in d = 2,
as we anticipated in Section 18.2.2. Conversely, we can also say that the requirement of
working in a theory with fixed λ implies that z ≈ 3; this circumvents the appeal to loop
computations for taking the ζ → 0 limit. With a near zero scaling dimension for λ, we
cannot expand perturbatively in powers of λ. This feature was also found in Section 17.4.

Moving beyond tree-level considerations, we note that another Ward identity obeyed by
the theory L allows us to fix the scaling dimension of φ exactly. This Ward identity is
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linked to the fact that φ appears in the Yukawa coupling like the x component of a gauge
field coupled to the fermions [333]. The usual arguments associated with gauge invariance
then imply that dim[φ] = 2 (the same as the scaling dimension of ∂x ), and that we can
work in a theory in which the “gauge coupling” λ is set equal to unity at all scales. Note
that with this scaling dimension, we have the exact relation

ηφ = 3− z. (18.56)

Note also that (18.54) now implies that dim[λ]= ηψ at tree level, which is the same as
the tree-level transformation of the spatial derivative terms. The latter terms have been set
equal to unity by rescaling the fermion field, and so it is also consistent to set λ= 1 from
now on.

We reach the remarkable conclusion that at the critical point r = rc, L is independent of
all coupling constants. The only parameter left is N , and we have no choice but to expand
correlators in powers of 1/N . The characterization of the critical behavior only requires
computations of the exponents z and ηψ , and associated scaling functions.

We can combine all the above results into scaling forms for the φ and � Green’s func-
tions at the quantum critical point at T = 0. These are, respectively

D−1(qx , qy, ω) = qz−1
y FD

(
ω

qz
y

)
, (18.57)

G−1+ (qx , qy, ω) = (qx + q2
y )

1−ηψ/2FG

(
ω

(qx + q2
y )

z/2

)
, (18.58)

where FD and FG are nontrivial scaling functions. Note that the second scaling form shows
that the singularity of the fermion Green’s function in momentum space is invariant along
the Fermi surface, and depends only upon the distance from the Fermi surface.

We have come as far as possible by symmetry and scaling analyses alone on L. Further
results require specific computations of loop corrections, and these can only be carried out
within the context of the 1/N expansion. At leading order, the 1/N expansion reproduces
the results in Section 18.2.2. It is important to note that in the notation of the present
section, the results of Section 18.2.2 for D and the fermion self-energy turn out to be
independent of ζ . Although ζ appears at intermediate stages, it cancels out in the final
result: the reader is urged to verify this crucial feature of the theory. Consequently there
is no problem in taking the ζ → 0 limit. Higher order computations are involved, and
raise numerous complicated issues we do not wish to enter into here: we refer the reader
to [292,333]. It was found that z = 3 was preserved up to three loops, but a nonzero value
for ηψ did appear at three-loop order.

18.3 Spin density wave order

We now turn to the second major class of symmetry breaking transitions of Fermi liquids:
those involving an order parameter which is spatially modulated and so breaks translational
symmetry. As a canonical example of such a transition we consider spin density wave



364 Fermi liquids, and their phase transitions

(SDW) ordering in the Hamiltonian (17.1) describing a single band on the square lattice,
which was motivated by the physics of the cuprate superconductors. However, our methods
and results are easily extended to other types of ordering with spatial modulations.

We have already met the analog of spin density wave ordering in insulating antifer-
romagnets. In that context it was referred to as Néel ordering, and characterized by the
order parameter n of the O(3) quantum rotor model: we discussed this in Section 1.4.3 on
spin–ladder models, and consider the square lattice in more detail in Section 19.3. In the
continuum soft-spin limit, such ordering was described by the three-component real field
φα whose fluctuations were controlled by the action Sφ in (2.11). The field φα will remain
the order parameter for SDW ordering in a metal being considered here, and its action Sφ
will be an important ingredient in our theory.

As in Section 18.2, apart from the order parameter, we also have to consider the fermionic
excitations near the Fermi surface, and these are described as before by Sc in (18.1).

Finally we need to couple the cka fermions to the SDW order φα . The two-sublattice Néel
order on the square lattice carries momentum �K = (π, π), and we can consider a general
�K which leads to two-sublattice SDW ordering. Other values of �K lead to complex order

parameter fields (rather than the real case we considered), but we will not consider this
relatively straightforward generalization. Translational invariance implies that φα scatters
the fermions with momentum �K , and so the natural generalization of the fermion–boson
coupling in (18.32) is

Scφ =
∫

dτ
∫

ddkddq

(2π)2d
φα(q)σ

α
abc†

k+K+q,ackb + c.c., (18.59)

where q is a small momentum associated with a long-wavelength SDW fluctuation, while
the integral over the momentum �k extends over the entire Brillouin zone.

Our complete theory for the SDW transition is Sc + Sφ + Scφ in (18.1), (2.11), and
(18.59). This forms the basis of the discussion in the remainder of this section.

18.3.1 Mean-field theory

The theory has two phases: the ordinary Fermi liquid with 〈φα〉 = 0 and Fermi surface
as in Fig. 18.1, and the SDW state with 〈φα〉 �= 0. We describe here the configuration
of the Fermi surface in the SDW state. We replace φα by its expectation value 〈φα〉 =
(0, 0, φ); by rotational symmetry we can take the SDW order in the z direction without
loss of generality. Now Sc + Scφ is a bilinear in the fermions and can be diagonalized to
yield a fermion band structure. The fermion Hamiltonian takes the form of a 2× 2 matrix
coupling together cka and ck+K ,a . Diagonalizing this matrix leads to the single fermion
energy eigenvalues

Ek = εk + εk+K

2
±
((

εk + εk+K

2

)2

+ φ2

)1/2

. (18.60)

We now have to occupy the lowest energy bands in this band structure, and deduce the
configuration of the Fermi surface. Such a solution is illustrated in Fig 18.10 for the case
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�Fig. 18.10 The transformation of the Fermi surface of cuprates by SDW order [432]. (a) Fermi surface without SDW order, as in
Fig. 18.1. (b) The original Fermi surface along with the Fermi surface shifted by wavevector (π, π). These intersect at
the hot spots shown by the filled circles. (c) With the onset of a nonzero spin density wave order with 〈φα〉 �= 0, gaps
open at the hot spots leading to electron (thin lines) and hole (thick lines) pockets. (d) With increasing |〈φα〉| the
electron pockets shrink to zero for the hole-doped case, leaving only hole pockets. In the electron-doped case, the hole
pockets shrink to zero, leaving only electron pockets (this is not shown). Finally, in the half-filled case, the electron and
hole pockets shrink to zero simultaneously.

of �K = (π, π) ordering in cuprate superconductors [432]. A key feature is that the original
“large” Fermi surface splits into “small” electron and hole pockets upon the onset of SDW
order: this is also a generic property of SDW ordering on other lattices.

18.3.2 Continuum theory

We now wish to develop a continuum theory for the quantum critical point for the onset
of SDW order, which is accompanied by a change from a large Fermi surface to small
pockets, as indicated in Fig. 18.10. The general strategy is similar to that in Section 18.2,
although there are key differences which we highlight below.

An important and new concept here is that of a “hot” manifold on the Fermi surface. As
in Section 18.2, we expect the boson–fermion coupling to be most efficient if it scatters
fermions between nearly degenerate low-energy states. Let us pick a point �k1 on the Fermi
surface, where the fermion has zero energy: this is described by a d-dimensional vector
upon which we impose one constraint to place it on the Fermi surface. Now the φα field
will scatter this fermion to the point �k2 = �k1 + K . We require that �k2 is also on the
Fermi surface, to ensure that the final fermion state has zero energy: this places a second
constraint on �k2. The solution of these constraints yields a pair of (d − 2)-dimensional
manifolds specifying the allowed values of �k1 and �k2: these are the “hot” manifolds. In
d = 2, they become the “hot spots” shown in Fig. 18.10 for the cuprate case.

We take the continuum limit by focusing on one generic point on the hot manifold, say
�k1. Then its partner, �k2 = �k1 + �K will also be on the hot manifold. We focus on the
patches of the Fermi surface near these points. There are several other pairs of patches
in the Brillouin zone, as is clear from Fig. 18.10: these are described by parallel theories
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which we will not discuss explicitly. Within a given pair of Fermi surface patches, our
results do not depend upon the specific choices of �k1,2 on the hot manifold: this is evident
from our continuum theory below, and does not require a proof which is the analog of
Section 18.1.1.

Near �k1 and �k2, we define continuum fields ψ1,2, as in (18.48)

ψ1a(�k) = c�k1+�k,a, ψ2a(�k) = c�k2+�k,a . (18.61)

We insert this into (18.1) and expand in powers of k. Unlike the situation in Sections 18.1
and 18.2, it turns out here that it is sufficient to keep terms only linear in k, and the analog
of (18.7) is

Sψ =
∫

dτ
∫

dd x

[
ψ

†
1a

(
ζ
∂

∂τ
− i �v1 · ∇x

)
ψ1a

+ ψ†
2a

(
ζ
∂

∂τ
− i �v2 ·∇x

)
ψ2a

]
. (18.62)

Here �v1 = ∇kεk |k1
is the Fermi velocity at �k1, and similarly for �v2. We have inserted

factors of ζ in front of the temporal derivatives by analogy with Section 18.2.2, anticipating
that the temporal derivatives ultimately become irrelevant near the critical point. In the
ψ1,2 formulation, the configurations of the Fermi surfaces and hot manifolds are shown in
Fig. 18.11. The Fermi surface of the ψ1 fermions is defined by �v1 · �k = 0, and the Fermi
surface of the ψ2 fermions is defined by �v2 · �k = 0. Finally, the hot manifold is defined by
the �k which satisfy both these conditions. We assume here and below that �v1 and �v2 are not
collinear: the collinear case corresponds to the “nesting” of the Fermi surfaces, and we do
not consider that here.

It is now a simple matter to take the continuum limit of the boson–fermion coupling in
(18.59). Including the important terms in Sφ in (2.11), we obtain

Sψφ =
∫

dd x
∫

dτ

[
1

2
(∇xφα)

2 + r

2
φ2
α +

u

4

(
φ2
α

)2

+ λφασαab

(
ψ

†
1aψ2b + ψ†

2aψ1b

)]
. (18.63)

Here we have omitted the temporal gradient term in φα because it later turns out to be
irrelevant.

�Fig. 18.11 Fermi surfaces ofψ1 andψ2 fermions in the plane defined by the Fermi velocities�v1 and�v2. The Fermi surfaces are
(d − 1)-dimensional, and are indicated by the full lines. The (d − 2)-dimensional “hot manifold” intersects this
plane at the filled circle at the origin.
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�Fig. 18.12 Modification of the Fermi surfaces in Fig. 18.11 by SDW order with 〈φα〉 �= 0. The full lines are the Fermi surfaces,
and the white, light shaded, and dark shaded regions denote momenta where 0, 1, and 2 of the bands in (18.60) are
occupied. The upper and lower lines are boundaries of hole and electron pockets, respectively. There are eight
instances of such Fermi surface configurations in Fig. 18.10c, centered on the eight hotspots.

The remaining analysis of this section works with the continuum theory of bosons and
fermions defined by Sψ + Sψφ defined in (18.62) and (18.63). Our steps in the following
subsection closely parallel those for the Ising-nematic case in Section 18.2.

We begin by noting the Fermi surface change in the SDW phase of Sψ + Sψφ . Setting
φα = (0, 0, φ), and diagonalizing the ψ1,2 spectrum, it is a simple matter to show that the
Fermi surfaces in Fig. 18.11 are modified to those in Fig. 18.12.

18.3.3 Hertz theory

As in Section 18.2.1, the Hertz theory for the SDW order φα is obtained by integrating out
the ψ1,2 fermions from Sψ + Sψφ in (18.62) and (18.63).

Again, the most important contribution is the coefficient of the φ2
α term, which is given

by the fermion polarizability in Fig. 18.7. Here the explicit expression for the polarizability
maps from (18.17) to

�(q, ωn) =
∫

ddk

(2π)d

∫
dεn

2π

1

[−iζ(εn + ωn)+ �v1 · (�k + �q)][−iζ εn + �v2 · �k]
. (18.64)

We define oblique coordinates p1 = �v1 · �k and p2 = �v2 · �k. It is then clear that the integrand
in (18.64) is independent of the (d − 2) transverse momenta, whose integral yields an
overall factor �d−2 (in d = 2 this factor is precisely 1). Also, by shifting the integral over
k1 we note that the integral is independent of q . So we have

�(q, ωn) = �d−2

|�v1 × �v2|
∫

dp1dp2dεn

8π3

1

[−iζ(εn + ωn)+ p1][−iζ εn + p2] . (18.65)

Next, we evaluate the frequency integral to obtain

�(q, ωn) = �d−2

ζ |�v1 × �v2|
∫

dp1dp2

4π2

[sgn(p2)− sgn(p1)]
−iζωn + p1 − p2

= − |ωn|�d−2

4π |�v1 × �v2| . (18.66)
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In the last step, we have dropped a frequency-independent, cutoff-dependent constant,
which can be absorbed into a redefinition of r . Note also that the factor of ζ has cancelled.

Inserting this fermion polarizability in the effective action for φα , we obtain the Hertz
action for the SDW transition; here (18.33) is replaced by

SH =
∫

ddk

(2π)d
T
∑
ωn

1

2

[
k2 + γ |ωn| + r

]
|φα(k, ωn)|2

+ u

24

∫
dd xdτ

(
φ2
α(x, τ )

)2
. (18.67)

The main difference from (18.33) is that the |ωn|/|k| has been replaced by a |ωn|: this is
a direct consequence of the Fermi surface structure in Fig. 18.11, which leads to a den-
sity of states of particle–hole excitations which are linear in energy, and independent of
momentum.

The subsequent analysis of the above Hertz action proceeds just as in (18.34) and (18.35),
but now with dynamic exponent z = 2. Again, this exponent characterizes the frequency
scale ω ∼ k2 emerging from a comparison of the first two terms in (18.67). Now we see
that the Gaussian fixed point of (18.67) is stable for d > 2.

Just as in Section 18.2, we see below that the Hertz approach is essentially correct in
d = 3, but that it fails in the physically important case of d = 2, and not just by a marginal
correction. The key to this is an examination of the fermion spectrum and the RG flow of
the fermion-boson coupling, to which we turn in Section 18.3.4.

18.3.4 Fate of the fermions

We proceed just as in Section 18.2.2. With the scaling dimensions of space–time and φ as
in (18.34) with z = 2, the action Sψ in (18.62) implies the tree-level rescaling

dim[ψ] = (d + 1)/2, dim[ζ ] = −1. (18.68)

Thus, just as in Sections 18.2.2 and 18.2.3, ζ is irrelevant, and can eventually be sent to 0.
Finally, evaluating the scaling dimension of the λ term in Sψφ in (18.63), we obtain the
same result as in (18.41), namely

dim[λ] = (2− d)

2
. (18.69)

The conclusions then are the same as in Section 18.2.2: a perturbative theory in λ, in the
Hertz/RPA approach is valid in d = 3, but requires a new formulation in terms of a fixed λ
theory in d = 2.

The remaining analysis in this subsection tracks that below (18.41) in Section 18.2.2.
The perturbative estimate for the fermion damping on the hot manifold is given by

(18.42). Using the values here, dim[�] = 1 and dim[ω] = 2, we obtain instead of (18.43)
that

p = d − 1

2
. (18.70)

In d = 3, this has the same value as in (18.43), and so the conclusions are the same.
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In d = 2, we obtain non-Fermi liquid behavior at the hot spots with Im� ∼ √ω.
We verify this result by explicitly computing the value of the fermion damping from the

graph in Fig. 18.8. At zero momentum for the ψ1 fermion we have, instead of (18.45),

�1(0, ωn) = λ2
∫

ddq

(2π)d

∫
dεn

2π

1[
q2 + γ |εn|

] [−iζ(εn + ωn)+ �v2 · �q ] . (18.71)

We first perform the integral over the �q direction parallel to �v2, while ignoring the sub-
dominant dependence on this momentum in the boson propagator. The dependence on ζ
immediately disappears, and yields in place of (18.46),

�1(0, ωn) = i
λ2

|v2|
∫

dd−1q

(2π)d−1

∫
dεn

2π

sgn(εn + ωn)

|q|2 + γ |εn|

= i
λ2

π |v2|γ sgn(ωn)

∫
dd−1q

(2π)d−1
ln

(
|q|2 + γ |ωn|

|q|2
)
. (18.72)

Again, evaluation of the q integral yields results in agreement with the scaling estimate
(18.70). Specifically, in d = 2, (18.72) evaluates to

�1(0, ω) = i
λ2

π |v2|√γ sgn(ωn)
√|ωn|, d = 2 (18.73)

as expected from (18.70).

18.3.5 Critical theory in d = 2

With the conclusion of Section 18.3.4 that the Hertz theory only applies for d = 3, let
us turn to the strong-coupling dynamics in d = 2. Following Section 18.2.3, we need to
understand the renormalization structure of the underlying theory of fermions and bosons,
without an integration of the fermionic modes.

In the present case, the needed critical theory in d = 2 was already formulated in Sec-
tion 18.3.2. It is defined by Sψ + Sψφ in (18.62) and (18.63).

We formulate the RG with the same spacetime rescalings used in Section 18.3.3:

dim[x] = −1, dim[τ ] = −2. (18.74)

Note that we do not allow an anomalous dimension in the rescaling of τ . This does not
mean that we necessarily have dynamic exponent z = 2. We allow the Fermi velocities �v1

and �v2 to flow under the RG, and a nontrivial z will arise from the nature of their flow to
large scales. It is convenient to use such a formulation because the scaling of the fermion
spectrum depends sensitively on the direction in momentum space, and the shape of the
Fermi surface also evolves.

We do, however, have to allow for anomalous dimensions in the field rescalings, which
become

dim[φ] = (2+ ηφ)/2, dim[ψ] = (3+ ηψ)/2. (18.75)

Contributions to these anomalous dimensions do arise from loop fluctuation contributions.
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Next, as in (18.55), we have the tree-level rescalings of the couplings associated with
the fermions:

dim[ζ ] = −1− ηψ, dim[λ] = −(ηφ + 2ηψ)/2. (18.76)

We reach the same conclusions from these results that we did in Section 18.2.3. We can
safely assume that ζ = 0+, and use this value in loop computations. With the absence
of the ζ term, we can choose the fermion field scale renormalization so that the theory
maintains λ = 1. Thus, there is a strong fermion–boson coupling at all scales, and no
independent renormalization group flow for λ.

The task before us is now clear, in principle. We have to evaluate higher loop diagrams
and so determine the RG flow of the couplings �v1, �v2, r , and u, and the anomalous dimen-
sions ηφ and ηψ . Note that the boson damping coefficient γ in the Hertz action (18.67)
does not appear as an independent coupling. In reality, it is a parameter in the boson spec-
tral function, and its value is pinned to the underlying couplings via (18.66); it is reassuring
that the value in (18.66) has no nonuniversal cutoff dependence in d = 2.

The evaluation of these higher loop diagrams is very involved, and the reader is referred
to [1–3,334] for further details. These papers describe the rather complex structure of the
dynamic response of the fermions and the bosons near the quantum critical point. Here we
focus on just one striking aspect: the shape of the Fermi surface. This is determined by the
flow of the velocities near the critical point. Let us write the velocities as

�v1 = (vx , vy), �v2 = (−vx , vy). (18.77)

Then to two-loop order, the RG flow of the velocity ratio is given by

dα

d�
= − 12

πn

α2

α2 + 1
, α ≡ vy

vx
, (18.78)

in a model with n pairs of hot spots (the Fermi surface in Fig. 18.10 has n = 4). Integrating
(18.78), we observe that α scales logarithmically to zero with momentum scale (this is
similar to the logarithmic flow of the velocity ratio found in Section 17.4 for a transition in
a d-wave superconductor). We can use the distance from the hot spot to set the momentum
scale. The location of the ψ1 Fermi surface is given by �v1 · �k = 0, or ky = −vx kx/vy =
−kx/α. Evaluating α at the scale kx , we find the Fermi surfaces of the ψ1,2 at

ky = ± 12

πn
kx log(1/|kx |). (18.79)

Such Fermi surfaces are sketched in Fig. 18.13.

18.4 Nonzero temperature crossovers

We limit our discussion of the nonzero temperature crossovers to the Hertz theory for the
spin density wave transition in (18.67).

Here it is useful to note that the only difference between SH and the dilute Bose gas
model analyzed in Section 16.3 is that SH contains a |ωn| frequency dependence in the



371 18.4 Nonzero temperature crossovers

�Fig. 18.13 Modification of the Fermi surfaces in Fig. 18.11 at the SDW quantum critical point. As in Figs. 18.11 and 18.12,
the full lines are the Fermi surfaces, and the white, light shaded, and dark shaded regions denote momenta
where 0, 1, and 2 of the bands in (18.60) are occupied. The equations of the Fermi surfaces are given in (18.79).

T
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SPIN DENSITY
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FERMI
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NON-FERMI
LIQUID
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C

�Fig. 18.14 Phase diagram of a Fermi liquid undergoing an instability to a spin density wave state for 2 ≤ d < 4. The regimes
A, B, and C and their crossover boundaries are described in the text. Compare to Fig. 16.4 for the dilute Bose gas.

quadratic term, while the Bose gas had −iωn . Consequently we can map the techniques
and computations of the Bose gas theory to the present situation. The computation of the
T > 0 crossovers is essentially identical to that in Section 16.3.2 and leads to the phase
diagram shown in Fig. 18.14 [336], which is very similar to Fig. 16.4. We integrate out the
ωn �= 0 modes and obtain an effective action for the static modes, which takes the form
Sφ,eff in (14.16) and is characterized by the couplings R and U . To leading order in u we
have U = u, while for R we have (analogous to (14.17), (14.18), and (16.62)):

R = r + u

(
N + 2

6

)∫
ddk

(2π)d

⎛⎝T
∑
ωn �=0

1

γ |ωn| + k2 + r
+ T

k2
−
∫

dω

2π

1

γ |ω| + k2

⎞⎠.
(18.80)

The next step is the mathematical one of evaluating the frequency and momentum sums
and integrals in (18.80). The main subtlety, as in (14.31), is that while the result does
depend upon a large momentum cutoff �, the divergent momentum integral can be sepa-
rated out into a T -independent term. The remaining momentum integrals are convergent in
the ultraviolet, and we can safely set � → ∞ in them at the cost of ignoring some unin-
teresting and noncritical dependence on T . We show a few intermediate steps on how this
separation is performed. The basic idea, as discussed below (11.47), is to subtract from
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each frequency summation the frequency integral of precisely the same quantity. In this
manner we manipulate R into the form

R = r + u

(
N + 2

6

)
[R1 + R2 + R3] , (18.81)

with

R1 =
∫

ddk

(2π)d

(
T
∑
ωn

1

γ |ωn| + k2 + r
−
∫

dω

2π

1

γ |ω| + k2 + r

)
,

R2 = −T
∫

ddk

(2π)d

(
1

k2 + r
− 1

k2

)
,

R3 =
∫ � ddk

(2π)d

∫
dω

2π

(
1

γ |ω| + k2 + r
− 1

γ |ω| + k2

)
. (18.82)

It is easy to check that R1 and R2 are convergent at large momenta and that all of the
cutoff dependence has been isolated in the T -independent term R3. As discussed below
(14.31), we can remove this cutoff dependence by adding and subtracting r/(γ |ω| + k2)2

to the integrand in R3. This yields a cutoff dependence term ∼r�d−2. Note that this cutoff
dependence is a smooth linear function of r and so does not affect the remaining universal
singular part. After evaluating the terms in (18.82), we can write the final result for R in
the scaling form analogous to (14.32) and (16.64):

R = r(1− c2u�d−2)+ u

γ
(γ T )d/2

(
N + 2

6

)
L

(
r

γ T

)
, (18.83)

where the universal scaling function L(y) is given by

L(y) = 1

π

∫
ddk

(2π)d

[
ln

(
k2

2π

)
− ψ

(
1+ k2 + y

2π

)
+ π + y

k2

]
, (18.84)

where ψ is the digamma function. We point out the now familiar property of all such
crossover functions: it is analytic at y = r/γ T = 0, reflecting the absence of any thermo-
dynamic singularity at r = 0, T > 0 (see Fig. 18.14). From (18.84) it is easily seen that
L(y) is analytic for y > −2π ; the singularity at y = −2π is of no physical consequence
as it is within the ordered phase.

Knowing the values of R and U , we can work out the predictions for physical observ-
ables. The expression for the order parameter correlations, correct for small u, is (compare
(14.34) and (16.67))

〈|φα(k, ω)|2〉 = 1

−iω + k2 + ξ−2
, (18.85)

where from (14.19) and (14.5) we have (compare (16.68))

ξ−2 = R − T u

(
N + 2

6

)
2�((4− d)/2)

(d − 2)(4π)d/2
R(d−2)/2. (18.86)
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As in (16.70) we can compute the free energy density and obtain

F(T, r) = T N

2

∫
ddk

(2π)d

[∑
ωn

ln(γ |ωn| + k2 + r)+ ln

(
k2 + ξ−2

k2 + r

)]
, (18.87)

where the numerator of the second logarithm is the contribution of the ωn = 0 modes,
while the remainder come from the ωn �= 0 modes. Note that, for T > 0, the expression
(18.87) has no singularity at r = 0. This is as expected from the absence of a thermo-
dynamic singularity in the middle of region C in Fig. 18.14. It is advantageous to subtract
out the free energy of the system at the critical point r = 0, T = 0 from the above (this
was simply 0 for the dilute Bose gas) and evaluate �F ≡ F(T, r) − F(0, 0); for this we
get

�F = T N

2

∫ � ddk

(2π)d

[
− 2

π

∫ ∞

0

d�

(e�/T − 1)
tan−1

(
γ�

k2 + r

)

+ k2 ln(k2)− (k2 + r) ln(k2 + r)

πγ
+ ln

(
k2 + ξ−2

k2 + r

)]
+ · · ·, (18.88)

where we have omitted background terms that are T independent and only depend upon
positive integer powers of r . The momentum integral has a remaining cutoff dependence
that cannot be removed and does affect the singular T and r dependence. This is a conse-
quence of being above the upper-critical dimension.

We discuss the implications of the above results for the order parameter susceptibility;
thermodynamic properties follow from results such as (18.88) and more explicit results
are available in the literature [236, 432, 558]. In the low-T “Fermi liquid” region A in
Fig. 18.14, defined by T � r/γ , the susceptibility is given by (18.85); by evaluating the
large-y limit of (18.84) and inserting into (18.83) and (18.86) we get for the T dependence
of the correlation length

ξ−2(T ) = ξ−2(T = 0)+ uγ

r (4−d)/2

(N + 2)�((4− d)/2)

36(4π)d/2
T 2. (18.89)

Note the characteristic T 2 dependence of a Fermi liquid. Conversely, in the high-T limit,
T � r/γ , we take the y → 0 limit of (18.84) and obtain the leading result

ξ−2(T ) = r + (γ T )d/2
(N + 2)u

6γ
L(0), (18.90)

where L(0) is a number. In region B of Fig. 18.14, r � γ T � (γ r/u)2/d , the first term
in (18.90) dominates, while in region C, γ T � (γ |r |/u)2/d , the second T -dependent term
is larger. So in the high-T region C we have ξ ∼ T−3/4, which does not agree with the
naive scaling estimate ξ ∼ T−1/z . As we noted in Sections 14.2.2 and 16.3.2, this violation
appears because of the presence of a dangerously irrelevant coupling u. Note also that if
we insert (18.90) into (18.85), the resulting dynamic response function does not scale as
a function of ω/T , and this is again because the present system is above its upper-critical
dimension.

As noted earlier, the results above are analytic at r = 0 for T > 0, and so they apply
also for r < 0. For this case the correlation length diverges at a critical value of r , and this
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determines the position of the phase boundary in Fig. 18.14 at T = Tc(r), where to leading
order in u

Tc(r) = 1

γ

[
− 6γ r

(N + 2)u

]2/d

. (18.91)

Finally, we note the case of d = 2. For the Hertz action (18.67), this case corresponds to
the upper-critical dimension, and can be analyzed like the corresponding situation for the
d = 3 quantum Ising/rotor models in Part III: logarithmic terms arise from the flow of the
coupling u to zero. However, as we noted in Section 18.3.4, the Hertz model breaks down
in d = 2 as a representation of the underlying Fermi surface and its transformation under
spin density wave order. The critical theory of Section 18.3.5 has to be analyzed at T > 0,
a problem which we shall not address here.

18.5 Applications and extensions

Important applications of the spin density wave to Fermi liquid transition appear in stud-
ies of the heavy fermion compounds [25, 93, 94, 336, 514]. A case that has been inten-
sively studied is CeCu6−x Aux [408, 451, 492, 532], and there is also related work on
CeCu6−x Agx [220]. The Cambridge group [182, 255, 300, 321] has examined a different
series of Ce compounds (CeNi2Ge2, CePd2Si2, and CeIn3) and these show similar transi-
tions under pressure, but at stoichiometric compositions at which disorder is quite small;
they have reported the existence of superconductivity near the antiferromagnet/Fermi liq-
uid quantum critical point [321]. A comprehensive study of quantum transitions involving
loss of antiferromagnetic order in metallic and insulating phases of V2O3 has also been per-
formed [35]. A puzzling feature of present experiments in the Ce compounds and V2O3 is
that while thermodynamic and transport properties are in rough agreement with the theory
discussed in this chapter, the dynamic neutron scattering experiments show clear scaling
of the response functions as a function ω/T (where ω is the measurement frequency).
Such scaling was discussed at length in Part II but is only a property of quantum criti-
cal points below their upper-critical dimension; in contrast, the theories used to explain
thermodynamic measurements are above their upper-critical dimension and do not predict
scaling of response functions as a function of ω/T . Resolving this inconsistency is an
important direction for future work. A range of theoretical work on quantum transitions
between spin density waves and Fermi liquids is reported in [258, 342, 350, 375, 407]. An
interesting perspective on open questions has been given by Coleman [91], who, following
[441, 456, 472, 476, 477], has sketched a scenario for a strong-coupling critical point with
anomalous exponents and ω/T scaling.

We refer the reader to a separate review article [302] for a comprehensive review of the
experimental situation in this vast subject.



19 Heisenberg spins: ferromagnets
and antiferromagnets

Part II of this book deals with the magnetically ordered and quantum paramagnetic phases
of models of N -component quantum rotors. In Chapter 9 we showed how the N = 2 rotors
could be mapped onto certain boson models in the vicinity of a phase transition between
a Mott insulator and a superfluid. In this chapter we consider models of Heisenberg spins:
these directly represent the spin fluctuations of physical electrons in insulators or other
systems with an energy gap toward charged excitations (e.g. certain quantum Hall states).
We describe the conditions under which certain models of Heisenberg spins reduce to
N = 3 quantum rotor models, thus providing the long-promised physical motivation for
studying the latter models; recall that a preview of this mapping has already appeared in
Section 1.4.3. We also discuss the physical properties of Heisenberg spin models under
conditions in which they do not map onto the rotor models of Part II.

We consider lattice models with the Hamiltonian

HS = −
∑
i, j

Ji j Ŝi · Ŝ j −H ·
∑

i

Ŝi . (19.1)

Here the magnetic field H is precisely the same (with no overall scale factor) as that appear-
ing in the rotor Hamiltonian (11.1): H couples to a conserved total spin (or for the rotors
the total angular momentum), which, as we see, commutes with the rest of the Hamil-
tonian. The Ŝi are Heisenberg spin operators whose basic properties were introduced in
Section 1.4.3. They satisfy the commutation relations (1.29) on each site i and act on the
2S + 1 states (1.30) of the spin S representation on each site. The Ji j are a set of transla-
tionally invariant exchange interactions between these sites.

We begin in Section 19.1 by showing how to set up a path integral for systems with
states restricted in the manner (1.30) and (1.31) on each site. Then Section 19.2 consid-
ers the properties of ferromagnets in which all Ji j > 0, and the ground state is the fully
polarized state with all spins parallel and the total spin takes its maximum possible value.
The properties of antiferromagnets in which the ground state has negligible total spin are
discussed in Section 19.3 – these are likely to arise when all Ji j < 0. Finally, Section 19.4
considers more complex situations with partial uniform polarization of the spins, which is
accompanied by a certain “canted” order in dimensions d > 1.

19.1 Coherent state path integral

We described the coherent state path integral in general in Section 9.2, and then applied it
to bosons in Section 9.2.1. An important feature of the path integral was the “Berry phase”

375
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term b†db/dτ in (9.32), which accounted for the kinematics of ordinary bosons and played
an important role in the structure of the Mott insulating phases and the nature of their
transitions to the superfluid. In this section we apply the same method to spin systems via
“spin coherent” states. Many derivations of this path integral exist in the literature, but we
follow here the approach used in [395], which has the advantage of explicitly maintaining
spin rotation invariance. The reader is also referred to a collection of reprints [272] for
further information on coherent states and their relationship to path integrals.

We deal in this section with a single Heisenberg spin and therefore drop the site index.
In the formalism of Section 9.2, Ŝ is the vector of spin operators of representation S. We
construct the states |N〉 explicitly below, where we choose N to be a unit vector with N2 =
1. Thus the coherent states are labeled by points on the unit sphere. With this definition,
(9.21) is modified here to

〈N|Ŝ|N〉 = SN. (19.2)

The completeness relation (9.19) takes the form∫
dN
2π
|N〉〈N| = 1 =

S∑
m=−S

|S,m〉〈S,m|, (19.3)

where the integral of N is over the unit sphere. The state |N〉 is almost like a classical
spin of length S pointing in the N direction; indeed, the spin-coherent states are the mini-
mum uncertainty states localized as much in the N direction as the principles of quantum
mechanics will allow, and in the large-S limit, |N〉 reduces to a classical spin in the N
direction.

Let us now explicitly construct the spin coherent states. For N = (0, 0, 1), the state |N〉
is easy to determine; we have

|N = (0, 0, 1)〉 = |S,m = S〉 ≡ |�0〉. (19.4)

We have labeled this particular coherent state as a reference state |�0〉 as it is needed
frequently in the following. It should be clear that for other values of N we can obtain |N〉
simply by acting on |�0〉 by an operator that performs an SU (2) rotation from the direction
(0, 0, 1) to the direction N. In this manner we obtain the following explicit representation
for the coherent state |N〉:

|N〉 = exp(z Ŝ+ − z∗ Ŝ−)|�0〉, (19.5)

where the complex number z is related to the vector N. This relationship is simplest in
spherical coordinates; if we parameterize N as

N = (sin θ cosφ, sin θ sinφ, cos θ), (19.6)

then

z = −θ
2

exp(−iφ). (19.7)

We leave it as an exercise for the reader to verify that (19.5) satisfies (9.18), (9.19),
and (9.20); this verification is aided by the knowledge that the value of the expression
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exp(−ia · Ŝ)Ŝ exp(ia · Ŝ), where a is some vector, is determined solely by the spin com-
mutation relations (1.29) and can therefore be worked out by temporarily assuming that
the Ŝ are 1/2 times the Pauli matrices; the result, when expressed in terms of Ŝ, is valid for
arbitrary S.

It is useful for our subsequent formulation to rewrite the above results in a somewhat
different manner, making the SU (2) symmetry more manifest. Define the 2× 2 matrix of
operators Ŝ by

Ŝ =
(

Ŝz Ŝx − i Ŝ y

Ŝx + i Ŝ y −Ŝz

)
. (19.8)

Then (19.4) can be rewritten as

〈N| Ŝαβ |N〉 = SWαβ, (19.9)

where the matrix W is

W =
(

Nz Nx − i Ny

Nx + i Ny −Nz

)
≡ N · �σ , (19.10)

where �σ are the Pauli matrices. So instead of labeling the coherent states with the unit
vector N, we could equally well use the traceless Hermitean matrix W . Furthermore, there
is a simple relationship between W and the complex number z. In particular, if we use the
spin-1/2 version of the operator in (19.5)

U = exp

[(
0 z
−z∗ 0

)]
, (19.11)

(U is thus a 2× 2 matrix), then we find

W = UσzU †. (19.12)

Now let us apply these results to the path integral representation in (9.25) and (9.26).
Clearly, the τ dependence of N(τ ) implies a τ -dependent z(τ ) through (19.7). From (19.5)
we have therefore

d

dτ
|N(τ )〉 = d

dτ
exp(z(τ ), Ŝ+ − z∗(τ )Ŝ−)|�0〉. (19.13)

Taking this derivative is, however, not so simple. Note that if an operator Ô does not
commute with its derivative d Ô/dτ then

d

dτ
exp(Ô) �= d Ô

dτ
exp(Ô). (19.14)

The correct form of this result is in fact

d

dτ
exp(Ô) =

∫ 1

0
du exp(Ô(1− u))

d Ô

dτ
exp(Ôu), (19.15)
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where u is just a dummy integration variable. This result can be checked by expanding
both sides in powers of Ô and verifying that they agree term by term. More constructively,
a “hand-waving” derivation can be given as follows:

d

dτ
exp(Ô) = d

dτ
exp

(
Ô
∫ 1

0
du

)

= lim
M→∞

d

dτ
exp

(
M∑

i=1

Ô�ui

)
with �ui = 1/M

≈ lim
M→∞

d

dτ

M∏
i=1

exp(Ô�ui )

≈ lim
M→∞

M∑
j=1

j∏
i=1

exp(Ô�ui )
d Ô

dτ
�u j

M∏
i= j+1

exp(Ô�ui ). (19.16)

Finally, taking the limit M →∞, we obtain the needed result (19.15). Now using (19.13)
and (19.15) we find

SB =
∫ 1/T

0
dτ 〈N(τ )| d

dτ
|N(τ )〉

=
∫ 1/T

0
dτ
∫ 1

0
du〈N(τ, u)|

(
∂z

∂τ
Ŝ+ − ∂z∗

∂τ
Ŝ−
)
|N(τ, u)〉, (19.17)

where N(τ, u) is defined by

|N(τ, u)〉 = exp(u(z(τ )Ŝ+ − z∗(τ )Ŝ−))|�0〉. (19.18)

From this definition, three important properties of N(τ, u) should be apparent:

N(τ, u = 1) ≡ N(τ ),

N(τ, u = 0) = (0, 0, 1), and

N(τ, u) moves with u along the great circle

between N(τ, u = 0) and N(τ, u = 1).

We can visualize the dependence on u by imagining a string connecting the physical value
of N(τ ) = N(τ, u = 1) to the North pole, along which u decreases to 0. Associated with
each N(τ, u) we can also define a u-dependent W (τ, u) as in (19.10); the analog of (19.19)
is W (τ, u = 1) ≡ W (τ ) and W (τ, u = 1) = σz . A simple explicit expression for W (τ, u)
is also possible: we simply generalize (19.11) to

U (τ, u) = exp

[
u

(
0 z
−z∗ 0

)]
; (19.19)
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then the relationship (19.12) gives us W (τ, u). Now we can use the expression (19.9) to
rewrite (19.17) as

SB = S
∫ 1/T

0
dτ
∫ 1

0
du

[
∂z

∂τ
W21(τ, u)− ∂z∗

∂τ
W12(τ, u)

]
, (19.20)

As everything is a periodic function of τ , we may freely integrate this expression by parts
and obtain

SB = −S
∫ 1/T

0
dτ
∫ 1

0
duTr

[(
0 z(τ )

−z∗(τ ) 0

)
∂τW (τ, u)

]
, (19.21)

where the trace is over the 2× 2 matrix indices. The definitions (19.12) and (19.19) can be
used to easily establish the identity(

0 z(τ )
−z∗(τ ) 0

)
= −1

2
W (τ, u)

∂W (τ, u)

∂u
, (19.22)

which when inserted into (19.21) yields the expression for SB in one of its final forms

SB =
∫ 1/T

0
dτ
∫ 1

0
du

[
S

2
Tr

(
W (τ, u)

∂W (τ, u)

∂u

∂W (τ, u)

∂τ

)]
. (19.23)

An expression for SB solely in terms of N(τ, u) can be obtained by substituting in (19.10);
this yields the final expression for SB , which when inserted in (9.25) gives us the coherent
state path integral for a spin:

SB = i S
∫ 1/T

0
dτ
∫ 1

0
du N ·

(
∂N
∂u
× ∂N
∂τ

)
. (19.24)

This expression has a simple geometric interpretation. The function N(τ, u) is a map
from the rectangle 0 ≤ τ ≤ 1/T , 0 ≤ u ≤ 1 to the unit sphere. As N moves from N(τ )
to N(τ +�τ) it drags along the string connecting it to the North pole represented by the u
dependence of N(τ, u) (recall (19.19)). It is easy to see that the contribution to SB of this
evolution is simply i S times the oriented area swept out by the string. The value of this area
clearly depends upon the fact that the u = 0 end of the string was pinned at the North pole.
This was a “gauge” choice, and by choosing the phases of the coherent states differently,
we could have pinned the point u = 0 anywhere on the sphere. However, when we consider
the complete integral over τ in (19.24), the boundary condition N(1/T ) = N(0) (required
by the trace in (9.22)) shows that N(τ ) sweeps out a closed loop on the unit sphere. Then
the total τ integral in (19.24) is the area contained within this loop and is independent of
the choice of the location of the u = 0 point. Actually this last statement is not completely
correct: the “inside” of a closed loop is not well defined and the location of the u = 0 point
makes the oriented area uncertain modulo 4π (which is the total area of the unit sphere).
Thus the net contribution of eSB is uncertain up to a factor of ei4π S . For consistency, we
can now demand that this arbitrary factor always equal unity, which, of course, leads to the
familiar requirement that 2S be an integer.
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19.2 Quantized ferromagnets

We turn to the lattice model HS in (19.1) and consider the case of ferromagnetic interac-
tions where all Ji j > 0. In this case, the state with all spins parallel

∏
i |S, S〉i is the exact

ground state (see, e.g., [28]; we have assumed that the field H points along the spin quanti-
zation z-axis). The adjective “quantized” in the title refers to the fact that the magnetization
density, M0 (this is the magnitude of the expectation value of the total spin magnetization∑

i Ŝi divided by the system volume), is pinned at a simple value, which can be determined
a priori, and which does not vary as the exchange constants Ji j are varied. In Section 19.4,
we meet examples of quantized ferromagnets in which the magnetic moment is quantized,
but not at a fully polarized value. Although fractional quantization is also possible, in every
case twice the average total spin moment per unit cell is an integer. The discussion in this
chapter applies to the low-energy properties of all such quantized ferromagnets, but we
only explicitly refer to the fully polarized case.

Apart from their quantized moment, the characteristic property of quantized ferromag-
nets is that the only low-lying excitation that carries spin is a “spin wave” that arises from a
slow rotation of the orientation of the ordered moment. Many readers may be familiar with
the fact that the wave function of a single spin-wave excitation can also be written down
exactly for a fully polarized, quantized ferromagnet. These well-known results also emerge
below. The purpose of our discussion is twofold: (i) to obtain a continuum field theory
of the low-lying excitations of the quantized ferromagnet, and to understand its behavior
under a scaling transformation, and (ii) to use the continuum theory to enumerate system-
atically the parameters required to describe the low-T properties of such ferromagnets.

We begin by constructing the continuum field theory for the low-lying excitations above
the fully polarized ferromagnetic ground state. It is reasonable to expect that these will
consist of fluctuations in which the orientations of the spins vary slowly from site to
site. We start with a functional integral such as (9.25) for the spin orientation Ni (τ ) on
each site i and perform a gradient expansion by introducing the continuum field N(x, τ ).
Keeping terms up to second spatial derivatives we obtain for the partition function Z =
Tre−HS/T [248]:

Z =
∫

DN(x, τ )δ(N2 − 1) exp

(
−
∫ 1/T

0
dτ
∫

dd xLF

)
,

LF = i M0

∫ 1

0
duN ·

(
∂N
∂u
× ∂N
∂τ

)
− M0N · H+ ρs

2
(∇N)2, (19.25)

where M0 ≡ S/v is the magnetization density of the ground state, v is the volume per site,
and ρs is the spin stiffness. We introduced the analogous stiffness for the rotor model in
Section 11.2.3; here, the gradient expansion upon the partition function of HS gives us

ρs = S2

2v

∑
m

Jm x2
m1, (19.26)

where the Jm are the set of exchange constants coupling a given site i to the other sites sep-
arated from i by (xm1, xm2, . . . , xmd); the sum over m includes separate terms for �xm and
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−�xm . The continuum theory (19.25) should really be regarded as a convenient schematic
representation of the quantum ferromagnet, and we will often need to go back to the under-
lying lattice model HS to regulate short-distance singularities.

We consider the behavior of LF under a rescaling transformation [399] at T = 0. The
continuum theory is characterized by two dimensionful couplings M0 and ρs , and despite
the nonlinear constraint in (19.25), some special properties of the quantum theory make it
possible to determine their exact renormalization group flow equations (this should be
contrasted with the rotor theory (11.4) where no such exact results were available). First,
we noted at the end of Section 19.1 that the single-spin Berry phase was uncertain up
to an additive constant of 4πS, and this imposed the requirement that S be integer or
half-integer. Precisely the same argument applied to the Berry phase of the continuum
ferromagnet (19.25) in a hypercubic box of volume Ld implies that 2M0Ld must be an
integer (this is just a fancy way of saying that the continuum ferromagnet must model an
integral number of spins). This integer cannot change under any scaling transformation,
and as L transforms as a physical length, the invariance of M0Ld leads to the exact flow
equation

d M0

d�
= d M0. (19.27)

This equation describes the quantization of the average magnetic moment at its fully satu-
rated value.

A closely related scaling equation holds for ρs , and this follows from the exactly known
single spin-wave spectrum. To prepare for some future computations, we derive this by
going back to the lattice Hamiltonian, HS , and then taking the continuum limit of the
resulting response functions. The most convenient formalism for computations is provided
by the Dyson–Maleev transformation [124,318] from the spin operators Ŝi to Bose opera-
tors b̂i . Explicitly, the mapping is

Ŝ+i =
√

2Sb̂†
i ,

Ŝ−i =
√

2S

(
b̂i − 1

2S
b̂†

i b̂i b̂i

)
,

Ŝz = −S + b̂†
i b̂i . (19.28)

Along with the constraint b̂†
i b̂i ≤ 2S, this defines an exact mapping between the Hilbert

space of the spin S spins (2S + 1 states per spin) and the bosons (2S + 1 possible boson
occupation numbers); in practice, one does not even have to impose the constraint b̂†

i b̂i ≤
2S, as all matrix elements out of the physical sector vanish. The reader can verify that
the operators in (19.28) do indeed satisfy the commutation relations (1.29). The rela-
tions (19.28) do not satisfy the hermiticity requirement Ŝ+i = (Ŝ−i )

†, but this can be
repaired by performing a similarity transformation on the space of spin states. (The reader
should consult [17] for more information, as here we mainly use (19.28) as a black-box
tool.) Inserting (19.28) into (19.1), and Fourier transforming to momentum space by defin-
ing b̂(�k) = √

v
∑

i b̂i e−i �k·�x (these Bose operators then satisfy the canonical continuum
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commutation relations [b̂(�k), b̂†
(�k′)] = (2π)3δd(�k − �k′)), the Hamiltonian becomes

HS =
∫

ddk

(2π)d
{S[J (0)− J (�k)] + H}b̂†(�k)b̂(�k)

+ v

2

∫ 4∏
i=1

ddki

(2π)d
(2π)dδd(�k1 + �k2 − �k3 − �k4)[J (�k1)− J (�k1 − �k4)]

× b̂†(�k1)b̂
†(�k2)b̂(�k3)b̂(�k4), (19.29)

where all momentum integrals are over the first Brillouin zone of the lattice, and

J (�k) =
∑

m

Jme−i �k·�xm . (19.30)

This bosonic form for HS can be analyzed by the methods developed in Chapter 16 for
(16.1). The ground state is the vacuum, |0〉, with no b̂ particles (the fully polarized ferro-
magnet), whereas the lowest excitations are single boson states, b̂†(�k)|0〉 (“spin waves”),
which are exact eigenstates of HS with energy ε�k = S(J (0)− J (�k))+ H . We have ε�k > 0
for all �k, which indicates that the choice of the no boson state as the ground state is a
consistent one. At T = 0, the one-particle propagator is given exactly by the free-particle
propagator, as in (16.51), for there are no other particles present. Taking the small momen-
tum limit of this propagator, and using the correspondence between the continuum fields

b̂†(�k, ωn) = (M0/2)
1/2 N+(−�k,−ωn), (19.31)

which follows from our definitions above (N± = Nx ± i Ny), we obtain an exact result for
a two-point correlator of (19.25):

〈N−(−�k,−ωn)N+(�k, ωn)〉 = 2

−iωn M0 + ρsk2 + M0 H
. (19.32)

This represents the propagation of spin waves with the exact dispersion εk = (ρs/M0)k2+
H . The consistency of this dispersion with the scaling transformation requires dim[H ] = z
(as before in (11.29)) and the exact scaling equation

dρs

d�
= (d + z − 2)ρs . (19.33)

Because the spin wave disperses quadratically with momentum at small k, it is convenient
to choose z = 2 (other choices are also permissible, as physical observables will have
compensating scale dependence arising from that of ρs).

The exact results (19.27), (19.32), and (19.33) are strongly reminiscent of the behavior
of the Bose gas in Section 16.9. In both cases, the simplicity is due to the fluctuationless
nature of the ground state and the exactly known single-particle excitations. For the case of
the Bose gas we had an additional nonlinearity u, whose renormalization was determined
by examining the two-particle scattering amplitude. In the present situation, the dimen-
sionful parameters ρs and M0 determine both the single-particle dispersion (19.32) and the
strengths of the nonlinear couplings. It might therefore seem that the finite-T properties of
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(19.25) must be given by universal functions of T and the bare couplings ρs and M0, con-
sistent with the requirements of scaling and engineering dimensional analysis. However,
this is the case only if a short-distance cutoff scale (explicitly present in (19.29) but not
in (19.25)) does not influence the low-energy properties. Such a scale might be required
to cut off large momentum (ultraviolet) divergences of momentum integrals over virtual
excitations. Motivated by the structure of the Bose gas problem in Section 16.3, we look
for ultraviolet divergences in the two spin-wave scattering amplitude at T = 0 (we need
not consider T > 0 explicitly as the finite-T corrections all involve Bose functions that
fall off exponentially at large momentum). For the Bose gas problem we found ultraviolet
divergences for d ≥ 2, and this identified d = 2 as the upper-critical dimension below
which the universality of the continuum theory was robust.

We compute the on-shell T matrix of two spin waves coming in with momenta �k1 and
�k2 and scattering into spin waves with momenta �k1+ �q and �k2− �q . Conservation of energy
requires

J (�k1)+ J (�k2) = J (�k1 + �q)+ J (�k2 − �q). (19.34)

To zeroth order in 1/S, the Hamiltonian (19.29) gives us the bare T -matrix element v[J (�k1+
�q)+ J (�k2− �q)− J (�k1+ �q− �k2)− J (�q)]. The first order in 1/S correction to the T matrix
is given by the first diagram in Fig 16.3, and by standard quantum mechanical perturbation
theory [502], it evaluates to (this expression is the analog of (16.45))

v2

S

∫
ddq1

(2π)d
[J (�k1 + �q1)+ J (�k2 − �q1)− J (�k1 + �q1 − �k2)− J (�q1)]

× [J (�k1 + �q)+ J (�k2 − �q)− J (�k1 + �q − �k2 + �q1)− J (�q − �q1)]
J (�k1)+ J (�k2)− J (�k1 + �q1)− J (�k2 − �q1)

. (19.35)

To understand the implications of this result for the continuum theory (19.25), we allow
the external momenta �k1, �k2, �q to become small, but for the moment we allow the internal
momentum �q1 to be large. Then there is a term from (19.35) that is quadratic in external
momenta; however, this can be seen to vanish after use of the identity

∫
ddq1e−i �q1·�xm = 0

(valid because all the �xm �= 0). Clearly the lattice regularization is crucial in obtaining
this result, and it is mainly this step which cannot be deduced from the continuum theory
(19.25). The next term is quartic in external momenta, and it simplifies to

v2

S

∫
ddq1

(2π)d

[∑
m Jme−i �q1·�xm (�k1 · �xm)(�k2 · �xm)

]2∑
m Jm(1− e−i �q1·�xm )

. (19.36)

We take the small-�q1 limit of (19.36) and obtain the result for the correction to the two
spin-wave T matrix [280] at low momenta:

4ρs

M3
0

(�k1 · �k2)
2
∫

ddq1

(2π)d
1

q2
1

; (19.37)

this expression involves only couplings present in LF in (19.25) and so could also have
been obtained directly from the continuum quantum theory after ignoring ultraviolet diver-
gences in terms lower order in the external momenta. The integral in (19.37) is dominated
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by the ultraviolet for d > 2 and so we have to return to the lattice expression (19.36).
However, it is ultraviolet finite for d < 2, and the continuum theory is insensitive to lattice
perturbations; the infrared divergence will of course be cut off by the external momenta,
which have not been kept in the propagator in the above approximation. Thus, as in the
case of the dilute Bose gas in Section 16.3, we see the emergence of d = 2 as a critical
dimension.

It is very useful to interpret (19.37) in renormalization group sense. If we imagine we are
integrating out virtual spin-wave fluctuations between momentum scales � and �e−� (�
is a momentum cutoff), then these become the boundaries of the integration in (19.37), and
the result generates a four-gradient term to LF . The generated term cannot be quadratic
in N, as that would modify the exactly known spin-wave dispersion. The simplest terms
that modify only the two spin-wave scattering amplitude are quartic also in N; by noting
the momentum dependence on (19.37), using the low-momentum limit of the energy con-
servation equation (19.34), and imposing the restrictions of rotational invariance, a simple
analysis shows that the generated term is [399]

LF → LF + λ(∇a Nα∇a Nα∇b Nβ∇b Nβ − 2∇a Nα∇b Nα∇a Nβ∇b Nβ), (19.38)

where λ is a new coupling constant of the continuum theory. Converting from scattering
amplitudes of b to N quanta using (19.31), (19.38), and (19.37) implies the flow equation

dλ

d�
= (d − 2)λ+ ρs

M0
. (19.39)

As with (16.47), this flow equation is believed to be exact. So for d < 2, λ is attracted to
a universal critical value, and the parameters ρs and M0 completely determine the low-
energy physics of the continuum theory (19.25). However, λ becomes large at long dis-
tances for d ≥ 2, and its bare value is important for it is responsible for temperature-
dependent corrections to the magnetization computed by Dyson [124].

For d < 2 these considerations imply that we may write down universal scaling forms
for the continuum ferromagnet (19.25). The usual scaling and dimensional considerations
imply for the free energy density [399]

F  T M0� f m

(
ρs

M (d−2)/d
0 T

,
H

T

)
, (19.40)

where � f m is a universal function; corresponding results follow for observables that are
derivatives of the free energy. Actually, our arguments for universality have really been
made in an expansion in powers of 1/S, and so the result (19.40) only holds as an asymp-
totic expansion in inverse powers of ρs/(M

(d−2)/d
0 T ), and this is represented by the sym-

bol  . Indeed, (19.40) is expected to be true to all orders in ρs/(M
(d−2)/d
0 T ), but this is

not the same thing as being exactly true. Lattice effects become significant when T ∼
ρs/M (d−2)/d

0 , for then the wavelength of the characteristic spin wave is of order M1/d
0 ,

which is of order a lattice spacing; these effects appear as essential singularities and destroy
strict equality for (19.40). Some short-distance regularization at the scale M1/d

0 is always
required for any consistent theory of quantum ferromagnets [191]. Similar considerations
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apply for expansions in 1/N [27, 29, 504], and for ferromagnets with more complicated
replica and supersymmetries [184,185].

Finally, we briefly note that effective classical models for thermal fluctuations in ferro-
magnets can be derived for T � ρs/M (d−2)/d

0 , precisely as was done for the rotor models
in Part II. In d = 1 we would get the effective theory (6.45) with ξ = ρs/T [497], while
in d = 2 we would obtain the model (13.8) [277] with a �M S that can be computed from
(19.29) by methods parallel to those in Section 13.1.1.

19.3 Antiferromagnets

This section considers models HS in (19.1) with all Ji j < 0. Classically (i.e. in the limit
S →∞), such models minimize their energies by making nearest-neighbor spins acquire
an antiparallel orientation. On bipartite lattices (i.e. lattices that can be split into two equiv-
alent sublattices so that all nearest neighbors of any site on one sublattice belong to the
other sublattice) with nearest-neighbor interactions, the antiparallel constraint is easy to
satisfy: the spins simply point in opposite directions on the two sublattices. Note that any
pair of spins is either parallel or antiparallel, and so such an ordering is collinear. We
begin in Section 19.3.1 by exclusively considering quantum antiferromagnets whose clas-
sical ground state is collinear. Such an ordering is expected to be present at least over
short distances in the quantum case. Noncollinear ordering arises on nonbipartite lattices
or even on bipartite lattices with further neighbor interactions. Such antiferromagnets are
classically frustrated and possess ground states in which the spins are coplanar (as on the
triangular lattice with nearest-neighbor interactions) or, in some rare cases, can even form
structures that are three-dimensional in spin space. We consider the noncollinear cases in
Section 19.3.4.

19.3.1 Collinear antiferromagnetism and the quantum nonlinear sigma model

For definiteness, we begin by considering antiferromagnets on a d-dimensional hypercubic
lattice with only a nearest-neighbor exchange Ji j = −J < 0; other collinear antiferromag-
nets can be treated in a similar manner. In the classical limit of large S, as noted above, the
ground state has spins oriented in opposite directions on the two sublattices: this is the so-
called Néel-ordered state. For smaller S this orientation should survive at least over a few
lattice spacings, suggesting that a continuum description of the quantum antiferromagnet
may be possible [6, 7, 192]. We therefore begin by introducing a parameterization of the
unit length spin field Ni (τ ) that captures this local ordering. We write

Ni (x, τ ) = λi n(xi , τ ))

√
1− (ad/S)2L2(xi , τ )+ (ad/S)L(xi , τ ), (19.41)

where λi equals ±1 on the two sublattices and a is the lattice spacing. The fields n(xi )

and L(xi ) parameterize the staggered and uniform components of the Heisenberg spins.
The prefactor of ad/S has been associated with L so that the spatial integral of L over
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any region is precisely the total magnetization inside it. Both fields are assumed to be
slowly varying on the scale of a lattice spacing. This is certainly true as S →∞, and it is
hoped that this assumption remains valid down to S = 1/2. Consequently, we treat n(x, τ )
and L(x, τ ) as continuum quantum fields that can be expanded in spatial gradients over
separations of order a. These continuum fields satisfy the constraints

n2 = 1, n · L = 0, (19.42)

which combined with (19.41) imply that N2
i = 1 is obeyed. Further, spins on nearby sites

are expected to be predominantly antiparallel, and so the uniform component L should be
small; more precisely we have

L2 � S2a−2d . (19.43)

The field n(x, τ ) clearly plays the role of the order parameter associated with Néel order-
ing. Note that although n varies slowly on the scale of a lattice spacing, values of n on
well-separated points can be considerably different, leaving open the possibility of a quan-
tum paramagnetic phase with no magnetic long-range order. Magnetic Néel order requires
that the time-average orientation of n(x, τ ) is correlated across the sample. Whether this
happens is determined by the effective action for n fluctuations, which we now derive.

We insert the decomposition (19.41) for Ni into HS(SNi (τ )) and expand the result in
gradients, and in powers of L. This yields

HS =
∫

dd x

[
J S2a2−d

2
(∇x n)2 + 2d JadL2 −H · L

]

≡ 1

2

∫
dd x

[
Nc

g
(∇x n)2 + cg

N
L2 − 2 H · L

]
. (19.44)

In the second equation we have introduced the couplings c= 2
√

d J Sa and g=
(N/S)2

√
dad−1. The notation is informative and anticipates our eventual mapping of the

present model to the rotor models in (2.12) and (11.4). In the present case N = 3, but we
introduced a general factor of N for notational consistency with Part II. If we had used
a different form for HS with modified short-range exchange interactions, the continuum
limit of H would have been the same but with new values of g and c.

To complete the expression for the coherent state path integral of the antiferromagnet in
the continuum limit, we also need the expression for SB in terms of n,L. We insert (19.41)
into (19.24) and retain terms up to linear order in L. This yields

SB = S ′B + i
∫

dd x
∫ 1/T

0
dτ
∫ 1

0
du

[
n ·
(
∂n
∂u
× ∂L
∂τ

)

+n ·
(
∂L
∂u
× ∂n
∂τ

)
+ L ·

(
∂n
∂u
× ∂n
∂τ

)]
, (19.45)

where

S ′B = i S
∑

i

λi

∫ 1/T

0
dτ
∫ 1

0
du n(xi ) ·

(
∂n(xi )

∂u
× ∂n(xi )

∂τ

)
. (19.46)
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The evaluation of S ′B in the continuum limit is a rather subtle matter, as the leading λi

in (19.46) shows that it is the sum of terms that oscillate in sign on the two sublattices.
The naive assumption would be that these oscillating terms just cancel out, and therefore
S ′B = 0 in the continuum limit. For some purposes this assumption is in fact adequate,
but there are a number of important cases where S ′B is nonvanishing and is crucial for
a complete understanding of the physics. We postpone a careful evaluation of S ′B to the
following subsections where we consider its consequences in d = 1 and d = 2 separately.
Let us first simplify the other terms in (19.45) a little further.

We use the fact that the vectors L, ∂n/∂τ , and ∂n/∂u are all perpendicular to n; hence,
they lie in a plane and have a vanishing triple product:

L ·
(
∂n
∂u
× ∂n
∂τ

)
= 0. (19.47)

Using (19.47) in (19.45) we find

SB = S ′B + i
∫

dd x
∫ 1/T

0
dτ
∫ 1

0
du

[
∂

∂τ

(
n ·
(
∂n
∂u
× L

))

+ ∂

∂u

(
n ·
(

L× ∂n
∂τ

))]
. (19.48)

The total τ derivative yields 0 after using the periodicity of the fields in τ , while the total
u derivative yields a surface contribution at u = 1. This gives finally

SB = S ′B − i
∫

dd x
∫ 1/T

0
dτL ·

(
n× ∂n

∂τ

)
. (19.49)

Putting together (19.44) and (19.49) in (9.25) we obtain the following path integral for the
partition function of the antiferromagnet:

Z =
∫

DnDLδ(n2 − 1)δ(L · n) exp(−S ′B − S ′n),

S ′n =
1

2

∫ 1/T

0
dτ
∫

dd x

[
Nc

g
(∇x n)2 + cg

N
L2 − 2iL ·

(
n× ∂n

∂τ
− iH

)]
. (19.50)

The functional integral over L can be carried out explicitly (after imposing the constraint
L · n = 0, e.g. by adding a term w(L · n)2 to the Hamiltonian and taking the limit w→∞
after carrying out the integral) and we obtain the final result of this section [6,7,192]:

Z =
∫

Dnδ(n2 − 1) exp(−S ′B − Sn),

Sn = N

2cg

∫ 1/T

0
dτ
∫

dd x [c2(∇x n)2 + (∂τn− iH× n)2]. (19.51)

Note that Sn is identical to the rotor model action studied in (11.4). However, before we can
carry over all the results of Part II here, we have to examine the consequences of S ′B , and
this is done separately in the following two subsections in dimensions d = 1 and d = 2,
respectively.
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19.3.2 Collinear antiferromagnetism in d = 1

It is simpler to evaluate S′B in d = 1 by a geometric argument, rather than by working
directly with the formal expression (19.46). We have already argued below (19.24) that the
contribution of each site i in (19.46) equals λi S times the area on the unit sphere contained
inside the close loop defined by the periodic time evolution of n(xi , τ ). We define this area
to equal Ai . Let us examine the contribution of two neighboring sites, i and i + 1, to S ′B .
The weight λi will have opposite signs on these sites, and so the net contribution will be
the difference of the areas. We can further assume that the order parameter field n(xi ) only
varies slightly between i and i + 1. Under these conditions, and using the definition of an
area element on the sphere, we have (after defining �n(xi ) = n(xi+1)− n(xi ))

Ai+1 −Ai ≈
∫ 1/T

0
dτn(xi ) ·

(
�n(xi )× ∂n(xi )

∂τ

)
≈ a

∫
dτn(xi ) ·

(
∂n(xi )

∂xi
× ∂n(xi )

∂τ

)
. (19.52)

The summation in (19.46) can be carried out over pairs of sites. All terms are of the same
sign and therefore the summation can be easily converted into an integral. In this manner
we obtain our final result for S ′B in d = 1 [6,7,192]:

S ′B = i
θ

4π

∫
dx
∫ 1/T

0
dτn ·

(
∂n
∂x
× ∂n
∂τ

)
, (19.53)

where θ = 2π S.
Some comments and/or cautions about the derivation leading up to (19.53) are in order.

The arbitrary way in which the sites in (19.52) were paired suggests that the answer is
sensitive to the boundary conditions, and depends upon whether there are an even or odd
number of sites in the system. There are indeed interesting boundary effects in the physics
of antiferromagnetic spin chains [13, 14, 188], but we will not discuss them here. The
overall sign of the answer in (19.53) also depends upon the sign of λi , but, as we see
shortly, the physics does not depend upon the sign of θ . Finally, the result (19.53) can also
be derived by analytic computations from (19.46). We can write the oscillating sum as half
the spatial integral of the spatial derivative of the contribution of each site (by the same
arguments leading to (19.52)). Then using the fact that the triple product of ∂n/∂x , ∂n/∂τ ,
and ∂n/∂u must vanish we can obtain (19.53) using manipulations similar to those leading
to (19.49).

In its present form, S ′B is the so-called topological θ -term, familiar in particle theory
literature. The coefficient of θ in (19.53) computes a simple topological invariant, which,
for periodic boundary conditions in space, is always an integer. If we consider the field
configuration n(x, τ ) as a map from two-dimensional spacetime, with periodic boundary
conditions, to the surface of a unit sphere, then the topological invariant is simply the
number of times spacetime has been wrapped around the sphere. It is useful to visualize
the simplest configuration of n(x, τ ) corresponding to the topological invariant of unity.
Let the unit sphere be placed on an elastic sheet, representing spacetime. Now fold up the
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sheet to cover the sphere once. The orientation of n at (x, τ ) is given by the point on the
sphere adjacent to the point (x, τ ) on the sheet. Such a spacetime configuration represents a
tunneling event: deep in the past, or far in the future, n points to the North pole; however, at
some time, in a certain compact region of space, the n orientation tunnels all the way to the
vicinity of the South pole and back; configurations with larger topological invariants can
be similarly interpreted. The result (19.17) implies that each such tunneling event yields
a factor of eiθ = (−1)2S to the path integral for the partition function. This is the only
consequence of the S′B term. Of course, the terms in Sn give the usual positive weights
(in imaginary time) also present for the rotor model. Note that as θ is always an integral
multiple of π , the sign of θ does not change the value of eiθ .

We are now able to state our principal conclusions, first reached by Haldane. For integer
S, the phase factor with topologically nontrivial tunneling events is simply unity, and the
theory reduces to the rotor model action Sn , which has been studied in some detail in
Chapters 11 and 12. For half-integer S, however, there are clearly substantial differences.
But the present formulation of the theory in (19.51) is not a particularly convenient way
of exploring the physics; it does, however, tell us that the low-energy properties of all the
half-integer cases are the same. We explore the S = 1/2 case in Chapter 20 by alternative
methods.

We anticipate these results by sketching the renormalization group flows for the dimen-
sionless coupling g for the cases θ = 0 and θ = π in Fig. 19.1. For the case of integer
S, where θ = 0, the flow just represents (12.8): all values of g flow eventually to strong
coupling, and as we saw in Chapter 12, there is always an energy gap above the ground
state. For the case θ = π , the perturbative flow at small g is the same as before, as it is
independent of θ . However, more sophisticated considerations [8, 12, 133, 554] discussed
in Chapter 20 show that there is a fixed point at g = gc, of order unity, that attracts all
couplings with g < gc. We also see that the ground state is then a so-called Tomonaga–
Luttinger liquid and has gapless, linearly dispersing excitations. For g > gc (and θ = π )
the flow is again to strong coupling, and the ground state will be seen to be a “spin-Peierls”
state with an energy gap to all excitations (such a state is described below for d = 2).

We conclude by reviewing more explicitly the implications of the results of Chapters 11
and 12 for antiferromagnetic chains of integer spins. The mapping between correlation

q = 0

q = p

g
0

g

gc0 Tomonaga–
Luttinger liquid

spin-Peierls

Quantum paramagnet with an energy gap

�Fig. 19.1 Renormalization group flows for the dimensionless coupling g in (19.51) for d = 1 withS ′B given by (19.53). For
θ = 0, the flow is given by (12.8), and there is always an energy gap above the ground state. For θ = π , there is a
fixed point g = gc , and near it the flow is dg/d� ∝ (g− gc)

2.
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functions of the two theories is provided by (19.41). From this, we see that the correlator
χu defined in (12.1) also specifies the fluctuations of the magnetization of the spin chain.
At wavevector k this is a correlation function of the Ŝi spins near the wavevector q = k.
Further, the correlations of the order parameter n, given by χ in (11.2), at wavevector k
map onto correlations of Ŝi at wavevector q = k + Q, where Q = π/a is the ordering
wavevector of the classical antiferromagnetic chain; all of the results for the rotor correla-
tion functions in Chapter 12 can therefore be applied to integer spin antiferromagnets. We
saw in Chapter 12 that the d = 1, N = 3 quantum rotor model always had a gap. The same
is therefore true of integer spin antiferromagnetic chains – this is the so-called Haldane gap
(we see in the following chapter that half-integer spin chains can be gapless). The T = 0
spectrum of the integer spin antiferromagnets is qualitatively the same as that discussed in
the strong coupling expansion in Section 6.1: the lowest excited states are a triplet of S = 1
particles with infinite lifetime; for the spin chain, this particle appears as a pole in the Ŝ–Ŝ
correlation function, which has its minimum at q = π/a. Higher excited states consist of
multiparticle continua of this triplet of particles.

19.3.3 Collinear antiferromagnetism in d = 2

We consider the properties of the theory (19.51) on the d = 2 square lattice.
This requires evaluation of the oscillating sum in S ′B in (19.46). Using techniques very

similar to those used in d = 1, it is not difficult to establish an important result: S ′B vanishes
for all smooth spacetime configurations of n(x, τ ). Simply evaluate (19.46) row by row on
the square lattice. The sum on each row is precisely the same as that carried out in d = 1
and equals (19.53) on each row, up to an overall sign. Moreover, because of the structure of
the sublattices, this overall sign oscillates as we move from row to row. Now, note that the
arguments in Section 19.3.2 imply that the contribution of each row is quantized in integer
multiples of θ . If, as we are assuming, n(x, τ ) is smoothly varying, the contribution of the
rows must also change smoothly as we move from row to row. This is only compatible
with the quantization if each row yields precisely the same integer. Hence their oscillating
sum appearing in S ′B vanishes.

However, this is not the end of the story. There are important singular configurations
of n(x, τ ) that do yield a nonvanishing contribution to S ′B . We postpone discussion of
the important consequences of these contributions to later in this section. We first ignore
the effects of S ′B and discuss below the implication of the results of Parts II and III for
square lattice antiferromagnets. We see later that most conclusions reached in this manner
are qualitatively correct away from the quantum phase transition, but that neglect of S ′B is
justified only for even integer S on the square lattice.

Antiferromagnets without Berry phases

The properties of the N = 3, d = 2 quantum rotor model were first discussed using the
large-N expansion in Chapter 11, and then in some more detail in Chapters 13, 14, and 15.
The most significant feature of these results was the existence of a quantum phase transition
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at a critical value g = gc, separating a magnetically ordered ground state from a quantum
paramagnetic ground state.

The magnetically ordered state of the rotor model corresponds to a “Néel” ground state
of the antiferromagnet. This is a state in which the spin-rotation invariance of the Hamil-
tonian (19.1) is broken because of a nonzero, expectation value of the spin operator, which
takes opposite signs on the two sublattices. From (19.41) we see that

〈Ŝi 〉 ∝ λi S 〈n(xi )〉 = SN0ez, (19.54)

where ez is a unit vector pointing in the ez direction (say) of spin space. Note that there
was no state with such a broken symmetry in d = 1. The missing proportionality con-
stant in (19.54) depends upon microscopic details and is not of any importance. In Part II
we expressed physical properties of the rotor model on the ordered side in terms of N0;
these can be applied unchanged to the antiferromagnet simply by replacing N0 by the
actual expectation value of λi 〈Ŝi 〉. As in d = 1, correlators of L at wavevector �k map
onto correlators of Ŝ at �q = �k, whereas correlators of n at �k map onto �q = �k + �Q, with
�Q = (π/a, π/a) the ordering wavevector. As was the case for the rotor model, the bro-

ken rotational invariance is restored at any nonzero temperature, and the antiferromagnet
instead acquires an exponentially large correlation length given by (13.10) and (13.20). In
these results, we take for the value of ρs the actual T = 0 spin stiffness of the quantum
antiferromagnet. The nonzero temperature static and dynamic correlations are described
by (13.1), with the function �− as described in Chapter 13.

Numerical studies of square lattice antiferromagnets with nearest-neighbor antiferro-
magnets have shown fairly conclusively that the ground state has Néel order for all values
of S including S = 1/2 [230,401]. Thus it appears that all such antiferromagnets map onto
the rotor model with g < gc. For S = 1/2 it has been argued [85, 86] that the value of
g is sufficiently close to gc so that the universal crossover between the low- and high-T
limits of the continuum rotor field theory shown in Fig. 11.2 can be observed with increas-
ing temperature. For larger S, the antiferromagnets appear to go directly from the universal
low-T region on the ordered side of Fig. 11.2 to a nonuniversal lattice high-T region [128].

Clearly, it would also be physically interesting to find collinear antiferromagnets that
map onto rotor models with g > gc and therefore do not have Néel order in their ground
state. A convenient choice, studied extensively in the literature, has been the square lattice
antiferromagnet with first- and second-neighbor antiferromagnetic exchanges, labeled J1

and J2, respectively. The classical limit of this model has collinear Néel order for all J2/J1,
and so the quantum fluctuations should continue to be described by (19.51). Numerical and
series expansion studies [80,84,101,137,161,162,296,346,383,454,455] for S= 1/2 have
shown that this model loses order (19.54) around J2/J1 = Jc ≈ 0.4. Hence we can identify
the point J2/J1 = Jc with the quantum critical point g = gc of the rotor model. The
quantum paramagnetic state of the rotor model should therefore yield the characteristics of
the antiferromagnet with J2/J1 just above Jc: spin rotation invariance is restored, and there
is a gap to all excitations. Nonzero temperature properties are described by (13.3) with�+
the actual energy gap of the antiferromagnet.

One important property of the quantum paramagnetic state of the rotor model deserves
special mention, as it has crucial implications for the corresponding antiferromagnet. Recall
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that the excited states of the rotor model were described in terms of an N -fold degenerate
quasiparticle and its multiparticle continua. This leads to the spectrum shown in Fig. 7.1
and discussed in the strong-coupling expansion of Section 6.1. There is an infinitely sharp
delta function in Imχ(k, ω) at the position of the quasiparticle energy ω = εk . For N = 3,
this is clearly a quasiparticle with total angular momentum S = 1; so the dominant excita-
tion of this phase of quantum antiferromagnet is an S = 1 particle with its energy minimum
at �q = �Q, and this leads to a delta function in the dynamic spin susceptibility at wavevec-
tors near �Q. Note that this S = 1 particle exists for all values of the spin S of the individual
spins of the underlying antiferromagnet. This gapped S = 1 excitation should also be
contrasted with the spin-wave excitations of the ordered Néel state, which are gapless and
twofold degenerate, and do not carry definite total spin (although they are eigenstates of
total Ŝz , with eigenvalues ±1 for a Néel state polarized in the z direction).

Berry phases and valence bond solid order

We now turn to a careful evaluation of S ′B , and a discussion of its consequences.
We consider the case of the square lattice with nearest-neighbor exchanges and possible

further-neighbor exchanges that do not destroy the collinear, two sublattice ordering of the
classical Néel state. We have already argued above that S ′B vanishes for smooth spacetime
configurations of n(x, τ ). We should therefore consider singular configurations, and for the
case of a three-component vector order parameter, the only topologically stable possibility
is the so-called hedgehog singularity [193]. This is a singularity occurring at a point in
spacetime and corresponds to a tunneling event in which the Skyrmion number, Y , of a
given time slice of n(x, t) changes. The latter is defined by the spatial integral

Y (τ ) = 1

4π

∫
d2xn ·

(
∂n
∂x1

× ∂n
∂x2

)
. (19.55)

Comparing (19.55) to the topological θ term in d = 1 of (19.53) we see that the two expres-
sions are identical except that we now have an integral over space only, whereas earlier we
had a spacetime integral. By the same arguments as made below (19.53), Y is an integer
for periodic boundary conditions in space. Let us describe a hedgehog tunneling event in
which Y changes from 1 to 0, in a pictorial language used by Haldane [193]. As below
(19.53), we can represent a configuration with Y = 1 as an elastic sheet (now representing
space, rather than spacetime) wrapped on a sphere. In reality, the spins lie on a lattice, and
so the elastic sheet has a fine square mesh on it. Now imagine a tunneling event in which
one square on the mesh expands and allows the sphere to pass through; the resulting con-
figuration will have its Y changed to 0. It remains to evaluate the summation in (19.46)
for the evolution of n(x, τ ) just described. Actually, we cannot consider hedgehog tunnel-
ing events singly, as then the periodic boundary conditions in τ , required for a meaningful
evaluation of (19.46), will not be satisfied. We therefore consider a sequence of events at
well-separated times, centered at the midpoints of plaquettes labeled a, and involving a
change in Skyrmion number �Ya such that

∑
a �Ya = 0. These events are to be con-

sidered as saddle points in the evaluation of the coherent state path integral of the lattice
antiferromagnet. The configuration of n(x, τ ) at the saddle point minimizes the action, and,
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provided the hedgehogs are well separated, it can reasonably be expected to have fourfold
rotational symmetry about the plaquette a around which the tunneling occurs. As at the
beginning of Section 19.3.2, let us write S ′B as

S ′B = S
∑

i

λiAi , (19.56)

where Ai is the contribution of site i . Now we can evaluate Ai by following the area swept
out on the unit sphere by each site on the elastic sheet during the tunneling event. From this
it is simple to see the following important intermediate result: the lattice configuration of
Ai has a vortex of strength 4π�Ya around plaquette a. As the sum in (19.56) cannot change
from smooth changes in the lattice configuration of Ai , we need only take a representative
configuration that has the proper vortex singularities; for instance, we can take

Ai = 2
∑

a

�Ya arctan

(
xi1 − Xa1

xi2 − Xa2

)
, (19.57)

where xi1,2 are the components of the lattice points xi , and Xa is the position of the center
of plaquette a. We have to insert (19.57) into (19.56) and evaluate the sum over i . This is a
mathematical step, and the details are given by Haldane [193]. It is not difficult to see that
the result takes the form

S ′B = iπ S
∑

a

�Yaζa . (19.58)

The values of ζa depend upon the coordinates of plaquette a; a number of choices for
these values are possible, but e−S ′B remains the same provided

∑
a �Ya = 0. A particular

choice is ζa = 0, 1, 2, 3 if the coordinates Xa are (even, even), (even, odd), (odd, odd),
(odd, even).

Now to evaluate the partition function, we have to sum over all possible hedgehog
events, while including the phase factors arising from eS

′
B with each such event. Read

and Sachdev [396,397] showed how such a summation could be carried out systematically
in a certain large-N expansion. Describing this here would take us too far afield, and we
refer the reader to a review article [429] for fairly explicit details. The hedgehog events
are completely suppressed by the action arising from Sn for g < gc, and therefore they
have no significant consequence for the Néel phase. In contrast, for g > gc, these events
proliferate, and it has been shown in the quoted papers how the Berry phases in (19.58)
necessarily lead to a spontaneously broken lattice symmetry unless S is an even integer.
For S an even integer, (19.58) is always an integral multiple of 2π i , and so SB has no
effect – the properties in this case are therefore the same as the rotor model, and there is no
broken lattice symmetry [13].

Let us now describe the ordering associated with the broken lattice symmetry. The
ordered state was originally referred to as “spin-Peierls,” but it is now universally called a
“valence bond solid” (VBS). Consider the quantity

Pi j = 〈Ŝi · Ŝ j 〉. (19.59)

Note that Pi j is a scalar under spin rotations, and so a nonzero value does not break a spin
rotation symmetry. The Hamiltonian HS in (19.1) is also invariant under a group of lattice
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2S (mod 4) = 1,3

2S (mod 4) = 0

or

2S (mod 4) = 2

�Fig. 19.2 Quantum paramagnetic ground states of the square lattice antiferromagnet as a function of 2S(mod 4). The values of
Pij on the nearest-neighbor links are schematically indicated by the different kinds of line on the links; those on thick
lines are larger than those on thin lines, and weakest are on the empty links.

symmetries (involving lattice rotation, reflection, and translations), and the values of the
Pi j for all pairs sites i, j should, in general, also respect these symmetries. A VBS state
is one in which the values of Pi j break a lattice symmetry; this broken symmetry will be
observable experimentally in lattice distortions whose pattern will reflect that in Pi j . This
distortion arises from the coupling between the spin exchange energy and phonon displace-
ments, which have not been included in the Hamiltonians we are considering here. For the
case of a square lattice, the simplest possible patterns of VBS order are shown in Fig. 19.2.
For S = 1/2, like values of Pi j line up in columns or plaquettes, which clearly break
symmetry of rotation by 90 degrees about each lattice point; the ground state is fourfold
degenerate, and a similar VBS ordering is expected for all half-integral S. If it was possible
to obtain a quantum paramagnet for S = 1 (or other odd integer S) by a continuous transi-
tion from a Néel state, then it is predicted to have a twofold degenerate ground state, with
the Pi j on the horizontal bonds differing from those on the vertical bonds (see Fig. 19.2).
Finally, only for even integer S is the paramagnetic state nondegenerate and breaks no
lattice symmetry [13, 14]. Related results exist for quantum paramagnetic states accessed
from other collinear states on the square or other lattices. In all cases there are special val-
ues of S for which the quantum paramagnet is nondegenerate and has no VBS order; these
special values extend to all values of S only for lattices with small symmetry groups.

One concern about the above arguments for the ubiquity of VBS order in collinear
S= 1/2 antiferromagnets is that it relies on a semiclassical large-S limit to evaluate the
Berry phase, and this could break down at small S. This issue has been addressed by stud-
ies designed to directly study S= 1/2 quantum antiferromagnets either by phenomeno-
logical [271, 406] or large-N approaches [395]. Neighboring spins are assumed to form
singlet bonds in pairs, and then the low-lying, spin-singlet excitations arise from reso-
nance between different arrangements of the bonds (the “resonating valence bond” picture
[22, 38]). From both approaches, the quantum dimer model [406] appears as an effective
Hamiltonian for the low-energy spin-singlet states. This latter model can be studied quite
reliably by a series of duality transformations [151, 397, 434, 556] and an “instanton” gas



395 19.3 Antiferromagnets

model emerges that is, quite remarkably, equivalent to the hedgehog gas model obtained
above from a semiclassical perspective. In particular, each instanton has a Berry phase that
is given precisely by (19.58). In this context, the phases in (19.58) are a consequence of the
constraint that each S = 1/2 spin can form a valence bond with exactly one of its neigh-
bors, whereas here we obtained (19.58) from a very different coherent state path integral.
The identity of these two distinct approaches reinforces our confidence in the correctness of
(19.58), and in the presence of VBS order for S = 1/2, which follows quite robustly [397]
from it. The quantum dimer model has also been examined in exact diagonalization stud-
ies, and again the evidence for VBS order is quite convincing [297]. A review of the current
status of VBS ordering in two-dimensional ordering may be found in [430].

With the appearance of VBS order, do our conclusions on the nature of the spin exci-
tation spectrum in the paramagnet without Berry phases discussed earlier still apply? The
answer is yes: the lowest spinful excitation remains an S = 1 quasiparticle which con-
tributes a delta function to the spectral density of the spin correlation. However, higher
energy excitations, and the nature of the approach to the quantum critical point are signif-
icantly affected by the Berry phases. We defer further discussion of these subtle issues to
Section 19.3.5, after we have considered noncollinear antiferromagnets.

19.3.4 Noncollinear antiferromagnetism in d = 2: deconfined spinons and visons

We turn to consideration of quantum antiferromagnets that have more complicated ordered
magnetic states than those described so far. We consider models (19.1) on nonbipartite
lattices or with further-neighbor interactions so that simple collinear states are not likely to
be the ground states. Throughout, we only consider states that do not have a macroscopic
magnetic moment (i.e. the expectation value of

∑
i Ŝi in any low-lying state is not of the

order of the number of sites in the system). Such states are expected to be preferred in
models with all Ji j < 0. Also, we only consider the case of d = 2 here, as d = 1
antiferromagnets are better treated by the methods of the following chapter.

The simplest, and most thoroughly studied, example of a noncollinear antiferromagnet
is the triangular lattice with a nearest-neighbor antiferromagnetic exchange. In the limit
S →∞, the classical ground state is easy to work out. It is characterized by the expectation
value

〈Ŝi 〉 = S(n1 cos( �Q · �xi )+ n2 sin( �Q · �xi )), (19.60)

where the ordering wavevector �Q = (4π/a)(1/3, 1/
√

3) on a triangular lattice with
(a, 0, 0) one of the vectors connecting nearest-neighbor lattice sites, and n1,2 are arbitrary
vectors in spin space satisfying

n2
1 = n2

2 = 1; n1 · n2 = 0. (19.61)

These constraints define two orthogonal unit vectors, and each such pair defines a different
classical ground state. This is a key difference from the collinear states in Section 19.3.3,
where only a single unit vector was sufficient to characterize the ground state, as in (19.54).
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�Fig. 19.3 Magnetically ordered ground state on the triangular lattice. The spins have been taken to lie in the plane of the
triangular lattice, but this need not generally be the case.

Alternatively stated, the order parameter characterizing the broken symmetry in the clas-
sical ground state is a pair of orthogonal vectors [120, 196]. One possible ground state is
shown in Fig. 19.3, for the case where n1, n2 lie in the plane of the lattice. Other antiferro-
magnets with coplanar ordering in their classical ground states can be treated in an essen-
tially identical manner. Another important example studied in the literature is the square
lattice antiferromagnet with first-, second-, and third-neighbor exchanges (the J1− J2− J3

model). For a range of parameters this model has an incommensurate spiral ground state.
Such an ordering is described, as in (19.60), but the wavevector �Q is no longer pinned at
a precise value and varies continuously as the values of exchange constants are changed.
As we move from site to site in the direction �Q the spin orientation rotates by some irra-
tional angle in the plane defined by n1 and n2. Finally, antiferromagnets in which the spin
arrangement is not even coplanar but is genuinely three-dimensional can be treated using
similar methods, but these will not be considered here.

Instead of working with vectors n1, n2 that satisfy the constraints (19.61), it is convenient
to introduce an alternative parameterization of the space of ground states. It takes six real
numbers to specify the two vectors n1, n2, and the three constraints (19.61) reduce the
degrees of freedom to three. We can use these three real numbers to introduce two complex
numbers z1, z2 subject to the single constraint

|z1|2 + |z2|2 = 1. (19.62)

We relate these numbers to n1, n2 by [26,87]

n2α + in1α =
2∑

a,b,c=1

εaczcσ
α
abzb, (19.63)

where α = x, y, z, σα are the Pauli matrices, and εab is the second-rank antisymmetric
tensor ε12 = −ε21 = 1, ε11 = ε22 = 0. The reader can check that the parameterization
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(19.63) for n1,2 automatically satisfies (19.61) provided the single constraint (19.62) holds.
So we have succeeded in reducing the number of constraints from three to one. However,
the mapping from z1,2 to n1,2 is not one-to-one but two-to-one; the twofold redundancy is
apparent from (19.63) as za and −za correspond to precisely the same n1,2, and therefore
the same spin configuration; this redundancy is crucial to our subsequent considerations.
To describe it further, let us decompose za into its real and imaginary parts

z1 = m1 + im2; z2 = m3 + im4. (19.64)

Then the order parameter becomes a four-component, real vector mρ (ρ = 1, 2, 3, 4) and
(19.62) translates into the constraint that this vector has unit length (of course, there is no
reason the effective action for mρ should be invariant under O(4) rotations in this space
since the underlying symmetry is always O(3)). The identity of za and −za means that mρ

is a headless vector, much like a nematic liquid crystal, which is described by a headless
three-vector.

We can proceed to examine the quantum fluctuations about the above classical states by
precisely the same strategy as that followed in Section 19.3.3. We allow n1,2, and therefore
za , to be slowly varying functions of spacetime. We also introduce a slowly varying uni-
form magnetization field L(x, t) such that the spatial integral over L equals precisely the
total magnetization. Then, following (19.41), we parameterize

N(i, τ ) = (n1(xi , τ ) cos( �Q · �xi )+ n2(xi , τ ) sin( �Q · �xi ))

×
√

1− v2L2(xi , τ )+ vL(xi , τ ), (19.65)

where v is the volume per site. This is to be inserted in the coherent state path integral of HS

in (19.1) and the result expanded in gradients. Finally, the uniform magnetization variable
L is to be integrated out as below (19.49). The steps are similar to those in Section 19.3.3
and will not be explicitly carried out. Rather, let us try to anticipate the form of the answer
on general symmetry grounds.

We list the constraints that must be obeyed by the final effective action:

(i) We must clearly require invariance under spin rotations. Such rotations are realized
by the global SU (2) transformation(

z1

z2

)
→ U

(
z1

z2

)
≡
(
α β

−β∗ α∗
)(

z1

z2

)
, (19.66)

where α and β are complex numbers satisfying |α|2 + |β|2 = 1. Applying this trans-
formation to (19.63), we see that it performs the rotation n1,2α → Rαβn1,2β where

U †σαU = Rαβσ
β. (19.67)

(ii) Next, we consider the consequences of lattice translations. Any spatial configuration
of n1,2(x, τ ) should have its energy unchanged under translation by a lattice vector
�y. By combining (19.63) with (19.65) we see that such a translation is realized by a
simple overall phase change of the z:

za → e−i �Q · �y/2za . (19.68)
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Note that this transformation is not a special case of (19.66), which was restricted to
unitary matrices with unit determinant. For the case of the triangular lattices, (19.68)
requires that the action be invariant under multiplication of za by the cube roots of
unity. For incommensurate spiral states, by different choices of �y we see that (19.68)
requires invariance under multiplication of za by an arbitrary U(1) phase factor.

(iii) Time reversal inverts all the spins, and so maps n1,2 → −n1,2. This is realized by
(19.63) by [228]

za → i za . (19.69)

(iv) Finally, let us recall the twofold redundancy in the mapping from za to the n1,2 dis-
cussed below (19.63). The change in sign of za can vary from point to point in space-
time with no consequence for the n1,2. Therefore, we require invariance under the
discrete Z2 gauge transformation

za(x, τ )→ η(x, τ )za(x, τ ), (19.70)

where η(x, τ ) = ±1 but can otherwise vary arbitrarily. In the naive continuum limit,
the gauge nature of the transformation (19.70) does not impose any additional con-
straints beyond those arising from a constant η. However, the theory has to be regular-
ized at short scales, and the Z2 gauge symmetry does impose additional constraints on
any effective lattice action. Moreover, the invariance (19.70) will also play a crucial
role in the nature of the possible topological defects.

Let us write down the simplest action consistent with the above constraints in the naive
continuum limit. Up to second order in spatial gradients, there are only two independent
terms: |∇za |2 and |z∗a∇za |2 (a third possibility, |εabza∇zb|2, satisfies a simple linear rela-
tion with these two). Similar considerations apply to the terms with temporal gradients:
here a term with one temporal gradient, z∗a∂τ za , is forbidden by time-reversal invariance.
We are therefore led to the following effective action for the za , which plays the role of Sn

in Section 19.3.3:

Sz =
∫

d2xdτ
∑
μ=�x,τ

1

gμ

[
|∂μza |2 + γμ|z∗a∇za |2

]
, (19.71)

where gx , gτ , γx , and γτ are coupling constants. In addition, as in Section 19.3.3, there
could be Berry phases, associated with singular configurations of the za . These have to be
analyzed on a lattice-by-lattice basis [543].

As in the case of our analysis of the collinear antiferromagnets, let us discuss the physics
implied by the action (19.71), ignoring possible Berry phase effects for now. For small
gμ, we clearly have 〈za〉 �= 0, and this leads to a coplanar antiferromagnetic order as in
Fig. 19.3. With increasing gμ there is a transition to a paramagnetic phase with 〈za〉 �= 0,
and we are interested both in the nature of this phase and of the quantum phase transition.
There are at least two distinct possibilities: one leads to a “Z2 spin liquid” phase with
“topological order” and fractionalized excitations, and the other to a phase similar to the
VBS state similar to that discussed in Section 19.3.3. We focus on the first possibility here,
and briefly discuss the second possibility at the end of this section.
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The Z2 spin liquid emerged first in a direct large-N study [398,415,435] of the quantum
antiferromagnet (19.1) on frustrated lattices, and related results emerge from studies of the
continuum theory Sz in an expansion in the inverse of the number of za components, or in
an expansion in (d − 1) [31, 32, 87, 89]. The physical properties of both the magnetically
ordered and paramagnetic phases can be rapidly understood by considering the case γμ= 0
in (19.71), although this special value will not modify the general form of the following
results. For γμ= 0, we insert (19.64) into (19.71), and see straightforwardly that the action
Sz is symmetric under O(4) rotations of the mρ , becoming precisely equivalent to the
N = 4 case of the quantum rotor model Sn studied intensively in Parts II and III. Indeed,
at the quantum critical point, it can be shown that the γμ are irrelevant perturbations, and
so the global O(4) symmetry is asymptotically realized in the generic case. The properties
of Sz therefore follow directly from the results of Part II. The magnetically ordered phase
has 3 = 4− 1 linearly dispersing spin-wave excitations, and magnetic order disappears at
any nonzero temperature. The quantum paramagnetic phase has an energy gap, �+, and
the excitations are built out of the Fock space of a fourfold degenerate particle.

Despite the mapping above to Part II, a crucial distinction exists in the physical inter-
pretation of the structure of the quantum paramagnet, which is now more properly referred
to as a “spin liquid.” Its particle excitations are the bosonic quanta of the za field, and
the transformation (19.66) under spin rotations makes it clear that these bosons carry spin
S = 1/2. (This accounts for a twofold degeneracy of the particle states; an additional factor
of two comes from accounting for the particle and antiparticle states.) This should be con-
trasted with the S = 1 particle that was found in the quantum paramagnet with collinear
correlations in Section 19.3.3. These S = 1/2 bosonic particles are labeled “spinons.” We
can view the S = 1 particle as the bound state of two S = 1/2 particles, and therefore
a quantum transition from a quantum paramagnet with collinear correlations to one with
noncollinear correlations can be viewed as one of the deconfinement of spinons; a sim-
ple theory for such a transition has been discussed in [398, 415, 435]. Here let us discuss
an important physical property of a spin liquid with deconfined spinons: we compute the
dynamic susceptibility at the noncollinear ordering wavevector, defined by

χ(k, iωn)δαβ = v

M

∑
i, j

∫ 1/T

0
dτ 〈Ŝiα(iτ)Ŝ jβ(0)〉e−i((�k+ �Q)·(�xi−�x j )−ωnτ). (19.72)

Using (19.63) and (19.65) we see that (ignoring the contribution of L, which will only
renormalize a prefactor that can absorbed into a redefinition of the quasiparticle ampli-
tude A):

χ(k, iωn) = S2

6

2∑
a,b=1

∫
d2x

∫ 1/T

0
〈za(x, iτ)zb(x, iτ)z

∗
a(0, 0)z

∗
b(0, 0)〉. (19.73)

So χ is given by the propagator of two spinons, rather than the single-particle propagator
that appeared in (11.2). As discussed above, the z quanta of the quantum paramagnet have
a quasiparticle pole at T = 0 as in (10.82) or (11.18); the contribution of this pole leads to
the expression

χ(k, ωn) = A2S2�(k, ωn), (19.74)
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where the two-particle propagator� was discussed in (13.42). At T = 0, taking the imag-
inary part of (13.46) we obtain

Imχ(k, ω) = A2S2

8c2

sgn(ω)√
ω2 − c2k2

θ
(
|ω| − (c2k2 + 4�2+)1/2

)
, (19.75)

where θ is the unit step function. Hence there is no pole in χ(k, ω) as there was for the case
of a quantum paramagnet with collinear spin correlations; rather there is a branch cut at
frequencies greater than (c2k2 + 4�2+)1/2, which corresponds to the threshold for the cre-
ation of a pair of spinons. This branch cut is a characteristic property of the deconfinement
of spinons in a spin liquid.

Note also that the spinon changes sign under the gauge transformation in (19.70): in
other words, the spinon carries an electric Z2 gauge charge. In addition to the spinon,
the Z2 spin liquid has another gapped particle excitation which carries a “magnetic” Z2

gauge charge, and which is crucial for an understanding of its “topological order” [283,
398,435]. This excitation is a point-like vortex whose stability is ensured by the structure
of the order parameter in the noncollinear antiferromagnet. It is now referred to as a vison
[459]. The vison is best visualized in terms of the headless vector mρ , as is illustrated in
Fig. 19.4. As one circles the core of the vison, mρ rotates by 180 degrees about a fixed axis
orthogonal to mρ . So upon returning to the original point, mρ has now turned into −mρ ,
but this is acceptable as the overall sign of mρ is not significant (in mathematical terms, the
order parameter mρ belongs to the space S3/Z2, and the vison is associated with its first
homotopy group Z2).

Note that the vison involves twist in the antiferromagnetic order parameter around it.
Consequently, in the magnetically ordered phase, when the spin stiffness is nonzero, the
energy of two visons grows logarithmically with the separation between them. However,
in the spin liquid, once the stiffness is nonzero, the visons are free to separate, and become
stable, deconfined, point-like excitations which carry Z2 magnetic flux. Figure 19.4 makes
it clear that a spinon picks a change in sign after circumnavigating a vison (and vice versa):
this labels them as relative semions.

(A)

(B)

(B)
(A)

S3

�Fig. 19.4 A vison. On the left we show a circular path in real space. On the right is the space of magnetically ordered states
represented by the complex spinor (z↑, z↓) up to an overall sign. As we traverse the real-space circle, the path in
order parameter space connects polar opposite points on S3 (A and B), which are physically indistinguishable. A key
point is that this vison excitation can be defined even in a state in which magnetic order is lost: the path on the right
will fluctuate all over the sphere in quantum imaginary time, as will the location of the points A and B, but A and B
remain polar opposites.
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The topological order of the Z2 spin liquid becomes clear when we consider the degen-
eracy of the ground state on a torus, in the limit of infinite torus size. We can pierce each
hole of the torus by a vison with negligible energy cost, because the only contour carry-
ing Z2 flux must encircle the large hole of the torus. This leads to a fourfold degeneracy,
characteristic of the Z2 spin liquid.

Thus a complete description of the Z2 spin liquid requires an effective theory of the
dynamics of visons and spinons. Such theories have been considered in the literature [246,
459,543], but will not be described here. They account for the Berry phase terms, and also
lead to theories of transitions to confining phases with VBS order.

We conclude by mentioning the second possibility associated with the “quantum dis-
ordered” phase, after coplanar magnetic order has been lost. In (19.71) we used spinor
variables za to describe the quantum fluctuations of the local magnetic order. However, we
could equally well have used the two vector variables n1 and n2, and developed an effec-
tive action for their quantum fluctuations: the constraints (19.61) can be implemented in
a soft-spin theory by appropriate nonlinearities. Without Berry phases, such models have
been studied extensively [66], and lead to a continuous transition to a paramagnetic phase
in which the n1 and n2 form a degenerate pair of spin S = 1 gapped quasiparticles. Berry
phases are likely to lead to VBS order in such a confining paramagnetic, but this effect has
not been specifically described.

19.3.5 Deconfined criticality

We now return to the collinear antiferromagnets of Section 19.3.1, and address the question
of the phase transitions between the Néel and VBS states. Note that both phases break a
global symmetry of the Hamiltonian (spin rotation and lattice rotations, respectively), and
two symmetries are unrelated to each other. Under such circumstances, the conventional
classical theory of phase transitions implies that such phases must be separated by a first-
order phase transition.

For the present quantum case, the fact that one of the orderings (VBS) was driven by the
Berry phases carried by “hedgehog” defects of the other (Néel) suggested that the situa-
tion might be different and speculations for the existence of a continuous phase transition
were made in early work [86]. A specific theory for a continuous Néel transition has been
presented in [351,458,462], and is outlined below.

An important input into the theory is the fact that density of free hedgehogs vanishes as
the critical point is approached. These hedgehogs are responsible for the VBS ordering in
the paramagnetic phase, but their density is computed to vanish with a power of the inverse
correlation length in [353]. Given the fact that the hedgehogs are ultimately responsible
for the confinement of spinons in the paramagnet, [351, 458, 462] argue that the critical
theory should be expressed in terms of the spinon variables. Thus we should map the action
(19.51) expressed in terms of the Néel vector n to one expressed in spinor variables: this
has been done in a lattice model in [434]. Unlike the case of the coplanar antiferromagnet
in Section 19.3.4, we only have a single Néel vector n, and the analog of (19.63) is

nα = w∗aσαabwb. (19.76)
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We are now using the symbol wa to represent the spinon, unlike za as in Section 19.3.4;
these spinon fields are distinct, and in particular, they have distinct transformations under
time-reversal, as we see below.

Given the detailed arguments in [351,458,462], the construction of the Néel–VBS criti-
cal theory becomes simply a matter of writing down the simplest continuum theory for the
wa consistent with symmetries of the underlying Hamiltonian. The phase with 〈wa〉 �= 0
corresponds to the Néel phase, as in Section 19.3.4. However, unlike Section 19.3.4, the
region with 〈wa〉 = 0 is not a spin liquid with deconfined spinons, except at the quantum
critical point. Away from the critical point in the paramagnet, the proliferation of hedge-
hogs confines the wa into the S = 1 quanta of n, and the O(3) sigma model description of
Section 19.3.3.

So it only remains to deduce the continuum theory of the critical spin liquid of the
spinons wa , using considerations of symmetry. Let us list the symmetry operations, which
parallel those considered in Section 19.3.4:

(i) Invariance under spin rotations is just as in (19.66).
(ii) A lattice operation which interchanges the two sublattices maps n →−n, and (19.76)

therefore implies

wa → εabw
∗
b . (19.77)

(iii) Time reversal also sends n →−n, and so obeys (19.77). Note that (19.77) maps onto
(19.69) if we set

za = eiα(wa − iεabw
∗
b)/
√

2, (19.78)

with α arbitrary, which is the connection obtained in specific microscopic models
[228,435].

(iv) Finally, we note that the Z2 gauge invariance of (19.70) is now enlarged to a U(1)
gauge invariance. Representation (19.76) is invariant under a gauge transformation by
an arbitrary phase θ

wa(x, τ )→ eiθ(x,τ )wa(x, τ ). (19.79)

Unlike (19.70), this continuous gauge transformation plays a crucial role in the allowed
terms in the continuum theory. In particular, spatial and temporal gradients can only
preserve gauge invariance with the help of a U(1) gauge field, analogous to that famil-
iar from quantum electrodynamics. A microscopic derivation [396,434] shows that a
U(1) gauge field, Aμ, does emerge at low energies as a distinct degree of freedom. So
our continuum theory will involve both wa and Aμ.

The constraints above lead to the following relativistic theory, known as the CP1 model,
for the deconfined critical point:

Sz A =
∫

d2xdτ
∑
μ=�x,τ

1

gμ
|(∂μ − i Aμ)wa|2. (19.80)

Compared to (19.71), we see the emergence of a U(1) gauge field: the “photons” of this
gauge field are physical, gapless, spinless excitations which can, in principle, be detected
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�Fig. 19.5 Schematic renormalization group flows for the S = 1/2 square lattice quantum antiferromagnet. Hereλ4 is a
measure of the density of free hedgehogs (a hedgehog fugacity), g represents the couplings gμ in (19.80). The theory
SzA in (19.80) describes only the lineλ4 = 0: it is therefore a theory for the transition between the Néel state and a
U(1) spin liquid with a gapless “photon.” However, the lattice antiferromagnet always has a nonzero bare value of
the hedgehog fugacityλ4. Theλ4 perturbation is irrelevant at the g = gc critical point ofSzA: this critical point
therefore also described the transition in the lattice antiferromagnet. However, the g →∞ U(1) spin liquid fixed
point is unstable toλ4, and the paramagnet is therefore a gapped VBS state.

in experiments. As a function of increasing gμ, the theory Sz A exhibits a transition from
the Néel state with 〈wa〉 �= 0, to a U(1) spin liquid paramagnet with 〈wa〉 = 0. The wa

quanta are spin S = 1/2 excitations in this phase which interact via a 2+1 dimensional
electromagnetic force. After including the effects of the “hedgehog” defects (which have
been excluded from (19.80)), away from the critical point this spin liquid is unstable to
confinement of the spinons and the appearance of VBS order, as we have argued above.
This subtle state of affairs is summarized in Fig. 19.5. The photon excitation Aμ is also
gapped near the VBS fixed point: thus there is an additional spinless gapped excitation in
the VBS fixed point, in addition to the spin S = 1 n quanta discussed in Section 19.3.3.

19.4 Partial polarization and canted states

This section will interpolate between the ferromagnetic states studied in Section 19.2, with
maximum uniform spin polarization in their ground states, and the antiferromagnets of
Section 19.3, which had a thermodynamically negligible spin polarization. One way to do
this would be to examine the ground states of models HS in (19.1) at H = 0, but with
a set of Ji j that can take both signs. Models of this type were examined in [437], and it
was argued that they could be described by a ferromagnetic extension of the rotor models
studied in Part II. The properties of such models are quite intricate, and we refer the reader
to the original paper for further details. Here, we look at a closely related model whose
properties are significantly simpler to delineate. We begin with an antiferromagnet with all
Ji j < 0 and attempt to force in a macroscopic moment by placing it in a strong uniform
field H. Thus the uniform magnetization does not arise spontaneously from ferromagnetic
exchange interactions but instead is induced by an external field. This causes important
differences in the nature of certain spin-wave excitations, which are no longer required to
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be gapless due to the explicit breaking of rotational invariance in the Hamiltonian. Nev-
ertheless, numerous other features are very similar to the far more complicated models
considered in [437]. Further, the case of an antiferromagnet in a strong uniform field is of
direct physical importance, having been investigated in several recent experiments, as we
discuss in Section 19.5.

The low-energy properties of an antiferromagnet in a field H are described by the action
Sn in (19.51) or (11.4). So far, analyses of these models have been restricted to H = 0, and
to linear response to a weak H. Here, we will look at the full nonlinear response to a strong
H. It should be noted here that, in d = 1, closely related results can also be obtained by the
bosonization technique of Chapter 20 [370], while making no reference to the rotor model,
but we do not follow such an approach here.

We prefer to begin our analysis by placing the continuum model Sn on a lattice at some
short-distance scale and working with the discrete lattice Hamiltonian. This is the inverse
of the mapping carried out in Chapter 11, and we therefore obtain the rotor model Hamil-
tonian HR in (11.1):

HR = Jg

2

∑
i

L̂2
i − J

∑
〈i j〉

n̂i · n̂ j −H ·
∑

i

L̂i . (19.81)

The lattice sites in this rotor Hamiltonian are not to be identified with the lattice sites of HS

in (19.1); rather each rotor is an effective degree of freedom for a cluster of an even number
of spins in the original model. Each such cluster will have a spin-singlet ground state for
H = 0, as does the on-site Hamiltonian for each rotor in (19.81) (see (6.48)). The rotor
also has an infinite tower of states with increasing angular momentum in (6.48); in contrast
a cluster of p Heisenberg spins with spin S can have a maximum total angular momentum
pS. Although this difference has some significant consequences for the topology of the
phase diagram, it leaves many essential features unaltered; we comment on this issue later.

We proceed to understanding the properties of HR in the remainder of this section. The
analysis is quite similar to that discussed for the boson Hubbard model in Chapter 9, and
the results bear some similarity to those in [256]; indeed, we find that the phase diagram of
HR is quite similar to that of HB in (9.4), and the universality classes of the quantum phase
transitions reduce either to the models studied in Part II, or to those in Chapter 16. This
similarity is not surprising at one level: the model HR in the presence of a nonzero H only
has a global U(1) symmetry corresponding to rotations about an axis parallel to the field
(rotations about all other axes are not allowed by the nonzero H), and the model HB also
has only a U(1) symmetry. (In the models considered in [437], uniform moments appear
spontaneously owing to ferromagnetic exchange in a model with full O(3) symmetry, and
this reasoning does not hold; however, the similarity to HB persists, with many (but not
all) quantum critical points belonging to the same universality classes as those of HB .)

Most of the physics of HR already becomes apparent in a mean-field theory similar
to that in Section 9.1. As in (9.7), we make a mean-field ansatz for HMF as the sum of
single-site Hamiltonians with initially arbitrary variational parameters:

HMF =
∑

i

(
Jg

2
L̂2

i −H ·
∑

i

L̂i − N · n̂i

)
. (19.82)
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�Fig. 19.6 Mean-field phase diagram of HR (in (19.81)), the O(3) quantum rotor model in a field H. The notation Q.F. � refers to
a quantized ferromagnet with 〈L̂z〉 = �. Compare with the phase diagram of the boson Hubbard model in Fig. 9.1. In
the latter case, there is no special meaning to the vertical coordinate= 0, and the vertical axis is unbounded below.
The positions of the phase boundaries follow from (19.84). The multicritical point M is precisely the critical point of the
O(3) quantum rotor model studied in Part II.

Here the N are a set of three variational parameters that represent the effects of the exchange
J with nearest neighbors in mean-field theory; they play a role similar to that of the com-
plex number �B in Section 9.1. For simplicity we have assumed that the N are site inde-
pendent and are therefore excluding the possibility of states with spatial structure. It is not
difficult to extend our analysis to allow for broken translational symmetries in HR .

Now the analysis proceeds as in Section 9.1: determine the ground state wavefunction of
HMF, and optimize the expectation value of HR in this wavefunction toward variations in
N. This has been done numerically and leads to the phase diagram in Fig. 19.6; we discuss
the properties of each of the phases in turn and then consider the nature of the transitions
between them.

19.4.1 Quantum paramagnet

The optimum value of the variational parameter is N = 0. For this value, HMF is exactly
diagonalizable: the eigenstates are simply the rotor eigenstates |�,m〉 of (6.2) and have
eigenvalues Jg�(�+ 1)/2− Hm. The quantum paramagnet appears when parameters are
such that the minimum energy state has � = m = 0. This happens for small H/J and
large g. This quantum paramagnet is precisely the corresponding state of the rotor model
studied in Part II. The field H couples only to the total spin, which is identically zero in the
spin-singlet ground state; as a result the wavefunction and all equal-time correlations are
unaffected by a nonzero H. The energy of the spin-triplet particle excitations does change,
as was shown in (6.4), but their wavefunctions also remain unaffected.
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19.4.2 Quantized ferromagnets

These phases also have N = 0, and so the eigenenergies of HMF are those listed above. The
minimum energy state has m = �, and the different quantized ferromagnets are identified
by the different positive integer values of � as shown in Fig. 19.6. The analogy between
these phases and the Mott-insulating phases of Section 9.1 should be clear: the boson num-
ber n0 corresponds to the integer �. We argued in Section 9.1 that the quantization of n0

was not an artifact of mean-field theory but an exact statement about the full interacting
model. Precisely the same arguments apply here to 〈L̂ z〉 (we are assuming H is oriented in
the z direction), as the total angular momentum in the z direction commutes with HR . Such
quantized ferromagnetic phases also appear in the models of [437] where ferromagnetism
was induced by exchange interactions. In this case complete rotational symmetry of the
underlying Hamiltonian implies that there are gapless spin-wave excitations of the type
considered in Section 19.2 with dispersion εk = (ρs/M0)k2. In the present model, HR , the
spin-wave modes acquire a gap from the external field, and we have εk = (ρs/M0)k2+ H .
In these respects these quantized ferromagnets are identical to the fully polarized ferro-
magnets of Section 19.2; we simply have to set M0 equal to the actual quantized value of
the ground state magnetization density.

Let us also note some aspects of the interpretation of these quantized ferromagnet phases
for underlying spin models like HS . We noted above that each rotor was an effective degree
of freedom for an even number, p, of Heisenberg spins. Such a cluster has maximum spin
pS, and so the quantized ferromagnets with �> pS clearly cannot exist and are artifacts
of the mapping to the rotor model, which introduced an infinite tower of states on each
site. Also, for some antiferromagnets, making clusters of p spins may involve reducing the
symmetry of the underlying lattice. In this case the quantized ferromagnets with 0 < � <
pS necessarily involve a spontaneously broken translational symmetry. Each spin has an
average fractional moment of �/p and this can be quantized only if p spins spontaneously
group together and carry a total moment � together. This spontaneously broken symmetry
affects the critical theory of the transition out of the quantized phase, but we will not
discuss this further here. Finally, the rotor with � = p is a fully polarized ferromagnet that
can exist without any broken translational symmetry.

It should also be noted that very similar considerations apply for the case of p odd; then
we have to work with rotors that carry half-integral angular momenta [437,467].

19.4.3 Canted and Néel states

These states both have N �= 0 and are thus the analogs of the superfluid state of the boson
model of Section 9.1. The Néel state occurs precisely at H = 0, and the full rotational
invariance of the Hamiltonian then implies that the direction of N is immaterial. The
canted state occurs at nonzero H. If we write H = Hez , the numerical optimization of
the mean-field Hamiltonian (19.82) shows that the vector N prefers to lie in the x–y plane;
the direction within the plane is immaterial, reflecting the U(1) symmetry of the problem.
This orientation of the Néel order parameter in a plane perpendicular to an applied uniform
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field is quite generic, and the reasons for it become more evident in Section 19.4.4 below.
We choose Nx �= 0 and Ny = 0. The resulting canted state is characterized by the nonzero
expectation values

〈n̂x 〉 = Nx/(J Z) �= 0, 〈L̂ z〉 �= 0, (19.83)

and all other components of n̂ and L̂ have vanishing expectation values. The first relation in
(19.83) should be compared with (9.9) for its origin is the same. Both nonzero expectation
values in (19.83) vary continuously as a function of J , g, or H , and nothing is pinned at a
quantized value; because there is a nonzero, continuously varying ferromagnetic moment
in the canted phase, this is an example of an unquantized ferromagnet. The results (19.83)
also make the origin of the term “canted” clear (as illustrated within the canted region of
Fig. 19.8). In terms of the underlying Heisenberg spins, a nonzero 〈n̂x 〉 implies antifer-
romagnetic ordering within the x direction in spin space, while a nonzero 〈L̂ z〉 implies a
uniform ferromagnetic moment in the z direction.

We show a plot of the H dependence of the T = 0 magnetization 〈L̂ z〉 in Fig. 19.7.
Note that there are plateaus in the magnetization while the system is in the quantum
paramagnetic or quantized ferromagnetic phases. In between these phases is the canted
phase, or the unquantized ferromagnet, in which the magnetization continuously interpo-
lates between the quantized values.

The excitation structure of the canted phase is easy to work out. We simply follow the
same procedure as that used for the Néel state in Section 6.2. Examining equations of
the motion of small fluctuations about the ordered state one finds a gapless spin-wave
excitation with energy εk ∼ k corresponding to rotations of the n̂ in the x–y plane. For
the case where the canted state appears in a model with full O(3) symmetry, there is an
additional gapless mode with dispersion εk ∼ k2 [437].

The mean-field boundary between the canted/Néel states and the quantized ferromag-
net/quantum paramagnet can be computed analytically, using the same analysis leading up

H

<Lz>

1

2

3

^

�Fig. 19.7 The magnetization, 〈L̂z〉, as a function of the field H for the rotor model (19.81). It is assumed that the value of Z/g in
Fig. 19.6 is small enough that a vertical line will intersect the Q.F. � phases for � ≤ 3. The magnetization is initially
pinned at 0 when the system is in the quantum paramagnet and is subsequently pinned at � in the Q.F. phases. The
magnetization interpolates between these plateaus in the canted or “unquantized ferromagnetic” phase.



408 Heisenberg spins: ferromagnets and antiferromagnets

to (9.14) for the boson model. We expand the ground state energy of the quantized ferro-
magnet/quantum paramagnet in powers of Nx and demand that the coefficient of the N 2

x
vanish. This leads to the analog of the condition r = 0 with the expressions (9.15), (9.16);
in the present situation we find the condition

g

Z
= �+ 1

(2�+ 3)(�+ 1− H/Jg)
− �

(2�+ 1)(�− H/Jg)

+ 1

(2�+ 1)(2�+ 3)(�+ 1+ H/Jg)
, (19.84)

for the instability of the quantized ferromagnet/quantum paramagnet with 〈L̂ z〉 = � (the
denominators in (19.84) are always positive over the range of applicability for a given value
of �). Simple application of (19.84) led to Fig. 19.6.

An important feature of the above results deserves special mention. Note that the only
phase with a continually varying uniform magnetic moment (an unquantized ferromagnet)
is the canted phase. This phase has a broken symmetry in the x–y plane and an associated
gapless mode. This result is believed [437] to be a general principle: phases with continu-
ously varying values of a ferromagnetic moment must have gapless spin modes in addition
to the usual ferromagnetic spin waves that are present for the case of a spontaneously gen-
erated moment; moreover, unlike the spin waves, these gapless modes do not acquire a gap
in the presence of a uniform field H. In d ≥ 2, for the rotor models considered here, the
gapless modes are associated with the broken symmetry leading to canted order in such
phases. In d = 1, the analysis in Chapter 16 shows that the order in the x–y plane becomes
quasi-long range but the gapless mode survives.

(For completeness, we also note here another physical example of an unquantized fer-
romagnet: the Stoner ferromagnet [494] of an interacting Fermi gas, in which there are
two Fermi surfaces, one each for up and down spins, with unequal Fermi wavevectors
kF↑ �= kF↓. The values of kF↑ and kF↓ can vary continuously as the interaction strength
is varied (provided they are both nonzero), and so can the mean magnetic moment. Con-
sistent with the general principle above, in addition to the ferromagnetic spin waves, this
system has low-energy spin-flip excitations at finite wavevectors involving particle–hole
pairs near the two Fermi surfaces.)

19.4.4 Zero temperature critical properties

It is clear that the H = 0 transition between the quantum paramagnet and the Néel state is
precisely the same as the N = 3 model intensively studied in Part III; this critical point is
denoted M in Fig. 19.6. We show that the generic H �= 0 transition between the quantized
ferromagnet/quantum paramagnet and the canted state is in the universality class of the
dilute Bose gas field theory in (16.1), which was thoroughly studied in Chapter 16. We
will do this by examining the line of second-order transitions coming into the point M ; the
remaining portions of the phase boundary can be analyzed in a similar manner. It should
also be noted that there are also special particle–hole symmetric points at the tips of the
lobes surrounding the quantized ferromagnet phases where the z = 1 theory of Part II
applies, just as was the case for the boson Hubbard model in Sections 9.1 and 9.3.
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The promised result is most easily established by using the “soft-spin” theory of the
point M studied in Chapter 14. In the presence of a field H = Hez the generalization of
the N = 3 version of (14.2) is

Sφ =
∫

dd x
∫ 1/T

0
dτ

{
1

2

[
(∂τφx − i Hφy)

2 + (∂τφy + i Hφx )
2

+(∂τφz)
2 + c2(∇x �φ)2 + rφ2

α

]+ u0

4!
(
φ2
α

)2
}
. (19.85)

The uniform magnetic moment density is given by

1

v
〈L̂ z〉 = − ∂F

∂H
, (19.86)

where v is the volume per rotor, and F is the free energy density associated with the
action Sφ .

Let us first discuss the mean-field properties of Sφ , obtained by minimizing the action,
while ignoring all spatial and time dependence of φα; this reproduces the structure in the
vicinity of the point M in Fig. 19.6 obtained earlier using the mean-field Hamiltonian
(19.82). Note that the components φx , φy have a quadratic term with coefficient r − H2,
while φz has the usual coefficient r ; so ordering is preferred in the x–y plane, and this
was the reason for the choice in the orientation of the N vector in Section 19.4.3. For
r − H2 > 0, the ground state has 〈φα〉 = 0 and is therefore in the quantum paramagnetic
phase. For r − H2 < 0, the ground state has 〈φα〉 �= 0 and lies in the x–y plane. This is
the C phase and the fields have the expectation values

φα =
⎛⎝(6(H2 − r)

u0

)1/2

, 0, 0

⎞⎠ , 1

v
〈L̂ z〉 = 6H(H2 − r)

u0
, (19.87)

or any rotation of φα in the x–y plane. Note that 〈L̂ z〉 vanishes for H = 0, and therefore
the line r < 0, H = 0 is the Néel state. The resulting mean-field phase diagram is shown
in Fig. 19.8 and is identical to the vicinity of the point M in Fig. 19.6. Let us focus on the
vicinity of the generic transition between the quantum paramagnet and the canted phase:
this corresponds to the regime |r−H2| � |r |. In this region we can neglect φz fluctuations
and focus only on the φx + iφy that is undergoing Bose condensation. Further, the second-
order time derivative in Sφ can be dropped as the low-energy properties are dominated by
the more relevant first-order time derivative that appears by expanding the first two terms
in Sφ . Making these approximations, and defining

� = φx + iφy√
H

, (19.88)

we see that Sφ reduces to

S� =
∫

d2x
∫ 1/T

0
dτ

[
�∗ ∂�

∂τ
+ c2

2H
|∇x�|2 + (r − H2)

2H
|�|2 + u0

24H2
|�|4

]
.

(19.89)
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Quantum
Paramagnet

r

M

0
0

H

Néel

Canted

�Fig. 19.8 Mean-field phase diagram ofSφ (in (19.85)) at T = 0. The arrows denote the relative orientation of the spins in the
corresponding phases of double layer systems, which map onto the rotor model as discussed in Section 1.4.3; the field
H is assumed to point toward the top of the page. The multicritical point M is the N = 3 case of the quantum critical
point studied in Part II. Note that the vicinity of M is similar to that in Fig. 19.6.

This is precisely the theory (16.1), establishing the claim made at the beginning of this
subsection.

19.5 Applications and extensions

A survey of numerical and experimental studies of two-dimensional quantum antiferro-
magnets may be found in [430].

The analyses of Section 19.4 should make it clear that the dilute Bose gas quantum criti-
cal point of Chapter 16 describes the closing of a spin gap of an antiferromagnet by a strong
external magnetic field [9, 10, 82, 438, 452, 482, 513]. This critical point has been inten-
sively studied in a spin-ladder organic compound, Cu2(C5H12N2)2Cl4 [71–73, 130, 198].
The onset of magnetization plateaus at a finite field (as in Fig. 19.7) is also described by the
same quantum critical point, and such plateaus have been observed recently in experiments
on one-dimensional spin chains [356,471].

A novel realization of the d = 2 continuum quantum ferromagnets of Section 19.2
is provided by magnetization studies of single-layer quantum Hall systems at filling fac-
tor ν = 1 [135, 261, 262, 480]. These are electronic systems with a gap toward charged
excitations and a strong ferromagnetic exchange between the electronic spins. As a result,
the low-lying spin excitations are well described by the continuum theory (19.25). The
magnetization of this system for different T and H has been measured in NMR [37] and
optical [15, 319] experiments, and the results have been interpreted by computations on
(19.25) [27,213,399,504].

Also of interest are studies of double-layer quantum Hall systems, when two single-
layer systems in a ferromagnetic quantum Hall state with a charge gap are brought close
to each other [373,374,380,445]. There is an antiferromagnetic exchange pairing between
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the layers [555], which suggests that we may consider the two layers to be similar to the
two sublattices of an antiferromagnet and that there is an effective rotor model description
of the spin excitations. Indeed, it has been argued [111,112] that the system maps precisely
onto the model studied in Section 19.4. Detailed light scattering studies have mapped out
the phase diagram of the system [374], and the results are consistent with Figs. 19.6 and
19.8. Specific quantitative predictions for quantum critical behavior have been made in
[111, 112,324, 426,509], and these and dynamical results like those in Section 14.3 could
be tested in future experiments.



20 Spin chains: bosonization

This chapter has two central aims. The first is to describe a particular class of S= 1/2
antiferromagnets in d = 1 and to understand their properties in the context of the general
discussion of antiferromagnets in Chapter 19. The second is to introduce the technical
tool of bosonization and to illustrate its utility in the solutions of the models noted. The
powerful bosonization method has been used extensively in recent years to understand a
wide variety of systems in one dimension. We do not attempt to survey this vast literature
here but refer the reader to a number of available reviews; a description of some important
current topics appears in articles by Schulz [453] and Affleck [8]. However, most of the
basic ideas and general principles make an appearance in our treatment here. The author
benefited from unpublished Trieste lecture notes of T. Giamarchi in preparing this chapter.

The antiferromagnetic chain we study [190] has the Hamiltonian

H12 = J1

∑
i

(
σ̂ x

i σ̂
x
i+1 + σ̂ y

i σ̂
y
i+1 + λσ̂ z

i σ̂
z
i+1

)
+ J2

∑
i

(
σ̂ x

i σ̂
x
i+2 + σ̂ y

i σ̂
y
i+2 + σ̂ z

i σ̂
z
i+2

)
, (20.1)

where the σ̂ αi are Pauli matrices representing an S = 1/2 spin at site i , and the subscript
12 on H indicates the presence of first- and second-neighbor interactions. For λ = 1 this
reduces to the S = 1/2 Heisenberg Hamiltonian HS in (19.1), with first (J1 > 0) and
second (J2 > 0) neighbor exchange in d = 1, which was studied in the continuum limit of
the coherent state path integral in Chapter 19. We have introduced the anisotropy parameter
λ to make contact with the quantum X X chain studied in Sections 16.1 and 16.3.3 by rather
different methods; for λ = 0 and J2 = 0, (20.1) reduces to the X X Hamiltonian in (16.6).
We use these latter methods here and show how they can be combined with bosonization
to examine the more general model (20.1). Recall that the X X chain had a global U(1)
symmetry and an associated conserved charge Q = (1/2)

∑
i σ̂

z
i . This U(1) symmetry is

also present in H12 for general λ. Only the point λ = 1 has the full Heisenberg SU (2)
symmetry.

We begin by re-examining the X X model in Section 20.1, and then we re-obtain the
results of Section 16.3.3 by introducing the bosonization method. The same method will
be used to describe the phases and low-T properties of H12 in Section 20.2. Finally, in
Section 20.3 we rectify an omission from Part II, examining the N = 2, d = 1 quantum
rotor model and showing how it can be understood by a simple adaptation of the methods
introduced in this chapter.

412
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20.1 The XX chain revisited: bosonization

This section examines the model H12 at λ = 0 and J2 = 0. Then, as noted earlier, H12

reduces to the Hamiltonian HX X in (16.6). For antiferromagnetic exchange, J1> 0, we
obtain HX X with a coupling w < 0; it is somewhat inconvenient to work with a w < 0,
but we can map to w> 0 by changing the signs of the σ̂ x σ̂ x and σ̂ y σ̂ y terms in H12 by
rotating every second spin by 180 degrees about the z-axis. We have used the Jordan–
Wigner transformation to map HX X onto a model of free spinless fermions, and with the
staggered rotation, the transformation (10.8, 10.9) becomes

σ̂ z
i = 1− 2c†

i ci ,

σ̂+i = (−1)i
∏
j<i

(
1− 2c†

j c j
)
ci ,

σ̂−i = (−1)i
∏
j<i

(
1− 2c†

j c j
)
c†

i . (20.2)

Inserting (20.2) into (20.1) we find

H12 = −
∑

i

[
2J1
(
c†

i+1ci + c†
i ci+1

)+ J1λ
(
2c†

i ci − 1
)(

2c†
i+1ci+1 − 1

)
+ J2

(
2c†

i ci − 1
)(

2c†
i+2ci+2 − 1

)
− 2J2

(
c†

i

(
2c†

i+1ci+1 − 1
)
ci+2 + c†

i+2

(
2c†

i+1ci+1 − 1
)
ci
)]
. (20.3)

So for J2 = 0, λ = 0 we see that H12 reduces to the free fermion form (16.7) of HX X with
w = 2J1 and μ = 0.

The spin correlations of HX X were examined in Section 16.3.3, and we were then espe-
cially interested in the quantum phase transition that occurred when the density of fermions
in the ground state went from being pinned at zero to a nonzero value. As discussed in
Section 16.1 and Fig. 16.1, this transition occurred at μ = 0. Here we are interested in the
case μ = 2w, when the density of fermions is nonzero and large; by Fig. 16.1 the fermion
band is exactly half filled. So we are well away from the quantum critical point of interest
in Chapter 16 and are solely interested in the finite ground state fermion density region.
This places us exclusively within the Tomonaga–Luttinger liquid region of Section 16.3.3.
(This is the region labeled “Fermi liquid” in Fig. 16.2, which applies to general d.) We
gave a complete derivation of the asymptotic form of the T > 0, equal-time correlators of
the Tomonaga–Luttinger liquid region in Section 16.3.3, and we then deduced the ground
state correlators in (16.85, 16.86) by appealing to a mapping based on conformal invari-
ance. The analysis there was specialized to the case μ > 0, with |μ| � w, but precisely the
same methods also work for μ = 2w. Using the same steps as those leading up to (16.86)
(or to (10.95) for the quantum Ising chain), we can obtain the following T = 0 correlators
of H12 at λ = 0, J2 = 0 [327,420]:〈

σ̂ x
i σ̂

x
i+n

〉 = 〈σ̂ y
i σ̂

y
i+n

〉 = (−1)n
8(G I (0))2

(2πn)1/2
as n →∞, (20.4)



414 Spin chains: bosonization

where the numerical constant G I (0) was defined in (10.51) and its value was quoted above
(10.94). The leading (−1)n prefactor is as expected from the staggered spin correlations in
an antiferromagnet; technically it arises from the staggered rotation of the spins in (20.2).
We can also directly use the first mapping in (20.2) to obtain correlators of σ̂ z quite simply:〈

σ̂ z
i σ̂

z
i+n

〉 = δn,0 + (1− δn,0)

(
− 2

π2n2
+ 2 cos(πn)

π2n2

)
. (20.5)

This section obtains the power-law decays in (20.4) and (20.5) by the bosonization
method [308, 309, 493, 505]. However, this approach abandons attempts to keep track of
most of the prefactors (only the prefactor of the nonoscillating 1/n2 decay of the conserved
z component of the spin in (20.5) is obtained exactly). This “sloppiness” is compensated
by the important advantage that the method applies for nonzero λ and J2. Further, the
validity of the conformal mapping between T > 0 and T = 0 correlators noted above is
explicitly demonstrated.

We begin by taking the continuum limit of H12 in (20.3) at J2 = λ = 0 in precisely the
same manner as discussed in Section 16.2.2 for the Fermi liquid region of Fig. 16.2. With
lattice spacing a, we introduce the continuum Fermi field �F (x, τ ) as in (10.23) and then
parameterize it in terms of left (�L ) and right (�R) moving excitations in the vicinity of the
Fermi points as in (16.28). The fermion band is half filled, and so in this case kF = π/a.
The fields �L ,R are described by the simple Hamiltonian

HF L = −ivF

∫
dx

(
�

†
R
∂�R

∂x
−�†

L
∂�L

∂x

)
, (20.6)

which corresponds to the Lagrangean LF L in (16.29); the Fermi velocity is given by
vF = 4J1a.

We examine LF L a bit more carefully and show, somewhat surprisingly, that it can also
be interpreted as a theory of free relativistic bosons. The mapping can be rather precisely
demonstrated by placing LF L on a system of finite length L . We choose to place antiperi-
odic boundary conditions on the Fermi fields, �L ,R(x + L) = −�L ,R(x); this arbitrary
choice will not affect the thermodynamic limit L → ∞, which is ultimately all we are
interested in. We can expand �L ,R in Fourier modes

�R(x) = 1√
L

∞∑
n=−∞

�Rnei(2n−1)πx/L , (20.7)

and similarly for �L . The Fourier components obey canonical Fermi commutation rela-
tions {�Rn, �

†
Rn′ } = δnn′ and are described by the simple Hamiltonian

H̃R = πvF

L

∞∑
n=−∞

(2n − 1)�†
Rn�Rn − E0, (20.8)

where the tilde in H̃R has been introduced to prevent confusion with the rotor
Hamiltonian (11.1), and E0 is an arbitrary constant setting the zero of energy, which we
adjust to make the ground state energy of HR exactly equal to 0; very similar manipu-
lations apply to the left-movers �L . The ground state of HR has all fermion states with
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n > 0 empty, while those with n ≤ 0 are occupied. We also define the total fermion
number (“charge”), Q R , of any state by the expression

Q R =
∑

n

: �†
Rn�Rn :. (20.9)

The colons are the so-called normal-ordering symbol – they simply indicate that the oper-
ator enclosed between them should include a c-number subtraction of its expectation value
in the ground state of H̃R , which of course ensures that Q R = 0 in the ground state.
Note that Q R commutes with H̃R and so we need only consider states with definite Q R ,
which allows us to treat Q R as simply an integer. The partition function, Z R , of H̃R at a
temperature T is then easily computed to be

Z R =
∞∏

n=1

(1+ q2n−1)2, (20.10)

where

q ≡ e−πvF/T L . (20.11)

The square in (20.10) arises from the precisely equal contributions from the states with n
and −n + 1 in (20.8) after the ground state energy E0 has been subtracted out.

We can provide an entirely different interpretation of the partition function Z R . Instead
of thinking in terms of occupation numbers of individual fermion states, let us focus on
particle–hole excitations. We create a particle–hole excitation of “momentum” n > 0 above
any fermion state by taking a fermion in an occupied state n′ and moving it to the unoccu-
pied fermion state n′ + n. Clearly the energy change in such a transformation is 2nπvF/L
and is independent of the value of n′. This independence of n′ is a crucial property and is
largely responsible for the results that follow. It is a consequence of the linear fermion dis-
persion in (16.28), and of being in d = 1. We interpret the creation of such a particle–hole
excitation as being equivalent to the occupation of a state with energy 2nπvF/L created
by the canonical boson operator b†

Rn . We can place an arbitrary number of bosons in this
state, and we now show how this is compatible with the multiplicity of the particle–hole
excitations that can be created in the fermionic language.

The key observation is that there is a precise one-to-one mapping between the fermionic
labeling of the states and those specified by the bosons creating particle–hole excitations.
Take any fermion state, |F〉, with an arbitrary set of fermion occupation numbers and
charge Q R . We uniquely associate this state with a set of particle–hole excitations above
a particular fermion state we label |Q R〉; this is the state with the lowest possible energy
in the sector of states with charge Q R , that is, |Q R〉 has all fermion states with n ≤ Q R

occupied and all others unoccupied. The energy of |Q R〉 is

πvF

L

|Q R |∑
n=1

(2n − 1) = πvF Q2
R

L
. (20.12)

To obtain the arbitrary fermion state, |F〉, with charge Q R , first take the fermion in the
“topmost” occupied state in |Q R〉, (i.e. the state with n = Q R) and move it to the top-
most occupied state in |F〉 (see Fig. 20.1). Perform the same operation on the fermion in



416 Spin chains: bosonization

2 65531 2

F

QR

�Fig. 20.1 Sequence of particle–hole excitations (bosons bRn) by which one can obtain an arbitrary fermion state |F〉 from the
state |QR〉, which is the lowest energy state with charge QR. The filled (open) circles represent occupied (unoccupied)
fermion states with energies that increase in units of 2πvF/L to the right. The arrows represent bosonic excitations,
bRn, with the integer representing the value of n. Note that the bosons act in descending order in energy upon the
descending sequence of occupied states in |QR〉.

n = Q R − 1 by moving it to the next lowest occupied state in |F〉. Finally, repeat until the
state |F〉 is obtained. This order of occupying the boson particle–hole excitations ensures
that the b†

Rn act in descending order in n. Such an ordering allows one easily to show that
the mapping is invertible and one-to-one. Given any set of occupied boson states, {n}, and
a charge Q R , we start with the state |Q R〉 and act on it with the set of Bose operators in
the same descending order; their ordering ensures that it is always possible to create such
particle–hole excitations from the fermionic state, and one is never removing a fermion
from an unoccupied state or adding it to an occupied state. The gist of these simple argu-
ments is that the states of the many-fermion Hamiltonian H̃ R in (20.8) are in one-to-one
correspondence with the many-boson Hamiltonian

H̃ ′
R =

πvF Q2
R

L
+ 2πvF

L

∞∑
n=1

nb†
RnbRn, (20.13)

where Q R can take an arbitrary integer value. It is straightforward to compute the partition
function of H̃ ′

R and we find

Z ′R =
[ ∞∏

n=1

1

(1− q2n)

]⎡⎣ ∞∑
Q R=−∞

q Q2
R

⎤⎦. (20.14)

Our pictorial arguments above prove that we must have Z R = Z ′R . That this is the case
is an identity from the theory of elliptic functions. (The reader is invited to verify that the
expressions (20.10) and (20.14) generate identical power series expansions in q .)

The above gives an appealing picture of bosonization at the level of states and energy
levels, but we want to extend it to include operators. To this end, we consider the operator
ρR(x) representing the normal-ordered fermion density:

ρR(x) =: �†
R(x)�R(x) := Q R

L
+ 1

L

∑
n �=0

ρRnei2nπx/L , (20.15)

where the last step is a Fourier expansion of ρR(x); the zero wavevector component is
Q R/L , while nonzero wavevector terms have coefficient ρRn . The commutation relations
of the ρRn are central to our subsequent considerations and require careful evaluation;
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we have

[ρRn, ρR−n′ ] =
∑
n1,n2

[
�

†
Rn1
�Rn1+n, �

†
Rn2
�Rn2−n′

]
=
∑
n2

(
�

†
Rn2−n�Rn2−n′ −�†

Rn2
�Rn2+n−n′

)
. (20.16)

It may appear that a simple change of variables in the summation over the second term
in (20.16) (n2 → n2 + n) shows that it equals the first, and so the combined expression
vanishes. However, this is incorrect because it is dangerous to change variables in expres-
sions that involve the summation over all integer values of n2 and are therefore individually
divergent; rather, we should first decide upon a physically motivated large-momentum cut-
off that will make each term finite and then perform the subtraction. We know that the linear
spectrum in (20.8) holds only for a limited range of momenta, and for sufficiently large |n|,
lattice corrections to the dispersion become important. However, in the low-energy limit
of interest here, the high fermionic states at such momenta are rarely, if ever, excited from
their ground state configurations. We can use this fact to our advantage by explicitly sub-
tracting the ground state expectation value (“normal-order”) from every fermionic bilinear
we consider; the fluctuations are then practically zero for the high-energy states in both
the linear spectrum model (20.8) and the actual physical systems, and only the low-energy
states, where (20.8) is actually a good model, matter. After such normal-ordering, the sum-
mation over both terms in (20.15) is well defined and we are free to change the summation
variable. As a result, the normal-ordered terms then do indeed cancel, and the expression
(20.16) reduces to

[ρRn, ρR−n′ ] = δnn′
∑
n2

(〈
�

†
Rn2−n�Rn2−n

〉− 〈�†
Rn2
�Rn2

〉)
= δnn′n. (20.17)

This key result shows that the only nonzero commutator is between ρRn and ρR−n and that
it is simply the number n. By a suitable rescaling of the ρRn it should be evident that we
can associate them with canonical bosonic creation and annihilation operators. We will not
do this explicitly but simply work directly with the ρRn as a set of operators obeying the
defining commutation relation (20.17), without making explicit reference to the fermionic
relation (20.15). We assert that the Hamiltonians H̃R , H̃ ′

R are equivalent to

H̃
′′
R =

πvF Q2
R

L
+ 2πvF

L

∞∑
n=1

ρR−nρRn . (20.18)

This assertion is simple to prove. First, it is clear from the commutation relations (20.17)
that the eigenvalues and degeneracies of (20.18) are the same as those of (20.13). (The
individual states are however not the same; there is a complicated linear relation between
them, which is not difficult to reconstruct from our definitions of the operators ρRn and
bRn .) Second, the definition (20.18) and the commutation relations (20.17) imply that[

H̃
′′
R, ρR−n

]
= 2πvF n

L
ρR−n . (20.19)
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Precisely the same commutation relation follows from the fermionic form (20.8) and the
definition (20.15).

We have completed a significant part of the bosonization program. We have the “bosonic”
Hamiltonian in (20.18) in terms of the operators ρRn , which obey (20.17), and we also have
the simple explicit relation (20.15) to the fermionic fields. Before proceeding further, we
introduce some notation that will allow us to recast the results obtained so far in a com-
pact, local, and physically transparent notation. We combine the operators ρRn and ρLn

(the Fourier components of the left-moving fermions �L ) into two local fields φ(x) and
θ(x), defined by

φ(x) = −φ0 + πQx

L
− i

2

∑
n �=0

ei2nπx/L

n
[ρRn + ρLn] ,

θ(x) = −θ0 + π J x

L
− i

2

∑
n �=0

ei2nπx/L

n
[ρRn − ρLn] ,

where Q= Q R + QL is the total charge, J = Q R − QL , and φ0 and θ0 are a pair of angu-
lar variables that are canonically conjugate to J and Q, respectively; that is, the only
nonvanishing commutation relations between the operators on the right-hand sides of
(20.20) and (20.17) are [φ0, J ] = i and [θ0, Q] = i . Our objective in introducing these is to
produce a number of simple and elegant results. First, using (20.20), and the commutators
just noted, we have

[∇φ(x), θ(y)] = [∇θ(x), φ(y)] = iπδ(x − y). (20.20)

Second, (20.18) can now be written in the compact, local form

H̃ ′′
R + H̃ ′′

L =
vF

2π

∫ L

0
dx

[
1

K
(∇φ)2 + K (∇θ)2

]
, (20.21)

where the dimensionless coupling K has been introduced for future convenience; in the
present situation K = 1, but we see later that moving away from HX X to more general H12

leads to other values of K . The expressions (20.21) and (20.20) can be taken as defining
relations, and we could have derived all the properties of the ρRn , ρLn , θ0, φ0 as conse-
quences of the mode expansions (20.20), which follow after imposition of the periodic
boundary conditions

φ(x + L) = φ(x)+ πQ, θ(x + L) = θ(x)+ π J. (20.22)

These conditions show that φ(x) and θ(x) are to be interpreted as angular variables. Our
final version of the bosonic form of H̃ R + H̃ L in (20.8) is contained in (20.20), (20.21),
and (20.22), and the two formulations are logically exactly equivalent. The Hilbert space
splits into sectors defined by the integers Q = Q R + QL , J = Q R − QL (and so
(−1)Q = (−1)J ), which measure the total charge of the left- and right-moving fermions.
All fluctuations in each sector are defined by the fluctuations of the local angular bosonic
fields φ(x) and θ(x), or equivalently by the fermionic fields �R(x) and �L(x).

We are going to make extensive use of the fields φ(x), θ(x) in the following, and so
their physical interpretation would be useful. First, the field φ has nothing to do with the
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O(N ) order parameter φα used in other chapters of this book. Both notations are standard,
and the context should prevent confusion. The meaning of φ follows from the derivative of
(20.20), which with (20.15) gives

∇φ(x) = πρ(x) ≡ π(ρR(x)+ ρL(x)). (20.23)

So the gradient of φ measures the total density of particles, and φ(x) increases by π each
time x passes through a particle. The expression (20.23) also shows that we can interpret
φ(x) as the displacement of the particle at position x from a reference state in which
the particles are equally spaced as in a crystal; that is, φ(x) is something like a phonon
displacement operator whose divergence is equal to the local change in density. Turning to
θ(x), one interpretation follows from (20.20), which shows that �φ(x) ≡ −∇θ(x)/π is
the canonically conjugate momentum variable to the field φ(x). In other words, �2

φ is the
kinetic energy associated with the “phonon” displacement φ(x). Using this interpretation,
we can easily apply the methods of Chapter 3 to obtain the Lagrangean form of (20.21):

ST L = 1

2πKvF

∫
dxdτ

[
(∂τφ)

2 + v2
F (∇φ)2

]
, (20.24)

where the subscript T L represents Tomonaga–Luttinger. This is just the action of a free,
massless, relativistic scalar field. Conversely, we also have a “dual” formulation of ST L in
which we interpret θ(x) as the fundamental degree of freedom and �θ ≡ −∇φ/π as its
canonically conjugate momentum; then we obtain the same action but with K → 1/K

ST L = K

2πvF

∫
dxdτ

[
(∂τ θ)

2 + v2
F (∇θ)2

]
, (20.25)

for H̃ R + H̃L . In this approach a direct physical interpretation of θ(x) is lacking; we see
below that we can interpret it as an angular variable corresponding to the O(2) order-
parameter correlations associated with the antiferromagnet HX X in (16.6). In particular
we find σ̂+ ∼ (σ̂x + i σ̂y)∼ (φ1 + iφ2)∼ (n1 + in2)∼ eiθ (here we have used the notation
of Part II, where �φ and n represent an O(2) order parameter). Thus a slowly varying θ
corresponds to ordering in the x–y plane in the original antiferromagnet. Also, if, as in
Section 16.1, we interpret the S = 1/2 antiferromagnet as a hard-core Bose gas, then eiθ is
the superfluid order parameter. Another important property of θ is obtained by taking the
gradient of (20.20), and we obtain the analog of (20.23):

∇θ(x) = π(ρR(x)− ρL(x)); (20.26)

hence gradients of θ measure the difference in density of right- and left-moving particles.
Let us also note a representation of the functional integrals in (20.24) and (20.25) which

integrates over both θ and φ in a democratic manner. Such a representation is an integral
over phase space, rather than configuration space, and has the action

ST L = vF

2π

∫
dxdτ

[
(∇φ)2

K
+ K (∇θ)2

]
+ iπ

∫
dxdτ∇θ∂τφ. (20.27)

The final links in the bosonization procedure are expressions for the fermionic fields
�R,L(x) in terms of φ(x) and θ(x). The details of such a representation depend upon
microscopic features of the particular model under consideration. These have been worked
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out explicitly for a fermion Hamiltonian known as the Luttinger model [189]; here we are
considering HX X , and for this more general case we are satisfied by an operator correspon-
dence that gets the correct long-distance behavior but abandons attempts to get prefactors
like those in (20.4) correct (for recent progress in computing prefactors for H12 at J2 = 0
see [11,306]). With this limited aim, the basic result can be obtained by some simple gen-
eral arguments. First, note that if we annihilate a particle at the position x , from (20.23)
the value of φ(y) at all y < x has to be shifted by π . Such a shift is produced by the
exponential of the canonically conjugate momentum operator �φ :

exp

(
iπ
∫ x

−∞
�φ(y)dy

)
= exp (−iθ(x)) . (20.28)

However, it is not sufficient to merely create a particle. We are creating a fermion, and the
fermionic antisymmetry of the wavefunction can be accounted for if we pick up a minus
sign for every particle to the left of x , that is, with a Jordan–Wigner-like factor

exp

(
imπ

∫ x

−∞
�

†
F (y)�F (y)dy

)
= exp (imkF x + imφ(x)) , (20.29)

where m is any odd integer, and�†
F�F measures the total density of fermions (see (10.23)),

including the contributions well away from the Fermi points. In the second expression in
(20.29), the term proportional to kF represents the density in the ground state, while φ(x)
is the integral of the density fluctuation above that. Combining the arguments leading to
(20.28) and (20.29) we can assert the basic operator correspondence [213–215]

�F (x) =
∑

m odd

AmeimkF x+imφ(x)−iθ(x), (20.30)

where the Am are a series of unknown constants, which depend upon microscopic details.
We see shortly that the leading contribution to (20.30) comes from the terms with
m = ±1, and the remaining terms are subdominant at long distances. Comparison with
(16.28) shows clearly that we may make the operator identifications for the right- and left-
moving continuum Fermion fields

�R ∼ e−iθ+iφ, �L ∼ e−iθ−iφ. (20.31)

The other terms in (20.30) arise when these basic fermionic excitations are combined with
particle–hole excitations at wavevectors that are integer multiples of 2kF .

Similar arguments, and the above expressions, can also be applied to spin operators σ̂ α

via the relations (20.2). For σ̂+ the arguments are as above except that the “string” factor
in (20.2) exactly compensates for the change in sign discussed above. We have then

σ̂+j = (−1) j
∑

m even

BmeimkF x j + imφ(x j )− iθ(x j ), (20.32)

for some unknown Bm . The most important term in this expansion is m = 0, so that

σ̂+j ∼ (−1) j eiθ , (20.33)

establishing our earlier claim of eiθ as the order parameter for x–y spin correlations.
Finally, σ̂ z is related to the fermion density, the slowly varying component of which
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can be reconstructed from (20.23), while additional contributions come from evaluating
�

†
F (x)�F (x) using (20.30):

σ̂ z
j

a
= − 2

π
∇φ(x j )+

∑
m �= 0,even

CmeimkF x j+imφ(x j ), (20.34)

for some Cm , with a the lattice spacing. Note that the coefficient of the slowly varying term
(which does not oscillate at a multiple of the wavevector kF ) is precisely determined; this
is ultimately related to the fact that

∑
j σ̂

z
j = −2Q commutes with the Hamiltonian.

We have completed our derivation of the bosonization technology and are ready to apply
it to obtain new results. The basic result is the equivalency of the fermionic Hamilto-
nian (20.8), and its left-moving partner, to the bosonic theory defined by (20.20), (20.21),
and (20.22). Also key are the operator correspondences in (20.23), (20.30), (20.32), and
(20.34).

We turn to the evaluation of the correlators of the spin operators, (20.32) and (20.34),
under the theory (20.21), (20.24), or (20.25). These can be obtained by use of the basic
identity

〈eiO〉 = e−〈O2〉/2, (20.35)

where O is an arbitrary linear combination of φ and θ fields at different spacetime points;
this identity is a simple consequence of the free-field (Gaussian) nature of (20.21). In par-
ticular, all results can be reconstructed by combining (20.35) with repeated application of
some elementary correlators. The first of these is the two-point correlator of φ:

1

2
〈(φ(x, τ )− φ(0, 0))2〉 = πvF K

∫
dk

2π
T
∑
ωn

1− ei(kx−ωnτ)

ω2
n + vF k2

= K

4
ln

[
cosh(2πT x/vF )− cos(2πT τ)

(2πT/vF�)2

]
, (20.36)

where � is a large-momentum cutoff. Similarly, we have for θ , the correlator

1

2
〈(θ(x, τ )− θ(0, 0))2〉 = 1

4K
ln

[
cosh(2πT x/vF )− cos(2πT τ)

(2πT/vF�)2

]
. (20.37)

To obtain the θ , φ correlator we use the relation�φ = −∇θ/π and the equation of motion
i�φ = ∂τφ/(πvF K ) that follows from the Hamiltonian (20.21); then by an integration
and differentiation of (20.36) we can obtain

〈θ(x, τ )φ(0, 0)〉 = i

2
arctan

[
tan(πT τ)

tanh(πT x/vF )

]
. (20.38)

This expression can also be obtained directly from (20.27).
Applying (20.35) and (20.37) to (20.33) we get

(−1) j 〈σ̂+j (τ )σ̂−0 (0)〉 ∼
[

T 2

sin(πT (τ + i x j/vF )) sin(πT (τ − i x j/vF ))

] 1
4K

. (20.39)
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At the value K = 1 for HX X , this agrees precisely with the result claimed earlier in (16.76)
and (16.86). In this previous case we had obtained the T > 0 crossover functions by appeal-
ing to the mapping (10.47) between T = 0 and T > 0 correlators, which was claimed to be
a consequence of the conformal invariance of the low-energy theory. Here we have shown
that the low-energy theory is given by (20.24) or (20.25) and that its T = 0 and T > 0
correlators are indeed related by (10.47). Very similar arguments can also be advanced by
a bosonization analysis of the quantum Ising chain to establish (10.47) for the model of
Chapter 10. At T = 0, (20.39) gives an equal-time correlator that decays as 1/

√
x , which

is in agreement with the exact result (20.4). We can also obtain the form of the subleading
terms by considering the correlators of the complete expression (20.32). At T = 0 we have
the following structure in the asymptotic expansion of the equal-time correlators:

(−1) j 〈σ̂+j σ̂−0 〉 =
∞∑

m=0

B̃m

(x j )2m2 K+1/(2K )
cos(2mkF x j ), (20.40)

for some unknown coefficients B̃m . Note, as claimed earlier, the m > 0 terms all decay
faster than the dominant m = 0 term.

Precisely the same methods can be applied to the correlators of σ̂ z . From (20.34), the
analog of the expansion (20.40) for the T = 0 equal-time correlator is

1

a2

〈
σ̂ z

j σ̂
z
0

〉 = − 2K

π2x2
+

∞∑
m=1

C̃m

(x j )2m2 K
cos(2mkF x j ), (20.41)

for some unknown C̃m . Note that the leading, nonoscillating, term agrees precisely with
the first term in (20.5). For the special case of HX X , we get K = 1, and the oscillating
terms in (20.41) are in agreement with that in (20.5) for the special values C̃1 = 2/π2 and
C̃m>1 = 0. The subleading terms in (20.41) do not appear for this special free fermion
point, but there is no reason for them to vanish in the general case, which is considered in
the following section.

Finally, we can also consider H12 in (20.3) to be a generic Hamiltonian of interacting
spinless fermions in one dimension. Generally, as discussed in Chapter 18, such interacting
fermion models, in greater than one dimension, are expected to be Fermi liquids, with a
discontinuity in the momentum distribution function, n(k) of the fermions at the Fermi
wavevector; see (18.25). We now have the tools to compute n(k) in one dimension. Using
(20.30), and the results above for the correlation functions under (20.27) we obtain

〈�†
F (x)�F (0)〉 ∼ sin(kF |x |)

|x |(K+1/K )/2
. (20.42)

Taking the Fourier transform of this, we conclude that n(k) does indeed have a singularity
at k = kF , but that this singularity is not generally a step discontinuity:

n(k) ∼ −sgn(k − kF )|k − kF |(K+1/K )/2−1. (20.43)

For K = 1, (20.43) does indeed have a step discontinuity. However, as demonstrated
in Section 20.2, the full theory of interacting fermions in H12 does have phases which
are adequately described by (20.27) at low energies but with K �= 1. We refer to such
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a phase in Section 20.2 as a Tomonaga–Luttinger liquid. Thus, interpreted as a phase of
interacting fermions, a Tomonaga–Luttinger liquid is a non-Fermi liquid: its momentum
distribution function has a singularity at the Fermi surface, but the singularity is not a step
discontinuity, and is instead given by (20.43). Note the similarity of this singularity to the
non-Fermi liquids in two and higher dimensions noted in (18.44).

20.2 Phases of H12

We are ready to address the properties of the Hamiltonian H12 in (20.1) for the case of
general J1, J2, and λ [190]. We use exactly the same bosonization procedure developed in
Section 20.2 for HX X but apply it to the more interacting fermion Hamiltonian in (20.3).
The first step, as in Section 20.1, is to focus on the low-energy degrees of freedom, which
consist of fermionic excitations near the wavevectors ±kF . This is facilitated by taking
the continuum limit of (20.3) by inserting the parameterization (10.23) and (16.28). Before
doing this it is important to “normal-order” the terms in (20.3); in other words, we first per-
form a Hartree–Fock factorization to obtain the suitably renormalized one-particle Hamil-
tonian. In this manner we obtain the following continuum limit of H12:

H12 = HF L + Ha + Hb, (20.44)

where HF L was considered earlier in (20.6), and Ha and Hb are the two new terms arising
from nonzero λ and J2. The first of these has the form

Ha = 8(J1λ+ 2J2)a
∫

dx [(ρR + ρL)(ρR + ρL)] , (20.45)

where ρR was defined in (20.15), and similarly for ρL ; this term involves interactions
in which left- or right-moving fermions scatter off each other while exchanging small
momenta near the respective Fermi points. The second term, Hb, is more subtle. Its appear-
ance relies on the special value of kF =π/2a demanded by a half-filled fermion band [190].
For this value of kF , two right-moving fermions at kF have a total momentum 2kF = π/a,
which differs from the total momentum of two left-moving fermions (−2kF = − π/a), by
a reciprocal lattice vector, 2π/a. Hence it is possible to have an “umklapp” scattering event
between these, as in

Hb = 4(J1λ− 6J2)

∫
dx
[
�

†
R∇�†

R�L∇�L +�†
L∇�†

L�R∇�R
]
. (20.46)

Note that this is the only instance in this chapter where the precise value of kF has been
important – all other expressions apply for general kF and have been written as such.

We proceed to bosonize Ha and Hb using the prescriptions of Section 20.1. The case of
Ha is straightforward: we use (20.23) to write Ha as

Ha = 8(J1λ+ 2J2)

π2

∫
dx(∇φ)2. (20.47)
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This can be easily absorbed into the bosonized version of HF L in (20.21) by a redefinition
of vF and K . In this way we have shown that the Hamiltonian HF L + H12 is equivalent to
(20.21), but with the parameters

vF ≈ 4a

[
J1

(
J1 + 4(J1λ+ 2J2)

π

)]1/2

,

K ≈
[

1+ 4(J1λ+ 2J2)

J1π

]−1/2

. (20.48)

The values of the parameters only hold for small λ and J2; however, the general result of a
renormalization of vF and K , but with no other change, is expected to hold more generally.
Note that K �= 1, but the results in Section 20.1 were quoted for general K and can now
be used.

The consequences of Hb are slightly less trivial. We insert the expansions (20.30) into
Hb and generate a number of terms; the most important of these arises from simply using
the leading terms in (20.31), which yields

Hb = −v
∫

dx cos(4φ(x))+ · · · , (20.49)

where v ∼ (J1λ − 6J2). This is an important interaction modifying the simple Gaussian
action in (20.21). The final bosonized version of H12 is then given by the action

SSG =
∫

dxdτ

[
1

2πKvF

(
(∂τφ)

2 + v2
F (∇φ)2

)
− v cos(4φ)

]
. (20.50)

This action represents the so-called sine–Gordon model and its properties are examined in
the following subsection.

For now, let us note the physical implication of the cos(4φ) term and some related issues.
Recall from the commutation relations (20.20) that ∇φ is canonically conjugate to the
x–y order represented by the angular variable θ (see the relation above (20.25) that �θ =
−∇φ/π). Then we can write the cos(4φ) term as

exp

(
−4π i

∫ x

−∞
�θ(y)dy

)
+ h.c. (20.51)

In this form it is clear that this operator translates θ → θ + 4π for all y < x . But this
is the same as inducing a 4π vortex in the angular order parameter θ . Thus the effect of
the cos(4φ) term is to allow for 4π vortex tunneling events between different winding
number sectors of the angular variable θ representing spin ordering in the x–y plane. This
interpretation is also consistent with (20.26) and (20.46). In the latter equation we see that
Hb turns two left-moving particles into two right-moving particles, and so by the former
equation there must be a step of 4π in θ at the point this happens.

It is interesting that there is no 2π vortex event allowed above in H12. We see shortly
that the absence of such single vortices, and the presence only of double vortices, has
some important consequences. The single 2π vortices are certainly permitted on general
topological grounds, but to induce them requires modifying H12. One possibility is a stag-
gered exchange interaction
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H12 → H12 + J3

∑
i

(−1)i �̂σi · �̂σi+1. (20.52)

To obtain the bosonized version of this additional term, examine the structure of σ̂+i σ̂
−
i+1

under the mapping (20.32); the staggering of the exchange means that we have to pick up
the coefficient of (−1)i = ei2kF xi ; this gives us the term

∫
dx sin(2φ). The same term also

arises from the corresponding mapping using (20.34) of the σ̂ z
i σ̂

z
i+1 term. So we have the

operator correspondence

(−1)i �̂σi · �̂σi+1 ∼ sin(2φ). (20.53)

A second possibility is a staggered field in the z direction; by a very similar argument from
(20.34) we obtain the operator correspondence

(−1)i σ̂ z
i ∼ cos(2φ). (20.54)

The arguments in the previous paragraph show that adding either of the sin(2φ) or cos(2φ)
terms to SSG allows 2π vortex tunneling events. It is also interesting to note the fermionic
form of these 2π tunneling events. By reversing the bosonization mapping, it is simple to
see that (20.53) and (20.54) correspond to single-fermion scattering terms that turn left into
right movers and vice versa and change total momentum by 2kF . In contrast, the original
scattering term in (20.46) scattered two particles and changed momentum by 4kF .

20.2.1 Sine–Gordon model

We discuss some important properties of the sine–Gordon field theory SSG in (20.50) as a
function of the dimensionless coupling K and the dimensionful parameter v. The velocity
vF simply sets the relative scales of time and space but does not otherwise modify physical
properties.

We have already obtained results for SSG along the line v= 0. The model is a free,
gapless, Gaussian field theory characterized by the following T = 0 equal-time correlators〈

eipθ(x)e−i p′θ(0)〉 ∼ δpp′/x
p2/2K ,

〈
eipφ(x)e−i p′φ(0)〉 ∼ δpp′/x

p2 K/2; (20.55)

for p = p′ these results follow directly from (20.35)–(20.37), while for p �= p′ application
of (20.35) leads to an infrared divergent integral in the exponent, and so the correlator
vanishes. Note that these correlators are both power laws, indicating that the theory is
scale invariant along the line v = 0 (indeed it is conformally invariant). From (20.55) we
see that this is a line of critical points along which the exponents vary continuously as a
function of the dimensionless parameter K . The technology of renormalization group scale
transformations can therefore be applied freely at any point along this line. We can talk of
scaling dimensions of operators, and the results (20.55) show that

dim[eipθ ] = p2

4K
, dim[eipφ] = p2 K

4
. (20.56)

Also, the relativistically invariant structure of the derivative terms in SSG makes it clear
that the dynamic exponent z= 1. Using this, and the scaling dimensions (20.56) for p = 4,
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we immediately obtain the scaling dimension dim[v] = 2− 4K along the v = 0 line. This
can be written as a renormalization group flow equation under the rescaling �→ �e�:

dv

d�
= (2− 4K )v. (20.57)

So the critical fixed line v= 0 is stable for K < 1/2. However, this flow equation is not
the complete story, especially when K approaches 1/2. For |K − 1/2| ∼ |v| we see that
the term on the right-hand side is not linear in the small parameter v, but quadratic. To be
consistent, then, we also have to consider other terms of order v2 that might arise in the
flow equations. As we see below, there is a renormalization of K that appears at this order.

The flow equations at order v2 are generated using an approach similar to that used
in Section 12.1 for the N ≥ 3 rotor model in d = 1. As in (12.5), we decompose the
field φ(x, τ ) into a background slowly varying component φ<(x, τ ) and a rapidly varying
component φ>(x, τ ), which is out to order v2:

φ(x, τ ) = φ<(x, τ )+ φ>(x, τ ), (20.58)

where φ< has spatial Fourier components at momenta smaller than �e−�, while φ> has
components between �e−� and �. Inserting (20.58) into (20.50), to linear order in v we
generate the following effective coupling for φ<:

v

∫
d2 X 〈cos(4φ<(X)+ 4φ>(X))〉0

= v
∫

d2 X cos(4φ<(X))
〈
ei4φ>(X)

〉
0

= v
∫

d2 X cos(4φ<(X))e
−8〈φ2

>〉0

≈ v
(

1− 4K
d�

�

)∫
d2 X cos(4φ<(X)), (20.59)

where X ≡ (x, τ ) is a spacetime coordinate, the subscript 0 indicates an average with
respect to the free v = 0 Gaussian action of φ>, and d� = �(1 − e−�). When com-
bined with a rescaling of coordinates X → Xe−� to restore the cutoff to its original value,
it is clear that (20.59) leads to the flow equation (20.57). The same procedure applies to
quadratic order in v. As the algebra is a bit cumbersome, we only schematically indicate
the steps. We generate terms such as

v2
∫

d2 Xd2Y cos(4φ<(X)± 4φ<(Y )) exp (∓16〈φ>(X)φ>(Y )〉0)

= v2
∫

d2 Xd2Y cos(4φ<(X)± 4φ<(Y )) exp (∓ f (X − Y )d�) , (20.60)

where f (X − Y ) is some regularization-dependent function that decays on spatial scale
∼�−1. For this last reason we may expand the other terms in (20.60) in powers of X − Y .
The terms with the + sign then generate a cos(8φ) interaction; we ignore this term as
the analog of the arguments used to obtain (20.57) show that it is strongly irrelevant for
K ∼ 1/2. The terms with the − sign generate gradients on φ< and therefore lead to a
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VBS

Ising – Néel

Tomonaga–Luttinger

K

v

SU(2) symmetry

�Fig. 20.2 Renormalization group flow trajectories and phase diagram of the sine–Gordon modelSSG in (20.50), as obtained
from (20.57) and (20.61). The origin is at K = 1/2, v = 0. The attractive fixed line v = 0, K ≥ 1/2 controls the
Tomonaga–Luttinger liquid phase, which is described in Section 20.2.2. The points flowing off to v →−∞ are in
the VBS phase described in Section 20.2.3. Finally, the points flowing to v →∞ are in an Ising–Néel state discussed
in Section 20.2.4. The separatrices between these regions are v = ±(2K − 1)/

√
δ. The line v = (2K − 1)

√
δ

corresponds to the SU(2) symmetric H12 withλ = 1; different points on this line are accessed by varying J2/J1.

λ

J2 / J1

Tomonaga–
Luttinger
liquid

Ising–Néel

VBS

�Fig. 20.3 Phase diagram of H12, (20.1) deduced from the flows in Fig. 20.2 by [190]. The vertical lineλ= 1 has SU(2)
symmetry and maps onto the line v= (2K − 1)/

√
δ in Fig. 20.2. The multicritical point where all three phases meet

is the point v = 0, K = 1/2 in Fig. 20.2.

renormalization of K . In this manner we obtain the flow equation

d K

d�
= −δv2, (20.61)

where δ is a positive, regularization-dependent constant (it also depends upon K , but we
can ignore this by setting K = 1/2 in δ at this order).

A nearly complete understanding of the properties of SSG follows from an analysis
of (20.57) and (20.61). The flow trajectories are shown in Fig. 20.2: they lie along the
hyperbolae 4δv2 − (2 − 4K )2 = constant. There are three distinct possibilities for the
ultimate long-distance fate of the couplings, leading to three separate phases of SSG . We
consider each of these phases in the following subsections, followed by a discussion of the
critical lines and points between them. We also show the implications of the properties of
SSG for a phase diagram of H12 in Fig. 20.3, with some needed justification to follow in
the subsections below.



428 Spin chains: bosonization

20.2.2 Tomonaga–Luttinger liquid

For K ≥ 1/2 and |v| ≤ (2K − 1)/
√
δ, the flow is into the fixed line v= 0, K ≥ 1/2. This

line is described by the free Gaussian theory in (20.21) or (20.24) or (20.25). The ground
state is a spin singlet (total Sz = 0) and there are gapless excitations with a linear dis-
persion that lead to the T = 0 power-law decay of correlators in (20.40) and (20.41). The
dynamic finite-T properties follow from correlators such as (20.39), whose properties were
discussed in some detail in Section 10.4.3, where we considered the critical point of the
quantum Ising chain. The only change is that we now have a general exponent K (com-
pare (20.39) with (10.95)), but this does not make a qualitative change to the physical
discussion; only some quantitative factors change, and these can be easily computed for
arbitrary K .

20.2.3 Valence bond solid order

In this case the flow is toward v = −∞. This happens for all K ≤ 1/2 and v < 0, and for
K > 1/2, v < (1− 2K )/

√
δ (see Fig. 20.2).

The flow of |v| to large values indicates that the cos(4φ) term in SSG , (20.50) dominates
the long-distance properties. A good first step is to assume that this is the dominant term,
which then indicates that the values of φ will be pinned predominantly at the minima of
the cos(4φ) potential. For v < 0 these are at

φ = φn = (2n + 1)π/4, (20.62)

where n is an arbitrary integer. In principle, each value of n labels a different ground state
of SSG . However, φ is an angular variable, and physical observables depend only upon
gradients or trigonometric functions of φ; one observable that can distinguish between the
different φn is the staggered bond exchange energy in (20.53):〈

(−1)i �̂σi · �̂σi+1
〉 ∼ sin(2φn) = (−1)n . (20.63)

Thus there are only two distinct ground states, corresponding to even or odd values of n.
There is a spontaneously broken translational symmetry in both of these states owing to the
appearance of a staggering in the bond exchange energy. This is known as valence bond
solid (VBS) ordering, as discussed for the d = 2 case in Section 19.3.3; the VBS is also
referred to as a “spin-Peierls” state. A schematic of these VBS states is shown in Fig. 20.4.
We emphasize that this ordering appears spontaneously in H12 and is not induced by a
staggering of the exchange constants as in (20.52); the latter requires an explicit sin(2φ)
term in the action, which we have not included.

�Fig. 20.4 The two VBS ground states of H12. The thick lines represent larger values of 〈�̂σi · �̂σi+1〉, while the unmarked
near-neighbor pairs have smaller values.
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We consider the excitations above either of the ground states. From the framework of the
sine–Gordon theory it appears natural to parameterize φ(X) = φn + φ̃(X) and to expand
the action in powers of φ̃. At quadratic order the curvature at the minimum of the cos(4φ)
potential gives rise to a φ̃2 mass term, and so we can expect that there is a gap and the
lowest-lying excitation is a massive φ̃ particle. This expectation turns out to be incorrect,
and there is an alternative massive excitation with a lower energy. For reasons we shall not
fully discuss here, the most important excitation turns out to be a “soliton” (the reader can
consult the book by Rajaraman [389] for further details). This is a topological excitation
consisting of a localized lump at which φ interpolates between the two ground states. Thus,
for example, we have φ(x→∞)=φn and φ(x →−∞)=φn−1, and φ(x)moves between
the two limits in the immediate vicinity of some point x = x0. The disturbance around x0

can move, and this constitutes a quantum particle of mass�/v2
F . This solitonic particle has

a lower energy than the φ̃ particle for K > 1/8, and so, in keeping with the general notation
in this book, we have used the symbol � for the energy gap of the VBS state (the action
SSG is relativistically invariant and so the energy–momentum dispersion of the solitonic
particle is εk = (�2 + v2

F k2)1/2). The φ̃ particle can be considered as a soliton/antisoliton
bound state, and it is found to be stable toward decay into a pair of widely separated soliton
and antisoliton particles only for K < 1/4. In any case, the low-temperature properties are
dominated by those of a dilute gas of solitons and antisolitons for all K > 1/8.

It is also useful to have an interpretation of the soliton in terms of the underlying spin
Hamiltonian H12 [468]. Note that each soliton involves a change �φ = ±π/2. By the
relation (20.23) between gradients of φ and the charge density, we see that each soliton
carries a charge Q = ±1/2. This is to be contrasted with the charge Q = ±1 carried
by the underlying Jordan–Wigner fermion �F . Of course this charge is also equal to the
total spin Sz , and so the soliton is an Sz = ±1/2 particle – a spinon, in the terminology
of Section 19.3.4. This suggests the simple pictorial representation shown in Fig. 20.5: the
domain between the two VBS states requires a shift in the singlet bonds by one site, leading
to a free Sz = 1/2 spin at the boundary.

Note that the cos(4φ) in the action, representing tunneling only by ±4π vortices, was
crucial for the existence of free spinons. If we had an explicit staggering of the exchange
constants, as in (20.52), the resulting action would allow ±2π vortices with a correspond-
ing cos(2φ) term in the action, and a solitonic analysis similar to the one above would
show that excitations were particles with integer spin. This confinement of spinons is also
easy to understand from the pictorial representation in Fig. 20.5, as the explicit staggering
would lead to an energy cost proportional to the length of the “wrong” domain between
two spinons.

We turn to the low-temperature static and dynamic properties of this VBS phase. As
already noted, these are dominated by a dilute gas of Sz = ±1/2 particles. The latter sys-
tem can be analyzed using a method essentially identical to that employed in Section 12.2

�Fig. 20.5 A Q = 1/2 spinon excitation interpolating between the two VBS ground states of Fig. 20.4.
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for the low-temperature properties of the d = 1, O(3) quantum rotor model. In the latter
case, we had particles with Sz = 1, 0,−1; this is one of the main substantive differences,
and the presence here of particles with Sz = 1/2,−1/2 only leads to simple changes in
various numerical prefactors, for the physical properties of the transport of magnetization
density are identical to those discussed in Section 12.2. In particular, the spinon collisions
are described by the low-momentum S matrix in (12.13), with the m1, m2, m′1, m′2 now
taking the values ±1/2. (The arguments for this key property are the same as those pre-
sented below (12.13).) A second important difference is that the spin structure factor is not
given by a single-particle propagator as in (12.28)–(12.30); instead we have to consider a
convolution of two single-particle propagators, as in (19.72)–(19.75).

An explicit demonstration of the existence of the Sz = ± 1/2 spinons in this phase can
be given at the special value K = 1/4. This relies on a commonly used trick of “refermion-
ization” of sine–Gordon-like field theories in d = 1, and this appears to be a convenient
occasion to introduce it. Consider the fermionic fields

ψR ∼ e−iθ/2+i2φ, ψL ∼ e−iθ/2−i2φ. (20.64)

Note that θ/2 and 2φ obey the same commutation relations as those in (20.20), and so by
working backwards through the arguments leading to (20.31), we see that ψR,L are indeed
fermionic operators annihilating particles with a linear dispersion. By the same arguments
as those leading to (20.21) we may conclude that

−ivF

∫
dx

(
ψ

†
R
∂ψR

∂x
− ψ†

L
∂ψL

∂x

)
= vF

2π

∫
dx

[
4(∇φ)2 + 1

4
(∇θ)2

]
. (20.65)

However, this is precisely the Hamiltonian corresponding to the gradient terms in SSG at
K = 1/4. Furthermore, it is easy to see from (20.64) that the cosine term in SSG can be
obtained by bilinear combinations of the ψL ,R . So we have the remarkable result that, at
K = 1/4, SSG is equivalent to the free fermion Hamiltonian∫

dx

(
−ivFψ

†
R
∂ψR

∂x
+ ivFψ

†
L
∂ψL

∂x
+ �

vF

(
ψ

†
RψL + ψ†

LψR
))
, (20.66)

where� ∼ v multiplies a term arising from cos(4φ) in SSG . However, (20.66) describes a
free massive Dirac particle in d = 1. Also note that an identity analogous to (20.23) is

1

2

(:ψ†
RψR : + :ψ†

LψL :) = 1

π
∇φ; (20.67)

the leading 1/2 shows that the Dirac particle/antiparticles carry charges±1/2 and identifies
them as the spinons.

An important caution about the discussion above at K = 1/4 is in order. While the free
Dirac particle mapping gives an appropriate picture of the elementary excitations above the
ground state, its naive extension to T > 0 properties is quite misleading. In particular, if
the spinons were really free, their two-particle S matrix for the collision in Fig. 12.2 would
take the form

Sm1,m2
m′1,m′2

= (−1)δm1m2δm′1m′2; (20.68)
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here we have included the (−1) arising from the exchange of two fermions explicitly in the
S matrix. Comparing this with (12.13), we see a crucial difference in the structure of the
spin indices: the spins are now “passing through” the collision, rather than “bouncing off.”
In fact (20.68) is never the appropriate result for any realistic condensed-matter system,
and (12.13) always applies at low momenta. The important point is that it is not possible
to ignore additional “irrelevant” terms not explicitly included in SSG . When these terms
are carried through the refermionization above, they invariably lead to some four-fermion
scattering terms; such terms are always important in the scattering of massive particles in
d = 1, as discussed below (12.13), and lead to the “super-universal” S matrix in (12.13).

20.2.4 Néel order

Now the flow is toward v = +∞. This happens for all K ≤ 1/2 and v > 0, and for
K > 1/2, v > (2K − 1)/

√
δ (see Fig. 20.2).

The reasoning then closely parallels that in Section 20.2.3 for v→−∞. The important
minima of the cos(4φ) potential are at

φ = φ̃n = nπ/2. (20.69)

The physical properties of these minima are distinguished by the expectation value〈
(−1)i σ̂ z

i

〉 ∼ cos(2φn) = (−1)n . (20.70)

Thus there is a spontaneously broken symmetry characterized by a staggered expectation
value in the z component of the spins. This is a Néel state with an Ising symmetry; it is to
be contrasted with the Néel state in Section 19.3.3 in which the staggered moment could
point in any direction in spin space. Here the anisotropy in the Hamiltonian picks out the
z direction as a preferred one, and there is only a twofold degeneracy in the resulting
Ising/Néel ground state. (Note that a fully isotropic Néel state is not possible in d = 1, as
was indicated in Section 19.3.2, and discussed further below in Section 20.2.5.)

Apart from the shift in the minima of the cosine potential from (20.62) to (20.69) (and
the resulting difference in the physical interpretation of the broken symmetry of the ground
state), there is essentially no difference in the analysis of the fluctuations here from that in
Section 20.2.3; indeed, we can map v→ − v in SSG by the shift φ → φ + π/4. For
K > 1/8 the lowest lying excitations are massive Sz = ±1/2 spinons, which interpolate
between the two Ising/Néel ground states. Their collisions are described at low momenta
by (12.13), and the low-T properties are as in Section 12.2 with the modifications noted
above in Section 20.2.3.

20.2.5 Models with SU(2) (Heisenberg) symmetry

Here we focus on the special point λ= 1 in H12, where the Hamiltonian has full SU (2)
symmetry. We have argued in Sections 19.3.1 and 19.3.2 that this model should also be
described by the d = 1, O(3) nonlinear sigma model (19.51) with an additional topological
term (19.53) at θ = π (this θ represents the coefficient of the topological term and should
not be confused with the angular bosonization field θ used elsewhere in this chapter).
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The latter model is characterized by a single dimensionless coupling g (apart from the
momentum cutoff�), and we can answer the following important question: what trajectory
in the v–K phase diagram of SSG in Fig. 20.2 does the d = 1, O(3) nonlinear sigma model
at θ = π map onto as a function of g?

A first guess would be to simply set λ= 1 in the values of the couplings in (20.48)
and in the value of v below (20.49). However, these results hold for small λ and J2 and
are not acceptable for λ = 1. A strategy that works is the following: let us focus on the
Tomonaga–Luttinger phase of Section 20.2.2 and ask if there is any trajectory within it
which corresponds to λ = 1. If there was such a trajectory, then SU (2) symmetry demands
that the σ̂ z σ̂ z and σ̂+σ̂− correlators should decay with the same exponent. We compare
the expansions in (20.40) and (20.41) and notice that their leading terms coincide only at
K = 1/2 (the first subleading term also coincides at this value of K ). So one point with
SU (2) symmetry in Fig. 20.2 is the very symmetrical point in the center v = 0, K = 1/2.
Now if the renormalization group respects the underlying symmetry of the Hamiltonian,
points flowing into and away from v = 0 and K = 1/2 could also be SU (2) symmetric.
By examining the trends in (20.48), and in the value of v below (20.49), we are then led to
assert the following important result:

the line v = (2K − 1)/
√
δ has SU (2) symmetry, (20.71)

and therefore it corresponds to λ= 1 in H12; we access different points on this line by
varying J2/J1, and increasing J2/J1 corresponds to decreasing v and K . This line also
maps onto the O(3) nonlinear sigma model at θ = π , and increasing g also corresponds to
decreasing v and K . The renormalization group flow along this line is easily deduced from
either (20.57) or (20.61), and we have

dv

d�
= −2

√
δv2. (20.72)

This flow has a fixed point at v = 0, which corresponds to some critical value of J2/J1 =
J2c or g = gc, as in Fig. 19.1. The O(3) nonlinear sigma model also has an additional
unstable fixed point at g = 0, but that is inaccessible in the present sine–Gordon theory.
This fixed point corresponds to the classical limit S → ∞ (as g ∼ 1/S) and so it is not
surprising that it does not appear in an analysis set up explicitly for S = 1/2. Presumably,
the g = 0 fixed point is present somewhere in the large K , v region of Fig. 20.2.

All points with v > 0 (J2/J1 < J2c or g < gc) flow into v = 0 (Figs. 19.1 and 20.2).
For these values the ground state is a Tomonaga–Luttinger liquid with correlations given
by (20.40) and (20.41) at K = 1/2. The flow into the fixed point is logarithmically slow
(v(�) ∼ 1/� for large �), and this leads to logarithmic corrections to the correlators in a
manner rather similar to the d = 3 quantum rotor model examined in Chapter 14. This
critical state at v = 0, K = 1/2 is the closest a spin model in d = 1 can get to achieving
long-range Néel order – the equal-time order parameter correlations decay as 1/x . With-
out the topological term in the nonlinear sigma model, the correlations decay even faster
(exponentially) as discussed in Chapters 11 and 12.

Points with v < 0 (J2/J1 > J2c or g > gc) flow away to large negative values of
v. This puts us in the gapped VBS phase already discussed in Section 20.2.3. Additional
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support for this identification comes from an interesting exact result of Majumdar and
Ghosh [315,468]. They noted that at the special SU (2) symmetric point, λ = 1, J2 = J1/2,
it is possible to write down the exact wavefunction of the ground state of H12. It can be
checked that the following simple ansatz consisting of a product of pairs of singlet bonds
is an exact eigenstate of H12:

. . .B12B34B56B78 . . . , (20.73)

where Bi j = (| ↑〉i | ↓〉 j − | ↑〉 j | ↓〉i )/
√

2; this state is degenerate with its symmetry-
related partner

. . .B23B45B67B89 . . . (20.74)

Arguments proving that these are also the ground states are given by Majumdar and Ghosh.
It should be clear that these are precisely the VBS states sketched in Fig. 20.4. (We also
note that there are some interesting generalizations of the Majumdar–Ghosh construction
of exact ground states to antiferromagnets on the square lattice [52, 469] (one of which
has found a recent experimental realization [257, 343]), but these are for cases where the
Hamiltonian does not have the full square lattice symmetry.)

We can also use the flow equation (20.72) to deduce how the energy gap vanishes, or
the VBS order disappears, as v ↗ 0 (or g ↘ gc or J2/J1 ↘ J2c). The runaway flow for
v < 0 from the v = 0 fixed point in (20.72) has precisely the same structure as the flow in
(12.8) for the d = 1, O(3) rotor model. Using precisely the same arguments as those pre-
sented in Section 12.1 we may conclude here that the energy gap � ∼ exp(−1/(2

√
δ|v|))

for small |v|. Also, from (20.56), the VBS order parameter in (20.63) has scaling dimen-
sion dim[sin(2φ)] = 22 K/2 = 1; so its expectation value vanishes as 〈sin(2φ)〉∼�∼
exp(−1/(2

√
δ|v|)).

20.2.6 Critical properties near phase boundaries

There are three phase boundaries in Fig. 20.3 and we consider properties in their vicinity
in turn. The multicritical point where all three phases meet will not be considered since
this point lies on the SU (2) symmetric line λ= 1 and has therefore already been described
in Section 20.2.5.

We first consider the transition from the Tomonaga–Luttinger liquid to the Néel phase.
We cross the phase boundary by moving the initial values of v and K in Fig. 20.2 across
the separatrix v= (2K − 1)/

√
δ. Note that the last point within the Tomonaga–Luttinger

liquid is on the separatrix, which was asserted earlier to have λ = 1 and SU (2) symmetric
correlations. To understand the growth of the Néel order parameter, we have to examine
the flows from an initial point just across the separatrix, that is, from the point v = (2K −
1 + ε)/√δ for small ε. To facilitate integration of the flow equations (20.57) and (20.61)
we change variables to

y1,2 =
√
δv ∓ (2K − 1). (20.75)
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Then (20.57) and (20.61) become

dy1

d�
= y1(y1 + y2),

dy2

d�
= −y2(y1 + y2).

It is clear from these equations that one integral is simply y1 y2 = C , where C is a constant
determined by the initial conditions; the first equation is then easily integrated to give

tan−1 y1(�)√
C
− tan−1 y1(0)√

C
= √C�. (20.76)

By the usual scaling argument, the characteristic energy gap, �, in the Néel phase is of
order e−�∗ , where �∗ is the value of � over which y1 grows from an initial value of order
ε � 1 to a value of order unity. From the initial conditions, we expect the constant C to
be of order ε also, and so let us choose C = ε; then a straightforward analysis of (20.76)
gives us

� ∼ exp

(
− π

2
√
ε

)
. (20.77)

This singularity, and the flow analysis above, are characteristic of a “Kosterlitz–Thouless”
transition, which occurs in a variety of physical situations in both classical and quantum
systems (the reader may find more details in the book by Itzykson and Drouffe [244]).
Also note the difference between this singularity and that found for the SU (2) case in
Section 20.2.5 – there was no square root within the exponential in the latter case. By
arguments similar to those presented in Section 20.2.5, we may also conclude here that the
order parameter grows as ∼�.

The transition between the Tomonaga–Luttinger liquid and the VBS phase is essentially
identical to the above case, and little needs to be said. The energy gap in the VBS phase
obeys (20.77) near the phase boundary, and the VBS order parameter vanishes as ∼�.
We note that the terminus of the Tomonaga–Luttinger liquid again has K = 1/2, SU (2)
symmetric exponents because the flow is again into the v = 0, K = 1/2 point; this happens
even though the underlying model has λ < 1 (see Figs. 20.2 and 20.3).

Finally, let us consider the phase boundary between the VBS and Néel phases. This
coincides with the line K < 1/2, v = 0 in Fig. 20.2. Along this line correlations of both
order parameters decay with a power law determined by their common scaling dimension
(from (20.53), (20.54), and (20.56)) dim[sin(2φ)] = dim[cos(2φ)] = K , that is, equal-
time correlators decay as x−2K . For nonzero v an energy gap appears, and its magnitude
is determined by the relevant flow away from the v = 0 line in (20.57). This flow equation
tells us that 1/ν = dim[v] = (2− 4K ), and as z = 1, the energy gap � behaves as

� ∼ |v|1/(2−4K ). (20.78)

The scaling dimensions of the order parameters above show that they vanish as �K on
either side of the phase boundary.

One interesting feature of this last phase boundary deserves further comment. Note that
we have distinct broken symmetries on either side of the transition, characterized by very
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different order parameters, VBS and Néel. If we had attempted to construct a generic
Landau-like mean-field theory for such distinct order parameters, we would have con-
cluded that the two phases would not be separated by a second-order transition: a first-order
line or coexistence between the two phases is generic. Nevertheless, we have found here a
second-order transition across a line with continuously varying exponents. This is clearly
a consequence of the strong quantum fluctuations in a low-dimensional system, and mean-
field theory is not a suitable guide for the expected behavior. Recall also that a generic
second-order phase boundary between Néel and VBS phases has also been proposed in
certain collinear antiferromagnets in d = 2, as discussed in Section 19.3.5.

20.3 O(2) rotor model in d = 1

In Part II we examined the quantum/Ising rotor models in all spatial dimensions d and for
all values of the number of rotor components, N . Only one case was omitted, as noted in
Chapter 12: d = 1 and N = 2. For completeness, we discuss this case here, as only a
simple extension of the methods already introduced is necessary.

We consider a chain of O(2) quantum rotors (defined in Section 6.3 and (6.35)) with the
Hamiltonian

HR = Jg

2

∑
i

L̂2
i − J

∑
i

n̂i · n̂i+1, (20.79)

where n̂i are two-component unit vectors, there is only a single generator of O(2) rotations
L̂i on each site, and these operators obey the on-site commutation relations (6.34).

Let us parameterize

ni = (cos θi , sin θi ), (20.80)

and take the naive continuum limit of (20.79). This can be done using the methods dis-
cussed in Chapter 3; we obtain a continuum d = 1 quantum field theory for θ that has
precisely the same action as ST L in (20.25) but with the couplings

K ≈ π√
g
, vF ≈ √g Ja. (20.81)

Under this action, equal-time correlators, from (20.55), decay as

〈n̂i · n̂ j 〉 ∼ 1

|xi − x j |1/(2K )
. (20.82)

However, this is clearly not the complete story. This naive continuum limit has explicitly
prevented the introduction of vortices in the angular θ field. These are tunneling events in
which the spatial winding number

1

2π

∫
dx∇θ (20.83)
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changes between integer values. Such vortices can be conveniently introduced in the dual
φ field formulation, as discussed below (20.51). In the present situation elementary 2π
vortices are certainly allowed by the lattice Hamiltonian (20.79), and so by the arguments
just before and after (20.51) we obtain the dual action

S̃SG =
∫

dxdτ

[
1

2πKvF

(
(∂τφ)

2 + v2
F (∇φ)2

)
− ṽ cos(2φ)

]
. (20.84)

The most important difference from SSG in (20.50) is that we have a cos(2φ) rather than
a cos(4φ) term. Much of the analysis of SSG in Section 20.2.1 can now be applied. The
renormalization group equations (20.57) and (20.61) are modified to

d ṽ

d�
= (2− K )ṽ,

d K

d�
= −δ̃ṽ2.

This leads to a renormalization group flow diagram as in Fig. 20.2, but in the vicinity of
the point K = 2, v = 0 (instead of K = 1/2, v = 0). The model HR therefore has a
Kosterlitz–Thouless transition from a gapless phase with correlations decaying as (20.82)
to a gapped phase (the gap increases as in (20.77)), and equal-time correlations decay
exponentially as in (1.26). The exponent K takes the value K = 2 at this critical point.
This is the most important difference from the corresponding transition in H12 where we
had K = 1/2. As a result, the critical order parameter correlators decay as 1/x1/4. Also,
the excitations in the gapped phase carry charges Q = ±1. This is a consequence of the
transition being driven by single 2π vortices.

20.4 Applications and extensions

There is a great deal of experimental and theoretical work on S= 1/2 spin chains, and a
complete survey will not be attempted here. For a discussion mainly of neutron scattering
experiments see the review articles by Cowley [95] and Broholm [63]. Nuclear magnetic
resonance experiments have also been important in measuring thermodynamic and low-
frequency spin relaxation properties; a discussion of these may be found in [126,416,452,
486, 487, 499]. The VBS phase of Section 20.2.3 has an experimental realization in the
intensively studied compound CuGeO3, although the coupling between the spins and the
phonon excitations [97] almost certainly has to be considered for a complete understanding
of the experiments; a neutron scattering analysis may be found in [16], and a discussion of
some theoretical issues in [30,181].



21 Magnetic ordering transitions of disordered
systems

This chapter has been co-authored with T. Senthil, and adapted from the Ph.D. thesis of
T. Senthil, submitted to Yale University (1997, unpublished).

The last two chapters of this book move beyond the study of regular Hamiltonians that
have the full translational symmetry of an underlying crystalline lattice and consider the
physically important case of disordered systems described by Hamiltonians with couplings
that vary from point to point in space. By the standards of the regular systems we have
already discussed, the quantum phase transitions of disordered systems are very poorly
understood, and only a few well-established results are available. A large amount of theo-
retical effort has been expended toward unraveling the complicated phenomena that occur,
and they remain active topics of current research. The aims of our discussion here are
therefore rather limited: we highlight some important features that are qualitatively differ-
ent from those of nondisordered systems, make general remarks about insights that can be
drawn from our understanding of the finite-T crossovers in Part II, and discuss the proper-
ties of some simple solvable models.

In keeping with the general strategy of this book, we introduce some basic concepts by
studying the effects of disorder on the magnetic ordering transitions of quantum Ising/rotor
models studied in Part II; we also make some remarks in Section 21.4 on the effects of
disorder on the ordering transitions of Fermi liquids considered in Chapter 18. Models
with much stronger disorder and frustrating interactions that have new phases not found in
ordered systems are considered in Chapter 22.

Almost all of this chapter considers the following disordered Hamiltonians: for the case
N = 1, we generalize (10.1) to

HI d = −
∑

i

gi σ̂
x
i −

∑
〈i j〉

Ji j σ̂
z
i σ̂

z
j , (21.1)

while for N ≥ 2, we have the disordered version of (11.1):

HRd = 1

2

∑
i

gi L̂
2
i −

∑
〈i j〉

Ji j n̂i · n̂ j , (21.2)

where 〈i j〉 represents the sum over nearest neighbors on the sites, i , of a regular lattice, and
the couplings gi ≥ 0, Ji j ≥ 0 are random functions of position (note that gi has the dimen-
sions of energy, unlike the dimensionless g in (10.1) and (11.1), and the nondisordered case
obtains with gi = g J and Ji j = J ). The restriction that the couplings all be nonnegative
has an important simplifying consequence: there is no frustration in the exchange terms in
(21.1) and (21.2), and so for small enough gi , there is a magnetically ordered ground state,

437



438 Magnetic ordering transitions of disordered systems

characterized by the same order parameter used for the nonrandom case. In the present
case we define

N0 = 〈σ̂ z
i 〉, T = 0, (21.3)

where the overbar denotes an average over different disorder configurations, and the gen-
eralization to N ≥ 2 is obvious. For a specific realization of the disorder, the value of
〈σ̂ z

i 〉 in the magnetically ordered ground state varies from point to point due to the micro-
scopic disorder, but there is an average uniform component, which is measured by N0. This
average can be computed by summing 〈σ̂ z

i 〉 over all sites i for a specific realization of the
disorder, or by performing the disorder average as in (21.3) – the result is expected to be the
same. Now, as we raise the value of all the gi (say, by increasing their mean, while keeping
their variance fixed), we expect a phase transition at a critical value of ḡ = 〈gi 〉 to a quan-
tum paramagnet with N0 = 0; for sufficiently large gi , the strong-coupling methods of
Sections 5.2 and 6.1 apply and show that the ground state must be a quantum paramagnet.
It is this transition from a magnetically ordered state to a quantum paramagnet that forms
the basis of most of our discussion of quantum phase transitions in disordered systems in
this chapter.

We begin in Section 21.1 by discussing a general stability criterion that must be satisfied
by a quantum critical point in any disordered system. This leads to the requirement that the
correlation length exponent ν satisfy ν ≥ 2/d. Further general considerations appear in
Section 21.2 where we discuss the low-energy spectrum of the phases away from the criti-
cal point. The presence of disorder introduces the so-called Griffiths–McCoy singularities.
A first analysis of the models HI d and HRd appears in Section 21.3 using the field-theoretic
methods of Chapter 14. Two solvable cases of HI d are considered next: models near the
percolation transition in Section 21.5 and models in d = 1 in Section 21.6. Some conclud-
ing remarks then appear in Section 21.7.

21.1 Stability of quantum critical points in disordered systems

Because a random system is intrinsically inhomogeneous, it is not a priori clear that it
can display a sharp second-order phase transition at a specific average coupling ḡ = ḡc

(say) at which the response functions become singular. After all, the couplings vary from
point to point, and there will always be localized regions that are well away from the
critical point, even though the average coupling is critical; consistency requires that such
localized regions do not occur often enough. The restrictions this places on the classical
critical point were first considered by Harris [200], who actually looked at the simpler
question of whether the classical critical point of the nonrandom system was stable toward
the introduction of a small amount of disorder. However, the restrictions that emerge apply
also to quantum critical points of random systems, as was discussed by Chayes et al. [81]
who also presented a rigorous argument.
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We will be satisfied here presenting a simple heuristic argument, along the lines of
Harris [200]. Let us tune the transition by varying the value of ḡ. Focus now on any region
of size L; we can define a local critical point ḡc,r at which this region will cross over
from a magnetically ordered to a quantum paramagnetic state. The value of ḡc,r will not
necessarily equal the global value ḡc. We can expect that local random fluctuations will
cause a deviation of order L−d/2; this follows from the central limit theorem-like argu-
ment that the variance of order N = Ld independent random numbers (the local values of
gc) is of order

√
N . Such a deviation is significant if it starts becoming of order |ḡ − ḡc|.

This will happen at length scales shorter than L = Lr ∼ |ḡ − ḡc|−2/d . Now if Lr is
shorter than the correlation length ξ , then by the time we renormalize out to the scale
ξ ∼ |ḡ − ḡ|−ν , the system has unambiguously decided what its critical point is, and local
random fluctuations have been smoothed out. So we now have our stability requirement
L � ξ , or

|ḡ − ḡc|−2/d � |ḡ − ḡc|−ν . (21.4)

Consistency of (21.4) leads to the main result of this section:

ν ≥ 2

d
, (21.5)

an inequality that must be satisfied by all quantum critical points of disordered systems.
In our discussion above we considered the consequences of fluctuations in the local posi-

tion of the critical point. In a field-theoretic language, we can induce such a fluctuation by
perturbing the action with a random coupling multiplying the operator that tunes the sys-
tem across the transition. More generally, consider the case where the randomness couples
to some local operator O(x, τ ), which has a scaling dimension dim[O] = ζO . This means
that the effective action for the system will have an additional term∫

dd x
∫

dτr(x)O(x, τ ), (21.6)

where r(x) is a fixed random function of space only. We assume that the spatial correla-
tions in r(x) are short-ranged (i.e. r(x) and r(x ′) are considered as independent random
variables for moderate values of |x−x ′|). In contrast, note that as r(x) is time independent,
there is an infinite correlation “length” along the imaginary time direction. It is this long-
range correlation which makes the effects of randomness particularly severe in quantum
systems. Now consider averaging over the disorder using replicas (this method is discussed
briefly in Section 21.3). This generates a term δ2

∫
dd xdτ1dτ2

∑
ab Oa(x, τ1)Ob(x, τ2),

where δ2 is the variance of r , and a, b are replica indices. The scaling of δ2 is given by
power counting to be dim[δ′2] = d + 2z − 2ζO . This type of randomness is therefore
relevant if d + 2z − 2ζO > 0. For the case of the energy density, the scaling dimension
of the associated coupling constant is 1/ν, and so the dimension of the energy operator is
ζO = d + z − 1/ν; the criterion for its relevance then becomes ν < 2/d, as expected.
Conversely, such random fluctuations are perturbatively irrelevant if ν > 2/d.
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21.2 Griffiths–McCoy singularities

In addition to the singularities in the spectrum at the quantum critical point, all disordered
systems have additional “Griffiths–McCoy” (GM) singularities [180, 328, 329] that affect
the phases on either side of the critical point (related singularities are also present in the
statics and dynamics of classical spin systems [116, 117, 393]). The physics behind their
appearance is quite different from those of the critical singularities, and the complicated
interplay of these two distinct phenomena is at the heart of the difficulty of analyzing
quantum phase transitions in disordered systems. One possibility is that GM singularities
of the phases are quite weak and are simply idle spectators that are decoupled from the
critical singularities – they are then not part of the universal scaling functions describing
the crossover between the phases. At the other end of the possibilities, the GM and critical
singularities could be tightly coupled, with no sharp distinction between the two – the
GM singularities then become the critical singularities as one approaches the critical point.
In any case, theoretical analyses cannot deal with one without considering the other, and
unraveling the two is often quite difficult.

The central idea becomes clear by considering a specific case: the N = 1 model HI d (see
(21.1)). We are interested in the nature of the low-energy spectrum (ω→ 0) in the quantum
paramagnetic phase (ḡ > ḡc) not too far from the critical point; this is controlled by the
GM singularities. (Notice the order of limits (ω→ 0 followed by ḡ → ḡc) characterizing
these singularities; the opposite order of limits (ḡ → ḡc first and then ω → 0) lead to the
critical singularities.) In the nondisordered case there was an energy gap �+ ∼ (g− gc)

zν

and so all spectral densities vanished for ω < �+. We now argue, following [140, 142,
187, 400, 404, 503, 552] that there is no such gap for the disordered system, and there
is always a nonzero spectral density at arbitrarily low energies. Due to the randomness,
there would, in general, be a nonzero probability that any given bond is stronger than the
critical bond strength at which the system orders as a whole. This would happen in an
entire, compact region of linear size L with probability P(L) ∼ exp(−cLd), where c is a
constant determined by the microscopic couplings, width of the random distribution, etc.
Such regions constitute clusters of spins that are coupled strongly enough that if they were
infinite in size, they would order.

Consider any such cluster of size L . For large L , all the spins in the cluster behave
coherently in space, and it is legitimate to treat the cluster as a single giant spin in the
presence of some effective transverse field gL . Thus the cluster has two low-lying energy
levels with an energy difference 2gL well-separated from other higher energy levels. This
effective field, and hence the splitting between the two levels, goes to zero as L → ∞,
thus giving rise to broken symmetry and “long-range” order within the cluster. For finite
L , gL can be estimated in perturbation theory as the ratio of the transverse field to the
bond strength. To zeroth order of perturbation theory, there is no transverse field, and the
cluster has two degenerate ground states (all spins up or down) and other excited states
separated by a large energy (of order the bond strength). A nonzero transverse field breaks
this ground state degeneracy, and there remains instead a doublet with a nonzero but small
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splitting. It is clear that this effect will appear only in a large order of the perturbation theory
(= number of spins in the cluster) ∼Ld . Thus the splitting and hence gL are exponentially
small in Ld : gL ∼ ḡ exp(−c1Ld).

Now, we assume that different clusters in the system may be treated independently of
one another. Consider the density of low-energy excitations as measured by the disorder
average of the imaginary part of the local dynamic susceptibility, ImχL(ω) =

∫
ddk/

(2π)d Imχ(k, ω), with χ defined in (7.7):

ImχL(ω) =
∑
α

∣∣〈α∣∣σ̂ z
i

∣∣0〉∣∣2δ(ω − (Eα − E0)), (21.7)

where |α〉 refer to eigenstates of the system with energy Eα , and |0〉 is the ground state.
For low ω in the paramagnetic phase, the only contribution will be from the rare clusters
discussed above. Thus

ImχL(ω) ∼
∫

d L P(L)δ(ω − 2gL), (21.8)

∼
∫

d L e−cLd
δ
(
ω − he−c1 Ld )

, (21.9)

∼ ωd/z̃−1

(ln(1/ω))d/(d−1)
, (21.10)

where z̃ = c1d/c. Therefore we have the striking result that the paramagnetic phase is
gapless with a singular power-law (up to logarithmic corrections) density of states at low
energies. The power depends upon the nonuniversal exponent z̃ and could in principle
even lead to a divergent density of states at zero energy. This power-law singularity leads
to singularities in the thermodynamic properties of the system at low temperature. We
have chosen the informative notation z̃ for the exponent, as it plays the role of the dynamic
exponent for the GM singularities. The spectral density has units of density per unit energy,
or (length)−d/frequency, or the “scaling” dimension d − z̃ (the quotes emphasize that it is
really not appropriate to think of the GM singularities as reflecting some underlying scale
invariance).

The value of the exponent z̃ varies continuously with ḡ, and its limiting value as ḡ ↘ ḡc

is of some interest. However, it is important not to confuse this limiting value with the true
critical exponent z of the critical singularities at g = gc. For this we have, by (11.41),

ImχL(ω) ∼ ω(d−2+η)/z . (21.11)

The values of limḡ↘ḡc z̃ and z are obtained from χ ′′L(ω) by different orders of limits and
could, in principle, be distinct. There is numerical evidence in some simulations [403] that
these two quantities coincide for HI d , but there is no clear physical understanding why this
should be so.

We emphasize that the GM singularities arise due to the presence of statistically rare
clusters that are anomalously strongly coupled, and hence they are unique features of the
disordered system. The effect becomes weaker with increasing dimension, ultimately van-
ishing in the limit of infinite dimension. Increasing the range of the interactions also weak-
ens the effect – for infinite range interactions, there are no singularities. Finally, the effect
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is strongest for the N = 1 model with discrete symmetry. We turn below to the N ≥ 2
cases and find much weaker singularities.

The analysis of the N ≥ 2 case also focuses on the contribution of rare regions of size L
that are almost ordered. We found above that such regions had a gap of order exp(−c1Ld)

for N = 1, and we now need the corresponding result for N ≥ 2. For this, we first offer
an alternative interpretation of the magnitude of the gap for N = 1: we can model the time
evolution of the correlated region of size L as a one-dimensional classical Ising chain,
as is clear from the arguments in Section 5.5; this chain has an “exchange” of order Ld ,
and then the results (5.37) and (5.49) lead to the correct exponentially small gap. The same
interpretation also works for N ≥ 2; we again have an “exchange” of order Ld , but now, by
(6.23) and (6.32), the gap is inversely proportional to the exchange (i.e. it now takes a much
larger value of order L−d ). This larger gap indicates that the correlated region changes its
orientation far more frequently and is less important for the low-energy physics. Inserting
this gap into the analog of (21.10), we get

χ ′′L(ω) ∼
∫

d L e−cLd
δ(ω − c1/Ld), (21.12)

∼ exp(−cc1/ω), (21.13)

which is only a very weak essential singularity. It appears unlikely that such a weak GM
effect will play an important role in the fluctuations at the quantum critical point.

It should be mentioned here that the above analysis of models with a continuous O(N )
symmetry is special to the rotor models and does not apply to random versions of the
Heisenberg spin systems of Chapter 19. The GM of singularities of the latter are quite
strong and have been considered in [46,142].

21.3 Perturbative field-theoretic analysis

In this section, we attempt to analyze HI d and HRd for the case of weak disorder, by
extending the nondisordered system field-theoretic analysis of Chapter 14. For N = 1, the
very strong GM singularities, and the dominance of rare regions suggests that the field-
theoretic approach below is unlikely to be valid near the critical point. For N ≥ 2, the
weak GM singularities indicate that the field-theoretic approach is plausible.

A first question to ask is whether the nondisordered (or “pure”) fixed point is sta-
ble against disorder. The arguments of Section 21.1 show that this will be the case if
νpure > 2/d. For N = 1 we know that νpure = 1/2 for d ≥ 3, and νpure ≈ .632 for
d = 2 and νpure = 1 for d = 1; thus weak randomness is relevant for all dimensions
d < 4. A similar result holds for higher N . So for d > 4, sufficiently weak disorder should
not change the critical properties from those of the pure system. For d < 4, we might
hope that a renormalization group analysis would allow us to access a stable fixed point,
at least for small 4 − d. Such an analysis requires a disordered version of the pure sys-
tem field theory Sφ in (14.2). This is clearly realized by simply allowing all the coupling
constants to become random functions of the spatial coordinate x . However, as could be
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expected from the arguments above, the most important spatial dependence is that of the
parameter r , which controls the position of the critical point; we therefore consider the
disordered action

Sφd =
∫

dd x
∫

dτ

{
1

2

[
(∂τφα)

2 + c2(∇xφα)
2 + (r0 + r(x))φ2

α(x)
]
+ u

4!
(
φ2
α(x)

)2
}
,

(21.14)

with r(x) a random function of position with probability distribution P[r(x)]∼
exp(− ∫ dd xr2(x)/(2δ2)).

While it is possible to work directly with Sφd , the subsequent analysis is made simpler by
making an explicit average over disorder using the replica method. We do not discuss this
method in any detail here but refer the reader to introductory discussions in the literature
(e.g. the book by Fischer and Hertz [138]).

We are interested here in average correlators of the random system defined by∫
Dφe−Sφd O/Zd , (21.15)

where O is any observable, and note that the average over disorder must include the
disorder-dependent partition function, Zd =

∫
Dφe−Sφd , in the denominator. To over-

come this technical difficulty, we introduce n replicas of the field, φαa (a = 1, . . . , n is
the replica index). Then if the operator O involves only the field with n = 1, the integral
over the remaining replicas gives a contribution Zn−1

d in the functional integral over Sφd .
Now note that in the limit n → 0, this yields precisely the factor Z−1

d appearing in (21.15).
So the prescription of the replica method is to compute correlators with n arbitrary, and
then we take the peculiar step of analytically continuing to a system with n = 0 field com-
ponents. The advantage is that this allows us to average over the disorder in e−Sφd at an
early stage.

Introducing n replicas of (21.14) and then averaging over r(x), we obtain the following
translationally invariant action of the field φαa (α = 1, . . . , N , a = 1, . . . , n):

Sφd =
∫

dd x
∫

dτ
∑

a

{
1

2

[
(∂τφαa)

2 + c2(∇xφαa)
2 + r0φ

2
αa

]
+ u

4!
(
φ2
αa

)2
}

− δ2

2

∫
dd x

∫
dτdτ ′

∑
a,b

φ2
αa(x, τ )φ

2
βb(x, τ

′), (21.16)

where all summations over replica indices are explicitly noted. The renormalization group
analysis of this action can be carried out by standard methods – we simply treat n as an
arbitrary integer, and only take the n → 0 limit after the scaling equations are obtained. We
perturb the theory in powers of the nonlinearities u and δ2. First, simple power counting at
zeroth order gives us the flow equations:

dr0

dl
= 2r0,
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du

dl
= (3− d)u,

dδ2

dl
= (4− d)δ2. (21.17)

Thus δ2 becomes relevant below four dimensions, as expected from the arguments at the
beginning of this section. Note that the interaction strength u, however, remains irrelevant
down to d = 3. At next order, these flow equations get modified to

dr0

dl
= 2r0 + c1u − c2δ

2, (21.18)

du

dl
= (3− d)u − c3u2 + c4uδ2, (21.19)

dδ2

dl
= (4− d)δ2 + c5δ

4 − c6uδ2, (21.20)

where the ci are all positive constants. These equations do not allow for a fixed point for
small 4− d; instead δ2 has runaway flows, suggesting a fundamental instability in the per-
turbation theory. This is a disappointing result, and we are unable to obtain any reliable
information about the quantum critical point by this approach. Analysis of this problem by
the large-N expansion [268] also fails, again because of runaway flows for the strength of
the randomness. Thus the fixed-point theory presumably has a strong amount of random-
ness. At the level of the noninteracting theory, one expects that the lowest energy modes
will be strongly localized. Physically, it is clear then that we cannot ignore the effects of
interactions: condensation into a localized state leads to enhancement in interaction effects.
It is necessary to include both disorder and interactions in a fundamental way.

An alternative approach was taken by Dorogovstev [122] and Boyanovsky and
Cardy [54]. They extended (21.16) to a quantum field theory in d space and ετ time
dimensions; formally this amounts to replacing

∫
dτ by

∫
dετ τ and using the standard

field-theoretic methods of dimensional continuation. The quantum critical point of course
corresponds to ετ = 1, but these authors suggested making an expansion in small ετ . The
validity of such a procedure is not a priori clear because (21.16) represents the quantum
mechanics of a Hamiltonian system only for ετ = 1, and it is also clear that a small ετ
suppresses the GM singularities. Simple power counting shows that the equations for r0

and δ in (21.17) remain unchanged, while that for u gets modified to

du

d�
= (4− ετ − d)u. (21.21)

Now note that for small ετ , both u and δ become relevant about the u = δ = 0 fixed point
near d = 4. This allows interactions to control the instabilities due to disorder, and it raises
the possibility that a stable fixed point may be found. This was indeed shown to be the case
in [54], where it was found that a fixed point with nonzero disorder and interactions in a
double expansion in ετ and (4−d) exhibited conventional dynamic scaling with exponents

z = 1+ (4− N )(4− d)+ (2N + 4)ετ
16(N − 1)

,
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ν = 1

2
+ (13N + 20)(4− d)+ 4(6N + 11)ετ

32(N − 1)
, (21.22)

at lowest order for N > 1. It would be useful to examine the GM singularities of the para-
magnetic phase in this approach and to compute the value of z̃. This intriguing possibility
for future work could lead to further insight into the validity of the ετ expansion.

21.4 Metallic systems

We now turn to the random case of the transitions of metallic systems considered in
Chapter 18. We focus our attention here on the random version of the spin density wave
transition in Section 18.3. It is assumed here that disorder does not remove the paramag-
netic metallic phase itself, as may happen due to localization in low d (though, even for
this case, there can still be a magnetic phase transition). Also, we ignore the complexities
associated with the validity of the Hertz action which were investigated in Section 18.3.5.

We reverse the order of our discussion of the insulating quantum Ising/rotor models, and
first consider the analog of the field-theoretic analysis of Section 21.3. Then, the central
difference from the Ising/rotor models, as in the pure case, is that the frequency-dependent
ω2 term in the propagator for the order parameter gets replaced by a |ω| term as in (18.67).
In this manner, the replicated field theory (21.16) generalizes to

SHd =
∫

ddk

(2π)d
T
∑
ωn

1

2

[
k2 + |ωn| + r

]
|φαa(k, ωn)|2

+ u

4!
∫

dd xdτ
(
φ2
αa(x, τ )

)2

− δ2

2

∫
dd x

∫
dτdτ ′

∑
a,b

φ2
αa(x, τ )φ

2
βb(x, τ

′). (21.23)

This theory has been analyzed in a double expansion in (4− d) and ετ in [270].
Let us now turn to a discussion of the rare region arguments of Section 21.2, and con-

sider Griffiths–McCoy effects in random metallic systems. As was pointed out in important
recent work by T. Vojta and collaborators [225,226,529], the GM effects are actually much
stronger for metallic systems than they are for insulators.

For the case of the insulating Ising/rotor models, Section 21.2 focused attention on rare
nearly ordered regions of size L , and computed the quantum dynamics of this single region
on its own. By considering the quantum tunneling between the degenerate ordered states, it
was found that the order parameter correlations decayed exponentially in a time τ given by

τ ∼
{

exp(c1Ld), N = 1

Ld , N ≥ 2
insulators. (21.24)

Let us now consider the quantum dynamics of a similar ordered region in a metallic
system. Then we can represent it by a path integral over the order parameter φα(τ) using
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an action obtained by localizing (21.23) to a single site, and Fourier transforming the |ω|
to imaginary time dependence ∼ 1/τ 2; this yields

SV

Ld
= −

∫
dτ
∫

dτ ′φα(τ)φα(τ
′)

(τ − τ ′)2 + u
∫

dτ(φ2
α(τ )− m2)2; (21.25)

here m is the mean order parameter in the cluster. Thus the quantum tunneling of a single
cluster maps onto the one-dimensional classical statistical mechanical model defined by
(21.25): this is a classical N component spin system with inverse square ferromagnetic
interactions. Such spin systems have been thoroughly studied, and they have the following
correlation “times” at large, but finite L:

τ ∼
{∞, N = 1

exp(c2Ld), N ≥ 2
metals. (21.26)

For N = 1, the infinite correlation time for N = 1 in (21.26) implies the presence of
long-range order. In the quantum context, this means that a cluster of large, but finite, size
L has its quantum tunneling suppressed by the dissipation from the low-energy metallic
excitations. Thus at T = 0, even a rare cluster can acquire an ordered moment on its
own. Vojta [529] examined the implication of this result for the thermodynamic system,
using probabilistic arguments similar to those in Section 21.2. He concluded that such
effects led to a smeared transition. Thus in the presence of metallic dissipation, there is no
quantum phase transition as a function of the couplings, and there are always rare regions
that contribute a nonzero ordered moment.

For N ≥ 2, the key observation is that the correlation time in metals in (21.26) has a
similar functional form to that for insulators at N = 1 in (21.24). We can immediately
conclude that the GM singularities in the N ≥ 2 metallic systems are the same as those for
the insulating random quantum Ising model, which were computed in Section 21.2. Hoyos
et al. [226] argued that this correspondence extended also to the quantum critical point:
the N ≥ 2 metallic systems do have a sharp quantum phase transition, and its universality
class is the same as that of the insulating random quantum Ising model. Detailed numerical
studies [113,114] in the large-N limit have provided strong numerical evidence in support
of this rather surprising conclusion.

The above conclusions reinforce the importance of the studies of the random quantum
Ising model. So far, we have studied their GM singularities in Section 21.2, and examined
a field-theoretic approach to their quantum critical point in Section 21.3. As we indicated
earlier, the very strong GM singularities, and the dominance of rare regions suggests that
the field-theoretic approach is unlikely to be valid near the critical point. The studies in the
following two sections present evidence that this is indeed the case.

We focus on two simpler insulating models, which are amenable to an essentially exact
analysis. Both models are restricted to the Ising case N = 1 and have very strong GM sin-
gularities. We are able to explicitly follow their evolution upon the approach to the critical
point: we find that in these cases the GM singularities in fact become the critical singular-
ities, and the resulting dynamic scaling is quite different from the one suggested above in
(21.22) by the small ετ expansion above. Interpretations and attempts at a synthesis follow
in the final section.



447 21.5 Quantum Ising models near the percolation transition

21.5 Quantum Ising models near the percolation transition

We consider here a special limiting case of the quantum Ising model HI d in (21.1). Con-
sider the following probability distribution of the exchange interactions:

Ji j =
{

0 with probability p,

J with probability 1− p,
(21.27)

and let us choose, for simplicity, all the transverse fields gi = g site independent (the
results discussed below can be shown to hold also for a random distribution of gi ). Hence
two neighboring sites either interact with an exchange J (such sites are “connected”) or
they have no direct coupling. Sets of mutually connected sites form clusters, and much is
known about the geometry of such clusters in d spatial dimensions. (This is the geomet-
rical “percolation” problem, and we quickly review some needed results for percolation
theory in Section 21.5.1.) This sharp separation of sites into sets of disconnected clusters
is an important simplifying feature and allows us to obtain a number of exact proper-
ties of the quantum critical point for general d . This simplification clearly relies upon the
fact that Ji j becomes precisely zero with probability p. After our review of percolation
in Section 21.5.1, we consider the classical Ising model (with g = 0) at nonzero T in
Section 21.5.2 and finally consider the nonzero g case in Section 21.5.3.

21.5.1 Percolation theory

Removing bonds on a lattice with probability p (see (21.27)) yields the statistical problem
of the geometry of connected clusters on the diluted lattice. This has been reviewed in the
book by Stauffer and Aharony [488], and we will quote some needed results. There is a
critical pc, such that for p > pc there are (in the thermodynamic limit) only connected
clusters of a finite size, while for p < pc there is a thermodynamically large connected
cluster. Right at p = pc, there are a large number of clusters with a broad distribution of
sizes. These clusters are known to have a fractal structure. Though no cluster is thermo-
dynamically large (i.e. the ratio of the number of sites in any cluster to the total number of
sites in the system tends to zero in the thermodynamic limit), there is an infinite connected
cluster with a fractal dimension d f < d. An important fact about the critical percolating
cluster is that it consists of arbitrarily long one-dimensional segments, which are crucial
for its connectedness. Breaking these segments splits the cluster into two disjoint units.

For p > pc there is a finite probability that any given site belongs to the infinite cluster;
this probability vanishes as p ↘ pc with the power law∼ (pc− p)βp . We can also consider
the probability P(N , p) that any site belongs to a finite, large cluster of N sites; for p close
to pc this satisfies the scaling form

P(N , p) ∼ N ′−τG
(
N/ξd f

)
, (21.28)

where ξ ∼ |p − pc|−νp is a characteristic finite cluster size, which diverges at p = pc;
τ , d f , and νp are universal critical exponents; and G is a universal scaling function.
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The exponents and scaling functions have been computed either exactly or numerically
in d = 2 and 3, and we simply treat them here as known quantities. For some of our later
results, we also need the limiting form of the function G(y); it approaches 1 for y � 1,
while for y � 1,

G(y, p > pc) ∼ y−θ+τ e−c+y,

G(y, p < pc) ∼ y−θ ′+τ e−c−y1−1/d
, (21.29)

where θ and θ ′ are additional known exponents.
Finally, we also need information on the correlation between pairs of sites. For

p ≥ pc the probability that two sites belong to the same cluster decays for large x as
∼ x−d+2−ηp F(x/ξ), where ηp is another exponent (2βp = (d − 2 + ηp)νp) and F a
scaling function.

21.5.2 Classical dilute Ising models

We warm up with a discussion of the properties of the classical Ising model, where g = 0
and T is nonzero; its phase diagram is shown in Fig. 21.1. At p = 0, as T is increased,
there is a phase transition from an ordered state to a disordered one (see Fig. 21.1). On
the other axis, when T = 0 there is a percolation transition at p = pc; this transition
coincides with loss of magnetic long-range order, as there is no infinite cluster and hence no
spontaneous magnetization for p > pc. The boundary of critical temperatures T = Tc(p)
approaches zero at p = pc as Tc ∼ ln(1/(pc − p)). These results can be understood
in the following way. As we mentioned earlier, the critical percolating cluster consists of
a number of arbitrarily large one-dimensional segments. These segments are the weakest
links in the cluster; correlations in the cluster will be destroyed if they are destroyed along
the segments. From the low-temperature behavior of the classical Ising chain in Section 5.5,
we know that any finite T will destroy correlations in a large segment over a length scale
ξT that is exponentially large in 1/T . Now consider the infinite cluster at p < pc. This
resembles the critical clusters at scales � ξ , where ξ ∼ (pc − p)−νp is the percolation
correlation length. At larger scales, there is a crossover to the geometry of a d-dimensional

p

T

pc

Magnetic
order

Thermal
Paramagnet

�Fig. 21.1 Phase diagram of the classical dilute Ising model at finite temperature. The dilution probability is p. The phase
boundary goes to zero as p → pc as Tc ∼ 1/ ln(1/(pc − p)).
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lattice. Thus thermal effects will destroy correlations in this cluster when ξT ∼ ξ , which
leads to Tc ∼ ln(1/(pc − p)).

21.5.3 Quantum dilute Ising models

We are ready to consider the T = 0 properties of the quantum Ising model for g �=
0. Its phase diagram as a function of g and p is shown in Fig. 21.2. At p = 0, as g
is increased, there is a T = 0 transition from a magnetically ordered ground state to a
quantum paramagnetic state, which is in the universality class of the models of Part II. On
the other axis, when g = 0, so that the system is classical, there is a percolation transition
at p = pc. For p < pc, for small enough g, the system retains long-range order. This
is ultimately destroyed for some g > gc(p), with gc(p) expected to be a monotonically
decreasing function of p. In contrast, if p > pc, there is no long-range order for any g.

We now argue, as first noted by Harris [124, 201, 491], that the phase boundary of
Fig. 21.2 remains vertical at p = pc for a finite range of g ≤ gM ; we then show that
a number of properties of the quantum phase transition across this vertical phase boundary
can be computed exactly, as shown in [461]. The system in fact remains critical along the
line p = pc, g < gM ; to see this, note that, although there is no thermodynamically large
connected cluster at pc, there remains an infinite connected cluster with a fractal dimension
smaller than d . The spins on this cluster align together at g = 0. A small but nonzero g is
not sufficient to destroy this order on the critical cluster. That this is true can be seen by the
following argument: the critical cluster is definitely more strongly connected than a one-
dimensional chain of Ising spins. Even in d = 1 where fluctuation effects are strongest, a
small g preserves long-range order in the Ising spins, as we know from Chapter 10. Thus a
small g will certainly preserve the order in the critical cluster. Note that the effects of quan-
tum fluctuations are thus quite different from the effects of thermal fluctuations discussed
in the previous section. The root of this difference lies in the observation that whereas any

p

g

pc

Magnetic
order

Quantum
Paramagnet

MgM

�Fig. 21.2 Phase diagram of the dilute Ising model in a transverse field (g) at T = 0. The dilution probability is p. The
multicritical point M is at p = pc , g = gM. The quantum transition along the vertical phase boundary (g < gM,
p = pc ) is controlled by the classical percolation fixed point at p = pc , g = 0; quantum effects (due to a nonzero g)
are dangerously irrelevant and lead to activated dynamic scaling near the g < gM, p = pc line.
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amount of thermal fluctuations destroys the order in the d = 1 Ising chain, it takes a finite
strength of quantum fluctuations to do so. In fact, two spins on any sufficiently large finite
cluster remain strongly correlated with each other in space for small g. (Of course, for a
finite cluster there will be no long-range correlation in time.) The critical cluster eventually
loses order when g reaches gM .

Let us consider the equal-time two-point spin correlation function C(x, 0) (see (10.2)).
Spins at points 0 and x are correlated only if they belong to the same cluster; however, as
argued above for g < gM , once two spins are on the same cluster, they have an essentially
perfect correlation (normalized to unity) even if they are very far apart. So the disorder-
averaged C(x, 0) will be simply proportional to the probability that the two spins are on
the same cluster; by the results of Section 21.5.1 we can then conclude at p = pc and for
h < hM , C(x, 0) ∼ x−d+2−ηp . Therefore this line is critical with exponents given by that
of ordinary percolation.

We can also compute a variety of static, dynamic, and thermodynamic properties across
the p = pc, g < gM critical line.

First, we describe some static properties. By precisely the same arguments as those
above for p = pc, we can conclude that for p ≥ pc, C(x, 0) ∼ x−d+2−ηp F(x/ξ); so the
off-critical exponents and crossover functions are also those of percolation. For p < pc,
the spontaneous magnetization, N0, is simply proportional to the probability that a given
site lies on the infinite cluster, and so N0 ∼ (pc − p)βp .

Now consider dynamic correlations. We compute the low-energy part of the contribution
to χ ′′L(ω) by a cluster of N sites. The mean χL can then be computed by an average over
P(N , p). The energy levels of a cluster of N sites can be described for g � J as follows:
the two lowest levels correspond to the states of a single effective Ising spin with magnetic
moment ∼N in an effective transverse field geff,N . For large N , geff,N can be estimated
in N th-order perturbation theory to be g̃ exp(−cN ), as discussed in Section 21.2. The
quantities g̃ and c are of order h and ln(J/g), respectively, but their precise values depend
on the particular cluster being considered. As the distributions of g̃ and c are not expected
to become very broad near the transition, we replace them by their typical values g0 and c0,
respectively. Apart from these two lowest levels, there are other levels separated from these
by energies ∼J . These can be ignored for the low-energy physics, and for small ω � g,
we only need to consider large clusters. Averaging over all sites using P(N , p) as written
in (21.28), we obtain

χ ′′L(ω) ∼
∫

d N

N τ−1
G
(

N/ξd f
)
δ
(
ω − g0e−c0 N

)
∼ 1

ω(ln(g0/ω))τ−1
G

(
ln(g0/ω)

c0ξ
d f

)
. (21.30)

This scaling form describing the dynamical properties across the vertical transition line in
Fig. 21.2 is one of the central results of this section, and the reader should pause to consider
its implications. Its most striking feature is that the characteristic length ξ scales as a power
of the logarithm of the frequency ω; this is known as activated dynamic scaling and should
be contrasted with the conventional behavior (considered in Section 21.3) where ω ∼ ξ−z .
The exponent z is effectively infinite if the dynamic scaling is activated. In the present
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case, the critical point p = pc contains clusters of all sizes, and as we have already seen,
the characteristic excitation energy of a cluster of size L scales as exp(−cLd f ), which
indicates the origin of the activated scaling.

The explicit results for the function G in (21.29) allow us to study the low-energy spec-
trum across the transition. For p > pc we get

χ ′′L(ω) ∼
ωd/z̃−1

(ln(g0/ω))θ−1
, (21.31)

which, apart from logarithms, is of the form (21.10) discussed earlier as a consequence of
GM singularities. The dynamic “exponent” z̃ can be explicitly computed, and we find

z̃ ∼ ξd f ; (21.32)

that is, z̃ diverges as we approach the quantum critical point. So the value of limp↘pc z̃
coincides with the activated dynamic scaling value of z = ∞. Precisely at p = pc, the
conventional dynamic scaling result (21.11) is replaced here by

χ ′′L(ω) ∼
1

ω(ln(g0/ω))τ−1
. (21.33)

Finally, on the ordered side with p < pc, the presence of the infinite cluster (and the
associated long-range order) gives rise to a delta function at ω = 0; for ω �= 0, χ ′′L(ω) is
still determined by contributions from the finite clusters, and we find

χ ′′L(ω �= 0) ∼ (1/ω)(ln(g0/ω))
1−θ ′ exp

(
−κ(ln(g0/ω))

1−1/d
)
, (21.34)

with κ ∼ ξ−d f (1−1/d). Again the system is gapless, reflecting the GM singularities of the
ordered phase.

Now we turn to the thermodynamic properties. The magnetization in response to a uni-
form external applied magnetic field h coupling to σ̂ z can be calculated similarly by an
average over the response of clusters of size N . For small h � g, only large clusters con-
tribute, and the magnetization per site is that of an Ising spin of magnetic moment N in a
transverse field geff,N ; it is therefore given by

MN (h) = Nh

((Nh)2 + g2
eff,N )

1/2
. (21.35)

Thus the total magnetization per site (after subtracting the regular contribution of the infi-
nite cluster for p < pc) is

M(h)− M(h = 0) ∼
∫

d N
1

N τ−1
G
(

N/ξd f
)

MN (h). (21.36)

The singular part therefore has the scaling form

Msing(h) ∼ 1

(ln(g0/h))τ−2
�M

(
c

ln(g0/h)

ξd f

)
, (21.37)
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�Fig. 21.3 Finite-temperature phase diagram for g < gM. The dashed lines (T ∼ 1/ ln(1/|p− pc|)) represent crossovers
from the high-T regime, characterized by spin fluctuations on the critical infinite cluster, to the low-T regimes. The
solid line for p < pc is the phase transition (T = Tc ∼ 1/ ln(1/(pc − p))where long-range order is destroyed.

with c a nonuniversal constant and�M (y) a universal function, which is related to G(y) by
�M (y) =

∫∞
1 w1−τdwG(wy). Thus the consequence of activated scaling is that a power

of the logarithm of the field scales as the correlation length. Using our earlier results for
G, we can conclude that for p > pc, Msing(h) rises as a power of h, with a continuously
varying exponent that approaches 0 as p ↘ pc, and so the linear susceptibility diverges
over a whole region. At p = pc the magnetization is a power of ln(1/h). On the ordered
side, p < pc, d M/dh ∼ 1/h with weak corrections; thus the linear susceptibility diverges
in the ordered side as well.

What about the finite-T properties of this quantum Ising model? For the classical dilute
Ising model at p = pc, the correlation length at finite T behaves as exp(constant/T ). This
is essentially due to the presence of one-dimensional segments in the critical percolating
clusters. For the quantum problem for g < gM , these one-dimensional segments would
give rise to a thermal correlation length (ξT ) with a similar exponential dependence on
1/T and a prefactor that is a power law in T ; this is the behavior in the “high-T ” region
of Fig. 21.3. Away from the critical point, the crossovers are as shown in Fig. 21.3. The
low-T behavior appears when ξ ∼ ξT , or T ∼ ln−1(1/(|p − pc|). On the paramagnetic
side, the low-T system is described well as a collection of rigid Ising clusters with effec-
tive transverse fields and a size distribution as before; this leads, for instance, to a linear
susceptibility χT ∼ T−1+κ (up to log corrections) with κ ∼ ξ−d f . On the ordered side,
there is a finite-temperature phase transition; as in the classical case, as p ↗ pc, the transi-
tion temperature falls to zero as Tc ∼ ln−1(1/(pc − p)). Finally, it would be interesting to
understand the real-time dynamics at nonzero T , along the lines of our analysis in Part II.
This remains an open problem of considerable experimental interest.

In summary, we have presented a simple example of a random quantum transition in
dimensions d > 1 that exhibits activated dynamics scaling with ln(1/energy scale) ∼ ξd f .
There were Griffiths–McCoy regions on either side of the transition, with a singular density
of states and a diverging susceptibility. Theoretically, an important feature of this transition
is that it was controlled by a classical, static, percolation fixed point at g = 0, p = pc, with
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dynamic, quantum fluctuations being “dangerously irrelevant.” To see this, consider again
the calculation of the field-dependent magnetization at the critical point. At the fixed point
with g = 0, all the spins in the system align for any strength of the external field and the
magnetization per spin would be 1 for any (positive) value of the field. This is, however, not
correct. Quantum fluctuations prevent spins belonging to small clusters from contributing
anything to the magnetization. Spins belonging to large clusters, however, contribute an
amount of order 1. The crossover occurs for a cluster size Nh ∼ ln(1/h). The leading
scaling result is obtained by aligning all clusters with size bigger than Nh . Similarly, for
the dynamics, the spin autocorrelation function is clearly just 1 at all times at the fixed
point as it is classical. (Hence, we may describe such fluctuationless fixed points as static.)
Again this is not correct, and we need to include the irrelevant quantum fluctuations to get
the results we presented earlier.

21.6 The disordered quantum Ising chain

This section examines HI d in (21.1) in dimension d = 1. In this case, as was shown
by Fisher [140, 142], we find that for a general distribution of the couplings gi , Ji,i+1

the quantum phase transition exhibits activated dynamic scaling very similar to that intro-
duced in Section 21.5 for models on percolating clusters. This result is established using a
renormalization group analysis of the entire probability distributions of the gi and Ji,i+1,
and it relies on the fact that these probability distributions become extremely broad at
low-energy scales. So if we focus on the response at a given energy scale, ω, all cou-
plings of nearby sites are either much smaller or much larger than ω: this suggests that
we can set all the small couplings to zero and tightly couple the spins into clusters with
the large couplings. This clustering now appears quite similar to the percolation model
of Section 21.5 and explains the appearance of activated dynamic scaling in the present
situation.

We begin by setting up the renormalization group analysis that will establish the above
claims. We assume that the distribution of couplings is broad to begin with. Subsequent
analysis shows this assumption to be self-consistent, and the resulting renormalized dis-
tributions have a large basin of attraction. The basic idea behind the procedure, first used
by Dasgupta, Ma, and Hu [110, 313] in their study of the random antiferromagnetic spin
chain, is to successively decimate the strongest coupling

� ≡ max{gi , Ji,i+1}, (21.38)

in the chain and get an effective Hamiltonian for the low-energy degrees of freedom. Con-
sider the case when the maximum coupling is a field, say gi . We first solve for the part
of the Hamiltonian involving gi : the ground state is the symmetric combination |+〉i =
(| ↑〉i + | ↓〉i )/

√
2, while the excited state |−〉i = (| ↑〉i − | ↓〉i )/

√
2 is an energy 2gi

higher (see Section 5.2). As gi is the largest energy around, it is legitimate to project the
remaining Hamiltonian into the space with the state at i constrained to be |+〉i , thereby
eliminating the site i . This can be done in a simple perturbation theory in 1/gi , and to
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lowest nontrivial order the result is a new effective bond between the sites i − 1 and i + 1
of strength

J = Ji−1,i Ji,i+1

gi
. (21.39)

We now have a new random quantum Ising chain with one fewer sites and one fewer bonds.
However, if the maximum coupling is a bond, say Ji,i+1, we first solve for the part of

the Hamiltonian involving Ji,i+1. This is just the exchange interaction between the spins at
sites i and i + 1: its ground state is doubly degenerate, | ↑〉i | ↑〉i+1 or | ↓〉i | ↓〉i+1, and the
two excited states with the spins oriented in opposite directions are energy 2Ji,i+1 higher
(see Section 5.3). Clearly, we may think of the two degenerate ground states as correspond-
ing to the two states of a single effective Ising degree of freedom with a magnetic moment
equal to the sum of the moments of the individual spins. For large Ji,i+1, it is legitimate to
project the remaining Hamiltonian into the space with the spins at i and i + 1 constrained
to be in the same state. Again, we do this in second-order perturbation theory. The result is
that the two sites i and i + 1 are replaced by a single Ising spin with an effective transverse
field of strength

g = gi gi+1

Ji,i+1
. (21.40)

To this order of perturbation theory, the interaction of this effective site with the neighbor-
ing spins remains unmodified. We now again have a random quantum Ising chain with one
fewer sites and one fewer bonds.

This decimation procedure is the basic renormalization group transformation. The strat-
egy is to iterate this transformation till the maximum remaining coupling is of the order
the energy at which we wish to probe the system. Note that no correlations are introduced
between any of the couplings by this procedure. Thus the different bonds and fields con-
tinue to be independent random variables, though with probability distributions that are
renormalized.

It is convenient to convert these recursion relations into flow equations for the distribu-
tions. From the form of the recursion relations, it is clear that it is natural to work in terms
of the logarithmic variables. We therefore define

� = ln(�I /�),

ζ = ln(�/J ) ≥ 0,

β = ln(�/g) ≥ 0, (21.41)

where �I is the maximum coupling in the initial distributions, and � is the maximum
at any given stage of the renormalization group. We denote the normalized probability
distribution for the exchange constants by P(ζ ;�) (satisfying

∫∞
0 dζ P(ζ ;�) = 1), and

similarly the probability distributions for the transverse field by R(β;�). As we reduce the
high-energy cutoff �, notice that � becomes larger. The ultimate low energy is therefore
controlled by the limit � → ∞, and we are interested in the forms of the distributions P
and R in this limit.
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This paragraph contains a few intermediate steps showing how to transcribe the trans-
formations (21.39) and (21.40) into partial differential equations for P(ζ ;�) and P(β;�);
readers not interested in the details can move on to the next paragraph. Let N (�) be the
total number of clusters at scale �, NB(ζ, �) be the total number of bonds of strength ζ
at this scale, and NS(β, �) be the total number of sites with transverse field of strength β.
Then, by definition

P(ζ ;�) = NB(ζ, �)

N (�) , R(β;�) = NS(β, �)

N (�) . (21.42)

Now perform the basic renormalization group transformation by increasing � by an
infinitesimal amount d�. This involves eliminating bonds with ζ ≈ 0 and sites with β ≈ 0.
In terms of �I instead of � we have ζ = ln(�I /J ) − �, and so when � is changed, ζ
changes by dζ = −d�, and similarly for β. Therefore all bonds and sites with 0 < ζ ,
β < d� are eliminated, which implies

N (� + d�) = N (�)− d� [NB(0, �)+NS(0, �)] . (21.43)

Now consider the changes in NB(ζ, �). The transformation (21.39) will remove two bonds
and add a new one. This leads to

NB(ζ, � + d�) = NB(ζ − dζ, �)+ d�
∫

dζ1dζ2NS(0, �)P(ζ1;�)P(ζ2;�)
× [δ(ζ − ζ1 − ζ2)− δ(ζ − ζ1)− δ(ζ − ζ2)] ; (21.44)

the first term within the square brackets represents the new bond that has been created and
thus increases the probability (the delta function multiplying it is the logarithmic version
of (21.39)), while the next two terms represent the two eliminated bonds. A very similar
result holds for NS from the transformation (21.40).

By combining (21.42)–(21.44) we obtain the required differential equations for the prob-
ability distributions:

∂P(ζ ;�)
∂�

= ∂P(ζ ;�)
∂ζ

+ P(ζ ;�)(P(0;�)− R(0;�))

+ R(0;�)
∫

dζ1dζ2 P(ζ1;�)P(ζ2;�)δ(ζ − ζ1 − ζ2),

∂R(β;�)
∂�

= ∂R(β;�)
∂β

+ R(β;�)(R(0;�)− P(0;�))

+ P(0;�)
∫

dβ1dβ2 R(β1;�)R(β2;�)δ(β − β1 − β2). (21.45)

We are now faced with the following applied mathematics problem: given two initial arbi-
trary distributions P(ζ ;�) and R(β;�), evolve them with increasing � under (21.45);
is it possible to make any general statements about possible universal forms of these
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distributions in the limit � → ∞? This problem was solved by Fisher [142] through
some rather intricate, but in principle straightforward, mathematical analysis. We are not
interested in the details of this analysis here but simply assert the main results, which are
then not difficult to verify a posteriori.

It was found that, for almost all initial conditions, the ultimate flow is toward one of
two classes of probability distributions. In the first, most exchange constants are larger
than all of the transverse fields, and this clearly represents a system that will then acquire
magnetic long-range order in its ground state, as in Section 5.3. Conversely, in the second,
most transverse fields are larger than all of the exchange constants, and this corresponds
to a system with a quantum paramagnetic ground state, as in Section 5.2. It is of interest
to first examine the critical point between these two classes of solution, in which case the
two distributions P and R turn out to have precisely the same form (this a reflection of
the “self-duality” of the quantum Ising chain [142]). Indeed, by setting P = R, it can be
shown that in the limit �→∞ essentially all solutions of (21.45) are attracted to a unique
fixed-point distribution; this distribution takes the scaling form

P(ζ ;�) = 1

�
P
(
ζ

�

)
,

R(β;�) = 1

�
R
(
β

�

)
, (21.46)

and the scaling functions take the simple explicit form

P(y) = R(y) = e−y . (21.47)

The reader is invited to verify that (21.46) and (21.47) constitute exact solutions of (21.45).
Thus, even in terms of the logarithmic variables ζ and β, the distributions become extremely
broad at low energies (the width of the distribution is ∼�, which rises indefinitely as
we go to lower energies). This broad distribution justifies a posteriori the second-order
perturbation theory used to obtain (21.39) and (21.40). If we choose the biggest trans-
verse field gi (say), it is overwhelmingly likely that the exchange couplings Ji−1,i and
Ji,i+1 to the neighboring sites will be much smaller. This also suggests that the results
obtained by the flow equations (21.45) are asymptotically exact. In terms of the original
physical couplings J and g, the fixed-point results (21.46) and (21.47) correspond to the
distribution

P(J ) ∼ 1

J 1−1/�
, (21.48)

and similarly for g. Note that the power in the denominator approaches 1 as � approaches
∞. Thus the distribution is highly singular at the origin – in fact for large enough �, the
expectation value of 1/J will be divergent. It is this extreme broadness of the distribution
that enables us to obtain physical properties of the system with the critical distribution
through simple calculations, as we see shortly.

Let us consider perturbations of this critical solution. Linearizing the flow equations in
the vicinity of the fixed point yields, as expected, a single relevant perturbation whose
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strength we parameterize by the coupling r ; thus, as in Chapter 14, r represents the devi-
ation from the critical point, with r > 0 putting the system in the quantum paramagnet.
Fisher [140, 142] was also able to find a complete solution of (21.45) valid in the limit
� → ∞, |r | → 0, but with �|r | arbitrary. These solutions are expressed in scaling forms
that generalize (21.47):

P(ζ ;�) = 1

�
P
(
ζ

�
, r�

)
,

R(β;�) = 1

�
R
(
β

�
, r�

)
, (21.49)

and the explicit solutions for the scaling functions are

P(y, y′) = 2y′

e2y′ − 1
exp

(
− 2yy′

e2y′ − 1

)
,

R(y, y′) = P(y,−y′). (21.50)

Again, the reader can verify that (21.49) and (21.50) constitute exact solutions of (21.45).
So we have available a family of probability distributions, parameterized by the single tun-
ing parameter r , and there is a quantum critical point at r = 0 separating the magnetically
ordered phase (r < 0) from the quantum paramagnetic phase (r > 0).

Let us look at the explicit predictions of the above results for the low-energy properties
of the quantum paramagnet. For this we place ourselves in the paramagnet by fixing r > 0
and then access low energies by sending � → ∞ (recall that this was the order of limits
discussed in Section 21.2). Then we find the probability distribution of transverse fields to
be given by

P(g) ∼ g−1+2δ, (21.51)

while all exchange constants are essentially at zero energy with P(J ) = δ(J ). The spins
are therefore effectively decoupled; each site can be independently diagonalized and has
two energy levels separated by 2g. From this we can determine the leading low-energy
behavior of the average local spectral density χ ′′L(ω). A naive calculation, using the form
(7.6), suggests that

χ ′′L(ω) ∼ ω−1+1/z̃, (21.52)

where we have used the notation suggested by (21.10), and the value of the exponent z̃ is
given by

z̃ = 1

2r
. (21.53)

However, this result is not entirely correct. We also need to know the probability that any
given original spin σ̂ z

i will be active in the set of effective spins upon which transverse
fields given by (21.51) act (i.e. we must ensure that this spin has not been decimated in
the renormalization group transformation). We do not have the information yet to compute
this precisely (although it can be reconstructed from [142]), but it becomes clear from the
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analysis below that the only consequence of rectifying this omission is to change (21.52) by
powers of logarithms, as in (21.10). So our result for χ ′′L(ω) is consistent with the general
arguments of the GM singularities. Further, we have found that the “dynamic exponent” z̃
diverges as we approach the critical point with r → 0. This is also precisely the behavior
found in (21.32) for the dilute quantum Ising models in d > 1 in Section 21.5. By analogy,
we may then expect that the present model also exhibits activated dynamic scaling with the
critical dynamic exponent z = ∞; further, at the critical point r = 0, we may expect from
(21.52) that χ ′′L(ω) ∼ 1/ω times powers of ln(1/ω), as in (21.33).

To truly establish the existence of activated dynamic scaling, we need information about
length scales. In particular, we need to know the average spacing between the spins when
we have renormalized down to a characteristic energy scale ω ∼ �I e−� . We can obtain
this information by simply keeping track of the total number of spins, N (�), that have not
been decimated at a scale �. From (21.43) and (21.42) we know that this quantity satisfies
the differential equation

dN (�)
d�

= −(P(0, �)+ R(0, �))N (�). (21.54)

Using the result (21.47) we can now conclude that at the critical point r = 0

N (�) ∼ 1

�2
. (21.55)

Thus the average spacing between the spins increases as �2; we may identify this as the
characteristic length scale, �, and we have

� ∼ �2 ∼ [ln(1/ω)]2 . (21.56)

This is precisely the behavior characteristic of activated dynamic scaling, as exhibited in
the scaling form (21.30). We can now also obtain the correlation length, ξ , as the sys-
tem moves away from criticality. From the scaling (21.49), we know that � ∼ 1/r , and
therefore from (21.56) we have

ξ ∼ �2 ∼ 1

r2
. (21.57)

This gives us an exponent ν = 2, which saturates the bound (21.5) in d = 1. The length ξ
actually sets the scale for the decay of the disorder-averaged correlation functions; typical
spin correlations (i.e. the most probable), however, decay at a different length scale that
diverges with exponent 1 [466]. For the dilute Ising model of Section 21.5, the typical spin
correlations were simply zero, as two spins chosen at random typically belong to different
clusters.

Fisher [142] has obtained far more precise information on the nature of the spatial cor-
relations. We will not discuss the details of this here, but review the general strategy and
indicate some further results. So far we have only kept track of the probability distributions
of the coupling constants, but it is also possible to include additional information about the
nature of the renormalized spins as the decimation proceeds. In particular, we can associate
with each spin a magnetic moment mi . Initially, all spins have mi = 1. However, when we
decimate a large Ji,i+1, the two spins at i and i + 1 combine to form a single effective spin
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with moment m = 2. So, in general, parallel with the recursion relation (21.40) for each
bond decimation, we have the recursion relation for the magnetic moments

m = mi + mi+1. (21.58)

In addition, we can also associate a length �B with each bond and a length �S with each
spin. We begin with a spin chain with unit lattice spacing. Let us associate a length of 1/2
with each spin and with each bond. Then, when we decimate the bond Ji,i+1 we get a
new spin of length 3/2. In general, the recursion relation corresponding to the decimation
(21.40) is

�S = �S,i + �S,i+1 + �B,i,i+1. (21.59)

Similarly, along with the decimation of the spin with transverse field gi in (21.39) we have
the length recursion

�B = �B,i−1,i + �B,i,i+1 + �S,i . (21.60)

We can transcribe (21.58)–(21.60) into renormalization group flow equations, just as we
mapped (21.39) and (21.40) into (21.45). For this, we generalize the earlier distributions
for the couplings P(ζ ;�) and R(β;�) into joint probability distributions P(ζ, �B;�) and
R(β, �S,m;�). The joint distributions account for the fact that the length or moment of
any given spin is certainly correlated with the size of the transverse field acting on it –
a spin with a very weak transverse field must have been obtained after substantial deci-
mation and is thus more likely to be longer and have a larger moment; similarly for the
bonds. However, the couplings, lengths, and bonds of neighboring spins remain uncorre-
lated, as they have been obtained by independent decimation steps. The transformations
(21.39), (21.40), (21.58), (21.59), and (21.60) imply flow equations for P(ζ, �B;�) and
R(β, �S,m;�) that are very similar to (21.45); we will not write them out explicitly but
note that the first two terms on the right-hand sides have essentially the same form (the
distributions only have additional obvious arguments), while the last term has additional
integrals over � and/or m along with delta functions imposing (21.58)–(21.60).

A thorough analysis of these new flow equations has been carried out by Fisher [142].
Here we simply note that in the limit � → ∞ the distribution functions satisfy scaling
forms that generalize (21.49):

P(ζ, �B;�) = 1

�3
P
(
ζ

�
,
�B

�2
, r�

)
,

R(β, �S,m;�) = 1

�3+μR
(
β

�
,
�S

�2
,

m

�μ
, r�

)
. (21.61)

The prefactor of the power of � can be deduced simply from the requirement that P and
R are normalized probability distributions. The scaling � ∼ �2 was already obtained in
(21.56), but it also follows from an analysis of the present flow equations. Finally, there is
a nontrivial exponent μ, which controls the scaling of m; it differs from that of � because
of the difference in the structure of (21.58) from that of (21.59) and (21.60); it was shown
by Fisher that μ = (√5+ 1)/2, the golden mean.
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We can use these results to analyze the response to a uniform field h coupling to σ̂ z ,
as was also done for the dilute Ising model in d > 1 below (21.35). Consider (at T = 0)
the magnetization M(h, r) of the system as a function of external applied field h. In the
presence of a magnetic field h, the energy levels of an otherwise-free cluster of magnetic
moment m split into two with an energy splitting Eh = 2mh. We stop the renormaliza-
tion when the maximum coupling � ∼ Eh . The extreme broadness of the distribution
implies that almost all the clusters that have already been eliminated have transverse fields
considerably bigger than Eh while almost all that are yet to be eliminated have trans-
verse fields considerably smaller than Eh . Therefore, an asymptotically exact expression
for M(h, r) is obtained by aligning all the remaining clusters at � = Eh in the direction
of the magnetic field. Thus

M(h, r) = m̄ × (total number of active spins at scale �h = ln(Dh/h)+ · · · ,
(21.62)

where m̄ and Dh are nonuniversal constants. This total number is easily reconstructed from
the probability distributions, and we therefore have the scaling form

M(h, r) = m̄N (�h)

∫
dζ d� dm

m

�3+μR
(
ζ

�
,
�

�2
,

m

�μ
, r�

)
= m̄�μ−2

h �̄M (r�h)

= m̄

(ln(Dh/h))2−μ
�M

(
ln(Dh/h)

ξ1/2

)
. (21.63)

We see that this scaling form is identical in structure to (21.37) of the d > 1 dilute Ising
model. This is clearly another consequence of activated dynamic scaling. Using standard
scaling arguments, we can obtain the following results from (21.63): as we approach the
transition from the ordered side, the spontaneous magnetization vanishes as N0 ∼ |r |β
with β = 2 − μ; right at the critical point, Mcr (h) ∼ (ln(Dh/h))μ−2. Both forms are
identical to those in Section 21.5.3.

Similar arguments can be made to obtain the exact scaling forms for the T dependence
of the linear susceptibility χh . At the critical point, χh(T ) ∼ 1/T (ln(1/T ))2−2μ while
it has power-law T dependence in the ordered and disordered phases, reflecting the GM
singularities.

21.7 Discussion

We have met two rather distinct scenarios for quantum critical points in random Ising/rotor
models in this chapter. Let us review their main properties in turn.

The first was discussed in Section 21.3. For the most part, the scaling structure of
the quantum critical point was similar to those discussed in Part II for clean systems.
Dynamic scaling was conventional, with characteristic length (�) and frequency (ω) scales
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at the critical point obeying ω ∼ �−z , with z the usual dynamic critical exponent. The
phases flanking the critical point exhibited Griffiths–McCoy singularities in their low-
energy behavior. For N ≥ 2 these were only very weak essential singularities. However,
they were stronger for N = 1 and led to a power-law divergence in the low-energy density
of states, which we characterized by the exponent z̃. The value of z̃ varied continuously in
the phases, and it remains an open question whether it approaches z as we move toward the
critical point. Note that there is no obvious mathematical inconsistency with the two values
remaining different, as they characterize regions of the spectrum reached by distinct orders
of limits.

The second scenario of activated dynamic scaling was realized in two solvable models
in Sections 21.6. This is a special property of the N = 1 case and has been argued to occur
for the generic N = 1 quantum transition in d = 1 (Section 21.6); it was also found for a
rather special dilute Ising model in all d > 1 in Section 21.5 but is only expected to occur
for the generic transition for low values of d , possibly d = 2. The characteristic property
of activated dynamic scaling is that the diverging scales � and 1/ω of the critical point are
related by ln(1/ω) ∼ �za , where za is now the universal dynamic exponent. There were
very strong power-law GM singularities on either side of the transition, and the exponent
z̃ diverged as z̃ ∼ ξ za upon the approach to the critical point.

It is interesting that both solvable models belonged to the second class showing acti-
vated behavior. We believe that this is not an accident, and the activated scaling is a
simplifying physical property that leads to the solvability. In particular, there is a clear
separation of scales at which the predominant effects of quantum and disorder-induced
fluctuations appear. At any given energy scale, the underlying quantum mechanics mainly
serves to separate the system into mutually decoupled clusters of “active” spins. The sub-
sequent physical properties are then determined by the random geometry and statistics of
these active clusters. The spins in each cluster are tightly coupled and each contributes a
term of order unity to the magnetization. As we approach the critical point, the contribu-
tion of the active spins to the magnetization does not go to zero (as it would if quantum
mechanics were playing a more central role); rather the vanishing of the magnetization
at the critical point is due to the vanishing of the number of active spins at the lower
energy scales.

Further progress in this field would be greatly aided by solvable models with disorder
and interactions that exhibit conventional dynamic scaling.

21.8 Applications and extensions

The exact results for the random quantum Ising chain in Section 21.6 have been very suc-
cessfully compared with numerical computations [143,550,552]. Closely related methods
have also been applied to other one-dimensional random spin models, including S = 1/2
Heisenberg and XY spin chains [141,212,222], Potts and clock models [460], S = 1 anti-
ferromagnetic spin chains [231,232], and the experimentally realizable case of chains with
mixed ferromagnetic and antiferromagnetic exchange [157,159,540].
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Turning to higher dimensions, the quantum transition in the random Ising model in
d = 2 has been studied in sophisticated Monte Carlo simulations [233, 379], and there
are indications that the activated dynamic scaling behavior is generic. As we noted earlier,
the large-N limit of the random quantum rotor model was studied in [268] by a renormal-
ization group analysis, but no stable fixed point was found; the quantum phase transition of
this model has been studied numerically [199] and by an alternative renormalization group
defined directly on the saddle-point equations [208].

Useful reviews of theoretical and experimental studies of random metallic systems near
magnetic ordering transitions can be found in the work of Vojta [517,530,531].

In three dimensions, random Heisenberg antiferromagnets have been studied by the
renormalization group of Section 21.6 and applied to properties of doped semiconduc-
tors [46].

Random versions of the boson models of Chapters 9 and 16 have also been studied [148,
167,317,484,535] and are of considerable experimental importance.
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In this chapter, we want to move beyond the simplest disordered models considered in
Chapter 21 and consider systems that have magnetically ordered states rather more compli-
cated than those in which the average moments are in a regular arrangement, as in (21.3). In
the context of the Ising/rotor models, such states can be obtained by relaxing the constraint
Ji j > 0 and allowing the Ji j to fluctuate randomly over both negative and positive values
(we can always choose the gi to be positive by a local redefinition of the spin orientations,
and we assume this is the case below). In particular, we are interested here in the mag-
netically ordered “spin-glass” state in which orientation of the spontaneous moment varies
randomly from site to site, with a vanishing average over sites, 〈σ̂ z

i 〉 = 0 (or 〈n̂i 〉 = 0);
such states are clearly special to disordered systems. For classical spin systems, that is
models (21.1) and (21.2) at gi = 0, such ordered states have been reviewed at length else-
where [48,138,551]. The structure of the ordered spin-glass phases of quantum models is
very similar, and so this is not the focus of our interest here. Rather, we are interested in the
quantum phase transition from the spin glass to a quantum paramagnet, and in the nature
of the finite-temperature crossovers in its vicinity, where quantum mechanics plays a more
fundamental role.

The quantum Ising/rotor models of Part II also form the basis of much of our discussion
of quantum spin glasses. However, in parallel, we also consider the appearance of spin-
glass order in the metallic systems of Chapter 18. One of our interests is the transition
from a paramagnetic Fermi liquid to a spin density glass state. Such a state is characterized
by the analog of the order parameter defined in Section 18.3 for the ordinary spin density
wave state, but now the orientation and magnitude of φα vary randomly in space and there
are random phase offsets in the cosine.

We begin by introducing the order parameter that characterizes a spin-glass phase [48,
138] using, for now, the familiar terrain of the quantum Ising/rotor models. While a spin
glass has no magnetic moment when averaged over all sites, its characteristic property is
that each spin has a definite orientation whose memory it retains for all time. We can use
this long-time memory to introduce the Edwards–Anderson order parameter, qEA, defined,
for N = 1, by

qEA = lim
t→∞〈σ̂

z
i (t)σ̂

z
i (0)〉, (22.1)

and similarly using rotor variables for N > 1. For each site i the long-time limit gives the
square of the local static moment; this is nonnegative, and so qEA has a nonzero average in
the spin-glass phase.

One of the primary objectives of the theory of quantum spin glasses is to understand the
nature of dynamics of spin fluctuations in the vicinity of the quantum critical point where

463
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qEA vanishes. As in Chapter 21, we expect Griffiths–McCoy singularities to appear in both
the spin-glass and quantum paramagnetic phases. Reliable information on these and the
critical singularities for low-dimensional systems with short-range interactions is so far
only available through numerical simulations. A great deal of work has also been done
on simplified models with infinite-range interactions that display spin-glass phases [51,
74, 173, 276, 335, 361, 519, 548], and the solution of classical infinite-range models was
an important step in the development of spin-glass theory [48, 138]. Here, we restrict our
attention to the development of a mean-field theory of the quantum critical point (and its
vicinity) between a spin glass and a paramagnet in the systems noted earlier. The physical
properties of the mean-field theory are closely related to those of the models with infinite-
range interactions, but the former also offers a formalism for understanding fluctuations in
systems with shorter-range interactions; initial attempts at understanding such fluctuations
have been made [400,436], but these are not discussed here.

We present a derivation [400, 548] of the effective action controlling quantum fluctu-
ations of the spin-glass order parameter in Section 22.1. The mean-field solution of this
effective action and its physical properties then follow in Section 22.2.

22.1 The effective action

We begin by considering, for definiteness, the appearance of spin-glass order in the quan-
tum rotor Hamiltonian HRd in (21.2); the results also apply to the Ising case simply by
restricting the O(N ) vector indices α, β . . . to just one value. The extension to the metallic
systems of Chapter 18 follows in Section 22.1.1.

We set all the gi = g and take the Ji j to be distributed independently according to the
Gaussian probability

P(Ji j ) ∼ exp

(
− J 2

i j

2J 2

)
. (22.2)

We average over this distribution using the replica method, which was introduced briefly in
Section 21.3 (see [138] for a more complete treatment). The averaged, replicated partition
function becomes

Z̄ n =
∫

Dniαaδ
(

n2
iαa − 1

)
exp

⎡⎣− 1

2g

∫
dτ
∑
i,a

(
∂niαa

∂τ

)2

− J 2

2

∑
〈i j〉

∫
dτ1dτ2

∑
ab

niαa(τ1)n jαa(τ1)niβb(τ2)n jβa(τ2)

⎤⎦, (22.3)

where i, j are site indices, α, β are O(N ) vector indices, and a, b are replica indices; we
employ the usual summation convention over repeated O(N ) vector indices, but all other
summations are explicitly noted. We now want to manipulate this into a form in which the
on-site spin correlations responsible for the spin-glass order in (22.1) are somehow related
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to a primary “order parameter” field; to this end we use the Hubbard–Stratanovich transfor-
mation, which we first met in Section 9.3, to decouple the quartic term in (22.3). Among the
several possible transformations, we choose to decouple the four spin-operators by picking
out the one which emphasizes the correlations appearing in (22.1); this gives us

Z̄ n =
∫

DQab
iαβ exp

⎛⎝− ∫ dτ1dτ2

2J 2

∑
i jab

Qab
iαβ(τ1, τ2)K

−1
i j Qab

jαβ(τ1, τ2)

⎞⎠∏
i

Zi [Qi ],

(22.4)

where Ki j is the connectivity matrix of the lattice (its matrix elements are unity for sites i , j
that were coupled by a random exchange, and zero otherwise), and the subsidiary partition
function Zi is a functional of the values of the field Qab

iαβ(τ1, τ2) only on the site i . It is
obtained after a functional integral only over the site i quantum field niαa :

Zi [Qi ] =
∫

Dnαaδ
(

n2
αa − 1

)
exp

[
− 1

2g

∫
dτ
∑

a

(
∂nαa

∂τ

)2

−
∫

dτ1dτ2

∑
ab

Qab
iαβ(τ1, τ2)nαa(τ1)nβb(τ2)

]
. (22.5)

We have dropped the dummy site index on n as this field is integrated over. Note that
the functional integral in Zi [Qi ] is closely related to those considered in Chapter 3 in
our study of classical d = 1 spin chains. The latter models are exactly soluble, and their
known correlators can be used to construct an expansion for Zi [Qi ] in powers of Qi for an
arbitrary time-dependent Qi . It should be kept in mind that there are n decoupled copies
of the classical chain here, and this does lead to an interesting and important structure
in the resulting action. After evaluating Zi [Qi ] in this manner, we take the spatial con-
tinuum limit and obtain our spin-glass partition function, which we write schematically
in the form

Zsg =
∫

DQab
αβ(x, τ1, τ2) exp(−Ssg[Q]). (22.6)

Now the focus of our attention is the field Qab
αβ(x, τ1, τ2), which plays the role of an

order parameter for the quantum spin glass. Before turning our attention to the structure of
the action Ssg[Q], we discuss the physical interpretation of Q. From the structure of the
Hubbard–Stratanovich transformation it is clear that we have the correspondence

Qab
αβ(xi , τ1, τ2) ∼ niαa(τ1)niβb(τ2), (22.7)

where the symbol∼ indicates that correlators of Q are closely related to the corresponding
correlators of the right-hand side; for simplicity we assume the proportionality constant
is unity and replace (22.7) by an equality. From (22.7) we see that the replica diagonal
components have the mean value

lim
n→0

1

n

∑
a

〈〈
Qaa
αβ(xi , τ1, τ2)

〉〉 = 〈niα(τ1)niβ(τ2)〉

= δαβχL(τ1 − τ2), (22.8)
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where the double angular brackets represent averages taken with the translationally invari-
ant replica action Ssg in (22.6) (recall that single angular brackets represent thermal/
quantum averages for a fixed realization of randomness, and overlines represent averages
over disorder). So the mean value of Q contains information on the entire time (or fre-
quency) dependence of the average dynamic local susceptibility, which we also considered
earlier in (21.7); in a sense, it is the time-dependent χL which is the “order parameter
functional” for the quantum spin glass. From (22.1) and (22.8), we see that the Edwards–
Anderson order parameter, qEA, can be extracted for the replica diagonal components of
Q by taking the long-time limit of (22.8) for real times t . Precisely at T = 0, this long-
time limit can also be taken along the imaginary time axis (for T > 0, χL(τ ) is a peri-
odic function with period 1/T , and so the long-time limit is only defined for real times),
and we have

qEA = lim
τ→∞ lim

n→0

1

n

∑
a

〈〈
Qaa(x, τ1 = 0, τ2 = τ)

〉〉
, T = 0. (22.9)

Turning to the replica off-diagonal components, we see by a standard application of
replica technology [48,138] that

lim
n→0

1

n(n − 1)

∑
a �=b

〈〈
Qab
αβ(xi , τ1, τ2)

〉〉 = 〈niα(τ1)〉〈niβ(τ2)〉

= qEA. (22.10)

The thermal average in the second step leads to time-independent values, and so the expec-
tation value of the off-diagonal components is independent of both τ1 and τ2. In the last
step, we have assumed that the thermal ensemble has the “clustering” property, which
demands that the long-time limit of the correlator in (22.1) is simply the square of the
static magnetic moment on the site, as discussed in Section 1.4: although it is certainly
possible to construct states that do not obey clustering, imposing a suitable infinitesimal
external field on each site will select the ensemble that does obey (22.10). In (22.10) we
have also ignored subtleties that may arise as a consequence of the intricate phenomenon
known as “replica symmetry breaking.” In the simple mean-field theory we consider below,
replica symmetry breaking does not occur; however, it does appear when additional higher
order couplings are included [400], but fortunately the structure and analysis of replica
symmetry breaking in the spin-glass phase turn out to be essentially identical to those dis-
cussed elsewhere in the classical case [48, 138]. For these reasons, and also because our
interest is primarily in the spin fluctuations in the paramagnetic phase, we do not consider
this phenomenon here further.

Returning to our determination of the form of Ssg[Q], recall that we noted that the only
realistic option was an expansion in powers of Q. It is worthwhile to ponder a bit on the
validity of such an expansion. In the vicinity of the quantum critical point, we expect qEA

to become small; in the spirit of Landau theory, it would then certainly be appropriate
to expand in powers of qEA. However, for the quantum transition we need the full time-
dependent Q, and not just its long-time limit. For very short |τ1−τ2|, the local on-site spin
correlations will certainly be of order unity, and so Q will not be small for these times.



467 22.1 The effective action

What we need to do is to “subtract out” the uninteresting short-time part of Q and focus
on only its long-time part for which a Landau-like expansion could possibly be valid. To
do this we consider the following transformation:

Qab
αβ(x, τ1, τ2)→ Qab

αβ(x, τ1, τ2)− Cδabδ(τ1 − τ2), (22.11)

where C is a constant, and the delta function δ(τ1 − τ2) is a schematic for a function that
decays rapidly to zero on a short microscopic time. The value of C should be adjusted so
that the resulting Q contains only the interesting long-time physics. (At this point, it is
not clear how this can be done, but we see shortly that a simple constraint on the effective
action allows us to do this quite easily.)

Let us consider the expansion of Zi [Qi ] in (22.5) in powers of Q: we discuss the nature
of the low-order terms explicitly, and from these the principles that restrict the structure of
the general term emerge.

The first term is one linear in Q. It is multiplied by a two-point correlator of n, which is
nonzero only if both replica indices are the same. Further, the subsequent replica-diagonal
average correlates the two time arguments in Q, and we get an expression such as∫

dd xdτ1dτ2 Qaa
αα(x, τ1, τ2)χ

0
L(τ1 − τ2), (22.12)

where the superscript 0 on the local susceptibility reminds us that this is a bare suscepti-
bility, evaluated without accounting for intersite correlations. Now an important property
of χ0

L(τ ) (and all other multipoint correlations of n) is that it decays rapidly to zero over a
time τ of order 1/g. In frequency space, we have in the low-frequency limit

χ0
L(ωn) ∼

(
ω2

n +�2
0

)−1 ∼ �−2
0 − ω2

n�
−4
0 + · · · , (22.13)

where�0 ∼ g is the gap of the classical chain model Zi [Q = 0] studied in Chapter 3. If we
just take the leading frequency-independent term in (22.13), we have effectively replaced
χ0

L by a constant and set τ1 = τ2. This is an important principle, which applies also to
higher order terms: an even number of replica indices can take the same value, but then
the associated time “indices” must also be set equal, as they can be correlated by quantum
fluctuations of the underlying rotors. Subleading corrections involve derivatives of the dif-
ference in times, and it turns out to be necessary to retain the additional ω2

n dependence in
(22.13) only for the linear term in (22.12).

Moving on to higher order terms, we see that the number of allowed terms prolifer-
ates very rapidly. In particular, at nth order there are terms that can have between 1 and n
independent replica indices summed over; associated with each independent replica index
is a time “index,” which is integrated over in the action. Thus the terms have a variable
number of time integrations, and it turns out that most important are those with a maxi-
mum number of independent time (and replica) indices. This is not difficult to see from a
renormalization group perspective, because each additional time integration increases the
scaling dimension of the associated coupling constant.
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Proceeding in this manner, we can assert the following results for Ssg for the quantum
Ising/rotor spin glass; we have used the benefit of hindsight and retained only the terms
necessary to obtain the leading critical singularities within mean-field theory:

Ssg = 1

w

∫
dd x

{
1

κ

∫
dτ
∑

a

[
∂

∂τ1

∂

∂τ2
+ r

]
Qaa
αα(x, τ1, τ2)

∣∣∣∣
τ1=τ2=τ

+ 1

2

∫
dτ1dτ2

∑
ab

[
∇Qab

αβ(x, τ1, τ2)
]2

− κ

3

∫
dτ1dτ2dτ3

∑
abc

Qab
αβ(x, τ1, τ2)Q

bc
βρ(x, τ2, τ3)Q

ca
ρα(x, τ3, τ1)

+ 1

2

∫
dτ
∑

a

[
u Qaa

αβ(x, τ, τ )Q
aa
αβ(x, τ, τ )

+ v Qaa
αα(x, τ, τ )Q

aa
ββ(x, τ, τ )

]}
− 1

2w2

∫
dd x

∫
dτ1dτ2

∑
ab

Qaa
αα(x, τ1, τ1)Q

bb
ββ(x, τ2, τ2). (22.14)

There are seven terms in the action, but only five coupling constants: w, r , κ , u, and v.
Rescaling of space and time coordinates has allowed us to absorb the other two. The first
two terms are linear in Q and are clearly a transcription of the two terms retained explicitly
in (22.13). As the notation suggests, the coupling r turns out to be the relevant tuning
parameter that moves the system between its two phases, and we are interested in the
phase diagram in the r–T plane. The spatial gradient term arises from the K−1 coupling in
(22.4), which couples different sites. This last coupling, and also the expansion of Zi [Q],
also allow the simple quadratic term∫

dd xdτ1dτ2

∑
ab

[
Qab
αβ(x, τ1, τ2)

]2
, (22.15)

which we have not included in Ssg; instead we have chosen the freedom allowed by the
transformation (22.11) to demand that the coefficient of this term be exactly zero. At
the moment, this appears just as a convenient choice, but it is seen later to be exactly
the criterion required to focus on only the interesting low-frequency behavior of Q. The
quadratic terms proportional to u and v have only a single replica index and account for the
nonlinear, quantum mechanical interactions of the quantum rotors. We have retained only
a single cubic term, proportional to κ/w, the one with the maximum possible three time
integrations; other allowed cubic terms are not as important.

Finally, the last term, proportional to 1/w2, actually does not appear in the expansion for
Ssg as we have chosen to explicitly generate it. To obtain it, we have to allow for on-site
disorder in the value of gi as can be schematically seen in a “soft-spin” approach where
randomness in g corresponds to a random mass multiplying φ2 ∼ Qaa ; averaging over the
random mass then leads to the last term in (22.14). However, even in the present model
with g fixed, the 1/w2 term is generated upon any renormalization with the remaining
couplings in Ssg . In any case, this 1/w2 term plays no role in the mean-field theory to
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follow, and so we will not discuss it further. It is, however, important to retain it in any
analysis of fluctuations.

22.1.1 Metallic systems

Let us consider extension of the analysis of phase transition of Fermi liquids in Chapter 18
to the case of a “spin density glass” [368, 369, 409, 436, 457]. For this we generalize to a
model with a random exchange interaction

Hsdg =
∫

ddk

(2π)d
(εk − μ)c†

�kμc�kμ −
∑
〈i j〉

Ji j Ŝi · Ŝ j , (22.16)

where

Ŝi ≡ 1

2

∑
μν

c†
iμ
�̂σμνciν (22.17)

are the electron spin operators on site i . As was the case for the Ising/rotor models above,
we take the Ji j to be independent Gaussian random variables. We refer the reader to a
review by the author [423] for the arguments motivating (22.16) as an appropriate low-
energy model for a large class of disordered metallic systems; a discussion of the strong
Griffiths–McCoy singularities in such models [45,338] may also be found there.

Our analysis of Hsdg follows closely the steps presented above for the Ising/rotor models.
The field S replaces n and so now we have

Qab
αβ(xi , τ1, τ2) ∼ Siαa(τ1)Siβb(τ2), (22.18)

replacing (22.7). Also, the on-site action (∂n/∂τ)2/(2g) is replaced by the first kinetic
energy term in (22.16). All other steps are the same, and we obtain an expression iden-
tical to (22.4), with the modifications just noted in the definition of Zi [Qi ]. The steps in
the derivation of Ssg are also the same, except the functional integral over the metallic
electrons leads to differences in the time dependence of the terms. In particular, from the
arguments just above (18.33) we see that the expression (22.13) for the local susceptibility
is replaced by

χL(ωn) ∼ A1 − A2|ωn| + · · · , (22.19)

for some constants A1 and A2. This turns out to be the only significant change in Ssg .
Hence the final result takes exactly the form (22.14) except that the single time-derivative
term (with coefficient 1/(wκ)) is replaced by (after a Fourier transform of (22.19))

− 1

πwκ

∫
dd xdτ1dτ2

∑
a

Qaa
αα(x, τ1, τ2)

(τ1 − τ2)2
. (22.20)

This change in the time-derivative term is completely analogous to the change between
(14.2) and (18.33) for the case of regular magnetic order.
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22.2 Mean-field theory

We now analyze the action Ssg in (22.14), and its metallic extension modification (22.20),
in a simple mean-field theory. An analysis of the rather complex structure of fluctuations
about this mean field has been attempted [400, 436], but we do not discuss it here as the
results are quite inconclusive. The mean-field theory is useful in that it gives a simple
picture of the quantum critical point and the finite-temperature crossovers in its vicinity,
which should serve as a starting point for more sophisticated analyses.

Our strategy is to obtain saddle points of Ssg over variations in a mean-field value of
the field Q(x, τ1, τ2). We expect the saddle point to be invariant under translation in space
and time, which implies that Q is independent of x and a function only of τ1 − τ2. Fourier
transforming to Matsubara frequencies by

Qab
αβ(x, ωn1, ωn2) =

∫ 1/T

0
dτ1

∫ 1/T

0
dτ2 Qab

αβ(x, τ1, τ2)e
−i(ωn1τ1+ωn2τ2) (22.21)

motivates the following saddle-point ansatz:

Qab
αβ(x, ωn1, ωn2) = qEA

T 2
δωn1,0δωn2,0δαβ +

χL(ωn1)

T
δabδωn1+ωn2,0δαβ. (22.22)

The first term is independent of the replica indices, and it therefore has been parameter-
ized in terms of the Edwards–Anderson order parameter by (22.10). The second replica
diagonal term is related to the local susceptibility by (22.8) (we have dropped the over-
line representing the disorder average because it is always implied in the present context).
Quite independent of these physical interpretations it is clear that (22.22) is the most gen-
eral replica-symmetric ansatz for Q in terms of the parameters qEA and χL(ωn). We insert
(22.21) and (22.22) into (22.14) and (22.20) and obtain for the mean-field free energy
density per replica, F/n:

F
Nn

= T

w

∑
ωn

[(
M(ωn)+ r

κ

)
χL(ωn)− κ

3
χ3

L(ωn)

]

+ u + Nv

2w

[
qEA + T

∑
ωn

χL(ωn)

]2

+ qEA

w

( r

κ
− κ [χL(0)]

2
)
, (22.23)

where

M(ωn) =
{
ω2

n for the Ising/rotor models,

|ωn| for the metallic system.
(22.24)

There should also be an additional term in (22.23) coming from the last term in (22.14), but
it is proportional to n and therefore does not contribute in the replica limit n → 0. Under
these circumstances, the coupling 1/t appears only as a prefactor in front of the total free
energy, and so the value of w therefore plays no role in the mean-field theory. The replica
limit n → 0 has also been taken to simplify terms arising from the cubic coupling in Ssg .
Also, because we are considering a metallic system with Heisenberg symmetry, we should
set N = 3.
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We now determine the saddle point of (22.23) with respect to variations in qEA and
χL(ωn) for every ωn ; the resulting expressions can be written in the form

χL(ωn) = − 1

κ

√
M(ωn)+ϒ,

qEA
√
ϒ = 0, (22.25)

where ϒ is an intermediate parameter satisfying the equation

ϒ = r + (u + Nv)

(
κqEA − T

∑
ωn

√
M(ωn)+ ϒ

)
. (22.26)

Equations (22.25) and (22.26) clearly have two distinct types of solution. The first corre-
sponds to the paramagnetic phase in which the spin-glass order parameter vanishes, and so

qEA = 0, (22.27)

χL(ωn) = − 1

κ

√
M(ωn)+ ϒ, (22.28)

ϒ = r − (u + Nv)T
∑
ωn

√
M(ωn)+ ϒ; (22.29)

the parameter ϒ > 0 is then determined from the solution of the nonlinear equation
(22.29). The second solution is that of the spin-glass phase in which ϒ = 0, and so

χL(ωn) = − 1

κ

√
M(ωn),

qEA = − r

κ(u + Nv)
+ T

κ

∑
ωn

√
M(ωn). (22.30)

It is clear that for sufficiently large r > 0 the paramagnetic solution is the only physically
sensible one, and it has a large ϒ > 0. As we decrease r at fixed T , the value of ϒ
decreases, and we have phase transition into the spin-glass phase where ϒ first vanishes;
this happens at r = rc(T ), which is determined by setting ϒ = 0 in (22.29):

rc(T ) ≡ (u + Nv)T
∑
ωn

√
M(ωn). (22.31)

The spin-glass phase therefore exists for r < rc(T ). It should be clear from this discussion
that r plays the role of the relevant tuning parameter for the quantum transition, and this
notation is consistent with that of Chapter 14. As in that chapter, it is convenient to shift
variables by defining

s ≡ r − rc(0), (22.32)

so that the quantum critical point is precisely at s = 0, T = 0; at T = 0 the system is
paramagnetic for s > 0 and a spin glass for s < 0. For T > 0 we have a phase boundary at
s = sc(T ) < 0 whose precise shape will be determined shortly below. These considerations
lead to the phase diagram shown in Fig. 22.1.
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�Fig. 22.1 Mean-field phase diagram of a metallic spin glass as a function of the ground state tuning parameter s and
temperature T . The T = 0 state is a metallic spin glass for s < 0 and a disordered, paramagnetic Fermi liquid for
s > 0. The solid line is the only thermodynamic phase transition and is at s = sc(T) or T = Tc(s) given in (22.44).
The quantum critical point is at s = 0, T = 0. The dashed lines denote crossovers between different finite-T regions
of the quantum field theory (22.14): the low-T regions are A, B (on the paramagnetic side) and D (on the ordered side),
while the high-T region (C) displays “non-Fermi liquid” behavior. The crossovers on either side of C, and the spin-glass
phase boundary Tc(s), all scale as T ∼ |s|2/3; the boundary between A and B obeys T ∼ s. The shaded region has
classical critical fluctuations described by theories of the type discussed by [48] and [138].

Let us briefly discuss the physical properties of the phases found here in mean-field
theory. In the paramagnetic phase, the local spectral density of the Ising/rotor models (with
M(ωn) = ω2

n) is given by

χ ′′L(ω) = sgn(ω)

√
ω2 −ϒ
κ

θ(|ω| − √ϒ); (22.33)

hence there is an energy gap, and spectral density increases with a square-root threshold
above this gap. Clearly, we can expect that this gap will be filled in at T = 0 by Griffiths–
McCoy singularities once fluctuation effects are included; for T > 0 ordinary thermal
fluctuations are adequate to destroy the gap. The mean-field spectrum becomes gapless
precisely at the critical point where ϒ = 0 and the spectral density vanishes linearly with
frequency. The spectral density of the paramagnetic phase of the metallic systems is quite
different; now we have M(ωn) = |ωn|, and this leads to

χ ′′L(ω) =
1√
2κ

ω√
ϒ +√ω2 + ϒ2

; (22.34)

now there is no gap, but the spectral density is linear, ∼ω, for frequencies smaller than
ϒ , and a square root, ∼√ω, for larger frequencies. We make some further remarks on the
physical interpretation of this spectral density below.

Turning to the spin-glass phase, it is clear from (22.31) and (22.32) that the Edwards–
Anderson order parameter is given by

qEA = 1

κ(u + Nv)
[sc(T )− s] . (22.35)

The spectral density remains pinned at the ϒ = 0 case of (22.33) and (22.34) in the entire
spin-glass phase in the present mean-field theory.
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An interesting property of the above solutions is that the low-frequency limit of the
function χL(ωn) becomes small as one approaches the phase boundary (for real ω both the
real and imaginary parts of χL become small), which indicates that expanding in powers
of Q was appropriate. This smallness is actually a consequence of the shift (22.11) used
to eliminate the term (22.15) from the action. If we had instead included (22.15) in the
present mean-field analysis, we would have found a very similar solution, but the resulting
χL would have an additional frequency-independent contribution to its real part, which
remained of order unity at the phase boundary. Such a regular frequency-independent
term does not modify the interesting long-time correlations or the low-frequency spec-
tral weight, which actually remain as we have found them here. This is then the promised
a-posteriori justification for the expansion employed in obtaining Ssg .

Let us discuss the nature of the finite-temperature crossovers within the paramagnetic
phase of the metallic system, as shown in Fig. 22.1; the behavior of the Ising/rotor system
is closely related and details may be found elsewhere [400]. The spectral density is given
everywhere by (22.34), which depends solely on the energy scale ϒ , to be determined
by the solution of (22.29). We present a complete derivation of the universal T and s
dependence of ϒ in the vicinity of the quantum critical point T = 0, s = 0; despite
the seemingly simple equation (22.29) to be solved, a great deal of structure emerges,
including some nontrivial crossover functions. We begin by combining (22.29), (22.31),
and (22.32) into

ϒ + (u + Nv)T
√
ϒ = s − (u + Nv)

⎛⎝T
∑
ωn �=0

√|ωn| + ϒ −
∫

dω

2π

√|ω|
⎞⎠. (22.36)

For convenience, we have chosen to move the ωn = 0 term in the frequency summation
from the right-hand to the left-hand side. To leading order in u+ Nv, this equation has the
simple solution ϒ = s. To improve this result it is adequate to simply set ϒ = s on the
right-hand side of (22.36) since the minimum value of ωn in the summation is 2πT and this
always turns out to be much larger than ϒ in the interesting universal region, as becomes
clear from the analysis below. This strategy of separating the ωn = 0 and ωn �= 0 terms,
and of treating the ωn = 0 term with more care, is reminiscent of the approach applied
in Chapter 14 for finite-T crossovers; we see below that the resulting crossovers are very
similar to those found in Section 14.2.2 for the case when the clean Ising/rotor model was
above its upper-critical dimension. After making the noted approximation, we can further
manipulate (22.36) into

ϒ + (u + Nv)T
√
ϒ = s + (u + Nv)T

√
s

− (u + Nv)

(
T
∑
ωn

√|ωn| + s −
∫

dω

2π

√|ω| + s

)

− (u + Nv)
∫

dω

2π

(√|ω| + s −√|ω| − s

2
√|ω|

)
− (u + Nv)

∫
dω

2π

s

2
√|ω| . (22.37)
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The manipulations above are similar to those discussed below (11.47) and used extensively
in Chapter 14: we always subtract from the summation over Matsubara frequencies of any
function, the integration of precisely the same function; the difference is then convergent
in the ultraviolet, and such a procedure leads naturally to the universal crossover func-
tions [422]. We now manipulate (22.37) into a form where it is evident that ϒ is analytic
as a function of s at s = 0 for T > 0. This analyticity is of course closely related to that
discussed in Sections 14.2.1 and 14.2.2 and is due to the absence of any thermodynamic
singularity for T > 0, s = 0 (see Fig. 22.1). We use the identity∫ ∞

0

√
αdα

(
1

α + a
− 1

α + b

)
= π

(√
b −√a

)
(22.38)

to rewrite (22.37) as

ϒ + (u + Nv)T
√
ϒ = s

(
1− (u + Nv)�1/2

ω

π

)
+ (u + Nv)T

√
s + (u + Nv)

π

×
∫ ∞

0

√
αdα

(
T
∑
ωn

1

α + |ωn| + s
−
∫

dω

2π

1

α + |ω| + s

)

+ (u + Nv)

π

∫ ∞

0

√
αdα

∫
dω

2π

(
1

α + |ω| + s

− 1

α + |ω| +
r

(α + |ω|)2
)
, (22.39)

where �ω is an upper cutoff for the frequency. We evaluate the frequency summation by
expressing it in terms of the digamma function ψ , and we perform all frequency integrals
exactly. After some elementary manipulations (including use of the identity ψ(s + 1) =
ψ(s)+ 1/s), we obtain our final result for ϒ , in the form of a solvable quadratic equation
for
√
ϒ :

ϒ + (u + Nv)T
√
ϒ = s

(
1− (u + Nv)�1/2

ω

π

)
+ (u + Nv)T 3/2�sdg

( s

T

)
,

(22.40)

where the universal crossover function of the spin-density glass �sdg(y) is given by

�sdg(y) = 1

π2

∫ ∞

0

√
αdα

[
log
( α

2π

)
− ψ

(
1+ α + y

2π

)
+ π + y

α

]
. (22.41)

Notice the similarity in the structure of the above results to that of (14.32) and (18.83): in
all cases we have universal crossover functions for the characteristic energy scale in the
vicinity of a quantum critical point; indeed, for accidental reasons the universal function
�sdg(y) is proportional to the universal function L in (18.84) in d = 3. Also note that
the crossovers in (22.40) depend upon the magnitude of the microscopic couplings u and
v, which represent the quantum mechanical interactions between the rotors or Ising spins.
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This is also a feature of (14.32) and (18.83), and by analogy we may conclude that the
couplings u and v are formally irrelevant at the quantum critical point but are nevertheless
crucial in constructing the crossovers at nonzero temperatures (i.e. they are dangerously
irrelevant). This expectation is verified by an explicit renormalization group analysis of
Ssg [436] ,which we shall not discuss here.

The above expression for �sdg(y) is clearly analytic for all y ≥ 0, including y = 0,
as we hoped to achieve. As was the case for (14.32) and (14.33), we can use the above
result for y < 0 until we hit the first singularity at y = −2π , which is associated with
singularity of the digamma function ψ(s) at s = 0. However, this singularity is of no
physical consequence, as it occurs within the spin-glass phase (Fig. 22.1), where the above
solution is not valid; as shown below, the transition to the spin-glass phase occurs for
y ∼ −(u + Nv)T 1/2, which is well above −2π . For our subsequent analysis, it is useful
to have the following limiting results, which follow from (22.41):

�sdg(y) =
{√

1/2πζ(3/2)+O(y), y → 0,

(2/3π)y3/2 + y1/2 + (π/6)y−1/2 +O(y−3/2), y →∞. (22.42)

The expression (22.34), combined with the results (22.40) and (22.41), completely spec-
ifies the s and T dependence of the dynamic susceptibility in the paramagnetic phase and
allow us to obtain the phase diagram shown in Fig. 22.1, whose details we now discuss.
There is a quantum critical point at s = 0, T = 0, and the characteristic energy scale ϒ
vanishes linearly upon approach to this point at T = 0:

ϒ ∼ s, for s > 0, T = 0. (22.43)

There is a line of finite-temperature phase transitions, denoted by the full line in Fig. 22.1,
which separates the spin-glass and paramagnetic phases; this line is determined by the
condition ϒ = 0 and is at r = sc(T )(or T = Tc(s)), with

sc(T ) = −(u + Nv)�(0)T 3/2 or Tc(s) = [−s/(u + Nv)�(0)]2/3. (22.44)

The crossovers within the paramagnetic phase are similar to those found in Sections 14.2.2
and 18.4, and we discuss below the characteristics of the different limiting regimes.

(A, B) Low-T Paramagnetic Fermi Liquid, T < [s/(u + Nv)]2/3
This is the “Fermi liquid” region, where the leading contribution to the characteristic
energy scale ϒ is its T = 0 value ϒ(T )∼ϒ(0)= s. The leading temperature-dependent
correction to ϒ is, however, different in two subregions. In the lowest T region A, T < s,
we have a Fermi liquid-like T 2 power law

ϒ(T )− ϒ(0) = (u + Nv)πT 2

6
√

s
(region Ia). (22.45)

At higher temperatures, in region B, s < T < [s/(u + Nv)]2/3, we have an anomalous
temperature dependence

ϒ(T )− ϒ(0) = (u + Nv)�(0)T 3/2 (region Ib and II). (22.46)
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�Fig. 22.2 Crossovers as a function of frequency,ω, in the regions of Fig. 22.1 of the metallic spin glass. The low-T Fermi liquid
region is on the paramagnetic side (s > 0).

It is also interesting to consider the properties of regions A and B as a function of observa-
tion frequency, ω, as sketched in Fig. 22.2. At large frequencies, ω� s, the local dynamic
susceptibility behaves like χ ′′L ∼ sgn(ω)

√|ω|, which is the spectrum of critical fluctuations;
at the T = 0, s= 0 critical point, this spectrum is present at all frequencies. At low frequen-
cies, ω � s, there is a crossover (Fig. 22.2) to the characteristic Fermi liquid spectrum of
local spin fluctuations χ ′′L ∼ ω/

√
s. Upon consideration of fluctuations beyond mean field,

one finds the appearance of Griffiths–McCoy singularities in this region, as discussed in
related contexts in Chapter 21; these are quite important for experimental comparisons at
low temperatures and are further discussed in [24,45,69,118,119,282,284,338–340,423].

(C) High-T Region, T > [|s|/(u + Nv)]2/3
Here temperature-dependent contributions to ϒ dominate over those due to the deviation
of the coupling d from its critical point, d = 0. Therefore thermal effects are dominant,
and the system behaves as if its microscopic couplings are at those of the critical ground
state. The T dependence in (22.46) continues to hold, as we have already noted, with the
leading contribution being

ϒ ≈ (u + Nv)�(0)T 3/2. (22.47)

Note that the characteristic energy scale now does not scale simply as ∼T , as it did for the
high-T region of the models in Part II with d < 3. Instead, all T -dependent corrections
arise from the irrelevant coupling u, which leads to the anomalous power law in (22.47).
As in the low-T paramagnetic region, it is useful to consider properties of this region as
a function of ω (Fig. 22.2). For large ω (ω � (u + Nv)T 3/2) we again have the critical
behavior χ ′′L ∼ sgn(ω)

√|ω|; this critical behavior is present at large enough ω in all the
regions of the phase diagram. At small ω (ω � (u+Nv)T 3/2), thermal fluctuations quench
the critical fluctuations, and we have relaxational behavior with χ ′′L ∼ ω/(u+Nv)1/2T 3/4.

(D) Low-T Region above Spin Glass, T < [−s/(u + Nv)]2/3, s < 0
Effects due to the formation of a static moment are now paramount. As one approaches
the spin-glass boundary (22.44) from above, the system enters a region of purely classical
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thermal fluctuations, |T−Tc(s)| � (u+Nv)2/3T 4/3
c (s) (shown shaded in Fig 22.1), where

ϒ =
(

s − sc(T )

T (u + Nv)

)2

. (22.48)

Notice that ϒ depends on the square of the distance from the finite-T classical phase
transition line, in contrast to its linear dependence at T = 0 in (22.43). It turns out that
(22.48), when inserted into the static correlation functions, reproduces precisely the critical
singularities of the theory of classical spin glasses [400]. Indeed, the reader is invited to
show by the methods of Part II that the fluctuations in the shaded region of Fig. 22.1 are
described by precisely the classical critical theories of [48] and [138].

The above results for the local dynamic susceptibility can be extended to a number
of other experimentally important observables: as the basic methods are similar to those
already developed here, we refer the interested reader to the literature [436,457].

22.3 Applications and extensions

Much of the theoretical interest in quantum spin glasses has been driven by experiments
performed by the group led by Rosenbaum and Aeppli [541, 542] on the insulating, dipo-
lar Ising spin glass LiHox Y1−x F4 in a transverse field. These clearly show a crossover
between thermal and quantum fluctuation dominated regimes, but the nature of the quan-
tum critical point remains unclear. The vicinity of the spin-glass phase is dominated by
real-time glassy dynamics, which drives the system out of equilibrium. On the theoretical
side, we have already noted the work on the quantum Ising spin glass in infinite-range mod-
els. Models with finite-range interactions have been studied in imaginary-time computer
simulations [186,403], which yield information on thermodynamic properties and critical
exponents. However, it is clear that an understanding of the experiments requires a theory
of the real-time dynamics of quantum spin glasses. We discussed the real-time, nonzero
temperature, physics near nonrandom quantum critical points in Part II, but there are no
corresponding results for the random case. Recent steps toward understanding the real-time
dynamics include the droplet model picture of Thill and Huse [503] and the infinite-range
model studies of Rozenberg and Grempel [412].

The experiments also display ferromagnetic phases; these appear in models with a
nonzero mean Ji j and have been studied [103] in the mean-field framework discussed
here.

A significant application of the concepts discussed here on metallic spin glasses has
been in the “heavy fermion” series of compounds. The Griffiths–McCoy singularities of the
Fermi liquid phase have been the subject of much attention; discussions along with com-
parisons with experiments may be found in [24,69,118,119,339,340,423]. The anomalous
power laws at high T in the vicinity of the quantum critical point [436,457] have also been
examined in experimental studies [489].
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We have not commented in this chapter on insulating quantum spin glasses of Heisen-
berg spins: such models would generalize those of Chapter 19 to the case of random
exchange interactions. These turn out to be considerably more complicated; some work
on infinite-range models may be found in [57,177,275,441,456].

As we noted earlier, fluctuation corrections to the mean-field theory presented in this
chapter have been considered in the literature [400, 436, 456, 457]. The first two works
[400, 436] focused on spatial fluctuations in the spin-glass order parameter, although the
last two [456,457] considered the quantum fluctuations in the on-site “quantum impurity”
model. These latter works argued that although the mean-field theory of this chapter is an
adequate starting point for metallic electronic systems with Ising symmetry, those with full
Heisenberg symmetry appear to be controlled by the critical quantum paramagnetic state
found in [441] in the study of insulating Heisenberg spin models. The critical state of [441]
also appears in a most interesting analysis by Parcollet and Georges [371] of a doped Mott
insulator with random exchange interactions. The temperature and frequency crossovers
found in this insulator are closely related to those observed in the high-temperature super-
conductors. Recent numerical work [178] on infinite range models of metallic spin glasses
with Ising symmetry has obtained results in good agreement with the analytical predictions
discussed here.
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[217] Herbut, I. F., Juričić, V., and Roy, B. (2009) Phys. Rev. B 79, 085116.
[218] Hertz, J. A. (1976) Phys. Rev. B 14, 1165.
[219] Herzog, C. P., Kovtun P., Sachdev, S., and Son, D. T. (2007) Phys. Rev. D 75,

085020.
[220] Heuser, K., Scheidt, E.-W., Schreiner, T., and Stewart, G. R. (1998) Phys. Rev. B 57,

R4198.
[221] Hinkov, V., Haug, D., Fauqué, B., et al. (2008) Science 319, 597.
[222] Hirsch, J. E., and José, J. V. (1980) Phys. Rev. B 22, 5355.
[223] Hohenberg, P. C., and Halperin, B. I. (1977) Rev. Mod. Phys. 49, 435.
[224] Holzmann, M., Baym, G., Blaizot, J.-P., and Laloë, F. (2001) Phys. Rev. Lett. 87,

120403.
[225] Hoyos, J. A., and Vojta, T. (2008) Phys. Rev. Lett. 100, 240601.
[226] Hoyos, J. A., Kotabage, C., and Vojta, T. (2007) Phys. Rev. Lett. 99, 230601.
[227] Huckenstein, B. (1995) Rev. Mod. Phys. 67, 357.
[228] Huh, Y., Fritz, L., and Sachdev, S. (2010) Phys. Rev. B 81, 144432.
[229] Huo, R. E., Hetzel, R. E., and Bhatt, R. N. (1993) Phys. Rev. Lett. 70, 481.
[230] Huse, D. A., and Elser, V. (1988) Phys. Rev. Lett. 60, 2531.
[231] Hyman, R. A., Yang, K., Bhatt, R. N., and Girvin, S. M. (1996) Phys. Rev. Lett. 76,

839.
[232] Hyman, R. A., and Yang, K. (1997) Phys. Rev. Lett. 78, 1783.
[233] Ikegami, T., Miyashita, S., and Rieger, H. (1998) J. Phys. Soc. Jpn. 67, 2761.



486 References

[234] Imai, T., Slichter, C. P., Yoshimura, K., and Kosuge, K. (1993) Phys. Rev. Lett. 70,
1002.

[235] Imai, T., Slichter, C. P., Yoshimura, K., Katoh, M., and Kosuge, K. (1993) Phys. Rev.
Lett. 71, 1254.

[236] Ioffe, L. B., and Millis, A. J. (1995) Phys. Rev. B 51, 16151.
[237] Irkhin, V. Yu, and Katanin, A. A. (1998) Phys. Rev. B 58, 5509.
[238] Ising, E. (1925) Z. Phys. 31, 253.
[239] Itoh, Y., and Yasuoka, H. (1997) J. Phys. Soc. Jpn. 66, 334.
[240] Its, A. R., Izergin, A. G., and Korepin, V. E. (1991) Physica D 53, 187.
[241] Its, A. R., Izergin, A. G., Korepin, V. E., and Novokshenov, V. Ju. (1990) Nucl. Phys.

B 340, 752.
[242] Its, A. R., Izergin, A. G., Korepin, V. E., and Varzugin, G. G. (1992) Physica D

54, 351.
[243] Itzhaki, N., Maldacena, J. M., Sonnenschein, J., and Yankielowicz, S. (1998) Phys.

Rev. D 58, 046004.
[244] Itzykson, C., and Drouffe, J.-M. (1989) Statistical Field Theory (Cambridge

University Press, Cambridge).
[245] Itzykson, C., and Zuber, J. B. (1980) Quantum Field Theory (McGraw-Hill,

New York).
[246] Jalabert, R., and Sachdev, S. (1991) Phys. Rev. B 44, 686.
[247] Jeon, S., and Yaffe, L. G. (1996) Phys. Rev. D 53, 5799.
[248] Jevicki, A., and Papanicolaou, N. (1979) Ann. Phys. 120, 107.
[249] Jepsen, D. W. (1965) J. Math. Phys. 6, 405.
[250] Jolicoeur, Th., and Golinelli, O. (1994) Phys. Rev. B 50, 9265.
[251] Jordan, P., and Wigner, E. (1928) Z. Phys. 47, 631.
[252] José, J. V., Novotny, M. A., and Goldman, A. M. (1988) Phys. Rev. B 38, 4562.
[253] Joyce, G. S. (1967) Phys. Rev. 155, 478.
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activated dynamic scaling, 450, 458, 462
AdS/CFT, 283
Aharanov–Bohm, 112
amplitude fluctuations, 210, 225, 255, 259
analytic continuation, 24
angular fluctuations, 210, 225, 256
angular momentum current, 262, 270
angular momentum density, 261
anomalous dimension, 325, 341
antiferromagnet

canted, 406
collinear, 385
double layer, 14
Heisenberg, 385
noncollinear, 395

asymptotic expansion, 384
asymptotic freedom, 26
average over initial conditions, 155, 208, 252

background field method, 192
bare coupling, 202
BCS theory, 333
Berry phase, 26, 117, 125, 293, 375, 381,

393, 398
Bethe ansatz, 205, 218
black hole, 285
Bloch precession, 172, 262
Bogoliubov transformation, 139, 333
Boltzmann’s constant, 12
branch cut, 164, 400

canted order, see antiferromagnet, canted
chemical potential, 118
classical critical dynamics, 162, 170, 252
classical rotors, 207
clustering, 466
coherent state, 123, 124, 293

canonical bosons, 125, 293
path integral, 123, 124, 375

collinear order, see antiferromagnet, collinear
colored particles, 196
conductance fluctuations, 283
conductivity, 262
configuration space, 206
conformal mapping, 146, 163, 304, 317, 422

continuity equation, 262
continuum Fermi field, 141
coplanar order, 396
correlation length, 4
couplings

dangerously irrelevant, 250, 290, 314, 373, 475
decimate, 453
irrelevant, 145
relevant, 143

critical continuum, 164, 231
critical exponent, 4
β, 56, 151, 179
continuously varying, 425
correlation length, 4, 20, 143, 242, 458
dynamic, 4, 21, 136, 142, 177, 299, 425, 444
effective classical, 155
η, 54, 183, 228
γ , 55
magnetization, 151, 179
nonuniversal, 441
ν, 4, 20, 55, 143, 242, 444, 458
percolation, 447
z, 4, 21, 136, 142, 177, 299, 425, 444
zν, 4, 177

dangerously irrelevant couplings, see couplings,
dangerously irrelevant

dangerously irrelevant quantum fluctuations, 453
de Broglie wavelength, 152, 159, 194, 304, 313
deterministic classical dynamics, 155, 208, 252
diamagnetic term, 266
diffusivity, 191, 198, 211, 262
dimension

engineering, see engineering dimension
scaling, see scaling dimension

dimensional regularization, 202, 240
dipolar interactions, 8, 258
Dirac fermions, 334
dissipative continuum, 104
dissipative quantum mechanics, 257
domain wall, 66, 93, 257
double layer antiferromagnet, see antiferromagnet,

double layer
double time path integral, 153, 159, 195
Ds , 191, 262
d-wave pairing, 334

496



497 Index

dynamic structure factor, 98
Dyson’s theorem, 38
Dyson–Maleev transformation, 381

Edwards–Anderson order parameter, 463
effective action for statics, 201, 242,

311, 371
effective Hamiltonian, 58
Einstein Maxwell, 287
Einstein relation, 263, 284
energy gap, 3
engineering dimension, 144
ε expansion, 51

failure at low frequencies, 247
ετ time dimensions, 444
extended-s pairing, 336

Fermi liquid, 346, 347, 475
Fermi surface, 348, 351
Fermi velocity, 349
Fermi’s Golden Rule, 103, 274
Fermi–Bose model, 323
fermion determinant, 327
fermion pockets, 365
ferromagnet

quantized, 380, 406
Stoner, 408
unquantized, 407

gapless mode, 408
Feshbach resonance, 320, 322
field theory

Bose–Fermi, 323
collinear antiferromagnet, 387
dilute Bose gas, 293
dilute Fermi gas, 294
disordered Hertz, 445
disordered soft spin, 443
Fermi liquid, 302
noncollinear antiferromagnet, 398
quantized ferromagnet, 380
quantum, xiv, 21
quantum nonlinear sigma model, 23, 173, 387
quantum spin glass, 468
renormalization group, 201, 240
SHd , 445
sine–Gordon model, 424
Sn , 23, 173
soft spin, 22, 237, 261
Sφd , 443
Sφ , 22, 238
spinful Fermi gas, 295
SSG , 424
Ssg , 468
ST L , 419
Sz , 398
Tomonaga–Luttinger liquid, 419

fixed point coupling, 241
flow equation, 193, 241, 381, 426, 427

exact, 307
for probability distribution, 455

fluctuation–dissipation theorem, 99
classical limit, 156, 206

G, 253
Gaussian fixed point, 47
Gaussian integral, 36
Ginzburg parameter, 253
glassy dynamics, 477
graphene, 335
Grassman path integral, 294
gravity, 285
Griffiths–McCoy singularities, 440, 461, 472, 477

Hamilton–Jacobi equation, 207, 252
Hamiltonian

boson Hubbard, 118
classical wave, 207, 251
disordered quantum Ising, 437
disordered quantum rotor, 437
Fermi liquid, 414

bosonic form, 417
H, 261
H12, 412

bosonic form, 423
HB , 118
Hc , 207, 251
Heisenberg spin, 375
HF , 141
HF L , 414
HI , 10, 135, 139
HI d , 437
HR , 13, 171, 404, 435
HRd , 437
HS , 375
HX X , 296
O(2) quantum rotor chain, 435
quantum Ising, 10
quantum Ising chain, 135, 139
quantum rotor, 13, 171, 404
single O(2) quantum rotor, 85, 86
single O(3) quantum rotor, 89
single quantum Ising spin, 73
soft spin, 261
spin chain, 412
Tomonaga–Luttinger liquid, 418
XX model, 296

Harris criterion, 438
Hawking temperature, 285
headless vector, 397
hedgehog, 392
Heisenberg spin, 14
helicity modulus, 110
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Higgs particle, 93, 105
decay, 105

high T
continuum, 150, 186, 199, 225, 247,

250, 318
lattice, 150, 304

Hohenberg–Mermin–Wagner theorem, 82
hotspots, 365
Hubbard–Stratanovich transformation, 127, 240,

327, 465
hydrodynamics, 6
hyperscaling, 26

in processes, 274
incompressibility, 122
instanton gas, 394
inversion identity, 87
irrelevant coupling, 48
Ising spin, 8, 10
Ising-nematic, 342, 355

Jordan–Wigner transformation, 296, 137
Josephson length, 180

Kosterlitz–Thouless transition, 434
Kubo formula, 99, 265, 283

ladder diagrams, 306
Lagrange multiplier, 173
Landau theory, 33
Landauer transport, 283
level crossing, 3
Lie algebra, 262

structure constants, 262
linear response, 99
linked cluster theorem, 38
London equation, 112
London penetration depth, 114
Lorentzian, 167

squared, 167
low T

magnetically ordered, 151, 187, 215
quantum paramagnet, 157, 186, 193,

225, 246

magnetization density, 380
magnetization plateau, 407
Majorana fermions, 142
Matsubara frequency, 97
maximally incoherent, 25
mean field theory, 30
Meissner effect, 114
momentum cutoff, 4, 142, 173, 252

momentum density, 270
momentum shell, 48, 339
Mott insulator, 122
multicritical point, 322, 323

Néel order, 385, 391, 431
nematic, 342, 355
nematic liquid crystal, 397
N →∞ theory, 173

failure of 1/N expansion at low frequencies, 234
magnetically ordered, 179
1/N corrections, 226

non-Abelian gauge transformation, 265
noncollinear order, see antiferromagnet, noncollinear
non-Fermi liquid, 359, 360, 369
nonlinear sigma model, see field theory, quantum

nonlinear sigma model
normal order, 415

out processes, 274

pair creation, 275
paramagnetic term, 266
particle physics, 26
particle–hole excitations, 415
particle–hole symmetry, 119
particle–vortex duality, 287
Pauli matrices, 10
percolation theory, 447
perfect fluids, 288
phase coherence time, xiii, 25, 151, 154, 161, 168,

187, 198, 209, 216, 220, 225, 231, 233, 268,
318–320

phase fluctuations, 256
phase space, 206
phase transition

classical, 7, 20, 188, 248
quantum, 3, 7

failure of Landau theory in low dimensions, 435
second order, 3

Planck’s constant, 12
pnictide superconductors, 336
Poisson brackets, 207, 251
pre-existing carriers, 282

QC mapping, 24
quantized density, 126, 293
quantum critical region, 6, 150, 250
quantum dimer model, 394
quantum disordered, 25, 151, 157
quantum inverse scattering, 319
quantum paramagnet, 8, 25, 59, 175
quantum relaxational dynamics,

162, 165
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quantum rotor, 12
commutation relations, 13
moment of inertia, 13

quasi-classical
particles, 152, 159, 190, 193, 213, 232, 260, 277,

300, 316
waves, 190, 200, 208, 213, 215, 224, 251, 260

quasi-long-range order, 297, 308
quasiparticle, 347
quasiparticle breakdown, 341
quasiparticle lifetime, 353
quasiparticle pole, 176, 180
quasiparticle residue, 92, 102, 158, 176, 183, 199, 229

radio frequency, 282
relevant perturbation, see couplings, relevant
renormalization group invariant, 204, 220
renormalization group transformation,

see scaling transformation
renormalization scale μ, 202, 240
renormalized classical, 151
renormalized coupling, 202
replica method, 443
rotating reference frame, 172

S matrix, 62, 194
superuniversal, 62, 194

scaling dimension
anomalous, 143, 144, 178
chemical potential, 299
conductivity, 264
diffusivity, 264
dilute bosons, 305
field, 143
field coupling to conserved charge, 178
free energy, 56, 143
free fermions, 299
Luttinger liquid, 428
magnetic field, 178
Néel order, 434
order parameter, 143
quasiparticle residue, 178
spin–Peierls order, 389, 428
temperature, 143
uniform susceptibility, 178

scaling function
activated dynamic, 450
analyticity for T > 0, 147, 183, 244, 312, 372, 475
χ(k, ω), 183
χ(k, ω), d = 2, 214
χu , 183, 263
conductivity, 264
d = 2 quantum rotor, quasi-classical wave,

215, 224
diffusivity, 192

dilute Bose gas, static couplings, 311
dilute Fermi gas, 300
Ds , 284
FI , 147
F±, 184
free energy, 72, 84
FX , 315
G, 244, 447
G̃d , 249
G I , 147
G X , 315
incoherent transport, 275
Ising chain equal-time, 147
Ising chain, high T , 165
Ising chain, quantum critical, 165
Ising chain, quasi-classical particle,

154, 160
K , 311
L , 372
m, large N , 184
magnetization, 451
percolation, 447
�c , 216
�Ds , 192
�F , 72, 84
�FB

, 308
�FF

, 300
�G B , 308
�I , 144
�M , 451, 460
�n , 84
��, 233
�±, 183, 214
�R , 155
�σ , 72, 74
�s±, 284
�σ I , 276, 280
�Sc , 156, 209, 224
�Sc, 253
�sdg, 474
�σ±, 264
�u±, 183, 263
P , 456
�, 276, 280
�D , 239
�G F , 300
quantum Ising chain, 144
quantum rotor chain, quasi-classical

particles, 198
quantum rotor chain, quasi-classical

waves, 209
random Ising chain, 456
reduced, 136, 154, 188, 248, 301
R, 456
soft spin, χ(k), 243
soft spin, quasi-classical waves, 253
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scaling function (cont.)
soft spin, static couplings, 244
spin density glass, 474
spin density wave, static couplings, 372
tricritical, 239
universal, 72
X X chain equal-time, 315

scaling limit, 21, 70
scaling theory, 73
scaling transformation, 45, 140, 142,

241, 307
decimation, 453
exact, 307

scattering length, 310, 321
self-duality, 287
sine–Gordon model, 424

flow equation, 426, 427
refermionization, 430
soliton, 429
spinon, 429

single particle states, 60, 92
Skyrmion number, 392
slab geometry, 26
soft spin, see field theory, soft spin
spectral density, 97
spectral representation, 97
spectrum

gapless, 3, 12, 80, 281
gapped, 3, 12

spin density glass, 463
spin density wave, 363
spin glass, 476
spin stiffness, 111, 380
spin wave, 380

classical, 200, 215, 251
spin–Peierls order, 389, 428
spinful Fermi gas, 320
spinons, 399

deconfined, 399
spontaneous magnetization, 11, 151,

183, 230
spontaneous symmetry breaking, 11
Stoner ferromagnet, see ferromagnet, Stoner
string, 378
string theory, 283
structure factor, 98

dynamic, 136, 172
equal-time, 136
sum rule, 136

superfluid density, 111, 120
supergravity, 285
supersolid, 123
supersymmetry, 285
surface tension, 108
susceptibility
χ(k), 137

χu , 172
χu(k, ωn), 191
dynamic, 172
static, 137
uniform, 172

symmetry breaking, 11

T matrix, 232, 306, 321, 383
tagged particle autocorrelation,

196
Tan’s constant, 328
thermal equilibration time, 6
thermal paramagnet, 8
θ term, 388
three-particle continuum, 103,

164, 228
threshold, 63, 103
time-reversal symmetry, 335
Toeplitz determinant, 149
Tomonaga–Luttinger liquid, 317,

389, 428
boundary conditions, 418
commutation relations, 418
Fermi operator, 420
Hamiltonian, 418
mode expansion, 418

topological term, 388
trajectories, 196
transfer matrix, 68, 73
transport

coherent, 281, 283
collision dominated, 273,

284, 290
collisionless, 269, 283
current, 262
ε expansion, 273
high T , 268, 275
incoherent, 282

universal, 282
large-N expansion, 279
low-T quantum paramagnet,

269, 277
quantum Boltzmann equation, 274

transverse field, 8, 10
tricritical crossover, 239, 311
tunneling event, 389
two-particle continuum, 63
two-particle states, 61
two-level system, 257

ultracold atoms, 8
umklapp, 423
uncertainty principle, 7
universal scaling function, see scaling function,

universal
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universality, 4, 21, 52, 71
upper-critical dimension, 173, 175

valence bond, 394
vortices

double, 424
single, 436

Wick’s theorem, 36
Wilson–Fisher fixed point, 51

Yukawa coupling, 340, 343, 356, 358

Z2 symmetry, 11
Z2 gauge transformation, 398
zero point motion, 81
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