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Preface

The quantum field theory (QFT) is a universal common language of the con-
densed matter community. As any live language it keeps evolving and changing.
The change comes as a response to new problems and developments, trends from
other branches of physics and from internal pressure to optimize its own vocabu-
lary to make it more flexible and powerful. There are a number of excellent books
which document this evolution and give snapshots of “modern” QFT in condensed
matter theory for almost half a century. In the beginning QFT was developed in
the second quantization operator language. It brought such monumental books as
Kadanoff and Baym [1], Abrikosov, Gor’kov and Dzyaloshinski (AGD) [2], Fetter
and Walecka [3] and Mahan [4]. The advent of renormalization group and Grass-
mann integrals stimulated development of functional methods of QFT. They were
reflected in the next generation of books such as Itzykson and Zuber [5], Negele
and Orland [6] and Fradkin [7]. The latest generation, e.g. Tsvelik [8], Altland and
Simons [9], and Nagaosa [10], is not only fully based on functional methods, but
also deeply incorporates ideas of symmetry based on universality, geometry and
topology. (I do not mention here some excellent specialized texts devoted to appli-
cations of QFT in superconductivity, magnetism, phase transitions, mesoscopics,
one-dimensional physics, etc.)

Following AGD authority almost all these books (with the notable exception
of Kadanoff and Baym) employ the imaginary time Matsubara formalism [11]
of finite temperature equilibrium QFT. The irony is that a much more powerful
non-equilibrium QFT pioneered by Schwinger [12], Konstantinov and Perel’ [13],
Kadanoff and Baym [1] and Keldysh [14] was developed almost at the same time
as the Matsubara technique. Being widely scattered across the periodic scientific
literature, it has barely broken into the mainstream pedagogical texts. The very
few books I am aware of are Kadanoff and Baym [1], Lifshitz and Pitaevskii [15],
Smith and Jensen [16], Haug and Jauho [17] and Rammer [18] (there are also a
number of useful reviews [19, 20, 21, 22, 23]). The reasons for such a disparity

xi



xii Preface

are hard to explain. In my personal opinion they are two-fold. (i) There may be
a perception that all subtle and interesting effects take place only in equilibrium;
non-equilibrium systems are too “violent” to be treated by QFT. Instead, the kinetic
equation approach is the best one can hope for; the latter may be obtained with the
Golden Rule and thus does not need QFT. (ii) The formalism is too involved, too
complicated and too non-intuitive to be a part of the “common” knowledge.

As far as the first reason is concerned, it was realized decades ago that even the
“simple” kinetic equation may not be actually so simple. Time and again it was
shown that the kinetic equation for superfluids, superconductors, fermion–boson
mixtures, disordered normal metals, etc. can’t be deduced from the Golden Rule
and has to be derived using the non-equilibrium QFT methods. Yet, most of the
traditional experimental systems, such as liquid helium, bulk magnets, supercon-
ductors or disordered normal metals can hardly be driven substantially away from
equilibrium. This created a comforting impression that studying the equilibrium
plus linear response properties is largely sufficient to describe experiment. The last
two decades have changed this perception dramatically. First, mesoscopic normal
metals and superconductors have demonstrated that non-equilibrium conditions
may be achieved in controlled and reproducible ways and a number of unusual
specifically non-equilibrium phenomena do emerge. Then came cold atomic gases
in magnetic and optical traps. These systems are rarely truly at equilibrium, yet
they exhibit a rich phenomenology, which calls for a theoretical description. Lately
the flourishing fields of nano-mechanics and nano-magnetics emerged, which deal
with stochastic mechanical and magnetic systems driven far away from equilib-
rium. All these developments call for the systematic non-equilibrium theory to be
a part of the “standard package” of a theoretical physicist.

As for the technical complexity and lack of the “esthetic” appeal, there is some
truth to it, especially when the story is told in the old operator formalism (this is
exactly how most currently existing books approach the subject). I can see how
one can be overwhelmed by a number of different Green functions, rules to follow
and by the length of calculations. Fortunately, the structure of the theory becomes
much more transparent when it is presented in the functional formalism. Instead of
keeping track of matrix Green functions and tensor vertices, one has to follow the
scalar action, which is a functional of just two fields. Yes, one still has to double the
number of degrees of freedom. However, being taken in appropriate linear combi-
nations (Keldysh rotation), they acquire a transparent physical meaning. Then the
causality principle emerges as a simple and natural way to navigate through the cal-
culations. The main goal of this book is to present a thorough and self-contained
exposition of the non-equilibrium QFT entirely in the functional formalism.

I tried to pay special attention to specific peculiarities of non-equilibrium (i.e.
closed time contour) QFT, which do not show up in the imaginary time or T = 0
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formalism. The presentation starts from the simplest possible systems and develops
all minute technical details, exposes pitfalls and explains the internal structure for
such “trivial” situations. Then the systems are gradually taken to be more and more
complex. I still tried my best to emphasize peculiarities of non-equilibrium calcu-
lations in comparison with the probably more familiar equilibrium ones. Although
the book is meant to be entirely self-contained, some common subjects between
equilibrium and non-equilibrium techniques (e.g. diagrammatic expansion, the
Dyson equation, the renormalization group) are introduced in a rather compact
way. In such cases I mostly focused on differences between the two approaches,
possibly at the expense of the common themes. Therefore some prior familiarity
with the imaginary time QFT is probably beneficial (although not compulsory) for
a reader.

What are the benefits of learning non-equilibrium QFT? (i) It naturally provides
a way to go beyond the linear response and derive consistent kinetic theory (e.g.
quasiparticle kinetics coupled to the dynamics of the order parameter). As was
mentioned above, there is a rapidly growing list of fields where such an approach
is unavoidable. (ii) Even for linear response problems it allows one to circumvent
the analytical continuation procedure to real time, which may be quite cumber-
some. (iii) In its functional form it provides a natural and seamless connection to
the huge field of classical stochastic systems, their universality classes and phase
transitions. In fact, roughly a third of this book is devoted to such classical prob-
lems. For this reason the word “quantum” does not appear in the title. Yet from the
point of view of the formalism, non-equilibrium QFT and the theory of classical
stochastic systems are virtually undistinguishable. (iv) Some subjects of great cur-
rent interest (e.g. full counting statistics, or fluctuation relations) can not even be
approached without the formalism presented here. (v) Non-equilibrium QFT (again
in its functional form) appears to be extremely effective in dealing with systems
with quenched disorder. Even if purely equilibrium, or linear response properties
are in question, the closed time contour QFT is much more natural and efficient
than the imaginary time one. All these items are the subjects of the present book. I
hope you’ll find it useful.

The book is directed to advanced graduate students, post-docs and faculty who
want to enrich their understanding of non-equilibrium physics. It may be used as
a guide for an upper division graduate class on QFT methods in condensed matter
physics. Having in mind such a mature and busy audience, I opted to omit exer-
cises. On the other hand, there are plenty of calculations within the book which
require “filling in the blanks” and may be suggested as exercises for graduate stu-
dents. There is practically no discussion of relevant experimental results in the
book. This is done intentionally, since the scope is rather broad and inclusion of
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experiments could easily increase the volume by a factor. Finally, the bibliogra-
phy list is not meant to be exhaustive or complete. In most cases the references
are given to the original works, where the presented results were obtained, and to
their immediate extensions and the review articles. I sincerely apologize to many
authors whose works I was not able to cover.

Finally, this is an opportunity to express my deep appreciation to all of my coau-
thors and colleagues, from whom I learned a great deal about the subjects of this
book. During the work on the book I was partially supported by the National Sci-
ence Foundation grant DMR-0804266. Last but not least, I am indebted to my
family, whose love and support made this book possible.
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Introduction

1.1 Closed time contour

Consider a quantum many-body system governed by a time-dependent Hamilto-
nian Ĥ(t). Let us assume that in the distant past t = −∞ the system was in a state
specified by a many-body density matrix ρ̂(−∞). The precise form of the latter is
of no importance. It may be, e.g., the equilibrium density matrix associated with
the Hamiltonian Ĥ(−∞). We shall also assume that the time-dependence of the
Hamiltonian is such that at t = −∞ the particles were non-interacting. The inter-
actions are then adiabatically switched on to reach their actual physical strength
sometime prior to the observation time. In addition, the Hamiltonian may con-
tain true time dependence through e.g. external fields or boundary conditions. Due
to such true time-dependent perturbations the density matrix is driven away from
equilibrium.

The density matrix evolves according to the Von Neumann equation

∂t ρ̂(t) = −i
[
Ĥ(t), ρ̂(t)

]
, (1.1)

where we set � = 1. It is formally solved with the help of the unitary evolution
operator as ρ̂(t) = Ût,−∞ρ̂(−∞)

[
Ût,−∞

]† = Ût,−∞ρ̂(−∞)Û−∞,t , where the †
denotes Hermitian conjugation. The evolution operator obeys

∂t Ût,t ′ = −iĤ(t) Ût,t ′ ; ∂t ′Ût,t ′ = i Ût,t ′ Ĥ(t ′).

Notice that the Hamiltonian operators taken at different moments of time, in gen-
eral, do not commute with each other. As a result, Ût,t ′ must be understood as
an infinite product of incremental evolution operators with instantaneous locally
constant Hamiltonians

Ût,t ′ = lim
N→∞ e−iĤ(t−δt )δt e−iĤ(t−2δt )δt . . . e−iĤ(t−Nδt )δt e−iĤ(t ′)δt

= T exp

(
−i

∫ t

t ′
Ĥ(t) dt

)
, (1.2)

where an infinitesimal time-step is δt = (t − t ′)/N and to shorten the notations the
infinite product is abbreviated as the time-ordered, or T-exponent.

1



2 Introduction

One is usually interested to know an expectation value of some observable Ô
(say density or current operator) at a time t .1 It is defined as

〈
Ô
〉
(t) ≡ Tr{Ôρ̂(t)}

Tr{ρ̂(t)} = 1

Tr{ρ̂(t)} Tr
{
Û−∞,tÔÛt,−∞ρ̂(−∞)

}
, (1.3)

where the trace is performed over many-body Hilbert space and in the last equality
we cyclically permuted the Û−∞,t operator under the trace sign. The expression
under the last trace describes (read from right to left) evolution from t = −∞,
where the initial density matrix is specified, toward t , where the observable is cal-
culated, and then back to t = −∞. Therefore calculation of an observable implies
evolving the initial state both forward and backward.

Such forward–backward evolution is avoided in the equilibrium quantum field
theory with a special trick. Let us recall how it works, for example, in the zero-
temperature equilibrium formalism [2]. The latter deals with the ground state
expectation values of the type 〈GS|Ô|GS〉, where |GS〉 is a ground state of an inter-
acting many-body system. It is obtained from the known and simple ground state of
the corresponding non-interacting system |0〉 by acting on the latter with the evolu-
tion operator |GS〉 = Ût,−∞|0〉. Since we are dealing with the equilibrium situation,
the only time dependence allowed for the Hamiltonian is an adiabatic switching of
the interactions on and off in the distant past and distant future, respectively. The
evolution operator therefore describes the evolution of a simple non-interacting
ground state |0〉 toward |GS〉 upon adiabatic switching of the interactions and thus
〈GS|Ô|GS〉 = 〈0|Û−∞,tÔÛt,−∞|0〉.

Now comes the trick: one argues that

Û+∞,−∞|0〉 = eiL |0〉. (1.4)

That is, evolution of the non-interacting ground state upon adiabatic switching of
the interactions on and subsequent adiabatic switching them off brings the system
back into the state |0〉, up to a phase factor eiL . This statement is based on the belief
that the adiabatic perturbation keeps the system in its (evolving) ground state at
all times. If so, in view of normalization 〈0|0〉 = 1, the only possible change
is the phase of the non-interacting ground state eiL = 〈0|Û+∞,−∞|0〉. Similarly
〈0|Û+∞,−∞ = 〈0|eiL . Accepting this, one proceeds as follows:

〈GS|Ô|GS〉 = 〈0|Û−∞,tÔÛt,−∞|0〉 = e−iL〈0|eiL Û−∞,tÔÛt,−∞|0〉
= e−iL〈0|Û+∞,−∞Û−∞,tÔÛt,−∞|0〉 = 〈0|Û+∞,tÔÛt,−∞|0〉

〈0|Û+∞,−∞|0〉
, (1.5)

1 We work in the Schrödinger picture, where observables are t-independent operators, while the wavefunctions
and the density matrix evolve.



1.1 Closed time contour 3

where in the last equality we used Û+∞,−∞Û−∞,t = Û+∞,t , which is an immediate
consequence of Eq. (1.2). The result of this procedure is that one needs to consider
only the forward evolution. Indeed, the numerator in the last expression (being read
from right to left) calls for evolving the non-interacting ground state |0〉 from the
distant past to the observation time, where the observable operator acts, and then
proceeding towards the distant future, where the overlap with the same known state
〈0| is evaluated.

The similar strategy works in the finite-temperature equilibrium formalism [11,
2, 4]. There, one treats the equilibrium density matrix e−β Ĥ , where β = 1/T is
the inverse temperature, as the evolution operator in the imaginary time τ . The
latter is defined on a finite interval 0 ≤ τ < β. The observables (or correlation
functions) are also evaluated at imaginary time points τ1, τ2, . . . and the result must
be analytically continued back to the real-time axis. One may argue that, since the
adiabatic switching of interactions does not drive the system out of equilibrium, a
statement similar to Eq. (1.4) still holds. As a result one is again left to describe
only the forward evolution, albeit along the finite time interval in the imaginary
direction.

Let us mention that elimination of the backward evolution comes with a price:
the normalization denominator in the last expression in Eq. (1.5). It offsets the
phase accumulation eiL of the non-interacting ground state |0〉. In diagrammatic
language it amounts to subtracting the so-called disconnected or vacuum loop dia-
grams. This denominator is a serious liability in the theory of disordered systems.
The reason is that the accumulated phase eiL sensitively depends on a specific real-
ization of the disorder (which may be thought of as being absent at t → ±∞
and adiabatically switched on and off in the process of evolution). Therefore the
denominator absolutely must be included in any disorder averaging procedure,
which complicates the treatment in a very substantial way.

The much more serious trouble with the outlined procedure is that Eq. (1.4) does
not work in a non-equilibrium situation. If the Hamiltonian Ĥ(t) contains non-
adiabatic time-dependent external fields, boundary conditions, etc., the evolution
drives the system away from equilibrium. Even if all such fields are eventually
switched off in the distant future, there is no guarantee that the system returns to
its ground (or equilibrium) state. Therefore acting with the operator Û+∞,−∞ on
the initial ground (or equilibrium) state results in an unknown superposition of
excited states. As a result, the backward evolution, inherent to Eq. (1.3), can’t be
eliminated.

Nevertheless, it is still convenient to extend the evolution in Eq. (1.3) towards
t = +∞ and then back to t . This is achieved with the help of the trivial identity
Ût,+∞Û+∞,t = 1̂. Inserting it into Eq. (1.3) and using Û−∞,t Ût,+∞ = Û−∞,+∞, one
finds
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t

Ô

Û−∞,+∞

Û+∞,t Ût,−∞ ˆ

+ ∞ − ∞

ρ(−∞)

Fig. 1.1 Closed time contour C. Evolution along such a contour is described by
Eq. (1.6).

〈
Ô
〉
(t) = 1

Tr{ρ̂(−∞)} Tr
{
Û−∞,+∞Û+∞,tÔÛt,−∞ρ̂(−∞)

}
. (1.6)

Here we also used that, according to the Von Neumann equation (1.1), the trace of
the initial density matrix is unchanged under the unitary evolution. Equation (1.6)
describes evolution along the closed time contour C depicted in Fig. 1.1. The
observable Ô is inserted at time t , somewhere along the forward branch of the
contour. Notice that inserting the operator Ût,+∞Û+∞,t = 1̂ to the right of Ô in
Eq. (1.3), one could equally well arrange to have the observable on the backward
branch of the contour. As we shall see, the most convenient choice is to take a half
sum of these two equivalent representations.

Evolution along the closed time contour C is the central subject of this book.
The fact that the field theory can be constructed with the time ordering along such
a contour was first realized by Schwinger [12] and further developed in [24, 25].
About the same time Konstantinov and Perel’ [13] have developed a diagrammatic
technique, based on the time contour containing forward and backward branches
in the real-time direction along with the imaginary time portion of length β. The
formalism was significantly advanced, in particular its utility to derive the kinetic
theory, in the seminal book of Kadanoff and Baym [1]. Independently Keldysh
[14] (for some of the historic context see [26]) suggested a formulation which
does not rely on imaginary time (and thus on the equilibrium density matrix). He
also introduced a convenient choice of variables (Keldysh rotation), which made
derivation of the kinetic theory particularly transparent. The time contour with-
out the imaginary time piece, along with the Keldysh variables (which we call
“classical” and “quantum”) appear to be by far the most convenient choices for
the functional formulation of the theory presented in this book. For this reason
we occasionally refer to the construction as the Keldysh technique (this should
by no way diminish the credit deserved by the other authors). Reformulation of
the theory for the case of fermions, given later by Larkin and Ovchinnikov [27],
became universally accepted. In fact, other theories developed about the same
time, while not using the time contour explicitly, appear to be close relatives of
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the Schwinger–Kadanoff–Baym–Keldysh construction. Among them are Feynman
and Vernon [28], Wyld’s [29] diagrammatic technique for fluid dynamics and Mar-
tin, Siggia and Rose [30] and DeDominicis’ [31] calculus for classical stochastic
systems.

The central object of the theory is the evolution operator along the closed con-
tour ÛC = Û−∞,+∞Û+∞,−∞. If the Hamiltonian is the same on the forward and
backward branches, then the forward–backward evolution of any state brings it
back exactly to the original state. (Not even a phase factor is accumulated, indeed,
any phase gained on the forward branch is exactly “unwound” on the back-
ward branch.) As a result ÛC = 1̂ and the partition function, defined as Z ≡
Tr{ÛC ρ̂(−∞)}/Tr{ρ̂(−∞)}, is identically equal to unity, Z = 1. Nevertheless,
the partition function is a convenient object to develop the functional representa-
tion and the normalization identity Z = 1 is a useful check of its consistency. For
this reason we shall use it widely in what follows.

To insert an observable somewhere along the forward (as prescribed by Eq. (1.6))
or backward branches it is convenient to modify the Hamiltonian Ĥ(t) by adding
the source term Ĥ±

V (t) ≡ Ĥ(t)± ÔV (t), where the plus (minus) sign refers to the
forward (backward) part of the contour. Now, since the Hamiltonian is different on
the two branches, the evolution operator along the contour ÛC[V ] 
= 1̂ becomes
non-trivial and so does the generating function

Z [V ] ≡ Tr{ÛC[V ] ρ̂(−∞)}
Tr{ρ̂(−∞)} . (1.7)

The expectation value of the observable Ô, given by Eq. (1.6) (or rather by a half
sum of the observable inserted along the forward and backward branches) may be
found as 〈Ô〉(t) = (i/2)δZ [V ]/δV (t)

∣∣
V=0. This expression should be compared

with the equilibrium technique [2, 4], where the observables are given by varia-
tional derivatives of the logarithm of the generating (or partition) function. In our
case, since Z = Z [0] = 1, the presence of the logarithm is optional.2 Knowledge
of the generating function allows thus to find observables of interest. Therefore,
after developing the functional formalism for the partition function, we extend it to
include the generating function as well.

2 It is worth mentioning that the denominators in Eqs. (1.5) and (1.7) have very different status. In the latter
case Tr{ρ̂(−∞)} refers entirely to the distant past, when both interactions and disorder are switched off. It
is therefore a simple constant, which may be easily evaluated. In the former case 〈0|Û+∞,−∞|0〉 involves
evolution of the ground state upon switching on and off the interactions and disorder. It thus depends on both
disorder and interactions and requires a separate calculation. The absence of a disorder-dependent denominator
makes the closed time contour formalism especially suitable to deal with the averaging over the quenched
disorder. The fact that observables do not require the logarithm is another manifestation of the absence of the
non-trivial denominator.



6 Introduction

1.2 The outline of this book

Chapter 2 is devoted to a possibly simplest many-body system of bosonic parti-
cles occupying a single quantum state. We briefly develop a second quantization
representation and then proceed towards the functional formalism, based on the
coherent-state functional integral along the contour C. Here we pay close atten-
tion to a fundamental discrete time (see Eq. (1.2)) representation of the evolution
operator. The model allows us to expose explicitly the discrete time structure, to
verify normalization Z = 1 and to explain the meaning and hidden skeletons of
the continuous notation. We then introduce Keldysh rotation, “classical/quantum”
variables and explain the causality structure. Finally we introduce the generat-
ing function in discrete and continuous notations and explain the relation between
them.

In Chapter 3 we exploit the analogy between the toy model of Chapter 2 and
the harmonic oscillator to formulate the single-particle quantum mechanics as a
path integral on the closed time contour. We then use it to investigate a quantum
particle coupled to an equilibrium bath of harmonic oscillators. Integrating out the
oscillators, degrees of freedom, we derive the real-time version of the celebrated
Caldeira–Leggett model. We then use the ideas of time contour to discuss quantum
mechanical tunneling in the presence of an external ac field (both with and without
coupling to the bath).

In Chapter 4 we pick up the discussion of a particle coupled to a bath, introduced
in Chapter 3. In particular we focus on its classical limit, where the correspond-
ing real-time action acquires local (in time) form. We show ultimate relations of
the emerging theory to the physics of classical stochastic systems. To this end
we derive Langevin and Fokker–Planck equations from the time contour action
and explain its connections to the Martin–Siggia–Rose–DeDominicis construction.
We then focus on a few examples, which include escape from a metastable state,
reaction models, fluctuation theorem and time-dependent perturbations acting on a
stochastic system.

All the considerations so far were limited to systems with one (or a few) degrees
of freedom, possibly coupled to an external bath. In Chapter 5 we start general-
izing the formalism to true many-body systems. We introduce free bosonic fields
(both complex and real) and their functional description on the closed contour. We
then add interactions (collisions) between the particles and derive diagrammatic
technique and the Dyson equation. Following Keldysh [14], we show that the lat-
ter contains the kinetic equation for a non-equilibrium distribution function. We
demonstrate then how the collision integral emerges from a perturbative treatment
of the self-energy.
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Chapters 2–5 form the basis of the book. They serve to introduce most of the the-
oretical apparatus, notations and conventions used throughout the rest of the book.
They are absolutely necessary for comprehension of what follows. We then branch
into a number of applications, which are to a large extent logically independent of
each other. Therefore the subsequent chapters may be read (or omitted) in an arbi-
trary order, without much damage to the understanding. Yet they share a number of
common themes and methods which are developed in a certain sequence. The lat-
ter was meant to emphasize the connection between various fields and to reinforce
common techniques at every successive encounter of them.

The first example, Chapter 6, is collisionless (i.e. where the particles inter-
act only with a collective electromagnetic field) dynamics of a classical plasma.
We derive the Vlasov equations, collective excitations – plasmons, and Landau
damping. Though the system is purely classical, we treat it with the quantum
formalism. Besides methodological illustration, it allows us to treat fluctua-
tions of the collective electric potential and derive the so-called quasi-linear
theory. The latter deals with the coupled kinetic equations for particles and plas-
mons (while Vlasov theory treats the electric field as fully deterministic, i.e. no
fluctuations).

We then go to the essentially quantum system: low temperature weakly inter-
acting Bose gas, in Chapter 7. We derive the Gross–Pitaevskii description of the
condensate as a stationary point approximation of the corresponding functional
integral. We then consider small fluctuations on top of the stationary field configu-
ration and show that they bring the celebrated Bogoliubov quasiparticle spectrum.
We then proceed to a description of a non-equilibrium quasiparticle cloud. To this
end we derive a system of equations for the distribution function of quasiparticles
coupled to the (modified) Gross–Pitaevskii equation for the condensate wavefunc-
tion. Following analogy with the collisionless plasma of Chapter 6, we show that
this system contains Langevin forcing of the condensate fluctuations along with
their collisionless damping. We then derive various contributions to the collision
integral and use them to discuss kinetics of the condensate growth upon evaporative
cooling.

Chapter 8 is devoted to the dynamics of phase transitions (mostly classical
and only briefly quantum). Following Langer, we first discuss nucleation dynam-
ics of critical droplets in first order transitions. We then switch to dynamics of
continuous phase transitions, starting from equilibrium transitions and classifica-
tion of their dynamic universality classes given by Hohenberg and Halperin. We
then turn to essentially non-equilibrium phase transitions. The examples include
absorbing state transitions in reaction-diffusion models and Kardar–Parisi–Zhang
consideration of the roughening transition on growing interfaces.
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The rest of the book, i.e. Chapters 9–14, is devoted to fermions. Chapter 9
presents a fermionic version of the one degree of freedom toy model. It uses a
Grassmann functional integral on the closed time contour and is essentially par-
allel to its bosonic counterpart of Chapter 2. We then introduce fermionic fields
and their interactions and derive a diagrammatic technique, the Dyson equation
and finally the kinetic equation, again essentially parallel to their bosonic counter-
parts of Chapter 5. Finally we focus on the spin of the electron and discuss Stoner
ferromagnetic transition and the spin part of the kinetic equation.

In Chapter 10 we use fermionic formalism to discuss non-equilibrium quantum
transport. In particular we derive the Landauer formula for tunneling conductance,
the Lesovik formula for shot-noise, the Levitov’s result for the full counting statis-
tics of transmitted charge, the Brouwer formula for adiabatic pumping of charge
and, following Nazarov and Tobiska, the exact fluctuation relation and its conse-
quences. We also deal with the spin transport, deriving the Slonczewski–Berger
spin-torque term in the Landau–Lifshitz equation along with the spin-torque noise
and associated Gilbert damping.

Chapters 11–14 deal with fermionic systems in the presence of a static
(quenched) disorder potential. We start in Chapter 11 from the kinetic equation
approach, which leads to the diffusive dynamics of density fluctuations and the
concept of transport scattering time. The kinetic approximation misses quantum
interference and mesoscopic fluctuation effects. To improve upon it we develop
a systematic disorder averaging procedure, which takes advantage of the fun-
damental normalization Z = 1 of the closed time contour technique. It leads
to the so-called matrix non-linear sigma-model, which we use to rederive the
kinetic equation and diffusive density response and supplement it with quantum
weak-localization corrections and the scaling theory of Anderson localization.

In Chapter 12 we focus on mesoscopic, i.e. sample-to-sample, fluctuations due to
differences in disorder configurations in small metallic samples. We deal with den-
sity of states fluctuation and its particular limit, known as Wigner–Dyson statistics.
We then proceed to describe universal conductance fluctuations and fluctuations
of current–voltage characteristics. Finally we discuss full counting statistics of a
disordered quasi-one-dimensional wire and the tunneling action.

We then include electron–electron interactions in disordered systems, which lead
to non-trivial singular corrections to the density of states (the so-called zero bias
anomaly) and conductivity (Altshuler–Aronov corrections). They also provide col-
lision terms (and thus finite relaxation time) to the diffusive kinetic equation. These
effects are the subject of Chapter 13.

Chapter 14 is devoted to the physics of disordered superconductors. We gen-
eralize the non-linear sigma-model to include superconducting correlations. Its
stationary state condition yields the Usadel equation, which includes equations
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for the spectrum of the superconductor under non-equilibrium conditions as
well as the kinetic equation for the quasiparticles distribution function. Together
with the self-consistency condition they provide a complete framework to study
non-equilibrium superconductivity. As examples we work out the spectrum of
the collective (Carlson–Goldman) mode of the superconductor, derive the time-
dependent Ginzburg–Landau theory and fluctuation corrections to the conductivity
above the critical temperature.



2

Bosons

The aim of this chapter is to develop a functional integral representation for the
evolution operator along the closed time contour. To this end we use an example
of a single quantized level populated by bosonic particles. Notations and structures
introduced in this chapter are used throughout the rest of the book.

2.1 Bosonic coherent states

We start by considering a single quantum level occupied by bosonic particles.
A many-body state with n bosons is denoted by |n〉. Such pure number states form
a complete orthonormal basis, meaning 〈n|n′〉 = δnn′ and

∑
n |n〉〈n| = 1̂. It is con-

venient to introduce bosonic annihilation and creation operators, b̂ and b̂†, which
operate in the many-body Hilbert space of the system according to the following
rules:

b̂ |n〉 = √
n |n − 1〉 ; b̂†|n〉 = √

n + 1 |n + 1〉. (2.1)

By acting on an arbitrary basis state, one may check the following relations:

b̂†b̂|n〉 = n|n〉 ; b̂b̂†|n〉 = (n + 1)|n〉 ; [b̂, b̂†] = 1̂. (2.2)

An extremely useful tool for our purposes is the algebra of bosonic coherent
states, which we summarize briefly in this section. A coherent state, parametrized
by a complex number φ, is defined as a right eigenstate of the annihilation operator
with the eigenvalue φ:

b̂ |φ〉 = φ|φ〉 ; 〈φ| b̂† = φ̄〈φ|, (2.3)

where the bar denotes complex conjugation. As a result, the matrix elements in the
coherent state basis of any normally ordered operator Ĥ(b̂†, b̂) (i.e. such that all
the creation operators are to the left of all the annihilation operators) are given by

〈φ|Ĥ(b̂†, b̂)|φ′〉 = H(φ̄, φ′) 〈φ|φ′〉. (2.4)

10
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One may check by direct substitution using Eq. (2.1) that the following linear
superposition of the pure number states is indeed the required right eigenstate of
the operator b̂ :

|φ〉 =
∞∑

n=0

φn

√
n! |n〉 =

∞∑
n=0

φn

n!
(
b̂†
)n|0〉 = eφ b̂† |0〉, (2.5)

where |0〉 is the vacuum state, b̂ |0〉 = 0. Upon Hermitian conjugation, one finds
〈φ| = 〈0| e φ̄ b̂ = ∑

n〈n|φ̄n/
√

n! . The coherent states are not mutually orthogo-
nal and they form an over-complete basis. The overlap of two coherent states is
given by

〈φ|φ′〉 =
∞∑

n,n′=0

φ̄nφ′ n′√
n!n′! 〈n|n

′〉 =
∞∑

n=0

(φ̄φ′)n

n! = e φ̄φ
′
, (2.6)

where we employed the orthonormality of the pure number states.
One may express resolution of unity in the coherent states basis. It takes the

following form:

1̂ =
∫

d[φ̄, φ] e−|φ|
2 |φ〉〈φ|, (2.7)

where d[φ̄, φ] ≡ d(Reφ) d(Imφ)/π . To prove this relation one may employ the
Gaussian integral

Z [ J̄ , J ] =
∫

d[φ̄, φ] e−φ̄φ+φ̄ J+ J̄φ = e J̄ J , (2.8)

where J is an arbitrary complex number. As its consequence one obtains∫
d[φ̄, φ] e−|φ|

2
φ̄nφn′ = ∂n+n′

∂ J n∂ J̄ n′ Z [ J̄ , J ]
∣∣∣∣∣

J̄=J=0

= n! δn,n′ . (2.9)

Substituting Eq. (2.5) and its conjugate into the right hand side of Eq. (2.7) and
employing Eq. (2.9) along with the resolution of unity in the number state basis
1̂ =∑

n |n〉〈n|, one proves the identity (2.7).
The trace of an arbitrary operator Ô, acting in the space of the occupation

numbers, is evaluated as

Tr{Ô} ≡
∞∑

n=0

〈n|Ô|n〉 =
∞∑

n=0

∫
d[φ̄, φ] e−|φ|

2 〈n|Ô|φ〉〈φ|n〉 (2.10)

=
∫

d[φ̄, φ]e−|φ|2
∞∑

n=0

〈φ|n〉〈n|Ô|φ〉 =
∫

d[φ̄, φ] e−|φ|
2 〈φ|Ô|φ〉,
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where we have employed resolution of unity first in the coherent state basis and
second in the number state basis.

Another useful identity is

f (ρ) ≡ 〈φ|ρ b̂†b̂|φ′〉 = e φ̄φ
′ρ. (2.11)

The proof is based on the following operator relation: g(b̂†b̂) b̂ = b̂ g(b̂†b̂ − 1)
valid for an arbitrary function g(b̂†b̂), which is verified by acting on an arbitrary
basis vector |n〉. As a result,

∂ρ f (ρ) = 〈φ|b̂†b̂ ρ b̂†b̂−1|φ′〉 = 〈φ|b̂†ρ b̂†b̂ b̂|φ′〉 = φ̄φ′ f (ρ).

Integrating this differential equation with the initial condition f (1) = eφ̄φ
′
, which

follows from Eq. (2.6), one proves the identity (2.11).

2.2 Partition function

Let us consider the simplest many-body system: bosonic particles occupying a sin-
gle quantum state with the energy ω0. Its secondary quantized Hamiltonian has the
form

Ĥ(b̂†, b̂) = ω0 b̂†b̂, (2.12)

where b̂† and b̂ are bosonic creation and annihilation operators with the commuta-
tion relation [b̂, b̂†] = 1̂. Let us define the partition function as

Z = Tr
{
ÛC ρ̂

}
Tr{ρ̂} . (2.13)

If one assumes that all external fields are exactly the same on the forward and
backward branches of the contour, then Û C = 1̂ and therefore Z = 1. The initial
density matrix ρ̂ = ρ̂(Ĥ) is some operator-valued function of the Hamiltonian. To
simplify the derivations one may choose it to be the equilibrium density matrix,
ρ̂0 = exp{−β(Ĥ − μN̂ )} = exp{−β(ω0 − μ)b̂†b̂}, where β = 1/T is the inverse
temperature and μ is the chemical potential. Since arbitrary external perturbations
may be switched on (and off) at a later time, the choice of the equilibrium initial
density matrix does not prevent one from treating non-equilibrium dynamics. For
the equilibrium initial density matrix one finds

Tr{ρ̂0} =
∞∑

n=0

e−β(ω0−μ)n = [1− ρ(ω0)]−1, (2.14)

where ρ(ω0) = e−β(ω0−μ). An important observation is that, in general, Tr{ρ̂} is
an interaction- and disorder-independent constant. Indeed, both interactions and
disorder are switched on (and off) on the forward (backward) parts of the contour
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+ ∞ − ∞
t

tN

tN+1 t2N

t1

Fig. 2.1 The closed time contour C. Dots on the forward and backward branches
of the contour denote discrete time points.

sometime after (before) t = −∞. This constant is therefore frequently omitted
without causing confusion.

The next step is to divide the C contour into (2N − 2) time intervals of length δt ,
such that t1 = t2N = −∞ and tN = tN+1 = +∞, as shown in Fig. 2.1. One then
inserts the resolution of unity in the over-complete coherent state basis, Eq. (2.7),

1̂ =
∫

d[φ̄ j , φ j ] e−|φ j |2 |φ j 〉〈φ j | (2.15)

at each point j = 1, 2, . . . , 2N along the contour. For example, for N = 3 one
obtains the following sequence in the expression for Tr{ÛC ρ̂0}, Eq. (2.10) (read
from right to left):

〈φ6|Û−δt |φ5〉〈φ5|Û−δt |φ4〉〈φ4|1̂|φ3〉〈φ3|Û+δt |φ2〉〈φ2|Û+δt |φ1〉〈φ1|ρ̂0|φ6〉, (2.16)

where Û±δt is the evolution operator (1.1) during the time interval δt in the positive
(negative) time direction. Its matrix elements are given by:〈

φ j

∣∣∣Û±δt

∣∣∣φ j−1

〉
≡
〈
φ j

∣∣∣e∓iĤ(b†,b)δt

∣∣∣φ j−1

〉
≈
〈
φ j

∣∣∣(1∓ iĤ(b†, b
)
δt
)∣∣∣φ j−1

〉
= 〈

φ j |φ j−1
〉(

1∓ iH(φ̄ j , φ j−1)δt

) ≈ e φ̄ jφ j−1 e∓iH(φ̄ j ,φ j−1)δt , (2.17)

where the approximate equalities are valid up to the linear order in δt . Here we have
employed expression (2.4) for the matrix elements of a normally-ordered operator
along with Eq. (2.6) for the overlap of the coherent states. For the toy example
(2.12) one finds H(φ̄ j , φ j−1) = ω0φ̄ jφ j−1. However, Eq. (2.17) is not restricted to
it, but holds for any normally-ordered Hamiltonian. Notice that there is no evolu-
tion operator inserted between tN and tN+1. Indeed, these two points are physically
indistinguishable and thus the system does not evolve during this time interval.

Employing the following property of the coherent states (see Eq. (2.11)):
〈φ1|e−β(ω0−μ)b†b|φ2N 〉 = exp

{
φ̄1φ2Nρ(ω0)

}
and collecting all the exponential

factors along the contour, one finds for the partition function, Eq. (2.13),

Z = 1

Tr{ρ̂0}
∫ 2N∏

j=1

d[φ̄ j , φ j ] exp

⎛⎝i
2N∑

j, j ′=1

φ̄ j G−1
j j ′ φ j ′

⎞⎠ . (2.18)
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For N = 3 (see Eq. (2.16)), the 2N × 2N matrix iG−1
j j ′ takes the form

iG−1
j j ′ ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 ρ(ω0)

h− −1
h− −1

1 −1
h+ −1

h+ −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (2.19)

where h∓ ≡ 1 ∓ iω0δt . The main diagonal of this matrix originates from the
resolution of unity, Eq. (2.15), while the lower sub-diagonal comes from the
matrix elements (2.17). Finally, the upper-right element comes from 〈φ1|ρ̂0|φ2N 〉
in Eq. (2.16). This structure of the iĜ−1 matrix is straightforwardly generalized to
arbitrary N .

To proceed with the multiple integrals appearing in Eq. (2.18), we remind the
reader of some properties of the Gaussian integrals.

2.3 Bosonic Gaussian integrals

For any complex N × N matrix Âi j , where i, j = 1, . . . , N , such that all its eigen-
values, λi , have non-negative real parts, Reλi ≥ 0, the following statement holds:

Z [ J̄ , J ] =
∫ N∏

j=1

d[z̄ j , z j ] e
−

N∑
i j

z̄i Âi j z j+
N∑
j
[z̄ j J j+ J̄ j z j ] = e

N∑
i j

J̄i ( Â−1)i j J j

det Â
, (2.20)

where Jj is an arbitrary complex vector and d[z̄ j z j ] = d(Rez j )d(Imz j )/π . This
equality is a generalization of the Gaussian integral (2.8), used above. To prove
it, one starts from a Hermitian matrix Â, which may be diagonalized by a unitary
transformation Â = Û †�̂Û , where �̂ = diag{λ j }. The identity is then proven by a
change of variables with a unit Jacobian to wi =∑

j Ûi j z j , which leads to

Z [ J̄ , J ] =
N∏

j=1

∫
d[w̄ j , w j ] e−w̄ jλ jw j+w̄ j I j+ Ī jw j =

N∏
j=1

e Ī jλ
−1
j I j

λ j
,

where Ii = ∑
j Ûi j J j . Using

∑
j Ī jλ

−1
j I j = �̄J TÛ †�̂−1Û �J = �̄J T Â−1 �J , along

with det Â = ∏
j λ j , one obtains the right hand side of Eq. (2.20). Finally, one

notices that the right hand side of Eq. (2.20) is an analytic function of both ReAi j

and ImAi j . Therefore, one may continue them analytically to the complex plane to
reach an arbitrary complex matrix Âi j . The identity (2.20) is thus valid as long as
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the integral is well defined, that is all the eigenvalues of Â have non-negative real
parts.

The Wick theorem deals with the average value of za1 . . . zak z̄b1 . . . z̄bk weighted
with the factor exp

( −∑
i j z̄i Âi j z j

)
. The theorem states that this average is given

by the sum of all possible products of pair-wise averages. For example, with the
help of Eq. (2.20) one finds

〈za z̄b〉 ≡ 1

Z [0, 0]
δ2 Z [ J̄ , J ]
δ J̄aδJb

∣∣∣∣
J=0

= Â−1
ab , (2.21)

〈zazbz̄c z̄d〉 ≡ 1

Z [0, 0]
δ4 Z [ J̄ , J ]

δ J̄aδ J̄bδJcδJd

∣∣∣∣
J=0

= Â−1
ac Â−1

bd + Â−1
ad Â−1

bc ,

etc.
The Gaussian identity for integration over real variables has the form

Z [J ] =
∫ N∏

j=1

(
dx j√

2π

)
e
− 1

2

N∑
i j

xi Âi j x j+
N∑
j

x j J j = e
1
2

N∑
i j

Ji ( Â−1)i j J j√
det Â

, (2.22)

where Â is a symmetric complex matrix with all its eigenvalues having non-
negative real parts. The proof is similar to that in the case of complex variables: one
starts from a real symmetric matrix, which may be diagonalized by an orthogonal
transformation. The identity (2.22) is then easily proven by a change of variables.
Finally, one may analytically continue the right hand side (as long as the integral
is well defined) from a real symmetric matrix Âi j to a complex symmetric one.

The corresponding Wick theorem for the average value of xa1 . . . xa2k weighted
with the factor exp

(− 1
2

∑
i j xi Âi j x j

)
takes the form

〈xa xb〉 ≡ 1

Z [0]
δ2 Z [J ]
δJaδJb

∣∣∣∣
J=0

= Â−1
ab , (2.23)

〈xa xbxcxd〉 ≡ 1

Z [0]
δ4 Z [J ]

δJaδJbδJcδJd

∣∣∣∣
J=0

= Â−1
ab Â−1

cd + Â−1
ac Â−1

bd + Â−1
ad Â−1

bc ,

etc. Notice the additional term in the second line in comparison with the corre-
sponding complex result (2.21). The symmetry of Â (and thus of Â−1) is necessary
to satisfy the obvious relation 〈xa xb〉 = 〈xbxa〉.

2.4 Normalization and continuum notation

Having established the Gaussian identity (2.20), one can apply it to Eq. (2.18) to
check the normalization factor. In this case Â = −iĜ−1 and it is straightforward to
evaluate the corresponding determinant employing Eq. (2.19):
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det
[−iĜ−1

] = 1− ρ(ω0)(h−h+)N−1 = 1− ρ(ω0)
(
1+ ω2

0δ
2
t

)N−1

≈ 1− ρ(ω0) eω
2
0δ

2
t (N−1) N→∞−→ 1− ρ(ω0), (2.24)

where one used that δ 2
t N → 0 if N → ∞. Indeed, we divide the contour in a

way to keep δt N = const (given by a full extent of the time axis) and as a result
δ2

t ∼ N−2. Employing the fact that the Gaussian integral in Eq. (2.18) is equal to
the inverse determinant of the−iĜ−1 matrix, Eq. (2.20), along with Eq. (2.14), one
finds

Z = 1

Tr{ρ̂0}
1

det
[− iĜ−1

] = 1, (2.25)

as it should be, of course. Notice that keeping the upper-right element of the
discrete matrix, Eq. (2.19), is crucial to maintain this normalization identity.

One may now take the limit N → ∞ and formally write the partition function
(2.18) in the continuum notation, φ j → φ(t), as

Z =
∫

D[φ̄(t), φ(t)] e iS[φ̄,φ], (2.26)

where the integration measure is the shorthand notation for D[φ̄(t), φ(t)] =∏2N
j=1 d[φ̄ j , φ j ]/Tr{ρ̂0}. According to Eqs. (2.18) and (2.19), the action is given by

S[φ̄, φ] =
2N∑
j=2

δt j

[
iφ̄ j

φ j − φ j−1

δt j
− ω0φ̄ jφ j−1

]
+ i φ̄1

[
φ1 − iρ(ω0)φ2N

]
, (2.27)

where δt j ≡ t j − t j−1 = ±δt on the forward and backward branches, cor-
respondingly. In continuum notation, φ j → φ(t), the action acquires the form

S[φ̄, φ] =
∫
C

dt φ̄(t)Ĝ−1φ(t), (2.28)

where the continuum form of the operator Ĝ−1 is (see the first square bracket on
the right hand side of Eq. (2.27))

Ĝ−1 = i∂t − ω0. (2.29)

It is extremely important to remember that this continuum notation is only an
abbreviation which represents the large discrete matrix, Eq. (2.19). In particular,
the upper-right element of the matrix (the last term in Eq. (2.27)), that contains
the information about the distribution function, is seemingly absent in the contin-
uum notation, Eq. (2.29). The necessity of keeping the boundary terms originates
from the fact that the continuum operator (2.29) possesses the zero mode e−iω0t . Its
inverse operator Ĝ is therefore not uniquely defined, unless the boundary terms are
included.
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To avoid integration along the closed time contour, it is convenient to split the
bosonic field φ(t) into the two components φ+(t) and φ−(t), which reside on the
forward and backward parts of the time contour, respectively. The continuum action
may be then rewritten as

S[φ̄, φ] =
∫ +∞

−∞
dt
[
φ̄+(t)(i∂t − ω0)φ

+(t)− φ̄−(t)(i∂t − ω0)φ
−(t)

]
, (2.30)

where the relative minus sign comes from the reversed direction of the time inte-
gration on the backward part of the contour. Once again, the continuum notation
is somewhat misleading. Indeed, it creates an undue impression that the φ+(t) and
φ−(t) fields are completely uncorrelated. In fact, they are connected due to the
presence of the non-zero off-diagonal blocks in the discrete matrix, Eq. (2.19). It is
therefore desirable to develop a continuum representation that automatically takes
into account the proper regularization and mutual correlations. We shall achieve it
in the following sections. First the Green functions should be discussed.

2.5 Green functions

According to the basic properties of the Gaussian integrals, see Section 2.3, the
correlator of the two complex bosonic fields is given by

〈
φ j φ̄ j ′

〉 ≡ ∫
D[φ̄, φ] φ j φ̄ j ′ exp

⎛⎝i
2N∑

k,k′=1

φ̄k G−1
kk′ φk′

⎞⎠ = iG j j ′ . (2.31)

Notice the absence of the factor Z−1 in comparison with the analogous definition in
the equilibrium theory [6]. Indeed, in the present construction Z = 1. This seem-
ingly minor difference turns out to be the major issue in the theory of disordered
systems (see further discussion in Chapter 11, devoted to fermions with quenched
disorder). Inverting the 2N × 2N matrix (2.19) with N = 3, one finds

iG j j ′ = 1

det
[− i Ĝ−1

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ρh2+h− ρh2+ ρh2+ ρh+ ρ

h− 1 ρh2+h− ρh2+h− ρh+h− ρh−
h2− h− 1 ρh2+h2− ρh+h2− ρh2−

h2− h− 1 1 ρh2−h+ ρh2−
h2−h+ h−h+ h+ h+ 1 ρh2−h+
h2−h2+ h−h2+ h2+ h2+ h+ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(2.32)

where ρ ≡ ρ(ω0). Generalization of the N = 3 example to an arbitrary N is
again straightforward. We switch now to the fields φ±j , residing on the forward
(backward) branches of the contour. Hereafter j = 1, . . . , N and thus the 2N×2N
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matrix written above is indexed as 1, 2, . . . , N , N , . . . , 2, 1. Then the following
correlations may be read out of the matrix (2.32):

〈φ+j φ̄−j ′ 〉 ≡ iG<
j j ′ =

ρ h j ′−1
+ h j−1

−
det

[− iĜ−1
] , (2.33a)

〈φ−j φ̄+j ′ 〉 ≡ iG>
j j ′ =

hN− j
+ hN− j ′

−
det

[− iĜ−1
] = (h+h−)N−1h1− j

+ h1− j ′
−

det
[− iĜ−1

] , (2.33b)

〈φ+j φ̄+j ′ 〉 ≡ iGT

j j ′ =
h j− j ′
−

det
[− i Ĝ−1

] × {
1, j ≥ j ′

ρ(h+h−)N−1, j < j ′
, (2.33c)

〈φ−j φ̄−j ′ 〉 ≡ iGT̃

j j ′ =
h j ′− j
+

det
[− i Ĝ−1

] × {
ρ(h+h−)N−1, j > j ′

1, j ≤ j ′
. (2.33d)

Here the symbols T and T̃ stand for time ordering and anti-ordering correspond-
ingly, while < (>) is a convenient notation indicating that the first time argument
is taken before (after) the second one on the Keldysh contour. Since h∗+ = h−, one
notices that [

G<(>)
]† = −G<(>) ; [

GT
]† = −GT̃, (2.34)

where the Hermitian conjugation involves interchange of the two time arguments
along with complex conjugation.

Recalling that h∓ = 1 ∓ iω0δt , one can take the N → ∞ limit, keeping

Nδt a constant. To this end notice that (h+h−)N = (1 + ω2
0δ

2
t )

N N→∞−→ 1, while

h j
∓

N→∞−→ e∓iω0δt j = e∓iω0t , where we denoted t = δt j and correspondingly
t ′ = δt j ′. Employing also the evaluation of the determinant given by Eq. (2.24),
one obtains for the correlation functions in the continuum limit

〈φ+(t)φ̄−(t ′)〉 = iG<(t, t ′) = nB e−iω0(t−t ′), (2.35a)

〈φ−(t)φ̄+(t ′)〉 = iG>(t, t ′) = (nB + 1) e−iω0(t−t ′), (2.35b)

〈φ+(t)φ̄+(t ′)〉 = iGT(t, t ′) = θ(t − t ′)iG>(t, t ′)+ θ(t ′ − t)iG<(t, t ′), (2.35c)

〈φ−(t)φ̄−(t ′)〉 = iGT̃(t, t ′) = θ(t ′ − t)iG>(t, t ′)+ θ(t − t ′)iG<(t, t ′), (2.35d)

where we introduced the bosonic occupation number nB as

nB(ω0) = ρ(ω0)

1− ρ(ω0)
. (2.36)

Indeed, to calculate the number of bosons at a certain point in time one needs to
insert the operator b̂†b̂ into the corresponding point along the forward or backward
branches of the contour. This leads to the correlation function 〈φ j−1φ̄ j 〉, or in terms
of φ± fields to either 〈φ+j−1φ̄

+
j 〉 or 〈φ−j φ̄−j−1〉 (notice the reversed indexing along the
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backward branch). According to Eqs. (2.33c,d) in the N →∞ limit both of them
equal nB.

The step-function θ(t) in Eqs. (2.35c,d) is defined as θ(t − t ′) = 1 if t > t ′ and
θ(t−t ′) = 0 if t < t ′. There is an ambiguity about equal times. Consulting with the
discrete version of the correlation functions, Eqs. (2.33), one notices that in both
Eqs. (2.35c) and (2.35d) the first step function should be understood as having
θ(0) = 1, and the second as having θ(0) = 0. Although slightly inconvenient, this
ambiguity will disappear in the formalism that follows.

In analogy with the definition of the discrete correlation functions as a 2N -fold
integral, Eq. (2.31), it is convenient to write their continuum limit, Eq. (2.35),
formally as a functional integral〈

φ±(t) φ̄±(t ′)
〉 = ∫

D[φ̄, φ]φ±(t)φ̄±(t ′) e iS[φ̄,φ], (2.37)

where the action S[φ̄, φ] is given by Eq. (2.30). Notice that, despite the impression
that the integrals over φ+(t) and φ−(t) may be split from each other and per-
formed separately, there are non-vanishing cross-correlations between these fields,
Eqs. (2.35a,b). The reason, of course, is that the continuum notation (2.37) is noth-
ing but a shorthand abbreviation for the N → ∞ limit of the discrete integral
(2.31). The latter contains the matrix (2.19) with non-zero off-diagonal blocks,
which are the sole reason for the existence of the cross-correlations. It is highly
desirable to develop a continuum formalism, which automatically accounts for the
proper cross-correlations without the need to resort to the discrete notations.

This task is facilitated by the observation that not all four Green functions
defined above are independent. Indeed, direct inspection shows that

GT(t, t ′)+ GT̃(t, t ′)− G>(t, t ′)− G<(t, t ′) = 0. (2.38)

This suggests that one may benefit explicitly from this relation by performing a
linear transformation. The Keldysh rotation achieves just that. Notice that, due to
the regularization of θ(0) discussed above, the identity does not hold for t = t ′.
Indeed at t = t ′ the left hand side of Eq. (2.38) is one rather than zero. However,
since the t = t ′ line is a manifold of measure zero, the violation of Eq. (2.38)
for most purposes is inconsequential. (Notice that the right hand side of Eq. (2.38)
is not a delta-function δ(t − t ′). It is rather a Kronecker delta δ j j ′ in the discrete
version, which disappears in the continuum limit.)

2.6 Keldysh rotation

Let us introduce a new pair of fields according to

φcl(t) = 1√
2

(
φ+(t)+ φ−(t)

)
, φq(t) = 1√

2

(
φ+(t)− φ−(t)

)
, (2.39)
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with the analogous transformation for the conjugated fields. The superscripts “cl”
and “q” stand for the classical and the quantum components of the fields, respec-
tively. The rationale for this notation will become clear shortly. First, a simple
algebraic manipulation with Eqs. (2.33a)–(2.33d) shows that

〈
φα(t) φ̄ β(t ′)

〉 ≡ iGαβ(t, t ′) =
⎛⎝ iGK(t, t ′) iGR(t, t ′)

iGA(t, t ′) 0

⎞⎠ , (2.40)

where hereafter α, β = (cl, q). The fact that the (q, q) element of this matrix is
zero is a manifestation of the identity (2.38). Superscripts R, A and K stand for the
retarded, advanced and Keldysh components of the Green function, respectively.
These three Green functions are the fundamental objects of the Keldysh technique.
They are defined as

GR(t, t ′) = G cl,q(t, t ′) = 1

2

(
GT − GT̃ + G> − G<

)
= θ(t − t ′)

(
G> − G<

)
,

(2.41a)

GA(t, t ′) = G q,cl(t, t ′) = 1

2

(
GT − GT̃ − G> + G<

)
= θ(t ′ − t)

(
G< − G>

)
,

(2.41b)

GK(t, t ′) = G cl,cl(t, t ′) = 1

2

(
GT + GT̃ + G> + G<

)
= G> + G<. (2.41c)

As was mentioned after Eq. (2.38), the last equality in each line here holds for
t 
= t ′ only, while the diagonal t = t ′ is discussed below. Employing Eq. (2.34),
one notices that

GA = [
GR

]†
, GK = −[GK

]†
, (2.42)

where the Green functions are understood as matrices in the time domain. Hermi-
tian conjugation therefore includes complex conjugation along with interchanging
of the two time arguments.

The retarded (advanced) Green function is a lower (upper) triangular matrix in
the time domain. Since a product of any number of triangular matrices is again a
triangular matrix, one obtains the simple rule that the convolution of any number of
retarded (advanced) Green functions is also a retarded (advanced) Green function

GR
1 ◦ GR

2 ◦ · · · ◦ GR
l = GR, (2.43a)

GA
1 ◦ GA

2 ◦ · · · ◦ GA
l = GA, (2.43b)

where the circular multiplication sign stands for the convolution operation, i.e. mul-
tiplication of matrices in the time domain, and subscripts denote all other indices
apart from the time.
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Both retarded and advanced matrices have non-zero main diagonals, i.e. t = t ′.
The important observation, however, is that

GR(t, t)+ GA(t, t) = 0, (2.44)

see Eqs. (2.35c,d) and the discussion of θ(0) regularization below them. It may be

traced back to the fact that GR+GA = GT−GT̃, and since at the coinciding times
the time ordering and anti-ordering are equivalent, the result is zero. This consid-
eration shows that Eq. (2.44) is not restricted to our toy model, but is completely
general. In the energy representation Eq. (2.44) takes the form∫

dε

2π

[
GR(ε)+ GA(ε)

] = 0, (2.45)

and it is tempting to attribute it to the fact the energy integral of a function analytic
in the upper (lower) complex half-plane is zero. One should be aware, however,
that according to Eqs. (2.41a,b) and (2.35a,b)

GR(t, t)− GA(t, t) = −i. (2.46)

Once again this expression is not restricted to the toy model, but is very general.
Indeed, GR − GA = G> − G< = −i〈(bb† − b†b)〉 = −i since the commutation
relation (2.2) at the coinciding times is a generic property of any bosonic system.
As a result,

∫
dε

[
GR(ε)− GA(ε)

] = −2π i and therefore
∫

dε GR(A)(ε) = ∓π i,
which is coming from the integration along the large semicircle closing the inte-
gration contour in the upper (lower) complex half-plane. In practical calculations
the difference GR − GA always comes with the distribution function (see below).
The latter usually exhibits poles or branch cuts in both upper and lower energy half-
planes and therefore the contour integration is not helpful anyway. Wherever GR or
GA show up without the distribution function, they always appear in the combina-
tion GR + GA, calling for the contour integration (2.45). We shall thus frequently
quote (as a rule of thumb) that

∫
dε GR(A)(ε) = 0, or equivalently GR(A)(t, t) = 0,

understanding that it is always the sum of the two which matters. This never leads
to a confusion and therefore there is no danger in extending Eqs. (2.41a,b) to the
diagonal t = t ′ (with the understanding θ(0) = 0) in the continuum formalism.

It is useful to introduce graphic representations for the three Green functions.
To this end, let us denote the classical component of the field by a full line and
the quantum component by a dashed line. Then the retarded Green function is
represented by a full arrow and dashed line, the advanced by a dashed arrow and
full line and the Keldysh by a full arrow and full line, see Fig. 2.2. Notice that the
dashed arrow and dashed line, that would represent the 〈φqφ̄q〉 Green function, is
absent. The arrow shows the direction from φα towards φ̄ β .
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GR (t,t') GA (t,t') GK (t,t')

φcl (t) φq (t) φcl (t') φcl (t')φcl (t)φq (t')

Fig. 2.2 Graphic representation of GR, GA and GK. The full line represents the
classical field component φcl, while the dashed line represents the quantum com-
ponent φq. The arrows are directed from the annihilation operator towards the
creation one, i.e. from φα to φ̄β .

Employing Eqs. (2.35), one finds for our toy example of the single boson level

GR = −iθ(t − t ′) e−iω0(t−t ′) FT→ (ε − ω0 + i0)−1, (2.47a)

GA = iθ(t ′ − t) e−iω0(t−t ′) FT→ (ε − ω0 − i0)−1, (2.47b)

GK = −i [2nB(ω0)+ 1] e−iω0(t−t ′) FT→−2π i[2nB(ε)+ 1]δ(ε − ω0). (2.47c)

The Fourier transforms (FT) with respect to t − t ′ are given for each of the
three Green functions. Notice that the retarded and advanced components con-
tain information only about the spectrum and are independent of the occupation
number, whereas the Keldysh component depends on it. In thermal equilibrium
ρ = e−(ω0−μ)/T , while nB = (e(ω0−μ)/T − 1)−1 and therefore

GK(ε) = coth
ε − μ

2T

[
GR(ε)− GA(ε)

]
, (2.48)

where T = β−1 is the system’s temperature, expressed in units of energy.
The last equation constitutes the statement of the fluctuation–dissipation theo-

rem (FDT). As we shall see, the FDT is a general property of thermal equilibrium
that is not restricted to the toy example considered here. It implies a rigid relation
between the response functions and the correlation functions in equilibrium.

In general, it is convenient to parametrize the anti-Hermitian Keldysh Green
function, Eq. (2.42), with the help of a Hermitian matrix F = F†, as follows:

GK = GR ◦ F − F ◦ GA, (2.49)

where F = F(t, t ′). The Wigner transform (see Section 5.6), F(t, ε), of the
matrix F is referred to as the distribution function. In thermal equilibrium F(ε) =
coth((ε − μ)/2T ), Eq. (2.48).

2.7 Keldysh action and its structure

One would like to have a continuum action, written in terms of φcl, φq, that properly
reproduces the correlators Eqs. (2.40) and (2.47), i.e.〈

φα(t) φ̄β(t ′)
〉 = iGαβ(t, t ′) =

∫
D[φcl, φq] φα(t) φ̄β(t ′) eiS[φcl,φq], (2.50)
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where the conjugated fields are not listed in the action arguments or the integra-
tion measure for brevity. According to the basic properties of Gaussian integrals,
Section 2.3, the action should be taken as a quadratic form of the fields with the
matrix which is an inverse of the correlator Gαβ(t, t ′). Inverting the matrix (2.40),
one thus finds the proper action

S[φcl, φq] =
∫∫ +∞

−∞
dt dt ′

(
φ̄cl, φ̄q

)
t

(
0

[
G−1

]A[
G−1

]R [
G−1

]K

)
t,t ′

(
φcl

φq

)
t ′
.

(2.51)

The off-diagonal elements are found from the condition [G−1
]R ◦ GR = 1 and

the similar one for the advanced component. The right hand side here is the unit
matrix, which in the continuum time representation is δ(t− t ′). As a result, the off-
diagonal components are obtained by the matrix inversion of the corresponding
components of the Green functions

[
G−1

]R(A) = [
GR(A)

]−1
. Such an inversion is

most convenient in the energy representation[
G−1

]R(A) = ε − ω0 ± i0 → δ(t − t ′) (i∂t ′ − ω0 ± i0) , (2.52a)

where in the last step we performed the inverse Fourier transform back to the time
representation, employing that the Fourier transform of ε is δ(t − t ′)i∂t ′ .

Although in the continuum limit these matrices look diagonal, it is important to
remember that in the discrete regularization

[
GR(A)

]−1
contains ∓i along the main

diagonal and ±i − ω0δt along the lower(upper) sub-diagonal. The determinants
of the corresponding matrices are given by the product of all diagonal elements,
det

[
G−1

]R
det

[
G−1

]A = ∏N
j=1 i(−i) = 1. To obtain this statement without

resorting to discretization, one notices that in the energy representation the Green
functions are diagonal and therefore det

[
G−1

]R[
G−1

]A =∏
ε

[
GR(ε)GA(ε)]−1 =

exp
{−∫ dε

2π [ln GR + ln GA]} = 1. Here we used the fact that Eq. (2.45) holds not
only for the Green functions themselves but, thanks to Eqs. (2.43), also for any
function of them. This property is important for maintaining the normalization
identity Z = ∫

D[φcl, φq] eiS = 1. Indeed, the integral is equal to minus (due
to the factor of i in the exponent) the determinant of the quadratic form, while the
latter is (−1) times the product of the determinants of the off-diagonal elements in
the quadratic form (2.51).

The diagonal Keldysh component, [G−1]K, of the quadratic form (2.51) is found
from the condition GK◦[GA]−1+GR◦[G−1]K = 0. Employing the parametrization
(2.49), one finds[

G−1
]K = −[GR

]−1 ◦ GK ◦ [GA]−1 = [
GR

]−1 ◦ F − F ◦ [GA
]−1

. (2.52b)

The action (2.51) should be viewed as a construction devised to reproduce
the proper continuum limit of the correlation functions according to the rules of
Gaussian integration. It is fully self-consistent in the following senses: (i) it does
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not need to appeal to the discrete representation for regularization and (ii) its gen-
eral structure is intact upon renormalization or “dressing” of its components by the
interaction corrections (see Chapter 5).

Here we summarize the main features of the action (2.51), which, for lack of
better terminology, we call the causality structure.

• The cl− cl component of the quadratic form is zero. It reflects the fact that for a
pure classical field configuration (φq = 0) the action is zero. Indeed, in this case
φ+ = φ− and the action on the forward part of the contour is canceled by that
on the backward part (except for the boundary terms, which are implicit in the
continuum limit). The very general statement is, therefore, that

S
[
φcl, 0

] = 0. (2.53)

Obviously this statement is not restricted to the Gaussian action of the form given
by Eq. (2.51), but holds for any generic action (see Chapter 5).

• The cl − q and q − cl components are mutually Hermitian conjugated upper
and lower (advanced and retarded) triangular matrices in the time domain. This
property is responsible for the causality of the response functions as well as for
protecting the cl−cl component from a perturbative renormalization (see below).
Relations (2.44) and (2.45) are crucial for this last purpose and necessary for the
consistency of the theory.

• The q − q component is an anti-Hermitian matrix [see Eq. (2.42)]. It is respon-
sible for the convergence of the functional integral and keeps information about
the distribution function. In our simple example

[
GK

]−1 = 2i0F , where F is a
Hermitian matrix. The fact that it is infinitesimally small is a peculiarity of the
non-interacting model. We shall see in the following chapters that it acquires a
finite value, once interactions with other degrees of freedom are included.

2.8 External sources

So far we have been content with the representation of the partition function. The
latter does not carry any information in the Keldysh technique, since Z = 1. To
make the entire construction meaningful one should introduce source fields, which
enable one to compute various observables. As an example, let us introduce an
external time-dependent potential V (t). It interacts with the bosons through the
Hamiltonian ĤV = V (t)b̂†b̂. One can now introduce the generating function Z [V ]
defined similarly to the partition function (2.13), Z [V ] = Tr

{
ÛC[V ]ρ̂

}
/Tr{ρ̂},

where the evolution operator ÛC[V ] includes the source Hamiltonian ĤV along
with the bare one, Eq. (2.12). While any classical external field is the same on
both branches of the contour, it is convenient to allow V+(t) and V−(t) to be
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distinct and put them equal only at the very end. Repeating the construction of
the coherent state functional integral of Section 2.2, one obtains for the generating
function

Zd[V ] = 1

Tr{ρ̂0}
∫ 2N∏

j=1

d[φ̄ j , φ j ] exp

⎛⎝i
2N∑

j, j ′=1

φ̄ j G−1
j j ′ [V ]φ j ′

⎞⎠ , (2.54)

where the subscript d stands for the discrete representation. The 2N × 2N matrix
iG−1

j j ′ [V ] is similar to the one given by Eq. (2.19) with h∓ → h∓[V ] = 1 ∓
i(ω0 + Vj )δt , where Vj = V (t j ). According to Eq. (2.20) the generating function
is proportional to the inverse determinant of the −iG−1

j j ′ [V ] matrix. The latter is
calculated in a way very similar to Eq. (2.24), leading to

Zd[V ] = 1

Tr{ρ̂0}
1

det
[− iĜ−1[V ]] = 1− ρ(ω0)

1− ρ(ω0)e−i
∫
C dt V (t)

. (2.55)

It is convenient to introduce classical and quantum components of the source
potential V (t) as

V cl(t) = 1

2

[
V+(t)+ V−(t)

] ; V q(t) = 1

2

[
V+(t)− V−(t)

]
, (2.56)

where V±(t) is the source potential on the forward (backward) branch of the con-
tour. With this notation along with Eq. (2.36) the generating function takes the form

Zd[V cl, V q] =
[
1− nB(ω0)

(
e−2i

∫
dt V q(t) − 1

)]−1
. (2.57)

The fact that the generating function depends only on the integral of the quantum
component of the source and does not depend on its classical component is a pecu-
liarity of our toy model. (Indeed, since [Ĥ , b†b] = 0, the number of particles is
conserved, making the generating function independent of the classical external
potential V cl). The very general statement, though, is

Z [V cl, 0] = 1. (2.58)

Indeed, if V q = 0 the source potential is the same on the two branches, V+(t) =
V−(t), and thus the evolution operator brings the system exactly to its initial state,
i.e. ÛC[V cl] = 1̂. One crucially needs therefore a fictitious potential V q(t) to
generate observables.

Since the source potential is coupled to the number of particles operator n̂ =
b̂†b̂, differentiation over V q(t) generates an expectation value of −2i〈n̂(t)〉 (the
factor of two here is due to the fact that we insert b̂†(t)b̂(t) on both branches):
〈n̂(t)〉 = (i/2)δZd[V q]/δV q(t)|V q=0 = nB(ω0), as was established in Section 2.5.
The higher order correlation functions may be obtained by repetitive differentiation
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of the generating function. To generate irreducible correlators (i.e. cumulants)
〈〈n̂k(t)〉〉 ≡ 〈(n̂(t)−nB)

k〉 one needs to differentiate the logarithm of the generating
function, Eq. (2.57), e.g.

〈〈n̂2(t)〉〉 =
(

i

2

)2
δ2 ln Zd

δ[V q(t)]2
∣∣∣∣∣
V=0

= n2
B + nB;

〈〈n̂3(t)〉〉 =
(

i

2

)3
δ3 ln Zd

δ[V q(t)]3
∣∣∣∣∣
V=0

= 2n3
B + 3n2

B + nB; (2.59)

〈〈n̂4(t)〉〉 =
(

i

2

)4
δ4 ln Zd

δ[V q(t)]4
∣∣∣∣∣
V=0

= 6n4
B + 12n3

B + 7n2
B + nB;

etc.
Let us see now how these results can be reproduced in the continuum technique,

without resorting to discretization. The continuum generating function is defined as

Zc[V ] =
∫

D[φ̄, φ] e iS[φ̄,φ]+i SV [φ̄,φ], (2.60)

where the bare action S[φ̄, φ] is given by Eq. (2.30) and

SV [φ̄, φ] = −
∫
C
dt V (t)φ̄(t)φ(t) = −

+∞∫
−∞

dt
[
V+φ̄+φ+ − V−φ̄−φ−

]
(2.61)

= −
+∞∫
−∞

dt
[
V cl(φ̄+φ+ − φ̄−φ−)+ V q (φ̄+φ+ + φ̄−φ−)

] = −
+∞∫
−∞

dt �̄φ TV̂ �φ,

where �φ = (φcl, φq)T and

V̂ (t) =
(

V q(t) V cl(t)
V cl(t) V q(t)

)
. (2.62)

As a result, for our example of the single bosonic level the continuum generating
function is given by

Zc[V cl, V q] =
∫

D[φ̄, φ] e i
∫

dt �̄φ T
(

Ĝ−1−V̂ (t)
)
�φ = 1

Tr{ρ̂0}
1

det
[− iĜ−1 + iV̂

]
= 1

det
[
1− ĜV̂

] = e−Tr ln
[

1−ĜV̂
]
, (2.63)

where we have used Eq. (2.25) along with the identity ln det Â = Tr ln Â.
According to Eqs. (2.40) and (2.47) the matrix Green function is
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Ĝ(t, t ′) = −i e−iω0(t−t ′)
(

F(ω0) θ(t − t ′)
−θ(t ′ − t) 0

)
(2.64)

and F(ω0) = 2nB(ω0)+ 1.
The continuum generating function Zc is not identical to the discrete one

Zd. However, as we shall show, it possesses the same general properties and
generates exactly the same statistics of the number operator. First, let us ver-
ify Eq. (2.58) by expanding the logarithm in Eq. (2.63). To first order in V̂
one finds −Tr ln

[
1 − ĜV̂

] ≈ TrĜV̂ = ∫
dt [GR(t, t) + GA(t, t)]V cl(t) = 0,

where we put V q = 0 and employed Eq. (2.44). To second order one encounters∫
dtdt ′GR(t, t ′)V cl(t ′)GR(t ′, t)V cl(t) and similarly for GA. Since GR(t, t ′) = 0 if

t < t ′, while GR(t ′, t) = 0 if t > t ′, the expression under the integral is non-zero
only if t = t ′. In the continuum limit (N → ∞) this is the manifold of zero mea-
sure, making the integral zero. Clearly the same holds in all orders in V cl. This
illustrates how the generic feature of the Keldysh technique, Eq. (2.58), works in
our simple example.

Consider now iδZc[V ]/δV q(t)|V=0 = 〈φ̄+(t)φ+(t) + φ̄−(t)φ−(t)〉; we refer to
Eqs. (2.60) and (2.61) to see this relation. The expectation value of which oper-
ator is calculated this way? The naive answer is that φ̄(t)φ(t) is generated by
〈b̂†(t)b̂(t)〉 and we deal with the sum of this operator inserted on the forward and
backward branches. If this were the case, φ̄ would be taken one time step ahead of
the φ field, as is indeed the case in the discrete representation. However, our con-
tinuum expression indiscriminately places both φ̄± and φ± at the same time t . One
can check that such a “democratic” choice of the time arguments corresponds to
the expectation value of the symmetric combination F̂(t) ≡ b̂†(t)b̂(t)+ b̂(t)b̂†(t).
Employing the equal time commutation relation [b̂(t), b̂†(t)] = 1̂, one finds
F̂(t) = 2n̂(t) + 1 and 〈F̂(t)〉 = i δZc[V cl, V q]/δV q(t)

∣∣
V=0 = iGK(t, t) =

F(ω0), as it should be, of course. For higher order irreducible correlators one
obtains

〈〈F̂2(t)〉〉 = i2
δ2 ln Zc

δ[V q(t)]2
∣∣∣∣
V=0

= F2 − 1;

〈〈F̂3(t)〉〉 = i3
δ3 ln Zc

δ[V q(t)]3
∣∣∣∣
V=0

= 2F3 − 2F; (2.65)

〈〈F̂4(t)〉〉 = i4
δ4 ln Zc

δ[V q(t)]4
∣∣∣∣
V=0

= 6F4 − 8F2 + 2;

etc. To see how it works, consider for example the third order term in the expansion
of ln Zc = −Tr ln[1− ĜV̂ ] in Eq. (2.63) in powers of V q(t) at V cl = 0:
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1

3
Tr{(ĜV̂ )3} = 1

3

∫
dtdt ′dt ′′Tr

{
Ĝ(t, t ′)V q(t ′)Ĝ(t ′, t ′′)V q(t ′′)Ĝ(t ′′, t)V q(t)

}
= i

F3

3

(∫
dtV q(t)

)3

− iF
∫

dtV q(t)

(∫
t
dt ′V q(t ′)

)2

= i
F3 − F

3

(∫
dtV q(t)

)3

.

To calculate the last integral in the intermediate expression here one intro-
duces W (t) = ∫

t V q(t) and therefore V q = −Ẇ , and the integral in question
is thus − ∫

dt Ẇ W 2 = − ∫
dW W 2 = −(1/3)W 3(t)|∞−∞ = (1/3)(

∫
dtV q)3.

Differentiating over V q three times, one arrives at Eq. (2.65).
Substituting F̂ = 2n̂ + 1 and F = 2nB + 1, it is easy to check that the

respective moments (2.59) and (2.65) are exactly equivalent! Therefore, although
the generating functions Zd and Zc generate slightly different sets of cumulants,
their statistical content is equivalent. From now on we shall always deal with the
continuum version, circumventing the tedious discretization procedure.

The generating function Z [V q] gives access not only to the moments, but to a
full counting statistics of the operator n̂(t0), or F̂(t0). Let us define the probabil-
ity of measuring n bosons at a time t0 as P(n). Then 〈n̂k(t0)〉 =

∫
dn nkP(n).

The generating function Z [η] ≡ ∫
dn eiηnP(n) = ∑

k(iη)
k〈n̂k(t0)〉/k!, where η

is called the counting “field.” Comparing this with Zd[V q], one notices that Z [η]
may be obtained from it by the substitution V q(t) = −(η/2)δ(t − t0). Employing
Eq. (2.55), one finds

Z [η] = 1− ρ(ω0)

1− ρ(ω0) eiη
= (

1− ρ(ω0)
) ∞∑

k=0

[ρ(ω0)]k eikη. (2.66)

Performing the inverse Fourier transform and recalling that ρ(ω0) = e−β(ω0−μ),
one finds

P(n) =
∞∑

k=0

δ(n − k)
(
1− e−β(ω0−μ)) e−β(ω0−μ)k . (2.67)

That is, one can measure only an integer number of bosons and the corresponding
probability is proportional to e−β(En−μn), where the energy En = nω0. This is of
course a trivial result, which we have already de-facto employed in Eq. (2.14). The
important message, however, is that the counting field η is nothing but a particular
realization of the quantum source field V q(t), tailored to generate an appropriate
statistics. As opposed to the calculation of the moments (2.59) and (2.65), one
should not put the quantum source to zero when the full statistics is evaluated. We
shall employ this lesson in Sections 4.9, 10.3, and 12.4 to discuss less obvious
examples of the full counting statistics.
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Single-particle quantum mechanics

In this chapter we discuss quantum mechanics formulated on the closed time
contour. We also derive a real time version of the Caldeira–Leggett model for a
quantum particle interacting with a bath of harmonic oscillators. A semiclassical
treatment of quantum tunneling on the closed time contour is developed and used
to evaluate the tunneling rate through a time-dependent potential barrier with and
without coupling to the bath.

3.1 Harmonic oscillator

The simplest many-body system of a single bosonic state, considered above, is
equivalent to a quantum harmonic oscillator. To make this connection explicit, con-
sider the Keldysh contour action Eq. (2.28) with the correlator Eq. (2.29) written
in terms of the complex field φ(t). The latter may be parametrized by its real and
imaginary parts as

φ(t) = 1√
2ω0

(
P(t)− iω0 X (t)

)
, φ̄(t) = 1√

2ω0

(
P(t)+ iω0 X (t)

)
. (3.1)

In terms of the real fields P(t) and X (t) the action, Eq. (2.28), takes the form

S[X, P] =
∫
C

dt

[
P Ẋ − 1

2
P2 − ω2

0

2
X2

]
, (3.2)

where the full time derivatives of P2, X2 and P X were omitted, since they con-
tribute only to the boundary terms, implicit in the continuum notations (they have
to be kept for the proper regularization, though). Equation (3.2) is nothing but the
action of the quantum harmonic oscillator in the Hamiltonian form. One may per-
form the Gaussian integration over the real field P(t), with the help of Eq. (2.22),
to obtain

29
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S[X ] =
∫
C

dt

[
1

2
Ẋ2 − ω2

0

2
X2

]
. (3.3)

This is the Feynman Lagrangian action of the harmonic oscillator [32], written
on the closed time contour. It may be generalized for an arbitrary single-particle
potential V (X):

S[X ] =
∫
C

dt

[
1

2
Ẋ2 − V (X)

]
. (3.4)

One may split the X (t) field into two components, X+(t) and X−(t), residing on
the forward and backward branches of the contour. The Keldysh rotation for real
fields is conveniently defined as

X cl(t) = 1

2

[
X+(t)+ X−(t)

] ; Xq(t) = 1

2

[
X+(t)− X−(t)

]
. (3.5)

In terms of these fields the action takes the form

S[X cl, Xq] =
∫ +∞

−∞
dt
[−2Xq Ẍ cl − V

(
X cl + Xq

)+ V
(
X cl − Xq

)]
, (3.6)

where the integration by parts was performed on the term Ẋq Ẋ cl. This is the
Keldysh form of the Feynman path integral. The omitted boundary terms provide
a convergence factor of the form ∼ i0(Xq)2.

If the fluctuations of the quantum component Xq(t) are regarded as small, one
may expand the potential to first order and find for the action

S[X cl, Xq] = −
∫ +∞

−∞
dt
[
2Xq

(
Ẍ cl + V ′(X cl)

)+ O
[
(Xq)3

]]
, (3.7)

where V ′(X) = ∂V (X)/∂X . In this approximation the integration over the
quantum component, Xq, may be explicitly performed, leading to the functional
delta-function of the expression in the round brackets. This delta-function enforces
the classical Newtonian dynamics of X cl:

Ẍ cl = −V ′(X cl
)
. (3.8)

This is the reason the symmetric (over the forward and backward branches) part of
the field is called the classical component. One should be careful with this name,
though. If the higher order terms in Xq are kept in the action, both Xq and X cl are
subject to quantum fluctuations.

Returning to the harmonic oscillator, V (X) = ω2
0 X2/2, one may rewrite its

Feynman–Keldysh action (3.3) in the matrix form

S[ �X ] = 1

2

∫ +∞

−∞
dt �XT D̂−1 �X , (3.9)
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where in analogy with the complex field, Eq. (2.51), we introduced

�X(t) =
(

X cl(t)
Xq(t)

)
; D̂−1 =

(
0 [D−1]A

[D−1]R [D−1]K
)

(3.10)

and the superscript T stands for matrix transposition. Here the retarded and
advanced components of the quadratic form in the action are given by
1
2 [D−1]R(A) = (i∂t±i0)2−ω2

0. As before, one should understand that this expression
is simply a continuous abbreviation for the large lower (upper) triangular matrices
with −δ−1

t along the main diagonal, 2δ−1
t − ω2

0δt along the lower (upper) sub-
diagonal and −δ−1

t along the second lower (upper) sub-diagonal. This makes the
D̂−1 matrix symmetric, since its [D−1]K component must be symmetric by con-
struction (its anti-symmetric part does not enter the action). In continuous notation
the Keldysh component [D−1]K is only a regularization. It is convenient to keep it
explicitly, since it suggests the way the matrix D̂−1 should be inverted to find the
Green function:〈

Xα(t)Xβ(t ′)
〉 = ∫

D[ �X ] Xα(t)Xβ(t ′) e iS[ �X ] = iD̂αβ(t, t ′), (3.11)

where α, β = (cl, q) and the matrix inverse of Eq. (3.10) is given by

D̂αβ(t, t ′) =
(

DK(t, t ′) DR(t, t ′)
DA(t, t ′) 0

)
. (3.12)

To apply the rules of Gaussian integration for real variables (see Section 2.3), it is
crucial that the matrix D̂−1 is symmetric. In the Fourier representation components
of the equilibrium correlation matrix are given by

DR(A)(ε) = 1

2

1

(ε ± i0)2 − ω2
0

, (3.13a)

DK(ε) = coth
ε

2T

[
DR(ε)− DA(ε)

]
, (3.13b)

where we have assumed an equilibrium thermal distribution with zero chemical
potential. One way to check the consistency of the expression for the Keldysh com-
ponent is to express Xα through φ̄α and φα and employ the correlation functions
for the complex fields, derived in Chapter 2. The fact that the chemical potential of
a real field must be zero follows directly from the symmetry of DK(t, t ′) (making
DK(ε) an even function) and the identity DR(−ε) = DA(ε).

The normalization identity,
∫

D[ �X ] eiS[ �X ] = 1, is maintained in the following
way: (i) first, due to the structure of D̂−1 matrix, explained above, det[ 1

i D̂−1] =
−det[ 1

i D−1]R det[ 1
i D−1]A = (2/δt)

2N ; (ii) the integration measure is understood

as D[ �X ] = ∏N
j=1 2

(
dX cl

j /
√

2πδt

) (
dXq

j/
√

2πδt

)
(in comparison with Eq. (2.22)

there is an additional factor of 2, which originates from the Jacobian of the
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transformation (3.5), and factor δ−1
t at each time slice, coming from the integra-

tions over Pj = P(t j )). According to the real Gaussian identity (2.22) this leads
exactly to the proper normalization. One can also understand the normalization in
the way discussed after Eq. (2.52a), without resorting to the discrete representation.

3.2 Quantum particle in contact with an environment

Consider a quantum particle with coordinate X (t), placed in a potential V (X) and
brought into contact with a bath of harmonic oscillators. The bath oscillators are
labeled by an index s and their coordinates are denoted by ϕs . They possess a set
of frequencies ωs . The Keldysh action of such a system is given by the three terms
S = Sp + Sbath + Sint, where

Sp[X ] =
∫ +∞

−∞
dt
[−2Xq Ẍ cl−V

(
X cl + Xq

)+V
(
X cl − Xq

)]
, (3.14a)

Sbath[ϕs] = 1

2

∑
s

∫ +∞

−∞
dt �ϕ T

s D̂−1
s �ϕs, (3.14b)

Sint[X, ϕs] =
∑

s

gs

∫ +∞

−∞
dt �XT σ̂1 �ϕs, (3.14c)

where the symmetric quadratic form D̂−1
s is given by Eq. (3.10) with the frequency

ωs . The interaction term between the particle and the bath oscillators is taken as a
product of their coordinates,

∑
s gs

∫
C dt X (t)ϕs(t) =∑

s gs

∫
dt (X+ϕ+s −X−ϕ−s ).

Performing the Keldysh rotation according to Eq. (3.5), one arrives at Eq. (3.14c),
where σ̂1 is the first Pauli matrix in the Keldysh (cl, q) space. The corresponding
coupling constants are denoted by gs .

One may now integrate out the degrees of freedom of the bath to reduce the
problem to the particle coordinate only. Employing Eq. (2.22) for the Gaussian
integration over the real variables, one arrives at the so-called dissipative action for
the particle:

Sdiss = 1

2

∫∫ +∞

−∞
dt dt ′ �X T(t) D̂−1(t − t ′) X̂(t ′), (3.15a)

D̂−1(t − t ′) = −σ̂1

[∑
s

g2
s D̂s(t − t ′)

]
σ̂1. (3.15b)

Straightforward matrix multiplication shows that the dissipative quadratic form
D̂−1 possesses the causality structure as, e.g., Eq. (3.10). For the Fourier transform
of its retarded (advanced) components, one finds
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[
D−1(ε)

]R(A) = −1

2

∑
s

g2
s

(ε ± i0)2 − ω2
s

=
∞∫

0

dω

2π

ωJ (ω)

ω2 − (ε ± i0)2
, (3.16)

where J (ω) = π
∑

s(g
2
s /ωs)δ(ω − ωs) is the bath spectral density.

We shall assume now that the spectral density behaves as J (ω) = 4γω, where
γ is a constant at small frequencies. This is the so-called Ohmic bath, which is
frequently found in more realistic models of the environment (see, e.g., Section
7.8). Substituting it into Eq. (3.16), one finds

[
D−1(ε)

]R(A) = 4γ
∫

dω

2π

ω2

ω2 − (ε ± i0)2
= const± 2iγ ε, (3.17)

where the ε-independent real positive constant (the same for R and A components)
may be absorbed into the redefinition of the harmonic part of the particle’s potential
V (X) = const× X2 + · · · and, thus, may be omitted. If the bath is in equilibrium,
the Keldysh component of the correlator is set by FDT,[

D−1(ε)
]K =

([
DR

]−1 − [
DA

]−1
)

coth
ε

2 T
= 4iγ ε coth

ε

2 T
, (3.18)

where we assumed that the bath is at temperature T and, as explained after
Eqs. (3.13), the chemical potential of the real bath oscillators must be zero. Notice
that the validity of this expression does not rely on the particle being at equilib-
rium, but only the bath. The Keldysh component is an anti-Hermitian operator with
a positive-definite imaginary part, rendering convergence of the functional integral
over �X(t).

In the time representation the retarded (advanced) component of the correla-
tor takes a time-local form:

[
DR(A)

]−1 = ∓2γ δ(t − t ′) ∂t ′ . On the other hand,
the Keldysh component is a non-local function that may be found by the inverse
Fourier transform of Eq. (3.18):

[
D−1(t − t ′)

]K = 4iγ

[
(2T + C)δ(t − t ′)− πT 2

sinh2[πT (t − t ′)]
]
, (3.19)

where the infinite constant C = πT 2
∫

dt/ sinh2(πT t) serves to satisfy the con-
dition

∫
dt[D−1(t)]K = [D−1(ε = 0)]K = 8iγ T . Finally, one obtains for the

Keldysh action of the particle connected to the ohmic bath

S[ �X ] =
∫ +∞

−∞
dt
[−2Xq

(
Ẍ cl + γ Ẋ cl

)− V
(
X cl + Xq

)+ V (X cl − Xq)
]

+ 2iγ
∫ +∞

−∞
dt

[
2T

(
Xq(t)

)2 + πT 2

2

∫ +∞

−∞
dt ′

(
Xq(t)− Xq(t ′)

)2

sinh2[πT (t − t ′)]

]
, (3.20)
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where the infinite constant C is absorbed into the two diagonal terms ∼ (
Xq(t)

)2
.

This action satisfies all the causality criteria listed in Section 2.7. Notice that in the
present case the Keldysh q − q component is not just a regularization, but a finite
term, originating from the coupling to the bath and serving to limit fluctuations.
This term breaks the symmetry S[X cl,−Xq] = −S[X cl, Xq] present in the initial
action (3.14). Such a symmetry of the action is a direct consequence of the time
reversal symmetry of the problem. Thus the appearance of a finite q−q component
of the action is a manifestation of the breaking of the time-reversal symmetry.
The latter takes place due to integrating out the continuum of the bath degrees of
freedom.

The other manifestation of the bath is the presence of the friction term ∼ γ ∂t

in the R and the A components. In equilibrium the friction coefficient and fluctua-
tion amplitude are rigidly connected by the FDT. The quantum dissipative action,
Eq. (3.20), is a convenient playground to demonstrate various approximations and
connections to other approaches. We shall discuss it in detail in Chapter 4. If only
linear terms in Xq are kept in the action (3.20), the integration over Xq(t) results
in the functional delta-function, which enforces the following relation:

Ẍ cl = −V ′(X cl
)− γ Ẋ cl. (3.21)

This is the classical Newtonian equation with the viscous friction force. Remark-
ably, we have obtained the Ẋ cl term in the equation of motion from the action
principle. It would not be possible, if not for the doubling of the number of fields
X cl and Xq. Indeed, in any action depending on X cl only, terms linear in the first
time derivative may be written as a full time derivative and integrated out, not
affecting the equation of motion.

3.3 From Matsubara to Keldysh

Most of the texts dealing with equilibrium systems at finite temperature employ
the Matsubara technique [11, 2, 4, 6]. This method is designed to treat the equi-
librium density matrix e−β Ĥ as the evolution operator. To this end one considers
an imaginary time quantum mechanics, with the imaginary time τ restricted to
the interval 0 ≤ τ < β. When calculating an expectation value of an observable
Ô(τ ), one evaluates a trace of the form 〈Ô〉 = Tr{Ô(τ )e−β Ĥ }. To this end one
divides the imaginary time interval [0, β] into N infinitesimal segments and inserts
the resolution of unity in the coherent state basis at each segment, similarly to our
procedure in Section 2.2. As a result, one ends up with fields, say with coordinate
X (τ ) which, in view of the fact that one evaluates the trace, obeys the periodic
boundary conditions X (0) = X (β). In the Fourier representation it is represented
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by a discrete set of components Xm = ∫ β

0 dτ X (τ ) eiεmτ , where εm = 2πmT is a
set of Matsubara frequencies and m is an integer.

We shall discuss now how to convert an action written with the Matsubara tech-
nique into the Keldysh representation. This may be useful, if one wishes to extend
treatment of the problem to non-equilibrium or time-dependent conditions. As an
example consider the following bosonic Matsubara action:

S[Xm] = i

2
γ T

∞∑
m=−∞

|εm ||Xm |2. (3.22)

Due to the absolute value sign |εm | 
= i∂τ . In fact, in the imaginary time rep-
resentation the kernel Km = |εm | acquires the form K (τ ) = ∑

m |εm |e−iεmτ =
Cδ(τ ) − πT sin−2(πT τ), where the infinite constant C is chosen to satisfy∫ β

0 dτK (τ ) = K0 = 0. As a result, in the imaginary time representation the action
(3.22) obtains the following non-local form:

S[X ] = i

2
γ T

∫∫ β

0
dτ dτ ′X (τ ) K (τ − τ ′) X (τ ′)

= i

4π
γ

∫∫ β

0
dτ dτ ′

π2T 2

sin2[πT (τ − τ ′)]
(
X (τ )− X (τ ′)

)2
. (3.23)

This action is frequently named after Caldeira and Leggett [33], who used it to
investigate the influence of dissipation on quantum tunneling.

To transform to the Keldysh representation one proceeds along the following
steps: (i) double the number of degrees of freedom, correspondingly doubling the
action, X → �X = (X cl, Xq)T and consider the latter as functions of the real time
t or real frequency ε ; (ii) according to the causality structure, Section 2.7, the
general form of the quadratic time translationally invariant Keldysh action is:

S
[ �X] = γ

∫
dε

2π

(
X cl
ε , Xq

ε

) ( 0 K A(ε)

K R(ε) K K(ε)

)(
X cl
ε

Xq
ε

)
; (3.24)

(iii) the retarded (advanced) component K R(A)(ε) is the analytic continuation
of the Matsubara correlator K (εm) = |εm| from the upper (lower) half-plane
of the complex variable εm to the real axis: ∓iεm → ε, see [2]. As a result,
K R(A)(ε) = ±iε ; (iv) in equilibrium the Keldysh component follows from FDT:
K K(ε) = (

K R(ε) − K A(ε)
)

coth (ε/2 T ) = 2iε coth (ε/2 T ), see Eqs. (3.17) and

(3.18). We found thus that γ K̂ (ε) = 1
2 D̂−1(ε) and therefore the Keldysh counter-

part of the Matsubara action, Eq. (3.22) or (3.23), is the already familiar dissipative
action (3.20) (without the potential and inertial terms, of course). One may now
include external fields and allow the system to deviate from equilibrium.
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3.4 Quantum tunneling in a time-dependent potential

We shall discuss here the quasi-classical description of quantum mechanical tun-
neling. The quasi-classical approach originates from evaluating the Feynman path
integral in the stationary path approximation. Taking the variation of the Feynman
action, one arrives at the classical Newtonian equation of motion. At first glance
the latter fails to describe motion in the classically forbidden under-barrier region.
Let us look at it more closely, however. In particular, for a particle with unit mass
and energy E = P2/2+ V (X) one finds

P(t) = dX

dt
= √

2(E − V (X)). (3.25)

Integrating this equation, one finds for the time t needed to reach infinity starting
from a point X ,

t (X) =
∫ ∞

X

dX ′
√

2(E − V (X ′))
. (3.26)

As long as X > X2, such that E > V (X), the corresponding time is real, see
Fig. 3.1. For X1 < X < X2, where E < V (X), the time changes along the
imaginary direction. Finally for X < X1 the time is complex, t+iτ0, with a constant
imaginary part τ0 =

∫ X2
X1

dX/
√

2(V (X)− E). Therefore for a tunneling trajectory,
with X going from negative to positive infinity, the time evolves along the C+
contour depicted in Fig. 3.2.

If one wants the tunneling trajectory to be a solution of the stationary path equa-
tion, one has to consider the evolution operator along the contour C+ in the complex
time plane, see Fig. 3.2. The semiclassical approximation for the tunneling ampli-
tude is given by the exponentiated action along the C+ contour. To calculate the
tunneling probability one has to supplement the latter with the conjugated back-
ward contour C−, see Fig. 3.2. Actually, the locations in time of the vertical parts

E

XX1 X2

x0

Fig. 3.1 Tunneling potential V (X) and classical turning points X1 and X2. Time
goes in the imaginary direction for X1 < X < X2. The dashed lines show a small
time-dependent part of the potential, Eq. (3.29).
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t

t0 − iτ0

t0 + iτ0

C+

C−

z0
+

z 1
+ z 1

−

z0
−

t0

Fig. 3.2 The time contour for semiclassical evaluation of the tunneling probabil-
ity. The poles at t = z±n appear upon perturbative treatment of a time-dependent
potential. After deforming the contour (dotted lines) only the poles at z−0 and z−1
contribute to the action.

of the contour are not necessarily the same on the forward and backward branches.
This freedom is important for the treatment of multiple tunneling events. Since our
immediate goal is to find the probability of a single tunneling event, we can restrict
ourselves to the particular contour drawn in Fig. 3.2.

With exponential accuracy the tunneling probability for a particle with energy E
is given by

P(E) ∼ e
i
∫
C++C− dt

[
1
2 Ẋ2−V (X)+E

]
, (3.27)

where X (t) is a solution of the classical equation of motion Ẍ = −V ′(X) along
the contour. The last term in the action,

∫
dt E = E(tf − ti), where tf is the final

point on C− and ti is the initial point on C+, serves to fix the energy of the particle.
Indeed, demanding stationarity with respect to variations over tf,i and using [34]
δS/δtf,i = ∓H , one finds that the energy is fixed on both branches of the contour
Ẋ2/2 + V (X) = E . An alternative way of looking at this term is to view it as
Fourier transform from the time to the energy representation.

It is easy to see that the action along the horizontal parts of the contour sums up
to zero. Indeed, the action of the backward branch cancels exactly that of the for-
ward one. It is therefore the action along the two vertical segments which remains.
With the help of the classical equation of motion (3.25) the latter is given by

iS0 = i
∫ −iτ0

iτ0

dt Ẋ2 = 2i
∫ X2

X1

dX Ẋ = −2
∫ X2

X1

dX
√

2(V (X)− E). (3.28)

For the tunneling probability one finds P(E) ∼ eiS0 . This is the well-known WKB
result [35], which is in fact obtained by the usual trick [35] of considering the
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imaginary time Schrödinger equation (indeed, the horizontal parts of the contour
were inconsequential so far).

However, doing the problem the way presented above allows one to consider
tunneling in the presence of a time-dependent potential [36]. To be specific, let us
consider a potential of the form

V (X, t) = −1

2
ω2

0 X2 + ε x2
0

X2 + x2
0

cos� t, (3.29)

which consists of a parabolic barrier, along with the localized time-dependent
potential, oscillating with a frequency �. We shall assume that the amplitude of
the latter is small and consider a correction to the action linear in ε. To this end we
need to find a semi-classical tunneling trajectory X (t) of the unperturbed potential
and substitute it into the time-dependent part of the action:

iS1 = −iε x2
0

∫
C++C−

dt
cos� t

X2(t)+ x2
0

. (3.30)

The tunneling trajectory of the particle with energy E < 0 in the unperturbed
potential −ω2

0 X2/2 is given by

X (t) = X2 cosh
(
ω0(t − t0)

)
, X2 =

√−2E/ω0. (3.31)

At time t = −∞ + iτ0 the particle starts at X = −∞ and reaches the point
X1 = −X2 at time t = t0 + iτ0. Then it spends an imaginary time iτ0 = iπ/ω0

under the barrier where X (t0 + iτ) = X2 cosω0τ and finally continues to move in
real time from X = X2 towards X = ∞. The integral in Eq. (3.30) has poles in the
complex time plane at t = z±n , where z±n = t0±ω−1

0 arcsinh(x0/X2)+ iτ0(1/2−n)
and n is an integer. Two of these poles are located inside the contour, z−0 and z−1 , see
Fig. 3.2. Deforming the contour to run around the poles and evaluating the integral
in Eq. (3.30) with the help of the residue theorem, one finds

iS1 = 2 ετ0 cosα√
(X2/x0)2 + 1

cosh
�τ0

2
, (3.32)

where α = � t0 − (�/ω0) arcsinh(x0/X2). The tunneling probability is given by
P(E) ∼ eiS0+i S1 , where in the present case iS0 = 2Eτ0 = 2πE/ω0 (remember that
E < 0). The correction iS1 has a random sign, dictated by cosα, which depends
on t0 – the free parameter of the tunneling trajectory (3.31). One should now fix t0
by maximizing the tunneling probability, i.e. demanding cosα = 1. This way one
obtains for the tunneling probability in the presence of the oscillating field

P(E) ∼ e−2|E |τ0 exp

{
2 ετ0√

(X2/x0)2 + 1
cosh

�τ0

2

}
. (3.33)
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Therefore the tunneling probability is exponentially enhanced! The most surprising
feature of this result is that at high frequency �τ0 � 1 the enhancement parameter
is itself exponentially large∼ ετ0e�τ0/2 [36]. This does not mean that a weak high-
frequency field can make the barrier completely transparent. It rather means that
there is a surprisingly small scale of the ac modulation amplitude ε ∼ ω0e−�τ0/2,
beyond which the linear correction to the action is not sufficient.

To understand this behavior qualitatively, consider absorption of n quanta of
energy �. It elevates the energy of an incoming particle to E + �n and there-
fore changes its tunneling action to iS0(E + �n) ≈ iS0 + 2τ0�n, since quite
generally ∂(iS0)/∂E = 2τ0, where τ0 is the (imaginary) time the particle spends
under the barrier. The amplitude of the n-quanta absorption process may be esti-
mated as (ε/�)n/n!. As a result, the probability of tunneling upon absorption of
n quanta from the ac field is eiS0+2τ0�n(ε/�n)2n . Optimizing over n one finds
iS1 ∼ (ε/�)e�τ0 , similarly to what we have found above. The difference from
the actual result, Eq. (3.33), originates in the overestimated absorption amplitude
(the actual one is probably reduced by another factor of n!). This consideration
shows that the results are applicable as long as �� |E |.

3.5 Dissipative quantum tunneling

Consider a particle with unit mass moving in a potential

V (X) = V0

[
δ

(
X

a

)2

−
(

X

a

)3
]
, (3.34)

where δ is a dimensionless bifurcation parameter, which governs the shape of the
potential. For δ > 0 the potential exhibits a meta-stable minimum at X = 0, see
Fig. 3.3(a). If V0 � δ/a2 one may disregard energy quantization in the meta-
stable well and consider escape of the particle with zero energy, E = 0, initially
trapped in the meta-stable minimum. The semiclassical escape trajectory according
to Eq. (3.26) is given by

X (t) = δa

cos2 ω0(t−t0)
2

, (3.35)

where ω0 =
√

2V0δ/a2. The contour C+, see Fig. 3.3(b), proceeds along t + iτ0,
where t ∈ ] − ∞, t0], then goes along the imaginary axis from t = t0 + iτ0 to
t = t0 and finally goes along the real-time axis from t = t0 to t = t0 + π/ω0, see
Fig. 3.3(b). In the coordinate space the three pieces of the C+ contour correspond
to: (i) the particle staying at X = 0; (ii) the particle moving under the barrier, where
X (t0 + iτ) = δa/ cosh2(ω0τ/2); (iii) the classical motion from the “resurfacing”
point X = δa towards X = ∞. The imaginary time spent under the barrier is
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t

t0 −i∞

t0 + i∞

δa

V(X)

0

X2 X

C−

C
(a)

t0

t0 − π/ω0

+
(b)

Fig. 3.3 (a) Potential (3.34) with the meta-stable minimum at X = 0. If a particle
loses energy by exciting the bath, the tunneling trajectory is plotted schematically
by the dashed line, with the “resurfacing” point X2. (b) Contour in the complex
time plane. The particle reaches X = +∞ at t = t0 + π/ω0. There is an infinite
set of poles of Eq. (3.35) at t = t0 − π(1+ 2n)/ω0.

infinite in the present case, τ0 = ∞. The presence of the poles on the real axis in
Eq. (3.35) is an artefact of the too-steep potential drop at X > δa, allowing the
particle to reach X = ∞ in a finite time. According to Eq. (3.28), the under the
barrier action is given by

iS0 = −2
∫ δa

0
dX

√
2V (X) = − 8

15

√
2V0 a δ5/2. (3.36)

As long as |iS0| � 1, the escape rate from the meta-stable well is W ∝ ω0eiS0 .
We now consider how the coupling to the ohmic bath affects the tunneling escape

rate. In this paragraph we restrict ourselves to the purely quantum, i.e. zero tem-
perature scenario, T = 0 (the high-temperature case is discussed in Chapter 4).
Since all the bath oscillators are in their ground states, they cannot transfer energy
to the particle. Therefore one does not expect any activation-like acceleration of
the escape. On the other hand, the particle is very far from its ground state and
may excite the bath oscillators during its escape. Such processes lead to the par-
ticle losing its energy and “sinking” deeper into the barrier, see Fig. 3.3(a). As a
result, one expects that the particle emerges from under the barrier somewhere at
X = X2 > δa (in fact, we’ll see that in the limit of very strong coupling to the bath
there is a universal result for such a “resurfacing” point X2 = 4

3δa). At X > X2

the particle moves in real time, its action is real and cancels between the forward
and backward branches of the contour. The finite imaginary part of the action is
accumulated during the motion along the imaginary time direction t = iτ . Taking
the limit T → 0 in Eq. (3.23), one finds for the imaginary time action

S[X ] = i
∫

dτ

{
1

2
(∂τ X)2 + V (X)+ γ

4π

∫
dτ ′

(
X (t0 + iτ)− X (t0 + iτ ′)

)2

(τ − τ ′)2

}
.

(3.37)
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Variation of this action with respect to X (t0+iτ) leads to the semiclassical equation
for under the barrier motion:

∂ 2
τ X = V ′(X)+ γ

π
−
∫

dτ ′
X (t0 + iτ)− X (t0 + iτ ′)

(τ − τ ′)2
, (3.38)

where the integral is understood as a principal value. A general solution of this
equation is not known. In the limit of weak dissipation, γ � ω0, one may find a
correction to the tunneling action using perturbation theory. To this end one needs
to substitute the imaginary time tunneling trajectory X (t0+iτ), given by Eq. (3.35),
into the last term in Eq. (3.37). This way one finds for the small dissipative correc-
tion to the bare tunneling action (3.36) that iδSdiss = −(12ζ(3)/π3)γ a2δ2.1 Notice
that this correction, being smaller than the bare tunneling action (3.36), may still
result in the exponential suppression of the tunneling rate by the dissipation.

As was first realized by Caldeira and Leggett [33], one may also find a solution
of Eq. (3.38) in the opposite limit of strong dissipation γ � ω0. In this case the
inertia term ∂2

τ X on the left hand side of the equation of motion (3.38) may be
neglected. One can check then by direct substitution that the following trajectory
is indeed the desired solution:2

X (t) =
4
3 δa

1− ω2
1(t − t0)2

, (3.39)

where t = t0 + iτ and ω1 = 2V0δ/(γ a2) = ω2
0/γ . At t = t0 + i∞ it starts in

the meta-stable minimum X = 0 and reaches X2 = 4δa/3 at t = t0 + i0. Here the
particle emerges from under the barrier and continues its motion in real time. The
action (3.37) on this trajectory is given by (the inertia term (∂τ X)2/2 is neglected)

iSdiss = −2π

9
γ a2δ2. (3.40)

1 The calculations are easier in the Fourier representation, where the T = 0 Matsubara components of the
trajectory (3.35) are given by Xm = 4πδaω−2

0 εm/ sinh(πεm/ω0). Employing the dissipative action in the
form of Eq. (3.22) and substituting summation by integration, one finds

iδSdiss = −(γ /2)(4πδaω−2
0 )2

∫
(dε/2π)ε3/ sinh2(πε/ω0) = −(12ζ(3)/π3)γ a2δ2.

2 Indeed, putting t0 = 0 for simplicity,

−
∫

dτ ′ X (iτ)−X (iτ ′)
(τ − τ ′)2 = 4

3
δaω1−

∫
dz′

(z′−z)2

[
1

1+z2
− 1

1+z′2
]
= 4

3

δaω1

1+ z2
Re

∫
dz′

z′−z−i0

z′ + z

1+z′2 ,

where z = ω1τ . Evaluating the integral with the help of the residue theorem, one finds

4π

3

δaω1

1+(ω1τ)
2

Re
i+ω1τ

i−ω1τ
= 4π

3
δaω1

(ω1τ)
2 − 1

[1+(ω1τ)
2]2 =

−πV0

γ

[
2δX (τ )

a2
− 3X2(τ )

a3

]
= −π

γ
V ′(X).
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Notice that Sdiss/S0 ∼ γ /ω0 � 1 in the limit of strong dissipation. As a result,
the coupling to the bath leads to the exponential suppression of the escape rate
W ∼ eiSdiss . Remarkably, the scaling of the action with the bifurcation parameter
changes from δ5/2 to δ2. One expects that the Caldeira–Leggett scaling, δ2, always
wins in the immediate vicinity of the bifurcation point, i.e. for δ � 1. Indeed,
since ω0 ∼ δ1/2, for δ � 1 the dissipation is always strong, i.e. ω0 � γ . It may
seem paradoxical that the escape rate is independent of the barrier height V0 (as
long as δ/a2 < V0 < γ 2a2/δ, where the left inequality is needed to disregard level
quantization in the meta-stable well and the right one is ω0 � γ ). In fact, taking
the inertia term (∂τ X)2/2 in Eq. (3.37) as a perturbation, i.e. substituting in it the
inertia-less solution (3.39), one finds a correction to the action (3.40) iδSinert =
−4πV0δ

3/(9γ ). Although smaller than the dissipative action (3.40), this correction
still leads to the exponential dependence of the tunneling rate on V0.

One may notice that the real-time Caldeira–Leggett solution (3.39) does not sat-
isfy Newton’s equation with viscous friction, Eq. (3.21). This is because during the
imaginary-time part of the trajectory the particle has excited the bath oscillators.
The latter also continue to evolve in real time, exerting an additional force on the
particle. As discussed in Section 3.3, the real-time counterpart of the dissipative
action (3.37) is the Keldysh action (3.20). The corresponding semiclassical equa-
tion of motion is given by Eq. (3.21). Combining Eqs. (3.21) and (3.38), one finds
the equation of motion for X (t) on the real-time part of the contour, Fig. 3.3b,

Ẍ = −V ′(X)− γ Ẋ − γ

π

∫
dτ

X (t0 + iτ)

(t − t0 − iτ)2
, (3.41)

where the τ -integration runs along the vertical part of the contour in Fig. 3.3b. It
is easy to check that, neglecting the inertia term Ẍ , the Caldeira–Leggett solution
(3.39) satisfies this equation too. Therefore the trajectory (3.39) solves the semi-
classical equations of motion along the entire contour! Notice that the tunneling
event completed at t = t0 exerts a slowly decaying ∼ (t − t0)−2 (for t − t0 � ω−1

1 )
force, altering the subsequent motion of the particle in real time. This fact may
qualitatively change the picture of tunneling between two resonant wells, where
multiple tunneling events are important. We shall not develop this theory here,
referring the reader to a review [37].

One can use now the analytic form of the tunneling trajectories, Eqs. (3.35)
and (3.39), to investigate the influence of an external time-dependent signal on the
escape rates. To this end let us consider a weak spatially uniform oscillatory force
by adding the following term to the potential (3.34):

V (X, t) = ε
X

a
e νt cos� t, (3.42)
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where ν is an infinitesimal energy scale, which describes an adiabatic switching
on of the external time-dependent force. To the first order in ε the change in the
tunneling action is evaluated by substituting the trajectory (3.35) or (3.39) into the
action S1 = −i

∫
C++C−dt V (X (t), t). Due to the factor e νt (omitted from now on)

the t = −∞ part of the contour does not contribute to the action. Deforming the
contour, one finds that the integral is reduced to the contribution of the poles of the
X (t) function along the t < t0 part of the real-time axis. For the bare tunneling
trajectory, Eq. (3.35), the relevant poles are at t = zn = t0 − (π + 2πn)/ω0, where
n = 0, 1, . . .. Summing over all of them and maximizing over the free parameter
t0, one finds [36]

iS1 = ε�

ω2
0

4πδ

sin(π�/ω0)
. (3.43)

For � = ω0, 2ω0, . . . the external field is in resonance with the small oscillations
in the meta-stable minimum and the linear response approach fails. In the limit
�→ 0 one finds iS1 = 4δε/ω0. This may be directly obtained from Eq. (3.36) by
changing δ2 to δ2 − 3ε/V0. Indeed, the potential (3.34) is equivalent, up to a trivial
shift, to V (X) = V0[δ2 X/3a− (X/a)3]. Therefore, adding to it a static linear term
−εX/a leads to the aforementioned redefinition of δ2.

For the case of strong dissipation the only relevant pole of the trajectory (3.39)
is at t = t0 − 1/ω1, which leads to the following correction to the action:

iS1 = 4π

3

εδ

ω1
= 2π

9
γ a2 3ε

V0
. (3.44)

This is nothing but the adiabatic change of the time-independent result (3.40) by
the static reduction of δ2 → δ2 − 3ε/V0. Therefore for not too large frequencies
the effect of the ac force on the overdamped tunneling decay is the same as the dc
one. At higher frequencies the fact that the −X3 tail of the potential must flatten
somewhere becomes important. In this case the particle does not reach infinity in
a finite time. This fact translates into the splitting of the poles and moving them
away from the real axis by a small imaginary time iτs ∼ ia/

√
V0. Similarly to

Section 3.4, it leads to the exponential enhancement of the ac correction at very
high frequencies iS1 ∝ εe�τs [36].
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Classical stochastic systems

This chapter is devoted to the classical limit of the quantum dissipative action
obtained in Chapter 3. We show how it yields Langevin, Fokker–Planck and
optimal path descriptions of classical stochastic systems. These approaches are
used to discuss activation escape, fluctuation relation, reaction models and other
examples.

4.1 Classical dissipative action

In Section 3.2 we derived the Keldysh action for a quantum particle coupled to
an Ohmic environment, Eq. (3.20). If only linear terms in the quantum coordinate
Xq(t) are kept in this action, it leads to a classical Newtonian equation with a
viscous friction force, Eq. (3.21). Such an approximation completely disregards
any fluctuations: both quantum and classical. Our goal now is to do better than that
and to keep classical thermal fluctuations, while still neglecting quantum effects.

To this end it is convenient to restore the Planck constant � in the action and
then take the limit � → 0. For dimensional reasons, the factor �

−1 should stay in
front of the entire action. To keep the part of the action responsible for the classical
equation of motion (3.21) free from the Planck constant it is convenient to rescale
the quantum component as Xq → �Xq. Indeed, when this is done all terms linear
in Xq do not contain �. Finally, to have the temperature in energy units, one needs
to substitute T with T/�. As a result, the term ∼ γ T (Xq(t))2 does not contain
the Planck constant either. The limit � → 0 is now straightforward: (i) one has to
expand ∓V (X cl ± �Xq) to first order in �Xq and neglect all higher order terms;
(ii) in the last non-local term in Eq. (3.20) the � → 0 limit is taken with the help
of the identity

πT 2/(2�)

sinh2(πT (t − t ′)/�)
�→0−→ T δ(t − t ′). (4.1)
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Consequently the non-local term becomes local and drops out in the � → 0 limit.
Finally, the classical limit of the dissipative action (3.20) is

S[ �X ] =
+∞∫
−∞

dt
{
−2Xq

[
Ẍ cl + γ Ẋ cl + V ′(X cl

)]+ 4iγ T
(
Xq

)2
}
. (4.2)

Notice that this action is local in time. Also, despite its name, the quantum
component Xq still has a role to play in the classical setting.

Physically the limit � → 0 means that �γ and ��� T , where � is a character-
istic frequency of the particle’s classical motion. These conditions are sufficient
for us to neglect both the time non-local term and the higher order expansion
of V (X cl ± �Xq) in Eq. (3.20). Correspondingly, an alternative way to look at
the classical expression (4.2) is to view it as a high-temperature limit of the full
quantum action (3.20). On the technical level it amounts to substituting coth ε/(2T )
by 2T/ε in, e.g., Eq. (3.24). In this chapter we consider some implications of the
classical dissipative action (4.2) as well as some of its generalizations.

4.2 Langevin equation

One way to proceed with the classical action (4.2) is to notice that the exponent of
its last term (times i) may be rewritten in the following way:

e−4γ T
∫

dt
(

Xq(t)
)2

=
∫

D[ξ(t)] e
−∫ dt

[
1

4γ T ξ2(t)−2iξ(t)Xq(t)
]
. (4.3)

This identity is called the Hubbard–Stratonovich transformation, where ξ(t) is
an auxiliary Hubbard–Stratonovich field. With the integration measure D[ξ(t)]
normalized such that

∫
D[ξ(t)] e−

∫
dt ξ2/4γ T = 1, the identity (4.3) is an immediate

consequence of the real Gaussian integral (2.22).
Any observable O[X cl] formulated in terms of the classical coordinate (possibly

taken in more than one instance of time) may be written as (recall that Z = 1 and
thus no normalization factor is needed)

〈O[X cl]〉 =
∫

D[X cl, Xq]O[X cl] eiS[ �X ]

=
∫

D[ξ ] e−
1

4γ T

∫
dt ξ2

∫
D[X cl]O[X cl]

∫
D[Xq] e−2i

∫
dt Xq(Ẍcl+γ Ẋcl+V ′(Xcl)−ξ)

=
∫

D[ξ ] e−
1

4γ T

∫
dt ξ2

∫
D[X cl]O[X cl] δ (Ẍ cl + γ Ẋ cl + V ′(X cl)− ξ

)
,

(4.4)

where the last line includes the functional delta-function of the expression in the
round brackets. This functional delta-function enforces its argument to be zero at
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every moment of time. Therefore, among all possible trajectories X cl(t) only those
contribute to the observable that satisfy

Ẍ cl = −γ Ẋ cl − V ′(X cl)+ ξ(t). (4.5)

This is the Newton equation with a friction force −γ Ẋ and a time-dependent
external force ξ(t), known also as the Langevin equation.

Equation (4.4) implies the following strategy for finding the expectation value
〈O[X cl]〉: (i) choose a particular realization of the force ξ(t); (ii) solve Eq. (4.5)
(e.g. numerically); (iii) having its solution, X cl(t), calculate the observable O[X cl];
(iv) average the result over an ensemble of realizations of the random force ξ(t)
with the Gaussian weight exp{−∫ dt ξ 2(t)/4γ T }. The Gaussian statistics of the
random force ξ(t) means that only its first and second irreducible moments must
be specified. In our example 〈ξ(t)〉 = 0 (if the first moment is not zero, it may
always be viewed as a part of the deterministic force −V ′). This means that the
Langevin equation (4.5) must be supplemented only with the second moment of
the random force, given by

〈ξ(t)ξ(t ′)〉 =
∫

D[ξ ] ξ(t)ξ(t ′) e−
1

4γ T

∫
dt ξ2 = 2γ T δ(t − t ′), (4.6)

where we employed the Wick theorem, Eq. (2.23). Since in the frequency
representation the right hand side of this equation is a constant, the corresponding
random force is often referred to as a white noise. It originates from the classical
thermal fluctuations of bath oscillators. The fact that the noise amplitude is propor-
tional to the friction coefficient, γ , and temperature T is a manifestation of FDT in
its classical limit (i.e. coth ε/2T → 2T/ε). The latter holds because we assumed
the bath to be in thermal equilibrium.

4.3 Multiplicative noise and Martin–Siggia–Rose method

The Langevin equation (4.5) with the white noise force (4.6) provides a convenient
way for a numerical treatment of the classical dissipative action (4.2). It is not very
useful, though, for analytical approaches. In fact, many problems may be initially
formulated as Langevin equations with certain random forces and one would like to
have a way to convert them into a proper classical action. Such a procedure, which
is in essence an inversion of what was done in the previous section, was formulated
by Martin, Siggia and Rose (MSR) [30]. It is presented here in the form suggested
by DeDominicis [31] and Janssen [38].

Consider a Langevin equation

Ẋ = A(X)+ b(X)ξ(t). (4.7)
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We have restricted ourselves to the first order differential operator ∂t . It may be
viewed as an overdamped limit (i.e. γ � �, where � is a characteristic classical
frequency) of the Newton equation (4.5). We shall generalize, however, Eq. (4.7)
to more than one variable. This will allow us to treat an arbitrary order operator
by representing it as a higher dimensional first order one (see below). The most
important difference between Eqs. (4.7) and (4.5) is the fact that the noisy force
ξ(t) is modulated in a coordinate-dependent way. This is achieved by multiplying it
by a coordinate-dependent function b(X), hence the name multiplicative noise. The
Gaussian white noise ξ(t) is fully specified by its second moment, which without
loss of generality may be normalized as

〈ξ(t)ξ(t ′)〉 = 2δ(t − t ′). (4.8)

In fact the multiplicative Langevin equation (4.7) is ill-defined unless the
regularization of the differential operator is explicitly specified. We shall choose
such a regularization in a way to be consistent with the field theoretical treatment
of the previous chapters. To this end consider the “partition function”

Z [ξ ] =
∫

D[X (t)]J [X ] δ(∂t X − A(X)− b(X)ξ
) ≡ 1. (4.9)

It is identically equal to unity by virtue of the integration of the delta-function,
provided J [X ] is the Jacobian of the operator N̂ [X ] = ∂t X − A(X)− b(X)ξ . The
way to interpret Eq. (4.9) is to discretize the time axis, introducing N -dimensional
vectors X j = X (t j ) and ξ j = ξ(t j ), where j = 1, . . . , N . The operator takes

the form N j = N (0)
j + N (1)

jl Xl + 1
2N

(2)
jlk Xl Xk + · · · , where summation is under-

stood over repeated indices. The Jacobian J [X ] in the partition function (4.9) is
given by the absolute value of the determinant of the following N × N matrix:
J jl ≡ ∂N j/∂Xl =N (1)

jl +N (2)
jlk Xk+· · · . It is possible to choose a proper (retarded)

regularization, where J jl is the lower triangular matrix with unit main diagonal
(coming entirely from the N (1)

j j = 1 term). Clearly, in this case J = 1. To this end
let us choose the discrete version of the operator as

N j = X j − X j−1 − δt
[
A(X j−1)+ b(X j−1)ξ j−1

]
. (4.10)

Clearly, in this case J j j = 1 and J j, j−1 = −1 − δt [A′(X j−1) + b′(X j−1)ξ j−1],
while all other matrix elements J jl = 0. As a result J [X ] = 1 for any realization
X j and ξ j . The regularization (4.10) of the differential operator (4.7) is retarded
since the right hand side of Eq. (4.7) is always taken in the “preceding” moment
of time j − 1. Such an understanding of the Langevin equation (4.7) is called
Ito regularization [39, 40] and it is the most convenient one for field-theoretical
treatment.
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Although the partition function (4.9) is trivial, it is clear that all meaningful
observables and correlation functions may be obtained by inserting a factor O[X ]
in the functional integral (4.9). Having this in mind along with the fact that
J [X ]= 1 due to Ito regularization, let us proceed with the partition function.
Employing the integral representation of the delta-function with the help of an
auxiliary field Xq(t), one obtains:

Z [ξ ] =
∫

D[X ]
∫

D[Xq] e−2i
∫

dt Xq(t)
(
∂R

t X−A(X)−b(X)ξ(t)
)
, (4.11)

where ∂R
t stays for the retarded (Ito) regularization of the operator. One may

average now the partition function over the white noise, Eq. (4.8), by performing
the Gaussian integration over ξ(t):

Z =
∫

D[ξ ] e−
1
4

∫
dt ξ2

Z [ξ ] =
∫

D[X, Xq] e
∫
dt
[
−2i Xq

(
∂R

t X−A(X)
)
−4(Xq)2 D(X)

]
,

(4.12)

where D(X) ≡ b2(X) ≥ 0. The exponent on the right hand side is (i times) the
MSR action for the Ito–Langevin process (4.7), (4.8). The main difference from
the classical limit of the Keldysh action (4.2) is the X -dependent coefficient D(X)
in the Keldysh component ∼ (Xq)2. It clearly originates from the multiplicative
nature of the noise term. Notice also that the retarded derivative ∼ Xq∂R

t X has a
correct regularization of the lower triangular matrix with the unit main diagonal.
This shows that taking Ito regularization (4.10) of the Langevin process (4.7), is
indeed crucial to establishing correspondence with the Keldysh formalism. Let us
reiterate thus the discrete form of the MSR action:

S[ �X ]=
N∑

j=1

[
−2Xq

j

(
X j − X j−1 − δt A(X j−1)

)+ 4iδt(X
q
j )

2 D(X j−1)
]
, (4.13)

which appears to be normally ordered (in a sense that the auxiliary variable Xq

is taken one time step ahead of the physical variable X , apart from the diagonal
term −2Xq

j X j ). The MSR method provides a way to go from a classical stochastic
problem to its proper functional representation. The latter is useful for analytical
analysis. Some examples are discussed below.

One can generalize the above consideration for an M-component vector variable
Xα(t), where α = 1, . . . ,M . The corresponding Ito–Langevin process reads as

Ẋα = Aα(X)+ bαβ(X)ξβ(t); (4.14)

〈ξβ(t)ξγ (t ′)〉 = 2δβγ δ(t − t ′), (4.15)

where summation over repeated indices is understood. Introducing the correspond-
ing vector of auxiliary fields Xq

α, one obtains the following MSR action (in the
continuous notation)
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S[ �X ]=
∫

dt
[−2Xq

α

(
Ẋα − Aα(X)

)+ 4iXq
αXq

β Dαβ(X)
]
, (4.16)

where Dαβ(X) = ∑M
γ=1 bαγ (X) bβγ (X) is a symmetric non-negative-definite

matrix.1

As an example consider the second order Langevin equation (4.5). Renaming
the variables as X1= X cl and X2= Ẋ cl, Eq. (4.5) may be brought to the form of
Eq. (4.14) with A1(X)= X2, A2(X)= −γ X2−V ′(X1) and b22=√γ T , while all
other components of bαβ are zero. One may then write the MSR action (4.16) and
notice that Xq

1 enters the action only linearly. Integrating over Xq
1 one thus obtains

δ(Ẋ1 − X2), which allows one now to perform integration over X2. The resulting
action written in terms of X1 = X cl and Xq

2 = Xq is exactly the classical dissipative
action (4.2). This illustrates that considering the first order Langevin equations
is not a real limitation. It also shows that, since the equation Ẋ1= X2 should be
understood in the Ito way, i.e. X1, j − X1, j−1= δt X2, j−1, the proper regularization
of Eq. (4.5) is X j − 2X j−1 + X j−2= − δtγ (X j−1 − X j−2)− δ2

t V ′(X j−2). That is,
the corresponding quadratic action again has a lower triangular structure with unit
diagonal.

4.4 Optimal path approximation

For some applications (most notably associated with rare events) the functional
integral in Eq. (4.12) may be evaluated in the stationary path approximation. The
corresponding equations are obtained by the variation of the action with respect to
Xq(t) and X (t) and have the form

Ẋ = A(X)+ 4iXq D(X), (4.17)

iẊq = −iXq A′(X)+ 2(Xq)2 D′(X).

One possible solution of these equations is Xq = 0, while Ẋ = A(X). Clearly
this solution corresponds to the noiseless evolution of X (t). Such a noiseless
trajectory is by no means the only solution of the stationary path equations (4.17).
There are other solutions, which ought to be considered. Since X (t) as well
as A(X) and D(X) are all real, one expects that stationary trajectories of the
variable Xq are purely imaginary. This does not contradict, of course, the fact
that D[Xq]= ∏

j dXq
j integrations run along the real axis. What we observed is

that the stationary points are located away from the initial integration contour and

1 Indeed, the eigenvalue equation is Dαβ sβ = bαγ bβγ sβ = λsα . Multiplying by sα one finds λ =
(bβγ sβ)

2/(sα)2 ≥ 0. The zero eigenvalue is possible if the matrix bαβ possesses a left zero mode, i.e. if
sαbαβ = 0.



50 Classical stochastic systems

therefore the latter must be deformed in the complex planes of Xq
j to pass through

purely imaginary stationary points (unless Xq = 0).
To avoid complex notation it is convenient to rename a stationary trajectory

Xq(t) as Xq(t) = P(t)/(2i), where P(t) is real on the stationary trajectories. With
this notation Eqs. (4.17) acquire the Hamiltonian structure

Ẋ = ∂P H(P, X) , Ṗ = −∂X H(P, X); (4.18)

H(P, X) = P A(X)+ P2 D(X). (4.19)

Notice that P is not the physical momentum (indeed we deal with the overdamped
motion (4.7)). It is rather an auxiliary variable which encodes the noise. Never-
theless it is useful to view it as the canonical pair of the physical variable X . Due
to their Hamiltonian nature the stationary path equations possess the integral of
motion: the “energy” H(P, X) = const. The corresponding MSR action, acquired
along an optimal trajectory (i.e. the one satisfying the equations of motion (4.18)),
takes the standard form [34]

iS[X, P] = −
∫

dt
[
P Ẋ − H(P, X)

]
, (4.20)

where H(P, X) is a constant along the trajectory. The statistical weight of the
corresponding path is given by exp{iS}.

One may visualize solutions of Eqs. (4.18) by plotting the phase portrait, i.e.
the curves of constant energy on the phase plane (P, X). The special role is
played by the curves of zero energy H = 0. Generally (i.e. if D(X) 
= 0) there
are two of them P = 0 and P = −A(X)/D(X). The first one corresponds
to the noiseless relaxation according to Ẋ = A(X), while the second one is
responsible for fluctuations. These two intersect at the points where A(X) = 0,
i.e. at the fixed points of the noiseless dynamics. Along the fluctuation curve
P =−A(X)/D(X) the equation of motion reads Ẋ = A(X)+2P D(X) = −A(X),
i.e. it describes the evolution, which is time reversed compared to that along the
noiseless P = 0 line. The fact that the fluctuations are time-reversed partners of
the relaxation is not generic. It is a consequence of the potential nature of the force,
see Section 4.12.

As an example consider an overdamped thermal motion in a potential V (X).
In this case A(X) = −V ′(X) and D(X) = T (we put γ = 1 for brevity). The
fluctuation zero energy curve takes the form P = V ′(X)/T . Figure 4.1(a) depicts
the phase portrait for a potential with a single stable minimum at X = 0. The
noiseless relaxation drives the system towards the origin X = 0 along the P = 0
line. If we are interested in a relative weight for finding the system at some X0 
= 0,
we need to identify an optimal trajectory which brings the system to X0 in a given
time. If no time limitations are imposed (i.e. the observation time is unlimited), the
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Xs

X

P

(a) X

P

(b)

0

0

X0

Fig. 4.1 Phase portraits of the Fokker–Planck Hamiltonians: (a) for a potential
with a single minimum at X = 0; (b) for a potential with a meta-stable minimum
at X = 0 and unstable maximum at X = Xs . Bold lines are curves of zero energy
P = 0 and P = V ′(X)/T . The shaded areas give actions of the optimal paths,
reaching points X0 and Xs , respectively.

proper optimal trajectory is the zero energy curve P = V ′(X)/T . Indeed, it takes
an infinite time to depart from the fixed point X = 0. Since along the optimal path
H(P, X) = 0, the accumulated action (4.20) may be written as

iS(X0) = −
∫

dt P Ẋ = −
X0∫

0

P dX,

i.e. it is given by the geometric area shaded in Fig. 4.1a. Employing that
P = V ′(X)/T , one further obtains

iS(X0) = −
X0∫

0

P dX = − 1

T

X0∫
0

V ′(X)dX = −V (X0)− V (0)

T
. (4.21)

As a result, the relative statistical weight for finding the system at X = X0 is
∝ exp{−V (X0)/T }. This is, of course, nothing but the Boltzmann distribution. So
far we have found it with exponential accuracy only, i.e. without a pre-exponential
factor, which, in principle, could be X0-dependent. In the next section we’ll prove
that this is not the case.

Consider now a potential which has a meta-stable minimum at X = 0 and an
unstable maximum at X = Xs , see Fig. 3.2. The corresponding phase portrait is
depicted in Fig. 4.1b. The fluctuation curve P = V ′(X)/T has now two inter-
sections with the relaxation line P = 0. The relaxation dynamics in a local
vicinity of X = 0 is stable (attractive), while at X = Xs it is unstable (repulsive).
According to the Liouville theorem of classical mechanics [34], the Hamiltonian
motion conserves the area of the phase space. This implies that both fixed points
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must be hyperbolic, i.e. have one attractive and one repulsive direction. As a result,
the stability of the two fixed points along the fluctuation curve is opposite to that
along the relaxation line, i.e. X = 0 is repulsive, while X = Xs is attractive,
see Fig. 4.1(b). It is clear now that the activation escape from the meta-stable
fixed point X = 0 must proceed along the fluctuation curve P = V ′(X)/T until
X = Xs ; starting at the P = 0 point and then following the relaxation line P = 0.
The action is accumulated only along the fluctuation part of the optimal escape
trajectory and is given by the shaded area in Fig. 4.1(b). In complete analogy with
Eq. (4.21) one finds that the escape rate is proportional to the Boltzmann factor
∝ exp{−(V (Xs)−V (0))/T }. We shall evaluate the corresponding pre-exponential
factor in Section 4.8.

Let us discuss now an overdamped particle in a harmonic potential subject to
a multiplicative noise (in the Ito sense), proportional to a certain positive power
of |X |:

Ẋ = −κX + |X |νξ(t), (4.22)

where the Gaussian white noise ξ(t) is specified by Eq. (4.8). The question is
whether the particle sticks to the bottom of the well and does not ever leave it,
because the noise near the bottom is too weak. The corresponding Hamiltonian
reads as H(P, X) = −κP X + P2|X |2ν and its phase portrait for the case ν > 1/2
is plotted in Fig. 4.2. Again the relative weight of reaching a point X0 
= 0 is
given by an exponentiated (negative) area enclosed by the curves of zero energy,
i.e. exp{−κX2−2ν

0 /(2 − 2ν)} for ν < 1. On the other hand, for ν ≥ 1 the corre-
sponding area diverges, nullifying the long-time probability of finding the particle
away from X0 = 0. As a result, for ν ≥ 1 the particle eventually sticks to the
bottom and the only steady state distribution is δ(X0).

The message of this section is that the stationary path dynamics of dissipative
stochastic models may be described by the effective Hamiltonian system. The role
of momentum is played by the auxiliary MSR variable (times i), which is nothing

X0

X

P0

Fig. 4.2 Zero energy lines of the Fokker–Planck Hamiltonian corresponding to
Eq. (4.22): P = 0, X = 0 and P = κ/X2ν−1 with ν > 1/2. The action (i.e. the
shaded area) diverges for ν ≥ 1.
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but the classical limit of the Keldysh “quantum” component. A lot of insight in
the behavior of the corresponding stochastic model may be gained by an inspec-
tion of the phase portrait of the corresponding Hamiltonian. The action (4.20) was
written above only for stationary trajectories (i.e. satisfying the equations of motion
(4.18)). However, it may be equally well extended to any trajectory X (t) and P(t)
and used as a weight in the functional integral, much as the action (4.13) or (4.16).
The only thing to remember is that the D[P(t)] = ∏

j dPj integrations run along
the imaginary axis. Notice that quantities such as the escape rate are determined
by the optimal trajectories with some non-zero Xq(t). This means in turn that such
trajectories are different along the forward and backward branches of the time con-
tour. The latter is a consequence of the time-reversal invariance being broken by
the integration over the bath with a continuous spectrum.

4.5 Fokker–Planck equation

The consideration of the previous section closely resembles the WKB approxima-
tion in quantum mechanics. One may take one step forward towards the analogy
between the theory of classical stochastic models and quantum mechanics and
look for a corresponding “Schrödinger” equation. The latter is derived through
the transfer-matrix treatment of the Feynman path integral [32]. To this end one
integrates over trajectories which at time t = t j arrive at the point X = X j with an
arbitrary momentum (i.e. arbitrary Xq). From the definition (4.9) it is clear that the
corresponding restricted partition function P(X, t) = Z |X (t)=X is proportional to
the probability (not the amplitude!) of finding the system at the point X at time t .
The fact that P(X, t) is real follows immediately from the form of the action (4.12)
and the symmetry Xq → −Xq, while Z → Z∗. In other words, the Keldysh
contour provides the product of an amplitude (forward branch) and its complex
conjugate (backward branch), resulting in the probability.

We shall formally derive the equation for P(X, t) below. The result, however,
may be anticipated from the Hamiltonian formulation, Eqs. (4.19), (4.20) and
analogy with quantum mechanics. The latter states that the required equation has
the form ∂tP = ĤP . Here the Hamiltonian operator Ĥ is obtained from the
normally ordered classical Hamiltonian H(P, X) by the substitution of P → P̂ ,
which satisfies the canonical commutation relation [X, P̂] = 1 (in our case P runs
along the imaginary axis), i.e. P̂ = −∂X . Using Eq. (4.19) for the Hamiltonian,
one obtains

∂tP(X, t) = −∂X

[
A(X)P(X, t)− ∂X

[
D(X)P(X, t)

]]
. (4.23)

This is the Fokker–Planck equation [41] for the evolution of the probability distri-
bution function of the stochastic system (4.7). The normal ordering of the action
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(4.13) is crucial to employing the quantum mechanical analogy. Therefore this
form of the Fokker–Planck equation is specific to the Ito regularization.

The Fokker–Planck equation has the structure of the continuity relation ∂tP +
∂X J = 0, where the probability current is J = AP − ∂X [DP]. This fact is respon-
sible for the conservation of probability ∂t

∫
dXP = 0. On the classical level it

may be traced back to the observation that H(P, X) ∼ P , i.e. there are no terms
with the zero power of momentum P in the Hamiltonian. Therefore the property
of the Hamiltonian

H(0, X) = 0 (4.24)

is crucial to the conservation of probability. On the other hand, this relation along
with expression (4.20) for the action are completely equivalent to the basic Keldysh
symmetry S[X, 0] = 0, Eq. (2.53) (recall that P ∼ Xq), the latter follows from the
quantum unitarity.

In the case of the additive noise D(X)= T the Fokker–Planck Hamiltonian
(4.19) may be transformed into the conventional Schrödinger form. This is
achieved by the canonical transformation x = X and p̂ = P̂−V ′(X)/(2T ), which
preserves the commutation relation [x, p̂] = 1 and thus p̂ = −∂x . With these
new variables the Fokker–Planck equation acquires the form of the imaginary-time
Schrödinger equation ∂t P̃(x, t) = ĥ( p̂, x)P̃(x, t), where

ĥ( p̂, x) = T p̂ 2 + W (x) ; W (x) = −[V ′(x)]2/(4T )+ V ′′(x)/2, (4.25)

while the “wave function” transforms as P̃(x, t) = eV (x)/(2T )P(x, t). As briefly
mentioned below, the effective potential W (x) has some remarkable properties,
which originate from the fact that the initial Hamiltonian (4.19) satisfies the
normalization identity (4.24).

We turn now to the transfer matrix derivation of the Fokker–Planck equation
(4.23). Consider P(X j−1, t j−1), which is obtained from Eq. (4.12) by integration
over all Xi with i = 1, . . . , j − 2 and all Xq

i with i = 1, . . . , j − 1. Notice that the
Xq integration runs one step ahead of the X integration. To find P = P(X, t) =
P(X j , t j ) one needs to perform two more integrations over dX j−1dXq

j with the
weight specified by Eq. (4.12):

P=
∫

dX j−1dXq
j e−2i Xq

j

(
X j−X j−1−δt A(X j−1)

)
−4δt (X

q
j )

2 D(X j−1)P(X j−1, t j−1). (4.26)

We now rename the integration variables as Xq
j = Xq and X j−1 = X j − δX and

expand the exponent to second order in the small fluctuations δX and Xq. This leads
to the already familiar Keldysh structure
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exp

{
−(δX , Xq)

(
0 i
i 4δt D

)(
δX

Xq

)}
. (4.27)

From here one concludes that as δt → 0 the fluctuations scale as Xq ∼ δ
−1/2
t

and δX ∼ δ
1/2
t . We then approximate A(X j−1) ≈ A − δX A′, while D(X j−1) ≈

D − δX D′ + δ2
X D′′/2 and P(X j−1, t j−1) ≈ P − δXP ′ + δ2

XP ′′/2 − ∂tPδt , where
A = A(X j ), D = D(X j ) and P = P(X j , t j ) and primes denote derivatives with
respect to X j . Expanding the exponent up to second order in terms δX ∼ δ

1/2
t and

up to first order in terms δ2
X ∼ δt , we find

∂tP= −(A′P + AP ′)2i〈δX Xq〉 − (D′′P + 2D′P ′)2〈δ2
X (X

q)2〉 + P ′′ 〈δ2
X 〉

2δt
,

where the angular brackets stand for averaging with the Gaussian weight (4.27)
and we took into account that, as always, 〈(Xq)2〉 = 0 and also 〈δX (Xq)3〉 =
〈δ2

X (X
q)4〉 = 0. The remaining non-zero averages are given by 〈δX Xq〉 = −i/2,

〈δ2
X (X

q)2〉 = −1/2 and 〈δ2
X 〉 = 2δt D. As a result one obtains the Fokker–Planck

equation (4.23), as expected.
The derivation may be straightforwardly extended to the multivariable Ito–

Langevin process (4.14), yielding

∂tP(X, t) = −∂α
[

Aα(X)P(X, t)− ∂β
[
Dαβ(X)P(X, t)

]]
, (4.28)

where ∂α = ∂Xα
and summation over repeated indices is understood. Again the

equation has the structure of the continuity relation ∂tP + divJ = 0, where the
probability current vector Jα = AαP − ∂β[Dαβ(X)P] consists of the drift part and
the diffusive part.

For a particular case where the drift is provided by a potential force, i.e.
Aα(X) = −∂αV (X) and the noise is isotropic and additive, i.e. Dαβ = δαβT ,
one may look for a stationary solution of Eq. (4.28) by demanding that the current
vector is zero: ∂αVP = −T ∂αP . Solving this first order equation, one finds

P(X) = Z−1 e−V (X)/T , (4.29)

which is a proper stationary probability distribution as long as it can be normal-
ized. This means the normalization constant, also known as the partition function,
Z = ∫ ∏

α dXα e−V (X)/T exists.2 This is, of course, the Boltzmann distribution,
which we have already found with exponential accuracy using the optimal path
method, see Eq. (4.21). Here we have proved that the pre-exponential factor is
an X -independent constant. Notice that if the drift force is not a potential one,

2 Here Z is not the Keldysh “partition function” normalized to one, but a usual equilibrium statistical mechanics
partition function.
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the stationary distribution (if it exists) implies, in general, a non-zero divergence-
less current, divJ = 0, whereas Jα 
= 0. The distribution (4.29) is thus not
applicable.

The fact that the Fokker–Planck equation has a stationary solution (for the class
of normalizable potentials) may be formulated as the presence of a zero eigenvalue
of the corresponding Hamiltonian operator Ĥ(P̂, X). Equation (4.29) provides
the corresponding eigenfunction, or zero mode. In the transformed Schrödinger
variables (4.25) the presence of the zero mode follows from the supersymmetric
nature of the effective potential W (x) [42, 43].

If there is an inertia term Ẍ in the Langevin equation (4.5), one needs to con-
sider particle momentum as just another coordinate X1 = X and X2 = Ẋ = K .
Employing that A1(K ) = K , A2(X, K ) = −γ K − V ′(X) and D22 = γ T is the
only non-zero component of Dαβ , one may rewrite Eq. (4.28) for the probability
distribution function P = P(X, K , t) as

∂tP + K∂XP − V ′(X)∂KP = γ ∂K (KP + T ∂KP) . (4.30)

The left hand side, called the kinetic term, may be written as ∂tP −
{

E,P
}
, where

the classical Hamiltonian function is E(K , X) = K 2/2+ V (X) and we used stan-
dard Poisson brackets. It describes evolution of the distribution function due to the
drift of position in the presence of the velocity K = vK = ∂K (K 2/2) and the drift
of momentum in the presence of the force −∂X V (X). The right hand side, also
known as the collision term, originates from the interaction with the thermal bath.
It describes random diffusion in the momentum space superimposed on the drift
towards K = 0 in the effective “potential” K 2/2. The latter is responsible for the
particle losing energy and cooling down, if the temperature T is too low.

One may look for a stationary solution of the Fokker–Planck equation (4.30)
which separately nullifies the kinetic and the collision terms. From the latter
condition one finds that P(X, K ) = P(X) e−K 2/2T . Substituting it into the kinetic
term, one finally finds for the corresponding zero mode

P(X, K ) = Z−1 e−V (X)/T e−K 2/2T = Z−1 e−E(K ,X)/T , (4.31)

where the normalization constant Z , i.e. the partition function, is given by
Z = ∫

dXdK e−V (X)/T e−K 2/2T . This is the Maxwell–Boltzmann distribution for
the particle’s potential and kinetic energy in thermal equilibrium.

If the system is out of equilibrium, but all characteristic time scales are much
longer than the relaxation time γ−1, one may look for a solution of the Fokker–
Planck equation (4.30) in the form

P(X, K , t) = (2πT )−1/2 e−K 2/2T
[
P(X, t)+ KN (X, t)

]
,
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where the exponential factor is chosen to nullify the right hand side of Eq. (4.30)
and thus to compensate for the large factor γ . We now substitute this trial solution
in Eq. (4.30) and (i) integrate over K ; (ii) multiply by K and then integrate over
K . This way we obtain two coupled equations

∂tP + T ∂XN = 0 ; T ∂XP + V ′(X)P = −γ TN ,

where in the second equation we neglected the term T ∂tN as being much smaller
than its right hand side. Substituting N from the second equation into the first one,
one finds a closed equation for P(X, t):

γ ∂tP = ∂X

[
V ′(X)P + T ∂XP

]
. (4.32)

This is, of course, the already familiar overdamped Fokker–Planck equation (4.23).
The fact that the diffusion coefficient in the coordinate space is D = T/γ is
known as the Einstein relation. Notice that the diffusion coefficient in momentum
space, according to Eq. (4.30), is DK = γ T . Both of these facts are manifestations
of FDT.

Since we are dealing with a classical particle, there is no problem in exactly
specifying its coordinate X and momentum K simultaneously. This should be
contrasted with the fictitious momentum P = 2iXq, introduced in Section 4.4. The
latter is conjugated to the coordinate X in the sense of the functional integral. It
obeys thus the uncertainty principle �X�P ≥ 1 even in a purely classical setting.
One may still discuss trajectories in the phase space (P, X) in the semiclassical
(i.e. weak fluctuations, or low temperature) approximation. If the inertia and thus
the physical momentum K are taken into account, the semiclassical phase space is
four-dimensional: (P, P2, X, K ), where P2 is conjugate to K = X2.

4.6 Ito vs. Stratonovich

Although Ito regularization of stochastic processes, discussed in Section 4.3, is
the most convenient for the field-theoretical representation, one must be aware
that there are other regularizations. The one frequently found in physics litera-
ture is known as Stratonovich regularization. It appears upon changing variables in
stochastic evolution equations. Consider, for example, the Langevin equation (4.7),
(4.8) with the additive noise, i.e. b = 1. The corresponding Fokker–Planck equa-
tion for the probability distribution function P(X, t) is given by Eq. (4.23) with
D = b2 = 1,

Ẋ = A(X)+ ξ(t) ; ∂tP = −∂X
[
AP − ∂XP

]
. (4.33)
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Suppose now we want to change the coordinate X (t) to another coordinate Y (t),
such that

X = f (Y ), (4.34)

where f is a monotonic function which provides a one-to-one correspondence
between X and Y . We shall assume thus that f ′(Y ) = dX/dY > 0, for
convenience. Substituting it in the Langevin equation (4.33), one notices that the
corresponding stochastic equation for the new variable Y (t) formally acquires the
multiplicative form

Ẏ = Ã(Y )+ b̃(Y ) ξ(t), (4.35)

where b̃(Y ) = 1/ f ′(Y ) and Ã(Y ) = A( f (Y ))/ f ′(Y ).
Naively one may think that the corresponding Fokker–Planck equation is given

by Eq. (4.23) with D(Y ) = b̃ 2(Y ) = [1/ f ′(Y )]2. Let us, however, perform
the change of variables (4.34) directly in the Fokker–Planck equation (4.33). To
maintain normalization of the probability distribution function one has to demand
that P̃(Y, t) dY = P(X, t) dX and thus the proper distribution of the Y variable is
P̃(Y, t) = P( f (Y ), t) f ′(Y ). Notice also that ∂X = (1/ f ′(Y )) ∂Y . As a result the
Fokker–Planck equation (4.33) transforms into

∂t P̃(Y, t) = −∂Y

[
Ã(Y ) P̃(Y, t)− b̃(Y ) ∂Y

[
b̃(Y )P̃(Y, t)

]]
. (4.36)

As before b̃(Y ) = 1/ f ′(Y ). While the drift current is what we expect from
the Langevin equation (4.35), the diffusive current is different from that in the
Ito–Fokker–Planck equation (4.23). The latter has the form ∂Y [b̃2P̃].

The reason for this difference is that the multiplicative noise in Eq. (4.35)
does not have the Ito retarded regularization. Indeed, the discrete form of the
Langevin equation (4.33) is X j − X j−1 = δt A(X j−1) + δtξ j−1. Upon the
change of variables given by Eq. (4.34) the left hand side takes the form
f (Y j )− f (Y j−1)= f (Ȳ + δY /2) − f (Ȳ − δY /2) = f ′(Ȳ )(Y j − Y j−1) + O(δ3

Y ),
where δY = Y j − Y j−1 and Ȳ = (Y j + Y j−1)/2. As a result the discrete version of
the Langevin equation (4.35) is

Y j − Y j−1 = δt b̃

(
Y j + Y j−1

2

)
A(Y j−1)+ δt b̃

(
Y j + Y j−1

2

)
ξ j−1. (4.37)

The first term on the right hand side is already ∼ δt and therefore may be
substituted by δt Ã j−1 = δt b̃(Y j−1)A(Y j−1). This is not so with the second term:

since ξ j ∼ δ
−1/2
t (indeed the corresponding statistical weight is e−δt ξ

2
j /4), one

finds δtξ j−1 ∼ δ
1/2
t . Therefore it is important to keep the argument of the noise
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modulation function as b̃
(
(Y j + Y j−1)/2

)
. This is different from the Ito retarded

regularization, which assumes b̃(Y j−1) instead. The symmetric regularization of
the multiplicative noise as in Eq. (4.37) is known as Stratonovich regularization.
It leads to the different form of the diffusion term in the Fokker–Planck equation
(4.36).

One may formally bring the Stratonovich diffusion term to the Ito form, by
the expense of adding (∂Y b̃) b̃ P̃ to the drift term. All the considerations may
be straightforwardly generalized to an arbitrary dimension M . As a result the
Stratonovich–Langevin equation Ẋ = A(S) + bξ is equivalent to the Ito–Langevin
one Ẋ = A(I) + bξ with

A(I)
α (X) = A(S)

α (X)+
M∑

β,γ=1

[
∂βbαγ (X)

]
bβγ (X). (4.38)

The Ito process may be then used for the field-theoretical treatment via the MSR
procedure of Section 4.3.

4.7 Noise with a finite correlation time

Another context where the Stratonovich interpretation appears naturally is
stochastic systems with noise which has a short, but finite correlation time τ .
Consider Gaussian “colored” noise with the correlation function

〈η(t)η(t ′)〉 = 1

τ
e−|t−t ′|/τ , (4.39)

known also as the Ornstein–Uhlenbeck process. The white noise (4.8) is obtained
in the limit τ → 0. Such a random function is a result of “filtering” of the white
noise force ξ(t), Eq. (4.8), with an overdamped harmonic oscillator (e.g. an RC
circuit), having the time constant τ . This means that η(t) satisfies

η̇ = 1

τ

[− η + ξ(t)
]
. (4.40)

Indeed, the solution of this equation is η(t) = 1
τ

∫ t dt1 ξ(t1) e(t1−t)/τ . Employing
Eq. (4.8) one readily establishes the correlation function (4.39).

One may consider the Ornstein–Uhlenbeck process (4.39), (4.40) as a random
force term in a multiplicative Langevin equation

Ẋ = A(X)+ b(X) η(t). (4.41)

Then in the limit τ � �−1 (but still τ � δt ), where � is a characteristic frequency
of the deterministic process Ẋ = A(X), the probability distribution function
P(X, t) obeys the Stratonovich–Fokker–Planck equation (4.36).
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To prove this statement let us consider the two evolutionary equations
(4.41) and (4.40) as a two-dimensional Langevin process (4.14). In this case
AX = A(X)+ b(X) η and Aη = −η/τ , while the noise ξ(t) is non-multiplicative
with the coupling constant bη,1 = 1/τ . Because the noise is non-multiplicative,
there is no need to specify the regularization. The Fokker–Planck equation for the
joint probability distribution P(X, η, t) acquires the form, cf. Eq. (4.28),

∂tP = −∂X
[
(A(X)+ b(X) η)P

]+ ∂η

[
1

τ
ηP + 1

τ 2
∂ηP

]
. (4.42)

In the absence of coupling, b = 0, the η-variable quickly equilibrates to a
symmetric Gaussian distribution ∼ e−η2τ/2. One can thus proceed in a way anal-
ogous to the one that led from Eq. (4.30) to Eq. (4.32). To this end we look for a
solution in the form P(X, η, t) ∼ e−η2τ/2

[
P(X, t)+ηN (X, t)

]
. Substituting it into

Eq. (4.42) and then (i) integrating over η and (ii) multiplying by η and then integrat-
ing over it, one obtains two equations ∂tP = −∂X [AP] − ∂X [bN ]/τ along with
N /τ = −∂X [bP], where in the last equation we have neglected ∂tN and ∂x [AN ],
as being much less than N /τ . Substituting the resulting N into the equation for P ,
one finds the Stratonovich–Fokker–Planck equation (4.36).

4.8 Kramers problem

We return now to the problem of activation escape of an overdamped particle
from a meta-stable potential minimum. It was briefly considered in Section 4.4
in the stationary path approximation. Here we address it employing the Ito–
Fokker–Planck equation (4.23). To modify the result for the Stratonovich stochastic
process, one can take advantage of the correspondence rule (4.38). The potential
V (X) is similar to the one plotted in Fig. 3.3a. Since the Boltzmann distribution
(4.29) with such a potential is not normalizable, there is no stationary solution (i.e.
zero mode) of the Fokker–Planck equation. One expects, however, that there is a
long-lived solution localized in the vicinity of the meta-stable minimum. We shall
look for such a solution in the form

P(X, t) = P(X) e−t/τes, (4.43)

where τes is the escape time, which is expected to be exponentially long. The
total probability is not conserved, because there is a probability current J towards
X =∞. Substituting this form into Eq. (4.23), one obtains the stationary Fokker–
Planck equation for P(X):

1

τes
P = ∂X

[− V ′P − ∂X [DP]] = ∂X J. (4.44)
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Since the escape rate 1/τes is expected to be exponentially small, so is ∂X J
everywhere, except near the narrow peak of the meta-stable distribution P(X)
around X = 0. As we show below, the latter has the characteristic width
l0=√D(0)/V ′′(0) � Xs, if D(0) is small enough (see Fig. 4.1(b)). Therefore
the current J out of the meta-stable state is practically a constant for |X | � l0.
Obviously the current is zero in the negative direction: J (−∞) = 0, while at large
positive X it approaches a constant value, which we denote J (∞). This observation
leads to the linear first order differential equation

−V ′(X)P(X)− ∂X [D(X)P(X)] = J (X), (4.45)

which may be easily solved to express P through J (X). The result is

P(X) = 1

D(X)
e−S(X)

∫ ∞

X
dY J (Y ) e S(Y ), (4.46)

where S satisfies S ′ = V ′/D, i.e.

S(X) =
∫ X

−∞
dY

V ′(Y )
D(Y )

. (4.47)

The upper limit of the Y -integration in Eq. (4.46) is basically arbitrary (with expo-
nential accuracy) as long as it is well to the right of the point Y = Xs. We put it
infinite for brevity. One can now integrate the stationary Fokker–Planck equation
(4.44) from minus infinity, where the current is zero, to plus infinity (in the same
sense as above), where the current is J (∞). This leads to

τes = 1

J (∞)

∫ ∞

−∞
dX P(X) =

∫ ∞

−∞
dX

D(X)
e−S(X)

∫ ∞

X
dY

J (Y )

J (∞)
e S(Y ). (4.48)

Notice that adding a constant to S does not change the result. This means that the
lower limit of integration in Eq. (4.47) is of no importance.

The X -integral is dominated by the vicinity of the potential minimum, i.e.
|X | � l0. On the other hand, the Y -integral is coming from the vicinity of the
maximum i.e. |X − Xs| � ls, where the characteristic width of the maximum is
ls = √

D(Xs)/|V ′′(Xs)| . If l0 + ls � Xs, which is the case for sufficiently small
D, one may extend the Y -integral to minus infinity and perform both integrals in
the stationary point approximation. The crucial observation is that under the same
condition J (Xs)/J (∞) = 1 with exponential accuracy. As a result one obtains for
the escape time, including the pre-exponential factor [44],

τes = 2π

D(0)

e�S

√
S ′′(0)|S ′′(Xs)| =

√
D(Xs)

D(0)

2π√
V ′′(0)|V ′′(Xs)| e�S, (4.49)
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where we took into account that S ′′ = (V ′/D)′ = V ′′/D, since V ′(0)= V ′(Xs)= 0,
and

�S = S(Xs)− S(0) =
∫ Xs

0
dX

V ′(X)
D(X)

. (4.50)

This is exactly the action along the zero energy trajectory P = V ′/D of
the Hamiltonian (4.19), introduced in Section 4.4. The Fokker–Planck equation
allowed us to determine the pre-exponential factor. In the case of non-multiplicative
noise D = T = const, the exponent is the Boltzmann one, (V (Xs) − V (0))/T ,
while the prefactor is temperature independent, 2π [V ′′(0)|V ′′(Xs)|]−1/2. This is
the celebrated Kramers result [45]. In the case where the inertia term may not be
neglected, the pre-exponential factor was evaluated in [46].

In a vicinity of the bifurcation point, a wide class of problems may be modeled
by the cubic potential (3.34) and the additive noise with variance D. According to
the Kramers formula the corresponding escape time is

τes = πa2

V0δ
e

4
27

V0δ
3

D . (4.51)

The scaling of the action with the bifurcation parameter δ is rather different from
both the pure tunneling exponent (3.36) and the dissipative tunneling exponent
(3.40).

4.9 Fluctuation relation

Consider an overdamped Langevin dynamics in a time-dependent potential

Ẋ = −∂X V (X, t)+√T ξ(t), (4.52)

where the white noise is normalized according to Eq. (4.8). The time dependence
of the potential is limited to a time window ti < t < tf. Moreover, we shall
assume that initially at t = ti the system is in equilibrium with a bath maintained
at temperature T . During the time interval [ti, tf] the potential is changing by the
action of an external device. Such a device (e.g. a piston) is performing a work W
on the system, which may be written as

W [X ] =
∫ tf

ti

dt ∂t V (X (t), t). (4.53)

The work is a functional of the stochastic trajectory X (t), which the system follows
upon a given realization of the random noise ξ(t). As a result, the work W is itself a
random quantity, dependent on the noise. One may ask about statistics of the work,
for example the work distribution function P(W ). This question probably can’t be



4.9 Fluctuation relation 63

answered for an arbitrary potential. There is, however, a particular function of the
work, e−W/T , whose average value may be found in a very general form [47, 48].

Employing the MSR method of Section 4.3, one finds for the corresponding
average value, cf. Eq. (4.12),〈

e−W/T
〉 = ∫

D[X, Xq] e
∫
dt
[
−2i Xq

(
Ẋ+∂X V (X,t)

)
−4T (Xq)2

]
e−W [X ]/T

=
∫

D[X, Xq] e
∫
dt
[
−2i Xq

(
Ẋ+∂X V (X,t)

)
−4T (Xq)2− 1

T ∂t V (X,t)
]
. (4.54)

Let us first analyze this expression within the stationary path approximation.
Following the procedure of Section 4.4, it is convenient to rename the auxil-
iary variable as Xq = P/(2i). The action acquires the Hamiltonian form (4.20),
where

H(P, X, t) = −P ∂X V (X, t)+ T P2 − 1

T
∂t V (X, t). (4.55)

Notice that this Hamiltonian does not satisfy the probability conservation condition
(4.24), because it includes the specific observable−W/T . Since the Hamiltonian is
explicitly time dependent, the energy is not conserved and solution of the stationary
path equations

Ẋ = ∂H

∂P
= −∂X V + 2T P , Ṗ = −∂H

∂X
= P ∂2

X V + 1

T
∂X∂t V (4.56)

is not immediately obvious. Remarkably, the activation trajectory of the time-
independent problem, i.e. the time-reversed path of the noiseless relaxation
Ẋ =+ ∂X V and P = ∂X V/T still solves the equations of motion. This fact may
be checked by direct substitution of this solution into the equations (4.56).3 Notice
that to have such a solution it is crucial to average e−ηW with η = 1/T . It would
not work for any other η. The action along this trajectory is given by

3 This solution may be traced back to the existence of the canonical transformation (P, X, H)→ (p, x, h), with
the generating function [34] � = �(x, P, t) = −x P + V (x, t)/T . Then the following relations hold:

X = − ∂�

∂P
= x , p = − ∂�

∂x
= P − 1

T
∂x V (x, t).

The transformed Hamiltonian is

h = H + ∂�

∂t
= −

(
p + 1

T
∂x V (x, t)

)
∂x V (x, t)+ T

(
p + 1

T
∂x V (x, t)

)2

− 1

T
∂t V (x, t)+ 1

T
∂t V (X, t) = p ∂x V (x, t)+ T p2.

It is conserved (despite being time dependent), h = 0, along the following obvious solution of the equations
of motion: p = 0, while ẋ = ∂x V . Being transformed back to the original variables, it yields the required
solution.
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iS=−
∫

dt [P Ẋ − H ]=− 1

T

∫
dt [∂X V Ẋ + ∂t V ]=− 1

T

∫
dV = Vi − Vf

T
,

where Vi/f = V (X i/f, ti/f) and eiS gives the relative weight of a particle moving
from X i to X f under the action of the time-dependent potential. Since at t = ti
the system is assumed to be in thermal equilibrium, the initial coordinate is to be
weighted with the Boltzmann distribution e−Vi/T /Z(ti). On the other hand, there is
no control over the final coordinate X f and therefore it should be integrated over
with the plane measure, resulting in Z(tf). One thus obtains

〈
e−W/T

〉 = e−Vi/T

Z(ti)

∫
dX f e(Vi−Vf)/T = Z(tf)

Z(ti)
= e−(F(tf)−F(ti))/T , (4.57)

where Z(ti/f) =
∫

dXe−V (X,ti/f)/T ≡ e−F(ti/f)/T are the equilibrium partition func-
tions in the potentials V (X, ti) and V (X, tf), respectively. Therefore this particular
average value of the non-equilibrium work may be expressed through the equi-
librium free energies of the system allowed to equilibrate in the initial and final
potential configurations. This remarkable statement is known as the Jarzynski fluc-
tuation relation [47, 48]. As a matter of principle, it allows one to measure the
equilibrium free energy of the final state, without waiting for the system to equili-
brate. To this end one has to accumulate statistics of the work performed to bring
the system into final (yet non-equilibrium) states, and average e−W/T .

So far we have derived the fluctuation relation in the stationary path approx-
imation. Let us show now that Eq. (4.57) is actually exact, i.e. there is no
pre-exponential factor on its right hand side. To this end we need to derive the
Fokker–Planck equation corresponding to the functional integral (4.54) [49]. As
explained in Section 4.5 the “quantization” procedure is ∂tP(X, t) = ĤP(X, t),
where Ĥ is obtained from Eq. (4.55) by the substitution P →−∂X :

∂tP = ∂X [∂X V P] + T ∂2
XP −

1

T
∂t V P. (4.58)

The initial condition is P(X, ti) = e−V (X,ti)/T /Z(ti). Motivated by the station-
ary path result, we look for the solution of this equation in the following form:
P(X, t) = e−V (X,t)/T /Z(ti). It is easy to check that it is indeed the solution,
satisfying the initial condition. Notice that having the coefficient 1/T in the last
term (the observable) is vital to find such a simple solution. By construction of the
functional integral (4.54),

〈
e−W/T

〉 = ∫
dXP(X, tf), leading directly to Eq. (4.57).

This proves that the fluctuation relation (4.57) is not restricted to the stationary path
approximation, but is actually exact.
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4.10 Reaction models

Another important class of classical stochastic models is provided by reaction
systems. These models are formulated in terms of reaction rules which are followed
by certain agents. The latter are typically denoted as A, B, etc. and can be
atoms, molecules, viruses, organisms, etc. An example of such a reaction rule is

A + A
λ→ B, which states that two agents A may coagulate to form an agent B.

A probability for this to happen per unit time (in other words, a reaction rate) is
denoted as λ. One would like to have a description which would be able to predict
an outcome of many such reactions, provided some initial conditions are specified.
It is clear that such a description has to be probabilistic, since there is no way to say
with absolute certainty how many and what reactions will happen in a long time
span. The other important thing to remember is that the number of agents at any
time is always an integer. Therefore a state of the system may be characterized by a
time-dependent probability P(n,m, . . . , t) of finding n agents A, m agents B, etc.
at time t , where n,m, . . . are integers. Such a probability is normalized as∑

n,m,...

P(n,m, . . . , t) = 1. (4.59)

For any given set of reaction rules one may formulate an evolution equation, also
known as a Master equation, for probabilities P(n,m, . . . , t). For example, for a
single species reaction model, the Master equation is

∂tP(n, t) =
∑

n′

[
Wn′→nP(n′, t)− Wn→n′P(n, t)

]
, (4.60)

where Wn→n′ is the rate of going from a state with n agents to a state with n′

ones. The first term on the right hand side is the rate of in processes, i.e. those
which lead into the state n from any other state, while the second term is the
rate of out processes, i.e. those which lead out of the state n into any other state.

If, for example, the reaction rules are A + A
λ→ ∅, A

μ→ ∅ and A
σ→ 2A, the

corresponding rates are

Wn→n′ = λ δn′,n−2 n(n − 1)/2+ μδn′,n−1 n + σ δn′,n+1 n, (4.61)

where n(n − 1)/2 is the number of pairs which can enter the coagulation reaction,
and n is the number of agents amenable to annihilation or branching.

Reaction models may have a stationary state, that is a time-independent solution
of the Master equation P(n). If, in such a stationary state, every term on the right
hand side of Eq. (4.60) (i.e. for any integer n′) is zero: Wn′→nP(n′) = Wn→n′P(n),
it is said that the reaction scheme satisfies the detailed balance condition. If there
are no reactions creating agents out of the empty state ∅, in many cases the only
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stationary solution is the complete extinction P(n) = δn,0. In this case the detailed
balance condition is clearly absent.

The Master equation (4.60) may be written as a differential equation. To this end
let us formally extend the integer variable n onto the entire real axis. The “in” term
of the Master equation includes the shift operation of the function Wn→n+rP(n, t),
where r is an integer, on r units to bring it to the form Wn−r→nP(n − r, t). Such
a shift operation may be written as e−r∂n .4 As a result the Master equation (4.60)
acquires the form

∂tP(n, t) =
∑

r

[
e−r∂n − 1

]
Wn→n+rP(n, t). (4.62)

It may be thus written as ∂tP = Ĥ( p̂, n)P , where the “momentum” operator
stands for p̂ = −∂n and the reaction Hamiltonian is given by [50]

H(p, n) =
∑

r

[
er p − 1

]
Wn→n+r . (4.63)

The reaction Hamiltonian is normally ordered, meaning that all p̂ operators stay
on the left of the n-dependent functions. It also satisfies the identity (4.24),
H(0, n)= 0, which is necessary to maintain the conservation of probability (4.59).
This way of writing the Master equation brings it into the same category as
the Ito–Fokker–Planck equation. The only difference is that the latter has only
terms of the first and second power of the p̂-operator. For some problems one
may expand the exponent in Eq. (4.63) up to second power in r p, reducing the
Master equation to the Fokker–Planck equation (4.23). In this case the drift term is
A(n) = ∑

r r Wn→n+r while the diffusion coefficient D(n) = ∑
r r2Wn→n+r/2.

Other problems do not allow for such an expansion, nevertheless all the tools
developed for the treatment of the Ito–Fokker–Planck dynamics may be directly
transferred to the reaction models.

In particular, solution of the Master equation may be formally written through
the evolution operator acting on an initial distribution function P(n, t) =∫

dni Û(n, t; ni, ti)P(ni, ti). The evolution operator Û may be represented by the
Hamiltonian path integral, see Eq. (4.12),

Û(n, t; ni, ti) =
∫

D[n, p] e−
∫

dt[pṅ−H(p,n)], (4.64)

where, as explained at the end of Section 4.4, the D[p] integration runs along the
imaginary axis. The trajectories satisfy n(ti) = ni and n(t) = n. We shall first
analyze this expression in the stationary path approximation. The corresponding

4 Indeed, e−r∂n f (n) = f (n)− r f ′(n)+ r2 f ′′(n)/2− · · · = f (n − r).
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Fig. 4.3 Phase portraits of the reaction Hamiltonians: (a) the one with the reac-
tion rates (4.61); (b) the universal Hamiltonian (4.68) close to the bifurcation
point. Bold lines are curves of zero energy, M is the meta-stable point and E the
extinction fixed point.

equations of motion are the Hamilton equations ṅ = ∂p H and ṗ = −∂n H . Since
they conserve the energy H , one may visualize the solutions by plotting curves of
constant energy on the phase plane (p, n), Fig. 4.3(a). As discussed in Section 4.4,
the long-time behavior is described by the curves of zero energy H = 0. Due
to the conservation of probability (4.59) one such line is always p = 0. The
corresponding stationary path equation is nothing but the rate equation

ṅ = ∂p H(p, n)
∣∣

p=0 =
∑

r

r Wn→n+r = A(n). (4.65)

It provides the mean-field description, which disregards fluctuations and discrete-
ness of the agents. For the reaction scheme of Eq. (4.61) it predicts the stable fixed
point at n = n̄ ≈ (σ −μ)/λ and the unstable fixed point at n = 0. According to the
rate equation (4.65) the population stabilizes at n ≈ n̄. This is indeed the case at the
intermediate time scale (provided n̄ � 1). However, in the long-time limit the only
stationary solution of the corresponding Master equation is the extinct state. In the
stationary path approximation this fact is reflected in the presence of the n = 0
line of constant zero energy, which is thus the invariant line of the Hamiltonian
dynamics. This is always the case if n = 0 is the absorbing state, i.e. W0→n′ = 0.
As a result all Wn→n′ ∼ n and therefore H(p, 0) = 0.

For a scheme exemplified by Eq. (4.61) one finds, with the help of Eq. (4.63),
the following reaction Hamiltonian:

H(p, n) = λ

2
(e−2p − 1)n(n − 1)+ μ(e−p − 1)n + σ(ep − 1)n. (4.66)

Its inspection shows that in addition to p = 0 and n = 0, there is the third curve
of zero energy p = pa(n), which we call the activation trajectory, see Fig. 4.3(a).
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The activation trajectory intersects the rate equation line p = 0 in the meta-stable
fixed point M = (0, n̄). It also intersects the extinction line n = 0 in the extinction
fixed point E = ( p̄, 0). The large fluctuation, leading to the population extinction,
starts at the meta-stable state M and proceeds along the activation trajectory pa(n)
until the extinction fixed point E . The rate of such events is ∼ e−Sex , where the
extinction action is given by (hereafter we absorb the factor −i into the action, cf.
Eq. (4.20))

Sex =
∫

dt[pṅ − H(p, n)] =
∫ 0

n̄
pa(n) dn. (4.67)

Here we took into account that H = 0 along the activation trajectory. The extinc-
tion time is thus proportional to the exponentiated area of the shaded triangle in
Fig. 4.3(a) [50, 51].

If the two fixed points of the rate equation n = n̄ and n = 0 are relatively close
to each other, the problem may be substantially simplified. For our example (4.61),
(4.66) this is the case when 0 < σ −μ� σ . One may then disregard the curvature
of the activation trajectory between the fixed points M and E and substitute it by a
straight line. This leads to the universal reaction Hamiltonian of the form

H(p, n) = p
(
δ − n

N
+ p

)
n. (4.68)

Its three zero-energy lines form the right triangle, Fig. 4.3(b). In terms of our
example (4.61) we put μ + σ = 1, which fixes units of time, and introduced
notations δ = (σ − μ)/(σ + μ) � 1 for the so-called bifurcation parameter and
N = (σ + μ)/λ � 1 for the effective system size. A large class of models in
the vicinity of the bifurcation point may be described by this Hamiltonian. The
activation trajectory is given by pa(n) = n/N − δ and therefore the extinction
action (4.67) is Sex = Nδ2/2.

Substituting p → −∂n and keeping the normal ordering in Eq. (4.68), one
obtains the universal limit of the Master equation for P(n, t). Its only true
stationary solution is the extinct state P(n) = δn,0. There is, however, a long-
lived meta-stable solution, which we shall look for in the form P(n) e−t/τex . With
the help of the Master equation with the universal Hamiltonian (4.68), one finds
P/τex = ∂n

[
(−pa(n)− ∂n)nP

] = ∂n J . Since the extinction time τex is expected to
be exponentially long, the probability current J (n) is practically a constant away
from the narrow peak of the meta-stable distribution around n̄ = Nδ � 1. This
constant current is obviously zero for n � n̄ and is finite, J (0), in the direction
of the absorbing boundary at n = 0. Integrating the expression for the current,
one finds nP(n) = −e−S(n)

∫ n
0 dl J (l) eS(l), where S(n) = ∫ n pa(n)dn and we

demanded that nP n→0→ 0. Integrating the equality P = τex∂n J over the entire
range of n, one finds
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τex = − 1

J (0)

∫ ∞

0
dn P(n) =

∫ ∞

0

dn

n
e−S(n)

∫ n

0
dl

J (l)

J (0)
eS(l). (4.69)

The dn integral is dominated by the minimum of the action S(n) i.e. by n ≈
Nδ= n̄. Under these conditions the dl integral is given by the boundary region
l ≈ 0, where J (l) ≈ J (0) with exponential precision. Evaluating the integrals in
the stationary/boundary point approximation, one finds

τex =
√

2π

S ′′(n̄)
1

n̄

e Sex

|S ′(0)| =
√

2π

p ′
a (n̄)

e Sex

n̄|pa(0)| =
√

2π

N

1

δ2
e Nδ2/2. (4.70)

The result is valid for N−1/2 < δ � 1. Notice that scaling of the action and the
pre-exponential factor with the bifurcation parameter δ is very different from the
Kramers activation (4.51). This result, along with pre-exponential factors in more
general situations, were found in [52, 53, 54].

4.11 Time-dependent problems

Imagine that the particle’s potential or reaction rates are modulated in time. In
Sections 3.4 and 3.5 we discussed how such a modulation affects the quantum
tunneling. Here we consider its influence on the activation escape time, or the
extinction time. In the language of optimal paths these rare events correspond to
instanton trajectories, which bring the system from e.g. the meta-stable fixed point
M to the extinction fixed point E , see Fig. 4.3. In a time-independent setting, such
an instanton trajectory may be written n = n0(t − t0) and p = p0(t − t0), where
t0 is an arbitrary constant which specifies the time of the extinction event. The
action does not depend on t0 and it is therefore said to be a “zero mode”. If the
Hamiltonian is an explicit function of time, the independence of the action on t0 is
lifted. Indeed, there are more and less preferable instances of undertaking the fluc-
tuation which leads to the extinction. The probabilities of these fluctuations differ
exponentially and therefore are largely dominated by the “best chance” t0, when
the extinction is most likely to occur [55].

One can analytically access such an optimal t0 and the corresponding extinction
probability in some limiting cases. The first such case is a weak time-dependent
modulation of the system’s parameters. It leads to a time-dependent reaction (or
Fokker–Planck) Hamiltonian

H(p, n, t) = H0(p, n)+ εH1(p, n, t), (4.71)

where ε is a small parameter. According to the Melnikov theorem of classi-
cal mechanics [56, 57], the perturbed Hamiltonian still allows for the optimal
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trajectory. This is the case if ε is small enough and another condition, explained
below, is satisfied. Such a deformed optimal trajectory may be written as

n(t, t0) = n0(t − t0)+ εn1(t, t0) , p(t, t0) = p0(t − t0)+ εp1(t, t0). (4.72)

The corresponding action to first order in ε is given by the integral of

(p0 + εp1)(ṅ0 + εṅ1)− H0 − ∂n H0 εn1 − ∂p H0 εp1 − εH1 = p0ṅ0 − εH1,

where we employed that H0(n0, p0) = 0 along with the equations of motion
ṅ0= ∂p H0 and ṗ0 = −∂n H0. We have also disregarded the full time derivative
p0ṅ1 + ṗ0n1. The first term on the right hand side is the unperturbed action Sex.
Therefore to first order in ε the change of the action (4.20) is

S1(t0) = −ε
∫

dt H1
(

p0(t − t0), n0(t − t0), t
)
. (4.73)

To maximize the extinction (escape) probability ∼ e−(Sex+S1(t0)), one needs to find
minima of S1(t0) with respect to the center of the bare instanton t0. That is, find a
t0 such that ∂t0 S1(t0) = 0, while the second derivative is positive. This leads to the
condition ∫

dt
(
∂p H1 ṗ0 + ∂n H1 ṅ0

) = ∫
dt
{

H1, H0
} = 0, (4.74)

where { , } denotes classical Poisson brackets [34] and we again employed equa-
tions of motion ṅ0 = ∂p H0 and ṗ0 = −∂n H0. Existence of simple zeros of this
function is the condition of the Melnikov theorem [56, 55, 58].

As an example, consider H0 given by the universal extinction Hamiltonian
(4.68). Its bare instanton trajectory may be easily obtained by putting p = pa(n) =
n/N − δ in the Hamilton equation of motion ṅ = ∂p H(p, n) and integrating this
first order differential equation. The result is

n0(t − t0) = Nδ

1+ N e δ(t−t0)
, p0(t − t0) = − Nδ e δ(t−t0)

1+ N e δ(t−t0)
. (4.75)

For the time-dependent part we take a weak harmonic modulation of the bifurca-
tion parameter δ(t) = δ(1 + ε cos�t), leading to H1(p, n, t) = pnδ cos�t . The
resulting correction (4.73) to the action is

S1(t0) = εN 2δ3
∫

dt
e δ(t−t0) cos�t(
1+ N e δ(t−t0)

)2 =
ε πNδ�

sinhπ�/δ
cos

[
�(t0 + δ−1 ln N )

]
.

Once every period there is the “best chance” t0, rendering the last cosine to be
−1. For such optimal trajectories one finds the negative correction to the extinction
action
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S1 = −εSex
2π�/δ

sinh (π�/δ)
, (4.76)

where as before Sex = Nδ2/2. The modulation thus leads to the exponential
reduction of the extinction time (4.69) by the factor e−|S1|. The result is valid as
long as 1 < |S1| � Sex. In the limit � � δ the correction is −2εSex, which
may be immediately found as the minimizing adiabatic form of the extinction
action Sex = Nδ2(t)/2. At large frequency � > δ the linear correction decays
exponentially.5 This should be compared with the very different frequency depen-
dence for the underdamped, Eq. (3.32), and overdamped, Eq. (3.43), quantum
tunneling.

Another example where the optimal path may be explicitly constructed is
a sudden temporary change in the system’s parameters [60]. We call it a
“catastrophic” event. Consider, e.g., the reaction scheme (4.61) and assume that
during the time window −tc < t < tc the branching rate σ suddenly drops to zero.
There is a chance that, after it recovers back to its pre-catastrophic value at t = tc,
the population does not recover (provided it was not extinct at the time the catas-
trophe struck at t = −tc). Our goal is to evaluate the probability that the population
goes extinct during the catastrophe or in its immediate aftermath. The correspond-
ing optimal trajectory starts at the meta-stable fixed point M sometime before
the catastrophe arrives and ends up in the extinction fixed point E after it ends.
Therefore the initial and final pieces of the optimal path follow the zero energy
activation trajectory pa(n) of the pre-catastrophic Hamiltonian H0(p, n). During
the time window |t | < tc the Hamiltonian acquires a different form Hc(p, n), and
the optimal path follows one of its finite energy trajectories, Fig. 4.4. The latter
is selected in such a way that the time elapsed between its two intersections with
pa(n) is exactly 2tc.

To be specific, let us model the pre-catastrophic H0(p, n) by Eq. (4.68), while
during the catastrophe Hc(p, n) = −μpn. The latter corresponds to the pure anni-
hilation reaction A

μ→ ∅, where we took into account that |p| < δ � 1. Its
constant energy H trajectory pH (n) = −H/(μn) intersects the activation trajec-
tory pa(n) = n/N − δ in points n± = (1± ε)Nδ/2, where ε = √

1− 4H/μNδ2.
Since n(t) ∼ e−tμ along pH (n), the time elapsed between points n+ and n− is
found to be e−2tcμ = n−/n+ = (1 − ε)/(1 + ε). From here one finds the proper
energy to be H = μNδ2/4 cosh2(tcμ). The corresponding extinction action is
given by S(tc) =

∫
dt[pṅ − H ], where the first term is the area shaded in Fig. 4.4,

while the second one is −2tc H . Straightforward calculation yields

5 There is, however, the second order correction to the action ∼ −(εδ/�)2Sex, which decays only as a power
law of frequency [59]. The same type of correction is responsible for the Kapitsa pendulum effect. Therefore
at � � (δ/π) ln(1/ε) the linear correction (4.76) may be disregarded.
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Fig. 4.4 Optimal path to extinction facilitated by the catastrophe – bold line.
The dotted line is the activation trajectory of the pre-catastrophic Hamiltonian
pa(n). The dashed line is a finite energy trajectory of the Hamiltonian during the
catastrophe, pH(n). The switches between the two occur at t = ∓tc.

S(tc) = Sex
[
1− tanh(tcμ)

] = Nδ 2/(1+ e2tcμ). (4.77)

The extinction probability in the aftermath of the catastrophe is ∼ e−S(tc). It is of
order one if Nδ 2e−2tcμ ≈ 1. However, according to the rate equation ṅ = −μn,
by the time such a catastrophe ends n(2tc) = Nδ e−2tcμ ≈ 1/δ � 1, and one
could expect that the population is still in no immediate danger of extinction. The
message is that the population may be much less catastrophe-tolerant than a naive
expectation based on the rate equations.

4.12 Large deviations in multivariable systems

We discuss now applications of the optimal path approach of Section 4.4 for
systems with several degrees of freedom. The ideas touched here were introduced
in seminal works of Graham and Tél [61], Dykman and Smelyanskiy [62] and
Maier and Stein [63]. Consider, e.g. an overdamped stochastic system with two
degrees of freedom X1 and X2, i.e. Ẋα = Aα(X)+

√
T ξα(t), with the white noise

(4.15). Its Fokker–Planck Hamiltonian (4.19) is given by

H(P1, P2, X1, X2) = P1 A1(X)+ P2 A2(X)+ T P2
1 + T P2

2 . (4.78)

The corresponding noiseless motion is described by the zero-energy invariant plane
of this Hamiltonian P1 = P2 = 0, indeed Ẋα = Aα(X) = ∂Pα H

∣∣
P=0. Let us

assume for simplicity that such a noiseless dynamics admits a fixed point at X1 =
X2 = 0, i.e. it is in the origin of the four-dimensional phase space. Being the fixed
point means Aα(0) = 0. Linearizing noiseless equations of motion in the vicinity
of this point, one finds Ẋα = Aαβ Xβ , where Aαβ = ∂β Aα(X)

∣∣
X=0. The matrix Aαβ

may have either two real eigenvalues λ1,2, or two complex conjugated eigenvalues
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λ1,2 = κ ± iω. We consider the latter case and assume that κ < 0, i.e. the fixed
point X = 0 is a locally stable focus. This means that the noiseless relaxation tends
to bring the system to the fixed point along a spiral trajectory. In a near vicinity of
X = 0 the spirals may be characterized in terms of the two right eigenvectors of
Aαβ , which both belong to the (X1, X2) plane of the four-dimensional phase space
(analog of the P = 0 line in the one degree of freedom example of Fig. 4.1).

Thermal fluctuations take the system out of the fixed point and lead to a certain
probability of finding the system at X0 
= 0. As explained in Section 4.4, such a
probability is given by the exponentiated action of an activation trajectory, which
goes from the origin to a point of the phase space with the coordinates X0. In
case of the single degree of freedom there is only one possible trajectory which
departs from the fixed point: the curve of zero energy P = −A(X)/T , Fig. 4.1.
The situation is much more interesting now. Linearizing the Hamiltonian equations
of motion determined by Eq. (4.78) near the origin, one finds(

Ẋα

Ṗα

)
=
(

Aαβ 2T δαβ
0 −AT

αβ

)(
Xβ

Pβ

)
. (4.79)

This 4 × 4 matrix possesses four eigenvalues. Two of them are already familiar
eigenvalues of Aαβ denoted as λ1,2. The corresponding two right eigenvectors have
zero components in the P directions. They thus give rise to the relaxation trajec-
tories, which stay entirely within the invariant hyperplane P = 0. Two additional
eigenvalues λ3,4 = −λ1,2 have positive real parts and thus describe the activation
trajectories which depart from the fixed point. The corresponding right eigenvec-
tors have, in general, non-zero components in all four directions of the phase space.
All trajectories which depart from the fixed point along an arbitrary linear super-
position of these two eigenvectors form the two-dimensional Lagrangian manifold
of activation trajectories. The energy is still a conserved quantity and therefore all
the trajectories forming the Lagrangian manifold have the fixed energy, which is
zero (indeed, all these trajectories depart from the origin, which has zero energy).
The Lagrangian manifold is a generalization of the activation zero energy trajec-
tory of Fig. 4.1. Since for a non-potential force Aα the Lagrangian manifold is not
given by Pα(X) = −Aα(X)/T , 6 the activation trajectories are not time-reversed
counterparts of the relaxation ones.

6 Indeed, according to the Hamilton–Jacobi equation [34] the Lagrangian manifold is characterized by Pα(X) =
−∂αS(X), where S is the action along a trajectory leading to X . Therefore for Pα(X) = −Aα(X)/T to be true
one needs to have ∂2 A1 = ∂1 A2, which implies Aα = −∂αV (X), i.e. the force is potential (no vorticity). In the
language of the Fokker–Planck equation the condition Pα(X) = −Aα(X)/T means that in a stationary state
all components of the current vector are zero. Again, this not the case in presence of vorticity – a stationary
state does support a finite divergenceless current. The author is indebted to M. Dykman for clarifying this
point.
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Fig. 4.5 (a) Lagrangian manifold with a cusp singularity and three characteristic
trajectories coming from the origin. (b) Projection of the Lagrangian manifold
onto the (X1, X2) plane. The two folds project onto caustics, while projections
of the three trajectories intersect at the point X0. (c) The action S(X0) is a three-
valued function in between the caustics. Two of its lower branches intersect along
the switching line. After [62].

This observation may have dramatic consequences. As shown in [61, 62, 63],
for non-potential forces the Lagrangian manifold develops cusp singularities some
distance away from the origin, Fig. 4.5(a). The projection of the manifold onto the
physical (X1, X2) plane exhibits two caustics, emanating from the cusp, Fig. 4.5(b).
In between them the projection is three-valued. There are thus three distinct trajec-
tories, whose projections pass through the same point X0 = (X01, X02). Two of
them, 1 and 2, reach the point X0 before being reflected by one of the caustics,
i.e. they meet X0 while being on the top and bottom sheets of the manifold. The
projection of 3 passes through X0 after being reflected once by a caustic, i.e. the
corresponding trajectory meets X0 being on the middle sheet of the Lagrangian
manifold. The action S(X0) calculated along the trajectories is therefore a three-
valued function of the physical coordinate in between the two caustics, Fig. 4.5(c).
The biggest action is due to trajectories of type 3, which underwent reflection
before arriving at the point X0. The two smaller action branches intersect each
other along the switching line, which emanates from the projection of the cusp and
stays in between the two caustics.

The stationary state probability P(X0) of finding the system at point X0 is
given by the exponentiated action, Section 4.4. If the action is multi-valued, one
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can observe only its smallest branch, which gives rise to the largest probability.
Therefore the large deviation function: − lim T→0[T lnP(X0)] = T min{S(X0)}
is a non-analytic function of the coordinates along the switching line. Notice that
for the potential forces Aα = −∂αV , this function is simply the potential V (X0)

and thus is perfectly smooth. As a result, the stationary state of non-equilibrium
systems (e.g. with non-potential forces) is qualitatively different from equilibrium
ones. Strictly speaking, this is only true in the limit of weak noise T → 0, while
for a finite noise the singularities are smeared. However, since the action is in the
exponent, the change in the derivative across the switching line may be extremely
sharp. There is a large mathematical literature devoted to this phenomenon
[64, 65].



5

Bosonic fields

In this chapter we generalize the formalism of Chapter 2 for the case of complex
and real interacting bosonic fields. We then develop a perturbative diagrammatic
technique and use it to derive the quantum kinetic equation.

5.1 Complex bosonic fields

Consider a box of size L filled with bosonic particles of mass m. The single-
particle states within the box are labeled by the wavenumber vector k = (2π/L)n,
where the vector n = (nx , ny, nz) has integer components nμ = 0,±1,±2, . . . (we
have assumed periodic boundary conditions in all directions). The corresponding
energies are given by ωk = k2/(2m). One may associate bosonic creation and anni-
hilation operators b̂†

k and b̂k, obeying the commutation relations [b̂k, b̂†
k′ ] = δk,k′ ,

with each of these single-particle states. The kinetic energy part of the Hamiltonian
written in terms of such operators takes the form

Ĥ0 =
∑

k

ωkb̂†
kb̂k. (5.1)

Assuming some initial density matrix, e.g. ρ̂0 = exp{−β(Ĥ0 − μN̂ )}, where the
number operator is N̂ = ∑

k b̂†
kb̂k , one may write the Keldysh partition function

Z = 1, see Eq. (2.13), as a functional integral over the closed time contour, Fig. 2.1.
The coherent states are parametrized by a set of complex numbers φ j (k), labeled by
the discrete time index j along with the state index k. Transforming to continuum
notation and performing the Keldysh rotation according to Eq. (2.39) for each state
k, one obtains the two sets of complex fields φcl(k, t) and φq(k, t). The partition
function acquires the form

Z =
∫

D[φcl, φq] eiS0[φcl,φq], (5.2)

76
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where the integration measure is given by

D[φcl, φq] = 1

Tr{ρ̂0}
∏

k

N∏
j=1

d(Reφcl
j (k))d(Imφ

cl
j (k))

π

d(Reφq
j (k))d(Imφ

q
j (k))

π
,

(5.3)
and the limit N →∞ is understood. The Keldysh action of the free complex Bose
field is written, employing Eqs. (2.51) and (2.52), as

S0[φcl, φq] =
∑

k

∞∫
−∞

dt
(
φ̄cl, φ̄q

)( 0 i∂t − ωk − i0
i∂t − ωk + i0 2i0F(ωk)

)(
φcl

φq

)
,

(5.4)
where φcl,q = φcl,q(k, t). The ±i0 indicates the retarded/advanced nature of the
off-diagonal operators and specifies how the corresponding inverted operators are
to be understood. The q − q Keldysh component is a pure regularization for the
free field. Unlike the cl− cl component, it becomes finite (and in general non-local
with respect to time and state indices) once the interactions between the particles
are included. We kept it explicitly here to remind us that it determines the way the
quadratic form in the action is inverted.

The corresponding free (bare) Green function is defined as

Gαβ

0 (k, k′, t, t ′) = −i
∫

D[φcl, φq] φα(k, t) φ̄β(k′, t ′) eiS0[φcl,φq] (5.5)

and according to the rules of the Gaussian integration is given by the inverse of the
quadratic form in the action

Gαβ

0 (k, k′, t, t ′) = δk,k′

(
GK

0 (k, t − t ′) GR
0 (k, t − t ′)

GA
0 (k, t − t ′) 0

)
. (5.6)

The three non-zero components of the Green function are

GR
0 (k, t) = −iθ(t) e−iωkt FT→ (ε − ωk + i0)−1; (5.7a)

GA
0 (k, t) = iθ(−t) e−iωkt FT→ (ε − ωk − i0)−1; (5.7b)

GK
0 (k, t) = −iF(ωk) e−iωkt FT→−2π iF(ε) δ(ε − ωk). (5.7c)

In equilibrium the distribution function is F(ε) = coth(ε − μ)/(2T ). Above we
also quoted the Fourier transforms with respect to the time argument for all three
components.

It is sometimes convenient to perform the linear change of variables in the func-
tional integral to introduce the coordinate space representation for the two complex
bosonic fields
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φα(r, t) =
∑

k

φα(k, t) eikr. (5.8)

In terms of these fields the bare bosonic action (5.4) takes the form

S0 =
∫

dr

∞∫
−∞

dt
(
φ̄cl, φ̄q

) ( 0 i∂t + ∇2
r

2m − V cl

i∂t + ∇2
r

2m − V cl 2i0F

)(
φcl

φq

)
, (5.9)

where we have added an external classical potential V cl = V cl(r, t) in accordance
with Eq. (2.61). In the absence of such an external potential, the correlators of the
coordinate space bosonic fields are given by the Fourier transform of the Green
function (5.6), (5.7)〈

φα(r, t) φ̄β(r′, t ′)
〉 = iGαβ

0 (r− r′, t − t ′) = i
∑

k

Gαβ

0 (k, t − t ′)eik(r−r′). (5.10)

5.2 Interactions

Let us now include interactions between bosonic particles through a pairwise inter-
action potential U (r− r′). The corresponding normally ordered Hamiltonian takes
the form

Ĥint = 1

2

∑
q,k,k′

U (q) b̂†
kb̂†

k′ b̂k′+qb̂k−q, (5.11)

where U (q) is the Fourier transform of the interaction potential. In the case of
dilute atomic gases the interaction potential may be thought of as being short-
ranged, i.e. momentum-independent, U (q) = g, where the interaction constant
may be expressed through the s-wave scattering length as as g = 4πas/m [66].
The corresponding term in the action takes the form

Sint = −g

2

∑
q,k,k′

∫
C

dt φ̄(k, t)φ̄(k′, t)φ(k′ + q, t)φ(k− q, t).

Going to the coordinate space representation, one finds

Sint = −g

2

∫
dr

∫
C

dt (φ̄φ)2 = −g

2

∫
dr

∫ +∞

−∞
dt
[
(φ̄+φ+)2 − (φ̄−φ−)2

]
. (5.12)

It is important to remember that there are no interactions in the distant past,
t =−∞ (while they are present in the future, t = +∞). The interactions are
supposed to be adiabatically switched on and off on the forward and backward
branches correspondingly. Therefore the interactions modify only those matrix ele-
ments of the evolution operator, Eq. (2.17), that are away from t = −∞. It is also
worth remembering that in the discrete time form the φ̄ fields are taken one time
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g/2 g/2
φq φq

φq

φq

φclφcl φcl

φcl

Fig. 5.1 Graphic representation of the two interaction vertices of the |φ|4 theory.
There are also two complex conjugated vertices with a reversed direction of all
arrows.

step δt after the φ fields along the contour C. Performing the Keldysh rotation,
Eq. (2.39), one finds

Sint[φcl, φq] = −g

2

∫
dr

+∞∫
−∞

dt
[
φ̄clφ̄qφclφcl + φ̄clφ̄qφqφq + c.c.

]
, (5.13)

where c.c. stands for the complex conjugate of the first two terms. The interaction
action, Eq. (5.13), obviously satisfies the normalization condition, Eq. (2.53). Dia-
grammatically, the action (5.13) generates two types of vertex depicted in Fig. 5.1:
one with three classical fields (full lines) and one quantum field (dashed line) and
the other with one classical field and three quantum fields (as well as two complex
conjugated vertices, obtained by reversing the direction of the arrows).

Let us demonstrate that the addition of the interaction term to the action does not
violate the normalization identity, Z = 1. To this end, one may expand exp(iSint)

in powers of g and then average term by term with the help of the Gaussian
action (5.9). To show that the normalization, Z = 1, is intact, one needs to show
that 〈Sint〉 = 〈S 2

int〉 = · · · = 0. Applying the Wick theorem, Eq. (2.21), one finds
for the term linear in g

〈Sint〉 = −g

2

∫
dr dt

〈
φ̄clφ̄qφclφcl + φ̄clφ̄clφclφq + φ̄qφ̄clφqφq + φ̄qφ̄qφqφcl

〉
.

The first two terms upon application of the Wick theorem lead to diagrams of the
type of Fig. 5.2(a):〈

φ̄clφ̄qφclφcl + φ̄clφ̄clφclφq
〉 = −2

[
GR

0 (t, t)+ GA
0 (t, t)

]
GK

0 (t, t) = 0,

where we have suppressed the space arguments and focused only on the time ones
and the factor of two originates from the two combinatorial possibilities to make
Wick’s contractions. This expression vanishes due to the identity (2.44). The last
two terms in 〈Sint〉 trivially vanish because

〈
φqφ̄q

〉 = 0.
There are two families of terms that are second order in g and contain not more

than four quantum fields (terms with six quantum fields unavoidably lead to q− q
contractions and therefore vanish). They contain
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t

(b)

t1 t2
t2t1

(a) (c)

Fig. 5.2 Diagrams for the first (a) and second (b), (c) order interaction correc-
tions to the partition function Z . As explained in the text, they do not change the
normalization identity Z = 1.〈

φ̄
q
1 φ̄

cl
1 φ

cl
1 φ

cl
1 × φ

q
2φ

cl
2 φ̄

cl
2 φ

cl
2

〉 = 2GR
0 (t2, t1)G

A
0 (t2, t1)[GK

0 (t1, t2)]2,
Fig. 5.2(b), and〈

φ̄
q
1 φ̄

cl
1 φ

cl
1 φ

cl
1 × φ

q
2φ

cl
2 φ̄

q
2φ

q
2

〉 = 2GR
0 (t2, t1)G

A
0 (t2, t1)[GR

0 (t1, t2)]2,
Fig. 5.2(c), where φα1,2 = φα(r1,2, t1,2). Both of these terms are zero, because
GR

0 (t2, t1) ∼ θ(t2 − t1), while GA
0 (t2, t1) ∼ GR

0 (t1, t2)∗ ∼ θ(t1 − t2) and thus their
product has no support in the time domain. One may be concerned that GR

0 (t2, t1)
and GA

0 (t2, t1) are simultaneously non-zero on the diagonal t1 = t2. The contri-
bution of the diagonal to the double integral over dt1dt2, however, is of the order
∼ δ2

t N → 0, when N →∞. It is easy to see that, for exactly the same reasons, all
higher order terms in g vanish and thus the fundamental normalization is indeed
intact (at least in the perturbative expansion). However, the observables and cor-
relation functions are affected by the interactions. We demonstrate it below on the
example of the Green functions.

5.3 Dyson equation

We define the full or dressed Green function as the correlator of the fields averaged
with the weight, which includes both the bare action S0 and the interaction action:

Gαβ(r, r′, t, t ′) = −i
∫

D[φ̄φ]φα(r, t) φ̄ β(r′, t ′) e i(S0+Sint), (5.14)

here α, β = (cl, q) and the action is given by Eqs. (5.9) and (5.13). To evaluate
the full Green function one may expand the exponent in powers of Sint. The func-
tional integration with the remaining Gaussian action S0 is then performed using
the Wick theorem. This procedure leads to an infinite series of terms which are con-
venient to represent by Feynman diagrams. Each of these diagrams has two external
“legs”: an incoming, staying for the contraction 〈φα(x)φ̄ γ (x1)〉 = iGαγ

0 (x, x1), and
an outgoing, representing 〈φδ(x2)φ̄

β(x ′)〉 = iGδβ

0 (x2, x ′), where we introduced a
combined notation x = r, t . The interior of a diagram, which is a matrix in Keldysh
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(c)(b)(a)

Fig. 5.3 Examples of diagrams for the dressed Green function: (a) an irreducible
diagram of second order in g; (b) a reducible diagram of third order, which
contains two irreducible blocks; (c) a disconnected diagram of first order.

Ĝ
= +

Ĝ0 G0 G0
ˆ ˆ G0

ˆ G0
ˆ G0

ˆ
ˆ +Σ Σ̂ Σ̂

Fig. 5.4 Diagrammatic series for the dressed Green function Ĝ, rearranged into
the Dyson series. The self-energy blocks contain the sum of all irreducible
diagrams.

indices γ, δ as well as in space-time coordinates x1, x2, contains a number of inter-
nal four-leg vertices, each carrying a factor of g/2 . Integration over space-time
coordinates of all internal vertices as well as summation over Keldysh indices is
assumed. Examples of the diagrams are given in Fig. 5.3.

One can now define irreducible diagrams as those which can’t be cut into two
disconnected parts by cutting a single line in the interior of the diagram. The dia-
gram in Fig. 5.3(a) is irreducible, while the one in Fig. 5.3(b) is reducible. The
diagram in Fig. 5.3(c) is a disconnected one. The disconnected diagrams contain
all the same building blocks as in Fig. 5.2 and thus are zero, as explained above.1

Rearranging the order of terms in the perturbative expansion, one may formally
sum up the inner parts of all irreducible diagrams and call the resulting object the
self-energy �γδ(x1, x2). The full series may be written then, Fig. 5.4, as

Ĝ = Ĝ0+ Ĝ0 ◦ �̂ ◦ Ĝ0+ Ĝ0 ◦ �̂ ◦ Ĝ0 ◦ �̂ ◦ Ĝ0+· · · = Ĝ0+ Ĝ0 ◦ �̂ ◦ Ĝ, (5.15)

where the circular multiplication sign implies convolution of the space-time coor-
dinates as well as a 2 × 2 Keldysh matrix multiplication. The only difference
compared with the standard diagrammatic expansion [2, 4, 6] is the presence of
the 2 × 2 matrix structure. The fact that the series is arranged as a sequence of
matrix products is of no surprise. Indeed, the Keldysh index, α = (cl, q), is just
one more index in addition to time, space, spin, etc. Therefore, as with any other
index, there is a summation over all of its intermediate values, hence the matrix

1 Cancelation of disconnected diagrams is a direct consequence of the normalization identity Z = 1. Notice that
in equilibrium theory the disconnected diagrams are not zero and serve to compensate for the denominator eiL ,
Eq. (1.5), [2, 4].
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multiplication. The concrete form of the self-energy matrix, �̂, is specific to the
Keldysh technique and is discussed below in some detail.

Multiplying both sides of Eq. (5.15) by Ĝ−1
0 from the left, one obtains an

equation for the exact dressed Green function, Ĝ,(
Ĝ−1

0 − �̂
)
◦ Ĝ = 1̂, (5.16)

where 1̂ is the unit matrix. This equation is named after Dyson. The very non-
trivial feature of the Keldysh technique is that the self-energy matrix, �̂, possesses
the same causality structure as Ĝ−1

0 , Eq. (2.51), namely

�̂ =
(

0 �A

�R �K

)
, (5.17)

where �R(A) are mutually Hermitian conjugated lower (upper) triangular matrices
with respect to the two time indices, while �K is an anti-Hermitian matrix

�R(x1, x2) = [�A(x2, x1)]∗ ∼ θ(t1 − t2) ; �K(x1, x2) = −[�K(x2, x1)]∗.
(5.18)

This fact will be explicitly demonstrated below. Since both Ĝ−1
0 and �̂ have the

same causality structure, one concludes that the dressed Green function, Ĝ, also
possesses the causality structure, like Eq. (2.40). As a result, the Dyson equation
acquires the form(

0
[
GA

0

]−1 −�A[
GR

]−1
0 −�R −�K

)
◦
(

GK GR

GA 0

)
= 1̂, (5.19)

where one took into account that
[
G−1

0

]K
is a pure regularization (∼ i0F) and

thus may be omitted in the presence of a non-zero self-energy component �K.
Employing the specific form of

[
GR(A)

0

]−1
, Eq. (5.9), one obtains for the retarded

(advanced) component(
i∂t + 1

2m
∇2

r − V cl(r, t)−�R(A)

)
◦ GR(A)(x, x ′) = δ(t − t ′)δ(r− r′). (5.20)

Provided the self-energy component �R(A) is known (in some approximation),
Eq. (5.20) constitutes a closed equation for the retarded (advanced) component
of the dressed Green function.

For the space-time translationally invariant system, V cl = 0, such that
Ĝ(x, x ′) = Ĝ(x − x ′), this equation may be solved explicitly with the help of
the Fourier transform, leading to

GR(A)(k, ε) =
(
ε − k2

2m
−�R(A)(k, ε)

)−1

. (5.21)
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Employing Eq. (5.18), one observes that Re�R(k, ε) = Re�A(k, ε) and
Im�R(k, ε) = −Im�A(k, ε) ≤ 0. The real part of the retarded (advanced)
self-energy provides renormalization of the particle’s dispersion relation. That is,
the relation ε = k2/(2m) should be substituted by the solution of the equation
ε − k2/(2m) − Re�R(A)(k, ε) = 0. On the other hand, the imaginary part of the
self-energy has the meaning of the inverse lifetime a particle spends in a given
(renormalized) eigenstate k of the non-interacting system.

We turn now to the Keldysh component of the Dyson equation. As before, it is
convenient to parametrize the Keldysh component of the Green function as

GK = GR ◦ F − F ◦ GA (5.22)

(compare with Eq. (2.49)), where F(x, x ′) is a Hermitian matrix in the space-
time domain. The Dyson equation for the Keldysh component then takes the form([

GR
0

]−1 − �R
) ◦ (GR ◦ F − F ◦ GA

) = �K ◦ GA. Multiplying it from the right

by
([

GA
0

]−1 − �A
)

and employing Eq. (5.20), one finds F ◦ ([GA
0

]−1 − �A
) −([

GR
0

]−1 −�R
) ◦ F = �K. This may be written as

F ◦ [GA
0

]−1 − [
GR

0

]−1 ◦ F = �K − (
�R ◦ F − F ◦�A

)
. (5.23)

Since
[
GR

0

]−1
(x ′, x) = [

GA
0

]−1
(x ′, x) = δ(x ′ − x)

(
i∂t + ∇2

r /(2m)− V cl(x)
)
,

where the regularization ±i0 may be omitted in this context, one finally finds

−
[(

i∂t + 1

2m
∇2

r − V cl(x)

)
◦, F

]
= �K − (

�R ◦ F − F ◦�A
)
, (5.24)

where the symbol [ ◦, ] stands for the commutator. With the help of integration
by parts, it may be understood as [∂t

◦, F] = (∂t + ∂t ′)F(x, x ′), on the other hand
[∇2

r
◦, F]= (∇2

r−∇2
r′)F(x, x ′) and [V ◦, F] = (V (x)−V (x ′))F(x, x ′). This equation

is the quantum kinetic equation for the distribution matrix F(x, x ′). Schemati-
cally, its left hand side forms the kinetic term, while the right hand side is the
collision term or the collision integral. In equilibrium the kinetic term vanishes.
This implies, in turn, that the self-energy possesses the same structure as the Green
function: �K = �R ◦ F − F ◦�A. The latter is not the case, however, away from
equilibrium.

5.4 Real bosonic fields

We briefly repeat now the construction of the interacting field theory for the case
of real boson fields, such as, e.g., elastic phonons. To this end we consider a
toy model of a d-dimensional “quantum membrane.” It is formed by a lattice
of quantum particles, where a displacement of an i-th particle from the corre-
sponding lattice point is denoted as ϕi. For simplicity we consider ϕ as a scalar,
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which may be, e.g., a transversal deformation of the membrane. We assume that
the particles interact through some short-ranged potential, which leads to a bend-
ing rigidity κ of the membrane. The corresponding contribution to the energy is
U = (κ/2a4)

∑
i(∇2ϕi)

2, where ∇ is the lattice gradient operation and a is the
lattice constant. In essence, the energy is paid for the curvature of the membrane.
Furthermore, we also assume that each site experiences a static potential V (ϕi),
created by, e.g., an external substrate. Being expanded around its minimum, such a
potential may be written as

V (ϕ) = ω2
0

2
ϕ2 + γ

6
ϕ3 + · · · . (5.25)

The Keldysh action of an individual quantum particle is given by Eq. (3.4).
Generalizing it for the lattice, one finds

S[ϕ] =
∫
C

dt
∑

i

(
1

2
ϕ̇ 2

i −
κ

2a4
(∇2ϕi)

2 − V (ϕi)

)
, (5.26)

where ϕi = ϕi(t) with t running along the closed time contour. We take now the
continuum limit by introducing the displacement density field ϕ(r, t), where r is
the coordinate in the d-dimensional space of the membrane. In terms of this scalar
real field the action takes the form

S[ϕ] =
∫
C

dt
∫

dr
[

1

2

(
ϕ̇ 2 − κ (∇2

rϕ)
2 − ω2

0 ϕ
2
)
− γ

6
ϕ3

]
. (5.27)

Performing the Keldysh rotation according to ϕcl,q = (ϕ+ ± ϕ−)/2, one finds
for the quadratic part of the action (5.27)

S0= 1

2

∫
dr

∞∫
−∞

dt
(
ϕcl, ϕq

)( 0 −2(∂2
t +κ∇4

r+ω2
0)

−2(∂2
t +κ∇4

r+ω2
0) −0[∂t , F]

)(
ϕcl

ϕq

)
.

(5.28)
The matrix in the action is the inverse bare Green function D̂−1

0 . As before its
Keldysh q – q component is a pure regularization, showing the way the matrix is
to be inverted. Neglecting the cubic non-linearity, the correlator of the real fields is
given by the bare Green function

Dαβ

0 (r, r′, t, t ′) = −i
∫

D[ϕcl, ϕq] ϕα(r, t) ϕβ(r′, t ′) eiS0[ϕcl,ϕq], (5.29)

which possesses the standard causality structure

Dαβ

0 (r, r′, t, t ′) =
(

DK
0 (r− r′, t − t ′) DR

0 (r− r′, t − t ′)
DA

0 (r− r′, t − t ′) 0

)
. (5.30)
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As discussed in Section 3.1, the matrix D̂ is symmetric (unlike the case of the
complex field). The Fourier transforms of the three non-zero components of the
bare Green function, according to Eq. (3.13), are

DR(A)
0 (k, ε) = 1

2

1

(ε ± i0)2 − ω2
k

, (5.31a)

DK
0 (k, ε) = F(ε)

[
DR(k, ε)− DA(k, ε)

]
, (5.31b)

where the dispersion relation for our model is given by ω2
k = κk4 + ω2

0, but the
construction may be generalized to accommodate an arbitrary dispersion ωk. Due
to the symmetry of the Green function the distribution function F(ε) must be an
odd function of energy ε. In equilibrium it takes the form Feq(ε) = coth(ε/2T ).

The cubic non-harmonicity of the action (5.27) after the Keldysh rotation leads
to the following non-linear term in the action:

Sint = −
∫

dr
∫ +∞

−∞
dt

[
γ
(
ϕcl

)2
ϕq + γ

3

(
ϕq
)3
]
. (5.32)

The normalization condition (2.53) is again satisfied. Diagrammatically, the cubic
non-linearity generates two types of vertex, Fig. 5.5: one with two classical fields
(full lines) and one quantum field (dashed line), and the other with three quantum
fields. The former vertex carries the factor γ , while the latter has γ /3. Note that
for the real field the lines do not have a direction.

Similarly to the case of the complex field, one may check that addition of the
interaction action does not affect the normalization identity Z = 1. This prop-
erty is based on the identity DR

0 (t, t) + DA
0 (t, t) = 0 and the rule of thumb

DR
0 (t, t ′)DA

0 (t, t ′) = 0, explained in Section 5.2. The Green function, on the other
hand, is affected. The effect of non-linearity on the dressed Green function D̂(x, x ′)
is described by the Dyson equation(

D̂−1
0 − �̂

)
◦ D̂ = 1̂, (5.33)

where �̂(x, x ′) is the self-energy of real bosons, possessing the causality structure,
Eq. (5.17), and calculated in the next paragraph to second order in γ . The retarded
and advanced components of the Dyson equation take the form

ϕq ϕq

ϕq

ϕq

ϕcl

ϕcl

γ γ/3

Fig. 5.5 Graphic representation of the two interaction vertices of the ϕ3 theory.
Note the relative factor of one third between them.
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− (
2∂2

t + 2κ ∇4
r + 2ω2

0 +�R(A)
) ◦ DR(A)(x, x ′) = δ(t − t ′)δ(r− r′). (5.34)

The Keldysh component of the Green function is again convenient to parametrize
as DK = DR ◦ F− F ◦DA, see Eq. (2.49), where F(x, x ′) is a Hermitian matrix in
the space-time domain. The Dyson equation for the Keldysh component then takes
the form of the kinetic equation for the two-point distribution function F(x, x ′):[(

2∂2
t + 2κ ∇4

r + 2ω2
0

) ◦, F
] = �K − (

�R ◦ F − F ◦�A
)
. (5.35)

The commutators involved in the kinetic term read [∂2
t
◦, F] = (∂2

t − ∂2
t ′)F(x, x ′)

and [∇4
r
◦, F] = (∇4

r − ∇4
r′)F(x, x ′). Finally [ω2

0
◦, F] = 0; one may allow, though,

for some space- and/or time-dependent function ω0(x), in the latter case [ω2
0
◦, F] =

(ω2
0(x) − ω2

0(x
′))F(x, x ′). The self-energy components on the right hand side of

Eq. (5.35) are calculated in the following sections.

5.5 Self-energy

Let us demonstrate that the self-energy matrix, �̂, indeed possesses the causality
structure, Eq. (5.17). To this end, we consider the real boson field with the γϕ3

non-linearity, Eq. (5.32), and perform calculations up to second order in the non-
linearity γ . Employing the two vertices of Fig. 5.5, one finds the following.

(i) The cl – cl component of the self-energy (i.e. the diagram having two classi-
cal external legs) is given by the single diagram, depicted in Fig. 5.6(a). The
corresponding analytic expression is

�cl−cl(x, x ′) = 4iγ 2 DR
0(x, x ′)DA

0(x, x ′)=0.

Indeed, the product DR
0 (t, t ′)DA

0 (t, t ′) has no support in the time domain
(see the discussion in Section 5.2).

(ii) The cl – q (advanced) component is given by the single diagram Fig. 5.6(b).
The corresponding expression is

�A(x, x ′) = 4iγ 2 DA
0 (x, x ′)DK

0 (x, x ′). (5.36)

t

(a)

t'

(b)

t' t

(c)

t'

t

(d)

t' t

t

(e)

t' t

(f)

t'

γ

γ γ γ /3 γ γ γ /3

γ γ γ γ γ

Fig. 5.6 Self-energy diagrams for the ϕ3 theory.
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Since �A(t, t ′) ∼ DA
0 (t, t ′) ∼ θ(t ′ − t), it is, indeed, an advanced (upper

triangular) matrix in the time domain. There is a combinatoric factor of 4,
associated with the diagram (four ways of choosing external legs × 2 internal
permutations × 1/(2!) for having two identical vertices).

(iii) The q – cl (retarded) component is given by the diagram of Fig. 5.6(c):

�R(x, x ′) = 4iγ 2 DR
0 (x, x ′)DK

0 (x, x ′), (5.37)

which is, in fact, the Hermitian conjugation of Eq. (5.36): �R = [
�A

]†
. Since

�R(t, t ′) ∼ DR
0 (t, t ′) ∼ θ(t − t ′), it is indeed a retarded (lower triangular)

matrix.
(iv) The q – q (Keldysh) component is given by the three diagrams, Fig. 5.6(d)–(f).

The corresponding expression (sum of these diagrams) is

�K(x, x ′) = 2iγ 2
[
DK

0(x, x ′)
]2+ 6i

(γ
3

)
γ
[
DA

0 (x, x ′)
]2+ 6iγ

(γ
3

) [
DR

0 (x, x ′)
]2

= 2iγ 2
([

DK
0 (x, x ′)

]2 + [
DR

0 (x, x ′)− DA
0 (x, x ′)

]2
)
. (5.38)

The combinatoric factors are 2 for diagram (d) and 6 for (e) and (f). In the
last equality the fact that DR

0 (t, t ′)DA
0 (t, t ′) = 0, due to the absence of support

in the time domain, has been used again. Employing the symmetry properties
of the Green functions, one finds �K = −[�K

]†
. This demonstrates that the

self-energy �̂ possesses the same structure as D̂−1
0 . One may check that this

statement is not restricted to second order in γ , but holds in higher orders
as well.

5.6 Wigner transformation

The distribution matrix F(x1, x2) = F(r1, t1, r2, t2) is a function of the two space-
time points. It is usually difficult to solve the kinetic equations (5.24) or (5.35) in
full generality. One may often take advantage of scale separation between intrin-
sic microscopic space and time scales and the extrinsic ones, dictated by external
perturbations and/or a measurement apparatus. In many instances the latter scales
are macroscopic, or at least mesoscopic, and thus are much greater than the former
ones. If this is indeed the case, the kinetic theory may be greatly simplified. Most
elegantly, it is achieved with the help of the Wigner transformation (WT).

We employ combined notation for space-time x = r, t and momentum-energy
p = k, ε, with px = kr− εt . For a two-point function A(x1, x2) one may change
the variables to the central point coordinate x = (x1+x2)/2 and the relative coordi-
nate x ′ = x1−x2, such that x1,2 = x±x ′/2. One then performs a Fourier transform,
going from the relative coordinate x ′ to its Fourier image p. As a result, the Wigner
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transform of the two-point function A(x1, x2) is a function of the central coordinate
x and the relative momentum p, i.e. A(x, p), defined as

A(x, p) =
∫

dx ′ e−ipx ′ A

(
x + x ′

2
, x − x ′

2

)
. (5.39)

The WT of A†(x1, x2) = [A(x2, x1)]∗ is simply [A(x, p)]∗. The inverse WT takes
the form

A(x1, x2) =
∑

p

eip(x1−x2) A

(
x1 + x2

2
, p

)
, (5.40)

where
∑

p =
∑

k

∫
dε/(2π) .

Let us consider now a two-point function C = A ◦ B, which means C(x1, x2) =∫
dx3 A(x1, x3)B(x3, x2). According to the above definitions its WT is given by

C(x, p) =
∫

dx ′e−ipx ′
∫

dx3

∑
p1,p2

eip1(x+x ′/2−x3)+ip2(x3−x+x ′/2)

A

(
x + x ′/2+ x3

2
, p1

)
B

(
x3 + x − x ′/2

2
, p2

)
.

We change coordinate variables from x3, x ′ to xa,b = x3 − x ± x ′/2 and shift
momenta as pa,b = p1,2 − p to obtain

C(x, p) =
∫∫

dxadxb

∑
pa ,pb

ei(pbxa−pa xb)A
(

x+ xa

2
, p+ pa

)
B
(

x+ xb

2
, p+ pb

)
.

We now formally expand the A and B functions in Taylor series in momenta
pa,b. The corresponding integrals over momenta may be evaluated employing∑

p e±ipx pn = (∓i)nδ(n)(x), where δ(n) denotes the n-th derivative of the delta-
function. Subsequently, the integrals over coordinates xa,b may be also evaluated,
leading to the formally exact expression

C(x, p) = A (x, p) e
i
2 (
←−
∂ x
−→
∂ p−←−∂ p

−→
∂ x )B(x, p), (5.41)

where the arrows show the direction of the differentiation, and the scalar products
in the exponent are ∂x∂p = ∇r∇k − ∂t∂ε .

This formally exact result is most useful when the exponential operator on its
right hand side may be expanded and only the few lowest order terms kept. It
is a legitimate procedure when the operator ∂x∂p may be regarded as small, i.e.
if (δx)(δp) � 1, where δx and δp are characteristic scales at which the x and
p arguments of the WT functions change. This in turn implies that the two-point
functions of interest, say A(x1, x2), are relatively slow functions of the central coor-
dinate x = (x1+x2)/2 and relatively fast functions of the distance between the two
points x ′ = x1−x2. The ultimate example is translationally invariant functions, e.g.
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A(x1 − x2) = A(x ′), for which ∂x = 0 and therefore only the zeroth order term in
the expansion of the exponent in Eq. (5.41) survives, leading to C(p) = A(p)B(p),
which is, of course, the well-known convolution theorem of the Fourier analysis.
For the case where dependence on the central coordinate x is slow one finds

C = AB + i

2

(
∂x A∂p B − ∂p A∂x B

)+ · · · , (5.42)

where the arguments of all the functions are (x, p). As a result, WT is a tool to
approximately substitute convolutions of two-point functions by algebraic prod-
ucts of the Wigner transforms and their derivatives. In the same approximation one
finds for the commutator of two-point functions

[A ◦, B] WT→ i
(
∂x A∂p B − ∂p A∂x B

)+ · · · , (5.43)

i.e. the classical Poisson bracket.
For an algebraic product of two-point functions, as, e.g., in Eqs. (5.36)–(5.38),

C(x1, x2) = A(x1, x2)B(x1, x2), one finds after WT

C(x, p) =
∑

q

A (x, p − q) B (x, q) . (5.44)

5.7 Kinetic term

A one-point function, such as, e.g., V cl(x), should be considered as its own WT,
which is momentum p independent. We find thus for the commutator in the kinetic
term of Eq. (5.24)

[V cl ◦, F] WT→ i∂x V cl(x)∂p F(x, p) = i∇rV cl∇k F − i∂t V
cl∂εF,

where F(x, p)= F(r, t,k, ε) is the WT of the two-point function F(r1, t1, r2, t2).
We turn now to the other commutators in the kinetic terms on the right hand
sides of the kinetic equations (5.24) and (5.35). The WT of the translationally

invariant operator i∂t is ε, as a result [i∂t
◦, F] WT→ i∂εε∂t F = i∂t F , in a similar way

[−∂2
t
◦, F] WT→ i∂εε2∂t F = 2iε∂t F . Finally, the WT of the operator −∇2

r is k2 and

thus [−∇2
r
◦, F] WT→ −i∇kk2∇r F =− 2ik∇r F . For a generic dispersion relation

ωk one finds [ω2
k
◦, F] WT→ −2iωkvk∇r F , where we introduced the group veloc-

ity as vk = ∇kωk. As for the right hand side of Eqs. (5.24) and (5.35), one finds
for its WT

�K − F
(
�R −�A

)
− i∂x

(
Re�R

)
∂p F + i∂p

(
Re�R

)
∂x F,

where we took into account that �A(x, p) = [�R(x, p)]∗.
Combining all the pieces together, one finds for the WT of the kinetic equation

(5.24) for the complex boson field



90 Bosonic fields[(
1− ∂εRe�R

)
∂t + (∂t Ṽ )∂ε + ṽk∇r − (∇rṼ )∇k

]
F = I coll[F], (5.45)

where

Ṽ (x, p) = V cl(x)+ Re
[
�R(x, p)

] ; ṽk = ∇k(ωk + Re�R) (5.46)

and the right hand side, known as the collision integral, is

I coll[F] = i�K(x, p)+ 2F(x, p) Im
[
�R(x, p)

]
. (5.47)

Notice that in a static, i.e. ∂t = 0, (including spatially non-uniform) situation any
function F(ε) which depends on the energy argument only, nullifies the left hand
side of the kinetic equation (5.45). As we shall see in the next section, there is one
such function Feq = coth(ε −μ)/2T , which also nullifies its right hand side. This
is the equilibrium solution.

To make progress away from equilibrium, one changes the energy argument of
the distribution function as

F(r, t, k, ε) = F̃(r, t, k, ε − ωk − Ṽ ). (5.48)

One may check that the distribution function F̃ , defined this way, satisfies the equa-
tion which differs from Eq. (5.45) only by the absence of the (∂t Ṽ )∂ε term on the
left hand side. Thus there is no derivative over the last argument in the equation
for F̃ . Should the collision integral depend only on the same local value of the
renormalized energy ε̃ = ε − ωk − Ṽ , the kinetic equations for different ε̃s would
split and would not talk to each other. Strictly speaking, this is never the case. That
is, the collision integral is actually a non-local function of ε̃ = ε̃(x, p) in both the
energy and space-time directions. However, in many cases the distribution function
F̃(r, t, k, ε̃) is a much slower function of ε̃ than GR − GA. The latter is a sharply
peaked function at ε̃ = 0 with the width given by the inverse quasiparticle lifetime
1/τqp. As long as the characteristic energy scale δε̃ of the distribution function
F̃(r, t, k, ε̃) is much larger than it, δε̃ � 1/τqp, one may approximately disregard
the ε̃ dependence of F̃ in the collision integral. Indeed, the distribution function,
by its definition Eq. (2.49), always shows up in a product with WT of GR − GA.
Since the latter is a sharp function of the renormalized energy at ε̃ = 0, one may
approximately put that

F̃(r, t,k, ε̃) ≈ F̃(r, t, k, 0) ≡ F̃(r, t, k) (5.49)

and write down a closed kinetic equation for the three-argument, or the mass-
shell restricted distribution function F̃(r, t, k).2 As long as quasiparticles are well

2 The mass-shell distribution function may be defined as F̃(r, t, k) = ∫
dε F(r, t, k, ε)δ(ε − ωk − Ṽ ). For free

non-interacting particles GR − GA = −2π iδ(ε − ωk), while GK = F(GR − GA) and thus this definition is
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defined, i.e. δε̃τqp � 1, the WT of GR − GA remains a sharply peaked function at
ε = ε(r, t, k) satisfying

ε − ωk − V cl(r, t)− Re�R(r, t, k, ε) = 0, (5.50)

cf. Eq. (5.21). As a result, all observables are approximately (in the leading order
in (δε̃τqp)

−1) determined by F̃(r, t, k). Such a “mass-shell” distribution function
obeys the following closed kinetic equation:[

Z̃−1 ∂t + ṽk∇r − (∇rṼ )∇k

]
F̃(r, t, k) = I coll[F̃], (5.51)

where Z̃−1(r, t, k) = 1 − ∂εRe�R. It is important that velocity and exter-
nal potential are renormalized according to Eq. (5.46) and the energy argument
ε = ε(r, t, k) of all functions is taken as the solution of Eq. (5.50).

The “mass-shell” distribution function F̃(r, t, k) is essentially a classical object.
It may be considered as a time-dependent probability of finding a particle at a given
point of the classical phase space (r, k). The quantum mechanics modifies the dis-
persion relation along with the effective potential and the quasiparticle weight Z̃
as well as (possibly) the collision integral. The kinetic equation (5.51) provides
thus a semiclassical approximation of the full quantum description. It is instruc-
tive to compare the kinetic term (i.e. the left hand side) of Eq. (5.51) with that
of the Fokker–Planck equation (4.30). Provided Z̃ = 1, both may be written as
∂t . . . − {E, . . .}, where the curly brackets stand for the classical Poisson brackets
and the classical Hamiltonian is E(k, r) = ωk + Ṽ (r, k). One observes, therefore,
that the mass-shell distribution function F̃(r, t, k) has basically the same meaning
as the classical probability distribution function P(R,K, t). The right hand side of
the Fokker–Planck equation (4.30), being linear in P , is different from the collision
integral (see Section 5.8). The latter is a non-linear functional of the distribution
function F̃ . This difference originates from the fact that in the classical problems
of Chapter 4 the bath was assumed to be passive and independent of the state of the
system. In the present context the many-body system serves as a “bath” for itself.

equivalent to F̃(r, t, k) = i
∫
(dε/2π)GK(r, t, k, ε) = iGK(r, k, t, t). It is therefore frequently stated that the

mass-shell distribution function is equivalent to the Keldysh Green function at the coinciding time arguments.
As explained in Section 2.8, the latter is given by 2nB(k) + 1, where nB(k) is the occupation number of the
state k. This latter relation between the equal-time Keldysh function and the occupation number is generic
and remains true even in the interacting case. However, the relation between the equal-time Keldysh function
and the mass-shell distribution function F̃ is not. It is restricted to the non-interacting case, where GR −
GA = −2π iδ(ε − ωk). It is therefore important to stress that the kinetic equation is written for the mass-shell
distribution function F̃(r, t, k) and not for the equal-time Keldysh Green function GK(r, k, t, t). In particular,
in equilibrium F̃ = coth(ωk − μ)/2T is always a solution of the kinetic equation. On the other hand, the
occupation number nB(ωk) even in equilibrium may be very different from the Bose (or Fermi) distribution.
The most famous example probably comes from the fermionic 1d Luttinger model [67], where the occupation
number at T = 0 is not a Fermi step-function, but rather a power-law non-analytic function. This function is
not a solution of the kinetic equation; in equilibrium the latter is solved by the Fermi distribution.
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This latter “bath”, however, is not passive and depends on the local state of the
system. Hence the non-linear character of the collision term. Such a non-linearity
is still a classical phenomenon (though specific transition rates may, of course,
incorporate quantum mechanics in an essential way).

Finally let us formulate the kinetic equation for real boson quasiparticles, such
as, e.g., elastic phonons. The Wigner transform of the kinetic term of the real boson
Dyson equation (5.35) takes the form[

∂ε
(
2ε2 − Re�R

)
∂t + ∂t Re�R∂ε +∇k

(
2ω̃2

k

)∇r − ∇r(2ω̃
2
k)∇k

]
F,

where ω̃2
k = ω2

k + Re�R/2. Due to the symmetries of the real boson Green
functions, the distribution function F obeys

F(r, t, k, ε) = −F(r, t,−k,−ε). (5.52)

Changing the energy argument of the distribution function and acknowledging that
ε ≈ ±ω̃k, one arrives at the three-argument “mass-shell” distribution function

F(r, t, k, ε) = s F̃(r, t, sk, ε2 − ω̃2
k)→ s F̃(r, t, sk, 0), (5.53)

where s = sign(ε). Such a “mass-shell” distribution function obeys the closed
kinetic equation [

∂t + vk∇r

]
F̃(r, t, k) = I coll[F̃], (5.54)

where for simplicity we disregarded the dispersion renormalization by the real part
of the self-energy. We also took ε = ωk > 0, that brings the collision integral to
the following form:

I coll[F̃] = 1

4ωk

(
i�K(x, p)+ 2F(x, p) Im

[
�R(x, p)

])∣∣∣∣
ε=ωk

. (5.55)

Notice that taking ε = −ωk < 0 is equivalent to making a k →−k substitution in
the kinetic equation (5.54).

5.8 Collision integral

We discuss now the collision integral, using real bosons with cubic non-linearity,
Section 5.5, as an example. The collision integral for complex bosons is con-
sidered in Section 7.7. The proper collision integral is given by Eq. (5.55). To
be consistent with the approximations adopted in the derivation of the kinetic
term above, we need to restrict ourselves to products of WT only. In particular,
DK

0 (x, p) ≈ F(x, p)[DR
0 (x, p) − DA

0 (x, p)]. Even though the Green functions
here are the bare ones, the distribution function F is not determined by the dynam-
ics of the free bosons. We should allow F to be self-consistently determined by
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the kinetic part of the Dyson equation. Employing Eqs. (5.36)–(5.38) along with
Eq. (5.44), one finds for the corresponding parts of the collision integral

i�K(x, p) = 8π2γ 2
∑

q

�(x, p− q)�(x, q)
[

F(x, p− q)F(x, q)+ 1
]
, (5.56a)

2Im[�R(x, p)] = −8π2γ 2
∑

q

�(x, p − q)�(x, q)
[

F(x, p − q)+ F(x, q)
]
,

(5.56b)
where the right hand side of the last equation is symmetrized with respect to
arguments p − q = k− q, ε − ω and q = q, ω. Here we defined

�(x, p) = i

2π

[
DR

0 (x, p)− DA
0 (x, p)

] = 1

4ωk

(
δ(ε−ωk)− δ(ε+ωk)

)
. (5.57)

To include the renormalization of the dispersion relation ωk by the real part of the
self-energy, one may use here the dressed Green functions D. This corresponds to
the so-called self-consistent Born approximation, where the self-energy diagram is
evaluated using self-consistently defined Green functions. Such an approximation
neglects vertex corrections which may lead to a renormalization of the interaction
parameter γ → �α,α′,α′′(q, p−q), where α = cl, q. In some cases the full � may be
found from independent considerations, in general one should write an additional
equation for the vertex tensor and solve it in an approximation consistent with that
for the self-energy.

Employing Eqs. (5.55) and (5.56), one finds for the collision integral

I coll[F] = 2π2γ 2

ωk

∑
q

�(x, p − q)�(x, q)

×
[

F(x, p − q)F(x, q)+ 1− F(x, p)
(
F(x, p − q)+ F(x, q)

)]
. (5.58)

The combination of the distribution functions in the square brackets is a very gen-
eral construction, which repeats itself in higher orders in γ . Thanks to the energy
delta-functions incorporated in the �(x, p) symbols and the “magic” identity:

coth(a) coth(b)+ 1 = coth(a + b)
(

coth(a)+ coth(b)
)
, (5.59)

the collision integral is identically nullified by the equilibrium Bose distribution
F(r, t, k, ε) = Feq(ε) = coth(ε − μ)/2T , where T and μ are yet unspecified
temperature and chemical potential. For real bosons, due to the requirement that
F is an odd function of energy, one has to choose μ = 0. As explained after
Eq. (5.47), any function F = F(ε) also nullifies the kinetic term in a stationary
situation. As a result, the thermal equilibrium distribution function F eq(ε) solves
the kinetic equation. Such a solution is (locally) stable for any temperature (the
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latter is determined either by an external reservoir, or, for a closed system, from
the conservation of total energy). Since the equilibrium distribution obviously nul-
lifies both left and right hand sides of Eq. (5.35) the exact equilibrium self-energy
satisfies �K = coth(ε/2T )

[
�R − �A

]
. Since also the bare Green functions obey

the same relation, Eq. (2.48), one concludes that in thermal equilibrium the exact
dressed Green function satisfies

DK(r, k, ε) = coth
ε

2 T

(
DR(r, k, ε)− DA(r, k, ε)

)
. (5.60)

This is the statement of the fluctuation–dissipation theorem (FDT). Its consequence
is that in equilibrium the Keldysh component does not contain any additional infor-
mation with respect to the retarded one. Therefore, the Keldysh technique may be,
in principle, substituted by a more compact construction – the Matsubara formal-
ism. The latter does not work, of course, away from equilibrium. Notice that the
Green functions may still be space dependent, since the equilibrium implies only
stationarity, but not translational invariance in space.

To make progress away from equilibrium, one needs to restrict the two-point
function F to the mass-shell function F̃ according to Eq. (5.53). This is possible
due to the fact that �(x, p− q) and �(x, q) are sharply peaked at ε−ω = ±ωk−q

and ω = ±ωq, while the external argument is to put ε = ωk > 0. Once the
distribution functions are restricted to the “mass-shell,” the energy dependence in
Eq. (5.58) is explicitly specified by Eqs. (5.53) and (5.57). Thus one can perform
the ω-integration explicitly with the help of the delta-functions and find for the
collision integral

I coll[F̃(k)] = πγ 2

16ωk

∑
q

1

ωk−qωq

×
{
δ(ωk − ωq − ωk−q)

[
F̃(k− q)F̃(q)+ 1− F̃(k)

(
F̃(k− q)+ F̃(q)

)]
+ δ(ωk + ωq − ωk−q)

[
F̃(k− q)F̃(−q)− 1+ F̃(k)

(
F̃(k− q)− F̃(−q)

)]
+ δ(ωk − ωq + ωq−k)

[
F̃(q− k)F̃(q)− 1− F̃(k)

(
F̃(q− k)− F̃(q)

)] }
,

(5.61)

where we have suppressed slow space-time argument r, t in the distribution func-
tions F̃(r, t,k) → F̃(k). There are three types of process allowed by energy
conservation. To appreciate the structure of the corresponding terms it is conve-
nient to express their rates through the boson occupation number nq related to the
distribution function as F̃(q) ≈ 2nq + 1.3 Then the rate of the first process is

3 As discussed in the footnote after Eq. (5.49), this relation is only approximate, valid to the leading order in
(δε̃τqp)

−1.
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proportional to [nk−qnq − nk(nk−q + nq + 1)]. It states that the state k may be
populated due to the merging of particles from states q and k− q and depopulated
due to stimulated emission of k− q and q phonons, or spontaneous emission. The
rate of the second process is proportional to [nk−q(n−q + nk + 1) − nkn−q]. Here
the state k may be populated due to stimulated or spontaneous decay of a higher
energy state k−q and depopulated by merging with a particle in a state−q. Finally
the rate of the third process is proportional to [nq(nq−k+nk+1)−nknq−k] and the
physics is the same as in the second process with states q and k− q interchanged.

Within the mass-shell approximation the equilibrium solution of the kinetic
equation (5.61) takes the form F̃eq(r, k) = cothωk(r)/2T , which is, in general,
a function of coordinates and momenta. Since on the mass-shell ε = ωk(r), this is
consistent with Feq(r, k, ε) = coth ε/2T . The latter statement is exact, while the
mass-shell one is only an approximation valid for well-defined quasiparticles.

For the dispersion relation of the quantum membrane ωk =
√
ω2

0 + κk4 , the
energy conservation law ωk = ωq + ωk−q may be satisfied for k > kc, where
k4

c = 4ω2
0/κ . For smaller momenta k < kc the cubic non-linearity alone does

not provide relaxation of the distribution function. Therefore it does not lead to
thermalization, if the resulting temperature is too small T � 2ω0. On the other
hand, if a high-energy k � kc mode is excited it decays onto q and k − q modes
with almost perpendicular momenta. To find the corresponding relaxation time we
restrict the collision integral to the spontaneous emission part in the first term in
Eq. (5.61) and find ∂t nk = −nk/τk, where

1

τk
= πγ 2

8ωk

∑
q

δ(ωk − ωq − ωk−q)

ωk−qωq
= 3

128π

γ 2

κ2k5
ln

(
k

kc

)
, (5.62)

for d = 3.
Finally, let us discuss approximations involved in the Wigner transformations. It

is a justified procedure as long as δk δr � 1, where δk is a characteristic micro-
scopic scale of the momentum dependence of the distribution function, while δr
is a characteristic scale of its spatial variations. One may ask if there is a similar
requirement in the time domain: δε δt � 1, with δε and δt being the characteris-
tic energy and the time scale, respectively. Such a requirement is very demanding,
since typically δε ≈ T and at low temperature it would allow us to treat only
very slow processes with δt � 1/T . Fortunately, this is not the case. Because of
the peaked structure of �(k, ε), the energy argument ε is locked to ω̃k (i.e. to the
“mass-shell”) and does not have its own dynamics as long as the peak is sharp.
The actual criterion is therefore that δε is much larger than the width of the peak
in �(k, ε). The latter is the inverse quasiparticle lifetime, 1/τqp , and therefore the
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actual condition is τqp � 1/T . This condition is indeed satisfied in systems with
well-defined quasiparticles. Notice that this is exactly the same condition which
we employed to justify the restriction of the distribution function to the mass-shell,
see Eq. (5.49) and the discussion below it. This is thus a necessary condition for
the applicability of the quasi-classical kinetic equation.
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Dynamics of collisionless plasma

In this chapter we consider a two-component gas of charged particles interacting
through long-ranged Coulomb interactions. In most cases those are electrons and
ions. For the sake of illustration, however, we shall treat both of them as being
bosons. Since we focus on the high-temperature classical limit, the underlying
quantum statistics is of almost no importance. We use this model to introduce col-
lective modes, collisionless Landau damping, random phase approximation and
kinetics of particles coupled to the collective modes.

6.1 Plasma action

Consider a two-component gas of oppositely charged bosonic particles with masses
me and m i. We shall call them “electrons” (e) and “ions” (i), with the understanding
that the fermionic nature of one or both of them may be easily incorporated into
the same scheme, see Chapter 9 and especially a remark at the end of Section 9.5.
First we focus not on the kinetics of the plasma itself, but rather on the dynamics of
electric field waves propagating through it. To this end we start from the Keldysh
action for the gas of interacting charged bosons:

S =
∫
C

dt

[∫
dr

∑
ν=e,i

φ̄ν

(
i∂t + ∇2

r

2mν

)
φν − 1

2

∫∫
drdr′ρ(r, t)U (r− r′)ρ(r′, t)

]
,

(6.1)

where ρ(r, t) = φ̄e(r, t)φe(r, t)− φ̄i(r, t)φi(r, t) is the density of electrons minus
that of the neutralizing ions. The Coulomb interaction potential and its Fourier
transform are

U (r− r′) = e2

|r− r′| ; U (q) = 4πe2

q2
. (6.2)

97
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To single out the dynamics of the electric potential, we perform now the Hubbard–
Stratonovich transformation of the interaction term:

exp

{
− i

2

∫
C

dt
∫∫

drdr′ρ(r, t)U (r− r′)ρ(r′, t)

}
= e−

i
2

∫
C dt

∑
q U (q)|ρ(q,t)|2

=
∫

D[V ] e
i
2

∫
C dt

∑
q([U (q)]−1|V (q,t)|2−ρ∗(q,t)V (q,t)−V ∗(q,t)ρ(q,t)) (6.3)

=
∫

D[V ] exp

{
i
∫
C

dt
∫

dr
(
(8πe2)−1[∇rV (r, t)]2 − ρ(r, t)V (r, t)

)}
,

where we have used the fact that the operator q2 takes the form −∇2
r in real space.

This transformation is nothing but an implementation of the real variable Gaussian
integral, discussed in Section 2.3. Here V (r, t) is a real fluctuating scalar potential
defined along the closed time contour. We have introduced thus an additional aux-
iliary functional integral. The great advantage of this procedure is that the boson
fields φ̄ν and φν , where ν = e, i, enter the transformed action only quadratically.
As a result, the functional integrals over φ̄ν and φν may be calculated explicitly(!),
leaving us with the effective action for the scalar potential S[V ]. The latter contains
much of the information we need about dynamics of the plasma modes.

To perform the Gaussian integration over φ̄ν and φν , respecting the regulariza-
tion, we need to go through the procedure described in Chapters 2 and 5. To this
end we first split the fields into components residing on the forward and back-
ward branches of the contour and then perform the Keldysh rotation according
to Eq. (2.39) for the complex fields φ̄ν and φν and according to Eq. (2.56) for
the real field V . This brings the Gaussian φν-action to the form

∑
ν

(
S0[φ̄ν, φν] ±

SV [φ̄ν, φν]
)
, given by Eqs. (5.4) and (2.61) correspondingly (here the plus sign

corresponds to electrons and the minus sign to the ions). The functional integrals
may now be performed exactly. This leads to the inverse determinants of the corre-
sponding quadratic forms, cf. Eq. (2.63). Rewriting each determinant as the trace
of the logarithm, one finds for the effective action of the scalar potential V (r, t)

S[V ]=
∫

dx

[
− 1

4πe2

(
V cl, V q

)( 0 ∇2
r

∇2
r 0

)(
V cl

V q

)
+ i

∑
ν=i,e

Tr ln
(
Ĝ−1

0ν ∓V̂
)]
,

(6.4)
where the V̂ (r, t) matrix is given by Eq. (2.62). For the fermionic plasma, we
would obtain a minus sign in front of the trace logarithm, since the corresponding
fermionic integral is given by the determinant of the quadratic form, see Chapter
9. It is important to notice that both species of particles interact with the same
collective fields V cl,q(x).

We shall first focus on the classical fluctuationless dynamics of the scalar poten-
tial. To this end one needs to expand the action S[V ] up to first order in the quantum
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component of the potential V q(r, t). The classical component V cl is not assumed to
be small at this stage. Notice that there is no zeroth order term in the expansion of
Tr ln

(
Ĝ−1

0ν ∓ V̂
)
. Indeed, in the absence of V q the properly regularized φ-integral is

unity, due to the normalization identity (2.58), even in the presence of an arbitrary
V cl. The first-order term in V q takes the form

S[V ]= −2
∫

dx V q(x)

(∇2
r V cl(x)

4πe2
+ 〈ρ(x)〉

)
, (6.5)

where

〈ρ(x)〉 = i

2
Tr
{
Ĝe(x, x; V cl)− Ĝ i(x, x; V cl)

}
.

Here Ĝν(x, x ′; V cl) are the operators inverse to Ĝ−1
0ν ∓ V clσ̂1. They are therefore

solutions of the Dyson equations[
Ĝ−1

0ν ∓ V clσ̂1

]
◦ Ĝν = 1̂, (6.6)

which possess the causality structure, Eq. (2.51). Rewriting the Dyson equation
for the components of the Green functions, one finds for its retarded parts, cf.
Eq. (5.20), (

i∂R
t +

1

2mν

∇2
r ∓ V cl(x)

)
◦ GR

ν (x, x ′; V cl) = δ(x − x ′). (6.7)

The advanced components obey the same equations with advanced regularization
of the time derivative ∂R

t → ∂A
t . We shall assume that the classical electric potential

V cl(x) is a slow function of coordinates on the scale 1/kT , where kT is the charac-
teristic thermal momentum of particles. Under this assumption the Dyson equation
is solved using WT, leading to GR

ν (x, p; V cl) = [ε − k2/2mν ∓ V cl(x) + i0]−1.
Parametrizing the Keldysh components of the Green functions, by the two-point
distribution functions Fν(x, x ′), going to their WT Fν(x, p) and restricting the lat-
ter to the “mass-shells” εν(k, x) = k2/2mν ± V cl(x), one arrives at the two kinetic
equations for electrons and ions, cf. Eq. (5.51),[

∂R
t + vkν∇r ∓ ∇rV cl(r, t)∇k

]
F̃ν(r, t, k) = 0, (6.8)

where vkν = k/mν . We indicated the retarded regularization of the time deriva-
tive in the kinetic term here. Indeed, the way we derived the kinetic equation,
cf. Eq. (5.23), was by acting with the retarded (advanced) operator on the dis-
tribution function from the left (right). One can show that both of these operations
imply the ∂R

t operator acting from the left. If the distribution function approaches a
time-independent constant at the boundary of the phase-space r,k →∞, the total
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number of particles of each sort is conserved, ∂t

∫
dr

∑
k F̃ν(r, t, k) = 0. It must

be fixed by the condition of the global charge neutrality∫
dr

∑
k

[
F̃e(r, t, k)− F̃i(r, t, k)

] = 0. (6.9)

The plasma is called collisionless because of the absence of the collision integrals
on the right hand sides of Eqs. (6.8). This is a consequence of our assumption that
the V cl(x) is a slow field. In principle, it also contains fast components, which need
to be integrated out. Then the corresponding Dyson equations acquire self-energy
parts, originating from such fast components of the potential. The self-energy in
turn leads to the collision integral. The effect of such collisions is small, as long as
the plasma is sufficiently dilute, e2ρ

1/3
0 � T , where T is a characteristic kinetic

energy of the particles.
Provided solutions of Eqs. (6.7) and (6.8) are known, one may express 〈ρ(x)〉

through them to obtain a closed expression for the S[V ] effective action. This way
one finds

〈ρ(x)〉 = i

2

[
GK

e (x, x; V cl)− GK
i (x, x; V cl)

] = 1

2

∑
k

[
F̃e(x, k)− F̃i(x, k)

]
,

(6.10)

where we have used the fact that after WT, GK
ν = (GR

ν − GA
ν )Fν and also

GR
ν −GA

ν = −2π iδ(ε − k2/2mν ∓ V cl) to perform the energy integration.
Once we know to express all the terms in the S[V ] action (6.5) through the solu-

tions of the collisionless kinetic equations (6.8), we can close the loop and write
down the equation of motion for the scalar potential V cl(x). To this end notice that
the integral over V q(x) of the exponentiated action (6.5) enforces the functional
delta-function of the expression in the round brackets on the right hand side of
Eq. (6.5). This is nothing but the Poisson equation for the classical component of
the scalar potential, which in view of Eq. (6.10) takes the form

∇2
r V cl(x) = −2πe2

∑
k

[
F̃e(x, k)− F̃i(x, k)

]
(6.11)

(in our notation V has the dimensionality of energy, i.e. it is e times the electric
potential). The collisionless kinetic equations (6.8) which are coupled through the
common potential V cl, obeying the Poisson equation (6.11), are called Vlasov [68]
equations. As we have shown here, these equations correspond to the approxima-
tion where one keeps only the linear term in V q. Below we shall also retain terms
quadratic in V q to incorporate fluctuation effects. First let us investigate Vlasov
equations.
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6.2 Plasmons and Landau damping

We shall focus first on the linearized Vlasov equations, assuming that deviations
from the equilibrium distribution F̃ (1)

ν (x, k) = F̃ν(x, k) − F̃eq(ωkν) are small at
all times. Here ωkν = k2/2mν . According to the Poisson equation (6.11) this also
implies smallness of the potential V cl. Therefore, in the last term in the kinetic
equations (6.8) one may disregard deviations of the distribution function from
the equilibrium one. As a result, one obtains the homogeneous linear system of
equations[

∂R
t + vkν∇r

]
F̃ (1)
ν (x, k) = ±∇k F̃eq(ωkν)∇rV cl(x) ;
∇2

r V cl(x) = −2πe2
∑

k

[
F̃ (1)

e (x, k)− F̃ (1)
i (x, k)

]
.

We perform now the Fourier transformation from x = r, t to q = q, ω, find
F̃ (1)
ν (q, ω, k) = ∓V cl(q)q∇k F̃eq/(ω + i0 − vkνq) from the kinetic equation and

substitute it into the Poisson equation. A non-trivial solution of the latter exists
only if the following condition is satisfied:

q2

4πe2
+

∑
ν=e,i

�R
ν (q, ω) = 0, (6.12)

where

�R
ν (q, ω) =

1

2

∑
k

q∇k Feq(ωkν)

ω + i0− vkνq
=
∑

k

q∇knB(ωkν)

ω + i0− vkνq
(6.13)

is the retarded component of the polarization matrix. Here we took into account
that F̃eq(ωk) = 2nB(ωk)+ 1 and indicated the retarded regularization of the pole,
originating from the nature of the ∂t operator in the kinetic equations. Solutions of
Eq. (6.12), ω = ω(q), are dispersion relations of the plasma modes, i.e. combined
oscillations of the electric potential and the two distribution functions.

Let us first disregard dynamics of the ions, assuming them to be much heavier
than the electrons, m i � me. In this limit one may put �R

i → 0. Focusing on
the high-frequency dynamics, one may expand the denominator of �R

e in powers
of vkq/ω. Performing integration by parts and employing ∇k(vkeq) = q/me, one
finds

�R
e (q, ω) = − q2

meω2

∑
k

nB(ωke)

[
1+ 3(vkeq)2

ω2
+ · · ·

]
.

Employing that the average electron density is given by ρ0 = ∑
k nB(ωke) and

defining the plasma frequency as ωp =
√

4πe2ρ0/me, one finds from Eq. (6.12)

ω2 = ω2
p

[
1+ 〈v2

ke〉q2

ω2
+ · · ·

]
,
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where 〈v2
ke〉 =

∑
k nB(ωke)v2

ke/ρ0 is the electron mean square thermal velocity.
Solving this equation yields the dispersion relation of the longitudinal Langmuir
mode also known as the plasmon:

ωp(q) = ωp

(
1+ 〈v2

ke〉q2

2ω2
p

+ · · ·
)
. (6.14)

At first sight, the expansion over vkeq/ω seems to be perfectly justified at small

enough momenta, q � ωp/

√
〈v2

ke〉. However, as was realized by Landau [69], the
actual dispersion contains a small negative imaginary part, implying damping of
the plasma oscillations. It originates from the retarded regularization of the pole in
Eq. (6.13) and the relation

Im
1

ω + i0− vkeq
= −iπδ(ω − vkeq). (6.15)

For the case of the classical plasma, where nB(ωke) = e−(ωke−μe)/Te is the Maxwell
distribution, one finds

�R
e (q, ω) = − q2ρ0

meω2
[1+ · · · ]− iπρ0q

∑
kx
δ(ω − kxq/me) ∂kx e−k2

x/2meTe∑
kx

e−k2
x/2meTe

,

where kx is the direction along the q vector. Performing the integrations one finds
for qκ � 1, where κ = √

Te/4πe2ρ0 is the Debye–Huckel screening length,

ω̃p(q) = ωp

(
1+ 3

2
(qκ)2 + · · ·

)
− i�(q) ; �(q) =

√
π

8

ωp

(qκ)3
e
− 1

2(qκ)2 .

(6.16)
The Landau damping rate � is exponentially small at small q. It is not surprising,
thus, that the expansion in powers of q2, Eq. (6.14), missed the effect. As apparent
from the derivation, the fact that the plasmon is damped (rather than pumped) is
due to the fact that ∂kx nB < 0 at vx = ωp/q. That is, there are more electrons
moving slower than the phase velocity of the plasma wave than there are moving
faster. As a result, more electrons absorb energy from the plasmon than supply it.
If an inverted population is created with ∂kx nB > 0 it may lead to an instability of
the plasma oscillations.

6.3 Acoustic modes in plasma

A closer look at equation Eq. (6.12) shows that it has more than one solution. In
Fig. 6.1 we plotted Re�R

e (q, ω) as a function of ω at some fixed q � κ−1. As we
saw above, at large frequencies it is negative and is given by −q2ρ0/(meω

2). Yet
at ω = 0 it is positive and given by −me

∑
k ∂kx nB/kx = ρ0/Te. There is a point
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–

Fig. 6.1 (a) Real part of the retarded polarization operator �R
e (q, ω) vs. energy

ω. Two solutions of Eq. (6.12) correspond to the plasma mode ωp and the electron
acoustic mode ωea. (b) Collective modes of plasma oscillations: p, plasmons; e-a,
electron acoustic; i-a, ion acoustic. Dashed lines show overdamped modes.

where it changes sign, and for small q there is a solution of the dispersion equa-
tion (6.12) close to this point. It is called the electron acoustic mode, since at small
q its dispersion relation is linear, ωea(q) = veaq. The corresponding velocity vea is
found from the condition Re�R

e (q, veaq) = 0, i.e. −
∫

dk ∂kx nB/(mevea − kx) = 0,
where the integral is understood as the principal value. For the Maxwell distribu-
tion this yields vea ≈ 1.3

√
Te/me, i.e. it is of the order of the electron thermal

velocity [70]. At ω ≈ ωea one estimates Re�R
e (q, ω) ∼ (1 − ω/veaq)ρ0/T , see

Fig. 6.1. Let us look, however, at the imaginary part. With the help of Eq. (6.15) one
finds Im�R

e (q, veaq) ∼ mρ0∂kx nB|kx=mvea/
√

mT ∼ ρ0/T . Demanding�R
e (q, ω) =

−q2/(4πe2) ≈ 0, one finds that the Landau damping of the electron acoustic mode
is of the same order as its frequency. The mode is therefore overdamped and the
corresponding oscillations can’t be excited.

One can have an underdamped acoustic mode in the plasma, if one allows
for the heavy ion motion m i � me and assumes that the electronic tempera-
ture is much higher than the ionic one, Te � Ti. Then in the frequency range
q
√

Ti/m i � ω � q
√

Te/me the electron motion is adiabatic and one may approx-
imate Re�R

e (q, ω) ≈ ρ0/Te. From the point of view of the ions, this is still a
very high frequency and the ionic polarization operator is given by Re�R

i (q, ω) ≈
−q2ρ0/(m iω

2). For the real part of the dispersion equation (6.12) one thus finds

q2

4πe2
+ ρ0

Te
− q2ρ0

m iω2
= 0.

As a result one obtains the following dispersion relation of the ion acoustic mode:
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ω2
ia(q) = ω2

pi

q2

q2 + κ−2
, (6.17)

where ωpi = √
4πe2ρ0/m i � ωp is the ionic plasma frequency. At small

wavenumbers κq � 1 the dispersion relation is acoustic, ωia(q) = viaq, where
the ion-acoustic velocity is via = √

Te/m i . The sound velocity is determined by
the electron temperature and the ionic mass. One may now evaluate the damping
rate. A straightforward calculation yields

�ia(q) =
√
π

8
ωia(q)

[(
me

m i

)1/2

e−me/2mi +
(

Te

Ti

)3/2

e−Te/2Ti

]
, (6.18)

where the first term on the right hand side is damping by the electrons and the
second one is by the ions. This expression shows that the ion-acoustic mode may
indeed be underdamped if m i � me and Te � Ti. The modes of the two-component
plasma are schematically summarized in Fig. 6.1(b).

6.4 Random phase approximation

We shall develop now an alternative approach to the linearized dynamics of
the plasma modes which will allow us to discuss their fluctuations as well. To
this end we go back to the effective action (6.4) and expand it to second order
in both V cl and V q field components. To this end it is useful to notice that,
due to the normalization identity Z = 1, one has det[Ĝ−1

0ν ] = 1 and therefore
Tr ln

(
Ĝ−1

0ν∓V̂
) = Tr ln

(
1∓Ĝ0ν V̂

) = Tr ln
(
1∓Ĝ0ν(σ̂1V cl+V q)

)
. One expects that

the cross-term∼ V qV cl in the expansion contains the physics discussed in Sections
6.2 and 6.3. On the other hand, the quadratic term in V q is going to be responsible
for the thermal fluctuations of the plasma modes. Action (6.4) expanded to second
order may be written as a quadratic form:

S[V ]=
∫∫

dxdx ′ �V (x)T
[
ÛRPA(x, x ′)

]−1 �V (x ′). (6.19)

Its kernel is known as the (inverse) random phase approximation (RPA) interaction
potential and is given by[

ÛRPA(x, x ′)
]−1 = Û−1 + �̂e = δ(x − x ′)

4πe2

(
0 −∇2

r′
−∇2

r′ 0

)
+
(

0 �A
e (x, x ′)

�R
e (x, x ′) �K

e (x, x ′)

)
. (6.20)

From now on we assume that ions are infinitely heavy and disregard their dynam-
ics (this implies that �̂i → 0), focusing exclusively on electrons. The electron
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polarization matrix �̂e(x, x ′) has the standard causality structure of a bosonic
self-energy, see Eq. (5.17). Its retarded component is given by

�R
e (x, x ′) = − δ〈ρ(x)〉

δV cl(x ′)

∣∣∣∣
V cl=0

= 1

2i
Tr
{
Ĝ0(x, x ′)σ̂1Ĝ0(x

′, x)
}
, (6.21)

where the first equality here follows from the comparison of Eqs. (6.20) and (6.5),
while the second is a result of the expansion of Tr ln(1 − ĜV̂ ) to second order in
V̂ . This is a response function of the average density at a space-time point x on a
perturbation of the classical external potential at a point x ′. On physical grounds
one expects such a response to be retarded, i.e. �R

e (x, x ′) ∼ θ(t − t ′). This is the
reason for the superscript R. Indeed, straightforward matrix algebra leads to

�R
e (x, x ′) = 1

2i

(
GK

0 (x, x ′)GA
0 (x

′, x)+ GR
0 (x, x ′)GK

0 (x
′, x)

)
, (6.22)

where the retarded nature of �R
e (x, x ′) is apparent from the causality properties of

the Green functions. To make the structure of the action (6.19) symmetric, we have
also introduced �A

e (x, x ′) ∼ θ(t ′ − t). It is given by

�A
e (x, x ′) = 1

2i
Tr
{
Ĝ0Ĝ0σ̂1

}
= 1

2i

(
GK

0 (x, x ′)GR
0 (x

′, x)+ GA
0 (x, x ′)GK

0 (x
′, x)

)
.

(6.23)
Finally, the Keldysh component, obtained by the expansion of the action (6.4) to
second order in V q, is

�K
e (x, x ′)= 1

2i
Tr
{
Ĝ0(x, x ′)Ĝ0(x

′, x)
}
= 1

2i

[
GK

0(x, x ′)GK
0(x

′, x)

−(GR
0(x, x ′)−GA

0(x, x ′))(GR
0(x

′, x)−GA
0(x

′, x))
]
, (6.24)

where we have used the fact that due to causality GR
0 (x, x ′)GR

0 (x
′, x) = 0 (the

same is true for the advanced Green functions).
For a translationally invariant system the components of the polarization matrix

�̂ can be evaluated using the Fourier transformation and the explicit form of the
bare Green functions, Eq. (5.7). This way one finds

�R(A)
e (q, ω) = 1

2

∑
k

F̃e(k+ q)− F̃e(k)
ω ± i0+ ωk − ωk+q

; (6.25a)

�K
e (q, ω) = iπ

∑
k

δ(ω + ωk − ωk+q)
[
F̃e(k)F̃e(k+ q)− 1

]
, (6.25b)

where we employed that GK
0 = F̃e(GR

0 − GA
0 ) and GR

0 − GA
0 = −2π iδ(ε − ωk) to

perform the energy integrations with the help of the delta-function. For an equilib-
rium plasma F̃e(k) = Feq(ωk) = coth(ωk − μe)/2Te and one finds FDT relation
between the components of the polarization matrix:
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�K
e (q, ω) = coth

ω

2Te

[
�R

e (q, ω)−�A
e (q, ω)

]
. (6.26)

Notice that, though the particle distribution function contains a finite chemical
potential, μe, the distribution function for the real boson field V turns out to have
zero chemical potential. This must be the case, of course, for a real field, see
Section 5.4.

Going back to the RPA action (6.19), one notices that the fluctuations of the
classical component V cl of the scalar potential are especially strong if [U−1

RPA]R =
U−1 +�R

e ≈ 0. In the Fourier representation, this condition boils down to

q2

4πe2
+
∑

k

nB(ωk+q)− nB(ωk)

ω + i0+ ωk − ωk+q
= 0, (6.27)

where we substituted Feq(ωk) = 2nB(ωk) + 1. If q � kT, where kT = √
Teme

is a typical thermal momentum, one may expand ωk+q ≈ ωk + vkq, while
nB(ωk+q) ≈ nB(ωk) + q∇knB(ωk) and arrive exactly at the dispersion equation
(6.12) of the plasma mode. The unexpanded version (6.27) probably offers a clearer
explanation of Landau damping. Indeed, the imaginary part of the retarded polar-
ization operator corresponds to the energy conservation delta-function ωk+q =
ωk + ω. Therefore it describes a real (i.e. energy-conserving) transition of a parti-
cle with an initial momentum k, which absorbs a quantum of plasma oscillation
with momentum q and energy ω = ωp(q) and ends up in the state k + q.
For small wavevectors q this is only possible if the initial momentum k is suf-
ficiently large, so that vk ≈ ωp/q, and thus the corresponding initial energy
v2

k/2me ≈ ω2
p/(2meq2) = Te/2(qκ)2, see Fig. 6.2. The occupation numbers of

such high energy states are exponentially small, and therefore so is the number
of real transitions. Of course, there are also stimulated transitions, where particles
emit energy ωp into the plasma wave. Those, however, require even higher initial
particle energy and their number is correspondingly smaller (in equilibrium). The
difference between stimulated emissions and absorptions is described by the factor
nB(ωk+q)− nB(ωk) in Eq. (6.27).

In a vicinity of the plasma frequency ω ≈ ωp(q) one may use the analysis of
Section 6.2 to approximate

[
U R(A)

RPA (q, ω)
]−1 ≈ q2

4πe2

ω2 − ω2
p(q)± 2i�(q) ω

ω2
p

; (6.28)

[
U K

RPA(q, ω)
]−1 ≈ coth

ω

2Te

q2

4πe2

4i�(q) ω
ω2

p

≈ q2

4πe2

8iTe�(q)
ω2

p

,

where we employed that in the classical plasma Te � ωp. One can now discuss the
Gaussian RPA action (6.19). To this end let us introduce the longitudinal electric
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Fig. 6.2 Landau damping of a plasmon with momentum q by the resonant tran-
sition of an electron from state k to state k+ q. The thermal electrons determine
the plasmon spectrum ωp(q), but do not participate in damping.

field E = −∇rV/e and rewrite the action (6.19) in terms of its complex spatial
Fourier components Eq(t) = iqV (q, t)/e:

S[E]=
∑

q

∫
dt

4πω2
p

(
Ecl

q ,Eq
q

)∗( 0 −∂2
t − ω2

p + 2�∂t

−∂2
t − ω2

p − 2�∂t 8iTe�

)(
Ecl

q

Eq
q

)
.

(6.29)

Following Section 4.2, it is convenient to split the term quadratic in the quantum
component, Eq

q, with the help of the Hubbard–Stratonovich transformation, using
a longitudinal auxiliary field fq(t):

e
−∑

q

∫
dt 8Te�

4πω2
p
|Eq

q|2 =
∫

D[f] e−(4πω
2
p)
−1 ∑

q

[
(8Te�)

−1|fq|2−i(f ∗q Eq+E∗qfq)

]
. (6.30)

The remaining action is linear in Eq
q and (Eq

q)
∗. The corresponding functional inte-

grals result in the delta-function of the following stochastic equation of motion:

Ëcl
q = −ω2

p(q)E
cl
q − 2�(q)Ėcl

q + fq(t) (6.31)

as well as its complex conjugate. The stochastic force on the right hand side is
Gaussian white noise with zero mean and a second moment given by〈

f ∗q (t)fq′(t
′)
〉 = 16πω2

pTe�(q)δq,q′δ(t − t ′). (6.32)

The fact that the variance is proportional to the damping is a manifestation of the
FDT. According to Eq. (6.31) the electric field exhibits an oscillatory motion at the
plasma frequency ωp(q) with viscous friction given by the Landau damping. There
is also a corresponding stochastic force exciting the oscillations. In the long-time
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limit the fluctuations and the dissipation combined lead to a stationary probability
distribution of finding a certain electric filed amplitude |Ecl

q | and its time derivative

|Ėcl
q |. Such a distribution obeys the Fokker–Planck equation, which is discussed in

Chapter 4. As shown there, see Eq. (4.31), the stationary solution of the Fokker–
Planck equation, corresponding to Eqs. (6.31) and (6.32), is

P(|Ecl
q |, |Ėcl

q |) ∝ exp

{
−|Ė

cl
q |2 + ω2

p|Ecl
q |

8πω2
pTe

}
. (6.33)

This is nothing but the classical Maxwell–Boltzmann distribution function,
describing the electric field noise. The latter is induced by the thermal fluctuations
of the plasma close to the plasma frequency.

6.5 Beyond linearized dynamics

The long wavelength fluctuations of the electronic plasma are dominated by the
plasmons, which behave as quasiparticles with the dispersion relation ωp(q). Their
linearized dynamics is governed by the Keldysh RPA action (6.29). A (moderately)
excited plasma may be described by a non-equilibrium distribution function of the
plasmons F̃p(x, q), which is a slow function of the space-time location x . Our
goal is to derive a kinetic equation which describes evolution of such a distribution
function. To this end we need to discuss what is the main source of non-linearity
in the plasmon dynamic. One candidate is three- or four-plasmon collisions. The
corresponding processes could be obtained by expanding the action (6.4) to the
third or fourth powers in the potential V . The three-plasmon collisions can not lead
to real (energy conserving) processes, due to the energy gap ωp. Indeed, to split
one plasmon into two new ones, one needs at least the energy 2ωp, which an initial
long wavelength plasmon does not have. As a result, three-plasmon collisions are
virtual processes, which only lead to a renormalization of the dispersion relation.
The four-plasmon collisions can be energy conserving. One may show, though, that
the corresponding cross-section is small.

Instead, the most important process is interaction of the plasmons with the reso-
nant electrons. On the level of linearized dynamics those are exactly the processes
which lead to Landau damping, Fig. 6.2. At a first glance, considering both plas-
mons and electrons as independent entities looks like a double-counting. Indeed,
we have derived the plasmon dynamics, e.g. Eq. (6.4), by completely integrating
out the electronic (and ionic) degrees of freedom. It is useful, however, to step back
and acknowledge that different groups of electrons played very different roles in
this process. The real part of the polarization operator which leads to the plasmon
dispersion relation, i.e. to the inertial terms ∂2

t +ω2
p(q) in the plasmon action (6.29),
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is primarily given by thermal electrons with k � kT e = √
Teme. On the other

hand, the Landau damping is entirely coming from the fast resonant electrons with
k ∼ √

Teme/(κq) � kTe . Thus our program is to (i) split the electronic degrees
of freedom into slow (thermal) and fast (resonant) ones, see Fig. 6.2; (ii) integrate
out slow electrons and arrive at the undamped plasmon dynamics; (iii) treat the
resulting long wavelength plasmons and remaining fast electrons as independent
degrees of freedom; and (iv) derive coupled kinetic equations for their respective
distribution functions F̃p(x, q) and F̃e(x, k), where |q| < κ−1 � kTe < |k|.

Kinetic equations for plasmons may be directly read out from the action (6.29).
To this end we compare it with the real boson action (5.28) (in the present case
ω2

p(q) ≈ ω2
p + 〈v2

k〉q2 → ω2
p − 〈v2

k〉∇2
r ) and treat the imaginary part of the

polarization operator �̂e as the self-energy of the bosonic field (more precisely,
�̂p = −(2e2/q2) Im �̂e ). The real part of the polarization operator went into
the definition of the plasmon dispersion. The corresponding kinetic equation is
given by Eq. (5.54) and the collision integral is Eq. (5.55). To write down the lat-
ter we need to employ expressions (6.25) for the components of the polarization
matrix with the understanding that the electronic distribution function F̃e may be a
non-equilibrium one. This way we find[
∂t + vqp∇r −∇rωp(x)∇q

]
F̃p(x, q)= 2π2e2ωp(q)

q2

∑
k>kTe

δ(ωp(q)+ ωk − ωk+q)

×
[

F̃e(x, k+ q)F̃e(x, k)− 1+ F̃p(x, q)
(
F̃e(x, k+ q)− F̃e(x, k)

)]
, (6.34)

where ω2
p(x) = (2πe2/me)

∑
k[F̃e(x, k)− 1] and vqp = ∇qωp(q) = q〈v2

k〉/ωp.

We turn now to the kinetic equation for the fast electron distribution function F̃e.
It is given by Eq. (5.51), while the collision integral is Eq. (5.47). To find the proper
self-energy one notices that the interaction of the fast resonant electrons with the

plasmon field is described by the action SV =
∫

dx �̄φeV̂ �φe, Eq. (2.61). There is no
significant vertex renormalization due to the integrated-out slow electrons. On the
other hand, the propagator of the V -field is renormalized and is given by the RPA
interaction potential (without Landau damping). Diagrams for the self-energy are
plotted in Fig. 6.3 and the corresponding expressions are

�R(A)
e (x, x ′) = i

2

[
GK

0 (x, x ′)U A(R)
RPA (x ′, x)+ GR(A)

0 (x, x ′)U K
RPA(x

′, x)
];

�K
e (x, x ′) = i

2

[
GK

0 (x, x ′)U K
RPA(x

′, x)− (GR
0 − GA

0 )(U
R
RPA −U A

RPA)
]
,

where U R(A)
RPA = (4πe2ω2

p/q2)[(ω± i0)2 − ω2
p]−1, cf. Eq. (6.28), while the Keldysh

component is U K
RPA = U R

RPA ◦ Fp − Fp ◦ U A
RPA. Once again we have used the fact

that GR(A)
0 (x, x ′)U R(A)

RPA (x ′, x) = 0, due to causality. Performing WT, putting the
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x x'

(a)

x x'

(b)

x x'

(c)

x x'

(d)

x x'

(e)

Fig. 6.3 Self-energy of the resonant electrons due to interactions with the plas-
mons: �R

e (x, x ′) is given by diagrams (a) and (b); �K
e (x, x ′) – by diagrams

(c)–(e). The straight lines are electronic Green functions G0, the wavy lines
are RPA plasmon propagators URPA. Full lines denote classical and dashed lines
quantum “legs”.

distribution functions on “mass-shell” according to Eqs. (5.48) and (5.53) for Fe

and Fp, respectively, and integrating over the plasmon energy ω with the help of
the delta-function, one obtains the kinetic equation

[
Z̃−1∂t + ṽke∇r − ∇rRe�R

e (x, k)∇k

]
F̃e(x, k) =

1/κ∑
q

2π2e2ωp(q)
q2

×
{
δ(ωk + ωp(q)− ωk+q)

[
F̃e(k+ q)F̃p(q)− 1+ F̃e(k)

(
F̃e(k+ q)− F̃p(q)

)]
+ δ(ωk− ωp(q)− ωk−q)

[
F̃e(k− q)F̃p(q)+1− F̃e(k)

(
F̃e(k− q)+ F̃p(q)

)]}
,

(6.35)

where we have omitted space-time arguments x on the right hand side and changed
the summation variable q → −q in the last term. Here Z̃−1 = 1 − ∂εRe�R

e

and ṽke = k2/(2me) + ∇kRe�R
e . Equations (6.34) and (6.35) provide the kinetic

theory of the coupled system of plasmons and resonant high-energy electrons
[71, 72, 73, 15]. Despite having collision integrals on the right hand sides, these
equations still describe collisionless plasma. Indeed, their right hand sides describe
only interactions between fast electrons and slow fluctuations of the longitudi-
nal electric field – plasmons. Collisions between the electrons are not included.
Unlike the Vlasov equations, which treat the electric field as a deterministic one,
Eqs. (6.34) and (6.35) take into account fluctuations of both electron and plasmon
degrees of freedom.

To simplify these equations let us introduce non-equilibrium occupation num-
bers F̃p(x, q) = 2np(x, q) + 1 for plasmons and F̃e(x, k) = 2ne(x, k) + 1 for
electrons. Due to the classical nature of the problem np � 1 and ne � 1. One
may thus neglect terms quadratic in ne. Restricting ourselves to a spatially uniform
situation, we find for the system of coupled kinetic equations
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∂t np(q) = 4π2e2ωp

q2

∑
k>kTe

δωp(q)+ωk−ωk+q

[(
ne(k+ q)− ne(k)

)
np(q)+ ne(k+ q)

];
∂t ne(k) =

1/κ∑
q

4π2e2ωp

q2

{
δωk+ωp(q)−ωk+q

[
np(q)

(
ne(k+ q)− ne(k)

)+ ne(k+ q)
]

+ δωk−ωp(q)−ωk−q

[
np(q)

(
ne(k− q)− ne(k)

)− ne(k)
]}
,

where we put Z̃ = 1 for simplicity. Notice that the Maxwell distribution for elec-
trons, ne(k) = e−(ωk−μe)/Te , and the Planck distribution for plasmons, np(q) =
nB(ωp(q)), are equilibrium solutions of the coupled system. One can now use the
scale separation between long wavelength plasmons and fast resonant electrons,
i.e. q � κ−1 � kTe � k to expand in powers of q. While in the equation for np first
order is sufficient, in the equation for ne one should expand up to the second one.
This procedure leads to

∂t np(t, q) = −2
[
�(q; ne) np(t, q)− L(q; ne)

]; (6.36)

∂t ne(t, k) = ∇kμ

[
Dμν(k; np)∇kνne(t, k)− jμ(k) ne(t, k)

]
, (6.37)

where μ, ν = x, y, z. The plasmon damping coefficient and the fast electron
diffusion tensor are given by

�(q; ne) = −2π2e2ωp(q)
q2

∑
k>kTe

δ(ωp(q)− vkeq)qμ∇kμne(t, k); (6.38)

Dμν(k; np) = 4π2e2
1/κ∑
q

δ(ωp(q)− vkeq)
qμqν

q2
ωp(q) np(t, q). (6.39)

These quantities originate from the stimulated emission and absorption of plas-
mons by the resonant electrons. The spontaneous emission processes give rise to
the second terms on the right hand sides of Eqs. (6.36) and (6.37). They read as

L(q; ne) = 2π2e2ωp(q)
q2

∑
k>kTe

δ(ωp(q)− vkeq) ne(t, k); (6.40)

jμ(k) = −4π2e2
1/κ∑
q

δ(ωp(q)− vkeq) ωp(q)qμ/q2. (6.41)

These terms are necessary for the equilibrium distributions to be solutions of the
kinetic equations. Under the adopted approximations the Maxwell distribution for
the fast electrons and the classical equipartition for plasmons neq

p (q) = Te/ωp(q)
are such equilibrium solutions of Eqs. (6.36) and (6.37). In equilibrium �(q) =
�(q; neq

e ) is the already familiar linear Landau damping (6.16). It may be modified
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if the slope of the electronic distribution∇kne(t, k) differs from the equilibrium one
(see Section 6.6). The fact that equation (6.37) for the fast electron distribution has
the form of the continuity relation reflects conservation of the number of electrons
inside the resonant region, ∂t

∑
kne(t, k) = 0 (as opposed to the number of plas-

mons, which is not conserved). To prove this relation one has to perform integration
by parts in Eq. (6.37) and assume that the particle current vanishes in the region of
thermal electrons, Jμ(k)= jμne−Dμν∇kνne=0 for k < kTe . This is indeed the case
if the non-resonant part of the electron distribution is kept in thermal equilibrium,
for example due to collisions. Under this assumption Eqs. (6.36) and (6.37) also
conserve the total momentum as well as the total energy of the combined system
of plasmons and the resonant electrons, i.e. ∂t

[∑
qq np(t, q)+∑

kk ne(t, k)
] = 0

and ∂t
[∑

qωp(q) np(t, q)+∑
kk2/(2m) ne(t, k)

] = 0.
For distributions which are isotropic in momentum space one may write

Dμν(k; np)= kμkν
k2

D‖(k)+
(
δμν − kμkν

k2

)
D⊥(k) ; j(k)= j‖

k
k
. (6.42)

Performing the angular integrations, one finds for the corresponding kinetic
coefficients

D‖(k) =
e2ω3

pm3
e

k3

∫ 1/κ

ωpme/k

dq

q
np(t, q) ; �(q) = e2ω2

pm2
e

2q3
ne

(
t,
ωpme

q

)
;

D⊥(k) = e2ωpme

k

∫ 1/κ

ωpme/k
q dq np(t, q)

(
1− ω2

pm2
e

k2q2

)
; (6.43)

L(q) = e2ωpme

2q3

∫ ∞

ωpme/q
k dk ne (t, k) ; j‖(k) = −e2ω2

pm2
e

k2
ln

k

κωpme
.

Notice that if the plasmon occupation number decays slower than 1/q2 there is a
strong inequality D⊥ � D‖, with the former being dependent on details of the
cutoff at q ∼ 1/κ . As a result, the fast diffusive relaxation first takes place in
the direction perpendicular to k. Diffusive relaxation in the parallel direction is
much slower and therefore it is D‖ which is relevant for kinetics. In equilibrium
the parallel diffusion constant is D‖(k) = (e2ω2

p Tem3
e/k3) ln(k/κωpme), i.e. it

depends on the cutoff only logarithmically and is therefore universal. One may
check then that D‖(k)∂kneq

e (k) = j‖(k)n
eq
e (k) and �(q)neq

p (q) = L(q) , as it should
be according to Eqs. (6.36) and (6.37).

6.6 Non-linear Landau damping

Consider a spatially uniform and momentum isotropic plasma, where the plasmon
modes are initially (t = 0) excited above the thermal population, np(0) � neq

p

for the range of the wavenumbers q � κ−1. It is convenient to choose
√
ωpme =
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kTe/κ as a unit of momentum and e2√ωpme =

√
2Ryωp as a unit of energy,

where Ry is the Rydberg constant. In these units q � 1 � k, and the radial part of
Eqs. (6.36) and (6.37) with the kinetic coefficients (6.43) takes the form

ṅp(t, q) = −2�(q; ne) np(t, q) ; ṅe(t, k) = k−2∂k
[
k2 D‖(k; np) ∂kne(t, k)

]
,

�(q; ne) = 1

2q3
ne(t, q−1) ; D‖(k; np) = 1

k3

∫ 1/κ

1/k

dq

q
np(t, q), (6.44)

where we have neglected spontaneous emission terms, since they are of no impor-
tance in the strongly non-equilibrium case. One may look for scaling solutions
of these equations in the following form: np(t, q) = up(t) fp(q) and ne(t, k) =
ue(t) fe(k). It is then easy to see that up(t) = ue(t) = t−1 and fe(k) = k−3.

One then notices that k∂k[3k−5
∫ 1/κ

1/k (dq/q) fp(q)] = 1, from where it follows that

fp(q) = (5/3) q−5 ln(1/κq). Transforming back to physical units, one finds for the
corresponding scaling solution of Eqs. (6.44)

np(t, q) = 5

3 t

4πρ0m

q5
ln

1/κ

q
; ne(t, k) = 1

ωp t

4πρ0

k3
. (6.45)

Such a solution is only possible once np(t, κ−1) < np(0), i.e. t � t0, where
t0 = ρ0mκ5/np(0). The interval of plasmon momenta where the scaling solu-
tion holds is q0(t) < q < κ−1, where the boundary q0(t) is determined by
np(t, q0(t)) = np(0), i.e. q0(t) ∝ (t np(0))−1/5. The corresponding scaling interval
for the resonant electrons is kTe < k < ωpme/q0(t). The plasmon occupation
numbers for q < q0(t) stay approximately constant, given by np(0), until the
time when q = q0(t). At a later time they decay as 1/t according to Eq. (6.45).
As time increases past t0 the scaling interval for plasmons grows towards smaller
momenta (“red” shift), while for the resonant electrons it grows towards the larger
momenta (“blue” shift). The energy of the plasmon modes in the scaling interval
Ep =

∫ 1/κ
q0(t)

q2dq ωp np(t, q) ∼ t−1q−2
0 (t), i.e. it decreases with time as Ep ∼ t−3/5

at t > t0. The same is true regarding the energy of the resonant electrons in
their respective scaling interval Ee =

∫ ωpme/q0
kTe

k2dk (k2/2m) ne(t, k) ∼ t−3/5. The
“missing” energy flows through the upper boundary of the electron scaling inter-
val ωpme/q0(t) towards larger momenta. There is a corresponding particle flow
through this boundary. Indeed, the total number of resonant electrons in the scaling
interval is Ne =

∫ ωpme/q0
kTe

k2dk ne(t, k) ∝ ρ0(ωpt)−1 ln(1/κq0(t)), i.e. it decays as

Ne ∼ t−1 ln(t/t0) .
One may show that the flux of particles and heat through the upper bound-

ary of the scaling interval precisely accounts for the “missing” electrons and
energy. If these high-energy electrons leave the system due to some mechanism
of escape, then the relaxation of an initially non-equilibrium plasmon distribution



114 Dynamics of collisionless plasma

np(0) results in a slow cooling of the plasma. Indeed, the plasmon energy is chan-
neled to the hot resonant electrons. The latter then leave the system, taking away
the energy of the non-equilibrium plasmons as well as their own kinetic energy.
Thus, after eventual equilibration (e.g. due to collisions) the remaining particles
have a lower temperature than that before the plasmon excitation.

The exponents of the scaling solution (6.45) depend on the details of interactions
between plasmons and resonant electrons, as well as on the system dimensionality
and the dispersion relation of the participating quasiparticles. However, the exis-
tence of the scaling interval of momenta and a power-law distribution function
within this interval is a very general phenomenon. It was called wave turbulence
and found in a great variety of systems [74].

The observation that the plasmon occupation decays as np ∼ 1/t at long times
is rather robust. It is based on the fact that ṅp ∼ −∇kne np and ṅe ∼ ∇k(np ∇kne).
Then the solution np ∝ ne ∼ 1/t is to be expected in a broad range of parameters.
It is one of the manifestations of non-linear Landau damping. In its essence,
deviations of the resonant electron distribution function from the equilibrium one
invalidate the exponential plasmon relaxation np ∼ e−2�t and transform it to a
much slower, power-law decay.



7

Kinetics of Bose condensates

This chapter is devoted to the dynamics of Bose gases in the presence of a
condensate. We derive a system of coupled equations for the condensate wave-
function and the distribution function of above-the-condensate quasiparticles. We
also discuss quasiparticle fluctuations, which lead to stochastic Langevin forces
acting on the condensate.

7.1 Gross–Pitaevskii equation

The phenomenon of Bose–Einstein condensation is associated with the fact that the
largest eigenvalue N0 of the density matrix operator ρ̂(r, r′) acquires a macroscop-
ically large value [66]

∫
dr′ρ̂(r, r′)�0(r′) = N0�0(r). We first consider the case

where almost all particles belong to the condensate, meaning that N − N0 � N ,
where N is the total number of bosons. This is the case if the gas is sufficiently
dilute, a3

s ρ � 1, where as is the scattering length, ρ is the density and the system
is at equilibrium at a temperature which is much less than the critical temperature
of Bose–Einstein condensation, T � Tc. Under these conditions the condensate
wavefunction may be found as a stationary field configuration of the bosonic action
S = S0 + Sint given by Eqs. (5.9) and (5.13):

S0 =
∫

dr dt
(
φ̄cl, φ̄q

)( 0 i∂t + ∇2
r

2m − V cl

i∂t + ∇2
r

2m − V cl 0

)(
φcl

φq

)
; (7.1)

Sint = −g

2

∫
dr dt

[
φ̄qφ̄clφclφcl + φ̄clφ̄qφqφq + c.c.

]
, (7.2)

where V cl(r, t) is an external potential, e.g. of an optical or magnetic trap. The
interaction parameter g is related to the s-wave scattering length as as g = 4πas/m
[66]. To find a stationary configuration of the action we notice that, according
to (2.53), there are no terms in the action that have zero power of both φ̄q and

115
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φq. The same is obviously true regarding δS/δφ̄cl and δS/δφcl. As a result two of
the saddle point equations,

δS

δφ̄cl
= 0 ; δS

δφcl
= 0, (7.3)

may always be satisfied by

�q = �̄q = 0, (7.4)

irrespective of what the classical component, �cl = �0, is. By the capital �cl(q)

we denote solutions of the stationary point equations. Under the condition (7.4) the
second pair of stationary point equations takes the form

δS

δφ̄q
=
(

i∂t + 1

2m
∇2

r − V cl(r, t)− g

2
|�0|2

)
�0 = 0; (7.5)

δS

δφq
=
(
−i∂t + 1

2m
∇2

r − V cl(r, t)− g

2
|�0|2

)
�̄0 = 0.

This non-linear equation, called the time-dependent Gross–Pitaevskii equation,
determines the condensate wavefunction �0(r, t), provided some initial and
boundary conditions are specified. The resulting macroscopic wavefunction must
accommodate (almost) all particles, which dictates the normalization condition∫

dr |�0(r, t)|2 = 2N . (7.6)

The factor of two on the right hand side is associated with our definition of
the Keldysh rotations, Eq. (2.39), and the resulting fact that the expectation
value of the two classical fields is twice that of the occupation number, 〈φclφ̄cl〉
∼ 2nB + 1.

In the case of a static external potential V cl(r) one may look for a solu-
tion of Eq. (7.5) in the form �0(r, t) = e−iμt�0(r), where �0(r) satisfies the
time-independent Gross–Pitaevskii equation(

1

2m
∇2

r − V cl(r, t)+ μ− g

2
|�0|2

)
�0 = 0 (7.7)

and the chemical potential μ is chosen to satisfy the normalization condition (7.6).
In a particular case of an adiabatically smooth potential, one may disregard spa-
tial gradients, finding |�0(r)|2 = 2(μ − V cl(r))/g, if the right hand side of this
expression is positive, and �0 = 0 otherwise. This is the so-called Thomas–Fermi
approximation for the condensate solution in a trap. Once again, the chemical
potential μ is determined from Eq. (7.6), where the integral runs over the region
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where V cl(r) < μ. In the absence of an external potential V cl = 0 one finds
|�0|2 = 2μ/g and thus μ = ρg, where ρ is the density of the Bose gas.

Let us investigate now small dynamical fluctuations around the uniform con-
densate solution. To this end we write �0(r, t) = e−iμt

(
�0 + ϕ(r, t)

)
, where

|�0|2 = 2μ/g = 2ρ. We then substitute it into the time-dependent Gross–
Pitaevskii equation (7.5) and linearize it with respect to ϕ. As a result one finds
a pair of linear homogeneous differential equations for ϕ and ϕ̄:

i∂tϕ + 1

2m
∇2

rϕ −
g

2
|�0|2ϕ − g

2
�2

0ϕ̄ = 0; (7.8)

−i∂t ϕ̄ + 1

2m
∇2

r ϕ̄ −
g

2
|�0|2ϕ̄ − g

2
�̄2

0ϕ = 0.

Performing a Fourier transformation, one finds the algebraic relation(
ω − q2/(2m)− g

2 |�0|2 − g
2�

2
0

− g
2 �̄

2
0 −ω − q2/(2m)− g

2 |�0|2
)(

ϕ(q, ω)
ϕ̄(q, ω)

)
= 0, (7.9)

which may be satisfied only if the determinant of the matrix on its left hand side is
zero. This way one finds the spectrum of the small fluctuations of the condensate:

ω2 =
(

q2

2m
+ g

2
|�0|2

)2

−
(g

2

)2 |�0|4 =
(

q2

2m

)2

+ q2

m

g

2
|�0|2. (7.10)

This is the celebrated Bogoliubov dispersion relation, which may be written as

ωB(q) =
√

c2q2 +
(

q2

2m

)2

. (7.11)

For small wavenumbers the excitations are of an acoustic nature, ωB(q) = cq ,
where the speed of sound c is given by c2 = g|�0|2/2m = gρ/m. At large
wavenumbers the excitation spectrum approaches that of the usual particles,
ωB(q) = q2/(2m) + mc2 + O(q−2). Notice that the linearity of the spectrum at
small wavenumbers originates from the presence of the off-diagonal terms in the
matrix (7.9), which assumes a fixed phase of the condensate wavefunction. The
latter assumption is not true for low-dimensional systems, where the phase fluctu-
ations destroy the phase coherence at long distances and times. Nevertheless the
T = 0 spectrum of the long wavelength excitations is still linear [75] even in these
cases.

It is convenient to parametrize the condensate wavefunction with its amplitude
and phase as �0 = √

2ρ0 eiθ . Then the imaginary and real parts of the Gross–
Pitaevskii equation (7.5) acquire the form
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∂tρ0 +∇r
(
ρ0∇rθ/m

) = 0; (7.12)

∂tθ = ∇2
r
√
ρ0

2m
√
ρ0
− (∇rθ)

2

2m
− V cl − gρ0. (7.13)

The first equation here may be identified as the continuity relation for the conden-
sate density and current, ∂tρ0 + div j0 = 0. Acknowledging that the condensate
current is given by the product of its density and the superfluid velocity j0= ρ0vsf,
one finds for the latter vsf = ∇rθ/m. Neglecting then the density gradients,
Eq. (7.13) is recognized as the Euler equation for the superfluid velocity of the
condensate ∂t vsf + ∇r

(
v2

sf/2 + μ/m
) = 0, where μ = V cl + gρ0 is the local

chemical potential.

7.2 Quasiparticles

The Gross–Pitaevskii approach is adequate when most of the particles belong
to the condensate and the relative number of above-the-condensate excitations
is small. This is the case in equilibrium at temperatures much below the crit-
ical temperature of the Bose condensation, Tc ∝ ρ2/3/m. At temperatures of
the order of the critical one, or in a non-equilibrium situation, one can’t neglect
above-the-condensate quasiparticles. The quasiparticles are characterized by their
distribution function F̃(r, t, k), which evolves according to a kinetic equation. Our
goal thus is to describe the system with the complex wavefunction of the con-
densate �0(r, t) along with the quasiparticle distribution function F̃(r, t,k). The
condensate wavefunction obeys a generalized Gross–Pitaevskii equation, which
includes condensate interactions with above-the-condensate quasiparticles. The
distribution function obeys the kinetic equation, which is coupled to the conden-
sate dynamics [76]. This system of equations is ideologically similar to the Vlasov
equations for plasma, see Section 6.1. Here instead of the Poisson equation for the
real scalar potential V (r, t) we have the Gross–Pitaevskii equation for the complex
wavefunction �0(r, t). As in the case of a plasma, there is a lot of information
in these equations even with the collisionless form of the kinetic equation. As a
next step (similar to what is done in Section 6.4) one may include stochastic terms
in the generalized Gross–Pitaevskii equation, which are due to the quasiparticle
fluctuations.

To implement this program we split the complex field φ(r, t) into slow �(r, t)
and fast ϕ(r, t) components. The former describes the condensate, while the latter
describes above-the-condensate quasiparticles. Since away from equilibrium the
condensate is a dynamic variable, the boundary between the two is somewhat
arbitrary and itself may be a slow function of time. We thus write

φcl(x) = e−iK(x)
[
�0(x)+ϕ(x)

] ; φq(x) = e−iK(x)
[
�q(x)+ϕq(x)

]
, (7.14)
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where x = r, t . The yet unspecified local phase K(x) serves to fix a particular
gauge. We shall choose K(x) to make the semiclassical condensate wavefunction
�0(x) as slow as possible. For example, in equilibrium K = μt and �0 is static.
Away from equilibrium the complex function �0(x) can’t be brought to a static
form by a choice of phase. Nevertheless, proper choices of K(x) make the scale
separation of the degrees of freedom well justified. We shall return to this issue in
Section 7.6.

Substituting Eq. (7.14) into the action (7.1), (7.2), one obtains the action in terms
of the condensate variables �0 and �q as well as the quasiparticle fields ϕ and ϕq.
To derive semiclassical equations governing the condensate dynamics it is suffi-
cient to keep only the terms with zero or first power of �q. The interaction action
(7.2) brings a host of terms which may be classified as follows.

(i) Those containing four condensate fields �̄q�̄0�0�0 – they are part of the
Gross–Pitaevskii action.

(ii) There are no terms with three condensate fields. Indeed, such terms are neces-
sarily linear in the fast fields ϕ or ϕq, and therefore can not satisfy energy and
momentum conservation.

(iii) Those containing two condensate fields. There are two kinds of them: (a) with
only classical condensate fields, e.g. |�0|2ϕ̄qϕ or �2

0ϕ̄
qϕ̄ – they are part of the

quadratic action for the quasiparticles; (b) with one quantum and one classical
condensate field. We shall treat them in the Popov approximation [77]

�̄q�0ϕ̄ϕ ≈ �̄q�0〈ϕ̄ϕ〉 + · · · ,
where the angular brackets stand for the expectation value of two classical
fields (Keldysh Green function at the coinciding points). The remaining term
�̄q�0(ϕ̄ϕ − 〈ϕ̄ϕ〉) is a part of the collision action. Following Popov, we shall
not single out the anomalous Bogoliubov expectation value 〈ϕϕ〉. This is jus-
tified for the temperature range mc2 < T < Tc (see Section 7.3), where the
anomalous averages are indeed much smaller than the normal ones. Those
terms as well as �̄q�̄0ϕ

qϕq do not influence the semiclassical dynamics.
(iv) Those containing one condensate field. Again there are two kinds of them:

(a) with a classical condensate field, e.g. �̄0ϕ̄
qϕϕ or �̄0ϕ̄

qϕqϕq – they con-
tribute to the self-energy and thus to the collision terms in the quasiparticle
kinetic equation. This part of the quasiparticle collision integral is about parti-
cle exchange with the condensate; (b) with a quantum condensate field, e.g.
�̄qϕ̄ϕϕ – they, being paired with one of the (iv (a)) terms, provide a part
of the Gross–Pitaevskii equation which describes particle exchange with the
quasiparticle cloud.

(v) Those with no condensate fields. In the Popov approximation they ought to be
treated as

ϕ̄qϕ̄ϕϕ = 2ϕ̄qϕ〈ϕ̄ϕ〉 + · · · .
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Along with (iii (a)) they are a part of the quadratic quasiparticle action. The
remaining terms, being taken to second order, contribute to the quasiparticle
collision integral. This part of the collision integral conserves the number of
quasiparticles.

As a result the action may be split into the Gross–Pitaevskii part, the quadratic
quasiparticle action and the collision part. The Gross–Pitaevskii part takes the form

SGP=
∫

dr dt
(
�̄0, �̄

q)

(
0 i∂t − HGP

i∂t − HGP 0

)(
�0

�q

)
, (7.15)

where

HGP = − ∂̂
2

r

2m
+ V cl + g

2
|�0|2 + 2gρqp − ∂tK, (7.16)

and ρqp(x) = 〈ϕ(x)ϕ̄(x)〉/2 is the quasiparticle density at x = r, t . The long
derivative is defined as

∂̂r = ∇r − i(∇rK). (7.17)

Variation with respect to �̄q leads to the saddle-point (modified Gross–Pitaevskii)
equation

(i∂t − HGP)�0 = 0. (7.18)

If there is a non-trivial static equilibrium solution of this equation, the phase K

(so far arbitrary) may be expressed through the slow densities of the condensate
ρ0 = |�0|2/2 and the quasiparticles ρqp as

∂tK = V cl(x)+ gρ0(x)+ 2gρqp(x) = μ, (7.19)

(we neglected the space gradients of the equilibrium solution). The chemical
potential μ may then be fixed using the condition

∫
dr(ρ0 + ρqp) = N . In a

spatially uniform case (V cl = 0) at zero temperature ρqp � ρ and ρ0 ≈ ρ, thus
μ(0) = gρ > 0. On the other hand, at T = Tc one has ρ0 = 0 and ρqp = ρ,
as a result μ(Tc) = 2gρ = 2μ(0). This is a consequence of the exchange inter-
actions between the quasiparticles, which are absent within the condensate. Once
the temperature grows above Tc, the only solution of the saddle-point equation is
�0 = 0, Eq. (7.19) is not applicable, while the chemical potential rapidly decreases
and becomes negative, as it should for a classical gas.

To write down the quasiparticle action it is useful to define the four-component
field vector �ϕ = (ϕ, ϕ̄, ϕq, ϕ̄q)T, along with its complex conjugate vector �ϕ. With
their help one may write

Sqp = 1

2

∫
dr dt �ϕ

(
0 τ̌3i∂t − Ȟqp

τ̌3i∂t − Ȟqp 0

)
�ϕ, (7.20)
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where the check symbol (∨) denotes matrices in the Bogoliubov subspace and τ̌i

with i = 0, 1, 2, 3 are the corresponding Pauli matrices. The Hermitian operator
Ȟqp acting in the Bogoliubov subspace is defined as

Ȟqp=
⎛⎝− ∂̂

2
r

2m+V cl+ g|�0|2 + 2gρqp−∂tK
g
2�

2
0

g
2 �̄

2
0 − ∂̂

2
r

2m+V cl+ g|�0|2 + 2gρqp−∂tK

⎞⎠ .

(7.21)

Notice the absence of 1/2 in front of |�0|2 in comparison with Eq. (7.16). It is
due to the presence of the exchange interactions between the condensate and the
quasiparticles. If in some region of space there is an equilibrium condensate and
thus expression (7.19) for the chemical potential is valid, one may rewrite the
quasiparticle Hamiltonian as

Ȟqp=
⎛⎝− ∂̂

2
r

2m + g
2 |�0|2 g

2�
2
0

g
2 �̄

2
0 − ∂̂

2
r

2m + g
2 |�0|2

⎞⎠ . (7.22)

The quasiparticles may exist outside of the condensate region. There they are
described by the diagonal Hamiltonian with the effective potential given by
V cl(x) + 2gρ(x) − ∂tK. Here ρ(x) is the total density outside of the conden-
sate support area, interacting with the quasiparticles through the Hartree–Fock
potential.

Finally the remaining part of the action, which is responsible for the collisions
of the quasiparticles and exchange of particles with the condensate, has the form
Scoll = Scoll

2 + Scoll
3 + Scoll

4 , where

Scoll
2 = −g

2

∫
dr dt

[
�̄q�0

(
2ϕ̄ϕ−2〈ϕ̄ϕ〉+2ϕ̄qϕq

)+�̄q�̄0
(
ϕϕ+ϕqϕq

)+ c.c.
]
;

Scoll
3 = −g

2

∫
dr dt

[
�̄q

(
ϕ̄ϕϕ + 2ϕ̄qϕqϕ + ϕ̄ϕqϕq

)+ c.c. (7.23)

+ (
2ϕ̄qϕ̄ϕ + ϕ̄ϕ̄ϕq + ϕ̄qϕ̄qϕq

)
�0 + c.c.

]
;

Scoll
4 = −g

2

∫
dr dt

[
ϕ̄qϕ̄ϕϕ − 2ϕ̄qϕ〈ϕ̄ϕ〉 + ϕ̄ϕ̄qϕqϕq + c.c.

]
,

here the subscripts indicate the number of quasiparticles involved in the corre-
sponding collision processes.

We turn now to the quasiparticle dynamics specified by Eqs. (7.20) and (7.21).
Notice that the equation of motion (τ̌3i∂t − Ȟqp)(ϕ, ϕ̄)

T = 0, with Ȟqp given
by Eq. (7.22), coincides with Eq. (7.8) for the linearized dynamics of the Gross–
Pitaevskii system. Of course, in the present case the condensate density ρ0(x) =
|�0|2/2 is not the same as the total density and must be determined through the
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modified Gross–Pitaevskii equation, which in turn needs the information about
the quasiparticle density ρqp(x). To diagonalize the quasiparticle Hamiltonian one
needs to solve the Bogoliubov–deGennes equations,(

τ̌3εk − Ȟqp
) (uk(r)

vk(r)

)
= 0, (7.24)

where k labels the full set of solutions and uk(r) and vk(r) are two functions which
may be normalized according to∫

dr
[
u∗k(r)ul(r)− v∗k (r)vl(r)

] = δkl . (7.25)

One can now define a new set of complex fields χ cl
k (t) and χ

q
k (t) through the

Bogoliubov transformation

ϕ(r, t) =
∑

k

[
uk(r)χ cl

k (t)+ v∗k (r)χ̄
cl
k (t)

]; (7.26)

ϕq(r, t) =
∑

k

[
uk(r)χ

q
k (t)+ v∗k (r)χ̄

q
k (t)

]
.

In terms of these new fields the quasiparticle action (7.20) takes the standard
Keldysh form

Sqp =
∫

dt
∑

k

(
χ̄ cl

k , χ̄
q
k )

(
0 i∂t − εk

i∂t − εk 0

)(
χ cl

k

χ
q
k

)
. (7.27)

Using the strategy of Chapter 5, one can proceed with writing the kinetic equation
for the quasiparticles. To this end one needs an expression for the quasiparticle
spectrum εk , which is so far implicit in the solutions of the Bogoliubov–deGennes
equations (7.24). Focusing on the adiabatic effective potential and applying the
Wigner transformation, one may label the spectrum with the set of local momenta
k, defined in a vicinity of a spatial point r. As a result the spectrum is labeled
as εk(r), where a certain coarse graining of the coordinate space must be under-
stood along with the fact that the momentum k can not be smaller than the inverse
size of the spatial coarse graining. The latter is in agreement with the choice
of the quasiparticle field ϕ as a fast part of the full bosonic field φ. The small
wavenumbers k are thus explicitly excluded from ϕ and therefore from χ . With
this understanding the local spectrum εk(r) may be found by diagonalization of
the quasiparticle Hamiltonian (7.21), with ∇r → ik. This way one finds for the
spectrum:

εk(r) =
√(

(k− ∇rK)2

2m
+V cl+ g|�0|2 + 2gρqp − ∂tK

)2

−
∣∣∣g

2
�2

0

∣∣∣2. (7.28)



7.3 Collisionless relaxation of the condensate fluctuations 123

Notice that if the condensate is in equilibrium, so that the relation (7.19) for the
chemical potential holds, the quasiparticle spectrum coincides with the Bogoliubov
spectrum for the condensate excitations, Eq. (7.11). In such a case the quasipar-
ticle spectrum is gapless and linear at small wavenumbers with the local sound
velocity c(r) = √

gρ0(r)/m, determined by the local condensate density. In the
same approximation the Bogoliubov coefficients are given by uk(r) = ukeikr and
vk(r) = vkeikr, where the k index represents the Fourier transform over the fast
part of the r-dependence and the slow functions uk and vk are given by

|uk|2, |vk|2 = 1

2εk

(
±εk + (k− ∇rK)2

2m
+V cl+ g|�0|2 + 2gρqp − ∂tK

)
.

(7.29)
One can now define the quasiparticle distribution functions F(x, x ′) in the usual

way through Eq. (5.22). Performing the Wigner transformation and restricting it to
the mass-shell, one obtains the distribution function F̃(r, t, k) = F(r, t, k, εk(r)),
which obeys the kinetic equation[

∂t + ∇kεk(r)∇r − ∇rεk(r)∇k

]
F̃(r, t, k) = I coll[F̃,�0]. (7.30)

We put the quasiparticle weight Z̃ = 1, which is appropriate for the weakly inter-
acting Bose gas. The collision integral on the right hand side is a functional of
the quasiparticle distribution function as well as the space- and time-dependent
condensate wavefunction �0(x). Once the solution of the kinetic equation (7.30) is
known one can determine the quasiparticle density ρqp(x) = 〈ϕ(x)ϕ̄(x)〉/2 to feed
it self-consistently into the local energy spectrum (7.28):

〈ϕ(x)ϕ̄(x)〉 =
∑

k

[|uk(x)|2 + |vk(x)|2
]〈χkχ̄k〉 =

∑
k

[|uk|2 + |vk|2
]
F̃(x, k).

(7.31)
The modified Gross–Pitaevskii equation (7.18) for the condensate wavefunction
and the kinetic equation (7.30) for the quasiparticle distribution function are the
basis of the quasi-classical description of Bose condensation.

7.3 Collisionless relaxation of the condensate fluctuations

Hereafter we shall restrict ourselves to the intermediate range of temperatures (or,
better, characteristic quasiparticle energies, if the temperature is not well defined)
given by

μ(0) < T ; εk < Tc, (7.32)

where μ(0) = gρ = mc2 is the zero-temperature chemical potential and Tc ∝
ρ2/3/m is the critical temperature of condensation. For higher temperatures the
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system is normal and may be described by the usual kinetic equation. On the other
hand, at lower temperatures it is already very close to the zero-temperature conden-
sate, described by the Gross–Pitaevskii equation (7.5). (There are interesting and
important phenomena, such as e.g. Beliaev damping [78], which are present in the
low temperature regime and which we are going to miss.) Under condition (7.32)
the expression for the energy spectrum may be substantially simplified to yield

εk(r) ≈ (k− ∇rK)2

2m
+ V cl + g|�0|2 + 2gρqp − ∂tK, (7.33)

whereas uk ≈ 1 and vk ≈ 0. This is the Popov approximation, already adopted
above, where one neglects anomalous averages of the ϕ fields as being small in
factor ∼ μ(0)/εk � 1. In essence one avoids Bogoliubov rotation and disregards
the difference between the initial quasiparticle field ϕ and the rotated one χ .

With the quasiparticle spectrum given by Eq. (7.33) (and neglecting ∇2
r K) the

kinetic equation (7.30) acquires the form[
∂t + vk∇r − ∇r

(
V cl + g|�0|2 + 2gρqp − ∂tK

)∇k

]
F̃(r, t, k) = 0, (7.34)

where vk = (k − ∇rK)/m and we have omitted the collision integral for a while.
The quasiparticle density is given by ρqp(x) = ∑

k nqp(x, k), where F̃(x, k) =
2nqp(x, k)+ 1.

The system of the collisionless kinetic equation (7.34) and the modified Gross–
Pitaevskii equation (7.18) is analogous to the system of Vlasov equations (6.8),
(6.11) for plasma. In the latter case one has the Poisson equation instead of the
Gross–Pitaevskii one. One can adopt thus the strategy of Section 6.2 to inves-
tigate collisionless Landau damping of small fluctuations of the condensate. To
this end we shall assume that the quasiparticle distribution function is close to the
equilibrium one, F̃(x, k) = F̃eq(εk) + F̃ (1)(x, k), where F̃eq(εk) = coth εk/2T .
The corresponding perturbation of the quasiparticle density is given by δρqp(x) =
1
2

∑
k F̃ (1)(x, k). We shall also assume that the system is translationally invari-

ant (V cl = 0) and the condensate wavefunction is close to a constant solution,
�0(x) = �0 + φ(x), where �0 is found from Eq. (7.19) and particle conservation,
while the phase is fixed as K = μt . The change in the condensate density is given
by δρ0 = 1

2(�̄0φ(x)+ φ̄(x)�0).
The system of linearized kinetic and modified Gross–Pitaevskii equations takes

the form[
∂R

t + vk∇r
]
F̃ (1)(x, k) = 2g∇r

[
δρ0(x)+ δρqp(x)

]∇k F̃eq(εk);
i∂tφ(x) = −∇

2
rφ(x)

2m
+ g

2
|�0|2φ(x)+ g

2
�2

0 φ̄(x)+ 2gδρqp(x)�0,
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where in the second line we employed Eq. (7.19) for unperturbed densities. We
have indicated the retarded nature of the time derivative in the kinetic operator,
since it is going to play an important role below. We perform now a Fourier
transformation from x = r, t to q = q, ω, and solve the kinetic equation as
F̃ (1)(q, k) = −2g[δρ0(q) + δρqp(q)]q∇k F̃eq/(ω + i0 − vkq). We then substitute
this solution into the expression for the quasiparticle density,

δρqp(q) = 1

2

∑
k

F̃ (1)(q, k) = −2g�R(q)[δρ0(q)+ δρqp(q)], (7.35)

where the retarded component of the quasiparticle polarization matrix is defined
as, cf. Eq. (6.13),

�R(q, ω) = 1

2

∑
k

q∇k Feq(εk)

ω + i0− vkq
=
∑

k

q∇knB(εk)

ω + i0− vkq
. (7.36)

The quasiparticle density is thus δρqp(q) = −δρ0(q)2g�R(q)/[1 + 2g�R(q)]. In
the limit of strong interactions this expression enforces the constant total density,
i.e. δρqp ≈ −δρ0. On the contrary, we focus on weakly interacting gas, where
g�R � 1 and therefore

δρqp(q) = −2g�R(q) δρ0(q). (7.37)

The linearized Gross–Pitaevskii equation and its complex conjugate take the
form(

ω − q2/(2m)− g
2 |�0|2 − g

2�
2
0

− g
2 �̄

2
0 −ω − q2/(2m)− g

2 |�0|2
)(

φ

φ̄

)
= 2gδρqp

(
�0

�̄0

)
.

Finding from here φ(q) and φ̄(q) and substituting them into the expression for the
condensate density perturbation δρ0(q) = 1

2(�̄0φ(q)+ φ̄(q)�0), one finds

δρ0(q) = g

m
|�0|2 q2

ω2 − ω2
B(q)

δρqp(q). (7.38)

This expression is consistent with Eq. (7.37) only if

ω2 − ω2
B(q) = −c2q24g�R(q, ω), (7.39)

where we have used that the sound velocity is c2 = g|�0|2/(2m). Solving the last
expression for ω = ω̃B(q) gives the dispersion relation for the combined conden-
sate and quasiparticle cloud oscillation mode. The real part of the right hand side
leads to a small renormalization of the sound velocity, which we disregard. More
interestingly, the right hand side contains the imaginary part, which describes the
damping of the condensate Bogoliubov mode,
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ω̃B(q) = ωB(q)− i�2(q). (7.40)

According to Eq. (7.39) the damping rate is given by

�2(q) = c2q2

ωB(q)
2g Im�R(q, ωB(q)). (7.41)

Restricting ourselves to the small wavenumbers q < mc, approximating the
quasiparticle dispersion as εk ≈ k2/(2m) and employing Eqs. (7.36) and (6.15)
we find [79]

�2(q) = −cq 2πg
∫

dk
(2π)3

q∂kz nB(εk) δ

(
cq − kzq

m

)
= gmT q

π
, (7.42)

where the z-axis is taken to be along the q vector. At small wavenumbers �2 is
linear in q, and thus the relative damping rate �2/ωB ∝ T

√
μ(0)/T 3/2

c � 1 is
a q-independent constant, which is linear in temperature and small in the entire
temperature range (7.32). (Since the integral is dominated by the k ∼ mc region,
where the Popov approximation is not quantitatively accurate, the numerical
constant in Eq. (7.42) should not be taken too seriously.)

The nature of the damping rate (7.41) is very similar to the Landau damp-
ing of plasma oscillations. Quanta of the condensate fluctuations are absorbed by
the relatively high-energy resonant quasiparticles. Therefore, if a non-equilibrium
condensate vibration is excited, its energy is eventually channeled into the above-
the-condensate quasiparticle cloud. This damping mechanism is very different
from the zero temperature Beliaev damping [78]. The latter describes a condensate
excitation decaying into two smaller energy condensate excitations. Such a process
is energetically allowed due to a small positive curvature of the Bogoliubov
dispersion (7.11) and exhibits a very sharp momentum dependence of the form
�Beliaev(q) ∝ q5/(mρ0) for q < mc. Beliaev damping is also present at finite tem-
peratures. However, for T > mc2 the collisionless damping (7.41) is by far the
dominant mechanism.

According to FDT any damping mechanism must be accompanied by fluctua-
tions. We shall discuss the corresponding fluctuation mechanism in Section 7.5.

7.4 Condensate growth and collapse

Although the modified Gross–Pitaevskii equation (7.18) and the collisionless
kinetic equation (7.34) describe energy exchange between the condensate and the
quasiparticles, they do not describe the condensate growth or collapse. The reason
is that Eq. (7.18) conserves the total number of particles in the condensate, while
Eq. (7.34) conserves the total number of quasiparticles above the condensate. On
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the other hand, the condensate growth and collapse are clearly associated with the
particle exchange between the two. To take into account this effect one has to resort
to the three-particle part of the collision action, Scoll

3 , Eq. (7.23). To this end we
need to average exp{iScoll} over the fluctuations of the quasiparticle fields ϕ. For a
weakly interacting gas this may be achieved with the following approximation:

〈
eiScoll

〉
≈ 1+ i

〈
Scoll

〉− 1

2

〈(
Scoll

)2
〉
≈ e

− 1
2

〈(
Scoll

)2
〉
; δS = i

2

〈(
Scoll

)2
〉
, (7.43)

where the angular brackets denote averaging over Gaussian ϕ-fluctuations, gov-
erned by the quasiparticle action (7.20), and we took into account that

〈
Scoll

〉 = 0.
Applying Eq. (7.43) to Scoll

3 , one finds the second order correction to the Gross–
Pitaevskii action, δS3, which is a quadratic form of �0 and �q as well as their
complex conjugates. According to the causality structure, this quadratic form does
not contain terms with only classical components �0 and �̄0, since all the terms
in the action must have at least the first power of quantum fields �q or �̄q. In
the Popov approximation, where one disregards the anomalous averages 〈ϕϕ〉 and
〈ϕ̄ϕ̄〉 and keeps only the normal ones 〈ϕϕ̄〉, no anomalous terms, such as e.g.�q�0,
are generated in δS3. As a result, the δS3 action possesses the same structure as the
Gross–Pitaevskii action (7.15) and contains only the terms proportional to �̄q�0,
�̄0�

q and �̄q�q. The first two describe particle exchange between the condensate
and the quasiparticle cloud, while the last one is responsible for the fluctuations of
the condensate.

We first focus on the particle exchange terms ∼ �̄q�0. They are generated by
the product of the first and second lines in Scoll

3 , Eq. (7.23). Due to the causality
constraints only the first term from the first line ∼ ϕ̄ϕϕ, being multiplied by the
three terms from the second line, provides non-zero contributions. The correspond-
ing three diagrams are depicted in Fig. 7.1 and the corresponding contribution to
the action δS3 takes the form (since in the Popov approximation we have disre-
garded anomalous averages, all the Green functions are the normal bosonic Green
functions, see Chapter 5)

p pp
k kk

p-k p-kp-k

x

(a) (b) (c)

x' x x' x x'

Fig. 7.1 Three diagrams for the δS3a ∼ �̄q(x)�0(x ′) contribution to the effective
Gross–Pitaevskii action. Diagram (a) carries a combinatorial factor of 4, while (b)
and (c) carry a factor of 2. Full lines correspond to ϕ and dashed lines to ϕq fields.
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δS3a = g2

4

∫
dx dx ′ �̄q(x)�0(x

′)
[
4GK(x ′, x)GK(x, x ′)GR(x, x ′)

+ 2GA(x ′, x)GK(x, x ′)GK(x, x ′)+ 2GA(x ′, x)GR(x, x ′)GR(x, x ′)
]
.

(7.44)

Now we (i) change both GR(x, x ′) in the last term on the right hand side of
Eq. (7.44) to GR(x, x ′)− GA(x, x ′), since GA(x ′, x)GA(x, x ′) = 0 due to causal-
ity; (ii) perform a Wigner transformation, using the fact that the condensate fields

are slow, and write GK WT→ −2π iF(x, k)δ(ε − εk(x)), while GR − GA WT→
−2π iδ(ε− εk(x)), where the spectrum εk(x) is given by Eq. (7.33); (iii) perform
the energy integrals using delta-functions; (iv) symmetrize the first term on the
right hand side of Eq. (7.44) with respect to k and p−k arguments, see Fig. 7.1(a).
Including also the conjugated part ∼ �̄0�

q and keeping only the imaginary part
of the square brackets in Eq. (7.44) (the real part constitutes an insignificant
renormalization of the quasiparticle density in Eq. (7.16)), we find

δS3a = i
∫

dx
(
�̄q�0 − �̄0�

q
)
�3(x), (7.45)

where

�3(x; F̃) = πg2

2

∑
p,k

δ(εp − εk − εp−k) (7.46)

×
[

F̃(x, p)
(
F̃(x, k)+ F̃(x,p− k)

)− F̃(x, k)F̃(x, p− k)− 1
]
.

This is a particle-non-conserving term in the modified Gross–Pitaevskii equation.
The latter is derived by variation of the action with respect to �̄q and reads as
[i∂t−HGP]�0 = −i�3�0. As a result the total number of particles in the condensate
evolves according to

∂t

∫
dr |�0|2 = −

∫
dr 2�3(r, t) |�0|2, (7.47)

where we took into account that the superfluid current is absent at the boundaries.
Notice that growth of the condensate corresponds to a negative �3, while collapse
corresponds to a positive one.

The physical process behind these expressions is that of a fast quasiparticle
with momentum p hitting the condensate and knocking out two quasiparticles with
momenta k and p−k. To see it most clearly one may substitute F̃(k) = 2nqp(k)+1
to find for the expression in the square brackets on the right-hand side of Eq. (7.46),
4[nqp(p)(nqp(k)+nqp(p−k)+1)−nqp(k)nqp(p−k)]. The first part here includes
induced and spontaneous processes, mentioned above. The last term is the oppo-
site process where two quasiparticles k and p − k “sink” into the condensate
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creating a single particle p. If the quasiparticle occupation is the equilibrium one
F̃eq(k) = coth εk/2T , the two processes exactly cancel each other and the con-
densate is neither growing nor shrinking. Indeed, in view of the “magic” identity
(5.59) one finds

�3(r; F̃eq) = 0. (7.48)

On the other hand, if the equilibrium distribution function has a positive energy
offset F̃(k) = coth(εk + �)/2T (we do not use the notation μ for −�, since the
latter differs from the thermodynamic chemical potential in the interacting system),
the condensate can’t be stable and collapses with the rate

�3(x) = g2

2

1

(2π)3

∞∫
0

p2dp

∞∫
0

k2dk

1∫
−1

d cos θ δ

(
pk

m
cos θ − k2

m
− V

)
I(εp, εk)

= g2

2

m3

(2π)3

∞∫
2V

dεp

εp−V∫
V

dεk I(εp, εk) = g2m3T 2

4π3
C

(
�

T
,

V cl(x)

�

)
,

(7.49)

where the quasiparticle spectrum is taken as εk(x) = k2/2m + V cl(x) and we used
the notation V = V cl(x). The combination of the distribution functions under the
integrals with the help of identity (5.59) may be written as

I(εp, εk)=
(

coth
εp +�

2T
− coth

εp + 2�

2T

)(
coth

εk +�

2T
+ coth

εp − εk +�

2T

)
.

Performing the integrals, one finds the dimensionless function C(x, y). It has the
following asymptotic behavior: C = π2/6 for x � 1 and y � 1, while C =
2 ln 2/y for x � 1 and y � 1 and C = e−x for x � 1. The first of these
asymptotic results tells us that in a wide range of parameters V cl(x) < � < T the
condensate collapse rate �3(x) is practically a constant given by

�max
3 = 2π

3
ma2

s T 2, (7.50)

where we took into account that g = 4πas/m. For smaller � < V cl(x), T the
rate decreases to zero as �3(x) ∝ �g2m3T 2/V cl(x) in agreement with Eq. (7.48).
Notice that for the small central region of the trap V cl(x) < gρ0 the Popov approx-
imation is not valid and one should use gρ0 instead of V cl(x) in the last expression
for �3. To fix the numerical coefficient in such a regime one needs to go beyond
the Popov approximation.

As an example of a growing condensate, consider a step of evaporative cooling.
In this process the high-energy tail of the Bose distribution is removed (evap-
orated) above some threshold energy ε0, i.e. nqp(k) = 0 for εk > ε0, while
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nqp(k) = [eεk/T −1]−1 = nB(εk) for εk < ε0, here T ≤ Tc. We focus on the central
region of the trap, possibly already occupied by the condensate. The quasiparticle
dispersion relation in this region is given by εk(x) = k2/2m + gρ0(x) ≈ k2/2m.
The quasiparticle cloud cools down below T and the condensate starts to grow
with the rate −�3 given by Eq. (7.46). The effect comes from the non-equilibrium
region, where εp > ε0, while both εk < ε0 and εp−k = εp − εk < ε0. As a result
only the term with nqp(k)nqp(p− k) contributes:

−�3 = 2g2

(2π)3

∞∫
0

p2dp

∞∫
0

k2dk

1∫
−1

d cos θ δ

(
pk

m
cos θ − k2

m

)
nqp(k)nqp(p− k)

= 2g2m3

(2π)3

ε0∫
0

dεk nB(εk)

ε0+εk∫
ε0

dεp nB(εp − εk) = g2m3T 2

4π3
B
(
nB(ε0)

)
,

(7.51)

where the dimensionless coefficient B(n0) = −n0
∫ 1

0 ds ln(1 − s)/[s(s + n0)]
depends on the Bose occupation number of the topmost unevaporated state
n0= [eε0/T − 1]−1. For n0 � 1 one finds B(n0) = π2/6, while for n0 � 1,
B(n0) = (1 − ln n0)n0 + O(n2

0) � 1. Notice that the condensate growth rate
saturates for ε0 � T at the already familiar constant value −�3(x) = �max

3 ,
Eq. (7.50), and practically does not increase upon farther reducing the threshold
energy ε0 (as long as ε0 > μ(0) = gρ0 so the Popov approximation is applica-
ble). According to Eq. (7.50) the time needed to grow the condensate diverges as
T−2 at small temperatures. Also notice that �max

3 /μ(0) ∝ T 2μ(0)/T 3
c � 1 in

the entire temperature range (7.32) and therefore the amplitude growth is indeed
a slow process. The initial exponential growth with the rate −�3 saturates once
the number of particles in the condensate approaches the value prescribed by the
particle and energy conservation laws after equilibration. To describe this process
quantitatively [80] one needs to follow the equilibration of the quasiparticle cloud,
see Section 7.7 below.

Comparing the damping rate �2(q) ∼ asT q, Eq. (7.42), and the characteristic
growth rate �max

3 ∼ ma2
s T 2, Eq. (7.50), one finds the characteristic length scale

Lc = q−1
c = (masT )

−1. (7.52)

If the size of the condensate L trap is less than Lc, then for all relevant wavenum-
bers �2(q) > �max

3 . This means that the internal vibrations of the condensate are
damped faster than they have time to develop. As a result the condensate growth
may be viewed as a smooth and “peaceful” increase of its size without excitation
of internal degrees of freedom. In the opposite limit, L trap � Lc, the condensate
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growth may be a turbulent process, which creates long lived local structures on the
scale Lc or larger.

7.5 Fluctuations

Collisionless damping, Section 7.3, must be accompanied by fluctuations (noise).
Such noise is produced by the cloud of quasiparticles and acts on the condensate
wavefunction. In equilibrium the corresponding noise amplitude is given by
FDT. To evaluate it in a generic case we notice that it originates from the
2(�̄q�0+ �̄0�

q)(ϕ̄ϕ + ϕ̄qϕq) term in the two-particle collision action Scoll
2 ,

Eq. (7.23). The corresponding diagrams for
〈
(Scoll

2 )2
〉

are depicted in Fig. 7.2 and
the part of action δS2, see Eq. (7.43), reads as

δS2 = g2
∫

dx dx ′
(
�̄q�0 + �̄0�

q
)

x
�K(x, x ′)

(
�̄q�0 + �̄0�

q
)

x ′ ; (7.53)

�K(x, x ′) = 1

2i

[
GK(x ′, x)GK(x, x ′)+GR(x ′, x)GA(x, x ′)+GA(x ′, x)GR(x, x ′)

]
.

The expression for the Keldysh component of the polarization operator coincides
with Eq. (6.24). Proceeding exactly as in Section 6.4, one finds for the Wigner
transform of �K(x, x ′)

�K(x, q, ω) = iπ
∑

k

δ(ω + εk − εk+q)
[
F̃(x, k)F̃(x,k+ q)− 1

]
. (7.54)

As discussed there, it satisfies the FDT relation (6.26) in equilibrium. Notice that
the �̄q�̄0(ϕϕ + ϕqϕq) part of the Scoll

2 action (7.23), being taken to second order,
leads to the diagrams with the energy balance given by δ(ω − ε−k − εk+q). For
our situation where q and ω are slow condensate variables, while k is the fast
quasiparticle variable, this delta-function can’t be satisfied.

One can perform now the Hubbard–Stratonovich transformation with the help
of an auxiliary real field ξ(x):

eiδS2 =
∫

D[ξ ] e−
i
4

∫
dxdx ′ ξ(x)�−1(x,x ′)ξ(x ′)−ig

∫
dx ξ(x)

(
�̄q�0+�̄0�

q
)

x , (7.55)

(a) (c)(b)
k

k-q

x x'

k

k-q

x x'

k

k-q

x x'

Fig. 7.2 Three diagrams for �K(x, x ′). Full lines correspond to ϕ and dashed
lines to ϕq fields.
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where
∫

dx ′′�−1(x, x ′′)�K(x ′′, x ′) = δ(x − x ′). The first term in the exponent on
the right hand side of Eq. (7.55) specifies the real Gaussian colored noise with the
correlator

〈ξ(x + y/2)ξ(x − y/2)〉 = −2i
∑

q

′
eiqy �K(x, q), (7.56)

where summation over q = q, ω is limited by the band designated for slow
condensate degrees of freedom. Because of this limitation it is tempting to
substitute �K(x, q) by �K(x, 0), which would lead to the local noise correla-
tor 〈ξ(x)ξ(x ′)〉 = −2i�K(x, 0)δ(x − x ′). One should be aware, though, that
the limit q → 0 and ω → 0 in Eq. (7.54) is not unique. The most sensible
way is to put ω = ωB(q), see Eq. (7.41), but the limit q → 0 may still be a
singular one. For example, employing Eq. (7.42) and FDT, one finds in equilibrium
�K(q, cq) = 2imT 2/(πc2q). In the coordinate space this implies the non-local
long-ranged correlator �K(r, r′) ∼ 1/(r− r′)2.

The last term in the exponent in Eq. (7.55) is a part of the Gross–Pitaevskii
action (7.15), which adds the real noise gξ(x)�0 to the condensate equation of
motion [81] [

i∂t − HGP
]
�0 = −i�3�0 + gξ(x)�0. (7.57)

Notice that one can gauge out the noise as�0 → �0e−ig
∫

dt ξ(x). It then modifies the
superfluid velocity as ∇rK → ∇rK+g

∫
dt∇rξ . Therefore it is the spatial gradient

of the noise ∇rξ , rather than the noise ξ itself, which has a physical significance. In
other words, one can always add a spatially independent function ξ̃ (t) to the noise
without changing any physics. It is possible and convenient thus to normalize the
noise as

∫
dr ξ(r, t) = 0. It is also clear from Eq. (7.57) that the noise changes the

phase, but not the amplitude of the condensate wavefunction �0.
Because of the last observation and the homogeneous form of the modified

Gross–Pitaevskii equation (7.57) one may worry that, if at some initial time
�0 = 0, the condensate never forms. This is, of course, not the case. One way
to understand it is to acknowledge that even in the absence of the macroscopic
condensate |�0|2 = 2ρ0 
= 0. Indeed, we have defined the condensate as a band
of slow degrees of freedom and therefore ρ0 =∑′

q nB(q) > 0, where the summa-
tion runs over such a slow band. The precise value of this initial ρ0 is somewhat
ambiguous. It is not really important, however, since once the condensate starts to
form it grows exponentially with the rate �3. The memory of the precise initial
conditions is therefore rapidly lost.

We shall discuss now how these considerations may be generalized away from
equilibrium. To find fluctuations of the condensate density one needs to consider
the �̄q�q term in the effective action. With the help of Eq. (7.43), it is found as an
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expectation value of the product of the first line in Scoll
3 , Eq. (7.23), and its complex

conjugate. There are five non-trivial diagrams generated upon Gaussian averag-
ing over the ϕ-fluctuations, Fig. 7.3. The corresponding analytical expression
reads as

δS3b = g2

2

∫
dx dx ′ �̄q(x)�q(x ′)

[
2GA

x ′,x GR
x,x ′G

K
x,x ′ + 2GR

x ′,x GA
x,x ′G

K
x,x ′

+ GK
x ′,x GK

x,x ′G
K
x,x ′ + GK

x ′,x GR
x,x ′G

R
x,x ′ + GK

x ′,x GA
x,x ′G

A
x,x ′

]
= g2

2

∫
dx dx ′ �̄q(x)�q(x ′)

[
− 2(GR

x ′,x − GA
x ′,x)(G

R
x,x ′ − GA

x,x ′)G
K
x,x ′

+ GK
x ′,x

(
GK

x,x ′G
K
x,x ′ + (GR

x,x ′ − GA
x,x ′)(G

R
x,x ′ − GA

x,x ′)
)]
, (7.58)

where we employed that GR(x ′, x)GR(x, x ′) = GR(x, x ′)GA(x, x ′) = 0, due
to causality. Now we (i) perform a Wigner transformation, using the slowness

of the condensate fields, to write GK WT→ −2π iF(x, k)δ(ε − εk(x)) and GR −
GA WT→ −2π iδ(ε − εk(x)); (ii) perform the energy integrals using delta-functions;
(iii) symmetrize the first term on the right hand side of Eq. (7.58) with respect to
k and p − k arguments, see Fig. 7.3(a),(b). This way we find for the complete
Gross–Pitaevskii action

SGP=
∫

dx
(
�̄0, �̄

q)

(
0 i∂t − HGP − i�3

i∂t − HGP + i�3 i�K
3

)(
�0

�q

)
, (7.59)

where δS3b provides the Keldysh component of the matrix, given by

�K
3 (x; F̃) = πg2

∑
p,k

δ(εp − εk − εp−k) (7.60)

×
[
− F̃(x, k)− F̃(x, p− k)+ F̃(x,p)

(
F̃(x, k)F̃(x, p− k)+ 1

)]
.

(a) (b)
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p
k

p-k
x x'
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Fig. 7.3 Five diagrams for the δS3b ∼ �̄q(x)�q(x ′) contribution to the effective
Gross–Pitaevskii action. Full lines correspond to ϕ and dashed lines to ϕq fields.
Diagrams (a),(b) carry a combinatorial factor 4, while (c)–(e) carry a factor 2.
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If the distribution function is the equilibrium one with a positive energy offset,
F̃(k) = coth(εk +�)/2T , one finds, employing identity (5.59),

�K
3 = coth

�

2T
2�3,

where �3 is given by Eq. (7.49). This is a manifestation of FDT. Indeed, the
energy offset � may be gauged away at the expense of giving the condensate
field the rapidly rotating phase �0 → �0ei�t . In such a gauge � is noth-
ing but the frequency argument of the Keldysh matrix propagator �̂3(�), where
�R

3 (�) = −�A
3 (�) = �3. In the wide range of parameters V cl(x) < � < T

one finds a spatially independent result �K
3 (�) = 4T�max

3 /�, cf. Eq. (7.49).
For � < V cl(x) (including zero offset) �K

3 approaches a �-independent value
�K

3 (0) ∝ T�max
3 /V cl(x). (Similarly to the discussion after Eq. (7.49), one should

actually use max{V cl(x), gρ0} in the last expression.) Having a non-zero value
of the Keldysh component �K

3 (0) seemingly contradicts the absence of the con-
densate growth rate for � = 0, Eq. (7.48). In fact there is no contradiction: the
omitted next term of the Wigner transformation in Eq. (7.45), ∼ ∂ε∂t , has the
form ∼ (

�̄q∂t�0 − �̄0∂t�
q
)
�K

3 (0)/4T , which is the exact FDT counterpart of
the non-zero �K

3 (0). This term provides damping of the condensate fluctuations,
which is due to the three-particle collisions. Such damping, however, is weaker than
the collisionless damping �2, Eqs. (7.41), (7.42), and therefore may be omitted.
Nevertheless, in equilibrium �K

3 /2�3 = 2T/max{�, V cl(x), gρ0} in agreement
with FDT.

Away from equilibrium one may evaluate 〈|�0|2〉 in the situation where the
macroscopic condensate is unstable, i.e. �3 > 0 and 〈�0〉 = 0. This is exactly
the case where fluctuations are especially important. One may neglect thus the
non-linear terms in HGP and find by inversion of the matrix in Eq. (7.59)

ρ0 = 1

2
〈|�0|2〉 = 1

2

∑
q

′
∫

dω

2π

�K
3

(ω − q2/2m)2 + �2
3

=
∑

q

′ �K
3

4�3
, (7.61)

where it is important to understand that the momentum sum runs only over the
band of slow degrees of freedom. In equilibrium one is back exactly to the value
of ρ0, discussed above. Away from equilibrium one may evaluate it employing
Eqs. (7.46) and (7.60). In a generic case one can apply the Hubbard–Stratonovich
transformation to the �̄q(x)�q(x) �K

3 term of the action (7.59) with the help of the
auxiliary complex field ζ(x),

eiδS3b =
∫

D[ζ ] e−
∫

dx[�K
3 ]−1|ζ(x)|2−i

∫
dx
(
�̄q(x)ζ(x)+ζ̄ (x)�q(x)

)
. (7.62)

It defines the complex Gaussian noise with the correlator 〈ζ̄ (x)ζ(x ′)〉 =
�K

3 (x)δ(x − x ′), where only slow components of the noise should be
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retained. Such noise acts as a source in the modified Gross–Pitaevskii equation
i∂t�0 − · · · = ζ(x). Its main effect is to generate a deterministic centrifugal
potential in the complex plane of �0 for the evolution of the radial variable |�0|.
Indeed, the complex noise ζ induces diffusion on the complex plane �0(q). The
corresponding 2D diffusion equation for the probability distribution function is
∂tP = (�K

3 /2)∇2
�P , where ∇2

� = ∂2
Re�0

+∂2
Im�0

. Transforming it to the radial coor-
dinate r = |�0| and properly normalized distribution W = rP , one finds ∂t W =
(�K

3 /2)∂r (−W/r + ∂r W ), which in addition to the diffusion contains the centrifu-
gal drift potential ∂rU = −�K

3 /2r . The corresponding Langevin equation is ṙ =
�K

3 /2r+ noise, or finally in terms of ρ0 = r2/2 one has ρ̇0 = �K
3 /2+√2ρ0× noise.

While the stochastic noise part is less important than the real noise ξ , Eq. (7.56),
the induced radial drift term �K

3 /2 is crucial to initiation of nucleation of the
condensate.

7.6 Semiclassical dynamics of the condensate

We put together now bits and pieces of the condensate dynamics in the presence
of the quasiparticles (treated in the Popov approximation). The condensate ampli-
tude �0(x) obeys the stochastic [81] modified Gross–Pitaevskii equation (7.57). In
addition to the Hartree–Fock interaction terms, incorporated into the Hamiltonian
HGP, it also includes particle exchange with the quasiparticle cloud �3, along with
the Gaussian noise ξ(x). We shall look for a solution of Eq. (7.57) in the form
�0(x) = √

2ρ0(x) exp{iθ(x)}. The complex equation results in the two real ones:
the radial one for the local condensate density ρ0(x) and the angular one for the
superfluid velocity, defined as vsf(x) = ∇r(θ(x)−K(x))/m,

∂tρ0 = −∇r(ρ0vsf)− 2�3ρ0 +
∑

q

′ �K
3

2
; (7.63)

∂t vsf = −1

2
∇rv2

sf −
1

m
∇r
(
V cl + gρ0 + 2gρqp

)− g∇rξ. (7.64)

In the last equation we have neglected ∇2
r
√
ρ0 as going beyond the accuracy with

which we handled the Wigner transformations. Equation (7.63) is the modified
continuity relation for the condensate density, which takes into account particle
exchange with the quasiparticle cloud. The exchange rate �3 and the noise-induced
drift �K

3 are given by Eqs. (7.46) and (7.60), respectively. As discussed above,
one should understand summation in the last term as running only over the band
of slow degrees of freedom. For T > Tc, where �3 > 0, it generates a small
seed condensate density, which starts to grow exponentially when �3 < 0. Equa-
tion (7.64) is the Euler equation with noise, associated with the collisionless
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damping of the condensate fluctuations by the quasiparticle cloud. Interaction with
the latter occurs through the quasiparticle density ρqp , appearing on the right hand
side of Eq. (7.64). It is defined as ρqp(x) = 1

2

∑
k[F̃(x, k)− 1]. The corresponding

Gaussian noise is specified by Eqs. (7.54) and (7.56).
To find the quasiparticle density ρqp(x), the exchange rate �3(x) and the noise

amplitude, one needs to know the quasiparticle distribution function F̃(x, k). The
evolution of the latter is given by the kinetic equation (7.30)

∂t F̃ = −vk∇r F̃ + ∇rεk∇k F̃ + I coll
3 [F̃, ρ0, vsf] + I coll

4 [F̃, ρ0, vsf], (7.65)

where vk = ∇kεk. The three- and four-particle collision integrals I coll
3,4 are discussed

in Section 7.7 below and are given by Eqs. (7.73) and (7.79), respectively. Equa-
tions (7.63)–(7.65) are the three evolution equations for the condensate density
ρ0(x), the superfluid velocity vsf(x), and the quasiparticle distribution function
F̃(x, k). If some initial conditions are specified, e.g. a non-equilibrium quasipar-
ticle distribution and zero condensate density, one may iterate them forward in
time to follow formation of the condensate and equilibration of the quasiparticle
cloud [80].

To complete the scheme one needs to specify the choice of the local phase
K(x), which in turn determines the quasiparticle energies εk(x) entering the kinetic
equation (7.65). The criterion for such a choice is to facilitate a maximal scale
separation between the fast and slow degrees of freedom. If the condensate is
already present in the entire volume, one wants to make its wavefunction �0(x) the
slowest variable. This is the case if �0 is purely real. Indeed, this eliminates rela-
tively fast phase rotations and leaves only slow amplitude variations. It is achieved
by the choice of K which makes θ(x) as small as possible. Putting θ = 0 in
Eq. (7.64), one finds ∂tK(x) = V cl + gρ0 + 2gρqp, which upon substitution in the
quasiparticle energy spectrum in the Popov approximation, Eq. (7.33), yields

εk(x) = k2

2m
+ kvsf(x)+ gρ0(x). (7.66)

Notice that the external potential V cl(x) does not enter the local energy spectrum
(7.66) nor thus the drift part of the kinetic equation ∇rεk∇k F̃ (it still appears, of
course, in the Euler equation). This effect is due to the Hartree–Fock screening of
the potential by a non-uniform condensate.

The last feature makes the spectrum (7.66) inconvenient for the trap geome-
try. In a trap the condensate occupies only a relatively small central region. The
quasiparticles, on the other hand, spread over a much wider volume. The choice of
gauge, where θ = 0, makes the Euler equation for the phase K formally applicable
everywhere, even outside the condensate region. In the latter case it specifies the
“vector potential” gauge for the quasiparticles. This is the reason why outside the
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condensate region (where there is no screening) the quasiparticle spectrum (7.66)
does not include the scalar potential of the trap, V cl(x). It is traded for the “vector
potential” vsf(x). The disadvantage is that the latter exhibits fast time-dependence,
even if the trap potential V cl(r) is completely static. Therefore this choice of K,
while making the condensate slow, exposes the peripheral quasiparticles to a fast
vector potential.

To avoid this effect it is convenient to choose the phase K to be spatially uni-
form. It then drops out of the Euler equation, which is now solely limited to the
condensate region, where ρ0 > 0. A way to make the complex condensate wave-
function as slow as possible is to demand that its average phase does not evolve,
i.e. ∂t

∫
ρ0>0 dr θ(r, t) = 0, where the integral runs over the volume occupied by the

condensate. Employing the real part of Eq. (7.57) for θ(r, t)−K(t), one finds

∂tK(t) = 1

V(t)

∫
ρ0>0

dr
[

v2
sf

2m
+ V cl(r, t)+ gρ0(r, t)+ 2gρqp(r, t)

]
, (7.67)

where V(t) = ∫
ρ0>0 dr is the volume of the condensate. Notice that in equilibrium

this condition coincides with Eq. (7.19), as it should. The quasiparticle spectrum
(7.33) in the Popov approximation is now given by

εk(r, t) ≈ k2

2m
+ V cl(r, t)+ 2gρ0(r, t)+ 2gρqp(r, t)− ∂tK(t), (7.68)

where ∂tK(t) is a spatially uniform, time-dependent chemical potential. One
should not fix it with the particle number conservation, as was done in equilib-
rium, see Eq. (7.19). Instead, it is determined by the self-consistent evolution of
the condensate density and current through Eq. (7.67). This gauge is convenient for
treating the quasiparticles outside the condensate region. It fails to acknowledge,
though, the quasiparticles’ drag by the superfluid velocity vsf inside the conden-
sate region. The corresponding effect is now delegated to the continuity equation
for ρ0, which in turn affects the quasiparticles through Eqs. (7.67) and (7.68). If
superfluid currents are not expected to last for a long time, it seems to be worth the
trade.

7.7 Quasiparticle collision integral

The three-quasiparticle self-energy in second order in the interaction constant
is given by the square of the second line in Scoll

3 , Eq. (7.23). In the Popov
approximation, where one disregards anomalous averages, there are six dia-
grams for �K

3 (x, x ′), Fig. 7.4(a)–(f), and three for �R
3 (x, x ′), Fig. 7.4(g)–(i). The

corresponding analytical expressions are
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Fig. 7.4 (a)–(f) Six diagrams for �K
3 (x, x ′). The normal diagrams (a)–(c) carry a

combinatorial factor of 4, while the Bogoliubov ones (d)–(f) carry a factor of 2.
(g)–(i) Three diagrams for �R

3 (x, x ′), all carry a factor of 4.

�K
3 (x, x ′) = ig2

4
|�0|2

[
4GK

x ′,x GK
x,x ′ + 4GR

x ′,x GA
x,x ′ + 4GA

x ′,x GR
x,x ′

+ 2GK
x,x ′G

K
x,x ′ + 2GA

x,x ′G
A
x,x ′ + 2GR

x,x ′G
R
x,x ′

]
; (7.69)

�R
3 (x, x ′) = ig2

4
|�0|2

[
4GA

x ′,x GK
x,x ′ + 4GK

x ′,x GR
x,x ′ + 4GR

x,x ′G
K
x,x ′

]
, (7.70)

where we employed slowness of �0 fields to suppress their x-dependence. Due
to causality GR

x ′,x GA
x,x ′ + GA

x ′,x GR
x,x ′ = −(GR

x ′,x − GA
x ′,x)(G

R
x,x ′ − GA

x,x ′) and

(GA
x,x ′)

2 + (GR
x,x ′)

2 = (GR
x,x ′ − GA

x,x ′)
2. We perform now a Wigner transfor-

mation with the energy momentum-assignments specified in Fig. 7.4. We use

GK WT→ −2π iF̃(p)δ(ε − εp) and GR − GA = 2iImGR WT→ −2π iδ(ε − εp) and
integrate over the intermediate energy using a delta-function to find

�K
3 (k) =

πg2

2i
|�0|2

∑
p

{
4δ(εp − εk − εp−k)

[
F̃(p− k)F̃(p)− 1

]
+ 2δ(εk − εp − εk−p)

[
F̃(k− p)F̃(p)+ 1

]}; (7.71)

Im
[
�R

3 (k)
] = πg2

4
|�0|2

∑
p

{
4δ(εp − εk − εp−k)

[
F̃(p)− F̃(p− k)

]
− 2δ(εk − εp − εk−p)

[
F̃(p)+ F̃(k− p)

]}
, (7.72)
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where we have suppressed the central coordinate x dependence of � as well as
|�0|2 and F̃ for brevity. We have symmetrized the last (Bogoliubov) term on the
right hand side of Eq. (7.70), see Fig. 7.4(i), with respect to p and k − p argu-
ments. Employing Eq. (5.47), one obtains for the three-particle part of the collision
integral I coll

3 [F̃(k)] = i�K
3 (k)+ 2F̃(k) Im

[
�R

3 (k)
]

I coll
3 [F̃(x, k), ρ0(x), vsf(x)] = 2πg2

[
ρ0(x)−

∑
q

′
�K

3 /4�3

]
(7.73)

∑
p

{
2 δ(εp− εk− εp−k)

[
F̃(x, p−k)F̃(x, p)− 1+ F̃(x, k)

(
F̃(x, p)− F̃(x, p−k)

)]
+ δ(εk− εp− εk−p)

[
F̃(x, k−p)F̃(x, p)+ 1− F̃(x, k)

(
F̃(x, p)+ F̃(x, k−p)

)]}
,

where we had to subtract the nucleation term
∑′

q �
K
3 /4�3 “by hand” to secure the

local particle conservation. The latter is now guaranteed by the identity

1

2

∑
k

I coll
3 [F̃(x, k)] = 2�3(x)ρ0(x)−

∑
q

′ �K
3 (x)

2
(7.74)

along with the condensate continuity equation (7.63) and the expression for the
condensate growth rate �3, Eq. (7.46). To prove this identity one needs to inter-
change k and p summation indices in the Bogoliubov channel of I coll

3 , given by the
third line of Eq. (7.73). Then it cancels half of the normal channel contribution,
given by the second line. Since the nucleation term ∼ �K

3 originates from the fluc-
tuations, which were not accounted for in the kinetic equation, it is not surprising
that it was missed and had to be restored.

Thanks to Eq. (5.59), the collision integral (7.73) is nullified identically by the
equilibrium distribution function F̃(k) = F̃eq(εk) = coth εk/2T . Notice however,
that the equilibrium distribution with a positive energy offset coth(εk + �)/2T
does not nullify the three-particle collision integral. Indeed, such an energy offset
violates the energy balance specified by the delta-functions. The latter are fixed
by the assumption of the slowness of the condensate field �0(r, t). In other
words, fixing the gauge where the condensate field is slow, fixes also the “floor”
of energy. This is consistent with the fact that for such a quasiparticle distri-
bution the condensate amplitude is not stable. It collapses with a rate given
by Eq. (7.49). Therefore the quasiparticle distribution function can’t be stable
either.

The three-particle collisions involve a particle absorbed or emitted by the con-
densate. This is the origin of the factor of ρ0(x) on the right hand side of Eq. (7.73).
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Fig. 7.5 (a)–(e) Five diagrams for �K
4 (x, x ′). Diagrams (a)–(c) carry a combina-

torial factor of 4, (d)–(e) carry a factor of 8. (f)-(i) Four diagrams for �R
4 (x, x ′);

(f) carries a factor of 8 and (g)–(i) carry a factor 4.

They are thus absent in the absence of the condensate and are relatively ineffective
at early stages of the condensate formation. In these instances one has to resort
to four-particle collisions to describe the evolution of the quasiparticle distribu-
tion. The four-quasiparticle self-energy in second order in the interaction constant
is given by the square of Scoll

4 , Eq. (7.23). In the Popov approximation there are
five diagrams for the Keldysh component �K

4 (x, x ′), Fig. 7.5(a)–(e), and four for
the retarded component �R

4 (x, x ′), Fig. 7.5(f)–(i). Utilizing causality relations, one
finds

�K
4 (x, x ′) = −g2

8

[
4GK

x ′,x

(
GK

x,x ′G
K
x,x ′ + (GR

x,x ′ − GA
x,x ′)(G

R
x,x ′ − GA

x,x ′)
)

− 8 (GR
x ′,x − GA

x ′,x)(G
R
x,x ′ − GA

x,x ′)G
K
x,x ′

]
; (7.75)

�R
4 (x, x ′) = −g2

8

[
4GA

x ′,x

(
GK

x,x ′G
K
x,x ′ + (GR

x,x ′ − GA
x,x ′)(G

R
x,x ′ − GA

x,x ′)
)

+ 8 GK
x ′,x GR

x,x ′G
K
x,x ′

]
. (7.76)

A Wigner transformation with the energy–momentum assignments indicated in
Fig. 7.5, followed by energy integrations, leads to

�K
4 (k) =

πg2

i

∑
pq

δ(εp + εk−q − εk − εp−q)

× [
F̃(p− q)

(
F̃(p)F̃(k− q)+ 1

)− F̃(p)− F̃(k− q)
]; (7.77)
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�R
4 (k) =

πg2

2

∑
pq

δ(εp + εk−q − εk − εp−q)

× [
F̃(p)F̃(k− q)+ 1− F̃(p− q)

(
F̃(p)+ F̃(k− q)

)]
, (7.78)

where we have suppressed the central coordinate x dependence of � and F̃ . The
last terms on the right hand sides of these expressions are symmetrized with respect
to p and k − q arguments, see Fig. 7.5(d)–(f). Employing Eq. (5.47), one finally
obtains for the four-particle part of the collision integral I coll

4 [F̃(k)] = i�K
4 (k) +

2F̃(k) Im
[
�R

4 (k)
]

I coll
4 [F̃(x, k), ρ0(x), vsf(x)] = πg2

∑
pq

δ(εp + εk−q − εk − εp−q)

×
{[

F̃(x, p)F̃(x, k− q)+ 1
][

F̃(x,p− q)+ F̃(x, k)
]

− [
F̃(x, k)F̃(x, p− q)+ 1

][
F̃(x, k− q)+ F̃(x, p)

]}
, (7.79)

where dependence on ρ0 and vsf enters through the quasiparticle dispersion rela-
tion, Eq. (7.66) or (7.68). This collision integral is nullified by the equilibrium
distribution function with or without the energy offset �, i.e. by coth(εk +�)/2T ,
see Eq. (5.59). Indeed, two incoming particles k and p−q as well as two outgoing
ones p and k−q are all above the condensate and therefore are subject to the same
energy offset, which then drops from the delta-function. By interchanging k and p
arguments, it is easy to verify that four-particle collisions do not change the local
particle number, i.e.

∑
k I coll

4 [F̃(x, k)] = 0. Substituting F̃(k) = 2nk + 1, one
finds for the expression in the curly brackets on the right hand side of Eq. (7.79)
8
{
npnk−q(nk + 1)(np−q + 1)− nknp−q(np + 1)(nk−q + 1)

}
, which exhibits a clear

distinction between “in” and “out” collision channels.

7.8 Dynamics of a quantum impurity in a superfluid

In this section we show how the Keldysh formalism may be used to derive an
effective quasi-classical equation of motion for a quantum impurity, moving in a
superfluid environment. Such an impurity may be a He3 atom, or a slow neutron
moving in He4. Alternatively it may be a spin-flipped atom in a cold gas of spin-
polarized Bose atoms. Having in mind the latter case, we restrict ourselves to a
weakly interacting superfluid, while the He4 case was considered in [82]. Accord-
ing to the Landau criterion, if the impurity is moving with a velocity which is less
than the critical one (for a weakly interacting gas the critical velocity is close to the
speed of sound c), one may expect that it does not radiate Bogoliubov phonons.



142 Kinetics of Bose condensates

k

q

ck

k2

2md

k k

qR

(a)

gd

k
q

k (b)

gd

kk

gd gd

k
k

gd

(c)

ωB(k)

ε

Fig. 7.6 (a) Two-phonon Raman processes, which conserve energy and momen-
tum of the slow impurity. Two-phonon amplitudes �θ (b) and �� (c).

However, as was first understood by Landau and Khalatnikov [83], the radia-
tion is still possible via two-phonon Raman scattering. The idea is illustrated in
Fig. 7.6(a), which shows that by absorbing and then re-emitting a phonon the
final state of the impurity may satisfy the energy and momentum conservation
laws. For such processes to occur one needs a finite concentration of phonons in
the superfluid, i.e. a finite temperature T . Here we shall assume it to be small,
T � mc2.

We describe the quantum impurity with mass md and coordinate R(t) by a
Feynman path integral with the action (3.4) on a closed time contour. The short-
range interaction of the impurity with the superfluid density ρ = |φ|2 is described
by the action Sd−sf = gd

∫
C dt dr ρd(r, t)|φ(r, t)|2, where the impurity density is

ρd(r, t) = δ(r−R(t)).1 It is convenient to parametrize the Bose field by its density
and phase fluctuations, see Eqs. (7.12) and (7.13), φ(r, t) = √

ρ0 + �(r, t) eiθ(r,t).
The superfluid action, Eqs. (5.9), (5.13) and (7.1), acquires the form

S =
∫
C

dt dr
[
θ∂t� − mρ0

2
v2

sf −
g

2
�2 − 1

8mρ0
(∇r�)

2 − m

2
�v2

sf

]
, (7.80)

where vsf = ∇rθ/m. The first four terms on the right hand side are the Lagrangian
of the Bogoliubov phonons with the dispersion relation (7.11) and the speed of
sound c = √

gρ0/m. The last term is the non-linear three-phonon interaction
and we have neglected other non-linear terms, such as e.g. �(∇r�)

2, as being less
important at T � mc2.

1 The impurity also interacts with the local superfluid velocity vsf [82]. One can neglect this effect as long as
the effective mass of the impurity is close to its bare mass. This is the case for weak enough interactions,
gdρ0 � Tc.
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The interaction with the impurity is now given by Sd−sf = gd
∫
C dt dr ρd�, which

describes one phonon excitation by the impurity. As Fig. 7.6(a) shows, the real
processes must involve two phonons and thus should be described by the composite
two-phonon vertices depicted in Fig. 7.6(b), (c). In the limit of small tempera-
ture T � mc2, the characteristic phonon wavelength c/T is much larger than the
condensate healing (or correlation) length (mc)−1 and therefore the two-phonon
vertices may be considered as local. As a result, the effective impurity–superfluid
interaction action takes the form

Sd−sf = 1

2

∫
C

dt dr
[
�θ ρd(r− R(t))v2

sf(r, t)− �� ρd(r− R(t))�2(r, t)
]
, (7.81)

where �θ = gdρ0/c2 and �� = (g2
d/mdc2) cosα, where α is the angle between k+

and k−, i.e. cosα = k+ · k−/k+k−.2

To proceed we split the fields �(r, t), θ(r, t) and R(t) into those residing on
forward and backward branches of the contour and perform a Keldysh rotation as,
e.g., R± = Rcl ± Rq, and similarly for � and θ . The semiclassical equation of
motion for the impurity coordinate Rcl(t) = R(t) is obtained by variation of the
action over the quantum component Rq at a zero value of the latter. We can thus
expand the action in Rq and keep only the linear terms in all quantum components.
This way we find for, e.g., the first term on the right hand side of Eq. (7.81)

Sθ= �θ

∞∫
−∞

dt dr
[
ρd(r− R) 2vcl

sf · vq
sf − Rq · ∇rρd(r− R)

(
vcl

sf

)2
]
, (7.82)

and similarly for the second one, leading to S�. Next we perform Gaussian inte-
gration over the fluctuations of the superfluid, which are described by the first four
terms in Eq. (7.80). The last non-linear term was already used to derive the effective
two-phonon amplitude �θ and may be disregarded hereafter. Expanding in powers
of i(Sθ+S�) and performing Gaussian integrations, one notices that 〈Sθ 〉= 〈S�〉= 0

2 Since the intermediate virtual lines in the diagrams of Fig. 7.6(b), (c) are far from the mass-shell, they do not
involve Keldysh Green functions and may be evaluated using the usual second order perturbation theory. This
way one finds �θ = gd〈��〉m, see Fig. 7.6(b), where according to Eq. (7.80) 〈��〉 = (ρ0/m)q2/(ω2

B(q)−ω2).

As shown below, ω ≈ q · Ṙ and therefore ωB(q) ≈ cq � ω, one finds that 〈��〉 ≈ ρ0/(mc2) and thus
�θ = gdρ0/c2. One also finds that �� = g2

d×[
1

εp + ε− − εp+k−
+ 1

εp − ε+ − εp−k+

]
≈ (k+ − k−)2 − (k+)2 − (k−)2

2mdε
−(−ε+) ≈ k+ · k−

mdc2k+k− ,

where εp = p2/(2md) and one uses the mass-shell conditions εp + ε− − ε+ = εp+k−−k+ along with ε± =
ωB(k±)� |εp − εp∓k±|. In general, the amplitudes �θ and �� may be expressed through the thermodynamic
compressibility of the superfluid and effective mass of the impurity, without relying on the weakness of the
interactions [82, 84].
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(because of causality and integration of the full derivatives), where the angular
brackets stay for the integration over � and θ . The first non-vanishing contribution
to the equation of motion comes thus from Seff[R,Rq] = i

2〈(Sθ + S�)2〉. Keeping
again only the term linear in Rq, one finds for, e.g.,

〈
(Sθ )

2
〉 = −2�2

θ

∞∫
−∞

dt1dr1dt2dr2

[
Rq(t1)∇r1ρd(r1 − R(t1))ρd(r2 − R(t2))

× 〈(
vcl

sf(x1)
)2

vcl
sf(x2)v

q
sf(x2)

〉+ (r1 ↔ r2, t1 ↔ t2)
]
, (7.83)

where xi = (ri , ti ). We now introduce the central and relative time as t =
(t1 + t2)/2 and τ = t1 − t2 and approximate the impurity trajectory as
R(t1,2) ≈ R(t) ± τ Ṙ(t)/2. In the quantum component one may disregard
the relative time, putting Rq(t1,2) ≈ Rq(t). According to the Wick theorem
〈(vcl

sf(x1)
)2

vcl
sf(x2)v

q
sf(x2)〉= −(2/m4)∇α

r1
∇β

r2 DR
θθ (x1−x2)∇β

r2∇α
r1

DK
θθ (x2−x1), where

DR
θθ (x1 − x2) = −i〈θ cl(x1)θ

q(x2)〉 and DK
θθ (x1 − x2) = −i〈θ cl(x1)θ

cl(x2)〉
in accordance with the standard definitions. Finally, we go to the momentum
representation, using ρd(r− R(t)) =∑

q eiq(r−R(t)), and obtain

〈
(Sθ )

2
〉= 4i

∞∫
−∞

dt Rq(t) ·
∑

q

q�θθ

(
q, q · Ṙ(t)

)
,

where

�θθ(q, ω) = �2
θ

m4

∞∫
−∞

dτdr ei(q·r−ωτ)∇α
r ∇β

r

[
DR
θθ (r, τ )− DA

θθ (r, τ )
]∇β

r ∇α
r DK

θθ (r, τ )

= �2
θ

m4

∫
dε dk
(2π)d+1

(k+k−)
[
DR
θθ (k

+, ε+)− DA
θθ (k

+, ε+)
]× (k+k−)DK

θθ (k
−, ε−),

where k± = k ± q/2, ε± = ε ± ω/2 and d is the dimension. The DA
θθ term

originates from the last term on the right hand side of Eq. (7.83) with interchanged
arguments. Performing similar calculations for 〈(S�)2〉 and 2〈S�Sθ 〉, one finds

Seff[R,Rq] = i

2
〈(Sθ + S�)

2〉 = −2

∞∫
−∞

dt Rq(t) ·
∑

q

q�
(
q, q · Ṙ(t)

)
, (7.84)

where

�(q, ω)=
∫

dε dk (k+k−)2

(2π)d+1
Tr
{
�̂
[
D̂R(k+, ε+)− D̂A(k+, ε+)

]
�̂ D̂K(k−, ε−)

}
.

(7.85)
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The matrix Green functions of the phonon modes are found from Eq. (7.80) as

D̂R(A)(k, ε) =
⎛⎝ DR(A)

θθ DR(A)
θ
�
k

DR(A)
�
k θ

DR(A)
�
k
�
k

⎞⎠ = 1

2

1

(ε ± i0)2 − (ck)2

(
g iε/k

−iε/k ρ0/m

)
,

(7.86)

where we have neglected the curvature of the Bogoliubov dispersion relation. The
matrix Keldysh component of the Green function in thermal equilibrium is given
by FDT D̂K(k, ε) = coth(ε/2T )

[
D̂R(k, ε)− D̂A(k, ε)

]
. Finally, the vertex matrix

is defined as �̂ = diag{gdρ0/(m2c2), −g2
d/(mdc2)}.

We notice that both involved phonons are real, i.e. their energies and momenta
are related through the dispersion relation, ε = ±ck. This is due to the fact that
both D̂R − D̂A and D̂K are proportional to [δ(ε − ck)− δ(ε + ck)].3 This fact was
already anticipated in calculating the amplitudes �θ and �� above. Adding the free
part (3.4) and Eq. (7.84), we find for the action of the slow, Ṙ � c, impurity in the
superfluid

Simp[R,Rq] =
∞∫

−∞
dt
[−2Rq · (mdR̈+ γ Ṙ+ ∇RV (R)

)+ 4iγ T Rq · Rq
]
, (7.87)

where the friction coefficient is given by

γ = 8π5

135

T 8

c12

(
gd

m
− g2

d

gmd

)2

. (7.88)

The fluctuation term ∼ Rq ·Rq on the right hand side of Eq. (7.87) may be derived
in exactly the same way as the viscous term ∼ Rq · Ṙ was dealt with above. How-
ever, we can simply rely on FDT to write it down. The classical (i.e. local in time)
form of this term follows if one approximates Rq(t1) ·Rq(t2) ≈ Rq(t) ·Rq(t), which

3 Taking the trace and performing the energy integration in Eq. (7.85) with the help of delta-functions, one finds

�(q, ω)= π

8

(
gd

m
− g2

d
gmd

)2∫
dk

(2π)d
(k+k−)2
c2k+k− coth

ck−
2T

[
δ
(
ck+−ck−−ω)− δ

(
ck+−ck−+ω)]

≈ 1

64π

(
gd

m
− g2

d
gmd

)2
ω

c3T

∞∫
0

k2dk
(k2 − q2/4)2

k2 + q2/4
sinh−2

⎛⎝ c

2T

√
k2 + q2

4

⎞⎠ √
k2 + q2/4

kq
,

where we put d = 3, performed the angular integration using k± =
√

k2 + q2/4± kq cosϑ and expanded to
first order in ω = q · Ṙ � cq. Introducing dimensionless variables x = ck/(2T ) and y = cq/(4T ), one finds

∑
q

q�(q, q · Ṙ)= Ṙ
64

3π3

T 8

c12

(
gd

m
− g2

d
gmd

)2 ∫∞∫
0

dydx y3x
(x2 − y2)2√

x2 + y2
sinh−2

√
x2 + y2.

The double integral may be calculated in polar coordinates, bringing in a factor of π8/(12× 30).
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is the case as long as the characteristic frequency of the impurity motion is much
less than the temperature. Comparing the resulting action (7.87) with Eq. (4.2), we
notice that the slow impurities are executing classical viscous Brownian motion.
The latter may be described either by the Langevin equation (4.5), or the Fokker–
Planck equation (4.30). In the long-time limit the latter is reduced to the diffusion
equation (4.32) with the diffusion coefficient D = T/γ ∝ T−7 (Einstein relation).
On the other hand, the diffusion coefficient in momentum space is DK = γ T ∝ T 9,
see Eq. (4.30). Such high powers of the temperature dependence are due to the
two-phonon nature of the process. In d dimension it is given by γ ∝ T 2d+2

and D ∝ T−2d−1. We found thus that the superfluid acts on the slow impurity
as an effective Ohmic bath, introduced phenomenologically in Section 3.2. The
advantage of the microscopic calculation is access to the value and the peculiar
temperature dependence of the friction coefficient, Eq. (7.88).

The last factor in Eq. (7.88) is a result of the destructive interference between
the two-phonon processes depicted in Figs. 7.6(b), (c). One may show [84] that in
d = 1 and in the symmetric case gd = g, md = m, the cancelation is exact in
all orders of the perturbation theory and thus γ = 0. This fact is due to the exact
integrability of the corresponding symmetric 1D model with local interactions [85].
The exact integrability prohibits the dissipative friction and thermalization of the
impurity, because of the presence of an infinite number of conservation laws. In
d > 1 one finds a non-zero γ even in the symmetric case in higher orders in gd

and g [82].



8

Dynamics of phase transitions

The formalism of Chapter 4 is applied to spatially extended systems. We focus
on the slow dynamics near the first and second order phase transitions. In the latter
case the systems exhibit scale invariant behavior, which is tackled with the dynami-
cal renormalization group. We discuss both equilibrium (following the Hohenberg–
Halperin classification) and essentially non-equilibrium models. Examples of the
latter include reaction-diffusion systems (directed percolation plus other univer-
sality classes) as well as surface growth dynamics (the Kardar–Parisi–Zhang
universality class).

8.1 Dissipative chains and membranes

In Chapter 4 we considered the dynamics of an overdamped classical particle con-
nected to a thermal bath. We shall generalize it now to spatially extended models,
representing, e.g., an elastic chain or membrane connected to a bath and subject
to certain forces. Let us denote displacement of such an object as ϕ(r, t), where
r is a spatial index labeling lattice sites along the d-dimensional membrane (here-
after we shall employ the continuum notation). We use scalar real displacement ϕ
for simplicity, since generalization to vector (or complex) fields is straightforward.
Dynamical equations of motion for such a field acquire a form

∂tϕ(r, t) = − δF[ϕ]
δϕ(r, t)

+ ξ(r, t). (8.1)

The generalized potential F[ϕ], known also as Landau free energy, may be
written as

F[ϕ] =
∫

dr
[

D

2

(∇rϕ
)2 + V (ϕ)

]
, (8.2)

where the first term is elastic compression energy and the second one is an external
potential. The simplest form of the random force is spatially uncorrelated Gaussian
white noise:

147
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〈ξ(r, t)ξ(r′, t ′)〉 = 2 T δ(r− r′) δ(t − t ′). (8.3)

The fact that the deterministic force on the right hand side of Eq. (8.1) is of potential
form is by no means the most general case. We shall consider non-potential forces
later on. However, there are certain important consequences of the potential nature
of the force which deserve special attention.

We can employ now the MSR method, as described in Section 4.3, to transform
the problem to a functional representation. To this end we introduce a functional
delta-function of the Langevin equation (8.1) and employ exponential representa-
tion of it with the help of an auxiliary field ϕq(r, t). In doing so it is important to
keep the retarded (Ito) regularization of the time derivative in Eq. (8.1) to ensure
that the corresponding Jacobian is one (see Section 4.3 for more detailed discus-
sion). Performing Gaussian averaging over the white noise (8.2), one obtains the
MSR action

S[ϕ, ϕq] =
+∞∫
−∞

dt
∫

dr
{
−2ϕq

[
∂R

t ϕ − D∇2
rϕ + V ′(ϕ)

]+ 4iT
(
ϕq
)2
}
. (8.4)

To emphasize connections with Keldysh formalism it is convenient to split the first
term on the right hand side into two equal parts and perform integration by parts on
one of them. In the discretized time representation this amounts to the transposition
of the ∂R

t operator, which transforms its retarded (lower triangular) form into the
advanced (upper triangular) one. This leads to

S[ϕ, ϕq] =
∫

dt dr
(
ϕ, ϕq

)( 0 ∂A
t +D∇2

r−δ−gϕ2

−∂R
t +D∇2

r−δ−gϕ2 4iT

)(
ϕ

ϕq

)
,

(8.5)

where as a potential we took

V (ϕ) = δ

2
ϕ2 + g

4
ϕ4 (8.6)

for its important applications. This form of the action could be directly derived
starting from the quantum formalism of Chapter 5, by introducing the Ohmic bath
of oscillators and taking the classical limit. The derivation is completely equivalent
to the one presented in Section 4.1. Comparing the classical MSR action (8.5) with
its quantum counterparts, e.g. Eqs. (5.9) and (5.13), one may notice several differ-
ences: (i) the time derivatives come without imaginary i, reflecting the overdamped
dissipative dynamics; (ii) the term 4iT (ϕq)2, which is due to the noise associated
with the bath, is absent in the quantum version; (iii) on the other hand, the term
with (ϕq)3ϕ is absent in the MSR action. This is due to the fact that in the classi-
cal limit one keeps terms up to second order in ϕq. The ratio of the coefficients in
terms (i) and (ii) is fixed by FDT. The latter is valid due to the assumed equilibrium
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in the bath. Notice that the action (8.5) does not have the form S [ϕ+] − S [ϕ−],
where ϕ± = ϕ ± ϕq (unlike Eqs. (5.9) and (5.13)). This is due to the fact that
the time-reversal symmetry (i.e. equivalence of the two branches of the contour) is
explicitly broken by integrating out the thermal bath with the continuum spectrum.

8.2 Equilibrium statistical mechanics

Let us first investigate the MSR action (8.4) in the stationary path (or rather station-
ary field) approximation. To this end we take variational derivatives of the action
with respect to ϕ(r, t) and ϕq(r, t). As explained in Section 4.4, the stationary field
ϕq(r, t) appears to be pure imaginary (or zero). This means that the path of inte-
gration over D[ϕq] should be distorted in the complex planes of ϕq(r, t j ) to pass
through stationary field configurations. It is thus convenient to rename the auxil-
iary field as ϕq(r, t) = π(r, t)/(2i). The corresponding equations of motion for the
fields ϕ(r, t) and π(r, t) are real and acquire the Hamiltonian structure

∂tϕ(r, t) = δH[π, ϕ]
δπ(r, t)

, ∂tπ(r, t) = −δH[π, ϕ]
δϕ(r, t)

; (8.7)

H[π, ϕ] =
∫

dr
[
π
(
D∇2

rϕ − V ′(ϕ)
)+ Tπ2

]
=
∫

drπ
[
− δF[ϕ]
δϕ(r, t)

+ Tπ

]
.

(8.8)

There is one obvious way to solve these equations by putting π(r, t) = 0, while
∂tϕ(r, t) = δH[π, ϕ]/δπ(r, t)

∣∣
π=0 = D∇2

rϕ−V ′(ϕ). This corresponds, of course,
to noiseless relaxation dynamics of the field ϕ. Such a solution evolves on the
zero-energy manifold H = 0. The long-time activation dynamics of the system is
described by another zero-energy manifold. For the one degree of freedom exam-
ple of Section 4.4 such a manifold (curve) is given by P = V ′(X)/T and the
corresponding activation trajectories are time-reversed from the relaxation ones.
Remarkably, this solution may be directly generalized for the spatially extended
potential model (8.1) (see also the footnote in Section 4.12). To this end let us try
to impose that the Hamiltonian (8.8) is nullified locally in every spatial point, i.e.

π(r, t) = −D∇2
rϕ + V ′(ϕ)

T
; ∂tϕ(r, t) = −D∇2

rϕ + V ′(ϕ), (8.9)

where the second equality is an immediate consequence of the first one and the
equation of motion for the ϕ-field. It is easy to check that, if Eqs. (8.9) are true,
the equation of motion for the π -field is also satisfied.1 Notice that not only is the

1 Indeed, we first notice that ∂tϕ = Tπ , then take the time derivative of the second equation in (8.9), ∂t (∂tϕ) =
−D∇2

r ∂tϕ+ V ′′(ϕ)∂tϕ, which may be written as ∂tπ = −D∇2
r π + V ′′(ϕ)π , which is exactly the equation of

motion for the π -field.
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total energy H = 0 conserved, but it is also zero at every point. This observation is
related to the fact that in the stationary distribution the probability current is zero
at every point (this is true only for the potential forces, of course). Also notice that
on the zero-energy activation solution (8.9) the ϕ-field evolution is time reversed
from the noiseless relaxation.

We can address now the long-time probability of finding the extended system
in a field configuration ϕ0(r). It is given by the exponentiated action, calculated
along the trajectory which leads from ϕ = 0 to ϕ0(r). Such a trajectory is the
time-reversal of the noiseless relaxation motion from an arbitrary initial profile
ϕ0(r) down to the lowest energy state ϕ = 0. Employing that H = 0 along such a
trajectory, the corresponding action (8.4) S = ∫

dt (π∂tϕ −H) is2∫
drdt π∂tϕ =

∫
drdt

−D∇2
rϕ + V ′(ϕ)

T
∂tϕ = 1

T

∫
drdt ∂t

[
D

2
(∇rϕ)

2 + V (ϕ)

]
.

One can now perform the integral over time explicitly. It is given by the expression
in the square brackets calculated at the upper limit, which is ϕ0(r). As a result
we found that the corresponding action is S = F[ϕ0]/T . Finally, the long-time
probability of finding the system in the field configuration ϕ0(r) is

P[ϕ0] = Z−1 e−F [ϕ0]/T ; Z =
∫

D[ϕ] e−F [ϕ]/T , (8.10)

provided the partition function Z exists. This is, of course, nothing but the equilib-
rium statistical mechanics of the static field ϕ(r). We have found thus that the
dynamical model (8.1) with the potential forces (8.2) evolves in the long-time
limit towards the stationary Boltzmann distribution (8.10) (if the potential V (ϕ)
is bounded from below).

Strictly speaking, so far we have established Eq. (8.10) with exponential
accuracy only, i.e. we did not prove that the pre-exponential factor Z−1 is ϕ0-
independent. To do this one needs to go beyond the stationary field approximation
and write down the Fokker–Planck equation for the probability P([ϕ], t), where
the square brackets indicate that probability is a functional of ϕ(r) field configura-
tion at time t . In a complete analogy with Eq. (4.28) such a Fokker–Planck equation
takes the form

∂tP([ϕ], t) =
∫

dr
δ

δϕ(r)

[
δF[ϕ]
δϕ(r)

P([ϕ], t)+ T
δP([ϕ], t)

δϕ(r)

]
. (8.11)

The expression in the square brackets is the (minus) probability current J ([ϕ], r, t).
Demanding that each component, labeled by r, of the latter vanishes, one
immediately finds the stationary distribution (8.10). This proves that the only

2 For the rest of this chapter we suppress the imaginary unit i in the MSR action.
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pre-exponential factor in Eq. (8.10) is the ϕ0-independent normalization constant,
i.e. the inverse partition function.

8.3 Critical nucleation in first order transitions

As an example of a non-equilibrium situation we consider a “supercooled” phase,
beyond the point of first order phase transition. It is described by a field trapped
in a meta-stable potential minimum depicted in Fig. 8.1. Since the corresponding
potential is not bounded from below, one can’t apply the equilibrium statistical
mechanics specified by Eq. (8.10). Instead, one should consider nucleation of the
more stable phase, which occurs due to rare large fluctuations of the field. If
the latter activates a sufficiently large region of the system beyond the potential
maximum, it becomes energetically favorable for the stable phase to grow. The
long-time dynamics of such a rare fluctuation is described by H = 0 stationary
field equations (8.9). To overcome the potential barrier the fluctuation must reach
a saddle point field configuration ϕs(r). The latter is a generalization of the unsta-
ble fixed point Xs in Fig. 4.1(b). As such, it must satisfy the stationary noiseless
equation of motion

0 = − δF[ϕ]
δϕ(r, t)

∣∣∣∣
ϕs(r)

= D∇2
rϕs − V ′(ϕs) (8.12)

with the boundary condition ϕs(∞) = 0, where zero denotes the meta-stable min-
imum. According to the calculations leading to Eq. (8.10), the long-time action of
such a fluctuation is F[ϕs]/T . As a result, the nucleation rate of critical domains
is given by R ∼ e−F [ϕs]/T . Once the critical domain is formed, it starts to grow

V
r

ϕ

Fig. 8.1 Meta-stable potential V (ϕ). The arrows indicate the direction of the
domain wall motion after the field fluctuation reaches the saddle configuration
ϕs(r) (bold line).
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according to the deterministic noiseless equation of motion ∂tϕ = D∇2
rϕ− V ′(ϕ),

analog of the P = 0 line in Fig. 4.1(b) for X > Xs. This latter process is associated
with the domain walls motion, Fig. 8.1.

To establish the pre-exponential factor in the nucleation rate R we need to gen-
eralize treatment of the Kramers problem, Section 4.8, for the spatially extended
case [86]. To this end consider the effective potential in a vicinity of the saddle
configuration ϕs(r). Expanding it to second order (the first order is absent, since ϕs

is a stationary function of the F[ϕ] functional), one finds

F[ϕ] = F[ϕs] + 1

2

∫
drdr′

δ2F[ϕ]
δϕ(r)δϕ(r′)

∣∣∣∣
ϕs

δϕ(r)δϕ(r′)+ · · · ,

where δϕ(r) = ϕ(r) − ϕs(r). It is convenient to diagonalize the symmetric form
δ2F[ϕ]/δϕ(r)δϕ(r′)∣∣

ϕs
and find its eigenvalues λn and eigenfunctions χn(r), where

n = −1, 0, 1, . . . , N − 2, and N is the total number of degrees of freedom. Since
ϕs is a saddle, rather than a minimum, there is one negative eigenvalue λ−1 < 0,
while λ0, . . . , λN−2 ≥ 0. The eigenfunctions are orthogonal and can be normalized
as

∫
drχn(r)χm(r) = δnm . One can now expand any variation δϕ(r) in this basis

and write

δϕ(r) =
N−2∑

n=−1

cnχn(r) ; F[c] = F[ϕs] + 1

2

N−2∑
n=−1

λnc2
n + · · · . (8.13)

Similarly, one can apply this orthogonal transformation to the meta-stable distribu-
tion P[ϕ] → P[c] and to the stationary probability current out of the meta-stable
state J ([ϕ], r) → Jn[c], Eq. (8.11). The latter obeys the continuity relation∑

n ∂cn Jn[c] = 0, where we neglected the exponentially small time derivative of the
meta-stable distribution in a vicinity of the saddle. Since we expect that the escape
proceeds along the unstable direction, we can assume that J0, . . . , JN−2 = 0 and
therefore the only non-zero current component J−1[c0, . . . , cN−2] is independent
of c−1. We can write thus

J−1[c] = −
[
∂F[c]
∂c−1

P[c] + T
δP[c]
∂c−1

]
; 0 = −

[
∂F[c]
∂cn

P[c] + T
δP[c]
∂cn

]
,

where n = 0, 1, . . . , N − 2. Solving the second equation here with the help of
Eq. (8.13), one obtains P[c] = e−F [c]/T u(c−1), where u(c−1) is a yet unknown
function. Substituting it into the first equation and employing the continuity
relation ∂c−1 J−1 = 0, one finds

J−1[c] = I e
−
(
F [ϕs]+ 1

2

N−2∑
n=0

λnc2
n

)
/T ; P[c] = I

T
e−F [c]/T

∞∫
c−1

dc−1 e−|λ−1|c2−1/2T
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(compare with Eq. (4.46)), where I is a normalization constant. To determine
the latter, one notices that the dc−1 integral reaches practically a constant value√

2πT/|λ−1| for c−1 � −√2T/|λ−1|. For a low temperature this is a small
distance and the maximum of the meta-stable distribution is expected to be at
much more negative c−1. Therefore, around the maximum the distribution is
P[ϕ] = I

√
2π/T |λ−1| e−F [ϕ]/T . To normalize it one needs to find eigenvalues of

δ2F[ϕ]/δϕ(r)δϕ(r′)∣∣
ϕ=0 around the meta-stable configuration ϕ = 0. Due to the

local stability of ϕ = 0 they are all positive, λ(0)k > 0, where k = 1, . . . , N . Requir-

ing
∫

D[ϕ]P[ϕ] = 1, one finds I = √
T |λ−1|/2π eF [0]/T

∏N
k=1

√
λ
(0)
k /2πT .

Finally, the critical nucleation rate R is given by the total normalized current across
the surface, c−1 = 0, i.e. R = ∫

dc0 . . . dcN−2 J−1[c]. This way we find [86]

R =
√

T |λ−1|
2π

N∏
k=1

√
λ
(0)
k

2πT
e−
(
F [ϕs]−F [0]

)
/T

∫
dc0 . . . dcN−2 e

− 1
2T

∑
n=0

λnc2
n
. (8.14)

Integrals over non-negative modes dc0 . . . dcN−2 could be performed in the Gaus-
sian approximation, if not for the presence of the zero modes in the spectrum
λ0, λ1, . . .. The latter certainly exist due to the translational invariance of the saddle
configuration ϕs(r).

To illustrate how to deal with them let us consider a one-dimensional example of
Fig. 8.1. The saddle configuration ϕs(x − x0) may be centered around an arbitrary
spatial point x0. The zero eigenmode χ0(x), where λ0 = 0, associated with the
translational invariance, may be thus identified as ϕ(x) = ϕs(x)+x0∇xϕs(x)+· · · .
Comparing it with Eq. (8.13), one finds χ0(x) = ∇xϕs(x)/[

∫
dx(∇xϕs)

2]1/2 and
c0 = x0[

∫
dx(∇xϕs)

2]1/2. Taking into account that for the saddle configuration the
total elastic energy is equal to the potential one, we find

∫
dx(∇xϕs)

2 = F[ϕs]/D,
where we put F[0] = 0. We thus obtain dc0 = dx0

√
F[ϕs]/D. Since λ0 = 0,

the dc0 integration results in the factor L
√
F[ϕs]/D, where L = ∫

dx0 is the total
spatial length of the string. The integrals over remained modes with eigenvalues
λ1, . . . , λN−2 > 0 in Eq. (8.14) may be evaluated in the Gaussian approximation.
One thus obtains for the nucleation rate per unit length

R

L
=
[
F[ϕs]

T

|λ−1|
(2π)3 D

N∏
k=1

λ
(0)
k

N−2∏
n=1

1

λn

]1/2

e−F [ϕs]/T . (8.15)

The dimensionality is given by [λ] = 1/time and [D] = length2/time, the right
hand side is thus [time× length]−1, as it should be.
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To proceed with Eq. (8.15) let us consider a cubic potential, cf. Eq. (3.34),

V (ϕ) = V0

[
δ

(
ϕ

ϕ̄

)2

−
(
ϕ

ϕ̄

)3
]
.

The corresponding equation for ϕs(x) takes the form D∇2
xϕs − V ′(ϕs) = 0

with the boundary conditions ϕs(±∞) = 0. The equation may be integrated
once to yield D

2 (∇xϕs)
2 = V (ϕs), which may now be easily solved, leading to

ϕs(x) = ϕ̄δ cosh−2(x/x̄), where x̄ = ϕ̄
√

2D/V0δ . The activation energy is then
F[ϕs] = (8/15)

√
2V0 Dϕ̄2 δ5/2, cf. Eq. (3.36). The corresponding equation for the

eigenvalues λn acquires the form of the Schrödinger equation with a cosh−2(x/x̄)
potential. Its solutions are well known [35]. As expected, there is a single neg-
ative eigenvalue λ−1 = −(5/2)V0δ/ϕ̄

2, the zero eigenvalue λ0 = 0, a positive
discrete eigenvalue λ1 = (3/2)V0δ/ϕ̄

2 and the continuum of positive eigenvalues
λp = (2+ p2/2)V0δ/ϕ̄

2, where p is a real continuum label. The eigenvalues near
the meta-stable minimum are also continuous, given by λ(0)k = (2+ k2/2)V0δ/ϕ̄

2.
As a result, the pre-exponential factor in Eq. (8.15) is[

C

√
V0 Dϕ̄2 δ5/2

T

V0δ/ϕ̄
2

D
(V0δ/ϕ̄

2)2

]1/2

= C 1/2 V 7/4
0 δ11/4

T 1/2 D1/4 ϕ̄5/2
, (8.16)

where C is a numerical constant.3 Notice the very strong δ11/4 dependence of
the pre-exponential factor on the bifurcation parameter δ. It should be compared
with the linear dependence in the corresponding d = 0 Kramers problem result,
Eq. (4.51).

8.4 Critical dynamics near a classical second order transition

In this section we focus on the model with the potential (8.6), described by the
action (8.5). Neglecting for a moment the non-linear term ∝ g and assuming that
δ > 0, one finds Gaussian response and correlation functions, cf. Eqs. (3.13),

3 C = 8
√

2
15

5
2

1
(2π)3

∏
k λ

(0)
k

2
3
∏

p λ
−1
p . To evaluate the products over the continuous spectra, we notice that

the quantization condition for k is kL = 2πn, where n is an integer. One thus finds
∏

k λ
(0)
k = e

∑
k ln λ(0)k =

e
∫

L/(2π)dk ln(2+k2/2). The quantization condition at the saddle for p is pL + δ(p) = 2πn, where δ(p) is the
phase-shift in the reflectionless cosh−2(x/x̄) potential, which is [35]

δ(p) = arg

[
(−1+ ip)(−2+ ip)(−3+ ip)

(1+ ip)(2+ ip)(3+ ip)

]
.

As a result,
∏

p λ
−1
p = e−

∑
p ln λp = e−

∫
(L+δ′(p))/(2π)dp ln(2+p2/2), where δ′(p)/(2π) is a (negative)

correction to the density of the continuous states. Notice that − ∫
δ′(p)/(2π)dp = 3 is a number of

discrete states, which correctly takes care of the dimensional factor V0δ/ϕ̄
2. Finally

∏
k λ

(0)
k

∏
p λ

−1
p =

e−
∫
δ′(p)/(2π)dp ln(2+p2/2) = 450. Putting all together, C1/2 = 1.51.
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DR
0 (q, ω) =

1

i

∫
drdt ei(ωt−qr)〈ϕ(r, t)ϕq(0, 0)〉 = 1

2

1

iω − Dq2 − δ
; (8.17a)

DA
0 (q, ω) =

1

i

∫
drdt ei(ωt−qr)〈ϕq(r, t)ϕ(0, 0)〉 = 1

2

−1

iω + Dq2 + δ
; (8.17b)

DK
0 (q, ω) =

1

i

∫
drdt ei(ωt−qr)〈ϕ(r, t)ϕ(0, 0)〉 = −i 2T

ω2 + (Dq2 + δ)2
(8.17c)

and, as always, 〈ϕqϕq〉 = 0. Notice that, in agreement with the classical limit of
FDT, DK = (2T/ω)(DR − DA), which holds even for the full Green functions
including non-linear effects. From the last expression one finds for the equal time,
t = 0, Gaussian correlation function

〈ϕ(r, 0)ϕ(0, 0)〉 =
∫

dq dω

(2π)d+1

2T eiqr

ω2 + (Dq2 + δ)2
= T

�∫
dq

(2π)d

eiqr

Dq2 + δ
. (8.18)

This is exactly what one expects from the static equilibrium statistical mechanics
of a membrane in the Gaussian potential V (ϕ) = δϕ2/2, Eq. (8.10). The short
distance divergence of the integral in d > 1 is regularized by a cutoff � ≈ 1/a,
where a is the lattice constant. On the other hand, divergence at long distances in
the limit δ→ 0 signals the importance of the non-linear terms, so far omitted.

The δ → 0 limit describes the vicinity of the second order phase transition.
Indeed, for δ > 0 the potential V (ϕ), Eq. (8.6), has a single minimum at ϕ = 0,
describing say a non-magnetic state. If δ < 0 there are two distinct minima at
ϕ = ±(−δ/g)1/2, describing a magnetized state, see Fig. 8.3. In the latter case
the system spontaneously chooses (for d > 1) one of the two minima, breaking
the symmetry ϕ, ϕq → −ϕ,−ϕq present in the action (8.5). It is thus said that
δ ∼ T − Tc is a critical parameter, where Tc is a critical temperature of the second
order phase transition. It was shown experimentally, numerically and eventually
analytically that various observable and correlation functions exhibit power-law
scaling dependence on |δ| in the limit |δ| → 0. In particular, the characteristic spa-
tial scale of the static correlation function (8.18), known as the correlation length
ξ , diverges as ξ ∝ |δ|−ν . The dynamic correlation functions, e.g. (8.17c), pos-
sess a characteristic time scale τ , which diverges as τ ∝ |δ|−νz ∝ ξ z . Inspecting
Eqs. (8.17) and (8.18), one concludes that in the Gaussian theory the correspond-
ing critical exponents are ν = 1/2 and νz = 1. We shall show below that this
is indeed the case for d > dc, where in the present case the critical dimension is
dc = 4. Below the critical dimension, d < 4, the critical exponents deviate from the
Gaussian predictions, maintaining nevertheless remarkable universality. The way
to understand such a universality and evaluate critical exponents was suggested by
Wilson [87], see also [88, 89], and is known as the renormalization group (RG).
We shall not provide here a detailed account of RG ideology, referring the reader



156 Dynamics of phase transitions

to a number of excellent presentations [5, 9, 90, 88, 89]. Instead, we shall focus on
some peculiarities of the perturbative RG in a dynamical setting.

The idea is to gradually integrate out fast degrees of freedom, monitoring
the evolution of the effective action for the remaining slow degrees of freedom.
The corresponding evolution equations for the action parameters, being linearized
around a proper fixed point, reveal the critical exponents. The differences between
the static and dynamic theory are (i) in the latter case the degrees of freedom are
labeled by momentum q and frequency ω, while in the former only by q; (ii) due
to the doubling of the number of fields ϕ and ϕq, the dynamic action has room for
many more possible terms than the static one. One needs to discuss thus how to
split the degrees of freedom into slow and fast ones and how to select the relevant
terms in the action.

A convenient way to separate degrees of freedom is depicted in Fig. 8.2. We
write thus ϕ(q, ω) = ϕs(qs, ω) + ϕf(qf, ω) and the same for ϕq(q, ω), where
subscripts s and f denote slow and fast parts, respectively. The fast part contains
momenta in the shell �/b < q < �, where b > 1, and unrestricted frequen-
cies, while the slow part has momenta q < �/b and also unrestricted frequencies.
The drawback of this approach is that the slow fields have all frequency compo-
nents and thus their effective action technically acquires non-local (in time) form
upon integration over the fast fields. It is only if one focuses on the low-frequency
components that the time locality is restored. As a result, the high-frequency com-
ponents of the slow fields are simply ignored, rather than being integrated out. One
could, in principle, introduce shells in both momentum and frequency directions
[9]. It complicates calculations, but seems not to change the results (technically
due to the fast convergence of the frequency integrals, as, e.g., in Eq. (8.18)).

To visualize what terms in the effective action are important to keep, it is con-
venient to involve the Hamiltonian language of Eq. (8.8), which is obtained by
treating π = 2iϕq as the canonical pair of ϕ. The phase portraits of the correspond-
ing Hamiltonian (8.8) (without the gradient terms) for δ > 0 and δ < 0 are plotted

0 q
Λ /b

ω

–Λ /b–Λ Λ

Fig. 8.2 Separation of degrees of freedom into slow (central area) and fast (shaded
areas).
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(a)

0

(b)V V

π  = 2iϕq

ϕ

ϕ ϕ

ϕ

π  = 2iϕq

Fig. 8.3 Phase portraits of the system undergoing a second order phase transition:
(a) non-magnetic state δ > 0; (b) magnetic state δ < 0. The insets show the
corresponding potentials V (ϕ).

in Fig. 8.3. As discussed in Section 4.4, one needs to focus on the two lines of
zero energy π = 0 and π = V ′(ϕ)/T . The second order transition may be identi-
fied with the qualitative rearrangement of their geometry: three intersections versus
one. Notice also that the reflection symmetry (π, ϕ)→ (−π,−ϕ) of phase space is
intact in both cases. One should thus keep the minimal number of terms, which (i)
allow for the transition between three and one intersections and (ii) obey the reflec-
tion symmetry. This is achieved with the Hamiltonian H = π(γ Tπ − δϕ − gϕ3).
Notice that other allowed terms, e.g. π2ϕ2, do not change the qualitative shape of
Fig. 8.3 for small δ and thus may be neglected. The minimal action to be considered
is thus

S [ϕ, π] =
∫

dr dt
[
γπ∂tϕ − Dπ∇2

rϕ + δπϕ + gπϕ3 − γ T π2
]
, (8.19)

where we reintroduced the friction coefficient γ , see Eq. (4.2). It contains five
constants γ, D, δ, g and γ T . One then substitutes ϕ = ϕs + ϕf and π = πs + πf

and proceeds in two steps.
In the first step the space of slow momenta |qs| < �/b is rescaled to the original

size �, i.e. qs → q/b, where |q| < �. In coordinate space it means r → br. We
shall also rescale time and the slow fields in the following manner:

r → br, t → bzt, ϕs(r, t)→ bχϕ(br, bzt), πs(r, t)→ bχ̃π(br, bzt).
(8.20)

Then the part of the action (8.19) which contains only the slow fields acquires the
same form as Eq. (8.19) with the constants renormalized in the following way:

γ ′ = bd+χ̃+χγ, D′ = bd+z−2+χ̃+χ D, δ′ = bd+z+χ̃+χδ, (8.21)

g′ = bd+z+χ̃+3χg, (γ T )′ = bd+z+2χ̃ γ T .

The respective exponents are called bare scaling dimensions of the corresponding
terms in the action.
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(a) (b)

Fig. 8.4 One loop renormalization of running constants δ (a), and g (b). Full lines
represent ϕ, dashed lines ϕq = π/(2i), each bold dot carries a factor of 3g.

The second step is to expand e−S , where S is given by Eq. (8.19), in a power
series in terms containing interactions of the slow and fast fields. In particular,
one is interested in terms (i) 3gπsϕsϕ

2
f and (ii) 3gπfϕfϕ

2
s . One then performs

Gaussian integration over the fast fields, employing the Green functions (8.17)
(recall that πf = 2iϕq

f ). After the rescaling (8.20) the fast momenta are running in
� < qf < b�. The one-loop diagram expressing correction to the terms in the
action ∝ πϕ employs vertex (i)4 and is depicted in Fig. 8.4(a). The corresponding
loop is given by

3g
1

i

b�∫
�

dqf

(2π)d

∫
dω

2π
DK

0 (qf, ω) = −3g

b�∫
�

dqf

(2π)d

T

Dq2
f + δ

≈ −3g

b�∫
�

dqf

(2π)d

T

Dq2
f

+ 3gδ

b�∫
�

dqf

(2π)d

T

(Dq2
f )

2
. (8.22)

The first δ-independent term constitutes additive correction to δ (or, in other words,
it shifts the point of the transition, i.e. Tc). Since in our approach the latter is anyway
a phenomenological parameter, the first term on the right hand side of Eq. (8.22)
may be omitted. The second term ∝ gδ provides an additional (beyond the bare
scaling (8.21)) multiplicative correction to δ, which must be kept. Since there is no
dependence on external momentum and frequency in the diagram of Fig. 8.4(a),
there are no one-loop corrections to γ and D. They appear, however, along with a
correction to the γ T vertex, in the two-loop order, coming from the vertices gπsϕ

3
f

and 3gπfϕsϕ
2
f .

The one-loop diagram, expressing corrections to the interaction vertex ∝ gπϕ3,
employs vertices (i)×(ii)5 and is depicted in Fig. 8.4(b). It is given by

9g2 4

i

b�∫
�

dqf

(2π)d

∫
dω

2π
DK

0 (qf, ω)D
R
0 (qf, ω) = 9g2

b�∫
�

dqf

(2π)d

T

(Dq2
f )

2
, (8.23)

4 Vertex (ii) would result in terms ∝ ϕ2, which violate the fundamental property S[ϕ, 0] = 0. Fortunately they
are proportional to DR(0, 0)+ DA(0, 0) = 0, due to coinciding time arguments.

5 Combination (i)×(i) generates a new interaction vertex π2ϕ2, which is irrelevant (i.e. scales to zero), see below.
On the other hand, (ii)×(ii) is zero, because 〈πfπf〉 = 0.
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where we have neglected the small critical parameter δ in comparison with D�2.
Exponentiating back the resulting expressions, one finds the one-loop corrections
to the running coupling constants δ and g.

We put now b = 1 + l, where l is an infinitesimal increment, and perform the
integrals in Eqs. (8.22) and (8.23). We then combine the loop corrections with the
bare scaling (8.21) and write them both in the differential form

∂lγ = (d + χ̃ + χ)γ, ∂l D = (d + z − 2+ χ̃ + χ)D,

∂l(γ T ) = (d + z + 2χ̃)γ T, (8.24)

∂lδ = (d + z + χ̃ + χ)δ − 3gδKd , ∂l g = (d + z + χ̃ + 3χ)g − 9g2 Kd ,

where Kd = (T/D2)�d−421−dπ−d/2�(d/2) is �d−4(2π)−d T/D2 times the area
of the unit sphere in d dimensions. We can now use the freedom of choosing χ̃ , χ
along with the scale of time to fix three of these five parameters. It is convenient
to fix γ , D and γ T , i.e. the parameters of the Gaussian action at the critical point.
This is achieved by demanding that d + χ̃ + χ = 0, d + z − 2 + χ̃ + χ = 0 as
well as d + z + 2χ̃ = 0. This results in the following scaling dimensions: z = 2,
χ = 1− d/2 and χ̃ = −1− d/2. The remaining two RG equations read as

∂lδ =
(
2− 3gKd

)
δ , ∂l g =

(
ε − 9gKd

)
g, (8.25)

where ε = 4 − d.6 For ε < 0, i.e. d > dc = 4, the non-linearity is irrelevant,
meaning g → 0 as l increases. The equation for the critical parameter δ may then
be easily integrated, leading to δ = δ0e2l = δ0b2. To carry out rescaling until δ ∝ 1,
where the renormalized system is not critical, requires thus b ∝ δ

−1/2
0 . Since b is

the spatial scaling factor, see Eq. (8.20), it implies ξ ∝ δ
−1/2
0 and thus ν = 1/2, as

expected for Gaussian theory.
If d < 4 and thus ε > 0, the equation for the interaction constant g predicts that

it evolves towards the Wilson–Fisher fixed point g∗ = ε/(9K4). Our perturbative
scheme is justified as long as g∗ is small, requiring ε � 1 (this is the reason one
substitutes Kd by K4). The corresponding perturbative scheme is thus known as
the ε-expansion [87]. Then the RG equation for the critical parameter δ acquires
the form ∂lδ = (2 − ε/3)δ. Integrating it, one finds for the correlation length
critical exponent ν = (2 − ε/3)−1 ≈ 1/2 + ε/12, while the correlation time
exponent is νz = 1+ε/6. We thus find that both spatial and temporal scales diverge
on approaching the critical point with non-Gaussian exponents. In the model at
hand the dynamical exponent z = 2 + O(ε2) is not altered within the one-loop
approximation, it is modified, however, at the two-loop level [91]. Below we shall
consider examples where z is already non-trivial in the order ε.

6 The bare scaling dimension of the term π2ϕ2 is d+ z+2χ̃+2χ = 2−d and therefore it is indeed less relevant
than both πϕ and πϕ3, as was already conjectured from the phase portrait, Fig. 8.3.
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The previous calculations may be straightforwardly extended to the case where
ϕ (and ϕq) are N -component vectors and the equations of motion are O(N ) rota-
tionally invariant. The Gaussian part of the corresponding action has the form∑N

a=1 πa(. . .)ϕa , where dots stand for the linear kinetic operator. The interaction
part acquires the form

∑N
a,b=1 gπaϕaϕbϕb. Splitting the fields into slow and fast

components gives rise to four vertices: (i) gπasϕasϕbfϕbf; (ii) 2gπasϕafϕbsϕbf; (iii)
gπafϕafϕbsϕbs; and (iv) 2gπafϕasϕbsϕbf. The bare scaling (8.21) is, of course, the
same. The one-loop correction to δ, Fig. 8.4(a), originates from vertices (i) and
(ii), which contribute to the coefficient as N + 2. The one-loop correction to g,
Fig. 8.4(b), comes from the [(i) + (ii)]×[(iii) + (iv)] combination of vertices, which
brings the coefficient N + 2+ 2+ 4 = N + 8. As a result the RG equations (8.25)
acquire the form ∂lδ =

(
2− (N +2)gK4

)
δ and ∂l g =

(
ε− (N +8)gK4

)
g, leading

to, e.g., ν−1 = 2− ε(N + 2)/(N + 8)+ O(ε2).

8.5 Hohenberg–Halperin classification

So far we have seen that the universality class, i.e. the set of critical exponents,
depends on the dimensionality d and the number of the field components N . This
is similar to what is known in equilibrium statistical mechanics [90, 88, 89]. How-
ever, the dynamics of the transition, in particular the dynamic critical exponent z,
also depends on the presence or absence of the conservation laws. This relation
and emerging classification of the dynamic universality classes was elucidated by
Hohenberg and Halperin [91]. The model considered in Section 8.4 (model A in the
Hohenberg–Halperin classification) does not have any conserved quantities. It may
be reformulated in a way to conserve

∫
drϕ(r, t) = ϕ(q = 0, t), describing the

order parameter ϕ of, e.g., a uniaxial magnet with conserved total spin. To ensure
the conservation law, the equation of motion must have a form of the continuity
relation

∂tϕ(r, t) = −∇rJ J = −∇r
δF[ϕ]
δϕ(r, t)

− �ζ (r, t), (8.26)

where the Landau free energy F[ϕ] is given by Eqs. (8.2) and (8.6) and �ζ (r, t) is a
random Gaussian vector noise with the isotropic correlation function

〈ζμ(r, t)ζ ν(r′, t ′)〉 = 2T δμνδ(r− r′)δ(t − t ′), (8.27)

where μ, ν = x, y, z. This is model B. Its MSR action in the Hamiltonian nota-
tion takes the form S[ϕ, π] = ∫

dt
(∫

drπ∂tϕ −H[π, ϕ]), where the Hamiltonian
(upon integration by parts) is

H[π, ϕ] =
∫

dr
[
−(∇rπ) · ∇r

δF[ϕ]
δϕ(r, t)

+ T (∇rπ)
2

]
. (8.28)
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Again there are two H = 0 solutions of the stationary field equations: noise-
less relaxation π = 0, while ∂tϕ = ∇2

r (δF/δϕ), and the activation trajectory
π = (δF/δϕ)/T , while ∂tϕ = −∇2

r (δF/δϕ). The last equation, which is an
immediate consequence of the equation of motion for ϕ, shows that activation
trajectories are time-reversed copies of the relaxational ones. The action on the
activation trajectory, leading to a configuration ϕ0(r), is

S =
∫

dt drπ∂tϕ = 1

T

∫
dt dr (δF/δϕ) ∂tϕ = 1

T

∫ ϕ0

dt ∂tF[ϕ] = F[ϕ0]
T

.

This shows that in the long-time limit model B obeys the same equilibrium stat-
istical mechanics, Eq. (8.10), as model A. It implies, in particular, that the static
critical exponents, e.g. ν, are the same as in model A. The dynamics, however, is
different and so is the dynamic critical exponent z.

To develop an RG treatment of model B we employ the potential in the form
(8.6), restore the friction coefficient γ and write the MSR action as

S =
∫

dr dt
[
γπ ∂tϕ + (∇2

rπ)
(
D(∇2

rϕ)− δϕ − gϕ3
)− γ T (∇rπ)

2
]
. (8.29)

Neglecting the non-linear vertex g(∇2
rπ)ϕ

3, one finds the Gaussian response and
correlation functions, cf. Eqs. (8.17),∫

drdt ei(ωt−qr)〈π(r, t)ϕ(0, 0)〉 = 1

iγω + Dq4 + δq2
; (8.30a)∫

drdt ei(ωt−qr)〈ϕ(r, t)ϕ(0, 0)〉 = 2γ T q2

(γω)2 + (Dq4 + δq2)2
(8.30b)

and, of course, 〈ππ〉 = 0. Integrating Eq. (8.30b) over the frequency ω, one finds
that the static correlation function 〈ϕ(r, 0)ϕ(0, 0)〉 coincides with that of model
A, Eq. (8.18), and agrees with the equilibrium statistical mechanics, Eq. (8.10).
We then split the fields ϕ and π into slow and fast components, rescale the action
and integrate out the fast fields in the one-loop approximation, see Section 8.4.
Two non-linear vertices contribute to this calculation: (i) −3g(∇2

rπs)ϕsϕ
2
f and

(ii) −3g(∇2
rπf)ϕfϕ

2
s . The diagram of Fig. 8.4(a) includes only the static (equal

time) correlation function (8.18) and thus is exactly the same in models A and B.
The diagram of Fig. 8.4(b) acquires an additional factor q2

f , coming from the
vertex (ii). It compensates for the corresponding factor in the denominator, leading
again to the same result as in model A, Eq. (8.23). The RG equations acquire the
form, cf. Eq. (8.24),

∂lγ = (d + χ̃ + χ)γ, ∂l D = (d + z − 4+ χ̃ + χ)D,

∂l(γ T ) = (d + z − 2+ 2χ̃)γ T, ∂lδ = (d + z − 2+ χ̃ + χ − 3gKd)δ,

∂l g = (d + z − 2+ χ̃ + 3χ − 9gKd)g .
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Notice that the bare scaling dimensions of D, γ T , δ and g are two less than those
in model A. This is due to the presence of additional gradients in the action (8.29).
The rest of the calculation follows the same steps as after Eq. (8.24) and the only
difference in the results is that z = 4 for d ≥ 4 and z = 4+ O(ε2) for d < 4. The
former statement may be already recognized from the Gaussian correlators (8.30).
Notice also that a small perturbation, violating the conservation law, e.g. a term in
the action ∝ πϕ, acquires the bare scaling dimension d + z + χ̃ + χ = 4 and is
strongly relevant. Therefore such a perturbation grows fast upon renormalization,
eventually bringing the system into the universality class of model A.

Other Hohenberg–Halperin universality classes are associated with the order
parameter ϕ being coupled to one or more conserved fields, i.e. hydrodynamic
modes. For example, a non-conserved order parameter of model A may be cou-
pled to a conserved scalar density �(r, t) of, say, annealed mobile impurities. The
dynamics of the latter is governed by the conserved Langevin equation:

∂tϕ(r, t) = −δF[ϕ, �]
δϕ(r, t)

+ ξ(r, t) , ∂t�(r, t) = ∇r

[
∇r
δF[ϕ, �]
δ�(r, t)

+ �ζ (r, t)

]
,

F[ϕ, �] =
∫

dr
[

D

2
(∇rϕ)

2 + V (ϕ)+ A

2
ϕ2� + C

2
�2

]
, (8.31)

where the noise correlators are given by Eqs. (8.3) and (8.27). This is model C.
One can introduce now two auxiliary MSR fields ϕq and �q, or in the Hamil-
tonian notations π = 2iϕq and ρ = 2i�q, to write the action in the form
S = ∫

dt
[∫

dr
(
π∂tϕ + ρ∂t�

)−H
]
, where the Hamiltonian is

H[π, ϕ; ρ, �] =
∫

dr
[
−π δF[ϕ, �]

δϕ(r, t)
− (∇rρ) · ∇r

δF[ϕ, �]
δ�(r, t)

+ T π2 + T (∇rρ)
2

]
.

Investigating H = 0 equations of motion, one may show that the long-time prob-
ability of finding a field configuration ϕ0(r), �0(r) is P = Z−1e−F [ϕ0,�0]/T , where
the equilibrium partition function is Z = ∫

D[ϕ, �] e−F [ϕ,�]/T . The fact that �
is conserved does not show up in this limit. One may perform Gaussian integra-
tion over �(r), which only leads to the renormalization of the quartic coupling
constant g → g − A2/C in the potential V (ϕ). Therefore the static critical
exponents of the field ϕ are the same as in model A. The Gaussian integra-
tion over the fields �(r, t) and ρ(r, t) can be done, in principle, in the dynamic
action as well. However, it generates an essentially non-local interaction vertex
(πϕ)−q,−ω[A2q2/(iω − Cq2)](ϕ2)q,ω, which reflects the conserved nature of the
field �. It is therefore better to work with the local dynamic action, which depends
on four fields, and perform the perturbative RG procedure in it. We shall not go
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into its details here, but only mention that the dynamic critical exponent in d < 4
turns out to be z = 2+ ε/3, [91], different from models A and B.

8.6 Quantum phase transitions

So far we have been discussing classical phase transitions, based on the action
(8.5) and its generalizations. The latter is a limiting case of the quantum dissipative
action (3.20), where all involved frequencies are much less than the critical tem-
perature, ε � Tc . If this is indeed the case, one may approximate coth(ε/2T ) ≈
2T/ε in Eq. (3.18), leading to the classical time-local term 4iγ T

∫
dt
[
Xq(t)

]2
in

Eq. (3.15). Being generalized to the spatially extended case, the latter leads to the
4iγ T

∫
dtdr

[
ϕq(r, t)

]2
fluctuation term in the action (8.5). As discussed in Section

8.4, the vicinity of the second order phase transition is characterized by the diver-
gent time scale τ ∝ |δ|−νz . The corresponding characteristic frequency goes to zero
as ε ∝ |δ|νz and is bound to become less than Tc sufficiently close to the transition,
if Tc is finite.

Here we discuss a special case when, by tuning some external parameter (e.g.,
pressure or magnetic field), the critical temperature is tuned to be exactly zero,
Tc = 0. Formally, this situation is equivalent to a quantum string (or membrane)
placed in a potential, e.g. as depicted in Fig. 8.1. Since T = 0, the string can’t cross
the barrier by thermal activation, but rather has to do it via quantum tunneling.
The dynamics of such tunneling is assumed to be overdamped by a coupling to
an external bosonic Ohmic bath.7 It is indeed often the case close to the phase
transition (i.e. bifurcation point of the potential), as discussed in Section 3.4. The
corresponding damping kernel 2iγ ε coth(ε/2T ) → 2iγ |ε| is a non-local function
of time, given by the T → 0 limit of the last term in Eq. (3.20). The corresponding
quantum dissipative action takes the form, cf. Eq. (8.5),

S[ϕ, ϕq] = −2
∫

dt dr
[
ϕq

(
γ ∂t − D∇2

r + δ
)
ϕ + gϕqϕ3 + g(ϕq)3ϕ

]
+ iγ

π

∫∫
dr

dtdt ′

(t − t ′)2

[
ϕq(r, t)− ϕq(r, t ′)

]2
. (8.32)

We again took V (ϕ) = δϕ2/2 + gϕ4/4 as a potential and, in accordance with
Eq. (3.20), calculated V (ϕ + ϕq) − V (ϕ − ϕq). Since we are dealing with the
quantum problem, there is no reason to omit (ϕq)3ϕ, as was done in the classical
setting following Section 4.1. The Gaussian propagators of this action are given by

7 In Section 9.9 we discuss the “bath” originating from fermions, which makes the problem considerably more
complicated.
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Eqs. (8.17) with the substitutions ω → γω and, in the numerator of Eq. (8.17c),
2T → γ |ω|.

One can now split the fields into slow and fast components and rescale the space,
time and slow fields in accordance with Eq. (8.20). The coupling constants acquire
bare scaling dimensions given by Eqs. (8.21), with the exception that there is no
separate scaling for γ T . Instead, the last term in Eq. (8.32) implies that γ ′ =
bd+2χ̃ γ . Comparing it with the first of Eqs. (8.21), one concludes that the quantum
and classical components of the field scale in the same way χ̃ = χ . This is in
accord with the expectation that both terms ϕqϕ3 and (ϕq)3ϕ should be kept in the
quantum problem. Demanding that the quadratic critical action is invariant under
the scale transformation, i.e. that γ and D are not renormalized, one finds z = 2
and χ = χ̃ = −d/2. Then the bare scaling dimension of the critical parameter δ
is [δ] = 2, in agreement with the classical case. However, the scaling dimension
of the non-linear coupling g is very different: [g] = 2− d, instead of 4− d in the
classical case. In other words, instead of dc = 4, we find dc + z = 4. Effectively
quantum mechanics adds z additional spatial dimensions!

For d > 2 the non-linearity is irrelevant and the Gaussian critical exponents,
e.g. ν = 1/2 and z = 2, are exact. This is true not only at T = 0, but also for
T > 0 in a certain range of the critical parameter δ, away from the immediate
vicinity of the T > 0 classical transition, [92], see Fig. 8.5. In the latter case
the temperature provides a scale for the frequency and momentum arguments of
the correlation functions, i.e. the latter depend on ω/T and Dq2/T . For d ≤ 2
there are corrections to the Gaussian exponents, which one may access with the
ε = 2 − d expansion. The corresponding diagrams for the one-loop corrections

T

ordered
phase

Tc

disordered
phase

quantum
critical

classicalfluctuations

0 δ

Fig. 8.5 Possible phase diagram: critical temperature Tc vs. a tuning parameter
δ. The quantum phase transition takes place at the point where Tc(δ) = 0. The
shaded region is the Ginzburg regime where the classical scaling deviates from the
mean field, if d < dc. The left dashed line indicates a crossover between quantum
critical and Gaussian regimes in the case d + z < dc. The right dashed line T ∝
δνz is a crossover between the quantum critical regime, where the correlation time
is τ ∼ T−1, and the disordered phase, where the correlation time is τ ∝ |δ|−νz .
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to δ and g8 are plotted in Fig. 8.4. The calculations follow Eqs. (8.22) and (8.23)
with the substitution 2T → γ |ω| in the DK

0 (q, ω) Green function. This shifts the
logarithmic dimension of the loops from d = 4 to d = 2, but does not change the
relative factor between the two diagrams of Fig. 8.4. As a result, the two non-trivial
RG equations (8.25) preserve their form:

∂lδ =
(
2− 3gK̃d

)
δ , ∂l g =

(
ε − 9gK̃d

)
g, (8.33)

where, however, ε = 2 − d and K̃d = (π)−1∂l

∫ �(1+l)
�

dqf/[(2π)d Dq2
f ]. If d < 2

the second equation predicts the stable fixed point g∗ = ε/(9K̃2), where the critical
parameter scales as ∂lδ = (2− ε/3)δ. As a result, one finds in the ε-expansion for
the correlation length critical exponent ν = (2− ε/3)−1 ≈ 1/2+ ε/12, while the
correlation time exponent is νz = 1+ ε/6.

This non-Gaussian critical behavior is expected to persist for T > 0 and a certain
range of the critical parameter δ around zero, known as a quantum critical region
[92]. In this regime the (inverse) temperature serves as the only correlation time
scale, τ ∼ T−1. Due to the critical scaling the spatial correlation length must
be ξ ∝ T−1/z . As a result, e.g. the 〈ϕϕ〉 correlation function, cf. Eq. (8.17c), is
expected to have the form

DK(q, ω, T ) = 1

T
�
( c q

T 1/z
,
ω

T

)
, (8.34)

where � is a universal scaling function of the two arguments and c is a cutoff-
dependent constant. The factor 1/T in front simply takes care of the overall
dimensionality of the correlation function, cf. Eq. (8.17c). Of course, if |δ| is so
large that the critical correlation length |δ|−ν is shorter than T−1/z , the universal
scaling (8.34) breaks down. This dictates the boundaries of the quantum critical
region as T � |δ|νz , Fig. 8.5.

An interesting particular case which demonstrates eventual failure of the
ε-expansion at large enough ε is d = 0, i.e. ε= 2. It describes a dissipative quantum
mechanics of a point particle in a symmetric double-well potential. As was first
shown by Schmid and Bulgadaev [37, 93, 94], there is a T = 0 phase transition
between the delocalized and localized states as a function of, e.g., the barrier
height δ. The transition appears to be of the Berezinskii–Kosterlitz–Thouless
(BKT) universality class [9], known from the classical d = 2 XY model. This
supports the assertion that a d-dimensional quantum model may be mapped onto
a d + z-dimensional classical one. On the other hand, the ε-expansion fails to

8 The diagram of Fig. 8.4(b) renormalizes the coefficient of ϕqϕ3. The renormalization of the coefficient of
(ϕq)3ϕ is provided by the same loop (with three dashed and one full legs). Therefore if initially these two
constants are the same, the (one-loop) renormalization preserves their equality. Notice that a (ϕq)2ϕ2 term
with the same scaling dimension as g is also generated.
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describe critical scaling near the BKT transition. For example, in the latter case
the correlation length (i.e. correlation time of the dissipative quantum problem) is
known to diverge exponentially ∝ eb/

√|δ−δc| and not as a power-law as expected
from the ε-expansion.

8.7 Absorbing state transitions in reaction-diffusion models

The Hohenberg–Halperin classification deals only with the models based on
the Landau free energy F[ϕ, . . .]. In the long-time limit such models approach
thermodynamic equilibrium, described by the equilibrium statistical mechanics,
Eq. (8.10). On the other hand, one may consider essentially non-equilibrium mod-
els, which do not approach thermal equilibrium. A big class of such systems is
based on reaction models without detailed balance, which may undergo transi-
tions into the absorbing state. Their zero-dimensional versions are discussed in
Section 4.10. We put them now onto a d-dimensional lattice and allow for the ran-
dom walk of agents on such a lattice. A state of the system may be described by
P(n1, n2, . . . , t), which is a probability of finding an integer n j number of agents
on the lattice site j at time t . The part of the Master equation which describes the
random walk takes the form, e.g. in d = 1,

∂tP([n j ], t) =
∑

j

D
[
(n j−1 + 1)P(..., n j−1 + 1, n j − 1, ..., t)

− 2n jP(..., n j−1, n j , n j+1, ..., t)+ (n j+1 + 1)P(..., n j − 1, n j+1 + 1, ..., t)
]

=
∑

j

D
(

e p̂ j e− p̂ j−1n j−1 − 2n j + e p̂ j e− p̂ j+1n j+1

)
P([n j ], t) , (8.35)

where D is the rate of random hops between neighboring sites and, following
Section 4.10, we have defined operators p̂ j = −∂/∂n j . As a result the full Mas-
ter equation may be written as ∂tP = Ĥ[ p̂, n]P , where the Hamiltonian operator
Ĥ is

Ĥ[ p̂, n] =
∑

j

[
D
(

e p̂ j e− p̂ j−1n j−1 − 2n j + e p̂ j e− p̂ j+1n j+1

)
+ H( p̂ j , n j )

]
,

(8.36)
where H( p̂ j , n j ) is the on-site reaction Hamiltonian (4.63).

To avoid exponentials of the operators, it is convenient to perform the local Cole–
Hopf canonical operator transformation

π̂ = e p̂ , ϕ̂ = e− p̂ n ; [ϕ̂, π̂ ] = 1. (8.37)
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The random walk part of the Hamiltonian (8.36) takes the much simpler form∑
j D π̂ j (ϕ̂ j−1 − 2ϕ̂ j + ϕ̂ j+1) =

∫
drD π̂(r)∇2

r ϕ̂(r), where we have switched to
continuous notation. To transform the local reaction Hamiltonian (4.63) consider,

e.g., the reaction k A
λ→ (k + r)A. The corresponding reaction rates are propor-

tional to the number of ways to select k agents, which enter the reaction, out of
n, i.e. Wn→n+r = λn(n − 1) . . . (n − k + 1)/k! = λ π̂ k ϕ̂k/k!.9 As a result the
corresponding reaction Hamiltonian (4.63) takes the form

k A
λkr→ (k + r)A ; Ĥkr (π̂ , ϕ̂) = λkr

k!
(
π̂ r+k − π̂ k

)
ϕ̂ k . (8.38)

The total reaction Hamiltonian is H(π̂, ϕ̂) = ∑∞
k=0

∑∞
r=−k Hkr (π̂ , ϕ̂). For

example, the reaction set (4.61) leads to the following Cole–Hopf transformed
Hamiltonian, cf. Eq. (4.66),

H(π̂, ϕ̂) = λ

2
(1− π̂2)ϕ̂2 + μ(1− π̂)ϕ̂ + σ(π̂2 − π̂)ϕ̂. (8.39)

Notice that since π̂ = e p̂, the fundamental normalization H(p, n)
∣∣

p=0 = 0,

Eq. (4.24), now reads as H(π, ϕ)
∣∣
π=1 = 0. Notice also that the corresponding

classical equation of motion ∂tϕ = ∂π H(π, ϕ)
∣∣
π=1 is the same as the mean-field

rate equation (4.65), if ϕ = n � k.
A convenient representation of the Cole–Hopf operator formalism is achieved

with the help of the generating function, defined as

G(π, t) =
∞∑

n=0

πn P(n, t) ; ∂tG(π, t) = Ĥ(π, ϕ̂)G(π, t). (8.40)

Here π is a real (or complex) number, while ϕ̂ = ∂π , in agreement with the com-
mutation relation (8.37). The equation of motion (8.40) for the generating function
G(π, t) is an immediate consequence of its definition and the Master equation
for the probability P(n, t).10 Notice that due to the conservation of probability
G(1, t) = 1, and thus the condition H(1, ϕ) = 0 simply reflects the fact that
G(1, t) is conserved.

Employing now the coherent state representation for the canonical pair
π and ϕ̂ along with the fact that the Hamiltonian is normally ordered, one may

9 Employing the commutation relation (8.37), one finds, e.g. π̂3ϕ̂3 = e−3∂n e∂n ne∂n ne∂n n= e−2∂n ne∂n n(n+ 1)
e∂n = e−2∂n n(n + 1)(n + 2)e2∂n = (n − 2)(n − 1)n.

10 Consider, e.g., reaction A
μ→ ∅. The Master equation for the probability distribution is given by ∂tP(n, t) =

μ(n+ 1)P(n + 1, t)− μnP(n, t). Multiplying both sides by πn and summing over n, one finds ∂tG(π, t) =
μ∂πG(π, t)− μπ∂πG(π, t) = μ(1− π)∂πG(π, t) = μ(1− π)ϕ̂ G(π, t), in agreement with Eqs. (8.38) and
(8.40).
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write the evolution operator for the generating function in the form of a func-
tional integral over the set of fields π j (t) and ϕ j (t), cf. Eq. (4.64), where j is
the lattice index. The corresponding action in the continuous notations acquires the
form11

S[ϕ, π] =
∫

dt dr
[
π∂tϕ − Dπ∇2

rϕ − H(π, ϕ)
]
, (8.41)

where the local reaction Hamiltonian function H(π(r, t), ϕ(r, t)) is given by
Eqs. (8.38) or, e.g., (8.39). Despite close similarities with the action (8.19), the
physical consequences of the action (8.41) are dramatically different. The formal
reason for these differences is that the Hamiltonian H(π, ϕ) does not have the
structure −πV ′(ϕ) + Tπ2 and thus there is no Landau free energy F[ϕ] under-
lying the action (8.41). As a result, the system does not equilibrate to the static
state described by the equilibrium statistical mechanics (8.10). The phase transi-
tions are still possible, but their universality classes are different from those in the
Hohenberg–Halperin classification.

If no agents are created from the empty state, i.e. k 
= 0 in Eq. (8.38), the zero-
dimensional models of Section 4.10 go to extinction in the long-time limit. If they
are put on an infinite lattice, their behavior becomes more interesting. Depending
on the parameters, the lattice sites may either go extinct as in d = 0, or maintain a
fluctuating, but non-zero on average, population. In the latter case the extinct sites
are repopulated by agents diffusing from neighboring non-empty sites. The tran-
sition between the two scenarios exhibits all the phenomenology of the dynamic
second order phase transitions. In particular, close to the transition there is a diver-
gent correlation length ξ ∝ |δ|−ν and divergent correlation time τ ∝ |δ|−νz , where
δ is a critical parameter passing through zero at the transition point. In the active
phase the average on-site population scales as 〈n〉 ∝ δβ . The set of critical expo-
nents ν, z, β, etc. is remarkably universal and depends only on a few internal
symmetries of the model. Below we consider some of the universality classes and
their geometric interpretation.

11 Another representation of the same operators is the Doi–Peliti formalism [95]. By analogy with quantum
mechanics let us denote the state of the system with n agents as |n〉 and introduce creation/annihilation
operators which act as â†|n〉 = |n + 1〉 and â|n〉 = n|n − 1〉 and thus obey the commutation relation
[â, â†] = 1. A generic state of the system, defined as |!(t)〉 = ∑∞

n=0 P(n, t)|n〉, obeys the imaginary

time “Schrödinger” equation ∂t |!(t)〉 = Ĥ(â†, â)|!(t)〉, where the Hamiltonian may be derived from the

Master equation. E.g., for the simplest reaction A
μ→ ∅, Ĥ(â†, â) = μâ − μâ†â = μ(1 − â†)â; indeed,

â|!(t)〉 =∑
n(n+ 1)P(n+ 1, t)|n〉, while â†â|!(t)〉 =∑

n nP(n, t)|n〉. Comparing it with Eq. (8.38), one
concludes that â† = π̂ and â = ϕ̂, which may be verified for an arbitrary reaction. Therefore the resulting
coherent state action is the same as Eq. (8.41).
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Directed percolation

Consider a lattice version of the reaction model specified by Eq. (4.61). The
corresponding action is given by Eqs. (8.41) and (8.39). Unlike the equilibrium
models considered above, here there is no potential function V (ϕ)which bifurcates
into two symmetric minima at the transition point. Nevertheless the Hamiltonian
function H(π, ϕ) does exist and the phase transition may be associated with a qual-
itative rearrangement of its phase portrait, see Fig. 8.3 for the equilibrium case. As
depicted in Fig. 4.3, the set of zero energy lines forms a triangle close to the bifur-
cation point.12 One can thus identify the phase transition as the rearrangement of
such a triangle, Fig. 8.6. The corresponding universality class is known as directed
percolation (DP). Its geometric image is associated with Fig. 8.6, in the same way
as the model A (i.e. dynamic Ising model) universality class is associated with
Fig. 8.3.

To proceed with the RG description one needs to specify the simplest Hamilto-
nian H(π, ϕ) which exhibits the rearrangement of its zero energy lines as function
of the critical parameter δ according to Fig. 8.6. As discussed in Section 4.10, such
a universal Hamiltonian is given by Eq. (4.68). In (π, ϕ) variables it takes the form
H(π, ϕ) = (π − 1)(δ − g1ϕ + g2(π − 1))ϕ, where δ is the critical parameter and
g1, g2 are running constants, whose bare values may be found from the compar-
ison with Eq. (8.39). It is convenient to shift the momentum as π − 1 → π and
write the resulting Hamiltonian as

H(π, ϕ) = π (δ − g1ϕ + g2π) ϕ. (8.42)

(a)

0 1

(b)

0 1π π

ϕϕ

Fig. 8.6 Phase portraits of the DP universality class: (a) empty state δ < 0; (b)
active state δ > 0. At the transition all three zero-energy lines intersect at the
same point (1, 0). Notice the opposite sign convention of the critical parameter in
comparison with Fig. 8.3. Indeed, here the “magnetic” state corresponds to δ > 0.

12 Figure 4.3 is plotted in the coordinates (p, n), which are related to (π, ϕ), through the area-preserving
canonical transformation (8.37). Its qualitative structure is thus the same in (π, ϕ) coordinates.
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Notice that the kinetic and random walk parts of the action (8.41) are not affected
by the shift. The corresponding field theory, known in high-energy physics as the
Reggeon field theory [96], was identified as the proper representation of DP by
Janssen, Grassberger [97] and Cardy [98]. Its Gaussian propagators 〈πϕ〉 are given
by Eqs. (8.17a,b), where ϕq = π/(2i). As in any non-equilibrium theory 〈ππ〉 = 0,
which may be traced back to the conservation of probability, i.e. H(0, ϕ) = 0 (after
the shift). The peculiarity of reaction-diffusion models with the absorbing state
is that 〈ϕϕ〉 = 0 (there is no FDT!). This property originates from the fact that
H(π, 0) = 0, due to the absence of creation from the empty state, cf. Eq. (8.38),
and therefore no terms ∝ π2ϕ0 are allowed. This latter property appears to be
intact in the process of renormalization. There are two non-linear three-leg ver-
tices g1πϕ

2 and−g2π
2ϕ, which renormalize both the propagators and the coupling

constants g1 and g2.
The RG proceeds along the same lines as outlined in Section 8.4. The bare scal-

ing of γ (i.e. constant in front of π∂tϕ), D and δ is the same as in Eq. (8.21), while
the bare scaling of the non-linear vertices is

g′1 = bd+z+χ̃+2χg1, g′2 = bd+z+2χ̃+χg2.

Splitting the fields into slow and fast components gives rise to the following inter-
action vertices: (i) g1πsϕ

2
f ; (ii) 2g1πfϕfϕs; (iii) −g2π

2
f ϕs; and (iv) −2g2πsπfϕf.

Expanding e−S in a power series in these vertices and performing Gaussian
integrations over the fast fields with the help of Eqs. (8.17a,b), one finds the pertur-
bative RG corrections. The one-loop renormalization of the propagator originates
from (i)×(iii) combination of vertices.13 The corresponding diagram is plotted in
Fig. 8.7(a), and is given by

(a) (b)

g1 2g1

g1

–g2 –g2

q+
f ω

+

q–
f ω

–qs ωs qs ωs

Fig. 8.7 One-loop renormalization of the propagator (a) and the non-linear vertex
g1 (b) in the DP model. Full lines represent ϕ, while dashed lines represent π .
The type of vertex is indicated next to the bold dots and q±f = qf ± qs/2;
ω± = ω ± ωs/2. There are combinatorial factors of 2 for diagram (a) and 4
for (b).

13 The (ii)×(iv) combination is proportional to DR
0 (t)D

A
0 (t), which is zero due to causality. All other

combinations vanish due to 〈ππ〉 = 〈ϕϕ〉 = 0.
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8g1g2

∫
dqfdω

(2π)d+1
DR

0 (q
+
f , ω

+)DA
0 (q

−
f , ω

−) = g1g2

γ

b�∫
�

dqf

(2π)d
1

Dq2
f + δ + Dq2

s
4 − iγωs

2

≈ g1g2

γ

b�∫
�

dqf

(2π)d
1

Dq2
f

−
(
δ + Dq2

s

4
− iγωs

2

)
g1g2

γ

b�∫
�

dqf

(2π)d
1

(Dq2
f )

2
, (8.43)

where q±f = qf ± qs/2; ω± = ω ± ωs/2 and qs, ωs are the external slow
momentum and frequency. They should be understood as q2

sπsϕs →−πs∇2
rϕs and

−iωsπsϕs → πs∂tϕs. As a result the last term on the right-hand side provides the
one-loop renormalization of the running constants δ, D and γ , respectively. The
first δ-independent term on the right hand side results in a shift of the critical point
away from δ = 0 and thus may be neglected.

The renormalization of the non-linear coupling constant g1 comes from the
(i)×(ii)×(iii) combination of vertices.14 The corresponding diagram is plotted in
Fig. 8.7(b), and is given by

−64g2
1 g2

∫
dqfdω

(2π)d+1

[
DR

0 (qf, ω)
]2

DA
0 (qf, ω) = 2g2

1 g2

γ

b�∫
�

dqf

(2π)d

1

(Dq2
f )

2
. (8.44)

The renormalization of g2 comes from the (i)×(iv)×(iii) combination and is given
by Eq. (8.44) with g2 and −g1 interchanged. We now put b = 1 + l, evaluate the
integrals in Eqs. (8.43), (8.44), exponentiate the result and combine it with the bare
scaling. As a result we find the set of RG equations

∂lγ = (d + χ̃ + χ − g1g2

2
Kd)γ, ∂l D = (d + z − 2+ χ̃ + χ − g1g2

4
Kd)D,

∂lδ = (d + z + χ̃ + χ − g1g2Kd)δ, (8.45)

∂l g1 = (d + z + χ̃ + 2χ − 2g1g2Kd)g1, ∂l g2 = (d + z + 2χ̃ + χ − 2g1g2Kd)g2,

where Kd = (1/γ D2)�d−421−dπ−d/2�(d/2). We can now use the freedom of
choosing χ̃ , χ along with the scale of time to fix three of these five parameters.
It is convenient to fix γ = 1 and D, i.e. the parameters of the Gaussian action
at the critical point, along with χ̃ = χ to maintain the symmetry of the action
between π and ϕ. This is achieved by demanding that d + 2χ − g1g2 Kd/2 = 0
and d + z − 2 + 2χ − g1g2 Kd/4 = 0, leading to the following scaling dimen-
sions: z = 2 − g1g2 Kd/4, and χ̃ = χ = −d/2 + g1g2 Kd/4. The remaining RG
equations are

14 The (ii)×(ii)×(iv) combination is zero due to causality. All other combinations vanish due to 〈ππ〉 =
〈ϕϕ〉 = 0.
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∂lδ =
(

2− 3

4
g1g2 Kd

)
δ , ∂l g1,2 =

(
ε

2
− 3

2
g1g2 Kd

)
g1,2, (8.46)

where ε = 4− d. For d < dc = 4 one thus finds the non-trivial fixed point, where
g∗1 g∗2 = ε/(3K4) + O(ε2). In a vicinity of this fixed point the equation for the
critical parameter is ∂lδ = (2 − ε/4)δ, resulting in the correlation length critical
exponent ν−1 = 2 − ε/4 + O(ε2). We also find the dynamic critical exponent
z = 2 − ε/12 + O(ε2) as well as the exponent χ = −d/2 + ε/12 = −2 +
7ε/12 + O(ε2). The order parameter exponent β is defined through 〈ϕ〉 ∝ |δ|β .
Because of the scaling ϕ → bχϕ and b ∝ ξ ∝ |δ|−ν , one finds β = −χν =
1−ε/6+O(ε2). This set of critical exponents is different from all of the equilibrium
Hohenberg–Halperin universality classes.

Other universality classes of reaction-diffusion models

The triangular structure of the phase portrait, Fig. 8.6, is very robust. Indeed, the
two zero-energy lines are fixed: π = 1 by the conservation of probability and ϕ = 0
by the presence of the absorbing empty state. Therefore, changing a single critical
parameter, one can adjust position of only one additional line. As a result, most of
the reaction-diffusion models with an absorbing state possess the triangular phase
portrait and fall into the DP universality class [97, 99, 100, 101]. Yet there are some
exceptions, which are achieved by fixing some additional zero-energy lines, or by
increased degeneracy of the ϕ = 0 line.

Parity conserving models Consider a set of reactions which all conserve parity

of the state, e.g. 2A
2g→ ∅ and A

δ→ 3A. Notice that the d = 0 model with initially
an odd number of agents never goes extinct. A random walk on the lattice violates
on-site parity conservation, allowing for an extinction. If g � δ one expects in
the long run to find only empty or singly occupied sites. The further decrease of
the population is possible only due to diffusion and annihilation of two agents who
accidentally meet. This is obviously very different from DP models, where each
site may go extinct due to internal reactions only. The corresponding Hamiltonian
(8.38) takes the form

H(π, ϕ) = g(1− π2)ϕ2 + δ(π3 − π)ϕ = (1− π2) (gϕ − δπ) ϕ. (8.47)

Its phase portrait is depicted in Fig. 8.8(a). Notice that the Hamiltonian and thus
the action (8.41) possess the reflection symmetry ϕ → −ϕ and π → −π , which
is generic for any parity conserving set of reactions. This symmetry is not violated
by the renormalization process. As a result, three zero-energy lines π = ±1 and
ϕ = 0 are protected, while the fourth line (in our example ϕ = δπ/g) must retain
its reflection symmetry. Therefore the Hamiltonian (8.47) is indeed the simplest
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(a)

0 1 π

ϕ ϕ ϕ

π π–1

(b)

0 1

(c)

0 1

Fig. 8.8 Near the transition phase portraits of (a) parity conserving models; (b)
models with non-accessible absorbing state; (c) multi-agent contact processes
with k = 2. After [102].

(b)(a) (d)(c)

–3δ
–3δ

–g –g

g
g

g g

Fig. 8.9 One-loop renormalization of the critical parameter δ, (a) or (b); and the
non-linear vertex g, (c) or (d) in the parity conserving model. All diagrams have
a combinatorial factor of 2.

representative of the parity conserving class. The phase transition takes place when
the line ϕ = δπ/g is approaching the horizontal position, i.e. the renormalized
δ→ 0.15

Turning to the fluctuations, one notices that it is not possible to perform the shift
of momentum π−1 → π , as in the DP case, and focus on the immediate vicinity of
the (1, 0) point of the phase plane. Because of the reflection symmetry, one has to
keep the entire interval π ∈ [−1, 1] under consideration, see Fig. 8.8(a). Therefore
one must choose the scaling dimension of the π -field to be zero, χ̃ = 0. The bare
scaling of the constants thus reads

γ ′ = bd+χγ, D′ = bd+z−2+χ D, δ′ = bd+z+χδ, g′ = bd+z+2χg. (8.48)

Splitting the fields into slow and fast components, one obtains a number of vertices,
of which only four contribute to the one-loop renormalization: (i) −3δπ2

f πsϕs; (ii)
−gϕ2

f ; (iii) gπ2
f ϕ

2
s and (iv) gπ2

s ϕ
2
f . There is no one-loop renormalization of γ and

D. The critical parameter δ is renormalized by diagram Fig. 8.9(a) or (b), which
are built on (ii)×(i) and (iv)×(i) vertices, respectively. The fact that both of them
contain the same loop (up to a sign) guarantees that the expression (1− π2) in the
Hamiltonian (8.47) is not renormalized. The running constant g is renormalized

15 Since δ is renormalized the transition point may not coincide with the bare rate of the A → 3A reaction being
zero [103].
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by diagram Fig. 8.9(c) or (d), which are built on (ii)×(iii) and (iv)×(iii) vertices,
respectively. Again, having the same loop in both of them is crucial to keep (1−π2)

unrenormalized. We fix two of the four constants by demanding that γ and D
are not renormalized. This leads to χ = −d and z = 2. The remaining two RG
equations are

∂lδ =
(

2− 3gK̃d

)
δ , ∂l g =

(
ε − gK̃d

)
g, (8.49)

where ε = 2 − d and K̃d = D�2 Kd . The critical dimension is thus dc = 2.
For d < dc there is a non-trivial fixed point g∗ = ε/K2 and in its vicinity ∂lδ =
(2− 3ε)δ. We thus find the critical exponents in order ε to be [103] ν−1 = 2− 3ε,
z = 2, while β = −νχ = (2− ε)/(2− 3ε) ≈ 1+ ε.

Models with non-accessible absorbing state In the previous example sites with
an odd number of agents were protected from extinction. One can extend this idea
to all sites, forbidding any reaction which brings a site into the absorbing state ∅.
(Of course, a site may still become empty due to diffusion out of it.) An example

is 2A
2g→ A and A

δ→ 2A. The corresponding Hamiltonian (8.38) takes the form

H(π, ϕ) = g(π − π2)ϕ2 + δ(π2 − π)ϕ = (π − π2) (gϕ − δ) ϕ. (8.50)

Its phase portrait is plotted in Fig. 8.8(b). Notice that π = 0 is a new line of zero
energy. Inspecting the Hamiltonian (8.38), one notices that it is a generic feature
of any reaction which has a non-empty final state k + r ≥ 1. We shall see that this
property is intact in the process of renormalization [102, 104]. To keep both the
π = 1 and π = 0 lines, one must again choose the scaling dimension of π to be
zero, χ̃ = 0. The bare scaling of the constants is thus given by Eq. (8.48). Splitting
the fields into slow and fast components, one obtains four vertices which contribute
to the renormalization: (i) −δπ2

f ϕs; (ii) −gπsϕ
2
f ; (iii) gπ2

f ϕ
2
s and (iv) gπ2

s ϕ
2
f . The

critical parameter δ is renormalized by diagram Fig. 8.10(a) or (b), which are built
on the (ii)×(i) and (iv)×(i) vertices, respectively. The fact that both of them con-
tain the same loop (up to a sign) guarantees that the expression (π − π2) in the
Hamiltonian (8.50) is not renormalized. The running constant g is renormalized by

(a) (b) (c) (d)

–g –gg g g g–δ –δ

Fig. 8.10 One-loop renormalization of the critical parameter δ, (a) or (b); and the
non-linear vertex g, (c) or (d) in the model with a non-accessible absorbing state.
All diagrams have a combinatorial factor of 2.
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diagram Fig. 8.10(c) or (d), which are built on the (ii)×(iii) and (iv)×(iii) vertices,
respectively. Again, having the same loop in both of them is crucial to keep (π−π2)

unrenormalized.16 Fixing γ and D leads to χ = −d and z = 2, while the remaining
RG equations are

∂lδ =
(

2− gK̃d

)
δ , ∂l g =

(
ε − gK̃d

)
g, (8.51)

where ε = 2 − d. The critical dimension is thus dc = 2. For d < dc there is a
non-trivial fixed point g∗ = ε/Kd and in its vicinity ∂lδ = (2− ε)δ = dδ. We thus
find the critical exponents ν−1 = d, z = 2 and β = −νχ = 1. Using the fact that
the only possible diagrams are those including the chains of “bubbles,” one may
show [104] that Eqs. (8.51) are actually exact to all orders in ε and thus we have
found the critical exponents for any d ≤ 2. For d > 2 the Gaussian exponents are
ν = 1/2, z = 2 and β = 1.

One may consider different reaction sets, e.g. 2A
2g→ A and A

δ→ 3A, with the
Hamiltonian H = (π−π2)(gϕ−δ− δ̃π)ϕ, where δ̃ = δ. The corresponding phase
portrait has a tilted zero energy line ϕ = (δ + δ̃π)/g. Although the naive scaling
of δ and δ̃ is the same, one may argue [104] that the one-loop corrections make δ̃
less relevant than δ and thus the phase portrait approaches that of the Hamiltonian
(8.50), Fig. 8.8(b). As a result, this (and other similar) reactions belong to the same
universality class.

Multi-agent contact processes One may consider reaction sets where all the
reactions require at least k agents to be initiated. An example with k = 2, i.e.
a two-particle contact process with diffusion, is given by 2A → ∅, 2A → 3A
and 3A → A. It is easy to see that all terms in the corresponding Hamiltonian
(8.38) are proportional to ϕk and therefore the ϕ = 0 zero-energy line is k times
degenerate. One may show that this degeneracy is not removed in the process of
renormalization. That is, no new vertices ∝ ϕ, ϕ2, . . . , ϕk−1 are generated. The
corresponding phase portrait in the vicinity of the transition is plotted in Fig. 8.8(c)
for k = 2. After the shift π − 1 → π the minimal reaction Hamiltonian near the
transition acquires the form

H(π, ϕ) = π (δ − g1ϕ + g2π) ϕ
2, (8.52)

where we again took k = 2. As in the DP case, to keep the triangular structure of
the phase portrait, one has to impose the same scaling dimension for both fields,
i.e. χ̃ = χ . Since both non-linear vertexes include four fields, there is no one-loop

16 In addition, the diagram Fig. 8.10(a) renormalizes the propagator parameters γ and D in a way similar to
Eqs. (8.43) and (8.45). Since, however, the corresponding loop is proportional to the critical parameter δ, one
may disregard such a renormalization in the vicinity of the transition.



176 Dynamics of phase transitions

renormalization of the propagator, similarly to Fig. 8.9. One thus finds in the one-
loop order z = 2 and χ̃ = χ = −d/2. The three remaining one-loop RG equations
are [105]

∂lδ=
(

1+ ε/2+ g2 K̃d

)
δ , ∂l g1=

(
ε + 3g2 K̃d

)
g1, ∂l g2=

(
ε + g2 K̃d

)
g2,

(8.53)
where ε = 2−d. Notice the opposite sign of the one-loop terms in comparison with
Eqs. (8.49) and (8.51). It may be traced back to the opposite sign of the π2ϕ2 term
in Eq. (8.52) versus Eqs. (8.47) and (8.50). As a result, for d < dc = 2 the Gaussian
fixed point, g∗1,2 = 0, is unstable and the ε-expansion does not predict any new fixed
point in its ε-vicinity. For d > 2 the Gaussian fixed point is locally stable, but for
g2 > |ε|/K2 ∼ |ε|D the RG flows away from it. There is numerical evidence [100]
that the strong-coupling fixed point, unreachable in the ε-expansion, may belong
to the DP universality class.

8.8 Dynamics of growing surfaces

Another example of an intrinsically non-equilibrium system is a surface growing
by a random deposition of atoms. A model which describes a wide class of such
processes was suggested by Kardar, Parisi and Zhang (KPZ) [106]. It is written in
terms of the evolution equation for the height h(r, t) of a growing d-dimensional
surface in a d + 1-dimensional embedding space:

∂t h = D∇2
r h + λ

2
(∇rh)2 + ξ. (8.54)

The first term on the right hand side describes the diffusion of atoms along
the surface. As explained by KPZ [106], the crucially important non-linear term
λ(∇rh)2/2 has a purely geometric origin. Indeed, the growth occurs in the direc-
tion locally normal to the surface. Its angle θ with the direction of the h-axis is
tan θ = |∇rh|. If an increment λδt is added along the normal, it is projected on the
h-axis as δh = λδt/ cos θ = λδt (1+ (∇rh)2)1/2. As a result, the rate of change of
h is δh/δt ≈ λ+ λ(∇rh)2/2. The average deposition rate λ may be then removed
from the equation by going to the moving reference frame h(r, t)→ h(r, t)+ λt .
The fluctuations in the deposition rate are represented by ξ(r, t), which may be
taken to be a local Gaussian white noise

〈ξ(r, t)ξ(r′, t ′)〉 = 2�δ(r− r′) δ(t − t ′). (8.55)

There is an important relation between KPZ and the Burgers equation with con-
servative noise [107]. Introducing the slope field v = −∇rh and taking the gradient
of the KPZ equation (8.54), one finds
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∂t + λv∇r

)
v = D∇2

r v+ �ζ , (8.56)

where �ζ (r, t) = −∇rξ(r, t) is the conservative (since curl �ζ = 0) vector noise.
For λ = 1 this is the Burgers equation for the velocity of an irrotational fluid,
curl v = 0. Its left hand side is written in terms of the convective time derivative
d/dt = ∂t + (∂r/∂t)∇r, where r is the coordinate of a particle and v = ∂r/∂t is
the velocity of particles at a point r. This interpretation suggests the invariance of
Eq. (8.56) with respect to the Galilean transformation

t ′ = t , r′ = r− λv0t , v′(r′, t ′) = v(r, t)− v0, (8.57)

where v0 is an arbitrary constant vector and the invariance follows from ∂t ′v′ =
∂t v + λv0∇rv and ∇r′v′ = ∇rv. The Galilean invariance must also preserve the
noise correlator, which is indeed the case for the local (or even non-local) white
noise, i.e. ∼ δ(t − t ′). One may notice that λ is just a constant parameter of the
invariance transformation (much the same way as the speed of light is a parameter
of the Lorentz transformation). In the original KPZ variables the last equation of
the Galilean transformation (8.57) is changed to h′(r′, t ′) = h(r, t)+ v0 · r, which
expresses the tilt invariance of the KPZ equation.

Since the KPZ equation (8.54) is scale invariant, one expects (and indeed
observes) its correlation functions to have a scaling form. Following the notation
of Section 8.4, upon the scale transformation r → br and t → bzt the height field
transforms as h(r, t)→ bχh(br, bzt). As a result, e.g., the pair correlation function
is expected to have the form〈

[h(r, t)− h(0, 0)]2〉 = r2χ fKPZ(t/r z), (8.58)

where fKPZ(x) is a universal scaling function with asymptotic properties fKPZ(0) =
const and fKPZ(x) ∼ x2χ/z if x → ∞. In the present context the exponent χ is
known as the surface roughness exponent. Following [107] and [106], we shall
attempt to find the exponents using the RG scheme.

Employing the MSR procedure of Section 4.3, one elevates the KPZ equation
(8.54) to the exponent with the help of the auxiliary field hq(r, t) and then performs
averaging over the Gaussian white noise (8.55). As a result one obtains the action,
which we write in the Hamiltonian notation, using the field p(r, t) = 2ihq(r, t)
canonically conjugated to h(r, t),

S[h, p] =
∫

dt dr
[

p∂t h − Dp∇2
r h − λ

2
p(∇rh)2 −�p2

]
. (8.59)

We now split the fields into slow and fast components, as explained in Section 8.4,
and integrate out the fast ones. The propagators of the fast components are, in
fact, given by Eqs. (8.17) with ϕ = h, ϕq = p/(2i), δ = 0 and T = �. The
only non-linear term in the action, −λp(∇rh)2/2, generates two types of vertex:
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(i) −λps(∇rhf)
2/2 and (ii) −λpf(∇rhf)(∇rhs). Notice that the slow field hs(r, t)

appears in the non-linear vertices only through its gradient (∇rhs), in other words,
spatially flat realizations hs(t) do not enter the non-linear vertices. This immedi-
ately implies that the coefficient in the term p∂t h is not renormalized. Indeed, such
a renormalization would require one to generate ps∂t hs with the help of loops built
on the (i) and (ii) vertices. Taking hs to be time dependent, but spatially flat, nulli-
fies any such diagram, but not ps∂t hs. Therefore no terms ∼ ps∂t hs can appear in
any order of renormalization. We can thus choose the bare scaling dimension χ̃ of
the auxiliary field p in a way to rigidly fix the coefficient (one) in front of p∂t h in
any order. This requires, cf. Eq. (8.21), that d + χ̃ + χ = 0.

The non-renormalized coefficient of ∂t h along with the Galilean (i.e. tilt) invari-
ance (8.57) of the KPZ equation dictates that λ is not renormalized either. Indeed,
the Galilean invariance of the Burgers equation (8.56) preserves the convective
nature of its left hand side with the transformation parameter λ being a relative
coefficient of the ∂t and v∇r terms. Since the coefficient of ∂t v is not renormalized,
neither is the coefficient of v∇rv.17 This statement manifests itself in, e.g., cance-
lation of the two diagrams Fig. 8.11(a), (b) (in the limit of zero external momenta
and frequencies), representing the one-loop correction to λ. The same must happen
in all higher orders [108]. Employing thus ∂lλ = (d + z − 2 + χ̃ + 2χ)λ and
demanding that λ is not renormalized, one arrives at the exact18 identity between
the two scaling exponents for any fixed point with λ 
= 0,

χ + z = 2, (8.60)

where we employed d + χ̃ + χ = 0, established above. The only two constants
which exhibit perturbative renormalization are thus D and �.

The one-loop renormalization of� is given by the diagram of Fig. 8.11(c), which
employs (i)×(i) vertices and reads as

(
λ

2

)2
b�∫
�

dqf

(2π)d

∫
dω

2π
q4

f

[
DK

0 (qf, ω)
]2 = −λ

2�2

4

b�∫
�

dqf

(2π)d

q4
f

(Dq2
f )

3
, (8.61)

where the factor q4
f originates from the fact that each vertex (i) includes two gra-

dients of the fast fields. The one-loop renormalization of D utilizes the (i)×(ii)

17 On a more formal level, the Galilean invariance implies certain Ward identities for the exact generating function
[108]. They connect the two-leg vertex p∂t h with the three-leg vertex p(∇rh)2. The non-renormalizability of
the former thus implies the non-renormalizability of the latter. I am indebted to Uwe Täuber for clarification
of this point.

18 Strictly speaking, our proof is only applicable to any fixed point which may be reached in the perturbative
expansion. There are numerical indications, though, that the statement may be more general.
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Fig. 8.11 One-loop renormalization of the KPZ action (8.59). Diagrams (a) and
(b), renormalizing λ, cancel each other (notice that (a) carries a combinatorial
factor of 4, while (b) carries a factor of 2). Diagram (c) renormalizes � and (d)
renormalizes D.

combination of vertices, Fig. 8.11(d). One has to keep track of the slow momen-
tum qs dependence of the external legs to get things right. The corresponding
expression is

2λ2
∫

dqfdω

(2π)d+1
(qs · q−f )(q

+
f · q−f )D

R
0 (q

+
f , ω)D

K
0 (q

−
f , ω)

= λ2�

b�∫
�

dqf

(2π)d

(qs · q−f )(q
+
f · q−f )[

D(q−f )2 + D(q+f )2
]

D(q−f )2
≈ λ2�

2D2

b�∫
�

dqf

(2π)d

qs · (qf − qs/2)

q2
f − (qs · qf)

≈ λ2�

2D2

b�∫
�

dqf

(2π)d

1

q2
f

(
(qs · qf)

2

q2
f

− q2
s

2

)
= λ2�

2D2

(
1

d
− 1

2

)
q2

s K̃d, (8.62)

where q±f = qf ± qs/2 and K̃d = �d−221−dπ−d/2�(d/2). We kept here only the
terms ∼ q2

s = −∇2
r . Combining these loop calculations with the bare scaling and

using d + χ̃ + χ = 0, one obtains the two non-trivial RG equations

∂l� =
(

z − d − 2χ + λ̄2 K̃d

)
�, ∂l D =

(
z − 2+ 2− d

d
λ̄2 K̃d

)
D,

(8.63)
where λ̄2 = λ2�/4D3 is an effective running constant. Employing Eq. (8.60) along
with ∂lλ = 0, one may rewrite these two equations as a single closed RG equation
for λ̄2:

∂l λ̄
2 =

(
ε + 1− 2ε

1− ε/2
λ̄2 K̃d

)
λ̄2, (8.64)

where ε = 2 − d. We have found thus that the critical dimension is dc = 2,
but the RG flow is very different from the equilibrium transitions, or even DP.
Indeed, according to Eq. (8.64) there is no stable fixed point of order ε for d ≤ 2,
Fig. 8.12(a). Curiously, the RG predicts the order 1 fixed point for d < 3/2; we
shall come back to this observation later. Most notably, for d > 2 the Gaussian
fixed point λ̄∗ = 0 is stable, if the bare values of the parameters are such that
λ̄ < λ̄c = (|ε|/K̃2)

1/2. In the Gaussian fixed point the correlation function (8.58)
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χ = 1 – d /2, z = 2

λ c

Fig. 8.12 (a) KPZ critical exponents on the coupling constant λ̄ vs. surface dimen-
sionality d plane. (b) Phase portrait of the critical KPZ Hamiltonian after a
Cole–Hopf transformation H(π, ϕ) = Dλ̄2π2ϕ2, see Eq. (8.66).

is given by Eq. (8.17c) with δ = 0 and T = � and thus the critical exponents are
z = 2 and χ = 1 − d/2. The fact that χ < 0 implies that the growing surface
is essentially flat at large scales. For λ̄ > λ̄c the RG runs away towards a strong
coupling fixed point, describing a rough surface. We have found thus a phase tran-
sition between the smooth and rough modes of the surface growth as a function of
the effective coupling constant λ̄ for d > 2. For d ≤ 2 the smooth mode of the
growth is absent and the surface is always rough. Properties of the strong coupling
fixed point are inaccessible in any perturbative RG treatment.

One can discuss, however, scaling properties of the surface, which happens to be
right at the phase transition between the smooth and rough modes, i.e. having λ̄ =
λ̄c. They are described by the unstable fixed point λ̄∗ = λ̄c. Demanding that both �
and D are not renormalized at this fixed point, one finds, e.g., z = 2+ ε2/(2−4ε).
Since the calculations were done in one-loop only, one should not trust ε2 terms
and the only conclusion is that z = 2 + O(ε2) and χ = O(ε2). In fact, the two-
loop calculation of Frey and Täuber [108] showed that there are no ε2 corrections
to z = 2 and χ = 0 either, suggesting that these exponents may be exact at the
unstable fixed point [109].

To show that this is indeed the case one may apply the Cole–Hopf transforma-
tion [110]

ϕ = exp

{
λ

2D
h − λ2�

4D2
t

}
, (8.65)

which transforms the KPZ equation (8.54) into a linear equation with multiplicative
Stratonovich noise, ∂tϕ = D∇2

rϕ − (�λ2/4D2)ϕ + (λ/2D)ϕξ . With the help of
the Stratonovich to Ito transformation (4.38) the latter is shown to be equivalent to
the Ito–Langevin equation ∂tϕ = D∇2

rϕ + (λ/2D)ϕξ . The corresponding MSR
action is
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(a) (b)

Dλ2 Dλ2 ...
Fig. 8.13 Renormalization of the Cole–Hopf transformed KPZ action (8.66).
(a) One-loop diagram; (b) the only possible sequence of diagrams. It makes the
one-loop RG equation to be perturbatively exact.

S[ϕ, π] =
∫

dt dr
[
π
(
∂tϕ − D∇2

rϕ
)− Dλ̄2π2ϕ2

]
. (8.66)

From the fact that the only non-linear vertex is π2ϕ2 one observes that there are
no corrections to the propagator 〈πϕ〉 in any order of the perturbative expansion
[110]. As a result, z = 2 in any perturbatively reachable fixed point, while D is
not renormalized. The only renormalization is that of λ̄2, given by the diagrams of
Fig. 8.13. Since this sequence is nothing but successive applications of the one-loop
renormalization, one concludes that the following one-loop RG equation

∂l λ̄
2 =

(
ε + λ̄2 K̃d

)
λ̄2 (8.67)

is actually exact. It coincides with Eq. (8.64) in the leading order of ε-expansion
(i.e. to the precision Eq. (8.64) was derived). Due to the identity (8.60) one finds
that χ = 0 at the unstable fixed point, which exists for d > 2. Linearizing
Eq. (8.67) near the unstable fixed point (λ̄2)∗ = |ε|/K̃d , one finds the spatial cor-
relation length critical exponent ν−1 = |ε| = d − 2 [110]. The scaling properties
of the KPZ problem are summarized in Fig. 8.12(a).

Finally, let us mention that for d = 1 (i.e. r → x) one knows the exact stationary
distribution function of the surface slopes19

P[h] = Z−1 exp

{
− D

2�

∫
dx (∂x h)2

}
. (8.68)

19 To prove this statement one needs to consider the Fokker–Planck equation, which corresponds to the KPZ-
Langevin process, cf. Eqs. (8.11) and (4.28),

∂tP([h], t) =
∫

dr
δ

δh(r)

[
−
(

D∇2
r h + λ

2
(∇rh)2

)
P([h], t)+�

δP([h], t)

δh(r)

]
.

Let us show that the term ∼ λ with P given by Eq. (8.68) is the full derivative in d = 1. Indeed, it follows
from: λ[∂2

x h−(D/2�)(∂x h)2∂2
x h]P = λP∂x [∂x h−(D/6�)(∂x h)3]. As a result it vanishes upon integration

over dx and Eq. (8.68) is thus a solution of the stationary Fokker–Planck equation. Notice that the trick does
not work in d > 1, indeed (∇αh∇αh)(∇β∇βh) is not a full derivative. For the stationary path interpretation
of the exact distribution function (8.68) see [111].
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This distribution function is exactly the same as the equilibrium distribution
(8.10)20 for the linear problem with λ = 0. In the latter case the KPZ equation
(8.54) is a potential one, cf. Eq. (8.1), with F[h] = ∫

dx D(∂x h)2/2. As a result,
all static exponents in d = 1 coincide with their Gaussian, i.e. λ = 0, coun-
terparts. This way one finds [114] χ = 1 − d/2 = 1/2. The dynamic critical
exponent z = 3/2 follows then from the exact relation (8.60). Curiously, but com-
pletely unjustifiably, one can arrive at the same exact results, applying the one-loop
Eqs. (8.63) and (8.64) to d = 1, i.e. ε = 1. Indeed, there is a stable fixed point with
(λ̄2)∗ K̃1 = 1/2. Substituting it in Eqs. (8.63) and demanding that � and D are at
the fixed point, one finds χ = 1/2 and z = 3/2.

20 An even more spectacular example, where the intrinsically non-equilibrium problem admits the static
equilibrium distribution function in d = 1, is offered by the symmetric exclusion process [112, 113].
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Fermions

In this chapter we reformulate the basic constructions of Chapters 2 and 5 for
fermionic particles. To this end we introduce Grassmann variables and integrals
and formulate the fermionic evolution operator on the closed time contour as
a coherent state functional integral. We then use it to introduce fermion Green
functions, perturbation theory and kinetic equation.

9.1 Grassmann variables, fermionic coherent states and Gaussian integrals

Following the same route as in Section 2.1, we start by considering a single quan-
tum level occupied by fermionic particles. Due to the Pauli principle one may have
either zero or one fermion in such a state and therefore the entire many-body space
is spanned by two orthonormal basis states |0〉 and |1〉. It is convenient to intro-
duce fermionic annihilation and creation operators, ĉ and ĉ †, which operate in this
many-body Hilbert space according to the following rules:

ĉ |0〉 = 0 ; ĉ |1〉 = |0〉 ; ĉ †|0〉 = |1〉 ; ĉ †|1〉 = 0. (9.1)

One may notice the following properties of these operators

ĉ †ĉ|n〉 = n|n〉 ; {ĉ, ĉ †} = 1̂ ; ĉ2 = (
ĉ †
)2 = 0, (9.2)

where the curly brackets denote the anti-commutator {ĉ, ĉ †} = ĉĉ † + ĉ †ĉ and
n = 0, 1.

To introduce fermionic coherent states, one needs an algebra of anti-commuting
Grassmann numbers. Those are the objects, denoted by ψ , ψ ′, . . ., which formally
satisfy the following multiplication rules:

ψψ ′ = −ψ ′ψ ; ψ2 = 0 , f (ψ) = f0 + f1ψ, (9.3)

183
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where f (ψ) is an arbitrary function of the Grassmann ψ , which is defined by
its first two Taylor expansion coefficients. Similarly, for a function of two vari-
ables one has f (ψ,ψ ′) = f00 + f10ψ + f01ψ

′ + f11ψψ
′, etc. This fact allows

us to introduce derivatives in the natural way, i.e. ∂ψ/∂ψ = 1 and therefore
∂ f (ψ)/∂ψ = f1. Notice that the derivatives anti-commute, indeed

∂

∂ψ

∂

∂ψ ′ f (ψ,ψ ′) = ∂

∂ψ

(
f01 − f11ψ

) = − f11 = − ∂

∂ψ ′
∂

∂ψ
f (ψ,ψ ′).

We shall also need the concept of integration over the Grassmann variables [115],
which is defined as ∫

dψ 1 = 0 ;
∫

dψ ψ = 1. (9.4)

We stress that this is a definition, which can’t be derived from “first principles.” It is
also convenient to agree that Grassmann numbers anti-commute with the fermionic
annihilation and creation operators, i.e.

{ψ, ĉ} = {ψ, ĉ †} = 0.

By analogy with bosons, a fermionic coherent state is defined as an eigen-
state of the annihilation operator ĉ. Since the Hilbert space has only two basis
vectors, it must be a linear superposition of |0〉 and |1〉. It is easy to see that
such a linear combination may not have ordinary numbers as coefficients, indeed
ĉ (x |0〉 + y|1〉) = y|0〉 
= λ(x |0〉 + y|1〉), unless y = 0 and then the eigenvalue
is zero too. The difficulty may be avoided by using Grassmann numbers. Indeed,
consider a state parametrized by the Grassmann number ψ ,

|ψ〉 = |0〉 − ψ |1〉 = (1− ψ ĉ†)|0〉 = e−ψ ĉ † |0〉. (9.5)

Then ĉ|ψ〉 = −ĉψ |1〉 = ψ |0〉 = ψ |ψ〉, and therefore the state |ψ〉 is indeed an
eigenstate of the fermionic annihilation operator with the Grassmann eigenvalue
ψ . In an analogous way we define the left coherent state 〈ψ | as a left eigenstate of
ĉ † with the Grassmann eigenvalue ψ̄ ,

〈ψ | = 〈0|e−ĉ ψ̄ = 〈0|(1− ĉ ψ̄) = 〈0| − 〈1| ψ̄. (9.6)

Indeed 〈ψ |c † = (〈0| − 〈1| ψ̄)c † = 〈0|ψ̄ = 〈ψ |ψ̄ . Here ψ̄ is just another Grass-
mann number, completely unrelated to ψ , which we use to parametrize left states.
The set of coherent states is not orthonormal and the overlap of any two coherent
states is

〈ψ |ψ ′〉 = (〈0| − 〈1| ψ̄)(|0〉 − ψ ′|1〉) = 1+ ψ̄ψ ′ = eψ̄ψ
′
. (9.7)
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One can write a resolution of unity in the fermionic coherent state representation
as (compare with the bosonic expression (2.7))

1̂ =
∫

dψ̄
∫

dψ e−ψ̄ ψ |ψ〉〈ψ |. (9.8)

Indeed, employing e−ψ̄ ψ = 1 − ψ̄ ψ along with Eqs. (9.5) and (9.6) and keeping
only the terms which contain both ψ̄ and ψ (all others vanish upon integration,
Eq. (9.4)), one finds −ψ̄ψ(|0〉〈0| + |1〉〈1|) = −ψ̄ψ 1̂ for the expression under
the integral. Finally, performing the integrations according to Eq. (9.4), one proves
Eq. (9.8) (notice that one has to commute dψ and ψ̄ , which brings in a factor of
minus one).

Matrix elements of any normally ordered operator, i.e. such that all fermionic
creation operators are preceded by the annihilation ones, take the form

〈ψ |Ĥ(ĉ†, ĉ)|ψ ′〉 = H(ψ̄, ψ ′)〈ψ |ψ ′〉 = H(ψ̄, ψ ′) eψ̄ψ
′
. (9.9)

The trace of an operator Ô is calculated as

Tr
{
Ô
} = ∑

n=0,1

〈n|Ô|n〉 =
∑

n=0,1

∫∫
dψ̄dψ e−ψ̄ ψ 〈n|ψ〉〈ψ |Ô|n〉 (9.10)

=
∫∫

dψ̄dψ e−ψ̄ ψ
∑

n=0,1

〈ψ |Ô|n〉〈n| −ψ〉 =
∫∫

dψ̄dψ e−ψ̄ ψ 〈ψ |Ô| −ψ〉,

where we have employed resolution of unity first in the coherent state basis and
then in the number state basis. The minus sign in |−ψ〉 = |0〉+ψ |1〉 comes about
from commuting left and right coherent states.

We shall also need rules of Gaussian integration over two sets of independent
Grassmann variables, ψ̄ j and ψ j , where j = 1, 2, . . . , N . The following identity:

Z [χ̄ , χ ] =
∫ N∏

j=1

[dψ̄ j dψ j ] e
−

N∑
i j
ψ̄i Âi jψ j +

N∑
j
[ψ̄ jχ j+χ̄ jψ j ] = det Â e

N∑
i j
χ̄i ( Â−1)i jχ j

(9.11)

is valid for any invertible complex matrix Âi j .1 Here χ̄ j and χ j are two addi-
tional mutually independent (and independent from ψ̄ j and ψ j ) sets of Grassmann

numbers. We first notice that
∫

D[ψ̄ψ] e−
∑

ψ̄ Âψ = det Â (and not 1/det Â as is the
case for bosons). This follows from the fact that the only non-vanishing term comes
from the N -th order expansion of the exponent, i.e.

(−∑ ψ̄i Âi jψ j

)N
/N !, since the

1 Actually, for existence of the integral even this restriction is not needed. For example, for N = 1 and A = 0
one has Z = χ̄χ . More generally, if matrix Â has a zero eigenvalue, Z is proportional to the projection of the
vector χ on the direction of the corresponding zero-mode eigenfunction.
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number of variables should be exactly equal to the number of integrals. Within this
expression only terms with all ψ j and all ψ̄i distinct survive the integration. The
surviving terms have signs reflecting the parity of permutations, leading directly to
det Â. Finally one notices that ψ̄ Âψ − ψ̄χ − χ̄ψ = (ψ̄ − χ̄ Â−1) Â(ψ − Â−1χ)−
χ̄ Â−1χ and the shift of integration variables ψ → ψ + Â−1χ (and similarly for
ψ̄) works exactly as in ordinary integrals.

The Wick theorem is formulated in a way similar to the complex bosonic case,
Eq. (2.21), with the exception that every combination is multiplied by the parity
of the corresponding permutation. This follows from the anti-commutativity of the
Grassmann derivatives, mentioned above. For example,

〈
ψaψ̄b

〉 = 1

Z [0, 0]
δ2 Z [χ̄ , χ]
δχbδχ̄a

∣∣∣∣
χ=0

= Â−1
ab , (9.12)

〈
ψaψbψ̄cψ̄d

〉 = 1

Z [0, 0]
δ4 Z [χ̄ , χ ]

δχdδχcδχ̄bδχ̄a

∣∣∣∣
χ=0

= − Â−1
ac Â−1

bd + Â−1
ad Â−1

bc .

Notice that the first term on the right hand side of the second expression comes
with a sign opposite to that in Eq. (2.21).

9.2 Partition function

Consider a single quantum state with energy ε0. This state is populated by spinless
fermions (i.e. particles obeying the Pauli exclusion principle). In fact, one may
have either zero or one particle in this state. The secondary quantized Hamiltonian
of such a system has the form

Ĥ = ε0 ĉ†ĉ, (9.13)

where ĉ† and ĉ are creation and annihilation operators of fermions on the state ε0.
One can consider the evolution operator along the closed time contour, C and

the corresponding partition function, Z = 1, defined in exactly the same way as
for bosonic systems, Eq. (2.13). The trace of the equilibrium density matrix is
Tr{ρ̂0} = 1+ ρ(ε0), where the two terms stand for the empty and singly occupied
states. One divides the contour into (2N − 2) time intervals, Fig. 2.1, of length
δt ∼ 1/N → 0, and introduces fermionic resolutions of unity in 2N points along
the contour, C, in the form (9.8). The rest of the algebra goes through exactly as in
the bosonic case, see Section 2.2. As a result, one arrives at

Z = 1

Tr{ρ̂0}
∫∫ 2N∏

j=1

[
dψ̄ j dψ j

]
exp

⎛⎝ i
2N∑

j, j ′=1

ψ̄ j G−1
j j ′ ψ j ′

⎞⎠ , (9.14)
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where the 2N × 2N matrix G−1
j j ′ is (for N = 3)

iG−1
j j ′ ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 −ρ(ε0)

h− −1
h− −1

1 −1
h+ −1

h+ −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (9.15)

where h∓ ≡ 1 ∓ iε0δt . The main diagonal of this matrix originates from the res-
olutions of unity, Eq. (9.8), while the lower sub-diagonal comes from the matrix
elements (9.9). Finally, the upper right element comes from 〈ψ1|ρ̂0| − ψ2N 〉, cf.
Eq. (2.16). The only difference from the bosonic case is the negative sign in front
of the ρ(ε0) matrix element, originating from the minus sign in the |−ψ2N 〉 coher-
ent state in the expression (9.10) for the fermionic trace. To check the normalization
identity, let us evaluate the determinant of such a matrix:

det
[
iĜ−1

] = 1+ρ(ε0)(1−h2)N−1 ≈ 1+ρ(ε0) e(ε0δt )
2(N−1) N→∞→ 1+ρ(ε0). (9.16)

Employing the fact, Eq. (9.11), that the fermionic Gaussian integral is given by the
determinant (unlike the inverse determinant for bosons) of the correlation matrix
(9.15), one finds

Z = det
[
iĜ−1

]
Tr{ρ̂0} = 1, (9.17)

as it should be. Once again, the upper right element of the discrete matrix (9.15)
is crucial for maintaining the correct normalization. Taking the limit N →∞ and
introducing the continuum notation, ψ j → ψ(t), one obtains

Z =
∫

D[ψ̄ψ] exp
(
iS[ψ̄, ψ]) = ∫

D[ψ̄ψ] exp

(
i
∫
C

dt
[
ψ̄(t) Ĝ−1ψ(t)

])
,

(9.18)

where according to (9.14) and (9.15) the action is given by

S[ψ̄, ψ] =
2N∑
j=2

[
iψ̄ j

ψ j − ψ j−1

δt j
− ε0ψ̄ j ψ j−1

]
δt j + i ψ̄1

[
ψ1 + ρ(ε0)ψ2N

]
,

(9.19)

with δt j ≡ t j−t j−1 = ±δt , where± signs correspond to the forward and backward
branches of the time contour. Thus the continuum form of the operator Ĝ−1 is the
same as for bosons, Eq. (2.29): Ĝ−1 = i∂t − ε0. Again the upper right element of
the discrete matrix (the last term in Eq. (9.19)), which contains information about
the distribution function, is seemingly absent in the continuum notation.
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Splitting the Grassmann field ψ(t) into the two components ψ+(t) and ψ−(t)
that reside on the forward and backward parts of the time contour, respectively, one
may rewrite the action as

S[ψ̄, ψ] =
∫ +∞

−∞
dt

[
ψ̄+(t)(i∂t − ε0)ψ

+(t)− ψ̄−(t)(i∂t − ε0)ψ
−(t)

]
, (9.20)

where the dynamics of ψ+ and ψ− are actually not independent from each other,
owing to the presence of non-zero off-diagonal blocks in the discrete matrix (9.15).

9.3 Green functions and Keldysh rotation

The four fermionic Green functions: GT(T̃) and G<(>) are defined in the same way
as their bosonic counterparts, see Eq. (2.33). Inverting the discrete matrix (9.15),
as required by the Gaussian identity (9.12), and going to the continuum limit, one
finds, cf. Eq. (2.35),

〈ψ+(t)ψ̄−(t ′)〉 ≡ iG<(t, t ′) = −nF exp{−iε0(t − t ′)}, (9.21a)

〈ψ−(t)ψ̄+(t ′)〉 ≡ iG>(t, t ′) = (1−nF) exp{−iε0(t − t ′)}, (9.21b)

〈ψ+(t)ψ̄+(t ′)〉 ≡ iGT(t, t ′) = θ(t − t ′)iG>(t, t ′)+ θ(t ′ − t)iG<(t, t ′), (9.21c)

〈ψ−(t)ψ̄−(t ′)〉 ≡ iGT̃(t, t ′) = θ(t ′ − t)iG>(t, t ′)+ θ(t − t ′)iG<(t, t ′). (9.21d)

The difference from bosons is in the minus sign in the expression for G<, due to
the anti-commutation relations, and Bose occupation number is exchanged for the
Fermi occupation number: nB → nF ≡ ρ(ε0)/(1 + ρ(ε0)). Equation (2.38) holds
for the fermionic Green functions in the same sense as for bosonic ones. Thus one
would like to perform the Keldysh rotation to take advantage of this relation.

It is customary to perform the Keldysh rotation in the fermionic case in a
different manner from the bosonic one. Define the new fields as

ψ1(t) = 1√
2

(
ψ+(t)+ ψ−(t)

)
, ψ2(t) = 1√

2

(
ψ+(t)− ψ−(t)

)
. (9.22)

Following Larkin and Ovchinnikov [27], it is agreed that the bar fields transform
in a different way:

ψ̄1(t) = 1√
2

(
ψ̄+(t)− ψ̄−(t)

)
, ψ̄2(t) = 1√

2

(
ψ̄+(t)+ ψ̄−(t)

)
. (9.23)

Since the Grassmann fields ψ̄ are not conjugated to ψ , but rather are completely
independent fields, they may be transformed in an arbitrary manner (as long as
the transformation matrix has a non-zero determinant). Notice that there is no
issue regarding the convergence of the integrals, since the Grassmann integrals are
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always convergent. We also avoid the superscripts cl and q, because the Grassmann
variables never have a classical meaning. Indeed, one can never write a stationary
point or any other equation in terms of ψ̄, ψ , rather they must always be integrated
out at some stage of the calculations.

Employing Eqs. (9.22) and (9.23) along with Eqs. (9.21), one finds

−i
〈
ψa(t)ψ̄b(t

′)
〉 = Ĝab(t, t ′) =

(
GR(t, t ′) GK(t, t ′)

0 GA(t, t ′)

)
, (9.24)

where hereafter a, b = (1, 2). The fact that the (2, 1) element of this matrix is
zero is a manifestation of the identity (2.38). The retarded, advanced and Keldysh
components of the Green function (9.24) are expressed in terms of GT(T̃) and G<(>)

in exactly the same way as their bosonic analogs, Eqs. (2.41), and therefore possess
the same symmetry properties, Eqs. (2.42)–(2.45). An important consequence of
Eqs. (2.43) and (2.44) is

Tr
{

Ĝ(1) ◦ Ĝ(2) ◦ · · · ◦ Ĝ(l)
}
(t, t) = 0, (9.25)

where the circular multiplication sign involves convolution in the time domain
along with the 2× 2 matrix multiplication. The argument (t, t) states that the first
time argument of Ĝ(1) and the last time argument of Ĝ(l) are the same.

Note that the fermionic Green function has a different structure compared to its
bosonic counterpart, Eq. (2.40), i.e. positions of the R, A and K components in
the matrix are exchanged. The reason, of course, is the different convention for
transformation of the bar fields. One could choose the fermionic convention to
be the same as the bosonic (but not the other way around), thus having the same
structure (2.40) for the fermions as for the bosons. The rationale for the Larkin–
Ovchinnikov choice (9.24) is that the inverse Green function, Ĝ−1 and fermionic
self-energy �̂F have the same appearance as Ĝ, namely

Ĝ−1 =
( [

GR
]−1 [

G−1
]K

0
[
GA

]−1

)
, �̂ =

(
�R �K

0 �A

)
, (9.26)

whereas in the case of bosons Ĝ−1 (see Eq. (2.51)) and �̂ (see Eq. (5.17)) look
different from Ĝ (see Eq. (2.40)). This fact gives the form (9.24) and (9.26) a
certain technical advantage.

For the single fermionic state, after the Keldysh rotation, the Green func-
tions (9.21) allow us to find components of the matrix (9.24):

GR(t, t ′) = −iθ(t − t ′)e−iε0(t−t ′) FT→ (ε − ε0 + i0)−1, (9.27a)

GA(t, t ′) = iθ(t ′ − t)e−iε0(t−t ′) FT→ (ε − ε0 − i0)−1, (9.27b)
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GK(t, t ′) = −i(1− 2nF)e
−iε0(t−t ′) FT→−2π i(1− 2nF)δ(ε − ε0), (9.27c)

where the right hand sides provide also the Fourier transforms with respect to t−t ′.
In thermal equilibrium nF(ε) = (e(ε−μ)/T + 1)−1 and one obtains

GK(ε) = tanh
ε − μ

2 T

[
GR(ε)− GA(ε)

]
. (9.28)

This is the FDT for fermions. As in the case of bosons, the FDT is a generic feature
of an equilibrium system, not restricted to the toy model. In general, it is convenient
to parametrize the anti-Hermitian Keldysh Green function by a Hermitian matrix
F = F† as

GK = GR ◦ F − F ◦ GA. (9.29)

The Wigner transform of F = 1− 2nF is the fermionic distribution function.

9.4 Free fermionic fields and their action

One may proceed now to a system with many degrees of freedom. We shall assume
that they are labeled by a momentum index k and spin index σ =↑,↓= ±1. To this
end, one changes ε0 → εk,σ = k2/(2m) + HZσ , where HZ is a Zeeman magnetic
field,2 and performs summations over k and σ . It is instructive to transform to
the coordinate space representation ψσ(r, t) = ∑

k ψσ (k, t)eikr, while ψ̄σ (r, t) =∑
k ψ̄σ (k, t)e−ikr. Although ψ̄ is not a complex conjugate of ψ , but is rather an

independent Grassmann number, we choose the opposite Fourier transform con-
vention, as if they are mutual complex conjugates. Then k2/(2m) → −∇2

r /(2m)
and the Keldysh action for a non-interacting gas of fermions takes the form

S0[ψ̄, ψ] =
∑
σ,σ ′

∫∫
dx dx ′

2∑
a,b=1

ψ̄a,σ (x)
[
Ĝ−1
σσ ′(x, x ′)

]ab
ψb,σ ′(x

′), (9.30)

where x = (r, t) and the matrix correlator [Ĝ−1]ab has the structure (9.26) with[
GR(A)
σσ ′ (x, x ′)

]−1 = δ(x − x ′)
(

i∂t ′ + 1

2m
∇2

r′ −HZ · �̂sσσ ′ ± i0

)
, (9.31)

where �̂sσ ′σ is the usual three-component vector of Pauli matrices in spin space.
Although in continuum notation the R and A components seem to be the same,
one has to remember that in the discrete time representation they are matrices
with structure below and above the main diagonal, respectively. The Keldysh com-
ponent is a pure regularization, in the sense that it does not have a continuum

2 We have absorbed the factor �e/mc into the magnetic field units.
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limit (the Keldysh component of the self-energy does have a non-zero continuum
representation). All this information is already properly taken into account in the
structure of the Green function (9.24). The explicit form of the bare fermionic
Green functions is

GR(A)
σσ ′ (k, ε) = δσσ ′(ε − εk,σ ± i0)−1, (9.32a)

GK
σσ ′(k, ε) = −2π i δσσ ′ F(ε) δ(ε − εk,σ ), (9.32b)

where F(ε) = 1−2nF(ε). In general, the Keldysh component of the Green function
may be parametrized by the Hermitian matrix Fσσ ′(x, x ′),

GK
σσ ′(x, x ′)=

∑
σ ′′

∫
dx ′′

[
GR
σσ ′′(x, x ′′)Fσ ′′σ ′(x ′′, x ′)− Fσσ ′′(x, x ′′)GA

σ ′′σ ′(x
′′, x ′)

]
.

(9.33)

Projecting its Wigner transform onto the four Pauli matrices, one defines
F(x, p)=Tr{Fσσ (x, p)} and Fμ(x, p)=Tr{Fσσ ′(x, p)ŝμσ ′σ } (where μ= x, y, z),
the distribution functions of the fermionic density and the spin-density, respec-
tively. One should not be alarmed that all components of the spin are determined
simultaneously. This has the same semiclassical interpretation as the simultaneous
specification of x = (r, t) and p = (k, ε).

9.5 External fields and sources

According to the basic idea of the Keldysh technique, the partition function
Z = 1 is normalized by construction, see Eq. (9.17). To make the entire the-
ory meaningful one should introduce auxiliary source fields, which enable one
to compute various observable quantities: density of particles, currents, etc. For
example, one may introduce an external time-dependent scalar potential V (r, t)
defined along the contour C. It interacts with the fermion density as SV =
− ∫

dr
∫
C dt V (r, t)ψ̄(r, t)ψ(r, t), where we have suppressed the spin index for

brevity. Expressing it via the field components residing on the forward and
backward contour branches, one finds

SV = −
∫

dr

+∞∫
−∞

dt
[
V+ψ̄+ψ+ − V−ψ̄−ψ−] = −2

∫
drdt

[
V clρq + V qρcl

]
= −

∫
drdt

[
V cl(ψ̄1ψ1 + ψ̄2ψ2)+ V q(ψ̄1ψ2 + ψ̄2ψ1)

]
, (9.34)

where the V cl(q)(r, t) components are defined in the standard way for real boson
fields, V cl(q) = (V+±V−)/2. The physical density of fermions (symmetrized over
the two branches of the contour), given by ρcl = 1

2

(
ψ̄+ψ+ + ψ̄−ψ−), is coupled
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to the quantum component of the source field, V q. On the other hand, the quantum
component of density, defined as ρq = 1

2

(
ψ̄+ψ+ − ψ̄−ψ−), is coupled to the

classical source component, V cl, which is nothing but an external physical scalar
potential, the same on the two branches. In the last line of Eq. (9.34) we performed
rotation from ψ± to ψ1(2) according to Eqs. (9.22) and (9.23).

The notation may be substantially compactified by introducing two vertex
fermionic γ̂ -matrices:

γ̂ cl ≡
(

1 0
0 1

)
, γ̂ q ≡

(
0 1
1 0

)
. (9.35)

With the help of these definitions, the source action (9.34) may be written as

SV = −
∫

dr
∫ +∞

−∞
dt

2∑
a,b=1

[
V clψ̄aγ

cl
abψb + V qψ̄aγ

q
abψb

] = −Tr
{ �̄! V̂ �!}

,

(9.36)

where we have introduced the Keldysh doublet �! and matrix V̂ , defined as

�! =
(
ψ1

ψ2

)
, V̂ = V αγ̂ α =

(
V cl V q

V q V cl

)
, (9.37)

where α = (cl, q).
In a similar way one may introduce an external vector potential into the for-

malism. The corresponding part of the action3 SA = −∫ dr
∫
C dt A(r, t)j(r, t)

represents the coupling between A(r, t) and the fermion current density defined
as j(r, t) = 1

2mi [ψ̄(r, t)∇rψ(r, t) − ∇rψ̄(r, t)ψ(r, t)]. By splitting
∫
C dt into for-

ward and backward parts and performing Keldysh rotation, one finds by analogy
with the scalar potential case (9.34) that

SA = −Tr
{ �̄!ÂvF �!

}
, Â = Aαγ̂ α =

(
Acl Aq

Aq Acl

)
. (9.38)

We have linearized the fermionic dispersion relation near the Fermi energy and
employed the fact that −i∇r ≈ kF and vF = kF/m.

Let us now define the generating function as

Z
[
V cl, V q

] ≡ 〈
exp

(
iSV

)〉
, (9.39)

where the angular brackets denote the functional integration over the Grassmann
fields ψ̄ and ψ with weight exp(iS0), specified by the fermionic action (9.30).
In the absence of the quantum component, V q = 0, the source field is the same

3 The vector source A(r, t) that we are using here differs from the actual vector potential by a factor of e/c.
However, we refer to it as the vector potential and restore electron charge only in the final expressions.
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on both branches of the time contour. Therefore, the evolution along the contour
brings the system back to its exact original state. Thus, one expects that the classical
component alone does not change the fundamental normalization identity, Z = 1.
As a result,

Z [V cl, 0] ≡ 1, (9.40)

as we already discussed in Chapter 2, see Eq. (2.58). Indeed, one may verify this
statement explicitly by expanding the generating function (9.39) in powers of V cl

and employing the Wick theorem. For example, to first order in V cl one finds
Z [V cl, 0] = 1− ∫

dt V cl(t)Tr
[
γ̂ clĜ(t, t)

]+ · · · = 1, where one uses that γ̂ cl = 1̂
along with Eq. (9.25). It is straightforward to see that for exactly the same reasons
all higher order terms in V cl vanish as well.

A lesson from Eq. (9.40) is that one necessarily has to introduce quantum sources
(which change sign between the forward and backward branches of the contour).
The presence of such source fields explicitly violates causality, thus making the
generating function non-trivial. On the other hand, these fields usually do not have
a physical meaning and play only an auxiliary role. In most cases one uses them to
generate observables by an appropriate differentiation. Indeed, as was mentioned
above, the physical density is coupled to the quantum component of the source. In
the end, one takes the quantum sources to be zero, restoring the causality of the
action. Note that the classical component, V cl, does not have to be taken to zero.

Let us see how it works. Suppose one is interested in an average fermion density
ρcl(x) at a space-time point x in the presence of a certain physical scalar potential
V cl. According to Eqs. (9.34) and (9.39) it is given by

ρcl(x; V cl) = i

2

δ

δV q(x)
Z [V cl, V q]

∣∣∣
V q=0

, (9.41)

where x = (r, t). The problem is simplified if the external field, V cl, is weak in
some sense. One may then restrict oneself to the linear response, by defining the
polarization (or susceptibility)

�R(x, x ′) ≡ − δρcl(x; V cl)

δV cl(x ′)

∣∣∣∣
V cl=0

= − i

2

δ2 Z [V cl, V q]
δV cl(x ′)δV q(x)

∣∣∣∣
V q=V cl=0

. (9.42)

We add the superscript R anticipating on physical grounds that the response func-
tion must be retarded (causality). We shall demonstrate it shortly. According to
Eqs. (9.34) and (9.39), the response function (9.42) is given by

�R(x, x ′) = 2i
〈
ρcl(x)ρq(x ′)

〉
, δρcl(x; V cl) = −

∫
dx ′�R(x, x ′)V cl(x ′),

(9.43)
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where the angular brackets again denote averaging with the fermionic action
without the sources. This is the Kubo formula for the linear response.

In a similar way let us introduce the polarization matrix as

�̂αβ(x, x ′) ≡ − i

2

δ2 ln Z [V̂ ]
δV β(x ′)δV α(x)

∣∣∣∣∣
V̂=0

=
(

0 �A(x, x ′)
�R(x, x ′) �K(x, x ′)

)
.

(9.44)

Owing to the normalization identity, Eq. (9.40), the logarithm is redundant for the
R and A components and therefore the two definitions (9.42) and (9.44) are in
agreement. The fact that �cl,cl = 0 is obvious from Eq. (9.40). To evaluate the
polarization matrix, �̂, consider the Gaussian action (9.30). Adding the source

term (9.36), one finds S0 + SV = ∫
dx �̄![Ĝ−1 − V αγ̂ α] �!. Integrating over the

Grassmann fields ψ̄ , ψ , one obtains according to the Gaussian identity (9.11), cf.
Eq. (2.63),

Z [V ] =
det

[
iĜ−1−iV αγ̂ α

]
Tr{ρ̂0} = det

[
1̂−Ĝ V αγ̂ α

]
= eTr ln[1̂−Ĝ V αγ̂ α], (9.45)

where Eq. (9.17) has been used. Since Z [0] = 1, the normalization is exactly
right. One may now differentiate ln Z = Tr ln[1̂− Ĝ V αγ̂ α] over V α, according to
Eq. (9.44). As a result, one finds for the polarization matrix of the Gaussian (i.e.
non-interacting) fermions

�̂
αβ

0 (x, x ′) = i

2
Tr
{
γ̂ αĜ(x, x ′)γ̂ β Ĝ(x ′, x)

}
, (9.46)

which has a transparent diagrammatic representation, Fig. 9.1.
Substituting the explicit form of the gamma matrices (9.35) and the Green

functions (9.24), one obtains the response and correlation components of the
polarization matrix4

�
R(A)
0 (x, x ′) = i

2

(
GR(A)(x, x ′)GK(x ′, x)+ GK(x, x ′)GA(R)(x ′, x)

)
, (9.47a)

�K
0 (x, x ′)= i

2

(
GK(x, x ′)GK(x ′, x)+GR(x, x ′)GA(x ′, x)+GA(x, x ′)GR(x ′, x)

)
.

(9.47b)

Notice the opposite sign of the fermionic polarization loop with respect to its
bosonic analog, Eqs. (6.22)–(6.24) and Eq. (7.53). From the first line here and
the properties of the Green functions it is obvious that �R(A)(x, x ′) is indeed

4 The fact that �cl,cl = 0 is an immediate consequence of γ̂ cl = 1̂ and Eq. (9.25).
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x x'

G(x,x')ˆ

G(x',x)ˆ

γαˆ γβˆ

Fig. 9.1 Polarization matrix �̂
αβ

0 (x, x ′): each solid line stands for the fermion
matrix Green function (9.24), wavy lines represent external classical or quantum
potentials V cl(q), and x = (r, t). The loop diagram is a graphic representation of
the trace in Eq. (9.46).

a lower (upper) triangular matrix in the time domain, justifying their super-
scripts. Moreover, from the symmetry properties of the fermionic Green functions
one finds �R = [�A]† and �K = −[�K]†. Due to causality, one may write
GR
(x,x ′)G

A
(x ′,x)+GA

(x,x ′)G
R
(x ′,x) = −(GR

(x,x ′)−GA
(x,x ′))(G

R
(x ′,x)−GA

(x ′,x)) in Eq. (9.47b);

indeed GR(A)
(t,t ′)G

R(A)
(t ′,t) = 0. Employing then Eq. (9.28) along with the identity

tanh(a) tanh(b) − 1 = coth(a − b)[tanh(b) − tanh(a)], one finds that in thermal
equilibrium the �̂(r− r′, t − t ′) matrix obeys the bosonic FDT:

�K(q, ω) = coth
ω

2T

[
�R(q, ω)−�A(q, ω)

]
. (9.48)

As a result, the polarization matrix, �̂, possesses all the properties of the bosonic
self-energy �̂, see Eq. (5.17). Employing the explicit form (9.32) of the bare Green
functions and integrating over energy with the help of the delta-function, one finds
for the components of the fermionic polarization matrix

�
R(A)
0 (q, ω) = −1

2

∑
k,σ

F(εk+q,σ )− F(εk,σ )

ω ± i0+ εk,σ − εk+q,σ
; (9.49a)

�K
0 (q, ω) = −iπ

∑
k,σ

δ(ω + εk,σ − εk+q,σ )
[
F(εk,σ )F(εk+q,σ )− 1

]
. (9.49b)

Again notice the opposite sign in comparison with the corresponding bosonic
expressions, Eqs. (6.25). However, in the present case F = 1 − 2nF, while for
bosons F = 2nB + 1. As a result, in terms of the occupation numbers nF(B),
Eqs. (6.25a) and (9.49a) agree, while Eqs. (6.25b) and (9.49b) differ only by a
term ∝ n2

F(B). Therefore in the classical limit, where nF ≈ nB ≈ e−(εk−μ)/T � 1,
the polarization matrix does not depend on the underlying quantum statistics.
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9.6 Free degenerate Fermi gas

In view of the last remark, we already know the high-temperature limit of the
fermionic polarization matrix. Indeed, it coincides with that of the bosonic one and
was evaluated in Section 6.2. Here we focus on the opposite limit of the degener-
ate electron gas and restrict ourselves to q � kF. Then we find for the retarded
component of the polarization matrix

�R
0 (q, ω) =

∑
k

nF(k+)− nF(k−)
ω + i0− vkq

=
1∫

−1

dz

∞∫
0

k2dk

(2π)2

nF(k+)− nF(k−)
ω + i0− vkqz

,

where we suppressed the spin index, put k± = k ± q/2 and introduced notation
z = cos θ and vk = k/m. We also notice that the Fermi occupation numbers are
given by nF(k±) ≈ nF((k2 ± kqz)/2m), restricting the integration to the narrow
energy strip of width vFqz around the Fermi energy. We can now go from the
momentum integral to the energy one, introducing the density of states (DOS)
ν(ε) = m

√
2mε/2π2. Since vFq � εF, we can take the latter as a constant

ν ≡ ν(εF). This way we find for the retarded polarization component

�R
0 (q, ω) ≈

ν

2

1∫
−1

dz
−vFqz

ω + i0− vFqz

= ν

[
1+ ω

2vFq
ln

∣∣∣∣vFq − ω

vFq + ω

∣∣∣∣]+ iπν
ω

2vFq
θ(vFq − |ω|). (9.50)

In this approximation there is only one scale of energy dependence vFq. It misses
the effects associated with the smaller scale q2/2m as well as the temperature T .
Those bring corrections to Eq. (9.50), which sometimes are important to keep in
mind. First, according to Eq. (9.50) �R

0 (q, 0) = ν. More careful consideration,
which keeps corrections ∼ q/kF, shows

�R
0 (q, 0) ≈ ν

[
1− q2/(12k2

F)
]
. (9.51)

Moreover, according to Eq. (9.50), at ω = vFq there is a logarithmic singularity in
Re�R

0 (q, ω), while Im�R
0 (q, ω) abruptly drops to zero at the same point. The sin-

gularities in the real and imaginary parts are related through the Kramers–Kronig
relation. They both are smeared by temperature. In particular, the imaginary part at
ω � vFq is larger than zero, although it is exponentially small. Approximating the
Fermi distribution by the Maxwell one, i.e. nF(εk) ≈ e−(εk−εF)/T , one finds

Im�R
0 (q, ω) ≈

πν

2

ω

vFq
e
− εF

T

[(
ω
vFq

)2−1

]
. (9.52)
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vFq

vFq2ν 2

ν

3ω 2
–

ωp

ω

0ΠR

–Us
–1

Ut
–1

Fig. 9.2 Real (full line) and imaginary (dashed line) parts of the retarded polar-
ization component �̂R

0 (q, ω) of a degenerate Fermi gas, as functions of ω at a
fixed q � kF. Here Us and Ut are singlet and triplet interaction constants, see
Eqs. (9.59) and (9.60).

This is essentially the classical Landau damping result, Eq. (6.16). The real and
imaginary parts of �R

0 (q, ω) are plotted in Fig. 9.2 as functions of ω for a fixed
q � kF. The Keldysh component of the polarization matrix in equilibrium is given
by �K

0 (q, ω) = 2i coth(ω/2T )Im�R
0 (q, ω), see Eq. (9.48).

9.7 Interactions

The normally ordered Hamiltonian of the two-particle fermion–fermion interaction
has the form, cf. Eq. (5.11),

Ĥint = 1

2

∑
q,k,k′

∑
σ,σ ′

U (q) ĉ †
kσ ĉ †

k′σ ′ ĉk′+qσ ′ ĉk−qσ , (9.53)

where U (q) is the Fourier transform of the interaction potential, which we assume
to be spin independent. The corresponding Grassmann action on the closed time
contour is

Sint = −1

2

∫
C

dt
∑

q,k,k′

∑
σ,σ ′

U (q) ψ̄kσ ψ̄k′σ ′ψk′+qσ ′ψk−qσ , (9.54)

where we have suppressed the time index t , running along the contour. Although
Eq. (9.54) is an exact expression for the two-particle interaction, it is often con-
venient to rewrite it in such a way that the wavenumber q summation includes
only momenta which are small with respect to the Fermi momentum. To this end
we split the

∑
q into q � kF and q ∼ kF parts, keep the former as is and in the
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k′σ ′ kσ ′

k′σ

k –  qσ k –  qσ
–k′σ

kσ

k′ +  qσ ′
k′ +  qσ ′

k′ +  qσ ′
–k +  qσ ′

kσq

(a)

q

(b)

q

(c)

Fig. 9.3 Three channels of fermion–fermion interactions, Eq. (9.55): (a) singlet
channel, the wavy line denotes the interaction potential U (q); (b) spin-triplet
channel, the dashed line denotes Ut ; (c) Cooper channel, the full double line
denotes UC.

latter relabel momenta indices in two complementary ways, Fig. 9.3. As a result
the four-fermion product in Eq. (9.54) takes the form∑

k,k′,σ,σ ′

[
U (q) ψ̄kσ ψ̄k′σ ′ψk′+qσ ′ψk−qσ +U (k′ + q− k)ψ̄k′σ ψ̄kσ ′ψk′+qσ ′ψk−qσ

+U (k′ + k)ψ̄kσ ψ̄−k+qσ ′ψk′+qσ ′ψ−k′σ
]
, (9.55)

where k, k ′ ∼ kF and q � kF. This expression may be simplified if one neglects
the momentum dependence of the interaction potential at large momenta. Then the
second four-fermion product may be rewritten as∑

k,k′,σ,σ ′
ψ̄k′σ ψ̄kσ ′ψk′+qσ ′ψk−qσ = −

∑
k,k′,σ,σ ′

ψ̄kσ ′ψk−qσ ψ̄k′σψk′+qσ ′

= −1

2

∑
k,σ ′,σ

ψ̄kσ ′ �̂sσ ′σψk−qσ

∑
k′,σ,σ ′

ψ̄k′σ �̂sσσ ′ψk′+qσ ′

− 1

2

∑
k,σ

ψ̄kσψk−qσ

∑
k′,σ

ψ̄k′σψk′+qσ . (9.56)

As for the last term in Eq. (9.55), one may use that∑
k,k′,σ,σ ′

ψ̄kσ ψ̄−k+qσ ′ψk′+qσ ′ψ−k′σ = 2
∑

k

ψ̄k↑ψ̄−k+q↓
∑

k′
ψk′+q↓ψ−k′↑. (9.57)

Indeed, the diagonal terms with σ ′ = σ vanish due to the anti-commutativity
of Grassmann variables. One can now introduce the fermion density, vector
spin-density and Cooper pair fields as

ρ(q, t) =
∑
k,σ

ψ̄kσ (t)ψk+qσ (t); s(q, t) = 1

2

∑
k,σ,σ ′

ψ̄kσ (t) �̂sσσ ′ψk+qσ ′(t);
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�(q, t) =
∑

k

ψk+q↓(t)ψ−k↑(t); �̄(q, t) =
∑

k

ψ̄−k↑(t)ψ̄k+q↓(t) .

In coordinate space one has the following slowly varying functions on the scale of
the Fermi wavelength (indeed, by construction q � kF):

ρ(r, t) =
∑
σ

ψ̄σ (r, t)ψσ (r, t); s(r, t) = 1

2

∑
σ,σ ′

ψ̄σ (r, t) �̂sσσ ′ψσ ′(r, t);

�(r, t) = ψ↓(r, t)ψ↑(r, t); �̄(r, t) = ψ̄↑(r, t)ψ̄↓(r, t). (9.58)

In terms of these slow quantities the interaction action (9.55) takes the form

Sint = −
∫
C

dt

{
1

2

∫∫
drdr′ ρ(r, t)Us(r− r′)ρ(r′, t) (9.59)

− 2Ut

∫
dr s(r, t) · s(r, t)+ λ

ν

∫
dr �̄(r, t)�(r, t)

}
,

where Ut and (λ/ν) ∼ U (kF) are triplet and Cooper channel interaction constants,
(ν = ν(εF) is DOS at the Fermi energy) and Us(q) = U (q) − Ut is the singlet
channel interaction potential.

We shall postpone discussion of the triplet channel until Section 9.9 and the
Cooper channel until Chapter 14 and focus here on the singlet, i.e. density–density,
interactions. To proceed we perform a Hubbard–Stratonovich transformation with
the help of the real scalar boson field ϕ(r, t), cf. Eq. (6.3),

e−
i
2

∫
Cdt

∫∫
drdr′ρUsρ =

∫
D[ϕ] e

i
∫
Cdt

{
1
2

∫∫
drdr′ϕ(r,t)U−1

s (r−r′)ϕ(r′,t)−∫drϕ(r,t)ρ(r,t)
}
, (9.60)

where U−1
s is an inverse singlet interaction potential, i.e. U−1

s ◦Us = 1. One notices
that the auxiliary bosonic field, ϕ(r, t), enters the fermionic action in exactly the
same way as a scalar source field, V , see Section 9.5. Following the same approach,
one introduces ϕcl(q) = (ϕ+ ± ϕ−)/2 and rewrites the fermion–boson interac-
tion term as ϕα

∑
σ ψ̄aσ γ

α
abψbσ , where the summations over a, b = (1, 2) and

α= (cl, q) are assumed. The free bosonic term takes the form ϕαU−1
s σ̂

αβ

1 ϕβ , where
σ̂1 is the first Pauli matrix acting in the bosonic Keldysh space.

At this stage the Fermionic action is quadratic in Grassmann fields and one may
perform the Gaussian integration according to Eq. (9.11). The result is the effective
bosonic action written in terms of the two-component fluctuating scalar potential
ϕα, as well as the source fields V α:

S[ϕ, V ] =
∫

dt drdr′ ϕ(r, t)U−1
s (r− r′)σ̂1ϕ(r′, t)− i Tr ln

{
1− Ĝ

[
V α+ϕα]γ̂ α

}
,

(9.61)
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cf. Eq. (6.4). We have reduced an interacting fermionic problem to a theory of an
effective non-linear bosonic field. The latter is nothing but the longitudinal com-
ponent of the photon field. Its dynamics and self-interactions originate from the
polarization of the Fermi gas, through the expansion of the logarithm.

To proceed we shall restrict ourselves to the random phase approximation (RPA),
already discussed in Section 6.4. It neglects all terms in the expansion of the log-
arithm beyond the second order (the first order in Vcl vanishes due to Eq. (9.25),
while the first order in Vq is absent due to the charge neutrality of the unperturbed
system). The second order term in the expansion is conveniently expressed through
the polarization matrix �

αβ

0 , Eqs. (9.44)–(9.46), of the non-interacting fermions.
The resulting effective bosonic theory is Gaussian with the action

SRPA[ϕ, V ]=
∫∫

dxdx ′
{
ϕ
[
ÛRPA

]−1
ϕ +ϕ�̂0V+V �̂0ϕ+V �̂0V

}
, (9.62)

where the inverse RPA screened interaction in the singlet channel is[
ÛRPA(x, x ′)

]−1 = U−1
s (r− r′)σ̂1 + �̂0(x, x ′), (9.63)

cf. Eq. (6.20). The fermionic polarization matrix �̂0 plays the role of the (minus)
self-energy, �̂, cf. Eqs. (5.16) and (5.17), in the effective bosonic theory. As was
mentioned at the end of Section 9.5, it indeed possesses all the proper symme-
tries and the causality properties. In particular, i�K

0 = −2FIm�R
0 is negative,

see Fig. 9.2 and Eqs. (9.50) and (9.52), providing convergence of the functional
integrals over ϕα. It describes thermal and quantum fluctuations of the photon
field.

Since the RPA action (9.62) is quadratic in the photon fields ϕα, one may
integrate them out and evaluate the generating function Z [V ], Eq. (9.39).
Performing the corresponding Gaussian integral according to Eq. (2.22), one

finds ln ZRPA[V ] = iV
(
�̂0 − �̂0 ◦ ÛRPA ◦ �̂0

)
V = iV �̂RPAV . Since, accord-

ing to Eq. (9.63), URPA = (1 + Usσ̂1�̂0)
−1Usσ̂1, simple matrix algebra leads to

�̂RPA = �̂0 ◦ (1 + Usσ̂1�̂0)
−1. The response component of this RPA screened

polarization matrix acquires a form

�
R(A)
RPA (q, ω) =

�
R(A)
0 (q, ω)

1+Us(q)�
R(A)
0 (q, ω)

. (9.64)

The correlation component is�K
RPA = (1+Us�

R
0 )
−1�K

0 (1+Us�
A
0 )
−1. If one writes

that �K
0 = FB(�

R
0 −�A

0 ), where FB is the boson distribution function of the longi-
tudinal photon field ϕ, one finds �K

RPA = FB(�
R
RPA−�A

RPA). In equilibrium, where
FB = coth(ω/2T ) this relation is a manifestation of FDT. It is valid, however, even
out of equilibrium and states that the RPA screened correlation component �K

RPA is
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expressed through the same distribution function FB as the bare polarization �K
0 .

With the help of Eqs. (9.49) the bosonic distribution function FB may be found
in terms of the fermionic distribution F . The latter is a solution of the fermionic
kinetic equation, discussed in the next section.

The response is resonant if the equation 1+Us(q)�R
0 (q, ω) = 0 has a complex

solution ω = ω(q) with Imω � Reω. For the long-range Coulomb interactions
Us(q) ≈ 4πe2/q2, this condition determines the plasma mode with the frequency
ω2

p = 4πe2ρ0/m (indeed, νmv2
F/3 = ρ0 is the fermion density), see Fig. 9.2.5

For q � κ−1
TF , where κ−1

TF = √
4πe2ν ∼ ωp/vF is the (inverse) Thomas–Fermi

screening radius, the plasmon mode is underdamped. The small Landau damping,
Eq. (9.52), originates from the excitations of high-energy resonant electrons with
velocity v = ωp/q � vF. Their occupation number is well approximated by the
classical Maxwell distribution nF ≈ e−(mv2/2−εF)/T � 1. Therefore, if the long
wavelength plasmon excitations are excited (e.g. by a strong optical pulse), their
kinetics is described by the semiclassical theory developed in Sections 6.4 and 6.5.
Indeed, the real part of the retarded polarization (9.50) is provided by fermions in
the narrow strip of energies ∼ vFq around the Fermi surface. On the other hand,
fermions responsible for Landau damping live far above the Fermi surface, suggest-
ing a description in terms of coupled plasmon and high-energy electron distribution
functions, see Section 6.5.

For short-range interactions, U (q)
q→0→ Us, the resonant excitation is the acoustic

zero sound mode ω = vzsq. According to Fig. 9.2 and Eq. (9.50) the corre-
sponding speed of sound is vzs = vF

√
Usν/3 in the limit Usν � 1 and vzs ≈

vF
(
1 + 2e−2/(Usν)−2

)
in the opposite case Usν < 1. This mode bears a close

resemblance to the Bogoliubov mode of a degenerate Bose gas with short-range
interactions, considered in Chapter 7.

9.8 Kinetic equation

We now consider the kinetic equation for the fermionic distribution function
Fσσ ′(x, x ′), defined in Eq. (9.33). In this section we restrict ourselves to the singlet
component F = F0 = TrFσσ , while the spin-density components Fμ = TrFσσ ′ ŝ

μ

σ ′σ
with μ = x, y, z are discussed in Section 9.9. According to Eqs. (9.49), knowledge
of the fermionic distribution function is crucial to evaluate, e.g., the polarization
matrix away from equilibrium.

5 As shown in Fig. 9.2, the equation −U−1
s = Re�R

0 (q, ω) has another solution with ωea ≈ 0.83vFq. Such an

electron-acoustic mode is heavily overdamped (indeed Im�R
0 (q, ωea) ≈ 1.3ν) and therefore is not resonant,

see also Section 6.3.
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Following Section 5.3, one starts from the Dyson equation for the dressed
fermionic Green function: (

Ĝ−1
0 − �̂

)
◦ Ĝ = 1̂. (9.65)

The subscript “0” indicates the bare inverse Green function. It has only diagonal
components [GR(A)

0 ]−1, given by Eq. (9.31), while its Keldysh component is a pure
regularization. The fermionic self-energy matrix �̂ has the same structure as Ĝ−1,
Eq. (9.26), with a finite Keldysh component. Thus the R and A components of the
Dyson equation take the simple form(

i∂t + 1

2m
∇2

r − V cl −�R(A)

)
GR(A) = δ(t − t ′)δ(r − r ′). (9.66)

Employing the parametrizations (9.33) GK = GR ◦ F − F ◦ GA, where F is a
Hermitian matrix, one may rewrite the Keldysh component of the Dyson equation
as, cf. Eq. (5.24),

−
[(

i∂t + 1

2m
∇2

r − V cl

)
◦, F

]
= �K − (

�R ◦ F − F ◦�A
)
. (9.67)

This equation is the quantum kinetic equation for the fermionic distribution F . Its
left hand side is the kinetic term, while the right hand side contains the collision
integral. Upon Wigner transformation and restriction of the distribution function
to the mass-shell, the kinetic term acquires exactly the same form (5.51) as in the
case of a complex boson field. Below we focus on the structure of the fermionic
collision integral.

The simplest diagram, Fig. 9.4(a), for the fermionic self-energy matrix, �̂ad ,
where a, d = (1, 2) are the Keldysh indices, is obtained by expanding the
Hubbard–Stratonovich vertex e−i(ψ̄a γ̂

α
abψb)ϕ

α

, Eq. (9.60), to second order and aver-
aging with the help of the Wick theorem over both fermion and boson fields. As a
result, one finds

i�̂ad(x, x ′) = γ̂ α
ab

〈
ψb(x)ψ̄c(x

′)
〉
γ̂
β

cd ×
〈
ϕβ(x ′)ϕα(x)

〉
=
(
γ̂ α iĜ(x, x ′) γ̂ β

)
ad
× i

2
Ûβα(x ′, x), (9.68)

where summations over all repeated indices are understood and we used
〈ψb(x)ψ̄c(x ′)〉 = iĜbc(x, x ′) for fermionic and

〈
ϕβ(x ′)ϕα(x)

〉 = i
2Ûβα(x ′, x), see

e.g. Eq. (9.60), for bosonic averages. This leads to

�̂ad = i

2

[(
γ̂ clĜ γ̂ cl

)
ad

U K +
(
γ̂ clĜ γ̂ q

)
ad

U A +
(
γ̂ qĜ γ̂ cl

)
ad

U R
]
.
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(a)

x x′

〈ϕα ϕβ〉
(b)

Π0

k kψaγ ab 〈ψbψc〉γ cdψd
α βˆ ˆ

k +  q

UR
RPA UA

RPA

k′  +  q

k′

Fig. 9.4 (a) Fermionic self-energy. (b) States entering the collision integral (9.71);
incoming states are k and k′ + q, while outgoing states are k′ and k + q. Only
states which conserve total energy participate in the collision integral.

Finally one finds for the �R = �11, �A = �22 and �K = �12 components of the
fermionic self-energy

�R(A)(x, x ′) = i

2

[
GR(A)(x, x ′)U K(x ′, x)+ GK(x, x ′)U A(R)(x ′, x)

] ;
�K(x, x ′)= i

2

[
GK(x, x ′)U K(x ′, x)+GR(x, x ′)U A(x ′, x)+GA(x, x ′)U R(x ′, x)

]
= i

2

[
GK(x, x ′)U K(x ′, x)− (

GR(x, x ′)− GA(x, x ′)
)(

U R(x ′, x)−U A(x ′, x)
)]
,

(9.69)

where in the last equality one has used that GR(A)(x, x ′)U R(A)(x ′, x) = 0, due to
causality. For the same reason, �21 = i

2

(
GAU A + GRU R

) = 0. As expected,
the retarded and advanced components are lower and upper triangular matri-
ces in time space, correspondingly, with �R = [�A]†, while �K = −[�K]†.
Notice the close resemblance of expressions (9.69) to their bosonic counterparts,
Eqs. (5.36)–(5.38).

We now perform a Wigner transform and introduce mass-shell fermionic dis-
tribution function F̃(x,k), as discussed in Section 5.7. We also use the fact that
GR−GA = −2π iδ(ε+ω− εk+q) to perform the energy ω integration. As a result,
one finds for the collision integral

I coll[F̃] = i

2

∑
q

{
[F̃(k+ q)− F̃(k)]U K + [F̃(k+ q)F̃(k)− 1][U R −U A]

}
,

(9.70)

where we have suppressed the space and time dependence of F̃ and arguments of
the interaction propagators are Û (q, ω) = Û (q, εk+q − εk). If one understands
such an interaction as the bare instantaneous interaction potential, Eq. (9.60) (i.e.
U R = U A = Us(q), while U K = 0), one finds I coll = 0 and therefore there
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is no collisional relaxation. Thus one has to employ an approximation for Û that
contains some retardation. The simplest and most convenient one is RPA, where
ÛRPA = (U−1

s σ̂1+�̂0)
−1, see Eqs. (9.62) and (9.63), with the frequency-dependent

matrix �̂0, which is thus non-local in time. Employing Eq. (9.44), it is convenient
to write the components of this matrix relation in the following way:

U R(A)
RPA = U R

RPA

(
U−1

s +�
A(R)
0

)
U A

RPA; U K
RPA = −U R

RPA�
K
0 U A

RPA.

We employ now Eqs. (9.49), which express components of the polarization matrix
�̂0(q, ω) through the fermionic distribution function, and substitute them in
Eq. (9.70). This way we find the collision integral depicted in Fig. 9.4(b):

I coll[F̃] = −π
2

∑
q,k′

∣∣U R
RPA(q, εk+q − εk)

∣∣2 δ(εk+q − εk − εk′+q + εk′) (9.71)

×
{
[F̃(k+ q)− F̃(k)][F̃(k′)F̃(k′ + q)− 1]

−[F̃(k+ q)F̃(k)− 1][F̃(k′ + q)− F̃(k′)]
}
,

compare with the corresponding bosonic result (7.79). Notice that the total energy
and momentum in the inelastic cross-section of the diagram in Fig. 9.4(b) are equal
to the external energy and momentum. The right hand side acquires a more con-
venient form in terms of the fermionic occupation numbers F̃(k) = 1 − 2nk.
Then the expression in the curly brackets is 8{nk+qnk′(1 − nk)(1 − nk′+q) −
nk′+qnk(1−n′k)(1−nk+q)}, recall also that the left hand side of the kinetic equation
is −2∂t nk + · · · . This shows that for the “in” process states k and k′ + q should
be empty, while states k′ and k + q are occupied, and vice-versa for the “out”
process. Because of the energy conservation εk+q − εk = εk′+q − εk′ , one may
show that the collision integral is nullified if F̃(k) = Feq(εk) = tanh(εk −μ)/2T ;
this is the equilibrium fermionic distribution function. As a result, the right hand
side of the kinetic equation (9.67) is zero in equilibrium, rendering the relation
�K = (�R − �A) tanh(ε − μ)/2T . Since also the bare Green functions obey the
same relation, it justifies the FDT (9.28) for the full dressed equilibrium Green
function.

The square of the matrix element in the collision integral is given by the RPA
screened interaction potential

∣∣U R
RPA(q, εk+q − εk)

∣∣2. The latter is itself a func-
tion of the fermionic distribution function F̃ . It is often the case, however, that
ω = εk+q − εk ≈ vFq � εF. In this limit �R

0 (q, ω) ≈ ν is independent of the

distribution, see Eq. (9.50). If also q � κ−1
TF = √

4πe2ν, one finds the universal
result U R

RPA ≈ 1/ν.
Let us look at the relaxation of a particle excited to a state k with the energy

εk above the Fermi energy. If the rest of the system is in equilibrium, say at zero
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temperature, then one may focus on the “out” term of the collision integral. This
leads to ∂t nk = −nk/τee, where the “out” relaxation rate is

1

τee
= 2π

ν2

∑
q,k′

nk′+q(1− nk′)(1− nk+q)δ(εk+q− εk − εk′+q+ εk′) ∝ ξ 2
k

εF
, (9.72)

where ξk ≡ εk− εF.6 The fact that 1/τee � |ξk| � εF is crucial for the consistency
of the semiclassical quasiparticle representation employed here.

9.9 Stoner instability

We focus now on the triplet interaction channel in Eq. (9.59). The crucial observa-
tion is that it comes with the opposite sign (i.e. effective attraction) in comparison
with the repulsive singlet channel interaction. The reason for this peculiarity is the
minus sign obtained due to commutation of the Grassmann variables in Eq. (9.56),
which is a manifestation of the Fermi statistics. One can split the triplet term in
Eq. (9.54) with the help of an auxiliary vector field h(r, t) defined along the closed
contour:

e 2i
∫
Cdtdr sUt s =

∫
D[h] e

i
∫
Cdtdr

{
− 1

2 hU−1
t h− 2h(r,t)·s(r,t)

}
. (9.73)

The fluctuating exchange magnetic field h(r, t) enters the fermionic action in
exactly the same way as the Zeeman field HZ, see Eq. (9.31). One can now
separate it into classical and quantum components hα = (h+ ± h−)/2 in
exactly the same way as was done above for the fluctuating scalar potential. At
this stage one may perform Gaussian integration over the fermionic fields. The

6 To see this one may use that at T = 0

1/τee = −
∑

q

∫
dω|UR

RPA(q, ω)|2 2Im�R(q, ω) (1− nk+q) δ(ω + εk − εk+q).

According to Eq. (9.50), Im�R = πνω/(2vFq) for |ω| < vFq, where ω = εk+q − εk ≈ k · q/m = kqz/m ≈
vFqz with z = cos θ . Because of the factor (1 − nk+q) the state k + q is empty, leading to εF < εk+q < εk.
This leads to −ξk = εF − εk < kqz/m < 0 and therefore the lower limit of the angular z-integration is
−ξk/(vFq). As a result

1

τee
= −πν

∫
q2dq

4π2
|UR

RPA(q)|2
0∫

−ξk/(vFq)

dz z = νξ2
k

8πv2
F

∫
dq |UR

RPA(q)|2 ∝
νξ2

k

v2
F

kF

ν2
,

where we used that UR
RPA(q) ≈ 1/ν, while the q-integration is to be cut off at q ≈ kF. Recalling that ν ∼ mkF,

one obtains Eq. (9.72).
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result is the effective bosonic action written in terms of the exchange magnetic
field7

S[h,HZ] = −
∞∫

−∞
dt dr h(r, t)U−1

t σ̂1h(r, t)− i Tr ln
{

1− Ĝ
[
(Hα

Z + hα)�̂s ]γ̂ α
}
.

(9.74)

Notice again the opposite sign of the free boson term in comparison with Eq. (9.61);
σ̂ and ŝ are Pauli matrices in the Keldysh and spin spaces correspondingly.

One can now expand the logarithm in powers of the effective magnetic field
Hα

Z + hα. We focus first on the quadratic term. Since the bare fermionic Green
functions are diagonal in the spin indices, Eqs. (9.32), the resulting term acquires
the form of the scalar product (Hα

Z + hα) · (Hβ
Z + hβ). The coefficient is nothing

but the bare polarization matrix �̂
αβ

0 . As a result one finds for the quadratic RPA
action in the triplet channel (we omit the Zeeman field for brevity)

SRPA[h] =
∫∫

dxdx ′ hα(x)
[−U−1

t σ̂
αβ

1 δ(x − x ′)+ �̂
αβ

0 (x, x ′)
]
hβ(x ′). (9.75)

We employ now Eqs. (9.50) and (9.51) for the free fermion polarization operator
at ω < vFq along with the T = 0 FDT to obtain for the zero temperature action8

SRPA[h] =
∑

q

{
− 2

∫
dt hq∗(q, t)

[
γ (q) ∂t + Dq2 + δ

]
hcl(q, t)

+ iγ (q)
π

∫∫
dtdt ′

(t − t ′)2

∣∣∣hq(q, t)− hq(q, t ′)
∣∣∣2 }, (9.76)

where γ (q) = πν/(2vFq), while D = ν/(12k2
F) and δ = U−1

t − ν. This action
ought to be compared with the model action (8.32), used to discuss quantum phase
transitions in Section 8.6. The main difference between the two is that the damp-
ing coefficient γ (q) appears to be q-dependent (we shall discuss non-linear terms
below). Remarkably, the parameter δ may become negative if νUt > 1, see Fig. 9.2.
As we already know, this indicates the tendency of the system to develop an ordered
state with a non-zero expectation value of hcl. Such a transition is known as a Stoner
ferromagnetic transition.

7 Strictly speaking, here one has to include all three interaction channels to have the scalar potential ϕα , exchange
magnetic field hα and the complex pairing potential �α inside the logarithm simultaneously. However, in the
expansion of the logarithm to the second order, discussed here, the different channels do not mix. They start
interacting with each other in higher orders, which describe non-linear interactions of the bosonic fields.

8 We have omitted higher orders of the expansion of �R
0 (q, ω), Eq. (9.50), in powers of (ω/vFq)2, since they

bring only terms irrelevant in the RG sense, i.e. at large distances and times.
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To find the order parameter in the magnetic phase, one needs to add non-linear
terms to the action (9.76). They may be found by expanding the logarithm in
Eq. (9.74) in powers of h. This is a cumbersome procedure. One may try to
use the fact that the Pauli magnetization of the free electron gas is given by
M(HZ) = − i

2 ∂Z [HZ]/∂H q
Z |Hq

Z=0. For a static field it may be easily calculated by
counting the number of up and down spins below a common HZ-dependent chem-
ical potential, resulting in M(HZ) = νHZ − gH 3

Z + · · · , where g = 3ν/(16ε2
F) in

d = 3. Since HZ and h enter the action (9.74) in the same way, the last term in the
Pauli magnetization translates into the following non-linear action for quasi-static
exchange magnetic field h:

Sint[h] = −2
∫

dtdr g
(
hq · hcl

)(
hcl · hcl

)
. (9.77)

This term provides saturation of the magnetization in the ferromagnetic phase
δ < 0. Other possible non-linear terms, such as, e.g.,

(
hq · hq

)(
hq · hcl

)
, have the

same scaling dimensions as (9.77), as discussed in Section 8.6.
The resulting, so called Hertz–Millis [116] model, Eqs. (9.76) and (9.77), of the

Stoner transition may be analyzed using the RG machinery. The only difference
with the model of Section 8.6 is the damping γ (q) diverging at small q. This is a
manifestation of the conserved nature of the order parameter h. Indeed, the corre-
sponding classical equation of motion takes the form ∂t h(q, t) = [γ (q)]−1

(
. . .

)
.

Since [γ (0)]−1 = 0, the q = 0 component of the magnetization does not evolve.
The bare scaling dimensions of the coupling constants, read out of the action (9.76)
and (9.77), are [γ ] = d + 1+ 2χ , [D] = d + z − 2+ 2χ , [δ] = d + z + 2χ and
[g] = d + z + 4χ . Demanding that the Gaussian part of the critical action is scale
invariant, i.e. [γ ] = [D] = 0, one finds z = 3 and χ = −(d + 1)/2, while [δ] = 2.
One thus finds that [g] = 1 − d and therefore the critical dimension is dc = 1.
For d > 1, the Gaussian exponents are exact and we conclude that ν = 1/2,
while z = 3. Since the characteristic momentum scale is the inverse correlation
length, i.e. q ∝ |δ|ν , while the characteristic frequency is ω ∝ |δ|νz , we conclude
that ω � vFq � εF, justifying approximations made while writing the quadratic
part of the action (9.76). Gaussian scaling is valid throughout the quantum critical
region, Fig. 8.5, and crosses over to the classical one in the vicinity of a finite T
transition. For d < 4 the latter is ν = 1/2 + ε/12 and z = 3 + O(ε2), where
ε = 4− d.

It was recently understood [117, 118], however, that the Hertz–Millis model
actually fails to describe the ferromagnetic transition in the fermionic system. The
reason is that the effective bosonic theory (9.74) is obtained by integrating out gap-
less fermionic degrees of freedom. As a result the effective vertices of the bosonic
theory are non-local functions of time (and space). Following Hertz–Millis [116],
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we have incorporated this fact into the Gaussian part of the action (9.76), but
disregarded it in the non-linear part (9.77). This happens to be badly inconsis-
tent9 (as was probably first noticed in [119]). In contrast to Eq. (9.77), the actual
quartic vertex includes a long-ranged time-non-local part [118] (there is also a non-
local cubic term of the form h · [h× h]). The non-locality is effectively cut off by
the field h itself, leading to a non-analytic effective bosonic potential of the form
F[h] = δh2 + g1h4 ln h + gh4 [117].10 The non-analytic h4 ln h term transforms
the continuous transition into the weak first-order transition.

Finally, we briefly discuss the spin part of the kinetic equation. In general
the latter is written for the matrix distribution function F̂σσ ′(x, x ′) defined in
Eq. (9.33). Keeping the Zeeman magnetic field in the Hamiltonian, one writes the
kinetic equation as

−
[(

i∂t + 1

2m
∇2

r − V cl −HZ · �̂s
)
◦, F̂

]
= −i Î coll[F̂] , (9.78)

where both the distribution function and the collision integral are matrices in spin
space as well as in (x, x ′) space. One can now perform a Wigner transformation,
restrict the distribution function to the mass-shell, as discussed in Section 5.7, and
introduce the density and spin-densities, as explained below Eq. (9.33). We then
project the matrix kinetic equation onto the spin directions by taking traces with ŝμ,

9 I am indebted to A. Chubukov and J. Schmalian for discussing this issue.
10 The non-analyticity may be noticed already in the Re�R(ε) at ξk = εk − εF = 0 calculated at the quantum

transition point, δ = 0 and T = 0. To this end let us calculate �K(ε), Eq. (9.69),

�K(ε)= i

2

∑
q,ω

(sign(ε+ω)sign(ω)− 1) (−2π i)δ(ε + ω − vFq)
[

3

iγ (q)ω − Dq2
− −3

iγ (q)ω + Dq2

]
,

where we used the fact that GR − GA = −2π iδ(ε + ω − vFq cos θ) along with the retarded/advanced RPA

propagators of the three-component vector h-field, Eq. (9.76), and coth(ω/2T )
T→0→ sign(ω). Integration over

the angle z = cos θ is performed with the help of the energy delta-function, bringing the factor (vFq)−1. The
remaining radial momentum integration takes the form

∞∫
0

q2dq

(2π)2
1

vFq

−6iγ (q)ω

(Dq2)2 + γ 2(q)ω2
= − 6i

(2π)2
γω

vF D

1

3

∞∫
0

d(Dq3)

(Dq3)2 + γ 2ω2
= − i

(2π)2
π sign(ω)

vF D
,

where γ = qγ (q). Performing ω-integration, one finally finds �K(ε) = −iε/(4πvF D) = −3iεk2
F/(πvFν) =

−3π iε. According to T = 0 FDT, �K(ε) = sign(ε)2iIm�R(ε) and thus Im�R(ε) = −3π |ε|/2. Finally,
using the Kramers–Kronig relation, the absolute value non-analyticity in the imaginary part translates into the
non-analytic term Re�R = (3/2)ε ln |ε| in the real part of the self-energy. As a result, the inverse dressed
Green function [GR

0 ]−1 − �R ∼ ε ln |ε| indicates non-locality in time of the renormalized fermionic action.

In d = 2 the corresponding singularity is much stronger, Re�R ∝ ε2/3 [120].
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where μ = x, y, z. The resulting kinetic equation for the vector spin distribution

function F̃μ(r, t, k) = Tr{ ˆ̃F(r, t, k)ŝμ} takes the form

Ẑ−1 ∂t F̃+ vk∇rF̃− (∇rṼ )∇kF̃− 2
[
HZ × F̃

] = Icoll[F̃, F̃], (9.79)

where we used that ˆ̃F = (F̃ + F̃ · �̂s)/2 and Tr{[ŝμ, ŝν]ŝλ} = 4iεμνλ as well as
[HZ × F̃]μ = εμνλHν

ZF̃λ. The quasiparticle tensor weight is defined as [Ẑ−1]μν =
δμν − ∂εTr{(�̂Rŝμ + ŝμ�̂A)σ ν}/4, see Eq. (5.51).

Since the collisions, described by Eq. (9.53), conserve a local spin, one expects
that

∑
k Icoll[F̃, F̃] = 0. In the ferromagnetic state (i.e. below the transition) one

may therefore restrict oneself to the dynamics of the total spin density defined
as S(r, t) = 1

2

∑
k F̃(r, t, k), avoiding discussion of the structure of the collision

integral. Taking the sum over all states k in Eq. (9.79), one finds

∂t S = −div ĴS + 2Ẑ
[
HZ × S

]
, (9.80)

where ĴS is a spin current, which is actually a tensor ĴμνS = Ẑ
∑

k vμk Sν (we have
assumed that the quasiparticle weight is constant and isotropic) and

(
div ĴS

)ν =
∇rμ ĴμνS . The first term on the right hand side of Eq. (9.80) describes the spin
continuity relation. The last term describes spin precession in the Zeeman mag-
netic field. This term is known as the Landau–Lifshitz equation for the evolution
of the total spin. In the next chapter, see Section 10.6, we show that there may
be additional terms in this equation. One such term, known as Gilbert damping,
provides inelastic relaxation of the spin S towards the direction opposite to the
external field. The other, known as the Slonczewski–Berger [121, 122] spin-torque
term, describes transfer of the angular momentum from an external spin-polarized
current.
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Quantum transport

This chapter is devoted to electron transport through quantum coherent circuits.
We start from the multichannel Landauer formula for the conductance. We then
discuss noise power, as well as higher order current cumulants. The latter provide
the knowledge of the so-called full counting statistics of the transmitted charge,
given by the Levitov formula. We also discuss adiabatic pumping: the Brouwer for-
mula for the mean pumped charge and its full counting statistics. Finally we address
the spin-torque effect, and spin-torque shot noise in nano-magnetic structures.

10.1 Landauer formula

Consider a quasi-one-dimensional adiabatic constriction connected to two
reservoirs, which we refer to as left (L) and right (R), Fig. 10.1. Such a constriction
is called a quantum point contact (QPC). The electron motion within QPC is
separable into transverse and longitudinal components. Owing to the confine-
ment, the transverse motion is quantized and we assign a quantum number n
to label transverse conduction channels, with φn(r⊥) being the corresponding
transversal wave functions. The longitudinal motion is described in terms of the
extended scattering states, i.e. normalized electron plane waves incident from
the left,

uL
n (k, r) = φn(r⊥)

{
eikx + rn(k) e−ikx , x →−∞
tn(k) eikx , x →+∞ , (10.1a)

and the right,

uR
n (k, r) = φn(r⊥)

{
tn(k) e−ikx , x →−∞
e−ikx + rn(k) eikx , x →+∞ , (10.1b)

210
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Fig. 10.1 Two-terminal scattering problem for the quantum point contact.

onto the scattering region, Fig. 10.1. Here k is the wave vector in the longitudi-
nal directions and tn(k) and rn(k) are channel specific transmission and reflection
amplitudes. We have disregarded a possible phase difference between left and right
reflection coefficients for brevity. The occupation numbers of the L(R) states in
the L(R) reservoir are assumed to be the equilibrium Fermi–Dirac distributions
nL(R)(εk) =

[
exp[(εk − μL(R))/T ] + 1

]−1
, with electrochemical potentials shifted

by an external voltage μL − μR = eV .
It is convenient to choose scattering states (Eq. (10.1)) as a basis and write the

secondary quantized electron field operator in the coordinate space as

!̂(r) =
∑
nk

[
ĉL

nkuL
n (k, r)+ ĉR

nkuR
n (k, r)

]
, (10.2)

where ĉL(R)
nk are fermion annihilation operators in the corresponding states. For

future use we also define the current operator in the longitudinal direction as
Ĵ = (e/m)Im

∫
dr⊥!̂†∂x!̂, leading to

Ĵ (x) =
∑

nk,n′k′
ĉ†a

nk Mab
nn′(x; k, k ′) ĉb

n′k′, (10.3)

with the matrix elements

Mab
nn′(x; k, k ′) = e

2im

∫
dr⊥

[
u∗a

n (k, r)∂x ub
n′(k

′, r)− [∂x u∗a
n (k, r)]ub

n′(k
′, r)

]
,

(10.4)
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where a, b = L,R. Employing the orthogonality condition in the transverse direc-
tion,

∫
dr⊥φn(r⊥)φ∗n′(r⊥) = δnn′ , direct calculation of M̂nn′(x; k, k ′) for e.g. x > 0

gives 1

M̂nn′(k, k ′) = evFnδnn′

(
t∗n(k)tn(k ′) t∗n(k)rn(k ′)
r∗n(k)tn(k ′) r∗n(k)rn(k ′)− 1

)
, (10.5)

where vFn = kFn/m is the Fermi velocity in the n-th channel. There is a similar
expression for M̂ for x < 0.

One can define now the current generating function for this transport problem as

Z [A] =
∫

D[ψ̄ψ] exp
{

i �̄![Ǧ−1 − ÂM̂] �!
}
, (10.6)

here �̄! = (ψ̄L, ψ̄R), Ǧ = diag{ĜL, ĜR} is 4 × 4 matrix Green function, whereas
ĜL/R are 2 × 2 matrices in the Keldysh space, and Â = Aqγ̂ q is a purely quan-
tum vector potential, cf. Eq. (9.38), used to generate the observable (i.e. current).
Since the functional integral over fermionic fields in Eq. (10.6) is quadratic, while
the generating function is normalized as Z [0] = 1, one finds upon Gaussian
integration

ln Z [A] = Tr ln
[
1̂− Ǧ ÂM̂

]
. (10.7)

By analogy with Eq. (9.41) the average current is generated from Z [A] via
functional differentiation with respect to the quantum component of the vector
potential, 〈J 〉 = (i/2)δ ln Z [A]/δAq(t)|Aq=0. Expanding the trace of the logarithm
to linear order in Â, as Tr ln[1̂ − Ǧ ÂM̂] ≈ −Tr[ǦAqγ̂ q M̂], one finds for the
average current

〈J 〉 = − ie

2
Tr

{
vFn

(
ĜLγ̂ q 0

0 ĜRγ̂
q

)(
t∗n(k)tn(k) t∗n(k)rn(k)
r∗n(k)tn(k) r∗n(k)rn(k)− 1

)}

= − ie

2

∑
nk

vFn |tn(k)|2
∫

dε

2π

[
GK

L (ε; n, k)− GK
R(ε; n, k)

]
, (10.8)

1 Equation (10.5) is obtained as a result of certain approximations. The exact expression for the current
matrix explicitly depends on the coordinate x . There are two types of term. The first depends on x as
exp(±i(k+ k′)x) ≈ exp(±2ikFx), where kF is the Fermi momentum; it represents Friedel oscillations. Their
contribution to the current is small as (k − k′)/kF � 1, and thus neglected. The second type of term contains
exp(±i(k − k′)x) ≈ 1, since |k − k′| ∼ L−1

T � x−1, where LT = vF/T is ballistic thermal length, and the
coordinate x is confined by the sample size L � LT . See the corresponding discussions in [123].
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where we used |tn|2 = 1− |rn|2 and the Keldysh trace

Tr{Ĝa γ̂
q} = GK

a (t, t; n, k) =
∫

dε

2π
GK

a (ε; n, k).

The Green functions are GK
L(R)(ε; n, k) = −2π iδ(ε − εnk)[1 − 2nL(R)(ε)], with

εnk = vFnk (see Eq. (9.27)). Performing momentum k summation with the help of
the delta-function, one finds

〈J 〉 = e

2π

∑
n

∫
dε |tn(ε)|2 [nL(ε)− nR(ε)]. (10.9)

If the energy dependence of the transmission probability may be disregarded, one
obtains the linear dependence between the average current and the applied voltage
〈J 〉 = gV , where the linear conductance per one spin direction is given by

g = e2

2π�

∑
n

|tn|2, (10.10)

and all transmissions are taken at the Fermi energy |tn|2 = |tn(εF)|2 (notice that
we restored the Planck constant � in the final expression for the conductance).
Equation (10.10) is known as the multi-channel Landauer formula [124, 125] (see
[126, 127] for detailed reviews on this subject).

10.2 Shot noise

Based on the previous example we can make a step forward and calculate the sec-
ond cumulant of the current fluctuations, the so-called noise power, defined as a
symmetrized current–current correlation function

S(ω, V ) =
∫

dt eiωt〈δ Ĵ (t)δ Ĵ (0)+ δ Ĵ (0)δ Ĵ (t)〉, δ Ĵ (t) = Ĵ (t)−〈J 〉. (10.11)

Within Keldysh technique this correlator may be deduced from Z [A], Eq. (10.7).
Indeed, one needs to expand the trace of the logarithm in Eq. (10.7) to second order

in the auxiliary vector potential ln Z [A] ∝ − 1
2 Tr

[
Ǧ ÂM̂Ǧ ÂM̂

]
and differentiate

twice over the quantum component Aq, cf. Eq. (9.44),

S(ω, V ) = − i

2

δ2 ln Z [A]
δAq(ω)δAq(−ω)

∣∣∣∣
Aq=0

. (10.12)

This expression automatically gives the properly symmetrized noise power (10.11).
As a result of the differentiation one finds
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S(ω, V ) = i

2
Tr
{

Ǧ(ε+)γ̂ q M̂Ǧ(ε−)γ̂ q M̂
}

= ie2

2

∑
nkk′

v2
Fn

∫
dε

2π

[
|tn|4Tr{ĜL(ε+)γ̂ qĜL(ε−)γ̂ q}

+ |tn|2|rn|2Tr{ĜL(ε+)γ̂ qĜR(ε−)γ̂ q}+ |tn|2|rn|2Tr{ĜR(ε+)γ̂ qĜL(ε−)γ̂ q}
+ |tn|4Tr{ĜR(ε+)γ̂ qĜR(ε−)γ̂ q}

]
, (10.13)

where we already calculated the partial trace over the left/right subspace, assum-
ing that transmissions are energy independent, and introduced the notation
ε± = ε±ω/2. Traces over the Keldysh space give

Tr{Ĝa γ̂
qĜbγ̂

q} = GK
a GK

b + GR
a GA

b + GA
a GR

b = GK
a GK

b − (GR
a − GA

a )(G
R
b − GA

b ),

(10.14)

due to causality constraints. To perform the momentum k and k ′ summations one
employs that GK

a (ε; n, k) = −2π iδ(ε−μa−vFnk)Fa(ε), as well as that GR
a−GA

a =
−2π iδ(ε−μa−vFnk). Performing the summations with the help of delta-functions,
one finds

∑
kk′ Tr{Ĝa γ̂

qĜbγ̂
q} = v−2

Fn (1 − Fa Fb). Finally, the expression for the
noise power S(ω, V ) reads as [128]

S = e2

2π�

∑
n

∫
dε
[
|tn|4

(
BLL(ε)+ BRR(ε)

)+ |tn|2|rn|2
(
BLR(ε)+ BRL(ε)

)]
,

(10.15)

where the statistical factors are Bab(ε) = [1 − Fa(ε+)Fb(ε−)]/2 and we again
restored � at the end. Despite the complicated appearance, the energy integration
in Eq. (10.15) can be performed in the closed form2

S(ω, V ) = e2

2π�

∑
n

[
2|tn|4ω coth

( ω

2T

)
+ |tn|2|rn|2(eV + ω) coth

(
eV + ω

2T

)
+ |tn|2|rn|2(eV − ω) coth

(
eV − ω

2T

)]
. (10.16)

There are two limiting cases, which can be deduced from Eq. (10.16). The first one
corresponds to equilibrium current fluctuations, V → 0. In this case

S(ω, 0) = e2

2π�

∑
n

[
2|tn|4 + 2|tn|2|rn|2

]
ω coth

( ω

2T

)
= 2g ω coth

( ω

2T

)
,

(10.17)

2 One employs that the two leads are in equilibrium, i.e. Fa(ε) = tanh[(ε − μa)/2T ] and uses the integral∫+∞
−∞ dx [1− tanh(x + y) tanh(x − y)] = 4y coth(2y).
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where we used Eq. (10.10) for the linear conductance g and |tn|2 + |rn|2 = 1. This
result is nothing but the familiar Johnson–Nyquist fluctuation–dissipation relation
for the current fluctuations. Note that, despite the complicated dependence on the
transmission probabilities in Eq. (10.15), the equilibrium noise power (10.17) is
written only in terms of the linear conductance (10.10).

The other limiting case is fully non-equilibrium noise at zero temperature T → 0
and a finite bias V . For such a case one finds from Eq. (10.16) the Lesovik [128]
formula for the excess part of the noise:

S(ω, V )−S(ω, 0) = e2

2π�

(
|eV +ω| + |eV −ω| − 2|ω|

)∑
n

|tn|2|rn|2, (10.18)

which is called the shot noise. In particular, the low-frequency (compared to the
applied voltage) part of the shot noise acquires the form

S(0, V )− S(0, 0) = e2

2π�
|2eV |

∑
n

|tn|2
(
1− |tn|2

)
. (10.19)

An important observation is that, in contrast to the equilibrium noise (10.17), the
shot noise can not be written solely in terms of the conductance g. It can, only
for the case of a tunnel junction, where all transmissions are small, |tn|2 � 1.
Equation (10.19) reduces to S(0, V ) − S(0, 0) = 2eV g = 2e〈I 〉, which is
known as the Schottky formula (for reviews of shot noise in various systems see
[129, 130, 131]).

10.3 Counting statistics

We now develop an alternative treatment of quantum transport, which will allow us
to access not only the first and second moments of the current, but the full statistics
of its fluctuations. Most of the results discussed here were first derived by Levitov
et al. [132, 133], while the method we adopt was pioneered by Nazarov et al. [134],
see also [135]. We restrict ourselves to the single channel, since generalization
to the (two-lead) multichannel case is rather straightforward (the multi-lead setup
requires somewhat more work [134]).

Instead of using the wavefunctions (10.1), we shall model a quantum scatterer
setup with two incoming and two outgoing fermionic modes. The corresponding
annihilation operators are denoted by ψ̂L(x) and ψ̂R(x) for incoming modes and
χ̂L(x) and χ̂R(x) for outgoing ones (there are also four corresponding creation
operators ψ̂†

L(R)(x) and χ̂
†
L(R)(x)). The left (right) modes ψ̂L(R)(x) and χ̂L(R)(x)

occupy the left (right) lead, i.e. −∞ < x < 0 (0 < x < ∞). The quantum
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ψL
ˆ ψR

ˆ

χLˆ χRˆ

Fig. 10.2 Scattering setup: two incoming modes ψ̂L(R)(x) and two outgoing
modes χ̂L(R)(x) are coupled through the scattering matrix χ̂(0) = Sψ̂(0).

scatterer is represented by its S-scattering matrix, which serves as the boundary
condition at x = 0, connecting the incoming and outgoing modes, Fig. 10.2,

χ̂(0) = Sψ̂(0) ; χ̂†(0) = ψ̂†(0)S† ; S =
(

r t
t r

)
, (10.20)

where we introduced two-component vectors of incoming ψ̂ and outgoing χ̂

modes. The corresponding Keldysh action acquires the form

S = i
∫
C

dt

⎧⎨⎩
0∫

−∞
dx

[
ψ̄L(∂t − vF∂x)ψL + χ̄L(∂t + vF∂x)χL

]

+
∞∫

0

dx
[
ψ̄R(∂t + vF∂x)ψR + χ̄R(∂t − vF∂x)χR

]⎫⎬⎭ , (10.21)

where we have linearized the fermionic dispersion relation near the Fermi energy
as ξk = εk − εF ≈ ±vFk →∓ivF∂x . The boundary conditions (10.20) are imposed
by introducing the delta-function δ(χ(0, t) − Sψ(0, t)) and another one for the
bar fields into the functional integral over the ψ(x, t) and χ(x, t) Grassmann
fields.

The quantity of interest is the transmitted charge which is defined as the time
integral of the current. The latter is convenient to represent as the half sum of the
currents immediately to the left and right of the scatterer:

J (t) = 1

2

[
ψ̄LvFψL − χ̄LvFχL − ψ̄RvFψR + χ̄RvFχR

]
, (10.22)

where all the fields are taken at x = 0. To generate the statistics of the current one
couples it to the auxiliary vector potential η(t)/2, defined along the contour, and
evaluates the generating function

Z [η] =
〈
e

i
2

∫
C η(t)J (t)

〉
, (10.23)
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where the angular brackets denote averaging with the weight eiS , Eq. (10.21), and
imposed boundary conditions (10.20). To generate the observable the auxiliary
field should be chosen purely quantum, i.e. changing sign between forward and
backward branches, cf. Eq. (9.38). Moreover, since we are interested in the statis-
tics of charge transmitted during a long time interval 0 < t < t0, one may
put it to be a constant η(t) = ±η θ(t)θ(t0 − t), where the plus (minus) sign
refers to the forward (backward) branch. One then notices that the exponent
in Eq. (10.23) contains iS ± (iη/2)

∫ t0
0 dt J (t) and therefore η may be elimi-

nated from the exponent by the following gauge transformation of the Grassmann
fields:

e∓i η4 θ(−x)ψ±
L → ψ±

L ; e±i η4 θ(x)ψ±
R → ψ±

R

and the same for χ , where plus/minus signs, as always, refer to the two branches
of the time contour. Then the source (counting) field η modifies the boundary
conditions (10.20) as

χ±(0, t) = S±ηψ±(0, t) ; S±η = e∓i η4 ς̂3S e±i η4 ς̂3 =
(

r te∓i η2

te±i η2 r

)
,

(10.24)

and similarly for the bar fields. Here ς̂3 is the third Pauli matrix in L, R-space. As
a result the transmission coefficients t acquire a counting phase η, see Section 2.8,
which depends on the direction of the charge transfer.

We are now in the position to integrate out all the fields ψ(x, t) except those
residing next to the scatterer, i.e. ψ0(t) = ψ(0, t). This is achieved with the help
of the following identity:3∫

D[ψ̄, ψ] ei
∫

dtdx ψ̄ Ǧ−1 ψ = e−
1
πν

∫
dtdt ′ ψ̄0(t)�̌

−1
ψ (t−t ′)ψ0(t ′), (10.25)

where Ǧ−1 = diag{Ĝ−1
L , Ĝ−1

R } is a 4 × 4 matrix with left (right) inverse Green
functions Ĝ−1

L(R) = diag{[GR
L(R)]−1, [GA

L(R)]−1} = i∂t ∓ ivF∂x being 2 × 2 matrices

3 An “operational” way to derive this relation is to introduce resolution of unity in the form

1 =
∫

D[ψ0] δ(ψ0(t)− ψ(0, t)) =
∫

D[ξ̄ , ψ0] e−
∫

dt ξ̄ (t)(ψ0(t)−ψ(0,t))

and similarly for ψ̄0. The last term in the exponent may be written as
∫

dtdx ξ̄ (t)δ(x)ψ(x, t). Integration over
the fields ψ(x, t) may then be carried out according to Eq. (9.11). This leads to i

∫
dtdt ′ξ̄ (t)Ǧ(0, t − t ′)ξ(t ′),

which serves as the Gaussian weight for the ξ -integral. Taking into account
∫

dt ξ̄ψ0 along with its conjugate
and performing Gaussian integration, Eq. (9.11), over ξ̄ and ξ , one obtains Eq. (10.25).
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in Keldysh space, Eq. (9.31). The Gaussian correlator of the local fields ψ0(t) is
given by4

πν�̌ψ(t − t ′) = iǦ(0, t − t ′)= i
∑

k

Ǧ(k, t − t ′)= πν

(
δ̂(t − t ′) 2F̂ψ(t − t ′)
0 −δ̂(t − t ′)

)
,

(10.26)

where ν = (2πvF)
−1 is the density of states of incoming fermions and the Fourier

transform of the distribution matrix is F̂ψ(ε) = diag{FL(ε), FR(ε)} and FL(R) =
1− 2nL(R). Here nL(R)(ε) is the occupation number in the left (right) lead, sending
the electrons toward the scatterer. Notice that �̌2 = 1, i.e.

�̌ ◦ �̌ =
∫

dt ′′�̌(t − t ′′)�̌(t ′′ − t ′) = δ̌(t − t ′)

for an arbitrary distribution matrix F̂ψ , and therefore �̌−1 = �̌. The integration
over the outgoing fields, except for the local ones χ0(t) = χ(0, t), is per-
formed in a way completely analogous to Eq. (10.25) with the only difference
that F̂ψ → F̂χ . The outgoing modes are assumed to be perfectly coupled to
massive leads, which ideally absorb all particles transmitted or reflected by the
scatterer. To model this situation, one assumes that the outgoing modes are empty
of the particles (i.e. do not Pauli block any of the scattered particles) and thus
F̂χ(ε) = 1̂− 2n̂χ(ε)= 1̂.

As a result one finds for the generating function (10.23)

Z [η]=
∫

D[ψ̄0, ψ0, χ̄0, χ0]e−1
πν

∫
dtdt ′

[
ψ̄0�̌

−1
ψ ψ0+χ̄0�̌

−1
χ χ0

]
δ(χ0 − Šψ0)δ(χ̄0 − ψ̄0Š

†),

(10.27)

where the integration measure is normalized in a way to keep Z [0] = 1. Here ψ0(t)
and χ0(t) are four-component vectors on the left (right) along with the Keldysh
spaces. The corresponding 4 × 4 scattering matrix Š is built from 2 × 2 blocks
(10.24), and after Keldysh rotation (9.22), (9.23) it acquires the following structure
in Keldysh space (K ):

Š(η) =
(

Sη + S−η Sη − S−η
Sη − S−η Sη + S−η

)
K

. (10.28)

4 We have used the standard definition of the F̂-function as ĜK = ĜR ◦ F̂ψ − F̂ψ ◦ ĜA and

∑
k

GR(A)(k, ε) =
∫

dk

2π

1

ε − vFk ± i0
= ∓ iπ

2πvF

FT→∓iπν δ(t − t ′).
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One performs now the integration over χ̄0, χ0 in Eq. (10.27) with the help of delta-
functions and remaining Grassmann Gaussian integration over ψ̄0, ψ0 with the help
of Eq. (9.11) and finds

Z [η] = det
[
�̌ψ + Š†(η)�̌χ Š(η)

]
/ det

[
�̌ψ + Š†(0)�̌χ Š(0)

]
, (10.29)

where we used �̌−1 = �̌ and the explicitly enforced normalization identity
Z [0]= 1. The determinants here are to be understood over the 4 × 4 (Keldysh
× left-right) space along with the energy (or time) spaces. Employing �̌ψ =(

1 2F̂ψ
0 −1

)
and �̌χ =

(
1 2
0 −1

)
, unitarity of the scattering matrices S†

ηSη= 1

along with Eq. (10.28), one obtains5 the Levitov [132] formula for the full counting
statistics:

Z [η] = det

[
1+

(
F̂ψ F̂ψ
−1 −1

)
1

2

(
1− S

†
−ηSη

)] = det
[
1− n̂F

(
1− S

†
−ηSη

)]
,

(10.30)

where n̂F = (1 − F̂ψ)/2 = diag{nL, nR} and the last determinant is done over
2× 2 left-right × energy spaces. We employ now the explicit form of the scatting
matrix (10.24) along with the unitarity condition r†t+ t†r = 0 to evaluate the 2×2
determinant. The remaining expression is diagonal in energy space and therefore
its determinant is given by the product over all energies:

Z [η] =
∏
ε

[
1+ nL(1− nR)(e

iη − 1)|t|2 + nR(1− nL)(e
−iη − 1)|t|2

]
. (10.31)

The charge q = ∫ t0
0 dt J (t) is accumulated over the long time t0, which dictates the

extent of the time contour C. As a result, the energy is quantized in units of 2π/t0,
making the above product well-defined.

Consider the case of zero temperature, where the expression in the square
brackets on the right hand side of Eq. (10.31) is different from unity only for
μR < ε < μL, where μL − μR = eV is the voltage applied between the left and
right leads. There are thus N0 = eV t0/(2π�) discrete energy values, which bring
non-trivial factors to the generating function. The generating function is thus, cf.
Eq. (2.66),

5 Denoting Ĉ = (
1− S†

−ηSη
)
/2, one finds by first subtracting columns and then adding lines

det

(
1+ F̂ψ Ĉ F̂ψ Ĉ
−Ĉ 1− Ĉ

)
=det

(
1+ F̂ψ Ĉ 1
−Ĉ −1

)
=det

(
1+ F̂ψ Ĉ − Ĉ 0

−Ĉ −1

)
=det(1− (1− F̂ψ)Ĉ).
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Z [η] =
[
1+ (eiη − 1)|t|2

]N0=
[
|r|2 + eiη|t|2

]N0=
N0∑

k=0

(
N0

k

)
|r|2(N0−k)|t|2keikη.

(10.32)

According to the definition (10.23), derivatives of the generating function
∂k Z [η]/∂ηk

∣∣
η=0 = (i/e)k〈qk〉 bring cumulants of the charge, transmitted during

the time interval t0. Therefore

Z [η] =
∫

dq e iqη/e P(q), (10.33)

where P(q) is the transmitted charge probability distribution function. Performing
the inverse Fourier transform of Eq. (10.32), one finds for the probability of trans-
mitting charge q during the time interval t0, upon an applied voltage V [132, 133]

P(q) =
N0∑

k=0

δ(q − ek)

(
N0

k

)
|r|2(N0−k)|t|2k . (10.34)

The charge is integer valued, and its distribution is binomial. It describes N0 =
eV t0/(2π�) attempts, each one “succeeds” with the probability |t|2 and “fails”
with the probability 1− |t|2 = |r|2. The average transmitted charge is given by the
success rate times the number of attempts:

〈q〉 = e|t|2 N0 = e2

2π�
|t|2V t0 = (gV )t0,

where the linear conductance g is given by the Landauer formula (10.10). As
expected, the average charge is given by the average current 〈J 〉 = gV times the
observation time t0. The second cumulant of the binomial distribution is given by
the product of the success and failure rates times the number of attempts:

〈〈q2〉〉 = e2|t|2|r|2 N0 = e2

2π�
|t|2(1− |t|2)eV t0,

in agreement with the Lesovik formula (10.19).6 The higher cumulants of the trans-
mitted charge at T = 0 are given by the coefficients of the Taylor expansion of the
logarithm of the generating function:

ln Z [η, |t|2] = eV t0
2π

ln
[
1+ (eiη − 1)|t|2] (10.35)

in powers of η. An alternative derivation of these results, valid for a multichannel
system with disordered metallic leads is given in Section 12.5.

6 The factor of two difference is due to the fact that the noise power (10.11) is defined as the symmetric
combination of the current variances and therefore 〈〈q2〉〉 = 1

2S(0, V )t0.
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10.4 Fluctuation relation

If both leads are in thermal equilibrium at the same temperature T , one may notice
a simple algebraic relation between their occupation numbers:

nL(ε)(1− nR(ε)) = eeV/T nR(ε)(1− nL(ε)), (10.36)

valid for each energy ε. With its help one observes that Eq. (10.31) admits the
following symmetry:

Z [−η + ieV

T
, V ] = Z [η, V ]. (10.37)

Tobiska and Nazarov [136] argued that this relation is not restricted to the simple
model, but holds as long as the underlying Hamiltonian possesses time-reversal
symmetry. In particular they checked that it remains valid in the presence of inter-
actions. (In the latter case the relation holds only after the product of all energies
is taken, not for each energy separately, as is the case in the non-interacting case
considered here.)

Putting η = 0 and employing the normalization identity Z [0, V ] = 1, one
obtains Z [ieV/T, V ] = 1. Employing Eq. (10.33), one finds∫

dq e−qV/T P(q) = 〈
e−W/T

〉 = 1, (10.38)

where W = qV = ∫
dt I V is the work done by a battery to transfer a charge q

across the scatterer. This relation is the quantum transport analog of the Jarzynski
relation (4.57). The only way it may be compatible with the normalization∫

dq P(q) = 1 is if negative charges (i.e. transferred against the applied voltage)
contribute to the integral. This may seem to be in contradiction to Levitov’s
binomial distribution (10.34), where only positive (and zero) charges have non-
zero probability. The latter statement is strictly valid, though, only at T = 0, while
at T > 0 there is a finite, but exponentially small, probability of transferring the
opposite charge. Indeed, combining Eqs. (10.37) and (10.33) one finds

P(−q) = P(q) e−V q/T . (10.39)

One notices thus that the dominant contribution to the integral in Eq. (10.38) comes
from q ≈ −〈q〉, i.e. rare events with the relative probability ∝ e−〈q〉V/T . This
indicates that the fluctuation relation (10.37) is most useful in the limit V → 0,
where it deals with the typical, rather than the exponentially rare events.

To take advantage of it [136] we take the full derivative with respect to voltage
of the logarithm of Eq. (10.37) and put V = 0. This way one finds

∂

∂V

(
ln Z [η] − ln Z [−η]

)∣∣∣
V=0

= − ie

T

∂

∂η
ln Z [η], (10.40)
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where we took into account that Z [−η, 0] = Z [η, 0]. By expanding the left and
right hand sides of this relation in power series in η and employing that ln Z [η] =∑

l〈〈ql〉〉(iη/e)l/ l! is the generating function of the charge cumulants, one
finds

〈〈q2l〉〉 = 2T
∂

∂V
〈〈q2l−1〉〉

∣∣∣
V=0

, (10.41)

l = 1, 2, . . .. The l = 1 relation of this series, 〈〈q2〉〉 = 2T ∂〈q〉/∂V , is nothing
but the FDT Johnson–Nyquist noise (i.e. ω � T limit of Eq. (10.17)). Taking the
second derivative of the logarithm of Eq. (10.37) with respect to voltage, putting
V = 0 and employing Eq. (10.40), one finds

∂2

∂V 2

(
ln Z [η] − ln Z [−η]

)∣∣∣
V=0

= ie

T

∂2

∂η∂V

(
ln Z [η] + ln Z [−η]

)∣∣∣
V=0

. (10.42)

Expanding over η brings another series of exact relations:

∂

∂V
〈〈q2l〉〉

∣∣∣
V=0

= −T
∂2

∂V 2
〈〈q2l−1〉〉

∣∣∣
V=0

. (10.43)

The l = 1 member of this family, −T−1∂〈〈q2〉〉/∂V = ∂2〈q〉/∂V 2, describes
the photovoltaic, i.e. rectification, effect. Its right hand side is the second order
dc current response to a low-frequency, ω � T , ac voltage. The left hand side
relates it to the linear sensitivity of the low-frequency noise to the small dc volt-
age, eV � T . In terms of the rectified dc current and the noise power, it takes
the form

Jdc = − 1

2T

∂S(ω, V )

∂V

∣∣∣∣
V=0

|δVω|2, (10.44)

where δVω is a small ac voltage applied across the quantum scatterer.

10.5 Adiabatic pumping

We turn now to the situation where the current is generated by a periodic
modulation of the quantum scatterer, rather than by the applied bias voltage. In
particular we focus on a slow adiabatic modulation, when the rate of change is
smaller than any other relevant energy scale. Such a process is called adiabatic
pumping. To proceed we need to acknowledge that the scattering matrix S(ε), used
above, may actually be a function of the energy ε of the incoming particles. In
the time representation it translates into S(t − t ′), allowing for a certain time delay
between incoming and outgoing modes, χ(t) = ∫ t dt ′ S(t−t ′)ψ(t ′). If the quantum
scatterer is externally modulated, its scattering matrix loses time translational
invariance and acquires the form S(t, t ′). Its Wigner transform S(t, ε) is referred



10.5 Adiabatic pumping 223

to as the time- and energy-dependent S-matrix. The unitarity condition holds,
but takes the form of the convolution 1 = S† ◦ S = ∫

dt ′′ S†(t, t ′′)S(t ′′, t ′)
= δ(t − t ′).

Multiplying the matrix under the determinant in Eq. (10.30) by Sη from the left
and by S†

η from the right, one finds for the generating function

ln Z [η] = Tr ln
[
1− Sηn̂FS

†
η + Sηn̂FS

†
−η
]
, (10.45)

where n̂F = n̂F(t − t ′) is the Fourier transform of n̂F(ε) = diag{nL(ε), nR(ε)}. The
trace is to be understood in the 2 × 2 left/right space as well as in the time-space.
The average pumped charge is 〈q〉 = −ie∂ ln Z [η]/∂η∣∣

η=0. We thus expand the
expression on the right hand side of Eq. (10.45) to linear order in η. To this end we
notice that Sη ≈ S+ iη[S, ς̂3]/4 and thus

〈q〉 = −e

2
Tr
{
Sn̂F[S†, ς̂3]

}
. (10.46)

If S(t, ε) = S(ε) is static, but nL(ε) 
= nR(ε), we return to the Landauer for-
mula (10.9): 〈q〉 = e

∫
(dtdε)/(2π) |t(ε)|2 [nL(ε) − nR(ε)]. We now examine the

opposite case of the time-dependent scattering matrix S(t, ε) with no external bias,
i.e. nL(ε) = nR(ε) = nF(ε). To evaluate the trace in Eq. (10.46) we employ
the Wigner transform, which is justified because of the adiabatic nature of the
time dependence. This way we find for the Wigner transform of the product, cf.
Eq. (5.42),

Sn̂FS
† WT→ Sn̂FS

† + i

2

(
S∂ε n̂F∂tS

† − ∂tS∂ε n̂FS
†
)
,

where we took into account that ∂εSn̂F∂tS
† − ∂tSn̂F∂εS

† = 0, due to the unitarity
of the S-matrix and n̂F = 1̂nF. If the ε-dependence of the S(t, ε)-matrix is weak at
the scale of temperature, one may use ∂εnF ≈ −δ(ε − εF) and evaluate the energy
integral in the trace using the delta-function. As a result one finds for the average
pumped charge

〈q〉 = e

4π i

∫
dt Tr

{
∂S

∂t
[S†, ς̂3]

}
, (10.47)

where S = S(t, εF). This is the Brouwer formula [137] for the average adiabatically
pumped charge.

In principle Eq. (10.45) provides access not only to the average charge pumped
per period, but also to its full counting statistics. In practice, however, calcu-
lations of the corresponding determinant require some care associated with the
presence of the chiral anomaly [132, 135]. We restrict ourselves to the model
case, where these subtleties do not play a role. In this example the tunneling



224 Quantum transport

barrier harmonically oscillates between the full and zero transparency. Its unitary
time-dependent scattering matrix is specified by

t(t) = cos(�t) ; r(t) = i sin(�t).

One can easily check with the help of the Brouwer formula that the average pumped
charge is zero (which is obvious given the presence of reflection symmetry at all
times). Our aim, though, is to discuss fluctuations around the zero pumped charge.
To this end it is convenient to evaluate∣∣Z [η]∣∣2 = det

[(
1− n̂F + n̂FS

†
−ηSη

)(
1− n̂F + S†

ηS−ηn̂F
)]

= det
[
1+ n̂FS

†
−ηSη(1− n̂F)+ (1− n̂F)S

†
ηS−ηn̂F

]
, (10.48)

where we took into account that in the energy representation at zero temperature
n2

F(ε) = nF(ε) = θ(−ε + μ). The product of the gauged transformed S-matrices
(10.24) is given by

S†
ηS−η=

(
e−iη+1

2 0

0 eiη+1
2

)
+
(

e−iη−1
4

sin η/2
2i

i sin η/2
2

eiη−1
4

)
e2i�t +

(
e−iη−1

4
i sin η/2

2
sin η/2

2i
eiη−1

4

)
e−2i�t .

To go to the energy representation we choose the duration of the time contour to
be exactly one period of the quantum scatterer oscillation, i.e. 2π/�, and therefore
the fermionic energy is quantized as εm −μ = �(m+ 1/2), where m is an integer.
As a result, we find a matrix in the energy representation

(
S†
ηS−η

)
m,l
= Â(η)δm,l +

B̂(η)δm,l+2+Ĉ(η)δm,l−2, where the 2×2 matrices Â, B̂, Ĉ are given by the previous
equation. One thus finds for, e.g., the last term on the right hand side of Eq. (10.48),
θ(εm)

(
S†
ηS−η

)
m,l
θ(−εl) = B̂(η)(δm,1δl,−1 + δm,0δl,−2). Similarly, the middle term

in Eq. (10.48) is given by θ(−εm)
(
S

†
−ηSη

)
m,l
θ(εl) = Ĉ(−η)(δm,−2δl,0 + δm,−1δl,1).

Therefore the energy matrix under the determinant in Eq. (10.48) has only four
non-trivial components in the energy space m, l = −2, 1, 0, 1. Evaluation of the
determinant of such a 4× 4 matrix is straightforward, leading to

∣∣Z [η]∣∣2 = det
[
1− B̂(η)Ĉ(−η)

]2
,

where the remaining determinant is over the 2× 2 left-right space. One thus finds
for the single period pumped charge generating function

Z [η] = det
[
1− B̂(η)Ĉ(−η)

]
= 1

2
(1+ cos η) = 1

2
+ eiη

4
+ e−iη

4
. (10.49)
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Its Fourier transform (10.33) is the probability distribution function of the charge,
which is thus P(q) = 1

2 δ(q) + 1
4

[
δ(q − e) + δ(q + e)

]
. We found that with

a probability of one-half no charge is transferred during one period of oscilla-
tion, and with an equal probability of one-quarter a single electron is moved to
the right or to the left. Such an adiabatic pump is thus a “half ideal” coin tosser.
Choosing the duration of the time contour to be 2πN0/�, where N0 is an integer,
changes the quantization condition for the energy. Repeating the calculations, one
finds that the generating function for N0 pumping periods is Z N0[η] =

(
Z [η])N0 .

This means that each period is an independent try of the “coin toss” with the three
possible outcomes. One finds thus for the mean square pumped charge after N0

cycles: 〈q 2
N0
〉 = eN0/2.

10.6 Spin torque

Consider a small mono-domain metallic ferromagnet with total spin S(t), which
may precess in an external magnetic field H, Eq. (9.80). We’ll refer to it as a “free”
layer. The free layer is assumed to be coupled through a tunnel junction to a big
ferromagnet with a fixed magnetization, see Fig. 10.3. Furthermore we assume that
a voltage V is applied across the tunnel junction. It drives the current of electrons
preferentially polarized in the direction of the fixed layer polarization into the free
layer. Upon entering the free layer the polarized electrons find themselves under the
influence of the exchange field JS, where J is a ferromagnetic exchange constant
in the free layer. It leads to spin-flip processes, which tend to equilibrate the incom-
ing electrons’ spin with the magnetization direction of the free layer. This process
has a back-reaction: the angular momentum of the tunneled electrons is transferred
to the free layer and rotates its spin S. Therefore the spin-polarized current exerts
torque on the magnetic moment (which is opposite to the spin) of the free layer.
The effect was discussed first by Slonczewski and Berger [121, 122] and is known
as the spin torque.

S(t)

V

Ffree
Ffixed

Fig. 10.3 A free ferromagnet with spin S(t) is coupled to a fixed ferromagnet
with spin along the z-direction through a tunneling barrier (shaded region).
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Our goal is to modify the Landau–Lifshitz equation (9.80) to account for this
effect. To this end we describe the electrons in the fixed and free layers by the cre-
ation and annihilation operators ĉ†

kσ , ĉkσ and d̂ †
lσ ′, d̂lσ ′ , respectively. It is convenient

to choose different spin quantization axes in the fixed and free layers, taking them
along the fixed magnetization and the instantaneous vector S(t), respectively. The
Hamiltonian of the electronic subsystem takes the form

Ĥ =
∑
k,σ

εkσ ĉ†
kσ ĉkσ+

∑
l,σ ′

εlσ ′ d̂
†

lσ ′ d̂lσ ′+
∑

kl,σσ ′

[
W σσ ′

kl ĉ†
kσ d̂lσ ′+h.c.

]−2J ŝ·Ŝ, (10.50)

where h.c. stands for Hermitian conjugate and ŝ = 1
2

∑
ll ′,σ,σ ′

d̂ †
lσ
�̂sσσ ′ d̂l ′σ ′ is the spin

of itinerant electrons in the free layer. The tunneling matrix elements are denoted
by W σσ ′

kl . We assume spin-conserved tunneling and thus the spin-dependence of
the matrix elements originates solely from the different quantization conventions
in the two layers. Indeed, an “up” electron from the fixed layer, after tunneling into
the free layer, has a certain amplitude to be counted as “up” or “down.” The latter
depends on the mutual orientation of the two quantization axes. As a result,

W σσ ′
kl = e−i θ2 ŝy e−i φ2 ŝz Wkl =

(
e−i φ2 cos(θ/2) −ei φ2 sin(θ/2)

e−i φ2 sin(θ/2) ei φ2 cos(θ/2)

)
Wkl, (10.51)

where (θ, φ) are polar angles of the free layer quantization axis S in the
“laboratory” frame, where the fixed layer is polarized along the z-direction. The
operator e−iθ ŝy/2e−iφŝz/2 rotates the d-spinor to the instantaneous reference frame
of the free layer.

We also need a way to describe the dynamics of the large spin S. A convenient
way of doing it is to use Holstein–Primakoff parametrization [138] for the three
components Ŝz; Ŝ± = Ŝx ± iŜy of the spin S operator

Ŝz = S − b̂†b̂ ; Ŝ− = b̂†

√
2S − b̂†b̂ ; Ŝ+ =

√
2S − b̂†b̂ b̂, (10.52)

where b̂†, b̂ are the usual bosonic creation and annihilation operators. One can
check that, given bosonic commutation relation [b̂, b̂†] = 1, the three compo-
nents of Ŝ satisfy the angular momentum algebra [Ŝμ, Ŝν] = iεμνλ Ŝλ. Since we
are interested in the semiclassical dynamics of the vector S(t), we only need to
follow small deviations of the large spin from its instantaneous direction. The
latter is then adiabatically adjusted to accommodate such a deviation. This strategy
allows us to restrict to second order in the Holstein–Primakoff bosonic operators,
i.e. Ŝ− ≈

√
2S b̂† and Ŝ+ ≈

√
2S b̂. Employing that ŝ·Ŝ = (ŝ− Ŝ++ŝ+ Ŝ−)/2+ŝz Ŝz ,

one writes the Hamiltonian (10.50) in the following form:



10.6 Spin torque 227

Ĥ =
∑
k,σ

εkσ ĉ†
kσ ĉkσ +

∑
l,σ ′

(εl − σ ′ J S)d̂ †
lσ ′ d̂lσ ′ +

∑
kl,σσ ′

[
W σσ ′

kl ĉ†
kσ d̂lσ ′ + h.c.

]
−
[√

2S b̂

(
J
∑
l,σ

d̂ †
l↓d̂l↑ − H−

)
+ h.c.

]
+ b̂†b̂

(
J
∑
l,σ

σ d̂ †
lσ d̂lσ − 2Hz

)
,

(10.53)

where Hz and H± = Hx ± iHy are components of an external Zeeman magnetic
field.

We now write the action along the closed time contour in terms of the com-
plex bosonic field b(t) (along with the fermionic fields for ĉ and d̂ operators), go
to their classical and quantum components and perform the Gaussian integration
over the fermionic fields. This way we obtain an effective action for the bosonic
fields

S=
∫

dt

{[
b̄q(i∂t+2Hz) bcl−2H+

√
S b̄q + c.c.

]
− i Tr ln

(
Ĝ−1
(d)[bcl, bq] Ŵ †

Ŵ Ĝ−1
(c)

)}
,

(10.54)

where all elements of the matrix in the last term are matrices in the Keldysh and
spin spaces, with Ŵ σσ ′ diagonal in the Keldysh space. The inverse Green function
of the free layer is given by

Ĝ−1
(d) = Ĝ−1

lσ ′ + J
√

S
[
ŝ−bα + ŝ+b̄α

]
γ̂ α

− J ŝ3

2

[
(b̄clbcl + b̄qbq)γ̂ cl + (b̄clbq + b̄qbcl)γ̂ q

]
, (10.55)

where Ĝ−1
lσ ′ = γ̂ q(i∂t − εl + σ ′ J S). As mentioned above, we restrict ourselves to

first and second orders in the bosonic operators. For simplicity we shall assume that
the tunneling is weak and keep only second order in the tunneling matrix elements.
We thus expand Tr ln[1+ Ǧ(W̌ + Ǧ−1

(d) − Ǧ−1
lσ ′)] in Eq. (10.54) to first and second

order in bcl and bq, keeping only terms of second order in Ŵ . According to the
fundamental normalization S[bcl, 0] = 0, there can be no terms linear in bcl. Terms
linear in bq are given by the diagram of Fig. 10.4(a), which leads to

S1 = J
√

S

i
Tr
{

bq
∑
kl,σ

W̄ σ↓
kl Ĝ(c)

kσ W σ↑
kl Ĝl↑γ̂ qĜl↓ + b̄q

∑
kl,σ

W̄ σ↑
kl Ĝ(c)

kσ W σ↓
kl Ĝl↓γ̂ qĜl↑

}
= J

√
S

2i

∫
dt

[
bq sin θe−iφ

∑
kl

|Wkl |2Tr
{
Ĝ(c)

k↓ Ĝl↑γ̂ qĜl↓ − Ĝ(c)
k↑ Ĝl↑γ̂ qĜl↓

}+ c.c.

]
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bq bq
bq bqbcl

Gl
ˆ

Gl
ˆ Gl

ˆ

Gl
ˆ Gl

ˆ Gl
ˆ Gl

ˆ
Gl
ˆ

σWkl
σWkl

σWkl
σWkl

σWkl
σWkl

ˆ (c)
Gkσ

ˆ (c)
Gkσ

ˆ (c)
Gkσ

(a) (b) (c)

Fig. 10.4 Contributions to the action in second order in tunneling amplitudes,
W σ,σ ′

kl , denoted by crossed circles. (a) The S1 action, linear in bq(t), leads to the
spin-torque term; (b) part of the S2 action, proportional to b̄cl(t)bq(t ′), leads to
the damping term; (c) part of the S2 action, proportional to b̄q(t)bq(t ′), leads to
the noise cumulant. Fields bα flip down the spin of electrons in the free layer; b̄α

flip it up.

where we employed Eq. (10.51) for the tunneling matrix elements W σσ ′
kl . The

corresponding traces are given by

Tr
{
Ĝ(c)

kσ Ĝl↑γ̂ qĜl↓
} = ∫

dε

2π

[
G(c)R

kσ GK
l↑GR

l↓ + G(c)A
kσ GA

l↑GK
l↓ + G(c)K

kσ GA
l↑GR

l↓
]

=
∫

dε

2π

[∑
±

−2π iFd(ε)δ(ε − εl ± J S)

(ε± − εkσ )(ε± − εl ∓ J S)
+ −2π iFc(ε)δ(ε − εkσ )

(ε− − εl + J S)(ε+ − εl − J S)

]

=
∑
±

±i

2J S

Fd(εl ∓ J S)

(ε±l ∓ J S − εkσ )
+ iFc(εkσ )

2J S

[
1

ε−kσ − εl + J S
− 1

ε+kσ − εl − J S

]
= π

2J S

∑
±

[
Fd(εl ∓ J S)− Fc(εkσ )

]
δ(εkσ − εl ± J S),

where ε± = ε ± i0 and we neglected the principal parts of the Green functions,
since they disappear upon summation over momenta k and l. We can introduce now
spin components of the tunneling current between the fixed and free layers as

Iσσ ′ = 4πs
∑

kl

|Wkl |2
[
nc(εkσ )− nd(εlσ ′)

]
δ(εkσ − εlσ ′), (10.56)

where nc(d) = (1 − Fc(d))/2 are occupation numbers of the fixed (free) layers,
εlσ ′ = εl − σ ′ J S and s = 1/2 is the spin of an electron. The total spin current is
given by

Is =
∑
σσ ′

σ Iσσ ′ = I↑↑ + I↑↓ − I↓↑ − I↓↓. (10.57)
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With this notation one finds for the part of the action linear in b(t) fields

S1 = iIs√
S

∫
dt
[
bq(t) sin θ e−iφ − b̄q(t) sin θ eiφ

]
. (10.58)

Before tackling terms quadratic in the b-fields, let us discuss what we have found
so far. Taking the first term on the right hand side of Eq. (10.54) along with the first
order induced action (10.58) one finds

S0+ S1 =
∫

dt
[
b̄q(i∂t +2Hz) bcl−2H+

√
S b̄q− iIs√

S
b̄q sin θ eiφ+ c.c.

]
. (10.59)

Since this action is linear in b̄q and bq, integration over them results in the
functional delta-function, imposing classical equations of motion on bcl and b̄cl,
respectively. Employing the fact that bcl = S+/

√
S, one finds

i∂t S+ = −2(Hz S+ − H+S)+ iIs sin θ (cosφ + i sinφ), (10.60)

along with the complex conjugate equation for S−. The imaginary and real parts
provide equations for Sx and Sy . These equations are written in the instantaneous
reference frame, where the spin S points in the z-direction (i.e. S± = 0 and Sz = S).
The latter has relative polar angles θ and φ with the reference frame of the fixed
layer. One can define a vector Is with length Is and the direction of the fixed layer
polarization and rewrite Eq. (10.60) in the vector form:

∂t S = 2[H× S] + 1

S2

[
S× [Is × S]]. (10.61)

The first term here is the Landau–Lifshitz precession, Eq. (9.80), while the last one
is the Slonczewski–Berger [121, 122] spin-torque contribution. It is easy to check
that its angular dependence is exactly one, which we derived for the tunneling
spin-current, the last term in Eq. (10.60). Notice also that it is independent of the
exchange coupling constant J . For the positive spin-current (i.e. flowing from the
fixed to the free layer) the spin torque forces the spin of the free layer to align with
the direction of the fixed layer polarization.

We turn now to the terms quadratic in the b-fields. There are two kinds of them,
b̄qbcl + c.c. and |bq|2 (indeed, |bcl|2 is forbidden by the normalization). As we
shall see, they describe dissipation and noise, respectively. In equilibrium, i.e. in
the absence of the spin-current, the two are related through FDT. In the presence
of the spin-current, however, the noise has an additional spin shot-noise compo-
nent, which is a subject of the subsequent discussion. We first focus on second
order in the [σ̂−bα + σ̂+b̄α]γ̂ α terms, which leads to the diagrams depicted in
Fig. 10.4(b),(c). These diagrams lead to
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S2 = i

S

∫∫
dtdt ′

(
b̄cl(t), b̄q(t)

)( 0 DA(t − t ′)
DR(t − t ′) DK(t − t ′)

)(
bcl(t ′)
bq(t ′)

)
, (10.62)

where

DR(ω) = −(J S)2
∑
kl,σ

[∣∣W σ↑
kl

∣∣2 Tr
{
Ĝ(c)

kσ (ε)Ĝl↑(ε)γ̂ clĜl↓(ε + ω)γ̂ qĜl↑(ε)
}

+ ∣∣W σ↓
kl

∣∣2 Tr
{
Ĝ(c)

kσ (ε)Ĝl↓(ε)γ̂ qĜl↑(ε − ω)γ̂ clĜl↓(ε)
}]
,

while

DA(ω) = −(J S)2
∑
kl,σ

[∣∣W σ↑
kl

∣∣2 Tr
{
Ĝ(c)

kσ (ε)Ĝl↑(ε)γ̂ qĜl↓(ε + ω)γ̂ clĜl↑(ε)
}

+ ∣∣W σ↓
kl

∣∣2 Tr
{
Ĝ(c)

kσ (ε)Ĝl↓(ε)γ̂ clĜl↑(ε − ω)γ̂ qĜl↓(ε)
}]
.

Notice that transformation from the retarded to the advanced component requires
not only changing ω → −ω, but also flipping all the spin indices, in particular
σ ′ → −σ ′. This is a manifestation of the time-reversal symmetry in quantum
mechanics with spin [35]. Finally,

DK(ω)=−(J S)2
∑

kl,σσ ′

∣∣W σσ ′
kl

∣∣2 Tr
{
Ĝ(c)

kσ(ε)Ĝlσ ′(ε)γ̂
qĜl−σ ′(ε+σ ′ω)γ̂ qĜlσ ′(ε)

}
.

Calculation of the traces of the four matrix Green functions is lengthy, but straight-
forward. For example, terms contributing to DK for a particular spin configuration
read as7

Ĝ(c)R
k↑ ĜR

l↑ĜA
l↓(ε + ω)ĜR

l↑ + Ĝ(c)A
k↑ ĜA

l↑ĜR
l↓(ε + ω)ĜA

l↑ + Ĝ(c)K
k↑ ĜA

l↑ĜK
l↓(ε + ω)ĜR

l↑,

if the energy argument is not written explicitly it is understood as ε. Integrating over
the energy and employing εlσ ′ = εl − σ ′ J S, one finds for this specific contribution

2π

(2J S − ω)2

[
1− Fc(εk↑)Fd(εl↓)

]
δ(εk↑ − εl↓ + ω)

= 2π

(2J S − ω)2
coth

eV + ω

2T

[
Fc(εk↑)− Fd(εl↓)

]
δ(εk↑ − εl↓ + ω),

where we assumed equilibrium Fermi distributions in the fixed and free layers
with μc − μd = eV . Being multiplied by the proper tunneling matrix ele-

7 We have omitted terms∝ GK
l↓(ε+ω)GK

l↑(ε) ∼ δ(ε+ω−εl− J S)δ(ε−εl+ J S), since the two delta-functions
are incompatible unless ω = 2J S.
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ment |W ↑↑
kl |2, Eq. (10.51), and summed over momenta, this contribution is ∝

cos2(θ/2) I↑↓(eV +ω), where we used expression (10.56) for the components
of the spin current. Restricting ourselves to ω � 2J S and collecting all spin
components, we find

DK(ω) = 1

2
cos2 θ

2

[
coth

eV + ω

2T
I↑↓(eV + ω)+ coth

eV − ω

2T
I↓↑(eV − ω)

]
+ 1

2
sin2 θ

2

[
coth

eV + ω

2T
I↓↓(eV + ω)+ coth

eV − ω

2T
I↑↑(eV − ω)

]
.

(10.63)

The very similar calculations for DR(A) yield

DR(ω) = 1

4
cos2 θ

2

[
I↑↓(eV + ω)− I↓↑(eV − ω)

]
+ 1

4
sin2 θ

2

[
I↓↓(eV + ω)− I↑↑(eV − ω)

]
,

DA(ω) = 1

4
cos2 θ

2

[
I↓↑(eV − ω)− I↑↓(eV + ω)

]
+ 1

4
sin2 θ

2

[
I↑↑(eV − ω)− I↓↓(eV + ω)

]
. (10.64)

In equilibrium, eV = 0, FDT is satisfied, i.e. DK = coth(ω/2T )[DR−DA] (notice
that having ω ↔ −ω and ↑↔↓ between the retarded and advanced components
is crucial for FDT validity). We focus here on the opposite limit of strong non-
equilibrium and small frequencies, ω � eV . In the Keldysh component one may
put ω = 0, while the retarded/advanced components need to be expanded to first
order in ω. The reason for the latter is that iDR(0) = −iDA(0) enter the action
(10.62) as an effective z-component of the magnetic field Hz , see Eq. (10.59). In the
instantaneous reference frame, where Sz = S and Sx = Sy = 0, the Hz component
drops from the equation of motion (10.60) and does not influence the dynamics.
We thus drop DR(A)(0),8 but keep the first order in ω, since ib̄qωbcl → −b̄q∂t bcl.
As a result the low-frequency second order action (10.62) acquires a time-local
dissipative form, cf. Eq. (4.2),

S2 = 1

S

∫
dt
(
b̄cl(t), b̄q(t)

)( 0 α∂t

−α∂t 2iD

)(
bcl(t)
bq(t)

)
, (10.65)

8 For the same reason we drop terms originating from the expansion of Tr ln(1 + · · · ) to first order in the very
last term on the right hand side of Eq. (10.55). Indeed, all such terms are frequency-independent and thus
inconsequential.
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where the dissipation and noise amplitude are given by [139]

α(θ, V ) = ∂ Isf(θ, V )

∂eV
; D(θ, V ) = coth

(
eV

2T

)
Isf(θ, V ). (10.66)

We have introduced here the spin-flip current, defined as

Isf(θ, V ) = 1

4
cos2 θ

2

[
I↑↓(eV )+ I↓↑(eV )

]
+ 1

4
sin2 θ

2

[
I↓↓(eV )+ I↑↑(eV )

]
.

(10.67)

To proceed it is convenient to split the e−2D|bq |2/S part of eiS2 using the Hubbard–
Stratonovich transformation with the auxiliary complex field j (t),

e−
2D
S

∫
dt |bq(t)|2 =

∫
D[ j̄, j] e

− ∫
dt
[

1
2D | j (t)|2+ i√

S
b̄q(t) j (t)+ i√

S
j̄(t) bq(t)

]
.

Then the action takes the form S2 = − ∫
dt b̄q

(
(α/S)∂t bcl + j (t)/

√
S
) + c.c.,

which should be added to the S0 + S1 part (10.59). Being still linear in b̄q, the
combined action imposes the classical equation of motion for bcl(t) = S+(t)/

√
S.

In the instantaneous rotating reference frame, where S± = 0 and Sz = S, it takes
the form i∂t S+ = α∂t S+/S+ j (t)+· · · , while i∂t Sz = 0. It is convenient to denote
real and imaginary parts of the complex function j as − jy and jx , respectively.
Transforming then to the laboratory frame, one finally finds

∂t S = 2
[
H× S

]− α

S

[
S× ∂t S

]+ 1

S2

[
S× [(Is + j(t)

)× S]]. (10.68)

The α-term here is Gilbert damping, which forces the spin S to align against the
external magnetic field H. In our model the damping is associated with the tunnel-
ing of the spin-polarized electrons from the fixed layer and equilibrating them with
the instantaneous spin polarization direction of the free layer. The Gilbert damp-
ing constant α is thus given by the spin-flip tunneling conductance, as defined by
Eqs. (10.66) and (10.67). In general, one should also add another contribution, say
α0, which accounts for all other mechanisms of dissipation.

The dissipation also induces fluctuations, which enter the equation as the fluctu-
ating part of the spin-current j(t).9 Since the random complex field j has Gaussian
statistics with 〈 j (t) j̄(t ′)〉 = 〈 jy jy〉 + 〈 jx jx〉 = 2Dδ(t − t ′), one notices that the
vector noise j(t) has an isotropic Gaussian correlator

〈 jμ(t) jν(t
′)〉 = D(θ, V ) δ(t − t ′) δμν, (10.69)

9 One could equally well rewrite the fluctuating term as the random part of the magnetic field H → H + h(t),
where h(t) is a Gaussian isotropic random vector with the correlator 〈hμ(t)hν(t ′)〉 = δμνδ(t − t ′)D/4S2.
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given by Eqs. (10.66) and (10.67). Notice that for small voltage, eV � T , the
spin-flip current Isf is linear in voltage, and therefore D = 2Tα. In this limit thus
〈 jμ jν〉 = 2Tα δμν in agreement with the FDT equilibrium magnetic noise, first
discussed by Brown [140]. In the opposite limit eV � T , Eqs. (10.66)–(10.69)
describe spin shot noise [139] with the correlator 〈 j j〉 ≈ 2s|Isf|, where s = 1/2.
This result should be compared with the Schottky (tunneling limit) charge shot
noise 〈δ Jδ J 〉 = 2e|J |, Eq. (10.19). The difference, which stems from the vector
nature of the spin degree of freedom, is that the spin noise is not proportional to
the spin-current Is itself, but rather to a somewhat different object – the spin-flip
current Isf.



11

Disordered fermionic systems

This chapter deals with a Fermi gas in the presence of a static random potential. It
is first treated with the kinetic equation approach, which leads to the classical diffu-
sion of density perturbations. We then derive an effective low-energy field-theory,
known as the Keldysh non-linear sigma-model. It contains classical diffusion as its
stationary point, while fluctuations around such a stationary point provide quantum
weak localization corrections as well as a scaling theory of localization transition
in 2+ ε dimensions.

11.1 Kinetic equation approach

One is often interested in calculating various observables, such as current or den-
sity, in the presence of a static (quenched) space-dependent disorder potential
Vdis(r). As any other single-particle operator, the disorder potential modifies the
quadratic part of the fermionic action, bringing the term

Sdis[Vdis] = −
∫
C

dt
∫

dr Vdis(r) ψ̄(r, t)ψ(r, t)

= −
∫

dr Vdis(r)
∫ ∞

−∞
dt ψ̄a(r, t)γ̂ cl

abψ
b(r, t), (11.1)

where in the second line we used the fact that the disorder potential is purely
classical, i.e. the same on both branches of the time contour. Although we limit
ourselves to a static potential, we still assume that it is adiabatically switched on
and off sometime after and before t = −∞. As a result the initial density matrix
ρ̂0 and therefore the factor Tr{ρ̂0} in Eq. (9.14) are disorder independent. We thus
absorb it into the measure of the fermionic functional integration and do not show
it explicitly.

Since the exact form of the disorder potential is usually unknown, one is typi-
cally interested in average values of observables over an ensemble of realizations of

234
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Vdis(r). To perform such an averaging one needs to specify certain statistical prop-
erties of the disorder potential. It is usually assumed that the latter is Gaussian,
i.e. that the third and higher irreducible cumulants of Vdis are absent. Although
in practice this is probably not really the case, the higher cumulants turn out to
be irrelevant in the RG sense. As a result they do not affect most of the large-scale
observables. Under this assumption, one needs to specify only the second cumulant
of the disorder potential:1 〈

Vdis(r)Vdis(r′)
〉
dis = g(r− r′). (11.2)

We shall see that the Fourier transform g(q) = g(−q) of the correlation function
g(r) specifies the relative probability of scattering with the change of electronic
wavenumber by q.

We start by deriving the kinetic equation for the mass-shell electronic distribu-
tion function F̃(k, r, t). In doing so, we shall treat the disorder potential Vdis(r)
not as a part of the kinetic term, cf. Eq. (9.67), but rather as a source for the self-
energy and thus for the collision integral. Calculating the self-energy, we restrict
ourselves to the second order expansion in Vdis(r), which is then averaged over the
disorder. This is certainly an approximation, which misses a number of important
phenomena such as localization or mesoscopic fluctuations. The systematic way
to improve on this approximation is a subject of the subsequent sections. Mean-
while, we proceed with the outlined program. Expanding eiSdis[Vdis], Eq. (11.1), to
second order and applying the fermionic Wick theorem (9.12), one obtains for the
self-energy matrix in the Keldysh space, Fig. 11.1(a),

�̂(x, x ′) = Vdis(r)Vdis(r′)Ĝ(x, x ′), (11.3)

where x = (r, t) and we used γ̂ cl
ab = δab. Performing averaging over disor-

der according to Eq. (11.2) and going to the Fourier representation, one finds
�̂(k, ε) = ∑

k′ g(k − k′)Ĝ(k′, ε), Fig. 11.1(b). Employing GK = F(GR − GA)

and GR − GA = −2π iδ(ε − ξk′), one finds for the collision integral (9.67)

x

(a) (b)

k, ε k, εk′, ε

g (k – k′)Vdis (r) Vdis (r′)

x'

Fig. 11.1 Fermionic self-energy to second order in Vdis(r): (a) before averaging
over the disorder; (b) after the averaging.

1 The first cumulant 〈Vdis(r)〉dis may be always absorbed into a redefinition of the chemical potential and thus
thought of as being zero.
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I coll = i�K− iF(�R−�A) = 2π
∑

k′
g(k−k′)

[
F̃(k′)− F̃(k)

]
δ(ξk−ξk′), (11.4)

where we have restricted the distribution function to the mass-shell by putting
ε = ξk. The collision integral is nothing but the Golden Rule with the scatter-
ing probability between k ↔ k′ being g(k − k′) = g(k′ − k), “in” and “out”
occupation factors and energy conservation.

To proceed we notice that elastic scattering tends to make the distribution
function uniform in momentum directions, i.e. dependent mostly on the energy
ξk = εk − εF and only weakly on the direction, characterized by the unit vector
nk = k/k. The residual weak dependence on the direction may be represented by
the spherical harmonic expansion

F̃(k, x) = F0(ε, x)+ nk · F1(ε, x)+ · · · , (11.5)

where we used that ε = ξk and the first omitted term is nμk nνk Fμν

2 (ε) with Fμν

2

a rank-two traceless tensor. We now employ essentially the same method, which
leads from the Fokker–Planck equation (4.30) to the diffusion equation (4.32). We
substitute spherical harmonic expansion (11.5) into the kinetic equation (9.67) with
the collision integral (11.4) and then (i) integrate it over the angular directions∫

d�k of the unit vector nk; (ii) multiply by nk and then integrate over the angle.
This way one obtains the scalar and vector equations

∂t F0 + vF

d
divF1 = 0, (11.6)

∂t F1 + vF∇r F0 = − 1

τtr
F1, (11.7)

where we put ∇kξk = vk ≈ vFnk, employed that
∫

d�k nμk nνk = δμν/d, where d is
the dimensionality of space, and introduced the transport scattering time

1

τtr
= 2π

∑
k′

g(k−k′)
[
1−nk ·nk′

]
δ(ξk−ξk′) = 2πν

π∫
0

dθ

π
g(θ)(1−cos θ), (11.8)

where ν is the density of states, defined as
∑

k . . . = ν
∫

dξk . . .. In the last expres-
sion θ is an angle between nk and nk′ and k = k ′ ≈ kF. If g(θ) = g is a
constant, i.e. scattering with any momentum transfer is equally probable, the cosine
term (“in” term in the collision integral (11.4)) averages out to zero. In this case
1/τtr = 1/τel = 2πνg is an elastic or “out” relaxation rate and τel is the elastic scat-
tering time. Assuming that the characteristic frequency of external fields is much
less than the transport relaxation rate, one may neglect the ∂t F1 term on the left
hand side of Eq. (11.7). One then finds F1 = −vFτtr∇r F0 and thus

∂t Fε(r, t) = D∇2
r Fε(r, t) ; D = v2

Fτtr/d, (11.9)
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(a)

μL

μL μR

μR

(b)

1
L

x/L

x

n(ε)

ε

Fig. 11.2 (a) Quasi-one-dimensional wire of length L attached to two leads with
the chemical potentials μR − μL = eV . (b) The fermionic occupation number
n(ε, x) = (1− Fε(x))/2.

where we used the shorthand notation Fε(r, t) ≡ F0(ε, r, t) = ∫
d�k F̃(k, r, t).

We found thus that the average over the angle part of the distribution function
obeys the diffusion equation with the diffusion constant proportional to the trans-
port relaxation time. Equation (11.6) is the continuity relation with the current
density given by j(ε) = −vFF1/(2d) = D∇r Fε/2.2 The total electric current is
therefore given by J = e

∑
k j(ε) = (eνD/2)

∫
dε ∇r Fε .

As an example, let us consider a disordered quasi-one-dimensional wire of
length L , attached to two leads, kept at different voltages [141], Fig. 11.2(a). We
look for a space-dependent, stationary function Fε(x), where x is the coordinate
along the wire. It ought to satisfy the diffusion equation (11.9), D ∂2

x Fε(x) = 0,
supplemented by the boundary conditions Fε(0) = FL(ε) and Fε(L) = FR(ε),
where FL(R)(ε) are the distribution functions of the left and right leads. The proper
solution is

Fε(x) = FL(ε)+ [FR(ε)− FL(ε)] x

L
. (11.10)

At low temperature, T � eV , the distribution function looks like a two-step func-
tion, Fig. 11.2(b), where the energy separation between the steps is the applied
voltage, eV , while the relative height linearly depends on the position x . The total
current along the wire is

J = eνD

2

∫
dε ∂x Fε = eνD

2L

∫
dε [FR(ε)− FL(ε)] = eνD

L
eV = σD

V

L
, (11.11)

where the Drude conductivity of the diffusive wire is given by σD = e2νD.

11.2 Averaging over the quenched disorder

As was mentioned above, the diffusion equation (11.9) is only an approxima-
tion, which in some cases (most notably in the localized state) completely fails

2 The factor of minus one-half is due to the fact that F̃(k) = 1− 2n(k), while j (ε) = ∫
d�kvkn(k).
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to describe the system. To develop a more systematic approach it is desirable to
perform the disorder averaging at an early stage and deduce an effective determin-
istic, i.e. without randomness, field theory. The latter may be then either treated
by perturbation theory in disorder strength, RG, or possibly solved exactly (e.g. in
1d, or on a graph). Notice that so far we have been doing things in the opposite
order: first expanding and only then averaging. The idea that the averaging may be
performed first is facilitated by the observation that it is seemingly easy to average
eiSdis over the Gaussian distribution of Vdis. Indeed, it brings the Gaussian integral
over D[Vdis], which may be immediately evaluated.

This appealing observation can not be straightforwardly applied in the frame-
work of the equilibrium formalism. The reason is that one has to average the
logarithm of the partition function and not the partition function itself.3 Observ-
ables are obtained then as derivatives of the (averaged) logarithm of the partition
function with respect to various sources. Indeed, averaging of the partition func-
tion itself 〈Z [Vdis]〉dis =

〈
Tr{e−H [Vdis]/T }〉dis, although technically straightforward,

grossly overemphasizes rare disorder realizations with the smallest energy. On the
other hand, averaging the logarithm

〈
ln Z [Vdis]

〉
dis, gives the right weight to various

disorder realizations, but technically is rather demanding.
Two techniques were invented to perform the averaging of the logarithm. His-

torically the first was the replica trick [142, 143, 144, 145, 146]. It is based on the
following observation: ln Z = limn→0(Zn − 1)/n. It calls for the introduction of
(integer) n identical replicas of the same disordered system, calculating the disor-
der average of Zn and finally taking the limit n → 0. While evaluating 〈Zn〉dis is
relatively straightforward, it is the analytical continuation from integer to real n
which produces most of the problems. The procedure certainly works within per-
turbation theory. Extending it to non-perturbative calculations, while successful in
some cases, e.g. [147, 148, 149], has not yet been achieved in full generality.

Another method, pioneered by Efetov [150, 151], is the supersymmetric tech-
nique. It is based on the fact that the Z−1 of a non–interacting fermionic system
is equal to the Z of a bosonic system with the same disorder potential, see
Eqs. (9.11) and (2.20). Therefore the factor Z−1 in δ ln Z/δA = Z−1δZ/δA,
where A is a source field such as a vector or scalar potential, may be substituted by
the bosonic partition function Z . One thus introduces a fictitious bosonic replica
of the fermionic system at hand and performs the disorder averaging of such a
fermion–boson pair. This approach has proven to be extremely powerful in deriving
various non-perturbative results for disordered systems [151, 152]. It is strictly
limited, however, to non-interacting fermions and is incapable of incorporating
the effects of electron–electron interactions. Indeed, the basic relation between the

3 In other words, there is a disorder-dependent denominator in Eq. (1.5).
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fermionic and bosonic partition functions is based on the properties of the corre-
sponding Gaussian integrals, Eqs. (9.11) and (2.20), and can’t be generalized to
non-Gaussian ones.

In the Keldysh formalism observables are given by derivatives of the generat-
ing function (and not the logarithm of the generating function!) over appropriate
quantum source fields, which are then put to zero. More precisely, the two def-
initions, with and without the logarithm, coincide owing to the normalization
identity Z = 1 in the absence of quantum sources. The Keldysh formalism pro-
vides thus an alternative to replica and supersymmetry, ensuring that Z = 1
by construction [153, 154, 155, 156, 157, 158]. In the diagrammatic language
any proper disorder averaging technique must exclude parasitic closed loop dia-
grams. The replica trick does it by assigning a factor of n to such closed loops
and putting n → 0 at the end. The supersymmetric technique is based on the
mutual cancelation of bosonic and fermionic loops. In the Keldysh technique the
corresponding closed loops are nullified in view of the identity (9.25). Another
fundamental advantage of the Keldysh technique is that it allows one to calculate
observables under non-equilibrium conditions, while replica and supersymmetry
are usually limited to the linear response at equilibrium. The purpose of this chapter
is to show how the effective field theory of a disordered electron liquid, known
as the non-linear sigma-model (NLSM), may be constructed within the Keldysh
formalism.

The disorder action (11.1) brings the factor eiSdis[Vdis] into the definition of the
generating function (9.39). As was argued above, it is the generating function and
thus the factor eiSdis[Vdis] which needs to be averaged over realizations of the disorder
potential. To simplify the subsequent calculations we shall assume that the disorder
correlation function g(r), Eq. (11.2), is short-ranged and therefore may be written
as g(r) = gδ(r) = δ(r)/(2πντel), where τel is the elastic, or “out,” scattering time
defined after Eq. (11.8). With the locality assumption the disorder averaging takes
the form of the Gaussian integral over Vdis(r) with the local weight〈

. . .
〉
dis =

∫
D[Vdis] exp

{
−πντel

∫
dr V 2

dis(r)
}
. . . . (11.12)

One can now perform the disorder averaging of the appropriate term in the
generating function:

〈
eiSdis

〉
dis =

∫
D[Vdis] e

− ∫
dr

[
πντelV 2

dis(r)+iVdis(r)
∫ +∞
−∞ dt ψ̄a(r,t)γ̂ cl

abψ
b(r,t)

]
= exp

{
− 1

4πντel

∫
dr

∫∫ +∞

−∞
dtdt ′

[
ψ̄a(r, t)ψa(r, t)

][
ψ̄b(r, t ′)ψb(r, t ′)

]}
,

(11.13)
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where a, b = 1, 2 and summations over all repeated indices are assumed.
Grassmann fields in the exponent may be rearranged as (notice the sign)
[ψ̄a(r, t)ψa(r, t)][ψ̄b(r, t ′)ψb(r, t ′)] = −[ψ̄a(r, t)ψb(r, t ′)][ψ̄b(r, t ′)ψa(r, t)].
One can employ now the Hubbard–Stratonovich transformation with the matrix-
valued field Q̂ = Qab

tt ′ (r) to decouple the (time non-local) four-fermion term as4

exp

{
1

4πντel

∫
dr

∫∫ +∞

−∞
dtdt ′ [ψ̄a(r, t)ψb(r, t ′)][ψ̄b(r, t ′)ψa(r, t)]

}
=
∫

D[Q̂] e−
πν

4τel
Tr{Q̂2}− 1

2τel

∫
dr

∫∫ +∞
−∞ dtdt ′Qab

tt ′ (r)ψ̄
a(r,t)ψb(r,t ′)

, (11.14)

where Q̂ is a Hermitian matrix in the Keldysh as well as in the time space, i.e.
Qab

tt ′ =
[
Qba

t ′t
]∗

. Here the trace of Q̂2 implies summation over the matrix indices as
well as time and spatial integrations,

Tr
{

Q̂2
} = ∫

dr
∫∫ +∞

−∞
dtdt ′

2∑
a,b=1

Qab
tt ′ (r)Q

ba
t ′t (r). (11.15)

As a result, one has traded the initial functional integral over the static field Vdis(r)
for the functional integral over the dynamic Hermitian matrix field Q̂ab

tt ′ (r). At first
glance, it does not strike as a terribly bright idea. Nevertheless, there is a great
simplification hidden in this procedure. The advantage is that the disorder potential,
being δ-correlated, is a rapidly oscillating function. On the other hand, as shown
below, the Q̂-matrix field is slow (both in space and time). It thus represents the
true macroscopic (or hydrodynamic) degrees of freedom of the system, which are
diffusively propagating modes.

The Grassmann fields now enter the action only as the following quadratic form:

Tr
{ �̄![

Ĝ−1 + i
2τel

Q̂] �!}
, where Ĝ−1 is the free fermion inverse Green function

(9.31) and the Q̂-matrix originates from the disorder averaging, Eq. (11.14). Since
the action is quadratic in fermions, they may be explicitly integrated out using
the rules of fermionic Gaussian integration, Eq. (9.11); cf. also Eq. (9.45), lead-
ing to the determinant of the corresponding quadratic form, Ĝ−1 + i

2τel
Q̂. All of

the matrices here should be understood as having 2 × 2 Keldysh structure along
with the N × N structure in discrete time. One thus finds for the disorder-averaged
generating function

4 Here we do not keep track of the time-reversal symmetry, i.e. the fact that the Hamiltonian is a real symmetric
operator. As a result the following considerations are restricted to the case where the time-reversal invariance
is broken by, e.g., an external magnetic field (complex Hermitian Hamiltonian). This is the so-called unitary
symmetry class. The orthogonal class, i.e. the one where the time-reversal symmetry is present, is considered
in Section 11.7.
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〈Z〉dis =
∫

D[Q̂] exp
{
iS[Q̂]},

iS[Q̂] = − πν

4τel
Tr
{

Q̂2
}+ Tr ln

[
Ĝ−1 + i

2τel
Q̂

]
, (11.16)

where the source fields are hidden in the inverse bare Green function Ĝ−1, see
Section 11.5.

11.3 Non-linear sigma-model

To proceed we need to understand what configurations of the matrix-valued field Q̂
contribute most to the functional integral (11.16). To this end we look for stationary
configurations of the action S[Q̂] in (11.16). Taking the variation over Q̂tt ′(r), one
obtains the stationary point equation

Q̂
tt ′(r) =

i

πν

(
Ĝ−1 + i

2τel
Q̂

)−1

t t ′,rr
, (11.17)

where Q̂
tt ′(r) denotes a stationary configuration of the fluctuating field Q̂tt ′(r). We

first look for a spatially uniform and time-translationally invariant solution Q̂
t−t ′

of (11.17) and then consider space- and time-dependent deviations from such a
solution. This strategy is adopted from the theory of magnetic systems, where one
first finds a uniform static magnetized configuration and then treats spin-waves
as smooth perturbations on top of such a static uniform solution. From the struc-
ture of (11.17) one expects that the stationary configuration Q̂ possesses the same
form as the fermionic self-energy (9.26) (more accurately, one expects that among
possible stationary configurations there is a classical configuration that admits the
causality structure (9.26)). One looks, therefore, for a solution of (11.17) in the
form of the matrix

Q̂
t−t ′ = �̂t−t ′ =

(
�R

t−t ′ �K
t−t ′

0 �A
t−t ′

)
. (11.18)

The fact that the stationary Q̂-matrix is not Hermitian implies that the integration
path in the space of complex matrices is distorted from staying in the subspace of
Hermitian matrices to pass through the stationary matrix (11.18).

Substituting this expression into (11.17), which in the energy–momentum rep-
resentation reads as �̂ε = i

πν

∑
k

(
ε − ξk + i

2τel
�̂ε

)−1
, with ξk ≡ k2/2m − εF, one

finds

�R(A)
ε = i

πν

∑
k

1

ε − ξk + i
2τel

�
R(A)
ε

= ±1, (11.19)
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where the way one performs momentum summation is
∑

k . . . = ν
∫

dξk . . . . The
signs on the right-hand side are chosen so as to respect causality: the retarded
(advanced) Green function is analytic in the entire upper (lower) half-plane of the
complex energy ε. One has also assumed that 1/τel � εF to extend the energy inte-
gration to minus/plus infinity, while using constant density of states ν. The Keldysh
component, as always, may be parametrized by a Hermitian distribution function:
�K
ε = �R ◦ Fε − Fε ◦�A = 2Fε , where the distribution function Fε is not fixed by

the stationary point equation (11.17) and must be determined through the boundary
conditions. In equilibrium, however, Fε is nothing but the thermal fermionic dis-
tribution function Feq

ε = tanh ε/2T . Finally, we have for the stationary Q̂-matrix
configuration

�̂ε =
(

1R
ε 2Fε
0 −1A

ε

)
, (11.20)

where we have introduced the retarded and advanced unit matrices to remind us
about the causality structure. Transforming back to the time representation, one
finds �R(A)

t−t ′ = ±δ(t − t ′ ∓ 0), where ∓0 indicates that the delta-function is shifted

below (above) the main diagonal, t = t ′. As a result, Tr{�̂} = 0 and S[�̂] = 0,
as it should be, of course, for any purely classical field configuration (11.18). One
should note, however, that this particular form of the saddle point solution (11.20)
is a result of the approximation that the single-particle density of states ν is inde-
pendent of energy. In general, it does depend on ε and thus the retarded (advanced)
component of �̂ε is an analytic function of energy in the upper (lower) half-plane,
which does depend on energy on the scale of the order of the Fermi energy εF.
Therefore, the infinitesimally shifted delta-functions in �

R(A)
t−t ′ = ±δ(t − t ′ ∓ 0)

should be understood as δt∓0 = f±(t)θ(±t), where θ(±t) is the Heaviside step
function, and f±(t) are functions that are highly peaked for |t | � ε−1

F and satisfy
the normalization

∫ ±∞
0 dt f±(t) = ±1. This high-energy regularization is impor-

tant to remember in calculations to avoid spurious divergences. In particular, for
this reason 1R

t−t ′M
R
t ′,t = 0 and 1A

t−t ′M
A
t ′,t = 0, where MR(A)

t ′,t is an arbitrary retarded
(advanced) two-point function in time space.

Now we are in a position to examine fluctuations around the stationary config-
uration (11.20). The fluctuations of Q̂ fall into two general classes: (i) massive,
with mass ∝ ν/τel and (ii) massless or Goldstone modes, i.e. such that the action
depends only on gradients or time derivatives of these degrees of freedom. The
fluctuations along the massive directions can be integrated out in the Gaussian
approximation and lead to insignificant renormalization of the parameters in the
action. The massless, or Goldstone, modes describe diffusive motion of the elec-
trons. Fluctuations of the Q̂-matrix along the massless directions may be not
small and should be taken into account beyond small deviations. To this end one
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needs a way to parametrize a manifold of massless modes as a certain (non-linear)
constraint imposed on the allowed (i.e. massless) Q̂-matrices. To identify the rel-
evant Goldstone modes consider the first term in the action S[Q̂] of (11.16). The
stationary configuration given by (11.20) satisfies

Q̂2 =
(

1R
ε 0
0 1A

ε

)
= 1̂. (11.21)

Note that Tr
{

Q̂2
} = Tr {1̂R} + Tr {1̂A} = 0, owing to the definition of the retarded

and advanced unit matrices, see Eq. (2.44). Fluctuations of Q̂ which do not satisfy
the constraint (11.21) are massive. The manifold of Q̂-matrix configurations which
obey the non-linear constraint (11.21) is generated by rotations of the stationary
matrix �̂ε and may be parametrized as follows:

Q̂ = R̂−1 ◦ �̂ ◦ R̂. (11.22)

Indeed, if Rt t ′(r) = Rt−t ′ is stationary and uniform, it commutes with Ĝ−1 and
thus the rotated stationary matrix R̂−1 ◦ �̂ ◦ R̂ still satisfies the stationary point
equation (11.17). The specific form of R̂ is not important at the moment and will
be chosen later. The massless modes, or spin waves if one adopts the magnetic
analogy, which are associated with R̂t t ′(r) are slow functions of t + t ′ and r and
their gradients are small. Our goal now is to derive an effective action for the soft-
mode Q̂-field configurations given by Eqs. (11.21) and (11.22).

To this end one substitutes Eq. (11.22) into Eq. (11.16) and cyclically permutes
R̂ matrices under the trace operation. This way one obtains R̂ ◦ Ĝ−1 ◦ R̂−1 %
Ĝ−1 + R̂ ◦ [Ĝ−1 ◦, R̂−1] = Ĝ−1 + iR̂∂tR̂−1 + iR̂vF∇rR̂−1, where one used the
explicit form of the bare inverse Green function (9.31) and linearized the dispersion
relation near the Fermi energy ξk = k2/2m − εF ≈ vFk → −ivF∇r. As a result,
the desired action acquires the form

iS[Q̂] = Tr ln

[
Ĝ−1 + i

2τel
�̂+ iR̂∂tR̂−1 + iR̂vF∇rR̂−1

]
, (11.23)

where we omit the circular multiplication sign for brevity. Let us define now the
impurity dressed Green function matrix Ĝ as the solution of the following Dyson
equation: (

Ĝ−1 + i

2τel
�̂
)
Ĝ = 1̂. (11.24)

It is indeed straightforward to see that �̂ = −i�̂/2τel is the self-energy matrix,
cf. Eq. (11.3). For subsequent calculations it is convenient to write Ĝ, reflecting its
causality structure, as
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Ĝ =
(

GR GK

0 GA

)
= 1

2
GR[1̂+ �̂] + 1

2
GA[1̂− �̂], (11.25)

with retarded, advanced and Keldysh components given by

GR(A)(k, ε) = [
ε − ξk ± i/2τel

]−1
, GK(k, ε) = GR(k, ε)Fε − FεGA(k, ε).

(11.26)
Employing now the fact that Tr ln Ĝ = 0, cf. Eq. (9.25), one may rewrite the action
(11.23) as

iS[Q̂] = Tr ln
[
1̂+ i ĜR̂∂tR̂−1 + i ĜR̂vF∇rR̂−1

]
(11.27)

≈ i Tr
{
ĜR̂∂tR̂−1

}+ 1

2
Tr
{
Ĝ
(
R̂vF∇rR̂−1

)
Ĝ
(
R̂vF∇rR̂−1

)}
,

where in the second line we have expanded the logarithm in gradients of the rota-
tion matrices R̂ to linear order in ∂tR̂−1 and to quadratic order in ∇rR̂−1 (the
term linear in the spatial gradient vanishes due to the angular integration). Since∑

k Ĝ(k, ε) = −iπν�̂ε , which directly follows from the stationary point equation
(11.17), one finds for the ∂t term in the effective action (11.23) iTr{ĜR̂∂tR̂−1} =
πνTr{�̂R̂∂tR̂−1} = πνTr{∂tR̂−1�̂R̂} = πνTr{∂t Q̂}, where Tr{∂t Q̂} =∫

dt∂t Tr{Q̂tt ′ }|t ′=t . For the ∇r term, one finds − 1
4πνDTr

{
(∇r Q)2

}
, where

D = v2
Fτel/d is the diffusion constant and d is the spatial dimensionality.5

Finally, one finds for the action of the soft-mode configurations [156, 157, 158]

iS[Q̂] = −πν
4

Tr
{

D(∇r Q̂)2 − 4∂t Q̂
}
. (11.28)

Notice that, since we deal with the short-ranged potential, τel = τtr and therefore
the diffusion coefficient D is in agreement with Eq. (11.9). Should we work with
a generic disorder (11.2), we would arrive at the action (11.28) with D given by
Eq. (11.9). Despite its simple appearance, the action (11.28) is highly non-linear
owing to the constraint Q̂2 = 1̂. The theory specified by Eqs. (11.21) and (11.28) is
called the matrix non-linear sigma-model. The name came from the theory of mag-
netism, where the unit-length vector �σ(r) represents a local classical spin rotating
over the sphere �σ 2 = 1.

5 Indeed, for the product of the Green functions one uses∑
k

GR(k, ε)vμFGA(k, ε)vνF = νv2
F

∫
dξk

(ε−ξk+i/2τel)(ε−ξk−i/2τel)

∫
d�knμk nνk = νv2

F2πτel
δμν

d
,

where nk is the unit vector and
∫

d�k is the normalized integral over the unit sphere in d dimensions. The

corresponding RR and AA terms vanish upon ξk integration. Employing Eq. (11.25) along with �̂2 = 1̂ and
R̂∇rR̂−1 = −∇rR̂R̂−1, one then notices that

Tr
{[1̂+ �̂](R̂∇rR̂−1)[1̂− �̂](R̂∇rR̂−1)

} = −1

2
Tr
{[∇r(R̂−1�̂R̂)

]2} = − 1

2
Tr
{
(∇r Q̂)2

}
.
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11.4 Stationary point and fluctuations

As a first step, one needs to determine the most probable (stationary) configuration,
Q̂

t1t2
(r), on the soft-mode manifold defined by the non-linear constraint (11.21).

In a time-independent and spatially uniform case we already know the answer: it
is Q̂ = �̂, Eq. (11.20). Here we look for a stationary configuration in the pres-
ence of weak spatial and temporal gradients. To this end one may parametrize
deviations from Q̂

t1t2
(r) as Q̂ = R̂−1 ◦ Q̂ ◦ R̂ and choose R̂ = exp(Ŵ/2),

where Ŵt1t2(r) is a generator of rotations. Expanding to first order in Ŵ , one
finds Q̂ = Q̂ − [Ŵ ◦, Q̂]/2. One may now substitute such a Q̂-matrix into the

action (11.28) and require that the terms linear in the generators Ŵ vanish. This
leads to the stationary point equation for Q̂. For the spatial gradient term in (11.28)

one obtains 1
2 Tr

{
Ŵ∇r D

[
(∇r Q̂)Q̂ − Q̂∇r Q̂

]} = −Tr
{
Ŵ∇r D

(
Q̂∇r Q̂

)}
, where

one has employed ∇r Q̂ ◦ Q̂+ Q̂ ◦∇r Q̂= 0, since Q̂
2= 1̂. For the second term one

finds Tr
{
Ŵt1t2

(
∂t1 + ∂t2

)
Q̂

t1t2

} = Tr
(
Ŵ{∂t , Q̂}), where the curly brackets denote

the anti-commutator. Demanding that the linear term in Ŵ vanishes, one obtains

∇r
(
D Q̂ ◦ ∇r Q̂

)− {∂t , Q̂} = 0. (11.29)

In the context of superconductivity this equation is known as the Usadel equa-
tion [159]. We’ll keep this name even for the normal metal considered here.

Let us look for a solution of the Usadel equation in the subspace of “classical,”
i.e. having causality structure, configurations. We then put Q̂ = �̂, Eq. (11.20).

Since the lower-left component is zero by causality, the condition Q̂
2 = 1 dictates

±1 on the diagonal. As a result, the only yet unspecified component is the upper-
right distribution function Ft1t2(r). Therefore, in this case the Usadel equation is
reduced to the single equation for the distribution function Ft1t2(r). Substituting �̂
(11.20) into Eq. (11.29) and performing a Wigner transformation,

Ft1t2(r) =
∫

dε

2π
Fε (r, t) e−iε(t1−t2), t = t1 + t2

2
, (11.30)

one obtains

∇r
[
D(r)∇r Fε(r, t)

]− ∂t Fε(r, t) = 0, (11.31)

where we allowed for a (smooth) spatial dependence of the diffusion constant. This
is the already familiar diffusion kinetic equation (11.9) for the isotropic component
of the fermionic distribution function. Note that it is the same equation for any
energy ε and different energies do not “talk” to each other, which is natural for a
non-interacting system. In the presence of interactions, the equation acquires the
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collision integral on the right hand side that mixes different energies, see Section
13.5. It is worth mentioning that the elastic scattering does not show up in the
collision integral. It was already fully taken into account in the derivation of the
Usadel equation and went into the diffusion term.

We see now that the kinetic equation (11.9) describes only the stationary con-
figuration Q̂

tt ′(r) = �̂t t ′ of the non-linear sigma-model and does not account for
the fluctuations around it. Discussing the fluctuations, we restrict ourselves to the
Goldstone (soft) modes fluctuations which satisfy Q̂2 = 1̂ and neglect all massive
modes, which deviate away from this manifold. To parametrize such soft modes
we first notice that

�̂ = Û−1 ◦ σ̂3 ◦ Û, Û = Û−1 =
(

1 F
0 −1

)
, (11.32)

where σ̂3 is the third Pauli matrix acting in the Keldysh subspace, which has 1R
ε

and −1A
ε on its main diagonal, see Eq. (11.20). The distribution function Ftt ′(r) is

a solution of the saddle point equation (11.31). The soft-mode fluctuations, obeying
Q̂2 = 1̂ may be obtained by σ̂3 → R̂−1σ̂3R̂, where R̂t1t2(r) is a rotation matrix,

which is convenient to write through the rotation generators as R̂ = eŴ/2. As a
result, all proper Q̂-matrices may be parametrized as

Q̂ = Û−1 ◦ e−Ŵ/2 ◦ σ̂3 ◦ eŴ/2 ◦ Û . (11.33)

To provide a non-trivial rotation of the σ̂3 matrix, the rotation generator Ŵ must
be a purely off-diagonal matrix in the Keldysh space. As a result, the rotation
generator may be written as

Ŵt t ′(r) =
(

0 d cl
t t ′(r)

d q
t t ′(r) 0

)
, (11.34)

where d cl
t t ′(r) and d q

t t ′(r) are two independent two-point functions in time space. As
we shall see below, these two functions serve as the classical and quantum compo-
nents of the Q̂-matrix field, respectively. The classical component d cl

t t ′(r) provides
deviations of the distribution function F from its stationary value, while the quan-
tum component d q

t t ′(r) provides a source to differentiate over. In particular, one
may check that S[d cl, d q = 0] = 0. From the fact that dcl

t t ′ describes fluctuations of
the Hermitian distribution matrix Ftt ′ , while dq

t t ′ is the corresponding source field, it
follows that both d cl

t t ′(r) and d q
t t ′(r) are Hermitian matrices in time space. One thus

understands the functional integration over Q̂tt ′(r) in Eq. (11.16) as an integration
over two mutually independent Hermitian matrices in the time domain, d cl

t t ′(r) and
d q

t t ′(r).
One may expand now the action (11.28) in powers of d cl

t t ′(r) and d q
t t ′(r). Since

Q̂
tt ′ was chosen to be a stationary configuration, the expansion starts from second
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order. If the stationary distribution F is spatially uniform, so ∇rÛ = 0, one obtains
in second order

iS[d cl, d q] = −πν
2

∫
dr

∫∫
dtdt ′ d q

t t ′(r)
[−D∇2

r + ∂t + ∂t ′
]

d cl
t ′t(r). (11.35)

The quadratic form may be diagonalized by going to the energy–momentum
representation according to

Ŵεε′(q) =
∫

dr
∫∫

dtdt ′ Ŵt t ′(r) eiεt−iε′t ′ e−iqr, (11.36)

which brings the quadratic action (11.35) into the diagonal form

iS[d cl, d q] = −πν
2

∑
q,ε,ε′

d q
εε′(−q)

[
Dq2 + iε − iε′

]
d cl
ε′ε(q). (11.37)

As a result, the Gaussian propagators of the Q̂-matrix fluctuations are

〈d cl
ε1ε2

(q)d q
ε3ε4

(−q)〉W = − 2

πν

δε2ε3δε1ε4

Dq2 − iω
≡ − 2

πν
δε2ε3δε1ε4 DR(q, ω),

〈d q
ε1ε2

(q)d cl
ε3ε4

(−q)〉W = − 2

πν

δε2ε3δε1ε4

Dq2 + iω
≡ − 2

πν
δε2ε3δε1ε4 DA(q, ω), (11.38)

where ω ≡ ε1 − ε2 = ε4 − ε3 and the object

DR(A)(q, ω) = 1

Dq2 ∓ iω
(11.39)

is called the diffuson. As we shall see below, it describes the diffusive motion of the
electron density fluctuations at small frequency ω � 1/τel and small wavenumbers
Dq2 � 1/τel, i.e. q � 1/ lel, where the elastic mean free path is lel = √

Dτel ∼
vFτel.

If the stationary-point distribution function Fε(r) is spatially non-uniform,
there is an additional quantum–quantum term in the quadratic action of the form
iS̃ = −(πνD/2)Tr

{
d q
εε′(∇r Fε′)d

q
ε′ε(∇r Fε)

}
. This term generates a non-zero

Keldysh correlation function, which is given by

〈d cl
ε1ε2

(r)d cl
ε2ε1

(r′)〉W= −4D

πν

∫
dr′′DR(r, r′′, ω)(∇r′′ Fε1)(∇r′′ Fε2)DA(r′′, r′, ω),

(11.40)

where ω ≡ ε1 − ε2. Unlike the usual bosons, the matrix field correlator 〈d cld cl〉W
exists only out of equilibrium. Indeed, being proportional to (∇r Fε)2, it scales as a
square of the applied voltage. Nevertheless, it may show up even in linear response
problems, such as e.g. mesoscopic conductance fluctuations, Section 12.3. For the
use of this term for interaction effects in the shot-noise power see [160]. Notice
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that, in accordance with the causality structure, there can not be a classical–
classical, i.e. ∼ d cld cl, term in the action, and therefore 〈dqdq〉W = 0.

The higher-order terms in the expansion of the action (11.28) in powers of d cl
t t ′(r)

and d q
t t ′(r) describe mutual interactions of the diffuson modes. Such non-linear cor-

rections to the classical linear diffusion are consequences of the quantum nature
of the electron motion. They may eventually lead to the Anderson localization
[161] of the density fluctuations, instead of the diffusive spreading. The localiza-
tion phenomenon is due to generation of the effective mass for the d-fluctuation,
which causes exponential decay of the correlations. This effect is essentially non-
perturbative. On the level of the perturbation theory the non-linear interactions of
the diffusive modes lead to singular weak localization corrections to the diffusion
constant D [162, 163, 164, 165]. In the unitary symmetry class we have been work-
ing with so far, such corrections start from the two-loop level [162, 166]. We shall
discuss them in Section 11.8 in the framework of the orthogonal symmetry class,
where the weak-localization corrections are present already in one loop.

11.5 Sources and external fields

One may now incorporate the source terms SV and SA, Eqs. (9.34) and (9.38), into

the fermionic action: Tr
{ �̄! [

Ĝ−1 + i
2τel

Q̂ − V̂ − vFÂ
] �!}

, where, for example,

V̂ = V αγ̂ α and α = cl, q. After fermionic Gaussian integration over �̄! and �! one
finds for the generating function, cf. Eq. (11.16),〈

Z [A, V ]〉dis =
∫

D[Q̂] exp
{
iS[Q̂,A, V ]},

iS[Q̂,A, V ] = − πν

4τel
Tr{Q̂2} + Tr ln

[
Ĝ−1 + i

2τel
Q̂ − V̂ − vFÂ

]
. (11.41)

We now expand the trace of the logarithm in both gradients of Q̂ and in the source
fields V̂ and Â. The latter assumes that the source fields are small on the scale
of the elastic scattering rate and do not strongly disturb the stationary configura-
tion (11.20) (see Chapter 13 for more discussions of this point). Then, similarly to
Eq. (11.28), one finds from Eq. (11.41)

iS[Q̂,A, V ] = iν

2
Tr
{

V̂ σ̂1V̂
}− πν

4
Tr
{

D(∂̂r Q̂)2 − 4∂t Q̂ − 4iV̂ Q̂
}
, (11.42)

where σ̂1 is the first Pauli matrix acting in Keldysh space, and we have introduced
the gauge-invariant space derivative

∂̂r Q̂ = ∇r Q̂ + i[Â, Q̂]. (11.43)
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A few comments are in order regarding Eq. (11.42). First, it is still restricted to
the manifold of Q̂-matrices satisfying Q̂2 = 1̂. The second trace on the right hand
side of Eq. (11.42), containing Q̂, originates from the

∑
k vFGRvFGA and

∑
k GR(A)

combinations in the expansion of the logarithm. On the other hand, the first term
on the right hand side of Eq. (11.42) originates from

∑
k GRGR and

∑
k GAGA

combinations. These terms should be retained since the matrix V α(ε − ε ′)γ̂ α is
not restricted to the 1/τel shell near the Fermi energy. This is so because the scalar
potential shifts the entire electronic band and not only the energy shell |ε|, |ε ′| <
1/τel. Thus, it is essential to follow the variations of the electron spectrum all the
way down to the bottom of the band to respect the charge neutrality. Equations
(11.42) and (11.43) generalize the sigma-model action (11.28) for the presence of
the scalar and vector potentials.6

6 Here we provide some technical details needed to derive the effective action (11.42) from Eq. (11.41). The
gradient expansion of the logarithm in Eq. (11.41) uses a Q̂-matrix in the form of (11.22) and leads, in analogy
with Eq. (11.23), to

iS = Tr ln
[
1̂+ iĜR̂∂t R̂−1 + iĜR̂vF∇rR̂−1 − ĜR̂V̂ R̂−1 − ĜR̂vFÂR̂−1

]
. (11.44)

Expanding this expression to linear order in ĜR̂∂t R̂−1 and quadratic order in ĜR̂vF∇rR̂−1, one reproduces
Eq. (11.27), which leads eventually to the action (11.28). To linear order in V̂ and Â one finds

iS1[Q̂,A, V ] = −Tr
{ĜR̂V̂ R̂−1}+ iTr

{Ĝ(R̂vF∇rR̂−1)Ĝ(R̂vFÂR̂−1)
}
. (11.45)

Proceeding with the first term on the right hand side in the same way as with the ∂t term, one finds
−Tr

{ĜR̂V̂ R̂−1} = iπνTr
{
�̂R̂V̂ R̂−1} = iπνTr

{
V̂ Q̂

}
. For the second term, employing Eq. (11.25) for

the disorder dressed Green function and retaining retarded–advanced products of the Green functions∑
k GR(k, ε)vFGA(k, ε)vF = 2πνD, one finds

−πνD Tr
{
(R̂−1∇rR̂+ R̂−1�̂R̂∇rR̂−1�̂R̂)Â

} = −πνD Tr
{

Q̂∇r Q̂Â
}
,

where R̂∇rR̂−1 = −∇rR̂ R̂−1 was used. All together it gives for Eq. (11.45)

iS1[Q̂,A, V ] = iπν Tr
{

V̂ Q̂
}− iπνD Tr

{
Q̂∇r Q̂Â

}
. (11.46)

In the second order in V̂ and Â one finds

iS2[Q̂,A, V ] = − 1

2
Tr
{ĜV̂ ĜV̂

}− 1

2
Tr
{Ĝ(R̂vFÂR̂−1)Ĝ(R̂vFÂR̂−1)

}
. (11.47)

Note that in the term ∼ V̂ 2 we took R̂ = R̂−1 = 1̂. This is because the V̂ 2 contribution represents essentially
static compressibility of the electron gas which is determined by the entire energy band, while the R̂ and R̂−1

matrices deviate from the unit matrix only in the narrow energy shell around the Fermi energy. Thus, for the first
term on the right hand side of Eq. (11.47) one can write Tr

{ĜV̂ ĜV̂
} = V αϒαβV β , where

ϒαβ =
∑

k

∫
dε

2π
Tr
{Ĝ(k, ε) γ̂ α Ĝ(k, ε) γ̂ β},

where the last trace spans only over the Keldysh matrix structure. Using Eq. (11.25) for the matrix Green function,
and retaining only retarded–retarded and advanced–advanced products, one finds
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The electric current is defined as a variational derivative of the generating func-
tion with respect to the quantum component of the vector potential J(r, t) =
(ei/2)δ〈Z [A]〉dis/δAq(r, t), cf. Eq. (9.41). According to Eq. (11.42) it gives

J(r, t) = eπνD

2

〈
Tr
{
γ̂ q Q̂(r) ∂̂r Q̂(r)

}
t t

〉
Q
, (11.49)

where the ∂̂r operator, Eq. (11.43), includes the vector potential. Neglecting the
Q̂-matrix fluctuations, i.e. putting Q̂ = �̂, and also Â = 0, one finds that J(r, t) =
(eπνD)

∫
(dε/2π)∇r Fε(r, t), which was already used at the end of Section 11.1.

The latter expression, however, is only an approximation which neglects the fluc-
tuations. As a result it misses, e.g., mesoscopic fluctuations, discussed in Chapter
12, and interaction corrections, Chapter 13.

11.6 Kubo formula and linear response

The linear response theory in the framework of the Keldysh technique was formu-
lated in Section 9.5. Let us see now how the disorder-averaged response functions
may be obtained from the sigma-model action. To this end one employs the gen-
eral definition of the density response function �R(x, x ′), Eq. (9.44), along with
the disorder-averaged generating function (11.41), (11.42), which give

�R(x − x ′) = − i

2

δ2
〈
Z [V cl, V q]〉dis

δV cl(x ′)δV q(x)

∣∣∣∣∣
V̂=0

= νδ(r− r′)δ(t − t ′)+ i

2
(πν)2

〈
Tr
{
γ̂ q Q̂tt(r)

}
Tr
{
γ̂ cl Q̂t ′t ′(r′)

}〉
Q
,

(11.50)

ϒαβ = 1

4

∑
k

∫
dε

2π
Tr
{(GR)2[1̂+ �̂

]
γ̂ α

[
1̂+ �̂

]
γ̂ β + (GA)2[1̂− �̂

]
γ̂ α

[
1̂− �̂

]
γ̂ β

}
= σ

αβ
1

∫
dε

2π
Fε

∑
k

[[GR]2 − [GA]2] = σ
αβ
1

∫
dε

2π

∂Fε
∂ε

∑
k

[
GR − GA

]
= −2iνσαβ1 ,

where we used that
[GR(A)(k, ε)

]2 = − ∂εGR(A)(k, ε), integrated by parts, employed that
∑

k
(GR(k, ε)−

GA(k, ε)
) = −2π iν and assumed that for any reasonable fermionic distribution Fε→±∞ → ±1. Because of

the latter assumption
∫

dε ∂Fε/∂ε = 2.
The second term on the right hand side of Eq. (11.47) is dealt with in the same way as we did after Eq. (11.27),
Tr
{Ĝ(R̂vFÂR̂−1)Ĝ(R̂vFÂR̂−1)

} = πνDTr
{[1̂ + �̂]R̂ÂR̂−1[1̂ − �̂]R̂ÂR̂−1} = πνDTr

{
Â2 − ÂQ̂ÂQ̂

}
,

which finally gives for the S2[Q̂,A, V ] part of the action

iS2[Q̂,A, V ] = iν

2
Tr
{

V̂ σ̂1V̂
}+ πνD

2
Tr
{
ÂQ̂ÂQ̂ − Â2}. (11.48)

Combining now Eq. (11.28) with Eqs. (11.46) and (11.48), and taking into account that Tr
{
(∇r Q̂)2+4iÂQ̂∇r Q̂−

2(ÂQ̂ÂQ̂−Â2)
} = Tr

{
(∂̂r Q̂)2

}
, where the covariant derivative is defined by Eq. (11.43), one finds the full action

in the form of Eq. (11.42).
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where x = (r, t) and angular brackets stand for the averaging over the
action (11.28). The first term on the right hand side of Eq. (11.50) originates from
the differentiation of the Tr

{
V̂ σ̂1V̂

}
part of the action (11.42), while the second

term comes from double differentiation of the exponentiated iπνTr
{

V̂ Q̂
}
. Equa-

tion (11.50) represents the sigma-model equivalent of the Kubo formula for the
linear density response. In the Fourier representation it takes the form

�R(q, ω) = ν + i

2
(πν)2

∫∫
dεdε′

(2π)2

〈
Tr
{
γ̂ q Q̂ε+ω,ε(q)

}
Tr{γ̂ cl Q̂ε′,ε′+ω(−q)}

〉
Q
.

(11.51)
Employing Eqs. (11.33) and (11.34), one finds to linear order in the diffuson modes
(since Tr{γ̂ cl�̂} = 0, the only contribution in the zeroth order is ν):

Tr
{
γ̂ cl Q̂ε′,ε′+ω(−q)

} = d q
ε′,ε′+ω(−q)(Fε′+ω − Fε′), (11.52a)

Tr
{
γ̂ q Q̂ε+ω,ε(q)

} = d q
ε+ω,ε(q)(1− FεFε+ω)− d cl

ε+ω,ε(q). (11.52b)

Since 〈d qd q〉W = 0 only the last term on the right hand side of Eq. (11.52b),
being paired with Eq. (11.52a), contributes to the average value in Eq. (11.51). The
result is

�R= ν + iπν2

4

∫
dε

(
Fε − Fε+ω

) 〈
d cl
ε+ω,ε(q)d

q
ε,ε+ω(−q)

〉
W = ν

[
1+ iω

Dq2 − iω

]
,

(11.53)

where we have used propagator (11.38) and the integral
∫

dε (Fε − Fε+ω) = −2ω,
which is valid for any distribution function satisfying Fε→∓∞ = ∓1. One has
obtained thus the diffusive form of the density–density response function (i.e. the
retarded component of the polarization matrix)

�R(q, ω) = ν
Dq2

Dq2 − iω
. (11.54)

The fact that �R(0, ω) = 0 is a consequence of particle number conservation.
Also notice that this function is indeed retarded (i.e. analytic in the entire upper
half-plane of the complex frequency ω), as it should be. The weak-localization
corrections to the classical diffusion are obtained by expanding, e.g., Tr

{
(∇r Q̂)2

}
in the action to fourth and sixth orders in the diffusion generators dα and contract-
ing them with Eqs. (11.52). Equation (11.54) may be compared with Eq. (9.50)
for the response function of a clean electron gas. The latter exhibits singularities at
ω = ±vFq, which are characteristic for the ballistic motion. The diffusive expres-
sion (11.54) is valid for ω � 1/τel and q � 1/ lel, while the ballistic one (9.50) is
applicable outside of this region.
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The current–current response function, K R(q, ω), may be obtained in a similar
way, by taking variations of the disorder-averaged generating function with respect
to the vector potential. It may be also found, however, using the continuity relation
q · j + ωρ = 0, which implies the following relation between density and current
responses: K R(q, ω) = e2ω2�R(q, ω)/q2. As a result the conductivity is given by7

σ(q, ω) = e2

iω
K R(q, ω) = e2 −iω

q2
�R(q, ω) = e2νD

−iω

Dq2 − iω
. (11.55)

In the limit of the uniform external field, q → 0, this leads to the already familiar
Drude result σ(0, ω) = e2νD = σD, see Eq. (11.11).

11.7 Cooper channel

If the system possesses time-reversal symmetry (TRS) (for the spinless case it
means that there is a basis in which the Hamiltonian is real, Ĥ T = Ĥ ), there
is an additional set of soft degrees of freedom, which has been neglected so
far. It originates from another way of decoupling the four-fermion term (11.13),
obtained upon averaging over the quenched disorder. Instead of rearranging it
as −[ψ̄aψ ′b][ψ̄ ′bψa], where the prime indicates the different time argument,
one could also rewrite it as [ψ̄aψ̄ ′b][ψ ′bψa]. By decoupling it with a Hubbard–
Stratonovich field, one obtains another set of soft modes. Due to apparent simi-
larities with the theory of superconductivity, see Chapter 14, these soft modes are
known as the Cooper channel. One should be aware, though, that superconductivity
typically involves spin in a crucial way, while our treatment here is given for the
spinless case.

To implement this idea in a systematic way one notices that for a quadratic
Hamiltonian

Ĥ(ψ̄, ψ) = ψ̄ Ĥψ = [
ψ̄ Ĥψ

]T= −ψT Ĥ Tψ̄T= −ψT Ĥ ψ̄T,

where in the third equality we permuted Grassmann numbers and in the last one
employed the time-reversal symmetry Ĥ T = Ĥ . This observation suggests that one
may double the fermionic basis by introducing the time-reversal space. To this end
we define two-component “spinors” as

! = 1√
2

(
ψ

−ψ̄
)
; !̄ = 1√

2

(
ψ̄, ψ

) ; !̄ = !T(iτ̂2), (11.56)

7 The factor 1/(iω) is due to the fact that K R is a response function on the vector potential A, while the con-
ductivity is a response on the electric field, E. The latter is related to the vector potential as E = −∂t A =
iωA.



11.7 Cooper channel 253

where τ̂μ are Pauli matrices acting in the time-reversal space. With this notation
the quadratic fermionic action on the closed time contour may be written as

S =
∫
C
dt !̄

(
iτ̂3∂t − Ĥ

)
!. (11.57)

The fact that the Hamiltonian enters with the unit matrix, i.e. τ̂0, is a manifestation
of TRS. For our problem the Hamiltonian is Ĥ = −∇2

r /(2m)− εF + Vdis(r).
We now proceed exactly as before: (i) split the fields ! and !̄ into forward

and backward components and perform Keldysh–Larkin–Ovchinnikov rotation
(9.22), (9.23); (ii) average over the disorder according to Eq. (11.13); (iii) per-
form a Hubbard–Stratonovich transformation with the help of the Hermitian matrix
Q̌tt ′(r), which is a 4 × 4 matrix in the direct product of the Keldysh and time-
reversal spaces, as well as an N × N matrix in the discretized time space. Since the
Q̌-matrix has the same symmetry as !(t ′)!̄(t) it obeys the symplectic relation

Q̌T = τ̂2 Q̌τ̂2, (11.58)

where the transposition operation involves matrix transposition as well as the
interchange of the two time arguments. The presence of the additional symme-
try (11.58) dictates that the Hubbard–Stratonovich part of the action takes the form
(πν/8τel)Tr{Q̌2}, see Eq. (11.14). Finally one performs Gaussian integration over
the ! and !̄ fields. Since only half of the fermionic fields are independent (due to
the symmetry !̄ = !T(iτ̂2)), it brings in the factor det1/2[Ǧ−1 + iQ̌/(2τel)] (sim-
ilarly to the bosonic Gaussian integral over the real variables, Eq. (2.22)), where
Ǧ−1 = iτ̂3∂t − ξk. Repeating the calculations which brought in the sigma-model
action (11.28), we obtain its generalization for the TRS case:

iS[Q̌] = −πν
8

Tr
{

D(∂̌r Q̌)2 − 4τ̂3∂t Q̌
}
, (11.59)

where the covariant derivative is given by ∂̌r Q̌ = ∇r Q̌ + i[Âτ̂3, Q̌]. Since the
magnetic field breaks TRS, the source vector potential enters the action with
the symmetry-breaking factor τ̂3. If TRS is completely broken by, e.g., a strong
enough magnetic field, the soft-mode manifold acquires the block-diagonal form
Q̌ = diag{Q̂, Q̂T} in time-reversal space, where the Q̂-matrix is the one we used
before in the unitary symmetry class. The action (11.59) reduces then back to
(11.28). In the presence of TRS Q̌ also has the off-diagonal blocks in time-reversal
space which are the additional soft modes or Cooperons.

To parametrize this soft-mode manifold, one notices that the stationary point Q̌-
matrix takes the form �̌ = diag{�̂, �̂T}, which may be written, using Eq. (11.32),
as �̌ = Ǔ−1(σ̂3τ̂0)Ǔ , where Ǔ = Ǔ−1 = diag{Û, ÛT}. The Q̌-matrix may be then
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parametrized as Q̌ = Ǔ−1e−W̌/2(σ̂3τ̂0)eW̌/2Ǔ , cf. Eq. (11.33), where W̌ matrices
acquire structure in time-reversal space. The symplectic symmetry (11.58) dictates
that W̌T = −τ̂2W̌ τ̂2, which leads to

W̌ =
(

Ŵ B̂1

B̂2 −ŴT

)
TR

; B̂T
1 = B̂1 , B̂T

2 = B̂2, (11.60)

where the subscript TR indicates that the displayed structure is in time-reversal
space. To induce a rotation of the (σ̂3τ̂0) matrix, the generator W̌ (and therefore
all three matrices Ŵ, B̂1 and B̂2) must be off-diagonal in the Keldysh space, i.e
W̌(σ̂3τ̂0)+ (σ̂3τ̂0)W̌ = 0. This leads to

Ŵ =
(

0 d cl

d q 0

)
K

; B̂1 =
(

0 c1

cT
1 0

)
K

; B̂2 =
(

0 cT
2

c2 0

)
K

,

(11.61)

where the displayed structure is in Keldysh space (K ). The two-point functions
c1;t t ′(r) and c2;t t ′(r) represent Cooperon modes, while d cl

t t ′(r) and d q
t t ′(r) are the

already familiar diffuson modes. Unlike diffusons, which may be identified as
classical and quantum, the Cooperons (similarly to the fermion fields) lack such
a distinction and are labeled by the Keldysh index a = 1, 2. It is often convenient
to deal with the parametrization (11.60), (11.61) in the energy representation. In
doing so it is important to remember that, due to the chosen Fourier convention
(11.36) and (cT

a )t t ′ = ca;t ′t , the transposition operation in energy space takes the
form

(cT
a )εε′ = ca;−ε′−ε. (11.62)

Substituting the parametrization (11.60), (11.61) into the action (11.59) and
expanding to second order in the dα and ca fields, one obtains the Gaussian
action of the diffuson and Cooperon modes. The diffuson part is exactly that of
Eq. (11.37), while the Cooperon part takes the form

iS [c1, c2] = −πν
2

∑
q,ε,ε′

c1;εε′(−q)
[
Dq2 − iε − iε ′

]
c2;ε′ε(q). (11.63)

As a result, the Gaussian propagator of the Cooperon modes is

〈c2;ε1ε2(q)c1;ε3ε4(−q)〉=− 2

πν

δε2ε3δε1ε4

Dq2 − i(ε1+ ε2)
≡−2

πν
δε2ε3δε1ε4 C(q, ε1+ ε2),

(11.64)
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where the object C(q, ε) = (Dq2 − iε)−1 is called the Cooperon. In the absence
of the magnetic field it is very similar to the diffuson (11.39) and, as was men-
tioned above, provides an additional slow diffusive mode. Perturbations which
break TRS, such as an external magnetic field or magnetic impurities, induce mass
to the Cooperon (but not to the diffusion) and therefore gradually suppress the
corresponding fluctuations.

11.8 Weak localization and scaling

We are now in a position to investigate the first quantum correction to the Drude
conductivity σD = e2νD, Eqs. (11.11) and (11.55). To this end we focus on the
(πνD/8)Tr

{[Âτ̂3, Q̌]2} term of the action (11.59), where Â = γ̂ αAα(t). Other

terms, such as ∼ Tr
{[Âτ̂3, Q̌]∇r Q̌

}
, do not contribute to the one-loop correction

considered here. According to linear response theory (Kubo formula), developed
in Section 9.5 (see also footnote at the end of Section 11.6), the linear conductivity
is given by, cf. Eq. (9.42),

σR(ω) = e2

iω

1

2i

δ2 Z [Acl, Aq]
δAcl

ωδAq
−ω

∣∣∣∣
A=0

,

where both the classical vector potential and the current are directed along, say, the
x-axis. For our purposes Z [Acl, Aq] = (πνD/8)

〈
Tr
{[γ̂ α Aατ̂3, Q̌]2}〉, where the

angular brackets denote averaging over Q̌-matrix fluctuations. First, neglecting all
the fluctuations, one puts the Q̌-matrix at its stationary point �̌ε = diag{�̂ε, �̂

T−ε},
where �̂ε is given by Eq. (11.20) and we employed Eq. (11.62) for the transposition
operation in energy space. The generating function is then given by

Z = πνD

8

∑
ε,ε′

Tr
{(
γ̂ α Aα

ε−ε′ τ̂3�̌ε′−�̌εγ̂
α Aα

ε−ε′ τ̂3
)(
γ̂ β Aβ

ε′−ε τ̂3�̌ε−�̌ε′ γ̂
β Aβ

ε′−ε τ̂3
)}
.

Evaluating the trace and derivatives over the vector potential, one obtains

σR(ω) = −e2πνD

ω

∫
dε

2π
(Fε − Fε+ω) = e2νD = σD,

as expected.
We now expand the two Q̌-matrices to first order in the fluctuations, i.e. Q̌ →

Ǔ−1(σ̂3τ̂0)W̌Ǔ .8 The typical term, resulting from such an expansion, acquires the
form, Fig. 11.3,

8 Expanding one Q̌-matrix to second order in W̌ , while putting the other one to be �̌, produces terms which all
vanish due to the energy integration of purely retarded/advanced functions.
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C1;ε2ε3

T

Acl (ω) Aq (–ω)

C2;ε4ε1

ε1

ε2

–ε4

–ε3

Fig. 11.3 One loop weak-localization correction. The bold square is the local
vertex Tr{Ûε1 γ̂

clÛε2 σ̂−(ÛT)ε3 γ̂
q(ÛT)ε4 σ̂−}, known also as the Hikami box. The

vertical ladder is the Cooperon propagator δ−ε3ε1δ−ε2ε4

∑
q C(q, ω), Eq. (11.64),

between the coinciding spatial points. The fact that its legs cross indicates that the
relevant contraction involves transposition, i.e. it is between cT

1 and c2.

Tr
{
Ǎε1ε2(σ̂3τ̂0)W̌ε2ε3Ǎε3ε4(σ̂3τ̂0)W̌ε4ε1

}
= Aα

ε1−ε2
Aβ
ε3−ε4

× Tr

(
0 Ûε1γ̂

αÛε2 σ̂3(B̂1)ε2ε3

−ÛT−ε1
γ̂ αÛT−ε2

σ̂3(B̂2)ε2ε3 0

)(
0 Ûε3γ̂

β Ûε4 σ̂3(B̂1)ε4ε1

−ÛT−ε3
γ̂ β ÛT−ε4

σ̂3(B̂2)ε4ε1 0

)
,

where

Ǎεε′ ≡ Ǔεγ̂ αAα
ε−ε′ τ̂3Ǔ−1

ε′ (11.65)

and we kept only the Cooper channel generators B̂a , since the diffuson generator Ŵ
does not contribute at this order (due to the energy integration of a purely retarded
function). We put now α = cl and β = q, employ the explicit form (11.32) of the
Ûε-matrix along with the energy transposition convention (11.62) and find for the
coefficient multiplying −Acl

ε1−ε2
Aq
ε3−ε4

:

Tr

(
(Fε1 − Fε2)(c

T
1 )ε2ε3 c1;ε2ε3

−(cT
1 )ε2ε3 0

)
K

(
c2;ε4ε1 F−ε4(c

T
2 )ε4ε1

F−ε3c2;ε4ε1 (F−ε3 F−ε4 − 1)(cT
2 )ε4ε1

)
K

= (Fε1 − Fε2)〈c1;−ε3−ε2c2;ε4ε1〉 + F−ε3〈c1;ε2ε3c2;ε4ε1〉 − F−ε4〈c1;−ε3−ε2c2;−ε1−ε2〉,
where in the last line the angular brackets denote Gaussian averaging over Q̌-
fluctuations according to Eq. (11.64). The last two terms here are proportional to
δε2ε1δε3ε4 and vanish during the energy integrations. The first term, however, has a
very different structure. It is proportional to δ−ε3ε1δ−ε2ε4 and thus to Acl

ε1−ε2
Aq
−ε1+ε2

,
while the Cooperon C ∝ 〈c1;ε1ε4c2;ε4ε1〉 depends on ε4 + ε1 = ε1 − ε2 = ω.
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Collecting all such terms, differentiating over the vector potentials and inte-
grating over (ε1 + ε2)/2, one finally obtains for the one-loop correction to the
frequency-dependent conductivity

δσR(ω) = −e2 D

π

∑
q

1

Dq2 − iω
. (11.66)

Summation over the wavenumber q is due to the fact that the cT
1 and c2 fields are

taken at the same spatial point and thus the Cooperons C(q, ω) of all wavenumbers
contribute equally.

One may notice that for d ≤ 2 the correction to the dc conductivity diverges at
small q. For example, when d = 2 one finds

δσ = − e2

2π2
ln

lφ
lel
, (11.67)

where the upper limit of integration is set by the condition q � 1/ lel. On the other
hand, the lower limit q � 1/ lφ is given either by a phase breaking mechanism
(e.g. due to electron–electron interactions) or by a TRS breaking perturbation, such
as a magnetic field or magnetic impurities. The latter observation implies a weak
field positive magneto-conductivity, which is indeed observed in a wide class of
disordered materials [167]. The divergent nature of the correction indicates that
the metallic fixed point, characterized by small fluctuations around the stationary
point �̌, is unstable. That is, the symmetry breaking does not occur and the Q̌-
matrix field freely rotates around the entire manifold Q̌2 = 1̌. In the language of
the magnetic analogy: the metal corresponds to a ferromagnetic (i.e. spontaneously
broken symmetry) state, while the insulator corresponds to a paramagnetic (i.e.
symmetric) state.

To put these observations at a more quantitative level one may develop the renor-
malization group (RG) treatment of the sigma-model [168, 143, 144, 166], see
Section 8.4. To this end one splits the Q̌-matrix degrees of freedom into slow and
fast ones, integrates out the fast ones, and then rescales the phase space and the
fields to recast the action into the initial form, albeit with renormalized constants.
A way to implement it is to write the Q̌-matrix as, cf. Eq. (11.33),

Q̌ = Ǔ−1
s ◦ e−W̌f/2 ◦ (σ̂3τ̂0) ◦ eW̌f/2 ◦ Ǔs, (11.68)

where the slow degrees of freedom Ǔs are not restricted to the specific form (11.32),
but rather encode an arbitrary slow Q̌s = Ǔ−1

s (σ̂3τ̂0)Ǔs matrix. The rotation gener-
ators W̌f, having the structure of Eqs. (11.60) and (11.61), represent now the fast
degrees of freedom.



258 Disordered fermionic systems

One now rescales r → br, t → bzt , where b is the contraction factor of the
momentum space. The scaling dimension of W̌f, Ǔs and Q̌ is z, which is con-
sistent with the fact that

∫
dt ′′ Q̌tt ′′ Q̌t ′′t ′ = δ̌t,t ′ . From here one deduces the bare

scaling dimensions of the two constants in the action (11.59), g ≡ νD and ν

to be [g] = d − 2 and [ν] = z. Next one expands the action in powers of W̌f

and integrates over the fast degrees of freedom. To second order one encounters
terms like g

〈
Tr{Ǔs∇rǓ−1

s (σ̂3τ̂0)W̌fǓs∇rǓ−1
s (σ̂3τ̂0)W̌f}

〉
Wf

. They are represented by

the diagram of Fig. 11.3 with Ǔs∇rǓ−1
s staying instead of the vector potential Â.

The calculations thus exactly follow the ones given above, with the only difference
that the momentum summation in Eq. (11.66) is limited to the shell � < q < b�
of the fast degrees of freedom. Putting b = el ≈ 1 + l, where l = ln b is an
infinitesimal increment, one obtains the RG equation for g:

d ln g

dl
= ε − 1

2π2g
+ · · · = β(g), (11.69)

where ε = d−2 and the constant 1/2π2 is taken from the d = 2 result (11.67). The
time derivative term in the action has a somewhat different structure. Its expansion
brings terms like ν

〈
Tr{Ǔs∂t Ǔ−1

s (σ̂3τ̂0)W̌fW̌f}
〉
Wf

, which may be shown to vanish
due to the energy integration of the purely retarded function. The same is true in
all higher orders, leading to the absence of renormalization for ν beyond the bare
scaling. This is natural, since the disorder is not expected to alter the density of
states (unlike the diffusion constant).

One is therefore left with the single parameter scaling description [168], given
by Eq. (11.69). The RG flow suggested (since our calculations are valid only for
g � 1, in units of e2/�) by Eq. (11.69) is schematically depicted in Fig. 11.4. One

gln
gc

d = 3

β

d = 2

d = 1

1

–1

Fig. 11.4 One parameter scaling theory of localization, after [168]. The scaling
function β = d ln g/dl vs. ln g for d = 1, 2, 3 (full lines) and d = 2 + ε (dotted
line). The arrows show the directions of RG flow.
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notices that for d ≤ 2 the conductance g decreases with RG rescaling, indicating
that a large enough system is always localized. On the other hand, for d > 2 there
is a critical conductance gc above which the system tends to be metallic. The latter
means that the conductance g → Ld−2, when the system size L → ∞, which is
exactly what is expected from Ohm’s law. In the ε-expansion, i.e. for ε � 1, the
critical conductance is large, gc ∼ 1/ε, validating the perturbative RG calculations.
In particular the correlation (i.e. localization) length diverges as ξ ∝ (gc − g)−ν ,
where the critical exponent ν (not related to DOS) is ν−1 = dβ/d ln g

∣∣
gc
≈ ε, see

Eq. (11.69).
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Mesoscopic effects

The physical properties of small metallic devices exhibit sample-to-sample fluc-
tuations due to random realizations of the disorder potential. We first study
fluctuations of the electron spectrum and density of states, deriving Altshuler–
Shklovskii and Wigner–Dyson statistics (the oscillatory part of the latter requires
careful consideration of non-classical stationary points of the sigma-model). We
then characterize mesoscopic fluctuations of the current, including a universal
result for small bias conductance, as well as large bias fluctuations of the current–
voltage characteristics. Following Nazarov, we consider full counting statistics of
quasi-1d diffusive wire and derive the Dorokhov distribution of the eigenvalues of
its transmission matrix. Finally, we introduce a generic tunneling action, which is
used to study full counting statistics and dynamics of charge transfer through an
open chaotic cavity.

12.1 Spectral statistics

Consider a disordered metallic grain of size L such that L � lel, where lel = vFτel

is the elastic mean free path. The spectrum of the Schrödinger equation consists of
a discrete set of levels, εn , that may be characterized by the sample-specific density
of states (DOS), ν(ε) =∑

n δ(ε−εn). This quantity fluctuates strongly and usually
cannot (and doesn’t need to) be calculated analytically. One may average it over
realizations of disorder to obtain a mean DOS: 〈ν(ε)〉dis. The latter is a smooth
function of energy on the scale of the Fermi energy and thus may be taken as a
constant 〈ν(εF)〉dis ≡ ν. This is the DOS that was used in the previous chapter.1

One may wonder how to describe sample-to-sample (i.e. mesoscopic) fluctua-
tions of the DOS ν(ε) and, in particular, how much a given spectrum at one energy

1 Actually, in this section we use the total DOS, not normalized per unit volume and thus having dimensionality
of one over energy.

260
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ε is correlated with itself at another energy ε′. To answer this question one may
calculate the spectral correlation function

R(ε1, ε2) ≡
〈
(ν(ε1)− ν)(ν(ε2)− ν)

〉
dis = 〈ν(ε1)ν(ε2)〉dis − ν2. (12.1)

This function was calculated by Altshuler and Shklovskii [169]. Here we discuss it
using the Keldysh non-linear sigma-model.

Since for a single quantum level GR − GA = −2π iδ(ε − ε0), see Eqs. (9.27a)
and (9.27b), DOS may be written, as

ν(ε) = i

2π
Tr{GR(ε)− GA(ε)} = 1

2π
Tr{〈ψ1ψ̄1〉 − 〈ψ2ψ̄2〉} = − 1

2π

〈 �̄!σ̂3 �!
〉
,

where the angular brackets denote quantum (as opposed to disorder) averaging and
the indices are in Keldysh space. To generate a DOS at any given energy one adds
a source term

iS[J ] = −
∑
ε

Jε

∫
dr �̄!(ε, r)σ̂3 �!(ε, r) =−

∫∫
dtdt ′

∫
dr �̄!(r, t)Jt−t ′ σ̂3 �!(r, t ′)

to the fermionic action (9.30). After averaging over disorder and changing to the
Q̂-matrix representation, the DOS source term is translated to

iSDOS[J ] = πν

∫
dε

2π
Jε

∫
dr Tr{Q̂εε(r)σ̂3}. (12.2)

Then the DOS is generated by ν(ε) = δ〈Z [J ]〉dis/δ Jε . It is now clear that
〈ν(ε)〉dis = 1

2ν〈Tr{Q̂εεσ̂3}〉Q . Substituting Q̂εε = �̂ε , Eq. (11.20), one finds
〈ν(ε)〉dis = ν, as it should be, of course. It is also easy to check that the fluctua-
tions around �̂ do not change the result (all the fluctuation diagrams cancel owing
to the causality constraints). We are now in a position to calculate the correlation
function (12.1),

R(ε1, ε2) ≡ δ2〈Z [J ]〉dis

δJε1δJε2

− ν2 = ν2

[
1

4

〈
Tr{Q̂ε1ε1 σ̂3}Tr{Q̂ε2ε2 σ̂3}

〉
Q
−1

]
. (12.3)

Employing the parametrization (11.33) of the Q̂-matrix and expanding up to
second order in the diffusive fluctuations Ŵ , one finds

Tr
{

Q̂ε1ε1 σ̂z
} = 1

2

[
4− 2Fε1d q

ε1ε1
− 2d q

ε1ε1
Fε1 +

∑
ε

(
dcl
ε1ε

d q
εε1
+ d q

ε1ε
dcl
εε1

)]
. (12.4)

Since 〈d qd q〉W = 0, the only non-vanishing terms contributing to Eq. (12.3) are
those with no dcl and d q at all (they cancel the −ν2 term in Eq. (12.1)) and those
of the type 〈dcld qdcld q〉W . Collecting the latter terms one finds

R(ε1ε2) = ν2

16

∫
dr

∑
ε,ε′

〈(
dcl
ε1ε

d q
εε1
+ d q

ε1ε
dcl
εε1

) (
dcl
ε2ε

′d
q
ε′ε2

+ d q
ε2ε

′dcl
ε′ε2

)〉
W
. (12.5)
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Now one has to perform Wick’s contractions, using the correlation function
〈dcl

εε′d
q
ε′ε〉W ∝ DR(q, ε − ε′), which follows from Eq. (11.38), and also take into

account that
∫

dε [DR(A)(q, ε − ε1)]2 = 0, owing to the integration of a function
which is analytic in the entire upper (lower) half-plane of ε. Due to the last observa-
tion, the only surviving Wick contractions are those where both energy summations
in Eq. (12.5) are killed by the restrictions δε,ε1 and δε′,ε2 , or vice versa. As a result,

R(ε1, ε2) = 1

4π2

∑
q

[(
DR(q, ε1 − ε2)

)2 + (
DA(q, ε1 − ε2)

)2
]
, (12.6)

where the momentum summation stands for a summation over the discrete modes
of the diffusion operator D∇2

r with the zero current (zero derivative) boundary
conditions at the edge of the metallic grain. This is the result of Altshuler and
Shklovskii [169] for the unitary symmetry class.2 Note that the correlation function
R(ε1, ε2) depends only on the energy difference ω = ε1 − ε2. A diagrammatic
representation of the R(ε1, ε2) function is shown in Fig. 12.1. Adopting an explicit
form of the diffusion propagator, we find the spectral correlation function in the
form

R(ω) = 1

2π2
Re

∑
n

1(
Dq2

n − iω
)2 , (12.7)

Jε Jε′

DR(q, ε–ε′)

DR(q,ε–ε′)

Fig. 12.1 Diagram representing mesoscopic fluctuations of the density of
states, R(ε1, ε2), Eq. (12.3). It is generated from the Wick contraction
〈dcl
ε1ε

d q
εε1 d q

ε2ε
′dcl
ε′ε2
〉W → 〈dcl

ε1ε
d q
ε2ε

′ 〉W 〈d q
εε1 dcl

ε′ε2
〉W ∝ [DR(q, ε1 − ε2)]2δε1ε

′δε2ε ,
see Eq. (12.5). There is also a similar diagram for the advanced diffusons.

2 In the orthogonal symmetry class with unbroken time-reversal symmetry, Section 11.7, there are additional
degrees of freedom – the Cooperon modes. They lead to the additional contribution to the correlation function
(12.6), where DR(A)(q, ε1 − ε2)→ CR(A)(q, ε1 − ε2), see Eq. (11.64). Since in the absence of the magnetic
fields the diffuson D and the Cooperon C have the same analytic form, the correlation function R(ε1, ε2) in the
orthogonal case is twice as big as in the unitary one.



12.1 Spectral statistics 263

where, e.g. for a rectangular grain, the wavenumbers of the diffusion operator are
quantized as q2

n =
∑

μ π
2n2

μ/L2
μ, with μ = x, y, z ; nμ = 0, 1, 2, . . . and Lμ are

the spatial dimensions of the mesoscopic sample.
For a small energy difference ω � ETh = D/L2

μ, where ETh is known as the
Thouless energy, only the lowest homogenous mode, qn = 0, of the diffusion oper-
ator (the so-called zero mode) may be retained: R(ω) = −1/(2π2ω2). This result
is universal, in a sense that it does not depend on any microscopic details of the
metallic grain. The fact that the correlation function is negative means that the
energy levels are less likely to be found at a small distance ω from each other.
This is a manifestation of the energy level repulsion. Note that the correlations
decay very slowly – as the inverse square of the energy distance. In fact this result
is a part of the celebrated random matrix theory (RMT) statistics [170]. The ran-
dom matrix prediction for the unitary symmetry class, known as Wigner–Dyson
statistics, reads as

RRMT(ω) = −1− cos(2πω/δ)

2π2ω2
, (12.8)

where δ = 1/〈ν〉dis is the mean level spacing. In addition to the −1/(2π2ω2) term
obtained above, it contains the oscillatory function of the energy difference with
period δ. These oscillations reflect the discreteness of the underlying energy spec-
trum. They also regularize the behavior of the correlation function at small energy
difference ω → 0. The oscillatory term cannot be found in the framework of
perturbation theory in small fluctuations around the stationary configuration �̂.
However, it may be recovered once additional stationary configurations are taken
into account [171]. We discuss its derivation in the next section.

For larger energy difference ETh � ω � 1/τel, one may substitute summation
over the discrete spectrum of the diffusion operator in Eq. (12.7) by integration
over q. This way one finds R(ω) ∝ −E−d/2

Th ωd/2−2. To discuss this result it is
convenient to look at the mean square fluctuation of the number of energy levels
in the energy window E , defined as �(E) = ∫∫ E

0 dε1dε2 R(ε1 − ε2). If the energy
level sequence were completely random, i.e. Poisson distributed, it would result in
�P(E) = E/δ, where the subscript stands for Poisson. The random matrix result
(12.8) means �RMT(E) ∝ ln(E/δ)� �P(E), where δ � E � ETh. This signifies
a spectacular rigidity of the energy spectrum, due to the level repulsion at energies
less than the Thouless energy. At larger energies, ETh � ω � 1/τel, we found that
�AS(E) ∝ (E/ETh)

d/2. The Altshuler–Shklovskii variance is much larger than
the RMT prediction, but still much less than the Poisson limit. This shows that
the spectral rigidity persists for beyond the Thouless energy, but takes a different
(softer) form than the RMT prediction. Such a level statistics in the intermediate
range of energies is essentially responsible for mesoscopic fluctuations of many
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physical quantities. Some examples are given below, for reviews see [165, 134,
172].

12.2 Wigner–Dyson statistics

Here, following Altland and Kamenev [173], we discuss how the oscillatory part
of RMT Wigner–Dyson statistics (12.8) may be derived in the framework of the
Keldysh non-linear sigma-model. As explained above, RMT appears as the q = 0
limit of the generic spectral statistics. The corresponding action may be thus limited
to spatially uniform configurations of the Q̂εε′-matrix field and takes the form, cf.
Eq. (11.28),

iS[Q̂] = −iπν
∑
ε

Tr
{
(ε̂ + i Ĵε)Q̂εε

}
, (12.9)

where Ĵε is the source field, introduced in Eq. (12.2).3 The perturbative calculation,
which leads us to the smooth part of RMT statistics, was done by considering Gaus-
sian fluctuations around the classical stationary point, Eq. (11.20), of the action
(12.9). Here we show that the oscillatory part originates from taking into account
other non-classical stationary points.

Notice that the distribution function Fε does not show up in the calculations of
the previous section. This is natural, since we discuss the spectrum of the non-
interacting system, which is completely independent of the occupation numbers.
We can thus put Fε = 0 without loss of generality. It is also convenient to dis-
cretize the energy ε with the small step δε , such that the relevant energy interval
−ETh < ε < ETh is divided into K = 2ETh/δε � 1 intervals. Then the Q̂-matrix
is understood as a 2K×2K matrix in the product of the energy and Keldysh spaces.

Variation of the action (12.9) with respect to Q̂ under the non-linear constraint
Q̂2 = 1 leads to the stationary point equation [ε̂, Q̂] = 0, see Section 11.4. It

is solved by any diagonal matrix, but the non-linear constraint Q̂2 = 1 restricts
acceptable solutions to Q̂ = diag{±1, . . . ,±1;±1, . . . ,±1}, in total 22K distinct

configurations. The causality constraint, i.e. the demand for [Ĝ−1 + i/2τel Q̂]−1

to be diag{GR,GA} in Keldysh space, Section 11.3, selects the single classical
configuration �̂ = diag{1, . . . , 1;−1, . . . ,−1}. It is clear that the action (12.9) of
such a classical configuration is zero, S[�̂] = 0 (in the absence of the source Ĵε),
in agreement with the general structure of the theory, see Eq. (2.53).

To calculate the contribution of Gaussian fluctuations around the classical sta-
tionary point, one parametrizes the Q̂-matrix manifold as in Eqs. (11.33) and

3 In Eq. (12.2) we have chosen it as Ĵε = Jε σ̂3 to generate the GR
ε −GA

ε combination. Here it is more convenient
to keep it as a generic, but still diagonal in energy and the Keldysh space matrix.
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(11.34). Expanding to second order in the diffuson modes dcl and d q, one finds
for the zero-dimensional action (12.9), cf. Eq. (11.37),

iS[dcl, d q] = −i
πν

2

K∑
l,l ′=1

d q
ll ′
(
ε−l − ε+l ′

)
dcl

l ′l, (12.10)

where ε±l = εl ± i0 and we ignored the source part Ĵε . Performing Gaussian
integration, one finds for the corresponding contribution to the partition function

Z0 ∝
∏
l,l ′

1

ε−l − ε+l ′
= exp

⎧⎨⎩−∑
ε,ε′

ln(ε − ε ′ − i0)

⎫⎬⎭ = 1, (12.11)

where we adopted the generic statement that the energy integral of a purely retarded
or advanced function must be zero, see also the discussion after Eq. (2.52a). To
show it explicitly, one has to involve a specific regularization of the high-energy
behavior of the DOS, which renders convergence to the integral. It is possible to
do, for example, for Gaussian RMT, where the average DOS takes a form of a
semicircle [170]. The explicit calculation then shows [173] that indeed Z0 = 1. It
must be the case, however, for any physical regularization, because of the causality
structure of the Keldysh correlation functions. Also, according to general princi-
ples, the exact partition function must be equal to unity, Z = 1. This means that all
the other 22K − 1 non-classical stationary points do not contribute to the partition
function. They (or rather one of them) still do contribute to the correlation function
(12.3).

Consider a non-classical stationary point, where the εl ′ = ε1 position in the
retarded block and εl = ε2 position in the advanced block have the flipped signs, i.e.

ˆ̃
� = diag

{
1, 1, . . . , 1,−1, 1, . . . , 1︸ ︷︷ ︸

K retarded positions

; −1,−1, . . . ,−1, 1,−1, . . . ,−1︸ ︷︷ ︸
K advanced positions

}
.

(12.12)
We also need to specify the diagonal source matrix, which is chosen to have J1

in the retarded ε1 and −J2 in the advanced ε2 positions, with all other positions
being zero Ĵε = diag{0, . . . , J1, . . . , 0; 0, . . . ,−J2, . . . , 0}. This source is tailored
to produce GR

ε1
GA
ε2
= δ2 Z [ Ĵ ]/δ J1δJ2. The spectral correlation function (12.1) is

then obtained as R = −2Re[GR
ε1

GA
ε2
]/(2π)2. We look now for the contribution of

the non-classical stationary point (12.12) to the generating function Z [ Ĵ ].
First, the action S[ ˆ̃�] is not zero any more. This is allowed, since the field config-

uration ˆ̃
� is not classical. Comparing the action S[ ˆ̃�] with S[�̂] = 0, one notices

that the former differs by 2πνε1, due to the flipped sign of the retarded ε1 posi-
tion, and by −2πνε2, due to the flipped sign of the advanced ε2 position. Finally
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S[ ˆ̃�] = 2πν(ε1 − ε2). We look now for the contribution of the Gaussian fluc-
tuations. Inspecting Eqs. (12.10) and (12.11), one understands that each pair of
energies with the opposite signs of Q̂

ε
brings in the factor (εl − εl ′)

−1. The pairs

with the same signs of Q̂
ε

do not contribute at all, since the corresponding +1̂ and

−1̂ sub-blocks of Q̂ do not allow for any non-trivial rotations. Most of the energy

pairs in ˆ̃
� are the same as in �̂, and therefore the fluctuation factor is almost the

same, i.e. Z0, Eq. (12.11). One has to correct, though, for the flipped signs of the
retarded ε1 and advanced ε2 positions. As a result,

Z̃ [ Ĵ ] = Z0

∏
εl 
=ε2

ε−l − ε+1
ε−l − ε2 + iJ2

∏
εl′ 
=ε1

ε+l ′ − ε−2
ε+l ′ − ε1 − iJ1

eiS[ ˆ̃�]

=
∏

l

ε−l − ε+1
ε−l − ε2 + iJ2

∏
l ′

ε+l ′ − ε−2
ε+l ′ − ε1 − iJ1

iJ2

ε−2 − ε+1

−iJ1

ε+1 − ε−2
eiS[ ˆ̃�]

= − J1 J2

(ε1 − ε2)2
e2π iν(ε1−ε2) = − J1 J2

ω2
e2π iω/δ. (12.13)

The εl-product in the first line runs over all advanced positions, safe for ε2 and cor-
rects for (i) the fact that one should not have included terms (ε−l −ε+1 )−1 in Z0, since
the retarded ε1 position has now a −1 sign and (ii) instead one needs to include
(ε−l −ε2+ iJ2)

−1 terms, since the advanced ε2 position has now a+1 sign. We have
also taken into account the source, −iJ2, which shifts the ε2 energy, see Eq. (12.9).
Similarly, the εl ′-product runs over all retarded positions and achieves similar cor-
rections. In the second line in Eq. (12.13) we took into account that Z0= 1 and
completed the two products by one term each, to make them unrestricted. In the
third line, we again used the fact that the unrestricted product may be written as∏

l . . . = exp{∑ε . . .} = 1, see Eq. (12.11), due to the energy integration of purely
retarded or advanced functions.

We now employ the fact that the corresponding contribution to the correlation
function is given by R = −(2π2)−1Re δ2 Z̃ [ Ĵ ]/δ J1δJ2 to find that the two station-

ary points �̂ and ˆ̃
� lead exactly to the RMT Wigner–Dyson correlation function

(12.8). Notice that Z̃ [ Ĵ ] ∝ J1 J2, where J1 and J2 are sources at the two energies
where the signs of the stationary point matrix were flipped. The first observation

is that the non-classical saddle point ˆ̃� indeed does not contribute to the partition
function Z̃ [0] = 0. Another observation is that, if one flips any other sign, save
the ε1 and ε2 positions, the corresponding contribution to the generating function is
bound to be zero. Indeed, the source was chosen to be non-zero only for those two
energies. In other words, it is the structure of the observable (and thus the source
field) which selects a non-classical stationary point which matters. As a corollary:



12.3 Universal conductance fluctuations 267

different observables call for different non-classical stationary configurations to be
included.

The stationary point calculation requires a large action, which in our case means
ω/δ � 1. Therefore our method is only applicable for the energy window δ <

ω < ETh. The fact that we were able to obtain the exact result (12.8), valid down to
zero energy, is a peculiarity of the unitary symmetry class. The exact results down
to zero energy may be obtained with the supersymmetry [151] and, in some cases,
with the replica [149] technique. It is still an open problem to achieve this with the
Keldysh technique. Another open question is a manifestation of the non-classical
stationary points in electron–electron interaction effects.

12.3 Universal conductance fluctuations

One of the most spectacular manifestations of mesoscopic fluctuations is sample
to sample variations of electric conductance [165, 174]. In practice small changes
of some external parameter, such as magnetic field, carrier density, impurity con-
centration, etc., play the role of switching between the samples. They lead thus
to random, but completely reproducible, fluctuations of the conductance around
its mean value gD = e2νD/L , where the DOS ν is understood as being inte-
grated over the cross-section of the sample and L is its length along the current
carrying direction. Our goal is to calculate the variance of such fluctuations,
δg = √〈(g − gD)2〉dis. The remarkable observation, first made by Altshuler [175],
and Lee and Stone [176], is that at low enough temperature the variance is univer-
sal,4 δg ∝ e2/�, where the proportionality coefficient weakly depends on geometry,
but is independent of the average conductance gD and other microscopic details.
The effect is known as universal conductance fluctuations (UCF).

Here we follow the approach of Larkin and Khmel’nitskii [178], who calcu-
lated the second moment of the current K (V1, V2) = 〈J (V1)J (V2)〉dis at two
arbitrary voltages. The conductance variance is obtained as the small voltage
limit K = (δg)2V1V2. To perform this calculation it is convenient to intro-
duce two replicas of the system which have the same realization of the disorder
potential, but may have different external fields, such as, e.g., applied voltage
or vector potential. The generating function depends thus on two sets of the
applied fields Z [Vs,As], where s= 1, 2 is the replica index. We use it to gen-
erate the current correlator by differentiation over the quantum components Aq

1

and Aq
2, see Eq. (11.49). Since both replicas have the same realization of the

disorder, the averaging procedure of Section 11.2 mixes between them and the

4 The higher moments and, more generally, the conductance distribution function also exhibit a certain degree of
universality [177].
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Q̌-matrix acquires non-diagonal structure in replica space. Yet the stationary point
is replica-diagonal, �̌ = diag{�̂1, �̂2}. In particular, its Keldysh block is diago-
nal, 2F̂ = diag{2F(V1), 2F(V2)}, where F(Vs) is the non-equilibrium distribution
function (11.10), which solves the stationary point diffusion equation with the
proper boundary conditions.

To account for UCF one needs to take into account replica-off-diagonal fluctua-
tions of the Q̌-matrix around such a steady state non-equilibrium stationary point.
First we define the current–current correlation function as

K (V1, V2) = −e2

4

δ2 Z [Vs,As]
δAq

1δAq
2

∣∣∣∣
Aq

s=0

= −e2

4
πνD

〈
Tr
{
γ̂ q Q̌12γ̂ q Q̌21

}〉
Q

+ e2

4
(πνD)2

〈
Tr
{
(Q̌∇r Q̌)11γ̂ q

}
Tr
{
(Q̌∇r Q̌)22γ̂ q

}〉
Q
, (12.14)

where the superscripts are replica indices and traces run over the energy and
Keldysh spaces. Here we have used Eqs. (11.46) and (11.48) to differentiate the
action. We expand now each of the traces on the right hand side to second order in
the diffuson generators d̂cl and d̂ q, Eqs. (11.33) and (11.34), which are now 2× 2
matrices in replica space.5 Keeping only the terms which do not cancel (but rather
double) between the diffuson and Cooperon channels, one finds

Tr
{
(Q̌∇r Q̌)ss γ̂ q

} ∼=∑
ε,ε′

(∇r Fs
ε

)[
(dcl

εε′)
ss′(d q

ε′ε)
s′s + (d q

εε′)
ss′(dcl

ε′ε)
s′s
]
,

Tr
{
γ̂ q Q̌12γ̂ q Q̌21

} ∼=∑
ε,ε′

2(dcl
εε′)

12(dcl
ε′ε)

21,

where we have omitted the d qd q terms, since they vanish upon Q̌-integration. We
now substitute these expressions into Eq. (12.14) and perform averaging over the
fluctuating diffuson modes dcl(q) according to Eqs. (11.38) and (11.40). In doing so,
we employ that the gradient of the stationary non-equilibrium distribution (11.10)
is a constant in space. Integrating then twice over the length of the wire L , the
result may be written in the Fourier representation

5 Since we calculate directly the dc current (unlike the linear response diagrammatics [175, 176], which deals
with the low-frequency ac response), we should be careful not to include thermodynamic persistent currents.
The latter, though almost zero in average, have mesoscopic fluctuations comparable to that of the dissipative
currents [179] we are after. One way to exclude them is to work consistently in the time-reversal symmetric
(orthogonal) ensemble, where the thermodynamic currents are absent. Then the Cooperon contributions are
similar to the diffuson ones. One may show that the diffuson and Cooperon terms mutually cancel each other
if one expands each of the two Q̌-matrices in Tr

{
(Q̌∇r Q̌)ss γ̂ q} to first order in W̌ , but that they double the

result if one expands one of the Q̌-matrices to second order in W̌ , while putting the other one to be �̌. For
the Tr

{
γ̂ q Q̌12γ̂ q Q̌21} term the situation is exactly opposite, i.e. only the term with each of the Q̌-matrices

expanded to first order survives.
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L2 K (V1, V2) = (2eD)2
∑
ε,ε′;q

[∣∣DR(q, ω)
∣∣2+ 1

2
Re

(
DR(q, ω)

)2
]
(∇r F1

ε )(∇r F2
ε′),

(12.15)
where ω = ε − ε′ and ∇r Fs

ε = (Feq
ε−eVs

− Feq
ε )/L and we took into account the

factor of two, due to the Cooperon modes.
Let us first analyze this result in the linear response regime, where the distri-

bution function may be approximated as ∇r Fs
ε ≈ −∂εFeq

ε eVs/L , see Eq. (11.10).
Since the conductance is given by g = J/V , one finds for the conductance variance

〈(δg)2〉dis = K (V1, V2)/V1V2 = g2
1 +

1

2
g2

2, (12.16)

where

g2
1 =

(
2e2 D

π�L2

)2 ∫ +∞

−∞
dω

2T
F
( ω

2T

)∑
q

1(
Dq2

)2 + ω2
, (12.17a)

g2
2 =

(
2e2 D

π�L2

)2 ∫ +∞

−∞
dω

2T
F
( ω

2T

)
Re

∑
q

1(
Dq2 − iω

)2 , (12.17b)

and F(x) = [x coth(x) − 1]/ sinh2(x) = 1
4

∫
dy∂ytanh(y + x

2 )∂ytanh(y − x
2 ).

Notice that
∫

dx F(x) = 1 and thus at a low temperature T � ETh = D/L2 the
F(x) function may be regarded as a delta-function. As a result, at low temperature

g2
1 = g2

2 =
(

2e2

π�

)2 ∑
q

1(
Lq)4

. (12.18)

The q-summation should be understood as a sum over eigenvalues of the dif-
fusion operator within the metal, with zero boundary conditions at the metallic
contacts (no diffuson fluctuations) and zero current boundary conditions at the con-
tacts with an insulator. For example, for a quasi-one-dimensional wire of length L
with metallic leads the quantization condition is q L = πn, where n = 1, 2, . . .
and thus

∑
q(Lq)−4 = 1/90. Therefore we found that the conductance variance

〈(δg)2〉dis = cd(e2/2π�)2, where cd is a dimensionality and geometry dependent
coefficient, e.g. c1 = 4/15 (notice that we deal here with the spinless carriers).
The fact that this coefficient is insensitive to the strength of disorder constitutes the
essence of universality of conductance fluctuations.

At a higher temperature T � ETh, one may put F(x) ≈ F(0) = 1/3 and find

g2
1 ≈

(
2e2

π�

)2
ETh

T

π

6

√
T/D∑
q

1(
Lq)2 + (L/Lφ)2

, (12.19)

while g2
2 � g2

1. Here we have introduced the dephasing length Lφ(T ) as
a long-distance cutoff, which exists, e.g., due to electron–electron interactions
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[180, 181]. Therefore the conductance variance decreases with temperature as
(ETh/T )min{1, (EThτφ)

1−d/2}, where τφ = L2
φ/D, in d ≤ 2. In the case 2 < d < 4

the conductance variance scales as (ETh/T )2−d/2. This is a reflection of the fact that
the spectral statistics partially loses its rigidity at energies larger than the Thouless
energy, Section 12.1.

For Vs > ETh and T = 0 the energy integrals in Eq. (12.15) are restricted
to the intervals 0 < ε < eVs due to the factors ∇r Fs

ε = (Feq
ε−eVs

− Feq
ε )/L .

One can then define the correlation function of the differential conductances as
Kg = ∂V1∂V2 K (V1, V2) [178]. Since the voltages enter only as the upper limits of
integrations over ε and ε′, the differentiation simply removes the energy integrals.
As a result one finds for, e.g., the

∣∣DR(q, ω)
∣∣2 part of the correlation function

Kg =
(

2e2

π�

)2 ∑
q

1(
Lq)4 + e2(V1−V2)

2

E2
Th

∝
(

e2

�

)2 (
ETh

e|V1 − V2|
)2−d/2

, (12.20)

where in the last approximate equality we assumed e|V1 − V2| > ETh and
substituted the eigenvalue summation by integration. The variance of the ran-
dom part of the current–voltage characteristic is given by 〈(δJ (V ))2〉dis =∫∫ V

0 dV1dV2 Kg(V1, V2) ≈ (e2/�)2
[
V (ETh/e) + V d/2(ETh/e)2−d/2

]
, where the

first term on the right hand side comes from the diagonal e|V1 − V2| � ETh,
and the second one comes from the off-diagonal long-range correlations. For
eV � ETh, the diagonal part dominates in dimensions d < 2, leading to |δ J (V )| ∝
(e2/�)

√
V ETh/e. This means that the current–voltage characteristics executes a

random walk with the voltage “step” ETh/e and the corresponding current “step”
eETh/� in a random direction. (There is of course a linear, non-random part of the
current–voltage curve, 〈J (V )〉dis = gDV .) For dimensions d > 2 the long-range
part dominates the correlator and one finds |δJ (V )| ∝ (e2/�)V d/4(ETh/e)1−d/4.
Therefore the random part is much more profound and the deviations from the
linear current–voltage characteristic scale as |δJ (V )| ∝ V 3/4 in d = 3.

12.4 Full counting statistics in a disordered wire

In this section we discuss the statistics of quantum fluctuations of the current
through a disordered mesoscopic wire. We have already encountered this problem
in Section 10.3, where we dealt with the full counting statistics of a single quantum
channel characterized by the tunneling probability |t|2. We arrived at the conclu-
sion that the transmitted charge exhibits a binomial distribution, with the generating
function Z(η) given by Eq. (10.35). A disordered quasi-one-dimensional wire may
be considered as a collection of quantum channels with transmission probabilities
being randomly distributed, reflecting the randomness of the quenched disorder
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potential in the wire. Our goal here is to calculate the generating function of the
current cumulants, which leads to shot noise, third moment, etc. We shall find
that it may be obtained from the single channel result (10.35) by averaging it over
a certain distribution of transmissions P(|t|2), known as the Dorokhov distribu-
tion [182]. Both the distribution function itself and the way it emerges from the
non-linear sigma-model [183] are rather educating.

Consider two leads with the chemical potentials shifted by an externally applied
voltage eV and connected to each other by a diffusive quasi-one-dimensional
wire of length L . The wire conductance is gD = σD/L . Electron transport
along the wire is fully described by the disorder-averaged generating function
Z [η] = ∫

D[Q̂] exp(iS[Q̂, Aη]). The action is given by (11.42), while the auxiliary
vector potential Âη enters the problem through the covariant derivative (11.43). We
choose Âη to be purely quantum, i.e. without the classical component, as

Âη(t) = γ̂ q

2L

{
η, 0 < t < t0,
0, otherwise. (12.21)

Here the quantum Keldysh matrix γ̂ q is given by (9.35) and η is the already famil-
iar, see Section 10.3, counting field. The action S[Q̂, Aη] is accompanied by the
boundary conditions on the Q̂(x)-matrix at the two ends of the wire:

Q̂(0) =
(

1 2Fε
0 −1

)
, Q̂(L) =

(
1 2Fε−eV

0 −1

)
. (12.22)

Knowing Z [η] one can find then any moment 〈qn〉 of the charge transferred
between reservoirs during the time of measurement t0 via differentiation of Z [η]
with respect to the counting field η. The irreducible cumulants are defined as
C1 = 〈q〉 = q0 and Cn = 〈(q − q0)

n〉 with n = 2, 3, . . ., where q = ∫ t0
0 J (t)dt and

q0 = t0gDV = t0〈J 〉, where gD is the average diffusive conductance. They may
be found through the expansion of the logarithm of Z [η] in powers of the counting
field:

ln Z [η] =
∞∑

n=1

(iη)n

n! Cn. (12.23)

We calculate Z [η] in the stationary path approximation. The latter disregards both
the localization effects and mesoscopic fluctuations of the counting statistics. That
is, Cn , which we are after, are disorder-averaged moments of the quantum fluc-
tuations. To this end we look for a stationary configuration Q̂ which extremizes

the action S[Q̂, Aη], with the boundary conditions (12.22). The difficulty is that
the action S[Q̂, Aη] depends explicitly on the quantum vector potential Aη and the
solution of the corresponding stationary point equation is not known for an arbi-
trary Aη. This obstacle can be overcome by realizing that the spatially uniform
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vector potential (12.21) is a pure gauge and it can be gauged away from the action
S[Q̂, Aη] → S[Q̂η] by the gauge transformation

Q̂(x ; t, t ′) = e ix Âη(t) Q̂η(x ; t, t ′) e−ix Âη(t ′). (12.24)

It comes with a price though: the boundary conditions (12.22) change accordingly,

Q̂η(0) = Q̂(0), Q̂η(L) = e−iηγ̂ q/2 Q̂(L) e iηγ̂ q/2. (12.25)

The advantage of this transformation is that the stationary path equation for Q̂η,
which is nothing else but the Usadel equation (11.29)

D
∂

∂x

(
Q̂η

∂ Q̂η

∂x

)
= 0, (12.26)

can be solved explicitly now. To this end notice that, according to Eq. (12.26),
Q̂η∂x Q̂η = −∂x Q̂η Q̂η = Ĵ is a constant, i.e. x-independent, matrix. Since
Q̂2
η = 1̂, Ĵ anti-commutes with Q̂η, i.e. Q̂η Ĵ + Ĵ Q̂η = 0. As a result, one finds

Q̂η(x) = Q̂η(0) exp
(
Ĵ x

)
. Putting x = L and multiplying by Q̂η(0) from the left,

one expresses the yet unknown matrix Ĵ through the boundary conditions (12.25):
Ĵ = L−1 ln

[
Q̂η(0)Q̂η(L)

]
.

Having determined the stationary configuration of the Q̂η matrix, for a non-zero
counting field η, one substitutes it back into the action S[Q̂η] to find the generating
function:

ln Z [η] = iS[Q̂η] = −πνD

4
Tr{(∂x Q̂η)

2} = πνD

4
Tr{ Ĵ 2},

where we used that ∂x Q̂η = − Ĵ Q̂η = Q̂η Ĵ and Q̂2
η = 1̂. Calculating the time

integrals, one goes to the Wigner transform
∫∫

dtdt ′ → t0
∫

dε
2π , where t0 emerges

from the integral over the central time, and finds

ln Z [η] = πgDt0
4

∫
dε

2π
Tr ln2

[
Q̂(0) e−iηγ̂ q/2 Q̂(L) e iηγ̂ q/2

]
. (12.27)

We analyze Eq. (12.27) in the zero-temperature limit, T = 0, where the distri-
bution function Fε = tanh(ε/2T ) → sign(ε). The algebra can be simplified by
performing the rotation Q̂ = Ô−1 Q̂Ô with the help of the matrix

Ô = 1√
2

(
1 −1
1 1

)
. (12.28)

One should note also that Ô−1 exp(±iηγ̂ q/2)Ô = exp(±iησ̂3/2). It is not difficult
to show that for T = 0 the only energy interval that contributes to the trace in
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Eq. (12.27) is 0 < ε < eV . Furthermore, in this interval the rotated Q-matrices are
energy independent and given by

Q̂(0) =
( −1 −2

0 1

)
, Q̂(L) =

(
1 0

−2 −1

)
. (12.29)

As a result, the ε-integration in Eq. (12.27) gives a factor of eV and, inserting Q̂
into ln Z [η], the latter reduces to

ln Z [η] = gDeV t0
8

Tr ln2

( −1+ 4eiη 2
−2eiη −1

)
. (12.30)

Since the trace is invariant with respect to the choice of basis, it is convenient
to evaluate it in the basis where the matrix under the logarithm in Eq. (12.30) is
diagonal. Solving the eigenvalue problem and calculating the trace, one finds

ln Z [η] = gDeV t0 ln2
[√

eiη +
√

eiη − 1
]
. (12.31)

Knowing ln Z [η], one can extract the cumulants by expanding it in powers of η
and employing Eq. (12.23). For example, C1 = q0, C2 = q0/3, while C3 = q0/15,
etc. Notice that to derive the full generating function, we had to consider the non-
classical stationary configuration of the Q̂-matrix field. This configuration was
selected by a quantum source Aη, which is necessary to generate the proper observ-
able. The situation is thus rather similar to the one we encountered in calculation
of the Wigner–Dyson statistics in Section 12.2.

The generating function (12.31) of the counting statistics in the disordered
wire may be obtained from the single channel result ln Z [η, |t|2], Eq. (10.35), by
averaging the latter over the distribution function of channel transparencies:

ln Z [η] =
1∫

0

d|t|2 P(|t|2) ln Z [η, |t|2]. (12.32)

To find the distribution function P(|t|2) it is convenient to define z = eiη − 1 and
change the integration variable to r = √

1− |t|2. Then one finds for the z-derivative
of Eq. (12.32)

gDeV t0
ln(
√

z + 1+√z)√
z
√

z + 1
= eV t0

2π

∫ 1

0
2rdr P(r) 1− r2

1+ z − zr2
,

It is now a simple matter to check that the only way this relation may be satisfied for
any z is if P(r) = πgD/(1− r2)r . As a result, one finds the celebrated Dorokhov
[182] distribution of the transmission probabilities of individual quantum channels
in a disordered wire:
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P(|t|2) = πgD

|t|2√1− |t|2 . (12.33)

The surprising feature of this distribution is that it is bimodal, i.e. it exhibits two
peaks: a strong one near |t|2 = 0 and a weaker one near |t|2 = 1. This means
that, while most of the channels are blocked by the disorder potential, there is
always a fraction of them which are almost completely transparent. Notice that to
make the distribution normalizable, one needs to modify it at exponentially small
transmission probabilities. Such a modification, however, is inconsequential for
calculation of any moment of |t|2, and thus for any reasonable observable. One
may view therefore the normalization of the Dorokhov distribution (12.33) as a
fitting parameter to reproduce correctly the average Landauer conductance of the
diffusive wire, gD = 〈|t|2〉/(2π), where the angular brackets imply integration
with the measure (12.33). Once the normalization is fixed, one may calculate other
observables. For example, the average shot noise, according to Eq. (10.19), is given
by [184, 130]

〈S(V )〉dis= |2eV |
2π

〈
|t|2(1− |t|2)〉= |2eV |gD

2

1∫
0

d|t|2
√

1− |t|2 = |2eV |gD

3
,

(12.34)
which is one third of the Schottky value |2eV |gD = 2eJ (in agreement with the
second cumulant quoted after Eq. (12.31)). We found that the binomial nature of
the charge transport, along with the Dorokhov distribution of the transmissions,
results in the shot noise suppression by the so-called Fano factor of 1/3.6

12.5 Tunneling action

Consider two disordered metallic leads separated by a tunneling barrier. The setup
is described by the so-called tunneling action, which we already employed in
Section 10.6,

ST =
∫
C

dt
∫

r∈L
dr

∫
r′∈R

dr′
[
Wrr′ψ̄L(r)ψR(r

′)+ W ∗
r′rψ̄R(r′)ψL(r)

]
, (12.35)

6 An alternative way [185] to obtain the Fano factor of 1/3 is to look for the noise power in the form

〈S(V )〉dis = − e2

2

δ2 Z [A]
δ(Aq)2

= − e2πνD

2
Tr
{
γ̂ q Q̂γ̂ q Q̂ − 1̂

} = gD

∫ L

0

dx

L

∫
dε

[
1− F2

ε (x)
]
,

where we used Eq. (11.48) in the stationary point approximation Q̂ = �̂. We now substitute the two-step zero
temperature distribution function Fε(x) = (1 − x/L)sign(ε) + (x/L)sign(ε − eV ), Eq. (11.10), and perform
the energy and coordinate integrations. This way we find the same result as in Eq. (12.34).
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where ψL(R) and ψ̄L(R) are fermionic fields describing annihilation and creation of
electrons to the left (right) of the tunneling barrier. The Wrr′ is a tunneling matrix
restricted to the vicinity of the junction, since the overlap of electron wavefunctions
decay exponentially away from it. Consider, e.g., a point like (pinhole) tunneling,
where Wrr′ = Wδ(r − r′). To find a relation between the matrix element W and
the tunneling probability |t|2 through the pinhole one needs to sum over all par-
tial amplitudes. For example, an electron may go directly from the left lead to the
right lead with an amplitude ∝ W . Alternatively it may go to the right lead, then
back to the left and then finally back to the right one. The corresponding ampli-
tude is ∝ W (iπν)2|W |2, where the two factors (iπν) appear due to summation
of the perturbation theory energy denominators over intermediate virtual states∑

k(ε − ξk)
−1 (for simplicity we assume the same DOS in the left and right

leads, νR = νL = ν). Collecting all such “excursions” of going back and forth
between the leads and summing the corresponding geometric series, one finds for
the tunneling probability

|t|2 = (2πν)2

∣∣∣∣ W

1+ (πν)2|W |2
∣∣∣∣2 . (12.36)

For a more detailed derivation of this relation see appendix C of [186].
Since the tunneling action (12.35) is quadratic in fermion fields, the Gaussian

integration over them is straightforward, leading to the disorder-averaged action of
the form

〈Z〉dis =
∫

D[Q̂L, Q̂R] exp
(
iS[Q̂L, Q̂R]

)
,

iS = − πν

4τel

∑
a=L,R

Tr
{

Q̂2
a

}+ Tr ln

(
Ĝ−1

L + i
2τel

Q̂L Ŵ

Ŵ † Ĝ−1
R + i

2τel
Q̂R

)
. (12.37)

Deriving Eq. (12.37), one has to introduce two Q̂-matrices to decouple the disorder
mediated four-fermion terms, Eq. (11.14), in each of the two leads independently. It
was assumed for simplicity that both leads are characterized by equal elastic mean
free times and electronic densities of states. Equation (12.37) exhibits the 2 × 2
matrix structure in the space of left–right leads. Note also that the tunneling matrix
elements Ŵ form a unit matrix in the Keldysh subspace.

Introducing the notation Ĝ−1
a = Ĝ−1

a + i
2τel

Q̂a , one identically rewrites the last

term of the action iS[Q̂L, Q̂R] in Eq. (12.37) as

Tr ln

(
Ĝ−1

L Ŵ
Ŵ † Ĝ−1

R

)
= Tr ln

(
Ĝ−1

L 0
0 Ĝ−1

R

)
+ Tr ln

[
1̂+

(
0 ĜLŴ

ĜRŴ † 0

)]
.
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Expanding now Tr ln Ĝ−1
a in gradients of the Q̂a matrix around the saddle point

�̂a , one obtains the sigma-model action (11.28) for each of the two leads indepen-
dently. The coupling between them is provided by the second term on the right hand
side, which defines the tunneling action iST[Q̂L, Q̂R]. To proceed let us expand the
logarithm in powers of Ŵ and employ the local nature of the tunneling matrix ele-
ments, which allows us to substitute Ĝa → Ĝa(r, r) = −iπν Q̂a , see Eq. (11.17).
This way one finds for the tunneling part of the action

iST[Q̂L, Q̂R]= −
∞∑

l=1

(iπν)2l

l
Tr
(
Q̂LŴ Q̂RŴ †

)l=Tr ln
[
1̂+ π2ν2|W |2 Q̂L Q̂R

]
.

Employing the commutativity under the trace operation, the last logarithm may
be written as ln

[
1̂ + π2ν2|W |2 Q̂R Q̂L

]
. It is convenient to take the half sum of

the two: 1
2 Tr ln[1+ (πν|W |)4 + (πν|W |)2(Q̂L Q̂R + Q̂R Q̂L)], where we used that

Q̂2
a = 1̂. Since, due to causality, Tr{Q̂2

a} = 0, see the discussion after Eq. (11.21),
iST[Q̂L, Q̂R] = 0, if Q̂L = Q̂R. To explicitly implement this constraint it is
convenient to subtract a Q̂a-matrix-independent constant 1

2 Tr ln[1 + (πν|W |)2]2.

Employing then relation (12.36) between the Ŵ matrix and channel transmissions,
one obtains for the tunneling action [187, 188, 189]

iST[Q̂L, Q̂R] = 1

2

∑
n

Tr ln

[
1̂− |tn|2

4

(
Q̂L − Q̂R

)2
]
, (12.38)

where we used the channel basis, where the Ŵ matrix is diagonal. If all transmis-
sions are small, |tn|2 � 1, one may expand Eq. (12.38) to the leading order and
find

iST[Q̂L, Q̂R] = −πgT

4
Tr
{
(Q̂L − Q̂R)

2
}

(12.39)

where gT =∑
n |tn|2/(2π) is the Landauer tunneling conductance (10.10) in units

of e2/�. This expression appears to be a direct generalization of the gradient term in
the sigma-model action (11.28), with the substitution gD = �νD → gT. Equation
(12.38) goes beyond the weak tunneling limit and allows us to treat the mesoscopic
transport in an arbitrary two-terminal geometry. Its generalization for the multi-
terminal case was developed by Nazarov et al. [187, 190, 191].

As the first application of Eq. (12.38) we obtain the Levitov formula for the
full counting statistics, Section 10.3. As was explained above Eq. (12.25), the
counting field η introduces the twisted boundary conditions, which in our present
case read as

Q̂L = �̂L, Q̂R = e−iηγ̂ q/2 �̂R e iηγ̂ q/2, (12.40)
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where we used that the Q̂a-matrices of the two metallic leads may be fixed to their
stationary configurations �̂a . To evaluate the trace logarithm in Eq. (12.38) it is
convenient to perform the rotation (12.28), which leads to

Q̂L − Q̂R = 2

(
FL − FR (1− FR)e−iη − (1− FL)

(1+ FR)eiη − (1+ FL) FR − FL

)
K

,

The square of this matrix is proportional to the 2 × 2 unit matrix with the propor-
tionality coefficient (1+ FR)(1− FL)(1− eiη)+ (1− FR)(1+ FL)(1− e−iη). As
a result, the generating function

Z [η] = e iST[Q̂L,Q̂R] = e
∑

n,ε ln[1+|tn |2nL(1−nR)(eiη−1)+|tn |2nR(1−nL)(e−iη−1)] (12.41)

coincides with Eq. (10.31), which was derived in Section 10.3 assuming ballis-
tic one-dimensional leads. We have used here that FL(R) = 1 − 2nL(R), where
nL = nF(ε) and nR = nF(ε − eV ) are the Fermi occupation functions. Our present
derivation shows that as long as the leads are good metals, their nature does not
affect the counting statistics of a mesoscopic device.

12.6 Chaotic cavity

As another example we consider a 0d metallic grain or cavity connected to the left
and right metallic leads by ideal reflectionless (i.e. |tn|2 = 1) contacts having NL

and NR open channels, respectively. The zero dimensional nature of the cavity is
ensured by the condition eV, T � ETh and manifests itself in the fact that the
cavity Q̂C-matrix may be taken as a constant in space. Moreover, if T � eV
the Q̂C-matrix is energy independent in the entire energy interval 0 < ε < eV ,
where V is the voltage applied between the left and right leads. The tunneling
action of the cavity is given by iSC[η, Q̂C] = iST[Q̂L, Q̂C] + iST[Q̂C, Q̂R], where
the Q̂L(R)-matrices of the two leads are the same as in Eq. (12.40). The 0d Q̂C-
matrix of the cavity may be parametrized as Q̂C = e−iηCγ̂

q/2 �̂C e iηCγ̂
q/2, with

yet unspecified quantum counting field ηC and classical distribution function FC =
1−2nC. Employing Eqs. (12.38) and (12.41) and putting nL = 0 and nR = 1, which
is the case for 0 < ε < eV , while nC is an energy-independent constant, one finds

iSC= eV t0
2π

{
NL ln

[
1+ (1− nC)(e

iηC− 1)
]+NR ln

[
1+ nC(e

i(η−ηC)− 1)
]}
.

(12.42)

Since the Q̂C-matrix is free to adjust to the external conditions, the generating
function is given by ZC[η] =

∫
DQ̂C eiSC. If eV t0 NL(R) � 1 the corresponding

integration may be performed in the stationary point approximation. This implies
that one has to look for stationary values of ηC and nC which satisfy the equations
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of motion ∂SC/∂ηC = 0 and ∂SC/∂nC = 0 and substitute them back into the
action (12.42). This way one finds ln ZC[η] = iSC[η]. In general the equations of
motion are transcendental and their solution can’t be found in an analytic form. The
exception is the symmetric case NL = NR = N , where the equations of motion
may be easily solved, leading to ηC = η/2 and nC = 1/2. The corresponding
generating function is [192]

ln ZC[η] = eV t0
2π

2N ln

[
1+ 1

2
(eiη/2 − 1)

]
, (12.43)

which is rather different from the 1d diffusive wire result (12.31). Indeed, employ-
ing Eqs. (10.35) and (12.32) one may check that the proper distribution function of
transmission probabilities takes the form

P(|t|2) = N

π

1√|t|2(1− |t|2) . (12.44)

Similarly to the Dorokhov distribution (12.33), the cavity distribution is bimodal.
On the other hand, it is not so heavily tilted toward closed channels and is normal-
ized as

∫ 1
0 d|t|2 P(|t|2) = N . One can extract now the transmitted charge cumulants

by expanding in powers of iη, Eq. (12.23). The average transmitted charge is
C1 = t0V e2 N/(4π�) = q0, which means that the average conductance of the sys-
tem is (N/2)(e2/2π�). This is natural since we have two ideal contacts in series,
each having the Landauer conductance N (e2/2π�).7 The second cumulant is given
by C2 = q0/4, leading to the Fano factor of 1/4. Thus the shot noise suppression
in a symmetric 0d chaotic cavity is rather different from that in a quasi-1d diffusive
wire (in the latter case the Fano factor is 1/3).

Finally, the tunneling action allows us to describe not only the statistics of
a stationary current flow, but also transient processes and dynamic correlation
functions. To this end one has to include the dynamic action for Q̂-matrices of
metallic nodes. For the 0d cavity the corresponding dynamic action (11.28) is
iS[Q̂C] = πνTr{∂t Q̂C}. For T = 0 and energy interval 0 < ε < eV the Q̂C matrix
may be parametrized by an energy-independent quantum component ηC and clas-
sical occupation number nC. In a dynamic setting they both may be slow functions
of time. The dynamic action acquires the form

7 Expanding the action (12.42) to first order in η and ηC, one finds

iSC ≈ (eV t0/2π)
[
NL(1− nC)iηC + NRnCi(η − ηC)

]
.

Optimizing it with respect to ηC and nC results in the occupation nC = NL/(NL + NR) and the counting field
ηC = NRη/(NL + NR). Substituting it back to the action leads to iSC[η] = iη(eV t0/2π)NL NR/(NL + NR).
This is the series conductance of two contacts with conductances NL(e2/2π�) and NR(e2/2π�), as it should
be. Expanding the action to higher orders in η and ηC, one may extract few higher cumulants for arbitrary NL
and NR [192].
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iS = πνeV

2π

∫
dt Tr

{(
∂t e−iηCγ̂

q/2
)
�̂C e iηCγ̂

q/2
}
= −iνeV

∫
dt ηCṅC, (12.45)

where after the time differentiation acting on the leftmost function, we found for the
trace −i(η̇C/2)Tr{γ̂ q�̂C} = −iη̇C FC . Putting then FC = 1 − 2nC and integrating
by parts, one obtains Eq. (12.45). One can define now the “momentum” p = iηC

and “coordinate” n = eV νnC, where the latter has the meaning of the number
of electrons brought to the cavity by an external voltage and the former is the
corresponding quantum field. The total action, including dynamic and tunneling
parts, then takes the form

iS[p, n] = −
∫

dt
[

pṅ − H(p, n)
]
, (12.46)

cf. Eqs. (4.20) and (4.64), where the (reaction) Hamiltonian is specified by the
tunneling part of the action (12.42) and takes the form (e.g. for η = 0)

H(p, n)= eV

2π

{
NL ln

[
1+

(
1− n

eV ν

)
(ep − 1)

]
+NR ln

[
1+ n

eV ν
(e−p − 1)

]}
.

(12.47)

One notices that this formulation is virtually identical to the treatment of reaction
models of Section 4.10. This implies that the problem may be reformulated in terms
of a certain Master equation for the probability distribution function P(n, t). For
example, expanding the logarithms to first order in e±p − 1 and comparing with
Eq. (4.63), one concludes that the reaction rate for moving one particle from the left
lead to the cavity is (NL/2πν)(eV ν−n), while the rate of moving one particle from
the cavity to the right lead is (NR/2πν)n. The higher orders of expansion provide
the rates of multiparticle processes. One can now employ the machinery of classical
stochastic systems and reaction models, Chapter 4, to describe the dynamics of the
charge transport through the chaotic cavity. For more details see [134, 193].



13

Electron–electron interactions in disordered metals

We discuss singlet channel electron–electron interactions in disordered systems
with broken time-reversal symmetry. In particular we derive the zero-bias anomaly,
Altshuler–Aronov corrections to the conductivity, the kinetic equation and the
energy relaxation rate.

13.1 K-gauge

In Section 11.6 we obtained the diffusive density response as a result of Gaussian
fluctuations of the Q̂-matrix around its stationary value �̂. These Gaussian fluc-
tuations are induced by linear coupling between, say, scalar potentials V α and
the diffuson modes specified by Eqs. (11.52). While there is nothing wrong
with these tactics, one can substantially simplify the theory by fine-tuning the
stationary Q̂-matrix configuration. To this end one needs to acknowledge that the
scalar V and vector A potentials can distort the stationary matrix �̂ and deflect
it to another point on the soft manifold Q̂2 = 1̂. The way to approach this
latter true saddle point is to request that the linear coupling, mentioned above,
vanishes.

To implement this program one may use the gauge invariance of the non-linear
sigma-model. It implies that the gauge transformation of the Q̂-matrix

Q̂K(r; t, t ′) = e−iK̂(r,t) Q̂tt ′(r) e iK̂(r,t ′), (13.1)

along with the gauge transformation of the electromagnetic potentials

V̂K(r, t) = V̂ (r, t)+ ∂tK̂(r, t) ; ÂK(r, t) = Â(r, t)+ ∇rK̂(r, t) (13.2)

280
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preserves the form of the sigma-model action (11.42). That is, the action may be
written1 with Q̂,A, V → Q̂K,AK, VK. Notice also that the observables, such as,
e.g., current (11.49) are invariant under the transformations (13.1) and (13.2).

The matrix K̂(r, t) = Kα(r, t)γ̂ α is defined through two scalar fields Kα(r, t)
with α = (cl, q), which are specified below. One may use now the freedom
of choosing Kα to make the stationary configuration of the gauged transformed
Q̂K-matrix to be maximally close to �̂, Eq. (11.20), in the presence of electromag-
netic potentials. To this end we substitute Q̂K = �̂ − [Ŵ, �̂]/2 (cf. derivation of
the Usadel equation (11.29)) in the gauge-transformed action (11.42) and demand
that there are no terms linear in the rotation generators Ŵε1ε2(r) times the first
power of the electromagnetic potentials AK, VK. Notice that, since �̂ε is the proper
stationary point in the absence of electromagnetic potentials, there are no linear
terms in the deviations Ŵ themselves. This leads to the following condition:(

�̂ε+ γ̂
α − γ̂ α�̂ε−

)
V α

K(r, ω)−
(
γ̂ α − �̂ε+ γ̂

α�̂ε−
)
D divAα

K(r, ω) = 0, (13.3)

where ε± = ε±ω/2. It is in general impossible to satisfy this matrix condition for
any ε and ω by a choice of two fields Kα(r, ω). In thermal equilibrium, however,
there is a “magic” fact that

1− Feq
ε+ Feq

ε−
Feq
ε+ − Feq

ε−
= coth

ω

2T
≡ Bω, (13.4)

which depends on ω only, but not on ε. This allows for the condition (13.3) to be
satisfied for all εs, if the following relation holds between the gauge transformed
potentials (13.2):

�VK(r, ω) =
(

1 2Bω

0 −1

)
D div�AK(r, ω), (13.5)

where we employed vector notations for e.g. �VK = (V cl
K, V q

K)
T. This equation spec-

ifies the special gauge, which we call the K-gauge for both classical and quantum
components of the electromagnetic potentials.

The advantage of the K-gauge is that the action does not contain terms linear
in the deviations of the Q̂K matrix from its stationary point �̂ and linear in the
electromagnetic potentials. Note that there are still terms which are linear in Ŵ
and quadratic in the electromagnetic potentials. This means that, strictly speak-
ing, �̂ is not the exact stationary point on the Q̂K manifold for any realization of

1 One needs a bit more extra care with the first term on the right hand side of Eq. (11.42). To show its invari-
ance one goes back to Eq. (11.41) and performs the gauge transformations (13.1), (13.2) under the Tr ln sign,
[157, 23].
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the electromagnetic potentials.2 However, since the deviations from the true saddle
point are pushed to second order in potentials, the K-gauge substantially simplifies
the structure of the perturbation theory. Moreover, this state of affairs holds only
in equilibrium. For out-of-equilibrium situations condition (13.3) cannot be identi-
cally satisfied. Therefore terms linear in Ŵ and electromagnetic fields unavoidably
appear in the action. As we explain below, it is precisely these terms which are
responsible for the collision integral in the kinetic equation.

With the help of Eq. (13.2) the definition of the K-gauge, Eq. (13.5), may be
viewed as an explicit relation determining the gauge fields Kα through the elec-
tromagnetic potentials V α and Aα. Taking Â = 0 for simplicity, one finds for the
classical and quantum components of the gauge field

(D∇2
r + iω)Kcl(r, ω)+ 2BωD∇2

r Kq(r, ω) = V cl(r, ω); (13.6a)

(D∇2
r − iω)Kq(r, ω) = −V q(r, ω). (13.6b)

By going to Fourier space, one may resolve these equations and write the result in
the vector form

�K(q, ω) = −D̂(q, ω)B̂−1
ω
�V (q, ω) , (13.7)

where we have introduced bosonic matrices in Keldysh space

D̂(q, ω) =
(

DK(q, ω) DR(q, ω)
DA(q, ω) 0

)
; B̂ω =

(
2Bω 1R

ω

−1A
ω 0

)
, (13.8)

with the components, cf. Eq. (11.39),

DR(A)(q, ω) = (
Dq2 ∓ iω

)−1
, DK(q, ω) = Bω

[
DR(q, ω)−DA(q, ω)

]
.

(13.9)

Equation (13.7) provides an explicit linear relation between the scalar potential
and the gauge fields Kα. It thus defines the Q̂K-matrix in the K-gauge according to
Eq. (13.1). As was explained above, the latter possesses a stationary configuration
which is close to the metallic stationary point �̂ (with deviations being quadratic
in electromagnetic potentials).

Let us evaluate now the generating function 〈Z [V ]〉dis (we put A= 0 for
simplicity) in the stationary point approximation for the Q̂K-matrix in the

2 Notice that the root of all complications is an attempt to accommodate the quantum components of the electro-
magnetic potentials into the “deflected” stationary point. If only classical components are present, one may look
for the stationary solution having the causality structure (11.20). The problem is then reduced to the solution of
the diffusion equation (11.31) in the presence of external (classical) potentials.



13.1 K-gauge 283

K-gauge, i.e. we put Q̂K = �̂. It is given by 〈Z [V ]〉dis = eiS[�̂,VK ], with the
action given by Eq. (11.42),

iS[�̂, VK] = iν

2
Tr
{

V̂Kσ̂1V̂K

}
+ πνD

4
Tr
{
[∇rK̂, �̂]2

}
. (13.10)

Notice that, while we disregarded the bare vector potential, there is still the gauge
vector potential ÂK = ∇rK̂, Eq. (13.2). We use now the explicit relation between
the scalar potential V α and the gauge potentials Kα, Eq. (13.7), to express the
action (13.10) in terms of the former. The straightforward algebra yields3

iS[�̂, V ] = i
∑
q,ω

�V T(−q,−ω) �̂(q, ω) �V (q, ω), (13.13)

where, in agreement with the general definition (9.44), the polarization matrix
has the typical causality structure of a quadratic bosonic matrix action in Keldysh
space,

�̂(q, ω) =
(

0 �A(q, ω)
�R(q, ω) �K(q, ω)

)
, (13.14)

with the components

�R(A)(q, ω) = νDq2

Dq2 ∓ iω
, �K(q, ω) = Bω

[
�R(q, ω)−�A(q, ω)

]
,

(13.15)

as expected from our discussion in Section 11.6, see Eq. (11.54). We have thus
rederived the diffusive form of the density response. Notice, however, that this time
we did not employ Gaussian fluctuations of the Q̂-matrix around its stationary
point. Instead the gauge-transformed Q̂K matrix was fixed right at its stationary
point �̂. The diffusive propagators (13.9) came from the choice of the gauge and
not from the diffuson propagators of the Q̂-matrix fluctuations. The choice of the
K-gauge substantially simplifies the theory of interacting electrons in the presence
of the disorder potential.

3 To evaluate the last trace in Eq. (13.10), it is useful to employ the following relation:∫ +∞
−∞

dε Tr
{
γ̂ α γ̂ β − γ̂ α�̂ε+ γ̂ β �̂ε−

}
= 4ω

(
B̂−1
ω

)αβ
, (13.11)

where ε± = ε ± ω/2, and the matrix B̂ is defined by Eq. (13.8). Equation (13.11) is a consequence of the
following integral relations between bosonic and fermionic distribution functions:∫ +∞

−∞
dε

(
Fε+ − Fε−

) = 2ω ,
∫ +∞
−∞

dε
(
1− Fε+ Fε−

) = 2ωBω. (13.12)
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13.2 Non-linear sigma-model for interacting systems

We turn now to the discussion of electron–electron interactions in disordered
systems. In this chapter we limit ourselves to the effects of the singlet channel
interactions only, see Eq. (9.59). The Cooper channel interactions are considered
in Chapter 14. The singlet part of the interaction action takes the form, Eq. (9.59),

Ss-int = −1

2

∫
C

dt
∫∫

drdr′ ρ(r, t)Us(r− r′)ρ(r′, t), (13.16)

where electron density ρ(r, t) is defined by Eq. (9.58) and the singlet interaction
potential is given by Us(q) = U (q) − Ut, where U (q) is the bare (e.g. Coulomb)
interaction and Ut is the triplet interaction constant. We decouple now the sin-
glet interaction action with the help of the real bosonic Hubbard–Stratonovich
field ϕ(r, t), exactly as we did in Eq. (9.60). We then split the bosonic field
ϕ into forward and backward branches and perform a Keldysh rotation, as in
Eq. (9.61). As a result of this procedure we arrive at non-interacting disordered
electrons subject to a vector of dynamic fluctuating fields �ϕ = (ϕcl, ϕq)T. The
Hubbard–Stratonovich weight of the vector bosonic field is �ϕTU−1

s (q)σ̂1 �ϕ, cf.
Eq. (9.61).

The fluctuating auxiliary field �ϕ plays exactly the same role as the source scalar
potential �V in the non-linear sigma-model action (11.42). It is convenient to per-
form the gauge transformation to the K-gauge, with �K = −D̂B̂−1 �ϕ, cf. Eq. (13.7).
We then obtain the disorder-averaged partition function in the following form:

〈Z〉dis =
∫

D[ϕ] e iTr{ �ϕTÛ−1
RPA �ϕ}

∫
D[Q̂K] e iS0[Q̂K ]+iS1[Q̂K ,∇rK]+iS2[Q̂K ,∇rK],

(13.17)

where Sl with l = 0, 1, 2 contain the l-th power of the electromagnetic potentials
and are given by

iS0[Q̂K] = −πν
4

Tr
{

D(∇r Q̂K)
2 − 4∂t Q̂K

}
, (13.18a)

iS1[Q̂K,∇rK] = iπν Tr
{
ϕ̂KQ̂K− D(∇rK̂)Q̂K(∇r Q̂K)

}
, (13.18b)

iS2[Q̂K,∇rK] = πνD

4
Tr
{
[∇rK̂ , Q̂K]2 − [∇rK̂ , �̂]2

}
, (13.18c)

see also Eqs. (11.46) and (11.48). In the last term iS2 we have added and sub-
tracted the contribution of the stationary point Q̂K = �̂. The latter contributes
to the part of the action quadratic in �ϕ fields and is given by Eqs. (13.10) and
(13.13) (where we put �V → �ϕ). Together with the bare Hubbard–Stratonovich
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term �ϕTU−1
s (q)σ̂1 �ϕ it goes into the definition of the random phase approximation

(RPA) inverse interaction matrix

Û−1
RPA(q, ω) = U−1

s (q)σ̂1 + �̂(q, ω), (13.19)

where the diffusive polarization matrix is given by Eqs. (13.14) and (13.15).
Equations (13.17)–(13.19) constitute an effective non-linear sigma-model for an

interacting disordered Fermi liquid. The model consists of two interacting fields:
the matrix field Q̂K, obeying the non-linear constraint Q̂2

K = 1̂, and the bosonic

longitudinal field ∇rK̂ (or equivalently ϕ̂). As will be apparent later, the Q̂K-field
describes fluctuations of the quasiparticle distribution function, whereas ϕ̂ (or K̂)
represents propagation of electromagnetic modes through the media.

Since the fields �ϕ and �K are linearly related through �K = −D̂B̂−1 �ϕ, Eq. (13.7),
one can change the ϕ-integration in Eq. (13.17) to a K-integration. To this end we
need to evaluate the following correlation function:

Vαβ(x − x ′)≡ −2i
〈
Kα(x)Kβ(x ′)

〉= −2i
∫

D[ϕ̂]Kα(x)Kβ(x ′) e iTr{ �ϕT Û−1
RPA �ϕ},

(13.20)

where x = r, t and the factor −2i is used for convenience. Employing the linear
relation between ϕ̂ and K̂ along with the fact that 〈ϕαϕβ〉 = (i/2)Uαβ

RPA, one finds
for the gauge field correlation function

V̂(q, ω) = D̂(q, ω)B̂−1
ω ÛRPA(q, ω)

(
B̂−1
−ω
)TD̂T(−q,−ω). (13.21)

Employing the explicit form of the D̂ and B̂ matrices, Eq. (13.8), one finds that the
bosonic correlation matrix V̂(q, ω) has the standard Keldysh structure

V̂(q, ω) =
(

VK(q, ω) VR(q, ω)
VA(q, ω) 0

)
, (13.22)

with the elements

VR(A)(q, ω) = − 1

(Dq2 ∓ iω)2

(
U−1

s (q)+ νDq2

Dq2 ∓ iω

)−1

; (13.23a)

VK(q, ω) = Bω

[
VR(q, ω)− VA(q, ω)

]
. (13.23b)

This propagator corresponds to the RPA screened dynamic Coulomb interaction,
dressed by the two diffusons at the vertices, Fig. 13.1(a). Therefore, the role of the
gauge field K is to automatically take into account both the RPA screening of the
interactions, Fig. 13.1(b), and its vertex renormalization by the diffusons. Owing to
the linear dependence between ϕ̂ and K̂, we use integration over the ϕ̂ or K̂ fields



286 Electron–electron interactions in disordered metals
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Fig. 13.1 (a) Diagrammatic representation of the gauge field propagator V̂(q, ω):
the wavy line represents the Coulomb interaction. Vertices dressed by the diffu-
sons are shown by the ladders of dashed lines. (b) Screened Coulomb interaction
in RPA, ÛRPA(q, ω). Bold and thin wavy lines represent screened and bare inter-
actions, respectively, and the loop represents the diffusive polarization matrix �̂,
Eq. (13.14).

interchangeably. The essence is that the correlation function of the two K̂α fields
is given by Eqs. (13.20)–(13.23).

13.3 Zero bias anomaly

We discuss now modifications of the single-particle density of states (DOS) ν(ε) of
the disordered electron gas due to Coulomb interactions. As was briefly mentioned
in Section 11.8, the disorder potential itself does not alter the average DOS. This
is not the case any more when interactions are present. As we shall see below,
interactions lead to an energy-dependent DOS, singularly suppressed at the Fermi
energy. The effect is known as the zero bias anomaly and is directly measurable in
tunneling experiments.

We are interested in the disorder-averaged single-particle Green function at
coinciding spatial points, defined as

Gab(t − t ′) = −i
〈〈
ψa(r, t)ψ̄b(r, t ′)

〉〉 = 〈[
Ĝ−1 + i

2τel
Q̂ − ϕ̂

]−1

rr;t t ′;ab

〉
ϕ,Q̂K

,

(13.24)

where a, b = 1, 2 and 〈〈. . .〉〉 denotes both quantum and disorder averaging. To
obtain the second equality one introduces a source term, directly coupled to the
bilinear combination of Grassmann fields, into the fermionic action. Following the
same algebra as in Section 11.5, performing Keldysh rotation and disorder aver-
aging, one finds that the source term enters the trace logarithm in Eq. (11.16).
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Differentiating the latter with respect to the source and putting it to zero, one
obtains Eq. (13.24), where 〈. . .〉ϕ,Q̂K

denotes averaging with the weight given by

Eqs. (13.17) and (13.18). It is important to mention that the Green function Ĝ(t−t ′)
is not gauge-invariant and is evaluated in a particular gauge, the one where the
chemical potential is set to be at ε = 0. It is fixed by the setup of the tunneling
experiment. It is thus the bare Q̂-matrix and not the gauged-transformed one, Q̂K,
which appears in the last equality in Eq. (13.24).

We evaluate the integral over the Q̂K-matrix in Eq. (13.24) in the station-
ary point approximation, neglecting both the massive and massless fluctuations
around the stationary point. According to the stationary point condition (11.17),[
Ĝ−1 + (i/2τel)Q̂ − ϕ̂

]−1

rr;t t ′
= −iπν Q̂tt ′(r). Moreover, according to Eq. (13.1),

Q̂tt ′(r) = eiK̂(r,t) �̂t−t ′e−iK̂(r,t ′), where we adopt that in the stationary point
approximation Q̂K(r; t, t ′) = �̂t−t ′ . Since Sl[�̂,K] = 0 for l = 0, 1, 2,
Eq. (13.18), we find for the Green function

Ĝ(t − t ′) = −iπν
∫

D[ϕ] e iTr{ �ϕTÛ−1
RPA �ϕ} e iK̂(r,t) �̂t−t ′ e

−iK̂(r,t ′). (13.25)

Since K̂ is the linear functional of ϕ̂, given by Eq. (13.6) (with V̂ → ϕ̂), the
remaining functional integral is Gaussian. To calculate the latter, one rewrites the
phase factors of the gauge field as4

e±iKαγ̂ α= γ̂ cl

2

[
e±i(Kcl+Kq) + e±i(Kcl−Kq)

]
+ γ̂ q

2

[
e±i(Kcl+Kq) − e±i(Kcl−Kq)

]
.

Then, for example,〈
ei[Kcl

t +K
q
t −Kcl

t ′+K
q
t ′ ]
〉
ϕ
=
〈
ei
∫

dt1 Kα
t1

Jαt1

〉
ϕ
= e−(i/4)

∫
dt1dt2 Jαt1V

αβ
t1−t2

Jβt2 ,

where J cl
t1
= δ(t1 − t) − δ(t1 − t ′), J q

t1 = δ(t1 − t) + δ(t1 − t ′) and 〈Kα
t1
K

β
t2〉ϕ =

(i/2)Vαβ
t1−t2 , see Eq. (13.20). Employing the causality structure of Vαβ , Eq. (13.22),

along with VK−t = VK
t and VR−t = VA

t , we find for this particular contribution

exp{ (i/2)[VK
t−t ′ −VK

0 −VR
t−t ′ +VA

t−t ′ ]}. Collecting all contributions and employing

4 This equation is based on the following property: consider an arbitrary function of a linear superposition of
Pauli matrices f (a+bσ̂ ), where a is a number and b is a vector. The observation is that f (a+bσ̂ ) = A+Bσ̂ ,
where A is some new number and B a new vector. To see this, let us choose the z-axis along the direction of the b
vector. Then the eigenvalues of the operator a+bσ̂ are a±b, and the corresponding eigenvalues of the operator
f (a+bσ̂ ) are f (a±b). Thus one concludes that A = 1

2 [ f (a+b)+ f (a−b)] and B = b
2b [ f (a+b)− f (a−b)].
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that VR
0 +VA

0 = 0 and VR
t−t ′ = 0 for t < t ′, while VA

t−t ′ = 0 for t > t ′, one finds for
the Green function

Ĝ(t) = −iπν
∑
αβ

(
γ̂ α �̂t γ̂

β
)
B
αβ(t), (13.26)

where the auxiliary propagator B
αβ(t) has the standard bosonic structure, as, e.g.,

in Eq. (13.22), with

B
R(A)(t) = i exp

(
i[VK(t)− VK(0)]/2

)
sin

(
VR(A)(t)/2

)
, (13.27a)

B
K(t) = exp

(
i[VK(t)− VK(0)]/2

)
cos

([VR(t)− VA(t)]/2
)
. (13.27b)

The gauge field propagator, V̂(r, t), defined by Eqs. (13.22) and (13.23), enters
Eq. (13.27) at the coinciding spatial points

V̂(t) =
∫

dω

2π
e−iωt

∑
q

V̂(q, ω). (13.28)

Before proceeding with the calculations of the DOS, it is instructive to check
that the stationary point approximation employed to derive Eq. (13.26) respects the
fermionic FDT. For this purpose it is convenient to rewrite identically Eq. (13.26)
in the following form, cf. Eqs. (2.41),

G>(<)(t) = −iπν�>(<)
t B

>(<)(t), (13.29)

where

B
R(t)− B

A(t) = B
>(t)− B

<(t) ; B
K(t) = B

>(t)+ B
<(t) (13.30)

and the same relations hold for the components of the fermionic Green functions
�̂ and Ĝ. Employing Eqs. (13.27) along with the bosonic FDT relation for the
components of V̂(q, ω), one obtains

B
>(<)(t) = e−

i
2VK(0)

2
exp

{
i

2

∑
q,ω

e−iωt(VR(q, ω)− VA(q, ω))
(

coth
ω

2T
± 1

)}

= 1

2
exp

{∫
dω

2π
Im

∑
q

VR(q, ω)
[
coth

ω

2T
(1− cosωt)± i sinωt

]}
.

(13.31)

According to FDT the equilibrium bosonic and fermionic Green functions in the
frequency representation must satisfy the following relations:

B
>(ω) = eω/T

B
<(ω) ; G>(ε) = −eε/T G<(ε). (13.32)
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Since coth(ω/2T ) + 1 = eω/T (coth(ω/2T ) − 1), the exponent in Eq. (13.31)
satisfies the bosonic FDT. It is then not difficult to see that Eqs. (13.32) indeed
hold.5

Having found the Green function, Eq. (13.26), we obtain the single-particle (or
tunneling) DOS according to the standard definition

ν(ε) ≡ i

2π

[
GR(ε)−GA(ε)

] = ν

tanh(ε/2T )

∫
dt eiεt Ft

[
B
>(t)+B

<(t)
]
, (13.33)

where in the last equality we made use of the fermionic and bosonic FDT rela-
tions (13.30) and (13.32) and the fact that �K

t = 2Ft , Eq. (11.20). We restrict
ourselves to the analysis of this result only at zero temperature. Noting that for
T = 0 the Fourier transform of the equilibrium fermionic distribution function is
Ft = (iπ t)−1, one obtains

ν(ε) = ν

π

∫
dt

sin |ε|t
t

exp

{∫ ∞

0

dω

π
Im

∑
q

VR(q, ω)(1− cosωt)

}

× cos

{∫ ∞

0

dω

π
Im

∑
q

VR(q, ω) sinωt

}
. (13.34)

Let us focus on the two-dimensional case, where the bare Coulomb interac-
tion is given by U (q) = 2πe2/q, with q being the 2d wavenumber. Employing
Eq. (13.23a) with such interactions and performing 2d momentum as well as energy
integrations leads to

+∞∫
0

dω

π

∑
q

Im
[
VR(q, ω)

](cosωt − 1
sinωt

)
= 1

8π2g

{
ln t

τel
ln(tτelω

2
0)+ 2C ln(tω0)

−π ln(tω0)
,

(13.35)

where g = �νD is the dimensionless conductance per square, ω0 = Dκ−2,
κ = (2πe2ν)−1 is the Thomas–Fermi 2d screening radius and C = 0.577... is

5 If a pair of bosonic functions b>(t) and b<(t) (being transformed to the frequency representation) satisfies
Eq. (13.32), then for any analytic function f (z) the pair f >(t) ≡ f (b>(t)) and f <(t) ≡ f (b<(t)) also
satisfies it. Indeed,

f >(<)(ω) =
∫

dt eiωt f

(∫
dω′
2π

b>(<)(ω′) e−iω′t
)
.

Expanding f on the right hand side in a Taylor series and performing the t integration, we see that in each order
of the expansion f >(ω) = exp(ω/T ) f <(ω). Taking b>(<)(t) to be the exponent in Eq. (13.31) and f to be
the exponential function proves that B

> and B
< are related through FDT. It is then a simple matter to check

that if the fermionic �>(<) and bosonic B
>(<) satisfy FDT, Eq. (13.32), then so do the fermionic functions

G>(<) given by Eq. (13.29).
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the Euler constant. The remaining time integral in Eq. (13.34) may be performed
in the saddle point approximation, resulting in

ν(ε) = ν exp

{
− 1

8π2g
ln(|ε|τel)

−1 ln(τelω
2
0/|ε|)

}
(13.36)

for |ε| � 1/τel and ν(ε) → ν in the opposite limit. We see thus that the inter-
actions suppress the single-particle DOS near the Fermi energy (i.e. ε = 0) in a
singular way. This effect, observed frequently in tunneling experiments, is known
as the zero bias anomaly. Its physics may be traced back to the fluctuating phase
(i.e. gauge factor) of the Green function, see Eq. (13.25). Upon averaging over the
fluctuating scalar potential �ϕ this phase produces the “Debye–Waller factor,” which
exponentially suppresses the tunneling amplitude.

Does the DOS really go to zero at ε = 0, as Eq. (13.36) suggests? We can not
answer this question. Indeed, we have adopted a stationary point approximation
for the Q̂K-integral, disregarding diffuson fluctuations. Being taken into account,
the latter give rise to perturbative corrections ∼ g−1 ln(|ε|τel), see Section 13.4.
Therefore one can trust Eq. (13.36) only if | ln(|ε|τel)| � g. Notice, however,
that since the exponent in Eq. (13.36) contains an additional large logarithm
ln(τelω

2
0/|ε|)> 1, it may be large (justifying keeping the result in the expo-

nential form, as opposed to expanding it to the lowest non-trivial order). In
other words, the averaging of the fluctuating phase factors sums up the leading
terms in powers of g−1 times the logarithm square, while the omitted diffuson
fluctuations bring only subleading terms with powers of g−1 times the logarithm.
The perturbative result for the zero bias anomaly (most relevant for experiment)
was first derived by Altshuler and Aronov [194, 195] and Altshuler, Aronov and
Lee [196]. The exponentiated version, Eq. (13.36), was derived in a number of
ways [145, 197, 198, 199, 200]. Here we followed the sigma-model calculation
of [157].

13.4 Altshuler–Aronov effect

The zero-bias anomaly is entirely a consequence of the fluctuating phase factors
e±iK̂, Eq. (13.25). In other words it is essentially due to the non-gauge-invariance
of the single-particle Green function. On the other hand, observables such as the
current, Eq. (11.49), are gauge invariant. This statement manifests itself in the iden-
tical cancelation of the phase factors under the trace sign in Eq. (11.49). Still,
there are interaction corrections to the current, known as the Altshuler–Aronov
effect [195].

Since the current is gauge-invariant, one may evaluate it in any gauge and the
K-gauge is by far the most convenient. Focusing on the part of the dc (ω = 0)
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current (11.49) which is due to the presence of the fluctuating vector potential in
the covariant derivative operator ∂̂r, one finds

δJdc = eπνD

2
i
〈 ∑
ε,ε′,ε′′

Tr
{
γ̂ q Q̂K;εε′ γ̂ αAα

K;ε′−ε′′ Q̂K;ε′′ε
}〉

ϕ,Q̂K

, (13.37)

where we wrote the trace in the energy representation. In the absence of an external
classical vector potential, Aα

K is a pure gauge field, Eq. (13.2), Aα
K = ∇rK

α, having
both classical and quantum components. We now parametrize the Q̂K-matrices as
in Eqs. (11.33) and (11.34) and expand to first order in the fluctuating diffuson
fields dα. This way we obtain for the first order fluctuation correction to the dc
current

δJdc = eπνD i
〈∑
ε,ε′

(Fε + Fε′)
[
− d cl

εε′A
q
K;ε′−ε

+ d q
εε′
(
Acl

K;ε′−ε(Fε′ − Fε)+ Aq
K;ε′−ε(1− Fε′ Fε)

)]〉
ϕ,Q̂K

. (13.38)

At a first glance the averaging over the Q̂K-matrix fluctuations (i.e. over dα
εε′ fields)

of this expression vanishes. Indeed, the K-gauge was constructed in such a way as
to eliminate the terms linear in dα and Aα

K in the action. If so, the products dαAβ

K

in Eq. (13.38) should average out to zero. This is indeed the case in equilibrium: no
current is flowing. However, we are interested in a non-equilibrium situation, where
an external bias is applied across the system. Neglecting for a moment collision
processes (which are certainly present in the interacting system), one may think
of the distribution function Fε as of the two-step function given by Eq. (11.10),
Fig. 11.2(b). Since this is a non-equilibrium function, the procedure of Section
13.1 can’t completely eliminate the term ∝ dαAβ

K in the action. It is this term,
remaining due to the non-equilibrium character of the distribution function, which
makes the average fluctuating current δJdc non-zero.

In particular we focus on the iS1 = −iπνDTr{ÂKQ̂K∇r Q̂K} part of the
action, Eq. (13.18b), where the gradient operator acts on the stationary distribu-
tion function Fε(r), rather than on the diffuson fields dα

εε′(r) (the latter was exactly
the strategy which led us to Eq. (13.3) and eventually to the definition of the
K-gauge; the former option is absent in equilibrium). Once again, employing the
parametrizations of the Q̂K-matrices through Eqs. (11.33) and (11.34), expanding
to first order in the fluctuating diffuson fields dα and focusing only on the terms
with ∇r F , we find for the corresponding part of S1 action

δS1 = −2πνD
∑
ε,ε′

d q
ε′ε

[
Acl

K;ε−ε′∇r(Fε − Fε′)− Aq
K;ε−ε′∇r(1− FεFε′)

]
. (13.39)
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We expand now eiδS1 to first order and perform the functional averaging of
〈δJdciδS1〉ϕ,Q̂K

with the action, which includes the �ϕTU−1
RPA �ϕ part of the fluc-

tuating scalar potential, Eq. (13.17), along with the Gaussian diffuson action
(11.37). In doing so we must understand that Aα

K = ∇rK
α is a pure gauge field.

Since 〈d qd q〉 = 0, only the first term on the right hand side of Eq. (13.38)
contributes. Moreover, since 〈Aq

KAq
K〉 = 0, only the first term on the right

hand side of Eq. (13.39) remains. Finally, employing that 〈Kcl
ε−ε′(r

′)Kq
ε′−ε(r)〉 =

(i/2)VR(r′ − r, ε− ε′), Eq. (13.20), while the propagator of the diffusons is
〈d cl

εε′(r)d
q
ε′ε(r

′)〉 = −2DR(r−r′, ε−ε′)/πν, Eq. (11.38), we find for the interaction
correction to the dc current

δJdc = 2π ieνD2
∫

dr′
∑
ε,ε′

DR(r− r′, ε − ε′)∇r∇r′VR(r′ − r, ε − ε′)

× (
Fε(r)+ Fε′(r)

)(∇r′ Fε′(r′)− ∇r′ Fε(r′)
)
. (13.40)

We shall restrict ourselves to the analysis of this expression in the linear response
regime only. Then ∇r′ Fε = (Fε−eV −Fε)/L = −∂εFεeV/L , cf. Eq. (11.10), where
V/L is the electric field across the sample and all distribution functions are now
understood as the equilibrium ones. We can now change integration variables as
(ε + ε′)/2 → ε and ε − ε′ → ω and perform the explicit integration over ε. We
then find for the Altshuler–Aronov [195] correction to the dc conductivity, given
by δσAA = δJdcL/V ,

δσAA = −i
2σD

πd

∫
dω

∂

∂ω

[
ω coth

ω

2T

]∑
q

DR(q, ω) Dq2V R(q, ω)

≈ i
2e2 D

πd

∫
dω

∂

∂ω

[
ω coth

ω

2T

] ∑
q

1(
Dq2 − iω

)2 , (13.41)

where σD = e2νD. In the second line here we employed the limit of strong
Coulomb interactions, U−1

s (q) � �R, and thus made the approximation that
Dq2VR(q, ω) ≈ −[ν(Dq2 − iω)]−1, see Eqs. (13.23a). Focusing on d = 2 and
performing momentum integration, one finds

δσAA = − e2

2π2
ln(T τel)

−1, (13.42)

where the elastic scattering rate τ−1
el enters as the upper cutoff in the logarith-

mic integral over the frequency ω. We found thus a negative singular correction
with the relative value δσAA/σD ∝ g−1 ln(1/T τel), where g = �νD is the
dimensionless conductance per square. Notice that the correction is smaller (in
the large logarithm) than the non-gauge-invariant zero bias effect considered in
Section 13.3. Such a relative smallness of the Q̂K-fluctuation corrections justifies
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the non-perturbative approach to the zero bias anomaly, which treats Q̂K in the
stationary point approximation. One may trust the conductivity correction as long
as T � τ−1

el e−g. To go beyond this limit the RG treatment of the interacting sigma-
model was developed in [145, 146, 201]. Reviews of the perturbative interaction
corrections in disordered conductors can be found in [195, 202, 203].6 In d = 1, 3
one also finds the singular suppression of the conductivity at a low temperature,
which scales as δσAA ∼ (d − 2)T d/2−1.

13.5 Kinetic equation

The aim of this section is to show how the kinetic equation for the distribution func-
tion Fε(r, t) appears in the framework of the Keldysh formulation. In Section 11.4
it was demonstrated that the diffusive kinetic equation for non-interacting fermions
is nothing but the stationary point equation for the effective action of the Q̂-matrix.
In the case of interacting electrons it is obtained from the action S[Q̂K,∇rK],
Eqs. (13.18), by first integrating out the fast degrees of freedom: both diffuson
fluctuations, dα, and electromagnetic fields, Kα (or equivalently ϕα).

Let us outline the logic of the procedure, which leads from the partition func-
tion (13.17) to the kinetic equation. As the first step we separate slow and
fast degrees of freedom in the action, Sl[Q̂K, ∂rK], where l = 0, 1, 2 (see
Eqs. (13.18)). The former are encoded in the distribution function Ftt ′(r), which
after a Wigner transformation acquires the form Fε(r, t). The fast degrees of free-
dom are represented by the diffuson modes dαt t ′(r) and the electromagnetic modes
Kα(r, t). This separation is achieved by an appropriate parametrization of the
Q̂K-matrix. A convenient choice is Q̂K = Û−1

s ◦ Q̂fast ◦ Ûs, cf. Eq. (11.68), where
the slow rotation matrices are

Ûs =
(

1− F ◦ Z F
Z −1

)
, Û−1

s =
(

1 F
Z −1+ Z ◦ F

)
, (13.43)

and the fast part of the Q̂K-matrix is parametrized by the fluctuating diffuson fields
Q̂fast = exp{−Ŵf/2} ◦ σ̂3 ◦ exp{Ŵf/2} (compare this parametrization with that
given by Eq. (11.33)). In the last equation Ztt ′(r) (not to be confused with the
partition function) may be thought of as the quantum component of the distribution
function Ftt ′(r). Although Ztt ′(r) is put to zero at the end of the calculations, it

6 To appreciate the simplifications offered by the sigma-model treatment, one may notice that the original deriva-
tion includes consideration of eight diagrams, five of which cancel each other. The calculation of the remaining
three involves an elaborated analytical continuation procedure.
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was emphasized in [203, 204] that Ztt ′(r) must be kept explicitly in the Q̂-matrix
parametrization to obtain the proper form of the collision integral in the kinetic
equation.

As the second step, one performs integrations over ϕα (or equivalently Kα, since
the relation between them is fixed by Eq. (13.7)), and over the Ŵf fields in the
partition function (13.17), to arrive at the effective action

eiSeff[F,Z ] =
∫

D[Ŵf, ϕ] eiS[F,Z ,Ŵf,∇rK]. (13.44)

The resulting effective action Seff depends on F and its quantum component Z , and
possibly the classical external fields, such as, e.g., scalar or vector potentials. One
then looks for the stationary point equation for the distribution function F as

δSeff[F, Z ]
δZ

∣∣∣∣
Z=0

= 0, (13.45)

which is the sought kinetic equation.
Proceeding along these lines, one expands the action (13.18) up to second order

in the fast fields Ŵf, ϕ̂ and K̂ and up to first order in the auxiliary slow field Z .7 The
dependence on the slow distribution function F is to be kept exact. For the slow
part of the S0 action (13.18a) one finds after standard Wigner transformation that
iSeff

0 = 2πν Tr
{[

D∇2
r Fε(r, t)− ∂t Fε(r, t)

]
Zε(r, t)

}
. Upon variation, Eq. (13.45),

with respect to Z one recovers the non-interacting kinetic equation (11.31). The
fast part of S0 is, of course, the diffuson action (11.35).

Turning to the S1 part of the action, Eq. (13.18b), one notices that, since it
is linear in the fast field K, one needs to keep only the terms linear in the fast
diffuson modes Ŵf. In equilibrium such terms were eliminated by the choice of
the K-gauge, which dictated the relation (13.7) between �K and �ϕ ↔ �V . Away
from equilibrium, it is still convenient to keep the relation (13.7) intact, where the
bosonic distribution function Bω is understood as

Bω(r, t) = 1

2ω

∫ +∞

−∞
dε′

[
1− Fε′(r, t)Fε′−ω(r, t)

]
. (13.46)

Notice that if Fε = tanh(ε/2T ), then Bω = coth(ω/2T ), cf. Eq. (13.4). After some
algebra one finds the term ∼ I[F]∇2

r Kcld q in the S1 action, where the functional

I[F] ≡ 1− Fε−ω(r, t)Fε(r, t)− Bω(r, t)
[
Fε(r, t)− Fε−ω(r, t)

]
(13.47)

7 By keeping the terms quadratic in Z and splitting them subsequently with a Hubbard–Stratonovich field, one
arrives at the stochastic Langevin term in the kinetic equation, proposed by Kogan and Shul’man [205]. Such
a term allows us to find the shot noise and higher cumulants in the framework of the kinetic equation, see also
[206, 207, 208].
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is obviously zero in equilibrium.8 There is also a term linear in the auxiliary field
Z of the form ∼ Z∇2

r Kqd cl. Expanding eiS1 to second order and focusing on the
product of these two terms, one finds after Gaussian integration over Kα and dα

(see Eq. (7.43) and see [23] for details)

iSeff
1 = −4iπν Tr

{(
Dq2

)2[DA(q, ω)VR(q, ω)−DR(q, ω)VA(q, ω)
]
I[F]Z

}
.

(13.48)

The remaining S2 part of the action (13.18c) is already quadratic in the fast
fields K̂ and therefore may be taken at Ŵf = 0. Typical terms linear in Z have
the structure of Tr{(∂rK

q)F(∂rK
cl)F Z} and Tr{(∂rK

cl)(∂rK
cl)F Z}. Keeping all of

them and performing Gaussian integrations over Kα [23], one finds

iSeff
2 = 2iπν Tr

{
Dq2[VR(q, ω)− VA(q, ω)]I[F]Z} , (13.49)

where we took into account that according to Eqs. (13.7) and (13.21) there is
an FDT-like relation VK(r, r, t) = Bω(r, t)

∑
q

[
VR(q, ω) − VA(q, ω)

]
for the

Keldysh component of the propagator at the coinciding spatial arguments, which
includes the effective bosonic distribution (13.46).

Finally, combining Seff
0 [F, Z ] together with Seff

1,2[F, Z ], Eqs. (13.48) and (13.49),
and employing Eq. (13.45), one arrives at the kinetic equation

∂t Fε(r, t)− D∂2
r Fε(r, t) = I coll[F], (13.50)

where the collision integral is given by

I coll[F]=
∑
q,ω

M(q, ω)
[
1− Fε−ω(r, t)Fε(r, t)− Bω(r, t)[Fε(r, t)− Fε−ω(r, t)]

]
.

(13.51)
The interaction kernel here stands for

M(q, ω) = −iDq2
{

2Dq2
[
DAVR −DRVA

]− [
VR − VA

]}
= −2 Re[DR(q, ω)] Im[U R

RPA(q, ω)], (13.52)

where in the last line we used VR(A)(q, ω) = −[DR(A)(q, ω)
]2

U R(A)
RPA (q, ω), which

is a direct consequence of Eq. (13.19a), along with 2Dq2 = (DR)−1 + (DA)−1.
This collision integral is to be compared with the one, Eq. (9.71), for the clean sys-
tems. They both contain the same combination of the distribution functions, which
renders cancelation of the collision integral by the equilibrium Fermi-Dirac

8 Here we disregarded terms with ∇r F , which are crucial to derive the Altshuler–Aronov correction, see
Eq. (13.39). In the context of the kinetic equation they lead to Altshuler–Aronov renormalization of the
diffusion constant in the kinetic term. On the other hand terms ∼ I[F] lead to the collision integral.
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distribution. The difference is that in the clean case the distribution function
depends on the momentum k. In the disordered case the elastic impurity scattering
quickly equilibrates over the momenta directions, while the relatively slow inelas-
tic electron–electron scattering provides the energy equilibration. Thus in the latter
case the distribution function depends only on the energy ε = ξk. The main differ-
ence, however, is the singular scattering kernel

∑
q M(q, ω). The physical reason

for such an enhanced scattering cross-section is the absence of momentum con-
servation in the disordered system and thus a larger phase space available for the
scattering.

Recalling the connection between the fermion distribution function and the occu-
pation number nε(r, t) = (1−Fε(r, t))/2 and employing Eqs. (13.12) and (13.46),
one identically rewrites the right hand side of Eq. (13.50) as [209, 210]

I coll =
∑

q,ω,ε′

8πM(q, ω)
ω

[
nεnε′−ω(1− nε′)(1− nε−ω)

− nε′nε−ω(1− nε)(1− nε′−ω)
]
. (13.53)

This form clearly shows the “out” minus “in” structure of the collision integral
(the seemingly wrong sign is associated with the fact that the left-hand side of
Eq. (13.50) acts on Fε = 1 − 2nε). The present discussion can be generalized to
include the spin triplet interaction channel. The corresponding kinetic equation and
the collision integral were discussed in [211, 212].

Following the strategy of Section 9.8 we focus now on the “out” relaxation rate
[210, 195, 213] for an electron of energy ε. It enters the spatially uniform kinetic
equation ∂t nε = −nε/τee(ε) and is given by

1

τee(ε)
=
∫

dωdε′
∑

q M(q, ω)

πω
nF(ε

′ − ω)[1− nF(ε
′)][1− nF(ε − ω)], (13.54)

where all occupation numbers were substituted by the Fermi functions. This is
appropriate if one is interested in small (linear) deviations of nε from its equilib-
rium value nF(ε). Equation (13.54) simplifies considerably at zero temperature,
T = 0. Indeed, the Fermi functions limit the energy integrations to the range
0 < ω < ε, while 0 < ε′ < ω, where the product of all occupation numbers
is unity. Integration over ε′ brings in the factor of ω. In the universal limit of strong
interactions, U−1

s � �R, the kernel M(q, ω) acquires a simple form and one finds
for the “out” relaxation rate

1

τout(ε)
= 2

πν

∫ ε

0
dωω

∑
q

1

(Dq2)2 + ω2
= |ε|

4πg
, (13.55)
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where the last equality is given for d = 2, with g = �νD � 1 being the dimen-
sionless conductance per square. For d = 1, 3 the “out” relaxation rate scales with
the energy as τ−1

ee (ε) ∝ (1/νd)(|ε|/D)d/2, here |ε| � 1/τel, see [195] for further
details. One notices that in all cases the small energy electron–electron relaxation
rate appears to be much faster than in the case of clean systems, Eq. (9.72). This is a
consequence of the aforementioned increase in the number of available states, due
to the absence of the integral of motion (momentum) in the disordered case. Still
τ−1

ee � |ε|, justifying the quasiparticle picture employed to write the kinetic equa-
tion. Since ω ∼ ε, this fact also justifies the division into the slow and fast degrees
of freedom adopted to derive Eqs. (13.48) and (13.49). Indeed, the slow ones have
characteristic frequencies of order 1/τee, while the fast ones are of order ω.



14

Dynamics of disordered superconductors

We generalize the non-linear sigma-model to include interactions in the Cooper
channel. As its stationary point approximation we derive coupled Usadel, self-
consistency and Poisson equations. We use them to derive the Josephson current
of an SNS junction, as well as the dispersion of the collective Carlson–Goldman
mode of the superconductors. In the gapless case one may explicitly integrate
out fermionic degrees of freedom, obtaining the time-dependent Ginzburg–Landau
action. The latter is used to derive the Aslamazov–Larkin fluctuation correction to
the normal state conductivity.

14.1 Cooper channel interactions

So far we have been mostly discussing the effects of singlet channel electron–
electron interactions. We turn now to the Cooper channel interactions, see
Eqs. (9.57)–(9.59). As was realized by Bardeen, Cooper and Schrieffer (BCS)
[214], exchange of virtual phonons with large wavenumbers q ∼ kF mediates
effective attractive interactions in the Cooper channel. The latter lead to forma-
tion of two-electron bound states – Cooper pairs, which form a condensate below
a certain critical temperature Tc. The superfluid current of such a condensate is
charged and results in a phenomenon known as superconductivity. In this chapter
we restrict ourselves to the theory of disordered superconductors, i.e. those where
Tc � �/τel. This condition is indeed fulfilled for many conventional supercon-
ductors (but not for cold atom realizations). It actually considerably simplifies the
theory by ensuring the spatially local character of the correlation functions.1

1 Indeed, the characteristic length scale, the coherence length, ξ0 =
√

D/Tc, appears to be much larger than the
mean free path lel ∝

√
Dτel, which is the scale where the non-local correlations decay.

298
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We write the local Cooper channel interaction action with attractive interactions
as, cf. Eq. (9.59),

SBCS = λ

ν

∫
C

dt
∫

dr �̄(r, t)�(r, t), (14.1)

where the time integral runs along the closed time contour and the complex
Cooper pair density is given by �(r, t) = ψ↓(r, t)ψ↑(r, t), while its conjugate
is �̄(r, t) = ψ̄↑(r, t)ψ̄↓(r, t). Notice the opposite sign with respect to Eq. (9.59),
which stresses the attractive nature of the interactions, λ > 0. Actually the phonon-
mediated interactions should be described by a time non-local kernel λ(t − t ′), or
its Fourier image λ(ω). Following BCS, we approximate it as being a constant
λ(ω) ≈ λ for energy transfer below the Debye frequency, |ω| < ωD, and zero
otherwise. This is justified by the fact that observables depend on the cutoff ωD

only logarithmically (see below).
This four-fermion interaction term may be decoupled via a Hubbard–

Stratonovich transformation by introducing an auxiliary complex bosonic field
�(r, t):

e iSBCS =
∫

D[�] e i
∫

dx [− ν
λ
|�(x)|2+�(x)�̄(x)+�∗(x)�(x)]

=
∫

D[�] e i
∫

dx [− ν
λ
|�(x)|2+�(x)ψ̄↑(x)ψ̄↓(x)+�∗(x)ψ↓(x)ψ↑(x)], (14.2)

here x = (r, t) and
∫

dx = ∫
C dt

∫
dr. After the Hubbard–Stratonovich transfor-

mation (14.2) the fermionic action becomes quadratic in Grassmann fields and may
be written in the matrix form

S= 1

2

∫
dx (ψ̄↑,−ψ↓)

(
i∂t + (∇r+iA)2

2m + Vdis �

−�∗ −i∂t + (∇r−iA)2

2m + Vdis

)(
ψ↑
ψ̄↓

)
,

(14.3)

along with the identical (in the absence of the Zeeman term) action for the
(ψ↓,−ψ̄↑)T spinor. To make further notation compact it is convenient to introduce
fermionic bispinors

!̄ = 1√
2

(
ψ̄↑,−ψ↓, ψ̄↓, ψ↑

) ; ! = 1√
2

(
ψ↑, ψ̄↓, ψ↓,−ψ̄↑

)T
, (14.4)

defined in the four-dimensional space �, which can be viewed as the direct
product N ⊗ S of the Gor’kov–Nambu [215, 216] (N) (ψ↑, ψ̄↓) and spin (S)
spaces (ψ↑, ψ↓). In principle, the choice of the bispinors is not unique. One can
rearrange components of the bispinors in a different manner, separating explicitly
the time-reversal (TR) (ψ, ψ̄) and spin spaces. Finally one may equally think of
! as representing the direct product of the Nambu and time-reversal subspaces.
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These three representations are equivalent, i.e. � = N ⊗ S ∝ S ⊗ TR ∝
N ⊗ TR and the choice between them is dictated by convenience in calcula-
tions for a particular problem at hand. We shall use the N ⊗ S choice and omit
the S part, since the theory is diagonal in the latter subspace,2 as illustrated by
Eq. (14.3). The vectors !̄ and ! are not independent and are related to each other,
!̄ = (Č!)T, by the charge-conjugation matrix Č ≡ iτ̂2 ⊗ ŝ1, where τ̂i and ŝi ,
for i = 0, 1, 2, 3, are Pauli matrices acting in the Nambu and spin subspaces,
respectively; the σ̂i matrices, as before, act in the bosonic Keldysh subspace,
while γ̂ cl(q) act in the fermionic Keldysh subspace. To avoid confusion, we shall
specify, where appropriate, Keldysh and Nambu subspaces by subscripts K and N,
respectively.

We now employ the same strategy as outlined in Chapters 9–13. First we split
the fermionic fields into forward and backward branches and perform the Keldysh–
Larkin–Ovchinnikov rotation, see Section 9.3. This way an additional Keldysh (K)
subspace is introduced. We then perform disorder averaging of the partition func-
tion and then split the emerging four-fermion term with the matrix field Q̌tt ′(r),
which acts in the � ⊗ K ⊗ time space, see Chapter 11. At this point the action
is quadratic in fermionic spinors and they may be integrated out, resulting in the
following disorder-averaged partition function:

〈Z〉dis =
∫

D[ϕ,�] e
i
2 Tr
{
ϕ̌U−1

s �̌1ϕ̌

}
− iν

2λTr
{
�̌†�̌1�̌

} ∫
D[Q̌] e iS[Q̌,�,A,ϕ];

iS[Q̌,�,A, ϕ] = − πν

8τel
Tr
{

Q̌2
}+ Tr ln

[
Ǧ−1 + i

2τel
Q̌ − ϕ̌ − vFǍ+ �̌

]
,

(14.5)

which generalizes Eq. (11.41). We have also included the scalar potential ϕ, orig-
inating from the singlet (i.e. Coulomb) interaction potential Us(q), Eq. (9.60).
Hereafter we use the check symbol to denote 4 × 4 matrices acting in the K ⊗ N
space and the hat symbol for the 2 × 2 matrices acting in either Nambu or
Keldysh subspaces. The bare inverse Green function in K ⊗ N space is given by
Ǧ−1 = iŤ3∂t + ∇2

r /2m + μ, where Ť3 = γ̂ cl ⊗ τ̂3. Equation (14.5) also contains
the matrix �̌1 = σ̂1 ⊗ τ̂0 along with the bosonic matrix fields, defined as

ϕ̌(r, t) = ϕα(r, t) γ̂ α ⊗ τ̂0 , Ǎ(r, t) = Aα(r, t) γ̂ α ⊗ τ̂3,

�̌(r, t) = �α(r, t) γ̂ α ⊗ τ̂+ −�∗α(r, t) γ̂ α ⊗ τ̂−, (14.6)

2 The omission of this subspace excludes rotations in, e.g., the (ψ↑, ψ̄↑) time-reversal subspace. These rotations
are exactly the soft modes “normal Cooperons” which are responsible for the weak localization effects, see
Section 11.7. We also miss the triplet diffuson soft modes associated with the rotations in (ψ↑, ψ↓) subspace.
As long as localization and spin-scattering effects are not considered, such an omission is indeed justified. I am
indebted to M. Skvortsov for discussing this issue.
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with τ̂± = (τ̂1 ± iτ̂2)/2. The Q̌-matrix also has a 4 × 4 structure in Keldysh and
Nambu spaces along with the matrix structure in the time domain.

We use now the fact that the elastic scattering rate 1/τel is the largest energy scale
in the problem (indeed we focus on disordered superconductors with Tcτel � 1).
Following the discussion of Section 11.3, it allows to separate soft modes in
Q̌-matrix space. The latter obey the non-linear constraint Q̌ ◦ Q̌ = 1̌. Focusing
on this soft-mode manifold, one may expand the logarithm under the trace oper-
ation in Eq. (14.5) in spatial and temporal gradients of the Q̌-matrix as well as
in the relatively weak fluctuating bosonic fields ϕ and � (similarly to the calcula-
tions presented in Section 11.5). As a result, one obtains the action of disordered
superconductors in the following form, cf. Eq. (11.59),

iS[Q̌,�,A, ϕ] = iν

4
Tr
{
ϕ̌�̌1ϕ̌

}− πν

8
Tr
{

D (∂̂r Q̌)2 − 4Ť3∂t Q̌ − 4iϕ̌ Q̌ + 4i�̌Q̌
}
.

(14.7)

The first (anomalous) term on the right hand side is the static polarizability of
the electronic band, as explained in Eq. (11.48). The last term is the Keldysh
non-linear sigma-model action, generalized for disordered superconductors, first
obtained by Feigel’man, Larkin and Skvortsov [217, 218] (for the replica version
see e.g. [219]). The covariant derivative ∂̂r is defined by Eq. (11.43). Notice the τ̂3

Nambu matrix in the definition of the matrix vector potential (14.6), which signifies
the pair-breaking nature of the magnetic field. Also notice that ν = ν↑ + ν↓ stands
for the density of states for two spin components.

14.2 Usadel equation

Averaging over the strong quenched disorder and taking care of the large energy
scale 1/τel results in the non-linear sigma-model action (14.7), supplemented
by the non-linear constraint Q̌2 = 1̌. We focus now on this soft-mode mani-
fold and incorporate smaller energy scales associated with the superconducting
correlations (and with the screened Coulomb interactions). To this end we look for
a stationary matrix Q̌

t1t2
(r) on the soft-mode Goldstone manifold defined by the

non-linear constraint Q̌2 = 1̌. This is achieved with the help of parametrizations
Q̌ = exp(−W̌/2) ◦ Q̌ ◦ exp(W̌/2) and expansion to first order in the rotation gen-

erators W̌ as Q̌ ≈ Q̌ − [W̌,◦ Q̌]/2. Substituting this form into the action (14.7)

and demanding that the first order in W̌ vanishes, one finds the stationary point
condition

∂̂r
(
DQ̌ ∂̂r Q̌

)− {
Ť3∂t , Q̌

}
+ + i

[
�̌− ϕ̌, Q̌

] = 0, (14.8)

which is known as the Usadel equation [159] cf. the normal state Eq. (11.29).



302 Dynamics of disordered superconductors

We shall look for solutions of this equation in the subspace of classical
configurations which exhibit the causality structure and thus have the form

Q̌ =
(

Q̂R Q̂K

0 Q̂A

)
K

, (14.9)

with retarded, advanced and Keldysh components being matrices in the Nambu
subspace. Hereafter we omit underlining the stationary configuration of the sigma-
model action. In the subspace of classical configurations the non-linear constraint
Q̌2 = 1̌ is resolved by the following conditions:

Q̂R Q̂R = Q̂A Q̂A = 1̂ , Q̂R Q̂K + Q̂K Q̂A = 0. (14.10)

Substituting the classical ansatz (14.9) into the Usadel equation (14.8), and assum-
ing that the fields �(r, t) and ϕ(r, t) are pure classical, one finds a closed equation
for the retarded (advanced) component of the stationary Q̌-matrix:

∂̂r
(
D Q̂R(A)∂̂r Q̂R(A)

)+ i
[
ετ̂3, Q̂R(A)

]+ i
[
�̂− ϕ̂, Q̂R(A)

] = 0, (14.11)

where we employed a Fourier representation for the operator ∂t . As we shall see
below, this equation describes the quasiparticle spectrum of the superconductor.

First we look for a spatially uniform and time translationally invariant solution
�̂R(A)
ε which satisfies

iε
[
τ̂3, �̂

R(A)
ε

]+ i
[
�̂, �̂R(A)

ε

] = 0. (14.12)

While writing this equation, we have assumed that the order parameter field �(r, t)
has developed a non-zero expectation value (condensate) �, which is time and
space independent.3 Its value will be determined below from the self-consistency
condition. Without loss of generality we assume that � is real, thus �̂ = i�τ̂2,
see Eq. (14.6). Taking into account that

(
Q̂R(A)

)2 = 1̂, one finds the solution of
Eq. (14.12) as

�̂R
ε =

sign ε√
(ε + i0)2 −�2

(
ε �

−� −ε
)

N

= τ̂3uε + iτ̂2vε, (14.13)

where

uε = εsign ε√
(ε + i0)2 −�2

, vε = � sign ε√
(ε + i0)2 −�2

, u2
ε − v2

ε = 1 (14.14)

3 Since the scalar potential ϕ does not have a finite expectation value, we drop it from the equation for the
equilibrium matrix �̂R

ε .
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and �̂A
ε = −τ3u∗ε − iτ̂2v

∗
ε . The infinitesimal imaginary increments are chosen to

have the retarded (advanced) component analytic in the entire upper (lower) half-
plane of the complex energy ε. The sign ε factor ensures that �̂R(A)

ε → ±τ̂3 for
|ε| � �, as expected for a normal metal, see Eq. (11.20). Notice also that uε and
vε are real for |ε| > � and pure imaginary for |ε| < �. In the latter case the sign ε
factor ensures also continuity of these functions at ε = 0.

We turn now to the determination of the order parameter �. Varying the action
(14.5) and (14.7) with respect to the quantum component �∗q(r, t) of the order
parameter field, one finds the stationary point equation for �cl(r, t):

�cl(r, t) = πλ

2
Tr
{
(γ̂ q ⊗ τ̂−)Q̌

} = πλ

2
Tr
{
τ̂− Q̂K

}
, (14.15)

where in the last equality we restricted ourselves to the classical ansatz (14.9).
Variation with respect to �q(r, t) leads to the complex conjugate equation
for �∗cl. These equations provide the self-consistency conditions for the com-
plex order parameter �. Looking for a constant real solution of the form
�cl(r, t)=�, one obtains � = (πλ/2)

∫
(dε/2π)(�̂K

ε )12. According to FDT,
�̂K = tanh(ε/2T )(�̂R

ε − �̂A
ε ), and thus �̂K

ε = 0 for |ε| < �. As a result one
finds the self-consistency condition for � = �(T ):4

� = λ�

∫ ωD

|�|
dε

tanh ε/2T√
ε2 − |�|2 . (14.16)

This equation admits a non-zero solution for T < Tc, where the critical tem-
perature is determined from the condition 1 = λ

∫ ωD

0 (dε/ε) tanh ε/2Tc. On the
other hand, at T = 0 the order parameter �(0) is given by the solution of
1 = λ

∫ ωD

�(0) dε/
√
ε2 −�2(0) . This leads to the simple relation between the two

[220] �(0) = 1.76Tc, which is reasonably well satisfied for many conventional
superconductors.

Having determined �̂R
ε and the order parameter �(T ), one may discuss the

single-particle density of states. The latter is defined as ν(ε) = −ImGR(ε)/π ,
where GR is the retarded single-particle Green function (traced over the spin
indices) discussed in Section 13.3. Following the same root, cf. Eq. (13.25), one
may show that in the stationary point approximation the density of states is given by

ν(ε) = ν

2
Re Tr

{
τ̂3�̂

R
ε } = ν θ(|ε| −�)

|ε|√
ε2 −�2

. (14.17)

4 To bring it to text-book form, e.g. [220], one does the change of variables as ξ =
√
ε2 − |�|2, to write

ε =
√
|�|2 + ξ2, and finds 1 = λ

∫ ωD
0

(
dξ/

√
|�|2 + ξ2

)
tanh

√
|�|2 + ξ2/2T .
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We find thus that the quasiparticle spectrum has a gap, i.e. ν(ε) = 0 for
|ε| < �(T ), as long as T < Tc. Immediately outside the gap the density of
states exhibits an integrable square root singularity, which has profound conse-
quences for quasiparticle dynamics, see Section 14.5. It is instructive to check that∫

dε(ν(ε) − ν) = 0. This observation implies that the total number of single-
particle states is not altered by the gap opening. Instead, the states are “pushed”
from the gap interval into above-the-gap peaks.

Let us now focus on the Keldysh component of the Usadel equation (14.8), given
by the (12) element in K space. It provides another equation, which takes the form

∂̂r
(
D Q̂R∂̂r Q̂K + D Q̂K∂̂r Q̂A

)+ i
[
ετ̂3, Q̂K

]+ i
[
�̂− ϕ̂, Q̂K

] = 0. (14.18)

The last of the conditions (14.10) may be explicitly resolved by the standard
parametrization of the Keldysh component as

Q̂K = Q̂R ◦ F̂ − F̂ ◦ Q̂A, (14.19)

where F̂ is an arbitrary 2× 2 matrix in Nambu space (provided (Q̂R)2 =
(Q̂A)2= 1̂), which may be thought of as a matrix distribution function. Employing
the fact that the Q̌t,t ′(r) matrix has the symmetries of the !(t, r)!̄(t ′, r) bilin-
ear combination, one may show [221] that among the four components of
F̂t,t ′(r) only two are linearly independent. Following Schmid–Schön [222] and
Larkin–Ovchinnikov [27] we choose them as

F̂ =
(

FL + FT 0
0 FL − FT

)
N

= FL;t t ′(r)τ̂0 + FT;t t ′(r)τ̂3, (14.20)

where the subscripts L and T refer to the longitudinal and transversal components
of the distribution function. The meaning of this notation will be clarified at the end
of Section 14.5. The fact that Q̌t,t ′(r) has the symmetries of !(t, r)!̄(t ′, r) trans-
lates into the statement that FL;t t ′ is odd while FT;t t ′ is even under the interchange
of t ↔ t ′. Correspondingly their Wigner transforms FL(ε, r, t) and FT(ε, r, t) are
odd and even functions of energy ε, respectively. Notice that there are not two dif-
ferent quasiparticle distribution functions. Instead the odd and even components of
the one and only quasiparticle distribution function appear in the F̂-matrix with
the τ̂0 and τ̂3 Nambu matrices. In equilibrium FL(ε) = tanh ε/2T and FT(ε) = 0.
Being even, FT(ε) is responsible for the charge current and density, while the odd
FL(ε) provides the energy current and density.

It is sometimes useful to subtract from the Keldysh Usadel equation (14.18) the
retarded one (14.11) convoluted with F̂ and add F̂ convoluted with the advanced
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equation (14.11), schematically K − R ◦ F + F ◦ A. As a result one obtains the
equation for the distribution matrix F̂ :

D
(
∂̂2

r F̂ − ∂̂r
(
Q̂R∂̂r F̂ Q̂A

)+ Q̂R∂̂r Q̂R∂̂r F̂ − ∂̂r F̂ Q̂A∂̂r Q̂A
)

+ iQ̂R
[
ετ̂3, F̂] − i[ετ̂3, F̂

]
Q̂A + iQ̂R

[
�̂− ϕ̂, F̂] − i[�̂− ϕ̂, F̂

]
Q̂A = 0.

(14.21)

As mentioned above, only two components of this equation are independent. One
can thus (i) take the Nambu trace of this equation and (ii) multiply it by τ̂3 and then
take the Nambu trace. This way one finds two scalar equations for the two unknown
functions FL and FT. Being written in the Wigner transformed representation, they
are known as Larkin–Ovchinnikov equations [27]. As we shall see in Section 14.5,
the Wigner transformation may be dangerous due to the singularities in the density
of states. If this is the issue, it is more convenient to work directly with Eq. (14.18)
written in the energy representation than with Eq. (14.21).

Finally, varying the action (14.5) and (14.7) with respect to the quantum com-
ponent of the scalar potential ϕq(r, t) and adopting the classical ansatz (14.9), one
obtains the Poisson equation for the classical scalar potential ϕcl = ϕ:

∇2
rϕ = 4πe2

[
νϕ + πν

4
Tr
{
τ̂0
(
Q̂K − �̂K)

}]
, (14.22)

where the first term on the right hand side originates from the variation of the
first (anomalous) term in the action (14.7), which represents the static polariz-
ability of the electronic band. In the last term we have subtracted the equilibrium
matrix �̂K, which is supposed to carry the same charge as the positive background.
The Poisson equation together with the self-consistency condition (14.15) and the
Usadel equations for the spectrum (14.11) and the distribution function (14.21)
(or equivalently (14.18)) constitute the closed system of equations governing the
dynamics of the superconductor. Below we consider some applications of these
equations.

14.3 Stationary superconductivity

In the presence of boundaries or proximity to a normal metal one faces the prob-
lem of spatially non-uniform superconductivity. In this case, both � and Q̂R(A)

acquire a coordinate dependence and one should look for solutions of Eqs. (14.8)
and (14.15). In doing so, we will assume that Q̌tt ′ is static, i.e. independent of the
central time. As a result Q̌ε is diagonal in the energy representation. The non-linear
constraints (Q̂R(A))2 = 1̂, Eq. (14.10), may be explicitly resolved by the angular
parametrization [223] for the retarded and advanced blocks of the Q̌-matrix:
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Q̂R(r, ε) =
(

coshϑ sinhϑ exp(iχ)
− sinhϑ exp(−iχ) − coshϑ

)
N

, (14.23a)

Q̂A(r, ε) = −τ̂3
[
Q̂R

]†
τ̂3 =

( − coshϑ∗ − sinhϑ∗ exp(iχ∗)
sinhϑ∗ exp(−iχ∗) coshϑ∗

)
N

,

(14.23b)

where ϑ(r, ε) and χ(r, ε) are complex coordinate- and energy-dependent angles.
Substituting Q̂R in the form of (14.23) into Eq. (14.11), one finds from the diagonal
elements of the corresponding matrix equation

D ∂̂r
(

sinh2 ϑ ∂̂rχ
) = 2i|�| sinhϑ sin(θ − χ), (14.24)

where the order parameter is parametrized as �(r) = |�(r)| exp{iθ(r)}. From the
off-diagonal block of the matrix equation (14.11), using Eq. (14.24), one obtains

D ∂̂2
rϑ + 2iε sinhϑ − 2i|�| coshϑ cos(θ − χ) = D

2

(
∂̂rχ

)2
sinh 2ϑ. (14.25)

We proceed with Eq. (14.21) for the distribution matrix F̂ , parametrized as in
Eq. (14.20). (i) Taking the Nambu trace of the matrix equation (14.21) and (ii) mul-
tiplying it by τ̂3 and then taking the trace, one finds two coupled kinetic equations
for the stationary non-equilibrium distribution functions FL(T)(r, ε), which can be
written in the following form [224]:

∂̂r
(
DL∂̂r FL − DY ∂̂r FT

)+ DJS∂̂r FT = Ia, (14.26a)

∂̂r(DT∂̂r FT + DY ∂̂r FL)+ DJS∂̂r FL = Ib. (14.26b)

Here we have introduced energy- and coordinate-dependent diffusion coefficients

DL = D

4
Tr
{
τ̂0 − Q̂R Q̂A

}
= D

2

[
1+ | coshϑ |2 − | sinhϑ |2 cosh

(
2Im[χ ])] ,

(14.27a)

DT = D

4
Tr
{
τ̂0 − τ̂3 Q̂Rτ̂3 Q̂A

}
= D

2

[
1+ | coshϑ |2 + | sinhϑ |2 cosh

(
2Im[χ ])] ,

(14.27b)

as well as the density of the supercurrent carrying states JS(r, ε) and the spectral
density Y(r, ε), defined as

JS = 1

4
Tr
{
τ̂3
(
Q̂R∂̂r Q̂R − Q̂A∂̂r Q̂A

)} = −Im
(

sinh2 ϑ ∂̂rχ
)
, (14.28)

Y = 1

4
Tr
{

Q̂Rτ̂3 Q̂A
}
= 1

2
| sinhϑ |2 sinh

(
2Im[χ ]). (14.29)
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Finally, the right hand sides of Eqs. (14.26) contain the two “collision integrals”,
which are due to Andreev-like interactions of non-equilibrium quasiparticles with
the order parameter. Both of them are proportional to the transversal component of
the distribution function:

Ia = FT

2
Tr
{
τ̂3
(
Q̂R�̂+ �̂Q̂A

)} = 2FT|�|Re [sinhϑ sin(θ − χ)] , (14.30a)

Ib = FT

2
Tr
{

Q̂R�̂+ �̂Q̂A
}
= −2FT|�|Im [sinhϑ cos(θ − χ)] . (14.30b)

The actual collision integrals associated with inelastic electron–electron and
electron–phonon interactions are not discussed here, one may find corresponding
derivations in the book of Kopnin [221]. Equations (14.24), (14.25) and (14.26),
together with the spectral quantities (14.27)–(14.30), represent a complete set
of equations for disordered superconductors applicable within the static approx-
imation. These equations are accompanied by the self-consistency relation, see
Eq. (14.15),

�(r) = λ

4

∫
dε

{[
sinhϑ eiχ + sinhϑ∗eiχ∗

]
FL−

[
sinhϑ eiχ − sinhϑ∗eiχ∗

]
FT

}
,

(14.31)

resulting in a coordinate-dependent order parameter field �(r).
One should supplement these equations with the boundary conditions which

express the current continuity [225, 226, 227]. For a tunneling junction with con-
ductance gT, sandwiched between two metals, the continuity dictates that at the
junction

νL DL Q̌L∂̂
⊥
r Q̌L = gT[Q̌L, Q̌R] = νR DR Q̌R∂̂

⊥
r Q̌R, (14.32)

where L/R denote left/right of the junction, respectively, and ∂̂⊥r stands for the
derivative normal to the junction.

An analytic solution of the system of kinetic equations (14.24)–(14.26) is rarely
possible. In general, one has to rely on numerical methods. To find a solution for a
given transport problem, one may proceed as follows [223].

(i) Start with a certain �(r). Usually one takes � = const everywhere in the
superconductors and � = 0 in the normal metals.

(ii) Solve the Usadel equations (14.24)–(14.25) for the retarded Green function,
thus determining the spectral angles ϑ(r, ε) and χ(r, ε).

(iii) Use these solutions to calculate the spectral kinetic quantities DL,T(r, ε),
JS(r, ε) and Y(r, ε).
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(iv) Solve the kinetic equations (14.26) for FL/T(r, ε).
(v) Calculate a new �(r) from Eq. (14.31) and iterate this procedure until self-

consistency is achieved.

Having solved the kinetic equations one may determine the physical quantities
of interest. For example, the electric current is given by the derivative of the
action (14.7) with respect to the quantum component of the vector potential, cf.
Eq. (11.49). This way one finds

J = eπνD

4
Tr
{
γ̂ q ⊗ τ̂3 Q̌ ∂̂r Q̌

} = eπνD

4
Tr
{
τ̂3
(
Q̂R ∂̂r Q̂K + Q̂K ∂̂r Q̂A

)}
= eπνD

4
Tr
{
τ̂3
(
Q̂R ∂̂r Q̂R F̂ − F̂ Q̂A ∂̂r Q̂A + ∂̂r F̂ − Q̂R∂̂r F̂ Q̂A

)}
. (14.33)

The first two terms associated with the gradients of the quasiparticle spectrum
give the supercurrent JS. The last two terms proportional to the gradients of
the distribution function is the normal component of the current JN. In terms
of the quantities introduced above, one finds for the super and normal current
components, respectively:

JS = eνD

2

∫
dε FL(r, ε)JS(r, ε) ; JN = eν

2

∫
dεDT(r, ε) ∂̂r FT(r, ε),

(14.34)
where we used that Tr{Q̂R∂̂r Q̂R} = Tr{τ̂3 Q̂R Q̂A} = 0. Notice that the normal
component is the same as Eq. (11.49) with the substitution D → DT. Indeed, it
is only the component of the distribution function that is even in energy, i.e. FT,
which contributes to the normal current (11.49). As opposed to the normal current,
the supercurrent is given by the odd component of the distribution function FL and
therefore may exist even in equilibrium, where FL = tanh ε/2T .

14.4 SNS system

As an example of an application of the general formalism developed in the pre-
vious section, we consider a superconductor–normal metal–superconductor (SNS)
system. We shall assume that the normal part (N) is represented by a quasi-one-
dimensional nano-wire with cross-section diameter less than the superconducting
coherence length ξ0 = √

D/�(0). This allows us to treat the problem as 1d, i.e.
the spatial dependence is restricted to the x-coordinate only. The superconducting
leads (S) are assumed to be bulk and 3d, which allows us to fix their order param-
eter to be � = const and avoid solving the self-consistency condition. That is,
the normal nano-wire does not damage the superconductivity in bulk leads. In the
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normal wire there is no Cooper channel attraction, i.e. λ = 0 and thus, according
to the self-consistency equation (14.15), the order parameter is absent, � = 0.
Nevertheless, the leads induce superconductivity inside the normal region, through
the coordinate-dependent Q̌-matrix. This phenomenon is known as the proximity
effect.

We start from the case where both superconducting leads have the same phase
of the order parameter, which we choose as θ = 0. The Q̂R(x, ε)-matrix inside the
wire, i.e. for |x | < L/2, may be parametrized as in Eq. (14.23a) with χ = 0 and
thus ∂xχ = 0. As a result, the Usadel equation (14.25) simplifies considerably and
reads as

D ∂2
xϑ(x, ε)+ 2iε sinhϑ(x, ε) = 0. (14.35)

Indeed, �(x) = 0 for |x | < L/2. At the interfaces with the superconducting
leads at x = ±L/2, this equation is supplemented by the boundary conditions
ϑ(±L/2, ε)=ϑBCS(ε), where tanhϑBCS(ε)=�/ε, see Eqs. (14.14) and (14.23).
Having solved Eq. (14.35) for the angle ϑ(x, ε), one finds the local density of states
as ν(x, ε) = νRe

[
coshϑ(x, ε)

]
, see Eq. (14.17).

It is convenient to perform rotation ϑ(x, ε) = iπ/2 − ζ(x, ε) such that
Eq. (14.35) becomes real and allows the straightforward integration√

ε

ETh
=
∫ ζ0

ζBCS

dζ√
sinh ζ0 − sinh ζ

≡ K (ζ0, ε), (14.36)

where ETh = D/L2 is the Thouless energy of the wire, ζ0 = ζ(0, ε), and
sinh ζBCS = ε/

√
�2 − ε2. Equation (14.36) defines ζ0 as a function of the energy

ε. Knowing ζ0(ε) one determines the density of states in the middle of the wire as
ν(0, ε) = νIm[sinh ζ0(ε)].

In the limit of a long wire, L � ξ0, the density of states is distorted from its nor-
mal value ν in the deep sub-gap limit, ε � �. One may approximate thus ζBCS ≈ 0
and the function on the right hand side of Eq. (14.36) is essentially energy inde-
pendent, K (ζ0, ε) ≈ K (ζ0, 0). It exhibits the maximum Kmax = K (ζmax

0 )≈ 1.75
at ζmax

0 ≈ 1.5. On the other hand, the left hand side of Eq. (14.36) exceeds Kmax

for ε > (Kmax)
2 ETh = εg. Thus, for all energies ε < εg, equation (14.36) has only

a real solution for ζ0 and therefore ν(0, ε) ≡ 0, since ν(0, ε) ∝ Im
[

sinh ζ0
]
. For

ε > εg the function ζ0 becomes complex and gives a finite density of states. Right
above the gap, 0 < ε − εg � εg, one finds with the help of Eq. (14.36)

ν(ε) ≈ 3.7δ−1
√
ε

εg
− 1, (14.37)
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where ν(ε) = ∫
dx ν(x, ε) is the global density of states, integrated over the volume

of the wire, and δ = 1/(νL) is its level spacing. We found thus an induced mini-gap
inside the long normal wire. The density of states exhibits square root non-analytic
behavior above the mini-gap. Note that since εg ∝ ETh � �, the approximation
ζBCS(εg) ≈ 0 is well justified.

In the opposite limit of a short wire, L � ξ0, or equivalently ETh � �,
Eq. (14.36) is still applicable. However, one must keep the full energy depen-
dence of ζBCS(ε). One may show that the energy gap is given by εg = �−�3/8E2

Th

and is only slightly smaller than the bulk gap �. This is natural, since the proximity
effect for the short wire is expected to be strong. Immediately above the induced
gap, the density of states again exhibits square root non-analyticity, Fig. 14.1.
The coefficient in front of it, however, is large, ν(ε) ∼ δ−1(ETh/�)

2
√
ε/εg − 1,

[228].
We turn now to the case of a finite phase difference θ between the order

parameters of the two S leads. This leads to the boundary condition χ(L/2, ε) −
χ(−L/2, ε) = θ . Our goal is to calculate the Josephson supercurrent JS(θ) which
flows through the normal wire under these conditions. For the step function order
parameter, �(x) = � for |x | > L/2 and � = 0 for |x | < L/2, Eqs. (14.24) and
(14.25) acquire the form

D ∂x

(
sinh2 ϑ∂xχ

) = 0 , (14.38a)

D ∂2
xϑ + 2iε sinhϑ = D

2
(∂xχ)

2 sinh 2ϑ. (14.38b)

ν(ε)

ε–εg |ε–Δ|1/4

ν

εg

νBCS(ε)

ε

Δ

√

Fig. 14.1 Integrated density of states in a short SNS system, after [228]. Above
the proximity gap εg it exhibits square root non-analyticity, while at large energy
it approaches the BCS result (14.17). One also finds a soft gap ν(ε) ∼ |ε −�|1/4

around the bulk order parameter �.
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The boundary conditions for ϑ are ϑ(±L/2, ε) = ϑBCS(ε), while for the phase
χ(L/2, ε) − χ(−L/2, ε) = θ . For the short wire, L � ξ0, the second term on
the left hand side of (14.38b) is smaller than the gradient term by ε/ETh � 1 and
thus may be neglected. Equation (14.38a) allows for the first integral of motion
sinh2 ϑ∂xχ = −J , cf. Eq. (14.28). One may eliminate thus ∂xχ from Eq. (14.38b)
and find ∂2

xϑ = J 2 coshϑ/ sinh3 ϑ = −(J 2/2) ∂ϑ sinh−2 ϑ . This “Newtonian”
equation may be exactly integrated:

coshϑ(x, ε) = coshϑ0 cosh

( J x

sinhϑ0

)
, (14.39)

where ϑ0 = ϑ(0, ε). Knowing ϑ(x, ε), one inserts it back into the first integral
of (14.38a), θ = ∫ L/2

−L/2 dx ∂xχ = −J ∫ L/2
−L/2 dx/ sinh2 ϑ(x, ε), to find

tan(θ/2) = − 1

sinhϑ0
tanh

( J
2 sinhϑ0

)
. (14.40)

This equation along with Eq. (14.39) taken at the NS interfaces, x = ±L/2,
constitute the system of two algebraic equations for two unknown quantities: J
and ϑ0. Such an algebraic problem may be straightforwardly solved, resulting in
J (ε, θ) = −(2/L) sinhϑ0 arctanh

[
sinhϑ0 tan(θ/2)

]
, whereas the angle at x = 0

is sinhϑ0 = sinhϑBCS/
√

1+ tan2(θ/2) cosh2 ϑBCS, where the boundary angle is

coshϑBCS = ε/
√
ε2 −�2. Knowing J (ε, θ) one finds the Josephson supercurrent

with the help of Eq. (14.34) as

JS(θ) = eνD

2

∫ ∞

0
dε tanh

( ε

2T

)
ImJ (ε, θ). (14.41)

Using the obtained solution for J (ε, θ) one finds that

ImJ (ε, θ) = 1

L

π� cos(θ/2)√
ε2 −�2 cos2(θ/2)

(14.42)

for � cos(θ/2) < ε < �, and ImJ (ε, θ) = 0 otherwise. Employing Eqs. (14.41)
and (14.42), one arrives at the result derived by Kulik and Omelyanchuk [229] for
the zero-temperature Josephson current of the short diffusive SNS junction:

JS(θ) = πgD�

e
cos(θ/2) arctanh

[
sin(θ/2)

]
, (14.43)

where gD = e2νD/L is the conductance of the normal wire. The phase depen-
dence is 2π -periodic with JS(0) = JS(π) = 0 and has a logarithmical divergent
derivative at θ = π .
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14.5 Collective modes of disordered superconductors

We now consider the spectrum of collective modes in disordered superconductors.
They are combined fluctuations of the complex order parameter �, the Q̌-matrix
(which encompasses both the quasiparticle spectrum and their distribution func-
tion) and, for charged superconductors, the scalar potential ϕ. The problem is
somewhat similar to the collective modes of the collisionless plasma considered in
Chapter 6 and described by the combined kinetic and Poisson equations. However,
in the case of the superconductor one has to add the dynamics of the order parame-
ter, governed by the self-consistency condition (14.15), and the associated change
in the quasiparticle spectrum, governed by the retarded (or advanced) component
of the Usadel equation. To find the spectrum of a small oscillation we linearize this
system of equations with respect to small deviations, i.e. put Q̌ = �̌ + δ Q̌, while
� = �+ δ� and restrict ourselves to the linear order in δ Q̌, δ� and ϕ.

Taking into account that [ετ̂3, �̂
K] + [�̂, �̂K] = 0, the linearized Keldysh

component of the Usadel equation (14.18) for Q̂K
εε′ = �̂K

ε δεε′ + δ Q̂K
εε′ takes the

form

D�̂R∇2
r δ Q̂K + i[ετ̂3, δ Q̂K] + i[�̂, δ Q̂K]

= −i[δ�̂, �̂K] + i[ϕ̂, �̂K] − D�̂K∇2
r δ Q̂A, (14.44)

where δ�̂(r, t) = δ�(r, t)τ̂+ − δ�∗(r, t)τ̂−. It should be supplemented with the
linearized self-consistency condition, see Eq. (14.15),

δ� = πλ

2
Tr
{
τ̂− δ Q̂K

}
(14.45)

and, for charged Cooper pairs, with the linearized Poisson equation, see
Eq. (14.22),

(4πe2)−1∇2
rϕ = νϕ + πν

4
Tr
{
τ̂0 δ Q̂K

}
. (14.46)

To solve the linearized Keldysh Usadel equation one needs to find first the advanced
component Q̂A = �̂A + δ Q̂A of the Q̂-matrix. Since the latter appears in
Eq. (14.44) with the gradient square, one may omit gradient terms in the cor-
responding advanced component of the Usadel equation (we are seeking for the
lowest non-vanishing term in Dq2). It thus takes the form, cf. Eq. (14.11),

i[ετ̂3, δ Q̂A] + i[�̂, δ Q̂A] = −i[δ�̂, �̂A] + i[ϕ̂, �̂A]. (14.47)

One may distinguish between the longitudinal and transverse variations of
the order parameter. The former changes the amplitude of the order parameter
δ�L = δ|�|, while the latter changes its phase δ�T = |�|δθ . Here δ�L(T)(r, t) are
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two real functions in space and time. In the adopted convention where �̂ = iτ̂2�,
the matrix forms of the corresponding variations are δ�̂L = iτ̂2δ�

L(r, t), while
δ�̂T = iτ̂1δ�

T(r, t). Since the self-consistency relation (14.16) fixes the modu-
lus of the order parameter, one expects (and indeed finds) that the mode of the
longitudinal fluctuations has a gap. The corresponding gap turns out to be 2|�|.
On the other hand, the phase θ of the order parameter is not fixed by the self-
consistency equation. As a result, the corresponding transversal mode may appear
to be gapless. Yet, in the charged system, gradients of the phase are associated with
charged supercurrents, which lead to a charge buildup and thus cost the Coulomb
energy. As a result at T = 0 the corresponding mode acquires a plasmon gap, see
Chapter 6. The situation is more interesting at T � Tc, where � � T . In this
case there is a substantial thermal population of quasiparticle states. As a result the
induced supercurrents may be counterbalanced by the normal currents of the ther-
mally excited quasiparticles, allowing for charge neutrality to be preserved. This
leads to the gapless Carlson–Goldman [230] collective mode, which we consider
below.5

As a warmup exercise we consider a neutral superconductor, i.e. ϕ = 0, where
the transverse mode is expected to be gapless at all temperatures. If the order
parameter variations are restricted to the transverse form, i.e. δ�̂ = iτ̂1δ�

T(r, t),
one may seek for a solution of the advanced equation (14.47) in the following
form:

δ Q̂A
εε′(r) = τ̂0rA

εε′(r)+ τ̂1sA
εε′(r). (14.48)

We take into account that, e.g., i[ετ̂3, τ̂1sA] = −τ̂2{ε, sA}+ = −τ̂2(ε+ε′)sA
εε′ , along

with the fact that �A
ε = −τ̂3u∗ε − iτ̂2v

∗
ε and thus the right hand side of Eq. (14.47)

is −i[δ�̂, �̂A] = δ�T
ε−ε′

[
iτ̂2(u∗ε + u∗ε′) + τ̂3(v

∗
ε + v∗ε′)

]
. Collecting coefficients in

front of the iτ̂2 and τ̂3 Nambu matrices, one obtains two linear algebraic equations
for sA

εε′ and rA
εε′ :

i(ε + ε ′)sA
εε′ = δ�T

ω (u
∗
ε + u∗ε′);

i(ε − ε′)rA
εε′ + 2i�sA

εε′ = δ�T
ω (v

∗
ε + v∗ε′),

where ω = ε − ε′. Their solution is

sA
εε′ = −iδ�T

ω

u∗ε + u∗ε′
ε + ε ′

; rA
εε′ = iδ�T

ω

v∗ε − v∗ε′
ε + ε ′

, (14.49)

where we used that εv∗ε = �u∗ε , cf. Eq. (14.14).6

5 At the NS interface the neutralizing normal current flows in the N region and thus is spatially separated from
the superconductor. As a result the gapless (phason) mode exists even at T = 0, [231].

6 It is instructive to verify that �̂A
ε δ Q̂A

εε′ + δ Q̂A
εε′ �̂

A
ε′ = 0 and therefore the non-linear constraint (Q̂A)2 = 1̂,

Eq. (14.10), is satisfied to linear order in δ�T.
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Having found δ Q̂A, we turn now to the Keldysh Usadel component (14.44). Its
solution may be sought for in the same form as (14.48) with sA

εε′, rA
εε′ → sK

εε′, rK
εε′ .

Substituting it in Eq. (14.44) and taking into account that, due to FDT, �K
ε =

Feq
ε (�R

ε −�A
ε ) = Feq

ε

[
τ̂3(uε+u∗ε )+ iτ̂2(vε+v∗ε )

]
, one obtains two linear equations

for sK
εε′ and rK

εε′ :

[
Dq2uε − i(ε + ε ′)

]
sK
εε′ + Dq2vεr

K
εε′ = δ�T

ω

[
Feq
ε (uε + u∗ε )+ Feq

ε′ (uε′ + u∗ε′)
]

− Dq2 Feq
ε

[
(uε + u∗ε )s

A
εε′ + (vε + v∗ε )r

A
εε′
] ;[

Dq2vε − 2i�
]

sK
εε′ +

[
Dq2uε − i(ε − ε ′)

]
rK
εε′

= δ�T
ω

[
Feq
ε (vε + v∗ε )+ Feq

ε′ (vε′ + v∗ε′)
] − Dq2 Feq

ε

[
(uε + u∗ε )r

A
εε′ + (vε + v∗ε )s

A
εε′
]
.

Notice that only the sK
εε′ component enters the self-consistency condition (14.45)

(the rK
εε′ component enters the Poisson equation (14.46) and is necessary for the

consideration of charged superconductors). It is convenient to solve this system by
first excluding the spatial gradients. One then finds for rK

εε′

rK
εε′(q) = − iδ�T

ω(q)
ε + ε′

[
Feq
ε (vε + v∗ε )− Feq

ε′ (vε′ + v∗ε′)
]
. (14.50)

Keeping now the terms to first order in Dq2, one can solve for sK
εε′(q) and find

sK
εε′(q) =

iδ�T
ω(q)

ε + ε ′
[

Feq
ε (uε + u∗ε )+ Feq

ε′ (uε′ + u∗ε′)+
iDq2

ε + ε ′

×{Feq
ε (uε + u∗ε )u

∗
ε′ −Feq

ε′ (uε′ + u∗ε′)uε+Feq
ε (vε + v∗ε )v

∗
ε′ −Feq

ε′ (vε′ + v∗ε′)vε
} ]
,

(14.51)

where we used u2
ε − v2

ε = (u∗ε )2 − (v∗ε )2 = 1.
Finally, one substitutes δ Q̂K

εε′ = τ̂0rK
εε′ +τ̂1sK

εε′ into the self-consistency condition
(14.45). The latter takes the form iδ�T

ω = (λ/4)
∫

dε sK
ε,ε−ω. Since both parts of

this relation are ∼ δ�T
ω(q), its compatibility dictates the dispersion relation ω(q)

of the collective oscillation mode. Putting first q = 0 and ω = 0 (i.e. ε = ε′)
in Eq. (14.51) and comparing it with Eq. (14.16), one observes that the self-
consistency relation is satisfied identically. This is a manifestation of the fact that
a static, spatially uniform variation of the phase δθ = δ�T/� of the order parame-
ter is consistent with the gap equation (14.16). The remaining finite-frequency and
finite-wavenumber part of the self-consistency relation takes the form
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ω2 a(ω)− Dq2 b(ω)

]
δ�T

ω(q) = 0, (14.52)

where ω2a(ω) is the ε-integral of the first line in Eq. (14.51) with the subtracted
static part

a(ω)= 1

ω2

∞∫
�

dε Feq
ε ε√

ε2 −�2

[
1

2ε − ω
+ 1

2ε + ω
− 1

ε

]
=

∞∫
�

dε
tanh ε/2T√
ε2 −�2

1

4ε2 − ω2

(14.53)

and −Dq2 b(ω) is the ε-integral of the second line in Eq. (14.51). This latter
integral requires some care. In particular one should pay attention on the inter-
val � < ε < � + ω, where (uε′ + u∗ε′)uε = 0 (remember ε′ = ε − ω), but
(uε + u∗ε )u∗ε′ = 2iεε′/(

√
ε2 −�2

√
�2 − ε′2) is pure imaginary! In the same way

(vε′+ v∗ε′)vε = 0, while (vε + v∗ε )v∗ε′ = 2i�2/(
√
ε2 −�2

√
�2 − ε′2) is pure imag-

inary. This interval (and similarly −� < ε < −�+ω) provides thus a real part to
b(ω) (together with an imaginary i in front of Dq2 in Eq. (14.51)). In the limit of
small frequency ω � 2� one finds

Re b(0)= 1

2

�+ω∫
�

dε
Feq
ε

4ε2

2ε2 + 2�2

√
ε2−�2

√
�2−(ε−ω)2

≈ Feq
�

4�

�+ω∫
�

dε√
ε−�√�+ω−ε .

(14.54)

The amazing observation is that, despite being restricted to the interval of length
ω, the last integral is simply equal to π . As a result one finds that Re b(0) =
(π/4�) tanh�/2T . Notice that if we worked in the Wigner transformed represen-
tation, this part of the integral would be missing. Instead one is left with ε-integrals
which are divergent at |ε| = �. Such inapplicability of the Wigner transformation
is due to the singular nature of the density of states. It may be mitigated by mag-
netic impurities or by taking T > Tc. Contribution to b(ω) from the outside of the
interval � < ε < �+ ω is imaginary and is given by

Im b(0) = −1

2

∞∫
�+ω

dε
Feq
ε − Feq

ε−ω
4ε2

2ε2 + 2�2

√
ε2−�2

√
(ε−ω)2−�2

. (14.55)

One may evaluate now a(0) and Im b(0) in the two limiting cases: (i) T = 0 where
Feq
ε = sign ε and (ii) Tc − T � Tc where �(T ) � T and thus in the significant

region of energy Feq
ε ≈ ε/2T .

For T = 0 one finds a(0) = 1/4�2, while Im b(0) = 0 and Re b(0) ≈ π/4�.
Employing Eq. (14.52) one finds the acoustic mode with the dispersion relation
[232]
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ω = ωB(q) =
√
π�(0)D q . (14.56)

This is essentially the Bogoliubov mode of neutral superfluid discussed in
Chapter 7. At T = 0 there are no thermally excited quasiparticles and thus
no Landau damping of the collective mode. For a finite T � � one finds
Im b(0) ∼ −ωe−�/T and thus the Landau damping is exponentially suppressed.
The speed of sound appears to be dependent on both the diffusion constant and the
amplitude of the order parameter c = √

π�(0)D.
For Tc− T � Tc one finds a(0)=π/16T� and Im b(0)=−(ω/8T�) ln(�/ω),

where the logarithmic factor originates due to the near divergence of the integral in
Eq. (14.55) at the lower boundary. Taking into account that in this limit Re b(0) ≈
π/8T , the collective mode dispersion is found as

ωB(q) =
√

2�(T )D q − i
Dq2

2π
ln

�

Dq2
. (14.57)

As long as Dq2 � �(T ) the Landau damping is relatively ineffective and the
mode is underdamped. In this limit one also finds Dq2 � ωB(q) � �, which
justifies the approximations made above. Notice that the acoustic mode exists even
in the disordered system, if, of course, the wavelength is greater than the mean free
path q � 1/ lel. The latter condition is indeed fulfilled, since we work in the regime
where �� 1/τel.

We turn now to the case of a superconductor with charged Cooper pairs (such
as a metal). In this case one needs to involve the Poisson equation (14.46) along
with the self-consistency relation and keep the scalar potential ϕ on the right hand
side of the linearized Usadel equations (14.44) and (14.47). One can still look for a
solution of the Usadel equations in the form of a linear superposition of the τ̂0 and
τ̂1 Pauli matrices in Nambu space, see Eq. (14.48). The corresponding coefficients
rA(K)
εε′ and sA(K)

εε′ are now linear superpositions of terms proportional to δ�T
ω(q) and

ϕω(q). For example,

sK
εε′ =

iδ�T
ω

ε + ε ′
[
Feq
ε (uε + u∗ε )+ (ε ↔ ε′)

]− ϕω

ε + ε ′
[
Feq
ε (vε + v∗ε )− (ε ↔ ε′)

] ;
(14.58a)

rK
εε′ = −ϕω

ω

[
Feq
ε (uε + u∗ε )− (ε ↔ ε′)

]
− iωδ�T

ω − 2�ϕω
(ε + ε′) ω

[
Feq
ε (vε + v∗ε )− (ε ↔ ε′)

]
, (14.58b)

where we have omitted gradient terms ∼ Dq2 for brevity. We now substitute these
expressions into the self-consistency condition (14.45) and the Poisson equation
(14.46), which acquire the form
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iδ�T
ω =

πλ

2

∫
dε

2π
sK
εε−ω ; − q2

4πe2
ϕω = νϕω + πν

2

∫
dε

2π
rK
εε−ω. (14.59)

Performing the energy integrations as explained above, one finds two linear
homogenous equations for δ�T

ω and ϕω, which may be written as follows [232]:

[(
ω2 2iω�

−2iω� 4�2

)
a(ω)−

(
Dq2b(ω) 0

0 Dq2c(ω)− q2

4πe2ν

)](
δ�T

ω

ϕω

)
= 0 .

(14.60)

The (11) element here is the already familiar condition (14.52), which (in the
absence of ϕ) leads to the dispersion relation of the Bogoliubov mode. The matrix
in front of a(ω) follows from the energy integration of Eqs. (14.58). Notice that
the integral of the first term on the right hand side of Eq. (14.58b) exactly cancels
the anomalous term νφω in the Poisson equation. The fact that the determinant of
this matrix is zero means that at q = 0 the physical observables depend only on
the gauge invariant combination, iωδ�T

ω−2�ϕω ∼ ∂tθ + 2ϕ, see Eq. (14.58b),
rather than on the phase of the order parameter θ and the scalar potential ϕ sep-
arately. The only7 term here we haven’t derived explicitly for the lack of space
is c(ω). However, its limiting behavior at T = 0 and Tc − T � Tc may be
understood without any algebra. Indeed, since at T = 0 the electronic spectrum
has a gap and there are no thermal quasiparticles above the gap, the system is
incompressible and does not respond to the gradient of the scalar potential, i.e.
c(ω) = 0. The technical reason is the same which led to Im b(0) = 0 at T = 0,
see Eq. (14.55). On the other hand, at Tc − T � Tc there are plenty of excited
quasiparticles well above the superconducting gap �(T ). Their response to the
scalar potential is basically the same as for normal metals (superconducting cor-
relations bring only small corrections ∼ �(T )/T � 1). One thus concludes
that −Dq2c(ω) = Dq2/(Dq2 − iω) ≈ iDq2/ω, see Eq. (11.54), and thus
c(ω) ≈ −i/ω.

We are prepared now to discuss collective modes of charged superconductors.
Their dispersion relation is obtained from the requirement that the determinant of
the matrix in Eq. (14.60) is zero. At T = 0 one has a = 1/4�2, b = π/4� and
c = 0. Demanding a zero determinant, one finds, e.g., as q → 0,

ω(0) = ωp =
√

4π2e2ν�(0)D . (14.61)

7 The off-diagonal terms in the last matrix in Eq. (14.60) are small in the parameter Dq2/ω and thus omitted.
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This frequency may be called the superconducting plasmon frequency, see Section
(6.2), if one identifies ns = πν�Dm as the density of superconducting electrons.
The mode clearly has a gap, due to the Coulomb energy cost associated with the
charge redistribution by supercurrents. This result is quantitatively applicable only
if ωp � 2�(0), which requires a strongly disordered substance.

At T close to Tc there is a large population of quasiparticles, which allow charge
neutrality to be maintained. We can thus work in the limit of e2 → ∞. Recalling
that in this case a = π/16T�, b = [1− i(ω/π�) ln(�/ω)]π/8T and c = −i/ω,
one finds from the condition of the vanishing determinant

ω2 −
[

2�Dq2 − i
π�2ω

2T

](
1− i

ω

π�
ln
�

ω

)
= 0. (14.62)

Assuming for a moment that both imaginary terms are relatively small, one finds
for the dispersion relation of the collective mode, first observed by Carlson and
Goldman (CG) [230],

ωCG(q) =
√

2�(T )D q − i
π�2(T )

4T
− i

Dq2

2π
ln
�(T )

Dq2
. (14.63)

The two imaginary terms here have very different natures. The last one is the Lan-
dau damping due to excitation of thermal quasiparticles, already discussed in the
context of the Bogoliubov mode (14.57). It makes the CG mode overdamped for
ω � �(T ). The first one originates from the product of the Dq2b(ω) and 4�2a(ω)
terms of the matrix (14.60). The former describes spatial variations of the order
parameter δ�T, while the latter is responsible for the quasiparticle number non-
conservation in the presence of �. Such a non-conservation may be interpreted as
the Andreev reflection processes, which convert quasiparticles into quasiholes and
back. The corresponding damping term is therefore associated with the Andreev
reflection of quasiparticles on the spatial fluctuations of the order parameter. It
makes the CG mode overdamped for ω � �2(T )/T . In between the Andreev
and Landau damped regimes, for �2(T )/T � ω � �(T ), there is a propagating
acoustic mode ωCG(q) = cq , where the speed of sound

c = √
2�(T )D (14.64)

coincides with the speed of the Bogoliubov mode (14.57). This result was first
obtained by Schmid and Schön [233]. For clean superconductors with Tcτel � 1
the corresponding velocity is given by c ∝ vF

√
�(T )/T , [234]. It is clear that

the propagating mode may exist only at a temperature very close to Tc, where
�(T )� T .
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For the transverse fluctuations of the order parameter δ�̂ ∼ iτ̂1 we were able to
find a solution of the Usadel equation for δ Q̂K as a superposition of the τ̂0 and τ̂1

matrices. The corresponding deviation of the distribution matrix F̂ , Eq. (14.20), is
therefore restricted to the τ̂3 direction, δ F̂ ∼ τ̂3.8 This is the reason the correspond-
ing (even in energy) component FT(r, ε) is called the transverse distribution. For
the longitudinal variations of the order parameter δ�̂ ∼ iτ̂2, the Usadel equation is
solved by a linear superposition of the τ̂2 and τ̂3 matrices. The corresponding mode,
known as the Schmid or longitudinal one, may be derived in exactly the same way
as the Bogoliubov mode was derived above. It appears to have a gap ωL(0) = 2�.
The corresponding deviation of the distribution matrix F̂ , Eq. (14.20), is restricted
to the τ̂0 direction, δ F̂ ∼ τ̂0, allowing us to identify the odd in energy part FL(r, ε)
as the longitudinal one.

14.6 Time-dependent Ginzburg–Landau theory

As we saw in Section 14.5, solution of the Usadel equation at T < Tc requires
careful account of the coherence factors uε and vε . The latter carry information
about the singular BCS density of states, which is crucial for the derivation of the
transverse (Goldstone) mode, see the discussion after Eq. (14.54). This difficulty
is not there for T > Tc, or in the presence of magnetic impurities, which allow
for superconductivity without the gap in the density of states. In these cases one
may considerably simplify the theory by explicitly integrating out the fermionic
Q̌-matrix degrees of freedom. This may be achieved in the Gaussian approx-
imation, which accounts for the diffusive nature of electron motion in metals,
but disregards localization effects. As a result of this procedure one obtains the
theory of coupled bosonic fields �(r, t) and A(r, t), known as the time-dependent
Ginzburg–Landau (TDGL) equation.

We shall restrict ourselves to the T > Tc situation, where the order parameter
field �(r, t) does not have a non-trivial expectation value. Yet it exhibits thermal
fluctuations which manifest themselves in the singular behavior of various observ-
ables at T → Tc. While TDGL is suitable for treating non-equilibrium dynamics
of the order parameter field, it is based on the assumption that the underlying
electronic degrees of freedom (encoded in the Q̌-matrix) are in a state of local
thermal equilibrium. This is possible due to scale separation between slow and
long wavelength fields �(r, t),A(r, t) and the relatively fast electronic Q̌-matrix
field. Indeed, the latter is governed by electron–electron or electron–phonon relax-
ation times, which are finite at T � Tc. On the other hand, the dynamics of the

8 Indeed, δ Q̂K ∼ �Rδ F̂ − δ F̂�A . Since �R(A) has only τ̂3 and τ̂2 components, δ F̂ must be restricted to τ̂3
component only.
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former is associated with the Ginzburg–Landau time τGL ∝ (T − Tc)
−1 and the

coherence (or correlation) length ξ ∝ √DτGL, divergent as T → Tc.
The program of integrating out the Gaussian Q̌-matrix fluctuations is greatly

simplified by the choice of a convenient gauge [235]. Here we employ the gauge
invariance of the theory, which manifests itself in the invariance of the action (14.7)
with respect to the following set of transformations, cf. Eqs. (13.1) and (13.2):

Q̌K,t t ′(r) = e−iǨ(r,t) Q̌tt ′(r) e iǨ(r,t ′); �̌K(r, t) = e−iǨ(r,t)�̌(r, t) eiǨ(r,t);
ϕ̌K(r, t) = ϕ̌(r, t)+ Ť3∂tǨ(r, t) ; ǍK(r, t) = Ǎ(r, t)+ ∇rǨ(r, t),

(14.65)

where Ǩ = Kαγ̂ α⊗τ̂3 is a matrix in K⊗N space, characterized by two scalar fields
Kcl,q(r, t). It is convenient to choose them such that the gauge transformed electro-
magnetic potentials ϕαK and Aα

K satisfy the K-gauge condition (13.5) (the explicit
form of the corresponding gauge fields Kα is given by Eq. (13.7) with V → ϕ).
As explained in Section 13.1, the advantage of the K-gauge is that (in equilibrium)
the action does not contain terms linear in the electromagnetic potentials and devi-
ations of the Q̌K-matrix from the metallic saddle point �̌ = �̂⊗ τ̂3, where �̂ε is
given by Eq. (11.20).

Following Eqs. (11.32)–(11.34), it is convenient to parametrize the Q̌K-matrix
manifold specified by the non-linear constraint Q̌2

K = 1̌, as [217, 235]

Q̌K = Ǔ−1 ◦ e−W̌/2 ◦ (σ̂3 ⊗ τ̂3) ◦ eŴ/2 ◦ Ǔ, (14.66)

with the following choice of rotation generators:9

W̌t t ′(r) =
(

ctt ′(r)τ̂+ − c∗t t ′(r)τ̂− dcl
t t ′(r)τ̂0 + d̃cl

t t ′(r)τ̂3

d q
t t ′(r)τ̂0 + d̃ q

t t ′(r)τ̂3 c̃t t ′(r)τ̂+ − c̃∗t t ′(r)τ̂−

)
K

, Ǔ = Û ⊗ τ̂0 .

(14.67)

As compared with Eq. (11.34), W̌ contains twice as many diffuson modes, which
are described by four Hermitian matrices in time space: {dcl, d̃cl}, representing fluc-
tuations of the longitudinal and transversal components of the distribution matrix
(14.20), respectively, and their quantum counterparts {d q, d̃ q}. It also contains
the Cooperon modes described by two independent complex matrix fields {c, c̃}.
The Nambu structure of the components of the Keldysh matrix (14.67) is chosen

9 Notice that the structure is somewhat different from the weak-localization Cooper channel parametriza-
tions (11.60) and (11.61), which may be traced back to the fact that in that case the saddle point is �̌ =
diag{�̂, �̂T}TR, while in the present case it is �̌ = �̂ ⊗ τ̂3, where τ̂3 operates in the Nambu space N. The
difference is due to the presence of the symplectic symmetry (11.58) in the time reversal space TR, but not in
the Nambu space.



14.6 Time-dependent Ginzburg–Landau theory 321

in a way to assure anticommutativity {(σ̂3 ⊗ τ̂3), W̌}+ = 0. One expands now the
action (14.7) in powers of the W̌ fluctuations and performs a Gaussian integra-
tion over the set of independent diffuson and Cooperon modes {dα, d̃α, c, c̃}. Some
details of this procedure are discussed towards the end of this section. As a result
of it one finds ∫

D[Q̌K] e iS[Q̌K ,�K ,AK ] = e iSeff[�K ,AK ] , (14.68)

where the effective bosonic action consists of three contributions,

Seff = SGL + SS + SN, (14.69)

with the subscripts denoting Ginzburg–Landau (GL), the supercurrent (S) and the
normal current (N) parts, respectively. We now discuss them one by one.

The time-dependent Ginzburg–Landau part of the action SGL[�K,AK] orig-
inates from pairing two W̌�̌K vertices, Fig. 14.2(a), as well as from pairing
them with the W̌ ǍKW̌ and W̌ ǍKW̌ ǍK vertices, see the derivation below. This
leads to10

SGL = 2νTr
{ ��†

K(r, t)L̂−1 ��K(r, t)
}
, (14.70)

where ��K = (�cl
K,�

q
K)

T. The matrix L̂−1 has the typical bosonic causality
structure in Keldysh space,

L̂−1 =
(

0 (L−1)A

(L−1)R (L−1)K

)
K

, (14.71)

with components given by11

(L−1)R(A) = π

8T

[
∓∂t + D

(∇r + 2ieAcl
K

)2 − τ−1
GL −

7ζ(3)

π3Tc
|�cl

K|2
]
, (14.72a)

(L−1)K = Bω

[
(L−1)R(ω)− (L−1)A(ω)

] ≈ iπ

2
, (14.72b)

where in equilibrium Bω = cothω/2T and we used ω � T ≈ Tc. The Ginzburg–
Landau relaxation time is defined as τGL = π/8(T − Tc). Comparing the action

10 The non-linear term ∼ �
∗q
K�cl

K|�cl
K|2 originates from expanding the term Q̌K�̌K to third order in W̌ and

pairing it with the three vertices W̌�̌K [235].
11 It is instructive to compare the GL action with the Gross–Pitaevskii one, Eq. (7.15). While the latter describes

inertial dissipationless dynamics, the former prescribes the diffusive relaxation. The inertial dynamics and the
corresponding acoustic mode are only partially recovered at T < Tc, thanks to the singular nature of the BCS
density of states (DOS), Section 14.5. The difference may be traced back to the fact that the superconducting
order parameter � interacts with the quasiparticles having a finite DOS ν, at T > Tc. On the other hand, the
Bose–Einstein condensate �0 interacts with the quasiparticles whose DOS goes to zero at small energy (e.g.
as ε2 in 3d).
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(14.70)–(14.72) with Eq. (8.5), one notices that it describes the classical second-
order phase transition with the complex non-conservative order parameter (in the
absence of the electromagnetic fields). In the Hohenberg–Halperin classification,
Section 8.5, it belongs to the model A class. The corresponding Landau free energy
(8.2) is given by

FGL[�,A] = πν

8T

∫
dr

[
D
∣∣∂r�

∣∣2 + τ−1
GL |�|2 +

g

2
|�|4

]
, (14.73)

with the critical parameter τ−1
GL ∝ T − Tc and non-linearity g = 7ζ(3)/π3Tc.

The complex order parameter field � happens to be charged with the charge 2e
and therefore interacts with the vector potential through the covariant derivative
∇r → ∂r = ∇r + 2ieA. The useful feature of the K-gauge is the absence of inter-
actions with the scalar electromagnetic potential (i.e. the time derivative does not
acquire the covariant form in this specific gauge). The vector potential dynamics
is governed by the usual Maxwell equations. The media provides the right hand
side of the Maxwell equations, which follow from the two additional terms in the
effective action (14.69): SS + SN.

The supercurrent part of the action SS[�K,AK] originates from the diagrams of
Fig. 14.2 (c),(d). It is given by12

SS = −πeνD

T
Tr
{
Aq

K Im
[
�∗cl

K

(∇r + 2ieAcl
K

)
�cl

K

]}
. (14.74)

Being differentiated with respect to Aq, it provides an expression for the super-
current which coincides with the conventional Ginzburg–Landau definition [220]:
JS = −δSS/2δAq

K = δFGL/δA, Eq. (14.73).
The main part of the normal action SN[�K,AK] is obtained by substituting the

normal metal values Q̌K = �̌ and �̌K = 0 into the action S[Q̌K,�K,AK, ϕK],
Eq. (14.7). The calculation is virtually identical to the one leading to Eq. (13.17),
but this time we choose to express the result through the vector potential instead
of the scalar one (the two are related through the K-gauge condition (13.5)). This
way one finds

SN = e2νD Tr

{
�AT

K

(
0 D∇2

r + ∂t

D∇2
r − ∂t 4iT

)
K

�AK

}
, (14.75)

where �AK = (Acl
K,Aq

K)
T. As we shall see below, SN describes the normal dissi-

pative current, as well as the corresponding FDT related Johnson–Nyquist noise,

12 Note that in Eq. (14.70) and throughout the rest of this section we have restored the electron charge e
accompanying source fields A → eA and ϕ → eϕ, such that A and ϕ are now actual electromagnetic
potentials.
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Δ∗cl(r,t)
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Fig. 14.2 Diagrammatic representation of the effective action Seff. (a) Ginzburg–
Landau part SGL, Eq. (14.70). (b) Anomalous Gor’kov–Eliashberg coupling of the
scalar potential with the order parameter (see Eq. (14.82) and discussions below).
(c) Paramagnetic and (d) diamagnetic parts of the supercurrent action S S. (e) DOS
and (f) Maki–Thompson corrections to the normal current action S N. In the case
of diagrams (e) and (f) there are two possible choices for the vector potentials:
classical–quantum, which is a part of the current, and quantum–quantum, which
is its FDT counterpart.

see Eq. (10.17). The superconducting fluctuations lead to the renormalization of
the density of states ν and the diffusion coefficient D in Eq. (14.75) by terms
proportional to |�cl

K|2. They are known as density of states (DOS) [236] and Maki–
Thompson (MT) [237] corrections, respectively, Fig. 14.2(e),(f). For example, the
DOS correction calls for the renormalization ν → ν + δν(r, t), where δν(r, t) =
−ν(7ζ(3)/4π2)|�cl

K(r, t)|2/T 2. For detailed discussion of the corresponding parts
of the action see [235].

One can use the effective action (14.69) to derive the stochastic time-dependent
Ginzburg–Landau equation. To this end one needs to get rid of terms quadratic in
quantum components of the fields: |�q

K|2 in SGL, and (Aq
K)

2 in SN. For the former
this is achieved through the Hubbard–Stratonovich transformation with the help of
an auxiliary complex field ξ�

e−πν Tr
{
|�q

K |2
}
=
∫

D[ξ�] e
− πν

4T Tr

{
|ξ�|2

4T −iξ∗��
q
K−iξ��

∗q
K

}
. (14.76)
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As a result, the action SGL, Eq. (14.70), acquires a linear form in the quantum com-
ponent of the order parameter �q

K. Integration over the latter leads to the functional
delta-function, imposing the stochastic TDGL equation[
∂t + τ−1

GL − D
[∇r + 2ieAcl

K(r, t)
]2 + 7ζ(3)

π3T
|�cl

K(r, t)|2
]
�cl

K(r, t) = ξ�(r, t),

(14.77)

where, in agreement with FDT, the complex Gaussian white noise ξ�(r, t) has the
following correlator:

〈ξ�(r, t)ξ ∗�(r
′, t ′)〉 = 2T

8T

πν
δ(r− r′)δ(t − t ′). (14.78)

Indeed, the stationary solution of the corresponding Fokker–Planck equation (see
Eq. (8.11)) is e−FGL/T .

In a similar way one decouples the term quadratic in Aq
K in the action (14.75) by

introducing a vector Hubbard–Stratonovich field �ξj(r, t):

e−4Tσ Tr
{
[Aq

K ]2
}
=
∫

D[�ξj] e
−Tr

{ �ξ2
j

4Tσ +2iAq
K
�ξj

}
, (14.79)

where σ = e2νD is the conductivity with DOS and MT renormalizations. The
resulting action is now linear in Aq

K, allowing us to define the charge density
ρ(r, t) = −δSeff/2δϕq(r, t) and the current density J(r, t) = −δSeff/2δAq(r, t). It
is important to emphasize that the differentiation here is performed over the bare
electromagnetic potentials {A, ϕ}, while the action Seff (14.69) is written in terms of
the gauged ones {AK, ϕK}. The connection between the two {A, ϕ} � {AK, ϕK} is
provided by the functional K[A, ϕ], which is defined by Eq. (13.5). A simple alge-
bra then leads to a set of the continuity relation ∂tρ(r, t)+ div J(r, t) = 0 and the
expression for the current density entering the Maxwell equation ∇r ×H− Ė = J,

J = σE− D∇rρ + πeνD

2T
Im

{
�∗cl

K

[∇r + 2ieAcl
K

]
�cl

K

}
+ �ξj(r, t), (14.80)

where E(r, t) = ∂t AK − ∇rϕK is the electric field. The current fluctuations are
induced by the vector Gaussian white noise with the correlator〈

ξ
μ

j (r, t) ξνj (r
′, t ′)

〉 = 2Tσ δμνδ(r− r′)δ(t − t ′), (14.81)

ensuring validity of the FDT. Equations (14.77) and (14.80) along with the conti-
nuity relation, supplemented by the Maxwell equations, constitute the complete set
describing dynamics of the superconductors at T � Tc.
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It is instructive to rewrite the TDGL equation (14.77) back in the original
gauge. This is achieved by the substitution of the gauged order parameter �cl

K =
�cl exp

(−2ieKcl
)

and the vector potential, Eq. (14.65), into Eq. (14.77). This way
one finds the following equation for the bare order parameter �cl

[
∂t − 2ie∂tK

cl
]
�cl =

[
D
[∇r + 2ieAcl

]2 − τ−1
GL −

7ζ(3)

π3T
|�cl|2

]
�cl + ξ�,

(14.82)

where we have redefined the complex noise as ξ� → ξ� exp
(
2ieKcl

)
, which,

however, does not change its correlation function (14.78). Unlike the TDGL equa-
tion frequently found in the literature, the left hand side of Eq. (14.82) contains the
Gor’kov–Eliashberg [238] anomalous term ∂tK

cl(r, t) instead of the scalar poten-
tial ϕcl(r, t), see Fig. 14.2(b). In a generic case Kcl(r, t) is a non-local functional
of the scalar and longitudinal vector potentials given by Eq. (13.7), which for the
classical component reads as(

D∇2
r − ∂t

)
Kcl(r, t) = ϕcl(r, t)− D divAcl(r, t). (14.83)

The equivalence ϕcl = −∂tK
cl holds for spatially uniform potentials, however,

in general the two are distinct. The standard motivation behind writing the scalar
potential ϕcl(r, t) on the left hand side of the TDGL equation is gauge invariance.
Note, however, that the local gauge transformation

�→ � e−2ieχ , ϕ → ϕ + ∂tχ , A → A+ ∇rχ , K → K− χ

leaves Eq. (14.82) unchanged and therefore this form of the TDGL equation is
perfectly gauge invariant. The last expression here is an immediate consequence
of Eq. (14.83) and the rules of the gauge transformation for ϕ and A. In the K-
gauge, Eq. (14.65), specified by χ = Kcl, the anomalous Gor’kov–Eliashberg term
disappears from the left hand side of the TDGL equation (14.82), and one recovers
Eq. (14.77).

Derivation of the effective action

Substituting the parametrizations (14.66) and (14.67) into the action (14.7) and
expanding to second order in the complex Cooperon modes c and c̃, one finds the
following quadratic actions (throughout this section we omit the gauge-specifying
subscript K for brevity)

iSc[c,�] = −πν
2

Tr
{

c∗εε′ [Dq2 − i(ε + ε ′)]cε′ε + 2i�c
εε′c

∗
ε′ε − 2i�∗c

εε′cε′ε
}
,

(14.84a)
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iSc̃[c̃,�] = −πν
2

Tr
{

c̃∗εε′ [Dq2 + i(ε + ε′)]c̃ε′ε − 2i�c̃
εε′ c̃

∗
ε′ε + 2i�∗c̃

εε′ c̃ε′ε
}
,

(14.84b)

where the following form factors were introduced:

�c
εε′ = �cl(ε − ε ′)+ Feq

ε �q(ε − ε′), �c̃
εε′ = �cl(ε − ε ′)− Feq

ε′ �
q(ε − ε ′).

(14.85)

It is important to emphasize that the diffuson modes {dα, d̃α} couple to � only
starting from the quadratic order in W̌ . These terms produce non-local and non-
linear interaction vertices for the order parameter and will not be considered here,
see [235] for more details. We have also utilized the advantage of the K-gauge to
avoid terms linear in W̌ and the electromagnetic potentials, see Section 13.1. To
perform Gaussian integrations over the Cooperon modes c and c̃ it is convenient
to find stationary configurations of the quadratic forms in Eqs. (14.84), which are
given by

cεε′(q) = −2i�c
εε′(q)

Dq2 − i(ε + ε′)
, c̃εε′(q) = 2i�c̃

εε′(q)
Dq2 + i(ε + ε′)

. (14.86)

The Gaussian integral is calculated by substituting these stationary configurations
back into the quadratic action (14.84), which leads to

iSGL[�] = 4πν
∑

q

∫∫
dεdω

4π2

[
�∗cl + Feq

ε−ω/2�
∗q][�cl + Feq

ε+ω/2�
q
]

Dq2 − 2iε
, (14.87)

where �cl(q) = �cl(q)(q, ω) with ω = ε − ε′ and ε = (ε + ε′)/2. We have also
employed the fact that Feq

ε is an odd function to change variables as ε → −ε in
the contribution coming from the c̃ modes. The contribution to iSGL[�] with the
two classical components of the order parameter ∼ �∗cl�cl vanishes identically
after the ε-integration, being an integral of the purely retarded function. This is
a manifestation of the normalization condition for the Keldysh-type action (see
Section 2.7 for discussions). The action therefore acquires the standard Keldysh
causality structure, Eqs. (14.70) and (14.71). Combining it with the bare Hubbard–
Stratonovich term ∼ �∗q�cl/λ , Eq. (14.5), one obtains for its retarded and
advanced components

(L−1)R(A)(q, ω) = −1

λ
− i

∫
dε

Feq
ε∓ω/2

Dq2 − 2iε
. (14.88)
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This expression can be reduced to a more familiar form. Indeed, adding and sub-
tracting the right hand side of Eq. (14.88) taken at zero frequency and momentum
one writes for, e.g., the retarded component

(L−1)R(q, ω) = −1

λ
+
∫ +ωD

−ωD

dε
Feq
ε

2ε
− i

∫
dε

[
Feq
ε

Dq2 − iω − 2iε
+ Feq

ε

2iε

]
.

(14.89)

The first integral on the right hand side is logarithmically divergent and is to be cut
off at the Debye frequency ωD. Recalling the definition of the critical temperature
Tc, Eq. (14.16), one notices that the first two terms here combine to give ln Tc/T ≈
(Tc−T )/T . The last integral is convergent and may be evaluated exactly, leading to

(L−1)R(q, ω) = ln
Tc

T
− ψ

(
Dq2 − iω

4πT
+ 1

2

)
+ ψ

(
1

2

)
≈ π

8T

(
iω − Dq2 − τ−1

GL

)
, (14.90)

where ψ(x) is the digamma function and τ−1
GL = 8(T − Tc)/π . Since according to

the last expression Dq2 ∼ ω ∼ τ−1
GL � T , the expansion of the digamma function

is justified. Transforming back to the space-time representation using iω → −∂t

and q2 → −∇2
r → −(∇r + 2ieAcl

)2
, where we also included the vector potential,

one arrives at Eq. (14.72a). To derive the Keldysh component of the L̂−1 matrix,
one adds to Eq. (14.87) zero in the form −4πν Tr

{
�∗q�q/[Dq2 − 2iε]} = 0,

which vanishes upon ε integration by causality. Employing the familiar identity
F eq
ε−ω/2 Feq

ε+ω/2 − 1 = Bω(F
eq
ε−ω/2 − Feq

ε+ω/2), one obtains Eq. (14.72b).

The supercurrent part of the action SS emerges from the Tr
{[Ǎ, Q̌]∂̂r Q̌

}
term

upon second order expansion over the Cooperon modes, which leads to

SS = iπν

4
Tr
{

c∗t t ′(r)Nt t ′ct ′t(r)+ c̃∗t t ′(r)Nt t ′ c̃t ′t(r)
}
, (14.91)

where

Nt t ′ = δ(t − t ′)
2eD

T

[
1

2
divAq(r, t)+ Aq(r, t)

[∇r + 2ieAcl(r, t)
]]
. (14.92)

Deriving Nt t ′ , one uses an approximation for the equilibrium Fermi function in the
time representation

Feq
t−t ′ = − iT

sinh(πT (t − t ′))
t−t ′�1/T−→ i

2T
δ ′(t − t ′), (14.93)

which is applicable for slowly varying external fields. To perform the Gaussian
integration over the Cooperon modes one substitutes the stationary configurations
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(14.86) into Eq. (14.91). To this end it is convenient to rewrite them in the space-
time representation. This is achieved by noticing that, since ε ≈ T and Dq2 ≈
τ−1

GL , Dq2 � ε. Therefore one may think of the denominators in Eq. (14.86) as
0∓i(ε+ε′), which greatly simplifies the Fourier transformation to the time domain.
This way one finds

ctt ′(r) ≈ −iθ(t − t ′)�cl

(
r,

t + t ′

2

)
+ χ(t − t ′)�q

(
r,

t + t ′

2

)
, (14.94a)

c̃t t ′(r) ≈ iθ(t − t ′)�cl

(
r,

t + t ′

2

)
− χ(t − t ′)�q

(
r,

t + t ′

2

)
, (14.94b)

χ(t) =
∫ +∞

−∞
dε

2π
tanh

( ε

2T

) e−iεt

ε + i0
= 2

π
arctanh

(
e−πT |t |) , (14.94c)

where the step function θ(t − t ′) is understood as being smeared by about 1/T and
in particular θ(0) = 1/2. Now one can perform integration over t ′ in Eq. (14.91)
with the help of the delta-function from Eq. (14.92). Keeping only the classical
component of the order parameter, since N is already proportional to the quantum
component Aq, one obtains SS, Eq. (14.74).

14.7 Fluctuating superconductivity

Although for temperatures above Tc the expectation value of the order param-
eter is zero, the expectation value of |�cl|2 is finite. Indeed, since the TDGL
equation (14.77) or (14.82) contains the noise ξ�, it forces the order parame-
ter to fluctuate around zero, creating a finite correlation function of the form
〈�cl(r)�∗cl(r′)〉 = iLK(r − r′)/(2ν), see Eq. (14.70). Thermodynamic and trans-
port observables in the metal are affected by the fluctuating order parameter. For
example, the current (14.80) contains the term ∼ Im�∗cl∂r�

cl. Upon averaging
over the fluctuations there is a finite residual effect of such a sensitivity on the
instantaneous value of the order parameter. This fact leads to a scope of fluctuation
corrections to magnetization, density of states, conductivity, etc., which usually
exhibit singular behavior at T → Tc, see the book by Larkin and Varlamov [239]
for a review.

Here we focus on fluctuation corrections to the conductivity, which originate
from the expression (14.80) for the electric current. The latter consist of the nor-
mal (the first two terms on the right hand side of Eq. (14.80)) and the supercurrent
(the third term), coming from SN and SS, respectively (the noise �ξj , while impor-
tant for the current noise spectrum, does not contribute to the average current).
The normal part includes the �cl-dependent density of states and diffusion con-
stant renormalization. Upon averaging over the order parameter fluctuations they
lead to DOS [236] and Maki–Thompson [237] corrections to the conductivity.
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We shall not derive them here, referring the reader to [239, 235, 23]. Instead we
concentrate on the supercurrent part, which leads to a correction to the conductiv-
ity discovered by Aslamazov and Larkin [240]. Averaging the supercurrent part of
Eq. (14.80) over the fluctuations of the order parameter, one obtains

δJS(r) = πeD

4T

[1

2
(∇r − ∇r′)+ 2ieA

]
LK(r, r′)

∣∣∣
r′=r

, (14.95)

where LK(r, r′) is the Keldysh component of the full dressed correlation matrix. In
the absence of external fields the latter is even in r−r′ and thus δJS = 0. One needs
therefore to evaluate how LK(r, r′) is affected by applied fields. This task leads to
the Dyson equation for the correlation matrix L̂ . We restrict ourselves to the lin-
ear response on a spatially uniform ac vector potential A(�). The latter enters the
bosonic operator L̂−1 in Eq. (14.70) as (πD/2T )σ̂1eAi∇r and we invert the opera-
tor to first order in such a perturbation (neglecting the non-linear terms in TDGL).
Going to the Fourier representation, one finds for the ac current at frequency �

δJS = iπeD

4T

∑
q,ω

[
q
(

L̂(q, ω +�)
πD

2T
σ̂1e(Aq)L̂(q, ω)

)K

+ 2eALK(q, ω)

]
,

(14.96)

where all correlators L̂ are understood hereafter as not containing the external
vector potential and the superscript K means that the Keldysh, i.e. (cl, cl), com-
ponent of the correlation matrix is taken. Performing the matrix multiplication and
employing the bosonic FDT relation LK = Bω(LR − LA), one finds for the first
term in the square brackets on the right hand side of Eq. (14.96)

πeD

2T
q(Aq)

[
BωLR

ω+�LR
ω − Bω+�LA

ω+�LA
ω + (B�+ω − Bω)L

R
ω+�LA

ω

]
. (14.97)

Let us look first at the � = 0 limit. The last term on the right hand side vanishes,
while the first two along with the last (paramagnetic) term on the right hand side
of Eq. (14.96) combine to yield the following expression:

2eBω∇q
[
(Aq)(LR

ω(q)− LR
ω(q))

]
,

where we employed that ∇qLR(A)
ω (q) = (πDq/4T )(LR(A)

ω )2, see Eq. (14.72a).
Being the full gradient, this expression vanishes upon summation over momenta q.
As expected, a vector potential that is constant in space and time does not produce
any current.

We look now for the first order in the external frequency �. The last term on
the right hand side of Eq. (14.97) yields �(∂ωBω)LR

ωLA
ω . Shifting the integration

variable ω +�→ ω in the second term, one finds for the first and second terms:
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BωLR
ω+�LR

ω − BωLA
ωLA

ω−� → �Bω

[
(∂ωLR

ω)L
R
ω + LA

ω(∂ωLA
ω)
]

= �

2
Bω

[
∂ω(L

R
ω)

2 + ∂ω(L
A
ω)

2
]→−�

2
(∂ωBω)

[
(LR

ω)
2 + (LA

ω)
2
]
,

where in the last instance we involved ω-integration by parts. As a result one finds
for the current

δJS = −
(
πeD

4T

)2

i�
∑
q,ω

q(Aq) (∂ωBω)
[
(LR

ω)
2 + (LA

ω)
2 − 2LR

ωLA
ω

]
=
(
πeD

4T

)2 ∫ dω

2π
(∂ωBω)

∑
q

q (Eq)
[
LR
ω(q)− LA

ω(q)
]2
, (14.98)

where the electric field is given by E = ∂t A = −i�A. The Aslamazov–Larkin
(AL) correction to the conductivity is given by δσAL = δJS/E. Since for T − Tc �
Tc, ω ∼ τ−1

GL � T , one may approximate the bosonic distribution function as
Bω = cothω/2T ≈ 2Tc/ω. Recalling that the order parameter propagators are
LR(A) = (8T/π)[±iω−Dq2−τ−1

GL ]−1, Eq. (14.72a), and performing the frequency
integration in Eq. (14.98), one finds

δσAL = 8Tce2 D

d

∑
q

Dq2

(Dq2 + τ−1
GL )

3
. (14.99)

Further analysis depends on the effective dimensionality d of the system. In par-
ticular, for a film of thickness less than the superconducting coherence length
ξ = √

DτGL, which is effectively two-dimensional, d = 2, one obtains, δσAL =
e2TcτGL/2π . Recalling that τGL = π/8(T − Tc), one finally obtains [240]

δσAL = e2

16 �

Tc

T − Tc
. (14.100)

As a precursor of the superconducting transition, the conductivity is singularly
enhanced as T → Tc. Moreover, the singular correction depends only on the
reduced temperature T/Tc − 1 and is insensitive to the bare conductivity and other
microscopic details of the film. For an arbitrary dimensionality d < 4, Eq. (14.99)
yields δσAL ∝ τ

2−d/2
GL . This leads in d = 1 to the fluctuation correction, which

scales as δσAL ∝ (T − Tc)
−3/2, while in d = 3 it goes as δσAL ∝ (T − Tc)

−1/2.
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