
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 134.157.8.248

This content was downloaded on 13/09/2016 at 12:10

Please note that terms and conditions apply.

You may also be interested in:

The Hausdorf dimension of the Apollonian packing of circles

P B Thomas and D Dhar

Mathematics and physics: mother and daughter or sisters?

Vladimir I  Arnol'd

Critical properties of the SIS model dynamics on the Apollonian network

L F da Silva, R N Costa Filho, A R Cunha et al.

Group theory of hyperbolic circle packings

S Bullett and G Mantica

Scaling analysis of 2D fractal cellular structures

Gudrun Schliecker

Light ray and particle paths on a rotating disc

K McFarlane and N C McGill

Boundary uniqueness theorems for functions whose integrals over hyperbolic discs vanish

Oksana A  Ochakovskaya

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/article/10.1088/0305-4470/27/7/007
http://iopscience.iop.org/article/10.1070/PU1999v042n12ABEH000673
http://iopscience.iop.org/article/10.1088/1742-5468/2013/05/P05003
http://iopscience.iop.org/article/10.1088/0951-7715/5/5/004
http://iopscience.iop.org/article/10.1088/0305-4470/34/1/302
http://iopscience.iop.org/article/10.1088/0305-4470/11/11/007
http://iopscience.iop.org/article/10.1070/SM2013v204n02ABEH004300


Butterfly in the Quantum World
The story of the most fascinating quantum fractal





Butterfly in the Quantum World
The story of the most fascinating quantum fractal

Indubala I Satija

with contributions by Douglas Hofstadter

Morgan & Claypool Publishers



Copyright ª 2016 Morgan & Claypool Publishers

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording
or otherwise, without the prior permission of the publisher, or as expressly permitted by law or
under terms agreed with the appropriate rights organization. Multiple copying is permitted in
accordance with the terms of licences issued by the Copyright Licensing Agency, the Copyright
Clearance Centre and other reproduction rights organisations.

Rights & Permissions
To obtain permission to re-use copyrighted material from Morgan & Claypool Publishers, please
contact info@morganclaypool.com.

ISBN 978-1-6817-4117-8 (ebook)
ISBN 978-1-6817-4053-9 (print)
ISBN 978-1-6817-4245-8 (mobi)

DOI 10.1088/978-1-6817-4117-8

Version: 20160801

IOP Concise Physics
ISSN 2053-2571 (online)
ISSN 2054-7307 (print)

A Morgan & Claypool publication as part of IOP Concise Physics
Published by Morgan & Claypool Publishers, 40 Oak Drive, San Rafael, CA, 94903 USA

IOP Publishing, Temple Circus, Temple Way, Bristol BS1 6HG, UK



To my Father





Contents

Summary xiii

About the author xiv

Preface xv

Prologue xxi

Prelude li

Part I The butterfly fractal

0 Kiss precise 0-1

0.1 Apollonian gaskets and integer wonderlands 0-5

Appendix: An Apollonian sand painting—the world’s largest artwork 0-7

References 0-7

1 The fractal family 1-1

1.1 The Mandelbrot set 1-3

1.2 The Feigenbaum set 1-7

1.2.1 Scaling and universality 1-8

1.2.2 Self-similarity 1-9

1.3 Classic fractals 1-10

1.3.1 The Cantor set 1-11

1.3.2 The Sierpinski gasket 1-12

1.3.3 Integral Apollonian gaskets 1-13

1.4 The Hofstadter set 1-14

1.4.1 Gaps in the butterfly 1-17

1.4.2 Hofstadter meets Mandelbrot 1-17

1.4.3 Concluding remarks: A mathematical, physical, and poetic magπ 1-18

Appendix: Harper’s equation as an iterative mapping 1-22

References 1-23

2 Geometry, number theory, and the butterfly: Friendly numbers
and kissing circles

2-1

2.1 Ford circles, the Farey tree, and the butterfly 2-3

2.1.1 Ford circles 2-3

2.1.2 Farey tree 2-4

vii



2.1.3 The saga of even-denominator and odd-denominator fractions 2-6

2.1.4 The sizes of butterflies 2-9

2.2 A butterfly at every scale—butterfly recursions 2-9

2.3 Scaling and universality 2-13

2.3.1 Flux scaling 2-13

2.3.2 Energy scaling 2-14

2.3.3 Universality 2-15

2.4 The butterfly and a hidden trefoil symmetry 2-17

2.5 Closing words: Physics and number theory 2-17

Appendix A: Hofstadter recursions and butterfly generations 2-18

Appendix B: Some theorems of number theory 2-21

Appendix C: Continued-fraction expansions 2-22

Appendix D: Nearest-integer continued fraction expansion 2-23

Appendix E: Farey paths and some comments on universality 2-23

References 2-25

3 The Apollonian–butterfly connection ( ) 3-1

3.1 Integral Apollonian gaskets ( ) and the butterfly 3-3

3.1.1 A duality transformation 3-3

3.1.2 Illustrating the Apollonian–butterfly connection 3-5

3.2 The kaleidoscopic effect and trefoil symmetry 3-6

3.2.1 Seeing an Apollonian gasket as a kaleidoscope 3-6

3.2.2 How nested butterflies are related to kaleidoscopes 3-8

3.2.3 and trefoil symmetry 3-9

3.3 Beyond Ford Apollonian gaskets and fountain butterflies 3-13

Appendix: Quadratic Diophantine equations and s 3-15

References 3-16

4 Quasiperiodic patterns and the butterfly 4-1

4.1 A tale of three irrationals 4-2

4.2 Self-similar butterfly hierarchies 4-5

4.3 The diamond, golden, and silver hierarchies, and Hofstadter recursions 4-9

4.4 Symmetries and quasiperiodicities 4-12

Appendix: Quasicrystals 4-13

A.1 One-dimensional quasicrystals 4-14

A.2 Two-dimensional quasicrystals: Quasiperiodic tiles 4-15

A.3 A brief history of the discovery of quasicrystals 4-17

Butterfly in the Quantum World

viii



A.4 Excerpts from the ceremony of the Nobel Prize in chemistry
in 2011

4-17

References 4-19

Part II Butterfly in the quantum world

5 The quantum world 5-1

5.1 Wave or particle—what is it? 5-3

5.1.1 Matter waves 5-4

5.2 Quantization 5-5

5.3 What is waving?—The Schrödinger picture 5-8

5.4 Quintessentially quantum 5-10

5.4.1 The double-slit experiment, first hypothesized and finally realized 5-11

5.4.2 The Ehrenberg–Siday–Aharonov–Bohm effect (ESAB) 5-13

5.5 Quantum effects in the macroscopic world 5-17

5.5.1 Central concepts of condensed-matter physics 5-18

5.5.2 Summary 5-23

References 5-23

6 A quantum-mechanical marriage and its unruly child 6-1

6.1 Two physical situations joined in a quantum-mechanical marriage 6-2

6.2 The marvelous pure number ϕ 6-2

6.3 Harper’s equation, describing Bloch electrons in a magnetic field 6-4

6.4 Harper’s equation as a recursion relation 6-11

6.5 On the key role of inexplicable artistic intuitions in physics 6-12

6.6 Discovering the strange eigenvalue spectrum of Harper’s equation 6-13

6.7 Continued fractions and the looming nightmare of discontinuity 6-16

6.8 Polynomials that dance on several levels at once 6-18

6.9 A short digression on INT and on perception of visual patterns 6-23

6.10 The spectrum belonging to irrational values of ϕ and the “ten-martini
problem”

6-25

6.11 In which continuity (of a sort) is finally established 6-28

6.12 Infinitely recursively scalloped wave functions: Cherries on the
doctoral sundae

6-31

6.13 Closing words 6-33

Appendix: Supplementary material on Harper’s equation 6-33

References 6-35

Butterfly in the Quantum World

ix



Part III Topology and the butterfly

7 A different kind of quantization: The quantum Hall effect 7-1

7.1 What is the Hall effect? Classical and quantum answers 7-2

7.2 A charged particle in a magnetic field: Cyclotron orbits and their
quantization

7-4

7.2.1 Classical picture 7-4

7.2.2 Quantum picture 7-5

7.2.3 Semiclassical picture 7-7

7.3 Landau levels in the Hofstadter butterfly 7-9

7.4 Topological insulators 7-11

Appendix A: Excerpts from the 1985 Nobel Prize press release 7-12

Appendix B: Quantum mechanics of electrons in a magnetic field 7-13

Appendix C: Quantization of the Hall conductivity 7-14

References 7-14

8 Topology and topological invariants: Preamble to the
topological aspects of the quantum Hall effect

8-1

8.1 A puzzle: The precision and the quantization of Hall conductivity 8-2

8.2 Topological invariants 8-3

8.2.1 Platonic solids 8-4

8.2.2 Two-dimensional surfaces 8-5

8.2.3 The Gauss–Bonnet theorem 8-7

8.3 Anholonomy: Parallel transport and the Foucault pendulum 8-8

8.4 Geometrization of the Foucault pendulum 8-10

8.5 Berry magnetism—effective vector potential and monopoles 8-13

8.6 The ESAB effect as an example of anholonomy 8-18

Appendix: Classical parallel transport and magnetic monopoles 8-19

References 8-20

9 The Berry phase and the quantum Hall effect 9-1

9.1 The Berry phase 9-2

9.2 Examples of Berry phase 9-6

9.3 Chern numbers in two-dimensional electron gases 9-10

9.4 Conclusion: the quantization of Hall conductivity 9-11

9.5 Closing words: Topology and physical phenomena 9-13

Butterfly in the Quantum World

x



Appendix A: Berry magnetism and the Berry phase 9-14

Appendix B: The Berry phase and 2 × 2 matrices 9-16

Appendix C: What causes Berry curvature? Dirac strings, vortices,
and magnetic monopoles

9-17

Appendix D: The two-band lattice model for the quantum Hall effect 9-19

References 9-20

10 The kiss precise and precise quantization 10-1

10.1 Diophantus gives us two numbers for each swath in the butterfly 10-3

10.1.1 Quantum labels for swaths when ϕ is irrational 10-7

10.2 Chern labels not just for swaths but also for bands 10-7

10.3 A topological map of the butterfly 10-8

10.4 Apollonian–butterfly connection: Where are the Chern numbers? 10-10

10.5 A topological landscape that has trefoil symmetry 10-12

10.6 Chern-dressed wave functions 10-14

10.7 Summary and outlook 10-14

References 10-17

Part IV Catching the butterfly

11 The art of tinkering 11-1

11.1 The most beautiful physics experiments 11-3

References 11-4

12 The butterfly in the laboratory 12-1

12.1 Two-dimensional electron gases, superlattices, and the butterfly revealed 12-7

12.2 Magical carbon: A new net for the Hofstadter butterfly 12-12

12.3 A potentially sizzling hot topic in ultracold atom laboratories 12-16

Appendix: Excerpts from the 2010 Physics Nobel Prize press release 12-20

References 12-20

13 The butterfly gallery: Variations on a theme of
Philip G Harper

13-1

14 Divertimento 14-1

Butterfly in the Quantum World

xi



15 Gratitude 15-1

16 Poetic Math&Science 16-1

17 Coda 17-1

18 Selected bibliography 18-1

Butterfly in the Quantum World

xii



Summary

In 1976, several years before fractals became well-known, Douglas Hofstadter, then
a physics graduate student at the University of Oregon, was trying to understand the
quantum behavior of an electron in a crystal in the presence of a magnetic field. As
he carried out his explorations by graphing the allowed energies of the electron as a
function of the magnetic field, which he had theoretically calculated, he discovered
that the graph resembled a butterfly with a highly intricate recursive structure that
nobody had anticipated. It turned out to consist of nothing but copies of itself,
nested infinitely deeply. Originally dubbed “Gplot”—a “picture of God”—the graph
is now fondly known to physicists and mathematicians as the “Hofstadter butterfly”.

The butterfly graph is a rare quantum fractal exhibiting some parallels with other
well-known fractals, such as the Mandelbrot set, and it also turns out to be
intimately related to Apollonian gaskets, which are mesmerizing mathematical
kaleidoscopes—magical structures in which the images of tangent circles are
reflected again and again through an infinite collection of curved mirrors.
Apollonian gaskets can be decorated by integers at all levels, and similarly, the
butterfly can be decorated by integers at all levels that describe the quantization of
resistance, which is itself an exotic physical phenomenon called the quantum Hall
effect.

This book narrates the story of the butterfly and its connection to the quantum
Hall effect. It reveals how the secret behind the astonishingly precise quantization of
Hall resistance is encoded in the branch of mathematics called topology. Topology
reveals that there are hidden numerical quantities that unite a sphere and a cube
while distinguishing them both from a doughnut and a coffee cup. The deep
topological phenomenon underlying the quantum Hall effect is an abstract version
of the physics that underlies the daily precession of a Foucault pendulum; it can be
thought of as a quantum cousin to that precession, and it is known as the Berry
phase.

The book begins by remembering the ancient Greek mathematician Apollonius
who, around 300 BC, coined the terms “ellipse” and “hyperbola”, and who explored
the beautiful phenomenon of mutually tangent circles, ultimately leading to
Apollonian gaskets. This problem was rediscovered by the French philosopher
René Descartes, and then again by the chemistry Nobel laureate Frederick Soddy,
who glorified it in a poem titled The Kiss Precise. Using a few concepts of quantum
mechanics, the book mostly takes a geometrical approach, ultimately linking the
“kiss precise” of Apollonius, Descartes, and Soddy to the “precise quantization” of
Hall resistance and to the Hofstadter butterfly, which, when it is color-coded to
reflect the topological integers lurking in the quantum Hall effect, stunningly
displays the marvelous nature of that mysterious physical phenomenon.

May this exotic butterfly, today familiar to just a tiny community of physicists,
spread its colorful wings and fly to ever more distant and unknown territories!

xiii



About the author

Born in Amritsar, India, Indu Satija grew up in
Bombay. After graduating with a Masters degree
in physics from Bombay University, she came to
New York to get her doctorate in theoretical
physics at Columbia University. Currently, she is
a physics professor at George Mason University
in Fairfax, Virginia. Her recent areas of research
include topological insulators, Bose–Einstein
condensates, and solitons. She has published
numerous scientific articles; this, however, is her
first book.

Physics is Induʼs first love, and the outdoors is
her second. She lives in Potomac, a suburb of
Washington, DC, with her husband Sushil, a
physicist at the National Institute of Standards
and Technology. Both Indu and Sushil are

marathon runners, and they enjoy hiking and biking as well. They have two
children: Rahul, who is a biologist, and Neena, who is an investigative reporter.

xiv



Preface

A bird doesn’t sing because it has an answer;
it sings because it has a song.

—Joan Walsh Anglund

In physics as in life, most fashions come and go. “Classics”—problems that continue
to fascinate for more than a generation—are rare. Superconductivity, for instance,
remains at the frontiers of physics thanks to the perennial hope that it will
revolutionize the world. String theory feeds the craving for a deeper unification, for
mathematical rules and laws that encode nature in some complex but beautiful way.
The Dirac equation for relativistic electrons, which led to the discovery of anti-
particles, and Einsteinʼs equations of general relativity, which have now penetrated
every household via the Trojan horse of GPS, are eternal poetic gospels of physics,
and are testimony to the unimaginable power and richness of theoretical physics.

The Hofstadter butterfly, discovered some forty years ago, is destined to be
immortal. In addition to its great visual appeal, it encodes one of the most exotic
phenomena in physics, the quantum Hall effect. The Hofstadter butterfly combines
the most fascinating mathematical aspects of fractals with the equally fascinating
physics associated with the quantization of conductivity. These two aspects are
intricately merged in a self-similar fractal energy spectrum. As Hofstadter stated in his
PhD thesis, he coined the term “Gplot” after his friend David Jennings, struck by the
infinitely many infinities of the surreal-looking spectrum, dubbed it a picture of God.

The physical system represented by Gplot is deceptively simple: an electron is
moving in the “flatland” of a two-dimensional crystal lattice that is immersed in a
magnetic field. The strange-looking graph shows the allowed and the forbidden
energies of the electron, as a function of the strength of the magnetic field. The
butterfly is formed exclusively of smaller copies of itself, nested infinitely many
times, and thus it forms a fractal, which is a very rare phenomenon in quantum
physics. Gplotʼs intricacy is the outcome of a “frustrated” physical system, which
results when nature is confronted with two distinct problems, each characterized by
its own natural period: on the one hand, an electron constrained by the square tiles
forming a perfect crystal lattice, and on the other hand, an electron moving in
perfect circles in a homogeneous magnetic field. Natureʼs elegant reconciliation of
these two opposing situations was a beautiful surprise.

At the time of its discovery, Gplot was appreciated by many for its visual charm
and mathematical intricacy, but it was generally considered by physicists to be an
object of mere theoretical interest. However, the recent experimental confirmation of
some of its properties has turned this once-exotic spectrum into one of the hottest
topics in condensed-matter and cold-atom laboratories around the world. Certain
aspects of the spectrumʼs complexity were recently demonstrated in experiments
involving measurements of samples of matter that were cooled down to very low
temperatures and subjected to very high magnetic fields. The key to observing the
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butterfly pattern of energy bands and gaps was the fabrication of a special material
composed of graphene and boron nitride, two substrates that have similar lattice
structures, and which, when overlapped at an angle, form a “moiré superlattice”.
This novel and ingenious experimental technique has pumped new energy into the
field, as is evident from many recent papers in some of the most prestigious technical
journals as well as from excited press releases for popular media.

The tale of the butterfly features stories inside stories. In the Prologue, readers will
get a first taste of this in the inspiring story of the discovery of Gplot by its
discoverer, Douglas Hofstadter. However, let me fast-forward almost forty years
and tell the tale of my own suddenly awakened interest in this famous object.

My love affair with Hofstadterʼs 1976 creation (or discovery, as he would put it)
came out of my recent studies, when it dawned on me that self-similar fractals that
encode some topological features exhibit a new type of order as topology gets encoded
at all length scales. I found this “reincarnation” of topology as a new kind of length
scale to be absolutely fascinating. I pictured it as a vivid drama in which each of two
powerful but opposing effects—namely, the global self-similarity and the topology—
tried to assert their authority, each one struggling to prevail, but ultimately having to
make some compromises. In short, the tale of fractals dressed with topology is a tale of
two competing forces, a tale of reconciliation and accommodation, in which both
parties not only contribute but cooperate in creating something new, unexpected, and
astonishing.

My revisiting of the butterfly fractal started with my attempt to understand the
interplay between topology and self-similarity, which turns out to be a chicken-and-
egg problem. The wild idea of devoting an entire book to the butterfly was conceived
when I found a relation between the butterfly and the beautiful ancient mathemat-
ical object called an Apollonian gasket. This structure starts out as four mutually
tangent circles, and then it grows stage by stage, in the end becoming an infinite set
of tangent circles on all scales—a mathematical kaleidoscope in which the image of
four touching circles is reflected again and again through an infinite collection of
curved mirrors. In 1938, chemistry Nobel laureate Frederick Soddy fell under the
spell of Apolloniusʼs four-circle problem, and he glorified its charm in a small gem of
a poem entitled “The Kiss Precise”.

As I explored the butterfly, I had the exquisite pleasure of seeing that the precise
tangency of infinitely many circles (the “kiss precise” taken to its limit) and the
precise quantization of Hall conductivity were connected in a subtle way, and this
first insight opened a pathway for me that I subsequently followed and explored, and
that led to this book. My presentation of the butterfly points out certain of its
features that are reminiscent of other well-known fractals, such as the Mandelbrot
set. One of the highlights of the butterfly landscape, decorated with integers, is the
lovely way that it is related to the rich family of Apollonian gaskets. Although quite
a few elusive mysteries still remain about the butterfly, I am excited to share my
“ℏ-butterfly” story with others—science students, young researchers, and even lay
readers attracted to fractals and intrigued by quantum physics.

As we approach the fortieth anniversary of the publication of Hofstadterʼs paper
(September 1976), it is timely to share its magic with a broader audience. On the
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theoretical side, many ideas of solid-state physics and of fractal geometry are packed
into Gplot, and on the experimental side, it is related to a new class of materials. All
of this breathes new life into this object of stunning beauty. The butterfly fractal is
thus a potential medium for bringing some of the joy of frontier physics to science
enthusiasts and for exposing them to the hidden beauty of the quantum world.

The task of writing each chapter in the book began with finding a quotation1 that
I hoped would convey the spirit of what I wanted to say in that chapter. I may not
have succeeded entirely in this effort, but the search for piquant quotes certainly
stimulated me and catalyzed my writing process. I also devoted considerable time,
effort, and thought to the creation of all sorts of figures and illustrations, believing
strongly that a picture is worth more than a thousand words, even at the risk of my
bookʼs being labeled a “picture book”. Some of my lifeʼs most challenging moments
have been when I attempted to explain my love of physics to people having no
background in science, including my father, who often quizzed me about what kind
of science I do. The book will show whether I have made any headway in this quest.

As I began writing this book, my childish instincts resurfaced, and I found that I
loved “dressing” the butterfly with Ford circles, trying out various color combina-
tions, some of which readers will encounter in the book. My favorite happens to be
the green–blue combination on the bookʼs cover, which is tied to a nostalgic
anecdote. In the good old days when I was a graduate student at Columbia
university, a loving American couple hosted me for my first American Christmas.
When I arrived dressed in a blue and green silk sari, my host spontaneously said to
her husband, “Didn’t I tell you blue and green form a perfect color combination?
They’re the colors of nature—the trees and the sky!”

Following Douglas Hofstadterʼs Prologue (in which he recounts the strangely
meandering and lucky pathway that eventually led him to Gplot) and my Prelude (in
which I give a brief overview of what is to come), the book begins with the above-
described problem of mutually tangent circles, remembering the great mathema-
tician Apollonius, who not only explored this problem around 300 BC, but who also
coined the terms “ellipse” and “hyperbola”. The story continues with the rediscovery
of this ancient problem by French philosopher René Descartes in 1643 and with the
poem written by Frederick Soddy.

Capitalizing on the geometrical visualization of rational numbers in terms of
Ford circles, I reveal the hidden nesting-structure of the butterfly graph, accom-
panying my readers through many refreshing physical and mathematical wonder-
lands. These include three Nobel-Prize-winning discoveries—namely, the quantum
Hall effect (1983), quasicrystals (2010), and graphene (2011)—as well as the
topological spaces of the Platonic solids, Foucaultʼs pendulum, and the Berry
phase. With peeks into the quantum world, the book mostly follows a geometrical

1My love for little quotes originated during my high-school exam days when my uncle Arjun told me a few
quotes, suggesting that I use them in my exam essays. I distinctly remember one of those quotes:

Beauty is to see but not to touch;
A flower is to smell but not to pluck.
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path, suggesting a relationship between the “kiss precise” and “precise quantiza-
tion”, explaining many subtleties of the butterfly plot using mathematics that is as
simple and elementary as possible, although of course at times it is neither simple nor
elementary.

This book—my first book ever—is my sincere attempt to share my personal joy of
discovery and understanding in relatively accessible language. It is hard to pin down
the exact audience for the book. I have tried to remain at the level of Physics Today
or lower, in the hopes that the book would attract a broad group of curiosity-driven
readers. It will of course be helpful if readers have some background in physics and
mathematics, but what is more important is simply that they be interested in science,
and fascinated by the beauty and power of mathematics to predict the way that
nature behaves.

Number theory—the mathematics of positive integers—is a universally appealing
field, and the book exploits this fact. There are, inevitably, numerous technical
discussions, which I have included for the sake of completeness, but which can be
skimmed or skipped by general readers. I hope that students, teachers, readers of
lay-level scientific articles, and even some professional physicists will find the book
intriguing. May my small book help this exotic butterfly, today familiar to just a tiny
community of physicists, spread its colorful wings and fly on to unknown and distant
lands!

Of course, even a book devoted entirely to the Hofstadter butterfly cannot
exhaust all its aspects. I extend my apologies to those whose favorite facet of the
butterfly has been left out, acknowledging that my discussion of the butterfly
primarily reflects my own personal understanding and taste. The presentation of the
butterfly in this book is extremely visual. The lucky fact that such an intuitive
approach exists is what allows a book on the subject to be aimed at nonspecialists. It
is my hope that this book will help the butterfly fractal to awaken as much interest as
have other fractals, such as the Mandelbrot set, and that this will in turn help
quantum science to reach a broader audience.

Although some important aspects of the butterfly graph have not been mentioned
in this book, I have tried in the Selected Bibliography to include all of the most
important references, and interested readers who access these articles will get a sense
of the vast sea of ideas from many facets of physics and mathematics that are hidden
in the subject. Needless to say, these additional ideas related to the Hofstadter
butterfly further “speak” and reveal the beautiful mathematics that runs through the
literature on this subject. It is my hope that readers will be able to appreciate this
beauty even if they do not fully comprehend it. As T S Eliot wrote, “Genuine poetry
can communicate before being understood…”.

Despite the remarkable progress that has been made since 1976, many aspects of
the butterfly graph are still not understood. There is no gainsaying the fact that a
number of profound new mathematical ideas have been unearthed and put to use in
the quest to understand the butterfly’s fractal magic. Nonetheless, these mathemat-
ical formulations have not yet fully characterized the very complex nature of the
graph. Attaining a complete understanding of the Hofstadter butterfly still remains
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an open challenge. In my personal view, although much beautiful mathematics has
been done, it does not yet glow with the purest type of mathematical beauty. One is
almost reminded of what Paul Dirac once said about quantum electrodynamics:
“I might have thought that the new ideas were correct, if they had not been so ugly.”

Many years ago, my ten-year-old son Rahul, who in his childish innocence
believed that “book-writing makes you famous”, asked me why I wrote articles
instead of books. “Perhaps I will do that when you go to college,” I replied. So the
book-writing task is long overdue. Attempting to write a popular book about a
fractal in solid-state physics might be a crazy idea, but might it also be a path to
sanity? Let me quote the Chilean poet Vicente Huidobro: Si yo no hiciera al menos
una locura por ˜ano, me volveriá loco—“If I didn’t do at least one crazy thing each
year, I would go mad.”

Finally, I want to say that I am writing this book because I feel I have a story to
tell. However, I am by no means an expert in all the topics touched on in this book,
and it is undoubtedly imperfect in all sorts of ways. I therefore welcome all
suggestions, comments, and critiques, and I will be extremely grateful to anyone
who brings any errors that they may find in this book to my immediate attention.
Fortunately, the “e-book” version will allow me to make changes at any time, even
after the book has been published, and I hope that this freedom will be useful in
improving the presentation of various scientific ideas and results, and in correcting
errors in the future. I also invite readers to send me their poetic verses about the
Hofstadter butterfly, if they happen to compose any. Their verses will find a home in
some cozy corner of my web page, and may even appear in revised versions of the
book.

Writing this book has been an incredible experience, exposing me to parts of
myself that I had never dreamed of. This book is not only about the science that I
love dearly, but also about everything else that I admire and adore deeply. I have
been stunned by the intensity with which it has engrossed and consumed me,
constantly posing ever deeper challenges and revealing new heights to transcend.
It has been a rare joy that can only be experienced and cannot be expressed in
words.

No journey is truly fulfilling unless one dares to take unpredictable little detours,
leading one to stumble across quaint spots whose existence one would never have
suspected otherwise. In the spirit of such a search of the unknown, I came across a
bigger picture, in which poetry, music, and the joys of nature added to my originally
purely scientific approach, filling out the picture in a richer way.

I am truly blessed to have a family that enriched and shaped my life with many
such treasures. This book is a tribute first of all to my father, who gave me the
precious gift of the love of poetry; it is to him that I dedicate this book. The book is
also a tribute to my two children, Rahul and Neena—my everlasting joys who, with
their music, have brought such profound harmony to my life. Finally, the book is a
tribute to my dear husband Sushil, who introduced me to the boundless love of the
outdoors, which has allowed me to take delight in the endless beauty of real
butterflies.
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So here is my very first book—and I dream of an audience touring a historic site
dating from 300 BC, relaxing now and then with bite-sized items picked from a
savory smorgasbord, and with exotic cocktails of quotations, poetry, art, and music!

Mymother used to say that life begins at forty. That was her age when she had her first
baby. I say that life begins at fifty-five, the age at which I published my first book.

—Freeman Dyson.
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Prologue
The grace of Gplot

Douglas Hofstadter

When I was in my late teen-age years, as a young mathematics major at Stanford, I
intoxicatedly explored the endlessly rich world of integer sequences. This several-
year odyssey was the first, and probably the most deeply rewarding, period of
scientific research in my entire life. It was all launched one day in February of 1961,
shortly after I turned 16, when I decided to take a look at how the triangular numbers
(positive integers of the form 1 + 2 + 3 + ⋯ + n) are distributed among the squares.
On a sheet of paper, I wrote out the first few dozen triangular numbers—1, 3, 6, 10,
15, 21, 28,… (calculating them by hand)—and also the sequence of squares—1, 4, 9,
16, 25, 36, 49, …. Then I proceeded to count how many triangles there were between
successive squares.

The sequence I thereby got—2121121212112121121212112…—seemed to be
composed solely of 1s and 2s, and it hovered fascinatingly between regularity and
irregularity. Its way of closely approaching but always evading periodicity tantalized
me no end. Soon I was unable to resist going upstairs to my Dadʼs little study, where
on his desk he had a Friden electromechanical calculator (kind of like a cash register,
but a little more sophisticated, since it could multiply and divide large numbers). For
a few hours, I punched buttons on the Friden machine (which, back in those days,
was quite fancy technology), and in return I got back many more triangles and
squares, which I dutifully copied down on a much larger piece of paper. Counting
the former between the latter confirmed my earlier observations that my sequence
was made of just 1s and 2s and that it continually skirted but ever eluded periodicity.

After playing around for quite a while with the 100 or so terms that I had
generated of my sequence, I eventually discovered that if you break it into two types
of chunks, as follows:

21 211 21 21 211 21 211 21 21 211 21 211 21 211 21 21 211…

then if you count the black 21s between the red 211s, you get the following sequence:
212112121211212112…—and this is exactly the same sequence all over again! This
purely empirical discovery was absolutely electrifying to me. (Had I been a
Pythagorean, I’m sure that 40 oxen would have been sacrificed in honor of the
discovery of this astonishing unexpected pattern!) A year or two later, having gained
considerably in mathematical sophistication, I was at last able to prove rigorously
the lovely fact that I had discovered, but proving it wasn’t nearly as exciting or as
important to me as the experience of finding the beautiful, unforeseen pattern.

The addictive excitement of this first number-theoretical discovery of my life
pushed me to try to make analogous empirical discoveries, and I thus embarked on a
very long voyage, in which I created a series of leapfrogging analogies that led me
from one empirical discovery to another to another. I was tremendously excited—
not only by the exquisite patterns of numbers that I was uncovering, but also by the
intricate patterns of ideas that I was creating, which formed a dense web of
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mathematical analogies that I had never dreamt existed. (I talk about this in more
detail in the book Fluid Concepts and Creative Analogies.)

Those years (roughly 1961–65) were an amazingly exciting and magically fertile
period of my life. Many of the new discoveries I made at that time were made by my
writing computer programs and running them late at night on Stanford Universityʼs
only computer at the time—a Burroughs 220, hidden in the basement of the old,
decrepit, and in fact mostly abandoned Encina Hall. Hardly anyone on campus even
knew of this computerʼs existence, let alone how to program it. In those days of the
early 1960s (or actually, those nights, since day in, day out, all day long, the B220
was used by some bank down in San Jose that co-owned it), I was doing what later
would come to be known as “experimental mathematics” (in this case, experimental
number theory), and I made literally hundreds of small, interrelated discoveries,
some of which, ex post facto, I was able to prove, but most of which I never bothered
to prove or never was able to prove.

To my mind, I was doing mathematics (or if you prefer, exploring the very real,
concrete, down-to-earth world of integers) very much as a physicist explores the real,
concrete, physical world. My Dad, an experimental physicist at Stanford, was my
prototype for this analogy. Using a powerful 400-foot-long linear accelerator (huge
for those days!), he sped electrons up to very close to the speed of light and then
made them “scatter” off of atomic nuclei; from the angular distribution of the
scattered electrons, he and his graduate students and post-docs were able to deduce
the hidden inner structure of nuclei and even, eventually, of the mysterious proton
and neutron. This research was extremely fascinating to me, and in my analogy
likening myself to my Dad, the Burroughs 220 computer ensconced deep in Encina
Hallʼs entrails was my “linear accelerator”, while my various computer programs
(written in the elegant and then-new language called Algol) were carefully designed
experimental setups that revealed to me unsuspected truths of nature. Using a
powerful tool (and for those days, the B220 was indeed quite powerful!), I was doing
my own kind of “scattering experiments” and uncovering deeply hidden truths about
elemental “objects” in this world. I loved this analogy, and the more I did my
number-theoretical explorations, the truer it rang for me. After all, integers, to me,
were every bit as real and as tangible as nuclei and subnuclear particles were to my
Dad.

I have to stress once again that for me, deduction, or theorem-proving, was only a
very small part of the act of “doing math”, and not nearly as exciting or important a
part of it as computational exploration. The main parts of “doing math” were: (1)
using my fervent analogy-driven imagination to invent new number-theoretical
concepts galore to explore, and then (2) performing the computer experiments and
seeing how they came out. I was thus a dyed-in-the-wool experimentalist in number
theory, not a theorist, and as such, I stumbled upon many marvelous miniworlds of
mathematical ideas to explore.

It turns out that a fair percentage of the phenomena I was investigating with my
metaphorical “linear accelerator” had never been explored before, and so I was
breaking brand-new territory, although I unfortunately didn’t publish any of my
findings. (At the time, I didn’t have the foggiest idea about how to publish an article,
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nor about the importance of doing so—I was just intoxicated with the fervor of my
explorations. To me, that sublime joy was all that really counted.) Eventually,
though, and to my gratification, a very small handful of teen-aged Dougʼs ideas
became somewhat well-known, since in 1979 I published a tiny sprinkling of them in
my book Gödel, Escher, Bach, and in subsequent years, I had conversations about
some of them with a few influential mathematicians.

One of my favorite discoveries of that magical, unforgettable period of my life was
a function of a real variable x that turned out to have a very odd, almost paradoxical
kind of behavior. I dubbed this function “INT(x)” because in order to calculate it,
you had to interchange two infinite sequences of integers—coun(x) and sep(x)—that
were derived from x. I won’t explain here how, given a specific value of x, these
sequences were calculated, but I’ll give two examples. For 2 , the coun-sequence was
simply 1, 1, 1, 1,… and the sep-sequence was 2, 2, 2, 2,… Complementarily, for the

golden ratio +1 5
2

, the coun-sequence was 2, 2, 2, 2,… and the sep-sequence was 1, 1,
1, 1,…. This symmetrical “partnership” of two very important real numbers
fascinated me. Indeed, it made me wonder about the “partners” of other famous
real numbers, such as π and e, and this in turn inspired me to define a new function of
an arbitrary real number x. Specifically, I defined INT(x) to be that real number y
such that yʼs coun-sequence was xʼs sep-sequence, and vice versa. Of course, this
meant that whenever =y xINT( ), then symmetrically, =x yINT( ), and thus, for
any x, =x xINT(INT( )) . I explored INTʼs nature empirically, using the good old
Burroughs computer once again, and my first blurry visions of INT came from my
very crude hand-done plots of it.

Back then, there were no computer screens to see anything on, and not even any
plotters of any sort; instead of displaying any shapes, the 220 merely printed out long
tables of real numbers for me, which were the Cartesian coordinates of points
making up the graph of INT. I was interested in the shape of the graph between any
two successive integers (e.g., 1 and 2, or 11 and 12), since the way INT was defined,
that shape was exactly the same for all such pairs. And so, when for one such length-
1 interval on the x-axis, I plotted these points by hand, using a pencil on a piece of
graph paper, they seemed to form something like a diagonal line broken up into
perpendicular rib-like pieces of different sizes, but I didn’t really understand what I
was seeing, so I then naturally asked the 220 to calculate for me the coordinates of
lots of points belonging to a single particular rib that I chose. When I plotted those
points, I was very surprised to see perpendicular “sub-ribs” of that rib starting to
come into focus—and so on. It was quite painstaking work, but it was truly exciting
to my teen-aged mind when I started to catch onto what was happening.

Seen from very far away, the graph of INT looked like the infinite 45-degree line
y = x (see figure P.1). But if you zoomed into it a bit, you would see that this
upwards-sloping line was more like a picket fence than a line, since it was made up of
an infinite number of identical, non-touching “backslashes” (the downsloping
diagonals of all the 1 × 1 squares climbing up the line y = x, much like the steps
of a staircase). Figure P.2 shows just one of these infinitely many backslashes,
nestled inside the square whose southwest and northeast corners are the points (0, 0)
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and (1, 1). Each such backslash, when plotted in detail, turned out to be made of an
infinite number of yet smaller, upsloping, and slightly bent “ribs”, and the ribs were
made of “sub-ribs”—and on and on this went, infinitely far down. In short, INT(x)
had revealed itself to me to be an infinitely nested visual structure—and what a thrill
it was to discover that!

Another big thrill for me was when I saw that at every rational value of x, INT(x)
took a discontinuous jump, and that, roughly speaking, the “more rational” x was,
the bigger the jump—thus, the jumps at =x 1/2 and =x 1/3 (“very rational” points)
were very large, while the jump at =x 5/17 (far “less rational”, in a certain sense)
was very tiny. Of course what I meant by the phrases “more rational” and “less
rational” had to be worked out, but once I had done that, I realized that my catch
phrase about jump sizes implied that at irrational values of x, INTʼs jumps were all
of size zero, which meant that at those points, INT was perfectly continuous!
Coming to understand how this crazy-sounding kind of behavior was actually
perfectly possible was one of my lifeʼs most exciting moments.

Today, wild shapes such as INT are known as “fractals”, and because of their
eye-catching nature, some of them, such as the Mandelbrot set, are familiar even to
people who have never studied mathematics. Back then, however (I’m speaking of
roughly 1962), this kind of visual structure, nested inside itself over and over again
without end, was extremely unfamiliar and fascinatingly counterintuitive. Over the
next year or two, thanks to my exploration of INT and its close relatives, such nested
behavior, though initially terribly weird-seeming, became part of my most intimate
mental makeup, and many years later, this deep knowledge would have a totally
unexpected and marvelous payoff.

Well, I could tell much more about that exciting period of my life, but this brief
sketch gets the main idea across: as a math-intoxicated teen-ager in the early 1960s, I
discovered a marvelous bouquet of beautiful truths about the world of mathematics

Figure P.1. INT as seen from afar. If one squints, it simply looks like the rising 45-degree line y = x, but if one
looks more carefully, one sees that it is broken up into many short “backslashes” (these are shown in red).
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by inventing new ideas via a long, joyous series of leapfrogging analogies, and then
by doing computational experiments to explore these new ideas.

In 1966, I entered graduate school in mathematics at Berkeley, shooting for a
PhD in number theory (what else?). Unfortunately, my brief time there turned out to
be very traumatic. In my first year, I had to take several required courses, all of
which were almost forbiddingly abstract. I managed to get decent grades in them all,
but only by the skin of my teeth, and the ideas didn’t sink in at all. I couldn’t
visualize anything, and most of the time my eyes just glazed over. In my second year,
hoping for relief, I took a non-required course that announced itself as being about
number theory, but I soon found out that actual numbers (that is, my old friends the
integers) were essentially never mentioned by the professor. The integers came up
only once in a blue moon, and even then, always as a mere example—usually a
trivial example!—of far more general theorems about very abstract kinds of number
systems that were totally nonvisualizable. I, who loved the visual and the concrete,

Figure P.2. One backslash of the graph of INT, between x = 0 and x = 1, made out of infinitely many “ribs”,
which are in turn made out of “sub-ribs”, and so forth, ad infinitum. The largest rib on the left side is nestled
between =x 1/2 and =x 1/3, the next-largest one between 1/3 and 1/4, and so on. The nearer you get to the
upper left-hand corner, the shorter the rib is (and the straighter). Each of the ribs is in fact a perfect “copy” of
the entire backslash, except, of course, for being smaller and gently bent a little bit. The right half of the
backslash is identical to the left half, only rotated by 180 degrees around the exact center of the containing
square.
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was repelled by all of this. It was becoming apparent to me that mathematics—at
least math as done at Berkeley—was hugely different from what I had thought it was
during my intoxicating period of discovery in number theory at Stanford.

After roughly a year and a half of this very discouraging beating of my head
against what I later came to call my “abstraction ceiling” (a phrase I coined just a
few years ago), I finally realized that I was going to have to bail out of mathematics.
I was caught wholly off guard by this turn of events, because my heady under-
graduate years at Stanford had led me to the absolute certainty that mathematics
was my “manifest destiny”. I had been as sure as sure could be that I would just sail
through math graduate school and become a top-notch number theorist, and yet
now all these youthful dreams were being revealed to have been pipe dreams. I
desperately asked myself, “What on Earth can I do in life, if not mathematics?”

As I mentioned earlier, my Dad was a physicist, and I had always found the ideas
of physics (or at least those of particle physics) mesmerizing, but unfortunately I had
had pretty bad experiences in high-school physics—and later, as an undergraduate
math major at Stanford, in Halliday-and-Resnick physics courses. Math majors
were required to take four quarters of physics, and those four quarters were really
rough for me, their nadir being hit when I received an F in Physics 53 (Electricity
and Magnetism)—and deservedly so! During the quarter, I had not applied myself
whatsoever, and I went into the final exam as a know-nothing, and thus got as low a
grade as could be gotten. The snag was, I could not graduate from Stanford without
having a passing grade in E&M, and so, one year later, I had to retake the E&M
course (and from the same professor, who, to make matters worse, was a good friend
of our familyʼs). That second time around, by determinedly working my tail off in a
way that I had never before done in my life, I replaced that mark of shame with an
A–, which remains in my memory as one of my lifeʼs proudest moments.
Nonetheless, that hard-won A− didn’t at all inspire me to consider pursuing physics
as a possible profession. I had had far too many hard knocks to my self-esteem in
physics, and from high school on, math had always seemed my forte, hands down.
But now that the math option had been painfully ruled out by even harsher knocks
to my ego in grad school in Berkeley, physics had to come back into the picture as a
possibility.

Berkeley was quite wild in the 1960s, full of revolution and upheaval and chaos,
and my personality was such that I badly needed a far calmer environment. It
happened that I had a very close friend who had just started graduate school in
biology way up north, at the University of Oregon in Eugene, and when, late in the
fall of 1967, I visited him there, partly in order to test the waters of my idea of
switching to graduate school in physics, I was impressed by the campusʼs beauty.
Moreover, in contrast to Berkeley, both the town and the university felt friendly,
even serene. Best of all, I was given a very warm welcome as a potential grad student
by all the physics professors I met, and this was extremely encouraging. The upshot
of it all was that in January of 1968 I jumped ship in two ways—first, in jumping
from Berkeley to Eugene, and second, in jumping from number theory to physics.

When, in early January of 1968, I moved from Californiaʼs intense, tumultuous
Bay Area to Oregonʼs tranquil, rural Willamette Valley to open up this radically
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new phase in my life, my unquestioned goal was that of becoming a particle theorist,
since particle physics struck me as the sole truly fundamental area of physics. Other
areas of physics weren’t even on my radar screen. More than anything, I yearned to
be part of the noble quest to find out the deep, hidden nature of the mysterious
entities that make up the finest fabric of our universe. For my first couple of years in
Eugene, I was ecstatic about my choice to become a physicist, and I reveled in all my
courses, learning a huge amount of physics from them, and from some excellent
professors and some excellent books (most of all, volume 3 of the Berkeley Physics
Series, called simply “Waves”, by Frank S Crawford, Jr). I will always remember
that period of my life, marked by my profound excitement about the beauties of
physics, with great nostalgia. Not only was a dream coming true, but I was going to
be following in my fatherʼs footsteps. This was a very rare and precious gift.

However, after about two years, things slowly started to change flavor, catching
me off guard once again. The relatively recent ideas that I was supposed to be
learning in my more advanced courses started to seem a bit shakier and more
confusing, more and more arbitrary, and less and less beautiful. These ideas just
didn’t “take”, in the way that ideas in my earlier physics courses had taken. Worse
yet, the talks on particle physics given by distinguished visitors started to sound a bit
like science fiction, or even pseudoscience, rather than like solid science. This was
deeply shocking to me. My head started spinning, and as time went by, the spinning
only got worse.

Particle physics, aside from quantum electrodynamics, just didn’t make sense to
me. The theories of the strong and weak interactions seemed filled to the brim with
horrendous and arbitrary ugliness, rather than sparkling with sublime and pristine
beauty, and I just couldn’t swallow them, sad to say. I was so profoundly skeptical
that I felt a kind of emotional nausea every time I picked up some random high-
energy preprint in the library of the Physics Departmentʼs little Institute for
Theoretical Science. Particle physics was unfortunately turning out not to be at all
what I had thought it was, only a few years earlier.

It may sound as if I had once again hit my “abstraction ceiling”, and perhaps that
was part of what was going on, but I actually think this experience was quite
different from what happened with math in Berkeley. Rather than an abstraction
ceiling, I would say I was hitting up against an “absurdity ceiling”, or an
“implausibility ceiling”, or even a “grotesqueness ceiling”, if I may use such strong
language. The sad truth is, the strange ideas I was surrounded by night and day
made me reel with an almost visceral disgust. I won’t go so far as to claim that my
aesthetic revulsion was caused by the objective wrongness of the ideas; after all, I am
not privy to the ultimate nature of the laws of physics. But I do know that what I was
reading in papers and hearing in talks clashed violently with my personal sense of the
beautiful—and from so much time spent with my Dad, I had absorbed an
unshakable belief in the great beauty and simplicity of the laws of nature. To be
sure, my professors often felt that the ideas I was railing at for being “as ugly as sin”
overflowed with beauty, so what could I say? We just had to agree to disagree.

All this put me in the very weird position of essentially having to ask myself
whether I trusted my own mind over the collective minds of all the particle physicists
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in the world—which included so many undeniable geniuses! It would seem the height
of arrogance for me to insist that I was right and that they were all wet, and yet I was
unable to knuckle under and accept the ideas that repelled me. After all, doing so
would have amounted to sacrificing my own belief system at an altar that felt as if it
had been created by aliens—and worse yet, if I gave up on my faith in my own
deepest ideas and my most precious intuitions about the nature of the world, then
what could I trust? What could I turn to? You can’t just jump in bed with a set of
ideas you hate! In short, the situation was very unstable. I churned and churned for a
long time, desperately seeking some ideas that I found beautiful and could believe in,
but no matter how hard I searched, none turned up. And since I was constitutionally
unable to believe in the reigning doctrines of particle physics, there was no way I
could do research in the field, because there was nothing to guide me, nothing solid
to grasp onto, nothing to place my faith in. It was all treacherous quicksand, to me!

This period of dramatic change was a horrible, bitter time in my life. I jumped
from one potential advisor to another to another, but although I intellectually
admired them all and was personally very fond of each of them as well, nothing that
I tried with any of them worked out, to my true dismay. After four years of
extremely painful struggle, I realized that my dream of joining the ranks of particle
theorists, noble though it had been, was going up in smoke. I became very frightened
that I would never get a PhD at all. All of a sudden, my entire lifeʼs future felt
completely up in the air.

Things really hit the boiling point on one fateful day—December 14th, 1973, to
be precise. That day, as I was approaching my 29th birthday, I took a huge risk and
bailed out once again. The occasion was a “brown-bag lunch” at the Institute for
Theoretical Science, in which I was presenting to the small, very friendly particle-
physics group the ideas in a recent Physical Review article whose three authors, in
order to forge some kind of more abstract unity in the “particle zoo” (and, I must
admit, this was undeniably a type of aesthetic quest on their part), had the gall to
propose a huge family of hypothetical new particles—over 100 of them!—at one fell
swoop. Well, I couldn’t help but compare this shocking audacity with the great
Wolfgang Pauliʼs striking timidity, back in 1930, about proposing just one new
particle (which Enrico Fermi later dubbed the “neutrino”). Pauli was extraordinarily
reticent about making this suggestion because to him it seemed so extravagant, but
he finally took the plunge and dared to go out on that shaky limb because he knew
that this far-fetched idea might be able to save, simultaneously, all three of the most
central conservation laws in all of physics (conservation of energy, conservation of
momentum, and conservation of angular momentum). In other words, Pauli did
what he did only out of supreme desperation, in an attempt to save the deepest laws
of physics. The three authors, however, were just making a wild guess, a random
shot in the dark, and trying to justify their chutzpah by couching it in pages of
fashionable, virtuosic, grand-sounding group-theoretical language. What a contrast!
I had studied this three-author paper for weeks but had found it so outrageous, so
implausible, and so unbelievably ugly that at the end of my talk, I threw the paper
down and bitterly cried out, “These people have no sense of shame! I’m getting out
right now. I’m quitting particle physics! I’m done with it!” And then I bolted out of

Butterfly in the Quantum World

xxviii



the room, trembling at what I had just done. Of course I wanted to jump ship once
again, but I saw no other ship to jump to. Particle physics had been my Holy Grail,
and giving up on it was deeply traumatic to me. Echoing my anguished thoughts six
years earlier upon dropping out of math, I desperately asked myself, “What on
Earth can I do in life, if I can’t study what is truly fundamental about nature?”

Once again, I felt nearly lost. Here I had invested six years in physics graduate
school, yet I had absolutely nothing to show for it. I didn’t even have an advisor or a
research area any more. In deep confusion, I went around to several professors in
other branches of physics, asking them what kinds of problems they might be able to
give me if I were to become their student. I had brief chats with a couple of solid-
state theorists who were very nice to me, but nonetheless, talking with them about
possibly working with them felt like a horrible blow to my ego. After all, I had long
been convinced that solid-state physics was essentially just glorified engineering, and
in such practical matters I had zero interest. I wanted to think only about the
deepest, most basic things in nature! I feared that I was wandering into the slums of
physics, and I felt deeply ashamed of myself for doing so. So prejudiced was I that I
almost had to hold my nose. This may seem very funny to you, but it is absolutely
true.

Very luckily, right at that time, my close Chilean friend Francisco Claro (figure P.3
shows us forty years later), who had gotten his PhD at Oregon a couple of years
earlier under the distinguished solid-state theorist Gregory Wannier, came back to
Eugene from Santiago to work again with Wannier for a few months. At this point I
really should pause for a moment to say a few words about Professor Wannier, since

Figure P.3. Douglas Hofstadter and Francisco Claro savoring Bach in Santiago, Chile, 2014.
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he played an absolutely central role in what was to follow, although of that I of
course had no inkling whatsoever, at the time.

Gregory Wannier was born in Basel, Switzerland, in 1911 (four years before my
Dad was born in New York City), and he grew up in the German-speaking part of
Switzerland. He came to the United States as a post-doc in the mid-1930s, and
stayed here for good. Although he was in his mid-twenties when he arrived, his
English nonetheless sounded pretty much native, which was always very impressive
to me. (I do, however, remember—and with great amusement—that one time, when
he was probably very tired, he slipped and referred to hydrogen as “waterstuff”—a
compound word precisely mimicking the German word “Wasserstoff”!) Wannier
spent a year or two at Princeton as a post-doc when my Dad was there as a grad
student, and they knew each other from those old days. When I first went to Oregon
in 1968, my Dad made sure that I got in touch with his old friend Gregory, who he
described to me as “a bit of an odd duck, but an excellent physicist and a friendly,
gentle person”. Indeed, Professor Wannier was immediately friendly to the son of his
old friend Bob, and over the next few years I enjoyed many a dinner at his home. He
loved history, and I remember him boasting one time that no matter what year I
named after 1000 AD, he knew some historical fact about that year. So I duly named
some random pre-Renaissance year, and he instantly came out with some fact about
it, which was confirmed by the encyclopedia that he kept ready at hand, right next to
the dining-room table. Yes, Gregory Wannier was an odd duck, all right, but a very
pleasant one. And many people considered him to be the most distinguished
physicist who was ever at the University of Oregon.

Now where was I? Ah, yes—Francisco Claroʼs return visit to Eugene in early
1974. Well, for those few months, Francisco and I spent almost all our free time
together. During this crucial period in my life, he told me that my prejudice against
solid-state physics was wrong, and that doing solid-state actually meant participat-
ing in the building of a deep and subtle bridge linking the alien microworld of
quantum mechanics to the everyday macroworld of tangible phenomena. He said
that solid-state physics explained how the familiar properties of matter emerged
from deeply hidden properties of particles and atoms. And thus Francisco managed
to make solid-state physics sound fundamental and perhaps even beautiful, after all.

What finally turned the trick were the casual words of a Stanford physics grad
student whom I met one day around that time. This person, whose name I never
even learned, offhandedly said to me, “Particle physics is physics thatʼs done in a
continuous vacuum, whereas a solid—that is, a crystal—is a discrete vacuum, like a
periodic lattice as contrasted with a perfectly smooth, homogeneous space. Particle
physicists have only one vacuum to explore, whereas solid-state physicists have a
vast number of different kinds of vacuum to explore—as many kinds as there are
different crystals.” To me, this characterization of crystals was amazing and hugely
provocative, and it quickly brought to my mind the image of the integers as a
periodic one-dimensional crystal lattice along the real line, and that in turn made me
ask myself, “So solid-state physics is to particle physics as number theory is to
analysis? Really!? Wow!!!” This off-the-wall analogical insight suddenly and
radically changed my perspective—and eventually, my life.
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Encouraged by Francisco Claro, I went and had a conversation with Gregory
Wannier, who welcomed me very warmly as a potential doctoral student, suggesting
that if I were to work with him, I might tackle, for my thesis, one of his all-time
favorite problems—namely, the long-standing enigma of the allowed energy values
of crystal electrons—or Bloch electrons, as they are often called—in a uniform
magnetic field.

As I type this famous physics name, I feel the need to make yet another brief
digression. Although it has nothing to do with physics per se, I cannot fail to
mention with pride and pleasure that I grew up knowing the great Swiss-American
physicist Felix Bloch (see figure P.4) and his entire family. Like Gregory Wannier,
Felix Bloch was born in German-speaking Switzerland (Zürich, in Felixʼs case), and
he grew up there. He was Werner Heisenbergʼs first PhD student, and the two of
them used to ski in the Alps together. Also like Wannier, Felix Bloch came to the
United States in the mid-1930s, but unlike Gregory, he spoke English with a strong
Swiss-German accent. Among many other achievements, Felix was the founder of
solid-state physics (and yet, astoundingly, that is not what he won the Nobel Prize
for!). He also was the first Director-General of CERN, the famous European Center
for Nuclear Research, located in Geneva. From 1950 onwards until his death in
1983, Felix was my fatherʼs closest colleague in the Stanford Physics Department,

Figure P.4. Felix Bloch and Robert Hofstadter sitting atop a peak in California’s rugged Sierra Nevada
mountain range, summer 1953. (Photo taken by Leonard Schiff, and reproduced here by courtesy of Laura
Hofstadter.)

Butterfly in the Quantum World

xxxi



and the Bloch family and our family were intimate friends. In fact, the Blochs were
so close to us that they were practically family. We spent oodles of time at each
otherʼs houses, and each family had a huge influence on the other one. Just as one
tiny example, the Blochs introduced us to skiing in 1956 at the Sugar Bowl resort in
the Sierras, and after that, we often skied together. That was a lifelong gift. I gained
a taste for what the earliest days of quantum mechanics had been like by being
around Felix Bloch for over three decades, and it affected me profoundly. When he
died, a part of me died. I deeply missed Felix then, and even today I still do. Aside
from being a genius in physics, he was artistic, musical, athletic, funny, Jewish
(though not observant), from the Old World, cosmopolitan, political, opinionated,
sophisticated, stubborn, principled, wise, and always exceedingly generous to me.
From as early as I can remember, Felix clearly respected me and liked my ideas.
Being held in esteem by such a great mind was a wonderful thing for me. Thinking of
Felix as dead was very hard for me. But if the loss of Felix Bloch hit me hard, the
blow to my parents was even stronger, alas. But let me get back to my story.

Actually, before I do that, let me insert right here a very short poetic interlude
(generously assuming that what follows merits the label “poetry”). For a brief period
while I was a grad student in Eugene, I got sucked into a personal limerick-penning
binge, and I penned (with my pen) quite a few limericks about fellow grad students as
well as a few about various physics professors. Some of these alluded to technical ideas,
which made them fun for the in-crowd but a bit opaque for the out-crowd. Among
these latter were one that I wrote about Felix Bloch and a related one about Gregory
Wannier. With out-crowd apologies and -out further ado, I present those two poems
here (and I advise readers in advance that “Wannier” is pronounced “wan-yay”):

A physics-freak who was called Felix
Thought crystals were swell psychedēlics.
It boggled his mind
When he happened to find
That a Bloch-state repeats (mod a helix)!

A physi-Swisst known as Wannier
Left old Basel for new USA.
In solids, with lots
Of—not waves—but dots,
He transformed Bloch-functions away!

So much for my student-day limericks. And now, at last, back to the main story…
The nature of the energy values of Bloch electrons in a magnetic field was a very

fundamental quantum-mechanical question first posed in the late 1920s or early
1930s, and yet, even 40 or 50 years later, no one understood the spectra of such
electrons at all well, even in the most idealized and simplified of crystal lattices.
There was a conflict between the continuum of possible energies represented by a
Bloch band (that is, the set of allowed energy levels of an electron in a crystal with no
magnetic field), and the discrete ladder of evenly spaced Landau levels (that is, the set
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of allowed energy levels of an electron in a magnetic field in empty space). How did
nature resolve this sharp conflict between the continuous and the discrete? No one
was very clear on this, although it was known that when a magnetic field was
applied, a Bloch band would somehow split up into vaguely Landau-level-like
subbands.

But by far the strangest thing that Wannier said to me on that fateful day, when
he was describing this important and profound problem, was that there was
apparently a deep and fundamental difference between two kinds of situations: (1)
when the magnetic field (as measured in the natural, dimensionless units of how
many flux quanta passed through a unit cell of the crystal) was rational, and (2) when
the magnetic field was irrational. People at that time believed that these two kinds of
situations gave rise to entirely different kinds of wave functions and energy spectra.
This odd belief, which was held by virtually all the people who were doing research
on this problem, sounded like absolute nonsense to me, since nothing in this world
can possibly depend on whether the value of a physical quantity is rational or
irrational. (Do you prefer rooms with rational temperatures, or irrational ones?
Traveling at rational speeds, or irrational ones? I can hear you smiling! After all, no
physical quantity possesses a well-defined infinite decimal expansion!)

The very idea of such a rational/irrational distinction in physics made no sense at
all to me, and yet it was the reigning dogma of experts all around the world at that
time (with one notable exception—the Russian physicist Mark Azbel’, who had
written a paper proposing a different view, which I eventually read and which was
deeply inspirational to me). So when I heard these strange words of Gregoryʼs, my
ears perked up, and I said to myself, “Maybe, just maybe, though who knows how,
my old number-theoretical interest in rationals and irrationals, which I left behind
long years ago, could somehow turn out to be relevant to this enticing mystery in the
field of solid-state physics.” Thus was I lured to this venerable paradox-grazing
problem in the theory of the solid state, and I decided to take the risky plunge of
becoming a graduate student of Gregoryʼs.

When, in the fall of 1974, he and I traveled to the University of Regensburg, an
hourʼs train ride north of Munich, to spend six months there exploring this problem, I
found myself in a cozy little research group consisting of three professors—Gregory
Wannier, Gustav Obermair (our host), and Alexander Rauh—and myself (a humble
grad student). A nostalgic photo of us all is shown in figure P.5. Our little research
group would meet a few times a week in the office of one of the professors, and the
three of them would eagerly toss back and forth all sorts of fancy mathematical
techniques for trying to wring subtle secrets out of Harperʼs equation (the equation
governing this mysterious spectrum). They were all past masters at such things as real
analysis, differential equations, group theory, linear algebra, and even Bessel
functions and hypergeometric functions, and they knew dozens of mathematical
tricks that were way, way above my head. I could wave no such magic wand, and so
in those high-falutin’ discussion sessions, I would just sit there, silent and confused. I
felt like a tiny child amidst brilliant adults, and was very disheartened.

One fine day, however, I noticed a cute little Hewlett-Packard desktop computer
(very lowly compared to the mainframes of those days) sitting on a rollable cart in
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the hallway just outside my office (figure P.6), and I timidly asked Gustav if anyone
was using it. Of course no one was, since back then, few self-respecting theoretical
physicists ever looked at concrete numbers. Theorists looked at equations, manip-
ulating them formally and proving abstract theorems about them. I was far less
sophisticated and far more down-to-earth than the trio of professors towering over
me—but at least I knew how to program this little machine (an H-P 9820A, just for
the record).

This actually was a most fortuitous and crucial coincidence—an amazingly lucky
break in my life. Five years earlier, when my Dad had been invited to the Aspen
Center for Physics for a couple of weeks and I had tagged along just for the fun of it
(in large part to be surrounded by the beautiful Rocky Mountain scenery), I ran
across an H-P machine nearly identical to the one I would encounter years later in
Regensburg, and I found it wonderfully easy to program. For a few days that
summer, I took great delight in playing around with that machine in the Aspen
Center, using its plotter to graph some simple Fourier series and other functions that
I was curious about. That joyful period of computer-aided math-play in Aspen,
1969, was the sole reason that the little machine sitting idle in the Regensburg
hallway, 1974, tempted me. Had I not played around with a cousin computer five
years earlier in Aspen, I would never have been tempted by the one sitting idle in the
hallway in Regensburg. And had it not been sitting there, or had it not been
available to me, my lifeʼs entire subsequent course would have been radically
different (and I cringe whenever I think about how it might have gone).

And so, having no other way to attack this problem, I decided to try doing the
only thing I knew for sure how to do: to numerically calculate the specific spectrum

Figure P.5. The “Regensburg group” (left to right): Douglas Hofstadter, Alexander Rauh, Gustav Obermair,
and Gregory Wannier, in the Lehrstuhl Obermair, Fachbereich Physik, Universität Regensburg, 1974.
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of quantum-mechanically allowed electron energy-values for several rational values
of the magnetic field. I rolled the little machine into my office and took it over
completely. From my seniors in the Regensburg group, I knew that calculating the
spectrum for a rational value p/q amounted to locating the zones in which a wildly
oscillating qth-degree polynomial passed through a thin horizontal strip centered on
the x-axis, x being energy. I called these zones of the x-axis the “fat roots” of the
polynomial, since each one of them was centered on a root, but was a small x-axis
interval rather than a single point. These “fat roots”were none other than the Landau-
like subbands belonging to the magnetic-field value p/q. Eventually I figured out how
to coax the little machine to give me, for any specific (rational) magnetic-field value,
the endpoints of the various allowed energy subbands for the crystal electrons.

For each rational magnetic-field value that the machine tackled, I plotted its
energy subbands in my little notebook, using colored felt-tip pens. (This machine,
unlike the one in Aspen 1969, had no attached plotter.) After a couple of weeks of
calculations, I (or rather, my mechanical friend, which Gustav Obermair jovially
dubbed “Rumpelstilzchen”, since, like the odd little goblin in the Grimm Brothers’
famous fairy tale, it wove “gold” overnight) had calculated the spectrum for perhaps
15 or 20 rational magnetic-field values, and I had hand-plotted perhaps 50 or 100
colored horizontal line segments (energy subbands) in my little notebook, which
together filled out a vaguely butterfly-like shape (see figure P.7).

One day in November of 1974, quite out of the blue, I suddenly had an eerie déjà
vu experience. I recognized a familiar and magical pattern starting to emerge: a
delicate, lacelike filigree (or “faint fantastic tracery”, as American music critic James
Huneker once poetically described Frédéric Chopinʼs ethereally wispy étude Opus
25, No. 2), and to my eye it seemed that this “faint fantastic tracery”, if it could be
fully realized, would be made of nothing but many—infinitely many—smaller,

Figure P.6. Rumpelzstilzchen, the fifth member of the Regensburg group. Copyright David G Hicks
http://www/hpmuseum.org/hp9820.htm.

Butterfly in the Quantum World

xxxv

http://www/hpmuseum.org/hp9820.htm


distorted copies of itself. At first I was amazed by this idea, but soon I realized that
for such an endlessly nested pattern to crop up in this context made perfect sense.

After all, in my long-gone days of intoxicated number-theoretical exploration,
back in the early 1960s at Stanford, I had similarly hand-plotted a different, and
much simpler, infinitely nested “faint fantastic tracery”, and had come to understand
it intimately. Passionate exploration of that graph over months had given me a deep
understanding of the conflict between rationality and irrationality as well as of its
resolution, and my new thesis problem in physics was all about that exact same
conflict and resolution, only in a wildly different setting—a solid-state physics
setting, of all things! My old graph of INT(x) enjoyed the subtle property of having
smaller curved copies of itself located between the “very rational” points , , ,1

2
1
3

1
4

1
5
,

etc, on the x-axis—and in those early years I had explored and figured out just how
the littler copies, and their varying amounts of distortion, came straight out of the
rationality/irrationality fight. Likewise, in my new and still very coarse-grained plot—
the mysterious eigenvalue spectrum of Harperʼs equation as seen through a very
blurry lens—I now saw shrunken, distorted copies of the whole graph starting to shyly
poke their noses out between the “very rational” magnetic-field values of , , ,1

2
1
3

1
4

1
5
,

etc—and as you approached the limiting x-value of 0, these copies grew smaller and

Figure P.7. The diagram above shows roughly how Gplot, as calculated by Rumpelstilzchen and hand-plotted
by me in Regensburg, Germany, looked in its earliest incarnation, in November of 1974. This is unfortunately
not the original plot itself, since the notebook in which I drew it has been lost, to my great chagrin. This is just
my attempt to reconstruct how it looked. Most likely, the earliest version of Gplot was considerably sparser
than this—and yet I still somehow “sniffed” its recursivity, since I knew my deeply recursive function INT,
from twelve or so years earlier, like the back of my hand.
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smaller, and also less and less distorted, all exactly as had been the case with my old
friend INT. This déjà vu feeling was mind-blowing to me.

Should I have been surprised, or not? Well, I had originally been drawn to the
Bloch-electron-in-magnetic-field problem precisely when Gregory Wannier had first
spoken of a mysterious kind of rationality/irrationality fight that nobody understood
well, and now I was finding that essentially the same phenomena were cropping up
in this new graph as had cropped up some twelve years earlier with my INT
function, whose nested filigree resulted from a very similar rationality/irrationality
fight. So maybe I shouldn’t have been all that surprised. But surprised I certainly
was, and my overwhelming feeling was that, through an amazing stroke of luck, I
happened to be exactly the right person in the right place at the right time! In any
case, I knew for sure that I had stumbled upon a deep analogical connection between
my old INT graph and the new graph I was just beginning to unveil. I lightheartedly
dubbed this emerging graph “Gplot”, the “G” standing for either “God” or “gold”,
whichever way one preferred to think of it.

Where Gregory Wannier, Gustav Obermair, and Alexander Rauh had been
systematically attacking the huge granitic boulder of Harperʼs equation with a
powerful kit of refined mathematical tools but just breaking off smallish chips from
it, I, a newcomer with only a blunt computational “axe”, had somehow managed to
split the boulder wide open and had found, to my amazement, that it was an
exquisite geode, with a magically beautiful recursive structure hidden inside its very
hard shell.

And yet… when one day, later in that month, I told Gregory Wannier about my
findings, he didn’t believe a word of what I was saying. Even when he was looking
straight at the hand-done plot in my notebook, he had nothing but words of disdain
for my empirical claim (which I was basing solely on my eyeballing of this butterfly-
like shape) that the graph consisted of infinitely many tiny copies of itself, nested
down infinitely many levels. He sadly shook his head and bewilderedly said to me,
“This isn’t physics! You’re merely doing numerology!”Now that, coming completely
out of the blue, was a real slap in the face, since to any self-respecting scientist,
numerology is synonymous with pseudoscience, and that, in turn, is synonymous
with sheer nonsense. To put it a bit more bluntly, numerology is to number theory as
astrology is to astronomy. And so, in Gregoryʼs eyes, I was a practitioner of
astrologyʼs closest mathematical cousin? Whew!

I couldn’t believe Gregory had said what he had said, but he wasn’t yet done.
“I’m sorry to say that you won’t ever be able to get a PhD thesis for your work on
this problem, Doug. I guess if you want a PhD, you’ll have to settle for writing a
library thesis.” I didn’t know what he meant by this worrisome term, so I asked him,
and he said, “It means summarizing other peopleʼs research on the problem in a
thorough and scholarly manner—and then, at the end, if you really insist, you can
put your idiosyncratic numerological speculations in an appendix.”

As you might expect, I was pretty shocked by Gregoryʼs harsh words, but luckily,
I was neither dissuaded nor deeply wounded by them, because I knew in my bones
that what Rumpelstilzchen and I had empirically discovered together was correct,
and so I simply persevered, though now in private. The point is, many years earlier, I
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had had long personal experience with an analogous but much simpler structure (my
graph INT), whereas Gregory had never had any experience with such structures,
and so, even when peering straight at such a visual pattern, he was unable to
recognize its hidden recursive essence, whereas to me, its essence was blindingly
clear. (Incidentally, I still feel enormously grateful to Gustav Obermair and
Alexander Rauh, for they at least remained agnostic about my unorthodox
“numerological” claims, rather than opposing them or heaping scorn on them.)

To be quite honest, it makes me feel a bit sad and even somewhat guilty to tell this
story, as it paints my good oldDoktorvater in an unfavorable light, but this is exactly
what happened that day in Regensburg, and I think itʼs important to tell it just as it
was, for it reveals a lot about how profoundly science depends on nonverbal
intuitions, mostly aesthetically based ones. Sometimes such gut-level feelings guide
you beautifully down just the right track, and thatʼs great, but other times (as in
Gregoryʼs case this time) they throw you way off.

We are all riddled through and through with unconscious preconceptions that
determine our reactions to things we have never seen before; indeed, progress in
science depends intimately on oneʼs being powerfully guided, in the face of
unfamiliar phenomena, by such unspoken biases. Whether inside or outside of
science, it is important for all of us to believe in and trust our inner voices, but itʼs
always a risk, and sometimes those voices, much though we trust them, will wind up
misleading us.

In any case, let me make it clear that both before and after this troubling
conversation, I greatly admired and was very fond of Gregory. He was a marvel-
ously insightful physicist (after he died, I wrote an article praising him to the skies,
called “A Nose for Depth”), and he was often very kind to me personally. During
my seven years in Eugene, Gregory and his wife Carol invited me over for dinner at
their chalet-like house many a time, and I always enjoyed those homey evenings with
them immensely. I wouldn’t want anyone to conclude from my tale that Gregory
was cruel; he wasn’t at all. He could be quite insensitive (as he was that day), but
then so can we all. What I think was going on, that day, was that Gregory simply
was convinced that young Hofstadter, being but a greenhorn in solid-state physics,
had very naïve ideas that were way off the mark, and so the old hand was just trying
to be as frank as he could with the greenhorn, in order to spare the latter
considerable pain further down the line. It just happened, though, that this time
the old hand was grievously in error, as he later came to see.

But back to my story… In early 1975, as my stay in Regensburg was winding up, I
was preparing to make a brief trip by train to far-off Warsaw, Poland, as I had been
invited there a few months earlier by Marek Demiański, a very friendly young
physicist whom I had met once or twice in America. Marek had invited me purely
out of friendship, thinking I might like to see Warsaw, but in his letter of invitation
(a real letter—no email back then!), he also asked if I might want to give a talk about
my doctoral research (of which he knew nothing) to an audience at the University of
Warsawʼs Instytut Fiszyki Teoretycznej, where he worked. Well, I accepted his
invitation but with considerable trepidation, for never before had I given a
departmental colloquium anywhere on any subject at all.
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My trip to Poland was absolutely unforgettable, for not only was Poland the
birthplace of both of my fatherʼs parents, but it was also the homeland of Frédéric
Chopin, who, ever since childhood, had been my greatest hero. I was deeply excited,
for both these reasons, to be going there. My first two days were spent in Kraków,
with elderly relatives whom I had never met before, and one evening, when they
went out and left me alone in their apartment for a couple of hours, I sat down at
their small piano and played my heart out, doing my best with many Chopin pieces I
loved. My relatives also told me (in Yiddish) harrowing tales of how they had
survived the raging antisemitism in Poland during World War II. That was
incredible. Then I took the train to Warsaw, where Marek met me, and in the
next few days he took me to a Chopin concert in Warsaw as well as to Chopinʼs
birthplace out in the country. Altogether I had a wonderful time with Marek.

But looming up ahead, and frighteningly soon, was my talk at his Instytut. It was
scheduled as part of the Instytutʼs “Konwersatorium”—a series of talks given
exclusively in English, even when given by Poles solely to Poles, just to make them
practice. In my case, of course, I was not worried about whether my English would
be up to par; my worry was whether they were going to scoff at the ideas I would tell
them, perhaps making me doubt my own beliefs. After all, I still had only a crude
hand-drawn graph of my crazy spectrum, and no proof whatsoever of my
“numerological speculations” about the graphʼs infinite nesting inside itself. I was
very fearful that I might be heading straight into the lions’ den and might be eaten
alive. However, when the fateful day rolled around, the audience of my first-ever
physics colloquium was not only interested but even enthusiastic, and in the long
series of questions afterwards, I didn’t detect the slightest trace of skepticism. What a
relief! That Polish audienceʼs warm reception was a fantastic mitzvah for me (or
piece of good luck, as they say in English), and it boosted my self-confidence
considerably.

A couple of weeks later, Gregory Wannier and I returned to Eugene, Oregon, and
I had no more Rumpelstilzchen to help me out. This was a major setback. One day,
however, as I was ambling through the corridors of the Physics Department, I
chanced to espy a familiar “face”—namely, that of a Hewlett-Packard 9820A
desktop computer, sitting on a counter in the laboratory of Russell Donnelly, a well-
known experimental low-temperature physicist. What a godsend! Moreover, this
Oregonian cousin of Regensburgʼs Rumpelstilzchen had a plotter attached to it, just
like the one in Aspen had had, back in 1969. Wow! This was very promising! I
excitedly asked Russ if I could use his labʼs computer for a while, and he was very
happy to let me do so. And so, only a few days later, Rumpelstiltskin (as I dubbed
my new friend) started slaving away for me, day and night—and for three whole
weeks it wove its mathematical gold, plotting out all by itself, in beautiful colors, the
band-structures, according to Harperʼs equation, belonging to about 200 different
rational values of the magnetic field. What it finally came out with is exhibited in
figure P.8. I was sure that this time around, thanks to the far larger number of bands
and the far more precise plotting, the recursive, self-similar pattern formed by these
many line-segments would be unmistakable, even to the most naïve, most untrained,
pair of eyes.
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Of course I was hoping that when I showed my new computer plot to Gregory,
the fog would start to lift. However, Gregory was a pretty tough customer, or at
least very set in his ways, and to my disappointment, he still didn’t catch on. It took
a few painful weeks for him to see the light. It turned out that in order to fully
convince him, I had to ask the obedient 9820A to “undistort” a couple of very tiny
regions of Gplot, and when it plotted these regions in an “undistorted” and greatly
magnified way, it was glaringly obvious that they were copies of the entire graph
(even though they were far less detailed than the full plot). At that point, the scales at
last truly fell from Gregoryʼs eyes, and he soon came to revere the idea of infinite
nesting that I had described in Regensburg and that he, at that time, had mercilessly
slammed as “mere numerology”.

From being my highly acerbic critic, Gregory soon metamorphosed into my most
stalwart champion! That was quite a change, although for several years, he never
acknowledged his harsh words of criticism, nor the rough way he had treated me for
nearly a year. I truly thought that he had totally forgotten that he had ever opposed
my ideas at all. However, in the summer of 1979, quite out of the blue, I received a
very gentle and humble letter from Gregory in which he all but apologized for his
earlier behavior, and thanked me for having been so patient with him during that
rough period. I was deeply touched by this note, and it remains my strongest
memory of his character. Just as my Dad had originally told me, Gregory was “a bit
of an odd duck, but an excellent physicist and a friendly, gentle person.”

Figure P.8. Gplot, as calculated by Rumpelstiltskin in Eugene, Oregon during the late spring of 1975. Energy
is plotted on the x-axis, and magnetic field (in flux quanta per lattice cell) on the y-axis.
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My experimental exploration of Harperʼs equation, modeled on my teen-age
computer experimentations in number theory, had revealed what no amount of
deductive theoretical mathematizing had done in that whole sub-area of solid-state
theory, over the course of several decades, with the key exception of the work by
Mark Ya. Azbel’, which was far ahead of its time but which virtually no one
understood. The Gordian knot had been cut by someone who, to his own great
frustration, didn’t have the talent to throw fancy high-powered transforms at the
equation, but who instead merely instructed a computer to calculate its eigenvalues
numerically, and who then looked at the visual pattern that they formed—looking
with a trained eye, to be sure—an eye that many years earlier, in a totally different
field of exploration (number theory, a branch of pure mathematics!), had become
deeply sensitized to a certain type of self-similar recursive pattern, a pattern made up
of infinitely many distorted copies of itself.

You can see why this might at first have agitated, even offended, a greatly
talented Old World theoretical physicist who had always done things in the old-
fashioned way, who had never used computers, and who probably didn’t even trust
them. It was almost as if I was an impudent Wild West upstart—a cocky computer
cowboy!—with no respect for the older generation. This wasn’t true at all (I had
great reverence for all the figures who founded quantum mechanics, for instance, not
to mention Felix Bloch and of course my Dad!), but it may have seemed that way to
Gregory. Eventually, however, he realized that, though he could run circles around
me in physics, I had simply seen some things that had eluded him.

One of the most beautiful discoveries coming out of the nested nature of Gplot
was the revelation that for any irrational value of the magnetic flux, the spectrum
consisted not of bands, but of infinitely many isolated points forming an intricate
pattern called a “Cantor set” — a quite wild kind of topological beast invented by
the great German mathematician Georg Cantor in the late nineteenth century. This
idea was truly stunning, and yet it was practically handed to me on a silver platter,
once I had clearly understood Gplot’s recursive structure. Making this connection
was a very special moment in my life.

In addition, my newly gained insights into Gplot soon enabled me to undercut the
previously accepted wisdom (or lack of wisdom) that, in this physical problem, there
was a fundamental distinction between supposedly “rational” and supposedly
“irrational” magnetic fields. True, there was a natural way to calculate the spectrum
for any rational value p/q, using a qth-degree polynomial, whereas calculating the
spectrum for an irrational value was trickier, but the key point was that the actual
spectra, as you slid smoothly along the real axis of magnetic-field values, changed
perfectly continuously, whether you were at a rational or an irrational value, and
indeed, in my thesis, I was able to prove this fact (one of the few facts about the
Harperʼs-equation spectrum that I actually was able to establish in the “normal”—
i.e. deductive—mathematical fashion).

Another way of putting this is that if you “smear” the graph, by jiggling it up and
down a tiny bit (here I’m thinking of the magnetic-field strength as being on the
y-axis), so that the energy bands belonging to extremely close magnetic fields are
superimposed, then the “smeared graph” that results is an ordinary spectrum
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without any trace of infinite nesting or “fractality”. No matter how little you jiggle
the graph, the distinction between “rational” and “irrational” fields goes entirely
away, as indeed it must, if we’re talking about the real physical world. In preparing
my thesis, I actually constructed two smeared graphs with different amounts of
jiggling, painstakingly tracing them out completely by hand while sitting at my desk
for many hours. Although they are both a bit spooky-looking, especially the one
involving less jiggling (see figure P.9), they no longer look like “faint fantastic
traceries” or infinitely delicate lacelike filigrees.

When I finally handed in my thesis, in December of 1975, it included, of course, a
very high-quality reproduction of Gplot, which folded out in a lovely way. This
foldout was inserted right after the last page of text of the book, almost as if it were
an appendix. And it happened, perhaps by coincidence, or perhaps not, to be page
137 of my thesis. (For those readers who don’t know the meaning to physicists of the
hallowed number 137, suffice it to say that it is the reciprocal of the fine-structure
constant, a key number in quantum electrodynamics, and why that dimensionless

Figure P.9. Two “smeared” versions of Gplot, resulting from less jiggling (top) and more jiggling (bottom).
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number has that strange value has been a beckoning mystery to physicists for 80
years or more. It turns out that it is not actually precisely the integer 137, but more
like 137.02, although for a long time many people wondered if this wasn’t a mystical
property of the integer 137, which also happens to be a prime number. If the reciprocal
of the fine-structure constant had actually turned out to be exactly an integer, that
would indeed have been a most astounding fact.) And so, in the end, by making Gplot
be page 137 of my thesis, I didwind up making a mischievous numerological gesture—
and as I look back on the whole crazy story, I can’t help smiling.

My doctoral defense took place in December of 1975 in Eugene, and although I
was somewhat nervous, since I did not consider myself by any means a true solid-
state physicist, I did just fine, and it was a huge relief to know that I was finally
completely over the long, tortuous roller-coaster ride of my graduate career. Shortly
before my defense, I’d had my thesis professionally printed up and bound in the
classic manner, making about 25 copies of it altogether, half of them with green
bindings (for the University of Oregon), and half of them with red bindings (for
Stanford). The first copy went, of course, to Gregory Wannier, and then I gave
copies to my other committee members, and to Russ Donnelly (Rumpelstiltskinʼs
guardian), and to a few very dear grad-school cronies (including, of course,
Francisco Claro in far-away Chile). Copies were also sent to the two other members
of the Regensburg group, needless to say, and I gave one to my Dad, whose deep
belief in the beauty of physics and whose moral support during these grueling
years had meant everything to me. Indeed, the closing sentence of the
“Acknowledgments” section in my thesis reads as follows:

Finally, I would like to say that my eternal faith in the beauty and simplicity of
nature comes straight from my father, Robert Hofstadter, and has here acted
and will always act as the main guiding principle in my view of the universe.

And of course, one very special copy was reserved for Felix Bloch. I’ll never forget
the day I went to Felixʼs office in the Stanford Physics Department and handed it to
him, and then, at his request, signed it. This was a very meaningful, tangible bond
between our two families, which had so long been linked in friendship, and which now
were linked in a new way by this creation of mine that owed so much to Felixʼs own
doctoral thesis, way back in 1928, about the application of quantum mechanics to
solids, in which what soon came to be known as Bloch waves, Bloch electrons, and
Bloch bands were first introduced to the world. What a symbolic event for me!

Gplot was an incredible gift to me. Not only did it graciously grant me a PhD,
which I had so feared I would never get, and which became the precious visa
allowing me, a few years later, to enter the privileged land of academia, but it also
looped the loop for me, allowing me to come full circle and get a doctorate in
number theory (although it was disguised as a doctorate in solid-state physics). Such
an ironic turn of events was the furthest possible thing from my imagination when,
eight years earlier, I had desperately bailed out of math grad school in Berkeley!

Once my little Gplot, born as a hand-drawn figure in Regensburg in the fall of
1974, had made an appearance in the pages of Physical Review in the fall of 1976, in

Butterfly in the Quantum World

xliii



the only physics article I ever wrote, it slowly became known, and after a few years it
was known far and wide. Eventually, people started calling it “the Hofstadter
butterfly” (though I myself still call it just “Gplot”).

In 1980, a few years after I had left physics, Gregory wrote me a letter politely
asking me if I would send him a bunch of copies of my Physical Review article,
explaining that I, having changed fields, presumably didn’t need them any more. Then
he added, “For me, on the other hand, the article is like one of my own.”Wow—now
that was going a bit far. Still, I couldn’t help but feel touched by this unwitting
revelation of how deeply and totally Gregory had turned around since the days of our
intense clash. I wound up sending him about half the copies I had.

Today, hundreds of papers have been written about the butterfly, most of which I
don’t understand at all. Over these past 40 years, Gplot has been extensively
generalized and connected to phenomena in many other areas of physics—
connections that I could never have imagined, not even in my wildest dreams! Let
me just mention the quantum Hall effect, the renormalization group, topological
insulators, Apollonian gaskets, Berry phases, Chern numbers, cold-atom lattices,
noncommutative geometry, Bose–Einstein condensates, Majorana fermions, and
last but not least, “anyons” (of both abelian and nonabelian varieties, of course!),
which are strange quasiparticles that live only in two-dimensional worlds and are
somehow poised somewhere in between being bosons and being fermions. My head
spins when I read about these kinds of surrealistically abstract notions linked to my
little Gplot; to my great dismay and considerable embarrassment, many of them lie
quite a long way above my abstraction ceiling (although, thank God, not above my
absurdity ceiling!).

Aside from all this theoretical work connecting Gplot to other physical phenom-
ena, just a couple of years ago some of the key properties of the energy spectrum of
Bloch electrons in magnetic fields, which I’d speculated about in my doctoral thesis
way back in 1975, were finally experimentally verified in the no-nonsense physical
world. This remarkable experimental work relied on the creation of artificial lattices
with extremely large unit cells, so that the amount of magnetic flux passing through
them (as measured in flux quanta) was non-negligible. (Back when I wrote my thesis,
the amounts of magnetic flux that could be made to pass through a crystalʼs unit cell,
even with the most intense magnetic fields, was extremely tiny, so it was a major
breakthrough when clever ways were devised of making “artificial” lattices that had
much bigger unit cells.)

In January of 2015, at the Kavli Institute for Theoretical Physics in Santa
Barbara, California, I had the honor of giving back-to-back talks about the butterfly
with Philip Kim, one of the pioneers of the superlattice techniques that had allowed
the butterfly to be glimpsed experimentally. My talk was mostly just reminiscences
about how I’d discovered Gplot some 40 years earlier, and I felt a bit out of my
depth during Kimʼs talk, but I nonetheless basked in the glory of having come across
Gplot when I was young.

Two months later (on March 3rd, to be precise), I was very surprised to receive, out
of the blue, the following remarkable and very friendly email from someone of whom
I had never heard, in the Physics Department at GeorgeMasonUniversity in Virginia:
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Dear Professor Hofstadter,

I am writing a short book (Physics Today level), to be published in the “IOP
Concise Physics” collection, titled “Butterfly in the Quantum World, Story of a
Most Fascinating Quantum Fractal”. I will be extremely grateful if you could
comment/critique on the nearly complete draft (low resolution version) that I am
attaching with the email. Of course any suggestions from your side will be
extremely useful. It will be nice if you could write a few words reminiscing your
thoughts when you first saw the butterfly, and how much the recursions of the
Gplot influenced your future work or anything else about the graph that you may
wish to say or share.

I thank you in advance for your consideration and look forward to hearing from
you.

Sincerely
indu

P.S just a little note that the attached draft is a working draft and I am planning
to finalize it within a week or so. However, it always takes longer than you
expect, even when you take into account Hofstadterʼs Law.

I was quite amazed and thrilled to find out that someone was writing—indeed,
had already written!—a whole book about my little Gplot, once just a hand-drawn
diagram in a little notebook of mine. As an attachment, Professor Satija had
included the latest draft of her book, and when I looked through it, I saw that she
had spelled out many stunning links between Gplot and other phenomena, both in
math and in physics, and had done so in an infectiously lively manner. I was flattered
that she had asked me to contribute some personal reminiscences to this charming
book, and so I replied to her with great enthusiasm. By coincidence, I was scheduled
to give a talk in Maryland the next month, and I suggested that I could kill two birds
with one stone by visiting George Mason as well. Indu Satija was gung-ho about this
idea, and so it wasn’t long before we met in person at George Mason University, and
I had the distinct pleasure of giving her one of the very few copies I still had of my
PhD thesis—a green-bound one, as I recall. A couple of hours later, I gave more or
less the same talk of reminiscences to her department as I had given in Santa
Barbara a few months earlier.

Indu realized that her book, like any book, was going to need some copy-editing,
and during my visit to George Mason, I volunteered to do that for her, partly
because I am a very perfectionistic writer and have lots of experience in writing for
the wide public, and partly because I have a great deal of background in the subject
matter itself (although of course I had not been involved in the physics for forty
years). In the following months, then, I helped polish the prose that Indu had so
painstakingly crafted for her readers. In suggesting changes to her delicate, elaborate
construction, I often felt guilty, so I nicknamed myself “the bull in the china shop”, a
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label that Indu delighted in. Indeed, she gave the warmest welcome to this “bull in
the china shop”, because, as she told me, she didn’t really trust people who praised
her book. She trusted only words of criticism, and the more critical they were, the
merrier! I thought that was pretty funny.

For a few months, then, I had the amazing experience of reading in great detail
about Gplotʼs many connections to all sorts of phenomena, and of thinking about
these connections very carefully. I had never expected I would come into such close
contact with all these modern developments in condensed-matter physics, and it was
really enlightening to learn so many things from this book, and a great pleasure to be
able to contribute here and there to its local flow and to its clarity—and also to
contribute one invited “guest chapter”, in which I recount some of the technical
details in my thesis. To have a chapter of my own in this book is a great privilege.
But the marvelously rich overall vision of this book and the myriad crisscrossing
connections that it spells out all come from Indu herself, of course. I was just a
humble copy-editor! Her enthusiasm for the magic of these connections is truly
unbounded, and I am so grateful to her for allowing me to come on board and be, in
my own small bull-in-china-shop way, a part of this glorious celebration of the
butterfly. (By the way, Induʼs suspicion that Hofstadterʼs law might apply to her
book was confirmed in spades, since it was finally sent off to the publisher not a week
later, but a year later…)

There are two other Gplot events that I feel a bit reticent about describing here,
since to relate them might seem self-serving, but since they were both touching to me
when they happened, and since I think they add human interest to my story, I’ll take
the risk of including them.

The first involves the review process of the article based on my thesis that I
submitted to Physical Review in early 1976. A few months later, I received two
anonymous reviews in the mail, both of which recommended publishing it, to my
relief—and to my astonishment, one of them also said, “This paper reads like a
Mozart divertimento.” This was, shall I say, music to my ears. Even if Mozart was
not among my favorite composers, I knew exactly the sentiment that the unknown
reviewer meant to express with those words, and I was extremely moved by them
and grateful for them. I had never expected any such reception, and was rather
bowled over by it.

Well, some sixteen years later, in the summer of 1992, I gave a colloquium about
Gplot in the Physics Department at Berkeley. It was attended by only about a dozen
people, if even that many, which was a little disappointing, but afterwards, one tall,
thin, gray-haired gentleman came up to me and said, with a refined-sounding accent,
“My name is Leo Falicov, and I’m a member of the department here.” I recognized
his name instantly, because he was a famous condensed-matter theorist. (In fact, in
1969, one of Falicovʼs research associates, Dieter Langbein, had published an article
about the energy spectrum of Bloch electrons in a magnetic field, which included a
graph, but its level of detail wasn’t fine enough for Langbein or anyone else to pick
up on its recursive nature. Whew! Was I ever lucky!) Falicov then said to me, “Do
you by any chance remember an anonymous review of your Physical Review article
that likened it to a piece byMozart?” I replied, “How could I ever forget such a great

Butterfly in the Quantum World

xlvi



compliment?” He smiled and then said, “Well, I was the one who wrote that review,
and I still feel that way about this work.” That was an unforgettable, albeit very
brief, encounter. I never saw Leo Falicov again, but this meeting will forever stay
with me.

The other anecdote is rather amusing. In the fall of 1998, I went to Saint
Petersburg, Russia for about ten days, thinking of possibly spending a sabbatical
year there. I wanted to explore various departments at the university, and so I
arranged to give a couple of lectures, one of which was in a mathematics institute, on
a topic in Euclidean triangle geometry, which at the time was a hot passion of mine.
Talk about small audiences—this time I had only about five people who came to
hear me! And a little more disturbing was the fact that they all seemed distinctly
underwhelmed by what I was telling them. (I later discovered that all Russian
mathematicians know Euclidean geometry like the backs of their hands, so no
wonder my ideas hardly seemed Earth-shaking to them.) Despite the cool reception,
the organizer of my talk kindly invited me out to lunch and tea afterwards, and as we
talked, he said, with a very strong Russian accent, “You should know, my specialty
is mathematics of physics, and I am great admirer of work in physics of your father.”
I was of course very pleased to hear this, but since my Dad had done many things in
physics, I asked him which work he was referring to, and he said, “Butterfly graph,
of course!” At that point, I suddenly felt deeply embarrassed, and I had to disabuse
him of his illusion by saying, “Well, actually, thatʼs something that I myself did…”

At that, he looked most astonished, and spontaneously blurted out, “Oh! I see! In
such case, you are very important person!” In roughly one second, I had leapt
upward in his estimation by a factor of a thousand! Very funny.

If being the discoverer of Gplot made me a “VIP” in physics, then wouldn’t it
have been wise for me to stay in physics? I don’t think so. These days, as I look back
on my painful graduate-school struggle with physics and my subsequent non-physics
career, I don’t in the least regret having given up, right after finding Gplot, on my
once-fervent dream of making physics be my profession. For me to have gone on in
physics would have been a big mistake, even though the fact that I had discovered
Gplot, with its great visual appeal and its counterintuitive properties, was a nearly
surefire guarantee that I could have gotten a job in a fine physics department
somewhere.

Why would going on in physics have been a mistake? Well, during my graduate-
school days, it only slowly dawned on me, as I was struggling like mad to understand
particle physics and later on solid-state physics, that I was not cut out to be a
physicist. Of course this realization at first scared me and disappointed me, and I
tried to fight it with all my might—but fighting it just didn’t work. I simply was who
I was. Although I had grown up in a physics family and had always loved the deep
ideas of physics—as an eight-year-old I’d even yearned to “be a neutrino” (what
eight-year-old wouldn’t want to be a massless, spin-one-half particle that could go
sailing unscathed right through planet Earth at the speed of light?)—I came to
realize, in my nearly eight years of graduate school in physics, that being a creative
physicist took a certain combination of talents that I just did not have, alas. Gregory
Wannier and Alexander Rauh and Gustav Obermair all had those talents, but for
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some reason I didn’t. Very luckily, though, I came to see that I had talents in other
domains, and so, having done something in physics of which I knew I could be
proud, but knowing that such a success story was very unlikely to repeat itself, I had
the sense to get out while the getting-out was good. I thus set sail for other lands to
which I was more suited, going out in a small blaze of fractal glory. That was a
lovely, lucky feeling!

Speaking of luck, I think it would be fitting for me to close my prologue by
pointing out that it was only thanks to a stunning series of strokes of luck that I
found the recursive secret of this elusive butterfly. Here, then, are eleven pieces of
luck that wound up revolutionizing my life:

• the excellent luck that, after traumatically quitting particle physics with a
sense of revulsion, I ran into two people whose eloquence convinced me that
to do solid-state physics was the furthest thing in the world from “going
slumming”;

• the excellent luck that Gregory Wannier, who for many years had studied the
crystal-in-magnetic-field problem, was a professor at the University of
Oregon, and that in my hour of need I had the good sense to approach him;

• the excellent luck that many years earlier, I had dreamt up the INT function,
thus plunging myself into the world of number-theoretical problems featur-
ing, at their core, rationals versus irrationals;

• the excellent luck that I trusted my instinct to “go for it”, when I heard
Wannier mention the irrational-versus-rational fight inherent in the problem,
even though at the time I had no idea how I might contribute;

• the excellent luck that I came across and did my best to understand Mark
Azbel”s difficult 1964 paper, which reinforced my inchoate hope that ideas of
number theory might somehow play a key role in unraveling the problemʼs
secrets;

• the excellent luck that I was incapable of keeping up with the three other
members of the Regensburg group, and thus was forced to try out a radically
different, far more concrete, far more humble, pathway;

• the excellent luck that I had learned to program computers when I was a teen-
ager and had become an “experimental mathematician”, unashamed of
exploring mathematics as a physicist explores nature;

• the excellent luck that there was a Hewlett-Packard 9820A computer sitting
on a cart in the hallway just outside my office in Regensburg, and that no one
else in the department had the slightest interest in using it;

• the excellent luck that I had played around with an identical Hewlett-Packard
computer in Aspen, Colorado five years earlier, and had quickly come to love
the elegant simplicity of its user interface;

• the excellent luck that when I returned to Eugene from Regensburg, I found
yet another identical H-P computer, this one, however, being luxuriously
equipped with a mechanical pen-on-paper plotter;

• the excellent luck that nobody in the entire worldwide solid-state physics
community had ever computed and plotted this graph in sufficient detail

Butterfly in the Quantum World

xlviii



before, for otherwise it might easily have been known as the “Langbein
butterfly”…

It is astonishing to me to see how many truly tenuous links of luck in the chain
there were, and yet, somehow, itʼs only thanks to all those links of luck taken
together that I passed from near-failure to the dizzying discovery of that glowing
gem called “Gplot”. It was a long time, though, before I fully grasped the extent of
the role of luck in my story. Only after twenty years or so did it finally hit me how
terribly thin a thread my entire future had hung from back then, and how terribly
close I had come to never getting a PhD at all, and thus never being able to go into
academia, never becoming a professor, and everything that that extremely different
pathway would have entailed. This sobering realization, once it finally came, gave
me a lasting sense of humility and a profound respect for the vastly underestimated
role of luck in human life.

To be sure, the happy ending of my story was not due in its entirety to sheer
random luck. After all, there is no denying that, several times over the course of
several years, I sensed that something about the pathway down which I was heading
was deeply wrong, and that something had to give, in the sense of changing
radically. Thus my bounce out of math-in-Berkeley and into physics-at-Oregon was
one key turning point in my life, and the scary decision to take that fork in the road
was not imposed on me at random, but came from within. Likewise, my leaps from
one advisor to another in particle physics came from major shifts of tectonic plates
inside my brain, as did my risky leap out of particle physics and into the realm of
solid state—a move that would have struck me as crazy, absurd, and inconceivable
when I first came to Oregon.

All these bounces—triggered by severe blows I received from the outside world—
came about as results of the clash of many psychological forces inside me, not from
outside. I was not just pushed around like a helpless ball in a pinball machine. No—
my inner self was determined to search for a pathway that I felt truly comfortable
with, and I kept on searching until—very luckily—I finally found one. All these
abrupt veerings in my trajectory, all these desperate leaps of faith—they wound up
saving me by guiding me away from certain disaster, from chasms and ravines in
which I would without any doubt have perished. But by themselves, the leaps I took
were no guarantee of success. They were just moves that let the game go on a bit
longer. Each one gained me some time, restarting the clock in a new game situation.
And luckily, after several such desperate leaps, I finally wound up in a situation
where things were far more favorable. But the key word here is that adverb
“luckily”. Though I was the captain of my lifeʼs ship and did my best to steer it
in the right direction in stormy weather, the random forces of nature were utterly out
of my control, and I just had to deal with the harsh gusts and huge waves as they
slammed into me. As it happens, though, I was also the beneficiary of a number of
pieces of great luck, as spelled out in the list above. Somehow, as a combination of
all these forces, inner and outer, I wound up sighting a beautiful desert island called
“Gplot”, calm and serene in the midst of the raging storm. And so, all I can do is
thank my lucky stars that things turned out as well as they did.
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When today I look at some of my friends who are every bit as talented as I am but
to whom this fickle world has doled out less good fortune than to me, I think to myself,
“Without that inexplicable string of great pieces of luck, that could oh-so-easily have
been my fate, too. There but for the grace of God go I.”Or sometimes, since I’m not a
religious person, I say to myself, “There but for the grace of Gplot go I.”

Envoi
Indu Satija very much hoped that I would include a poem about Gplot, and

although I resisted her pleas for a long time, eventually she succeeded in convincing
me to give it a try. It occurred to me that since the bulk of my doctoral research was
carried out in the effervescent town of Eugene, Oregon, and since I have long been
an aficionado of the effervescent novel in verse Eugene Onegin by Alexander
Pushkin, it might be fitting to invoke the spirit of the latter as a way of celebrating
a set of events many of which happened in the former. And so I decided to use the
remarkable poetic medium that Pushkin devised for his novel—that is, to write what
today is called an “Onegin stanza” (14 syllables of iambic tetrameter following an
ABABCCDDEFFEGG rhyme scheme)—and in my Onegin stanza to give one last
brief glance back at the tale told in this Prologue. So with the poem below I shall
take my final bow and exit, stage left.

What happens if a crystal’s laced with
The lines of a magnetic field?
What spectrum will the world be graced with?
What energies will nature yield?

It turns out that the matter’s crux is
Determined by how great the flux is—
p-over-q q bands begets;
Non-ratios, though, give Cantor sets!

On hearing this, a physicist’ll
Declare it numerology;
But once shown Gplot, all agree
Deep magic’s lurking in a crystal!

This gem I found by luck. That’s why
There but for Gplot’s grace go I.
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Prelude

The artist has to transcend a subject, or he loses the battle. The subject wins.
—Fritz Scholder

He looked at his own Soul with a Telescope. What seemed all irregular, he saw
and shewed to be beautiful Constellations; and he added to the Consciousness
hidden worlds within worlds….

—Samuel Coleridge Taylor, Notebooks.

“Let the dance begin” [1].2

The Hofstadter butterfly: home of the quantum Hall effect

In the fall of 1974, when Douglas Hofstadter discovered the butterfly graph, which
revealed the allowed energies for a quantum system of electrons in a two-dimensional
crystal, few people would have guessed that anything like this strange, eerie shape
could have anything at all to do with the physical world. The quantum Hall effect
had not yet been discovered, and the word “fractal” was unknown at the time.

2Copyright: The Library Company of Philadelphia (www.librarycompany.org).

li

www.librarycompany.org


A few years later, in his Pulitzer-Prize-winning book Gödel, Escher, Bach: an
Eternal Golden Braid [2], Hofstadter discussed recursion in solid-state physics, and
he connected it with recursion in other domains, including fugues in music,
grammatical structures in human language, and the branching patterns of trees in
mathematics and in nature. He also compared the intricate recursive beauty and
complexity of the butterfly he had recently discovered with the recursions found in
chess programming, with the abstract structures constituting human consciousness,
with Dutch graphic artist M C Escherʼs prints, and with contrapuntal pieces of
music by J S Bach—pieces that he acrostically described as Beautiful Aperiodic
Crystals of Harmony.

Johann Sebastian Bachʼs Fifth French Suite, full of wonderful twists and turns, is
a musical jewel. Its concluding Gigue is an example of the multifarious “recursive
structures and processes” described by Hofstadter in chapter 5 of Gödel, Escher,
Bach. In his words,

Like many Bach pieces, the Gigue modulates away from its original key of G and
imitates a finish, but in the wrong key (namely, D). It then jumps right back to
the start and retraces exactly the same pathway in harmonic space, winding up
once again in the key of D. Thereafter, starting right up again with a new theme,
which not coincidentally is the original theme upside down, it winds its way back
home, modulating back to the original key of G and seeming to finish up in it. But
just as before, Bach is not actually done, for at this point he jumps back to the
midway point in D and reiterates the journey back home to G with the upside-
down theme, only coming in for a true landing the second time around. These
subtle and intricate maneuvers in musical space are like stories told within
stories, where one goes “down” into new worlds (musical keys, in this case) and
then pops back “up” out of them.

Hofstadter used such examples in Gödel, Escher, Bach to illustrate the rich
mathematical concept of recursion. At one point, he wrote: “A recursive definition
never defines something in terms of itself, but always in terms of simpler versions of
itself’. If we allow “smaller” as a possible interpretation of “simpler”, then this is
certainly an appropriate way to describe the recursive structure of Hofstadterʼs
butterfly graph, which is composed of infinitely many smaller copies of itself (with
smaller copies yet inside those, and so forth, ad infinitum). The recursions in the
butterfly, intertwined with its underlying geometry and topology, reveal a hidden
beauty and simplicity, and that is what this book is all about.

To exploit once again the metaphor of music, this book can be thought of as a
“butterfly symphony” consisting of four movements—a symphony that recounts the
story of the butterfly in the quantum world. Short narratives of each movement,
provided below, along with the schematics in figures P.10–P.13, are intended to
provide readers with glimpses of the entire symphony—a birdʼs-eye panorama that
will hopefully pique readers’ curiosity.

• The first movement, entitled “The butterfly fractal”, gives a feel for the
fractal aspects of the butterfly. It uses chords and melodies familiar from
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some well-known geometrical fractals and conveys a sense of the profound
and timeless beauty of this magical visual structure.

Fractals are fascinating objects. There is always something more to see as
you look at them at smaller and smaller scales. In their never-ending
nestedness, you will find similar structure no matter at what scale, large or
small, you choose to look.

The Hofstadter butterfly is a very special fractal because, in a certain sense,
it is “made out of integers”. These integers are in fact the quantum numbers
associated with the quantization of electrical conductivity—an exotic phe-
nomenon known as the quantum Hall effect, the discovery of which was
honored with a Nobel Prize in 1985. Interestingly, the roots of the integer
recursions can be traced all the way back to some beautiful ancient Greek
mathematics dating from roughly 300 BC. This adds a new dimension to the
story, as it reveals some hidden symmetries of the butterfly.

The butterfly composition is a metaphorical fugue that has fascinated
mathematicians and physicists for almost forty years [3]. Figure P.11 offers a
pictorial introduction to the amazing intricacies of this object.

Figure P.10. This graph of electrical conductivity versus magnetic field reveals the integer quantum Hall effect.
The horizontal plateaus in the graph show that electrical conductivity is quantized, which means that it
assumes values that are integral multiples of a fundamental physical constant,

2e
h
: here e is the charge on the

electron and h is Planckʼs constant, a tiny quantity at the heart of all quantum effects. The panel on the right
side is the Hofstadter butterfly, whose gaps, or empty white regions, are characterized by integers that are
quantum numbers of the Hall conductivity; these same integers appear in the staircase on the left-hand side.
Finally, the plots made up of nested circles show integral Apollonian gaskets—infinitely nested patterns of
mutually tangent circles all having integer curvatures. The quantum Hall states filling the gaps of the butterfly
fractal can be viewed as integral Apollonian gaskets in a reincarnated form.
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• The symphonyʼs second movement, entitled “Butterfly in the quantum
world”, provides a peek into the quantum world, and also includes an
introduction to the quantum Hall effect. This chapter, a preamble to the
remaining parts of the symphony, emphasizes physical concepts such as
quantization, and exposes readers to strange and highly counterintuitive
physical phenomena.

• The symphonyʼs third movement, “Topology and the butterfly”, reveals the
geometric aspects of the butterfly and relates them to the quantum Hall effect.
This movement tells the most technically complex part of the story, escorting
the audience to a very curious abstract curved space in which following a
cyclic pathway does not necessarily return travelers to their original starting
point.

For quantum-science enthusiasts who love geometry and topology, the
relationship between the butterfly fractal (made up of integers) and the
quantum Hall effect is fascinating and also somewhat baffling. If the first two
movements of the butterfly symphony aroused a sense of excitement, the third
movement is bound to arouse a sense of profound mystery.

Figure P.11. Zooming into the butterfly fractal reveals identical patterns at all scales. The red butterfly is a
blowup of the red region in the upper black graph. The blue butterfly is a blowup of the blue region in the red
graph, and the green butterfly is, in turn, a blowup of the green region in the blue graph. The integers labeling
the white gaps in these differently colored butterflies are the quantum numbers of the Hall conductivity, which
form a quasiperiodic pattern with dodecagonal symmetry.
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• The abstract tone that pervades the symphonyʼs first three movements is
largely left behind in its fourth movement, as the quantum butterfly tantaliz-
ingly begins to show its footprints in the real world. As readers follow the
decades-long journey toward the actual capture of the elusive butterfly, they
will appreciate the art of scientific exploration in laboratories. This final
movement of the symphony may be soothing or agitating, reflecting the as-yet
unfinished task of definitively capturing this celebrated “beast” in the wild.

Finally, as an encore, we leave scientific discourse behind and let readers savor the
exotic world described in this book with “Butterfly Gallery”, “Divertimento”
(butterfly tales), and some poetic verses in “Poetic Math and Science” inspired by
the Hofstadter butterfly. We conclude with a Coda from “Lilavati”, which was
composed by Bhaskara 900 years ago.

The stunning form of the butterfly graph, when it first appeared in print in 1976,
fascinated physicists and mathematicians, as it revealed new aspects of the beauty,
simplicity, and harmony of the solid state of matter in the universe. The graphʼs
infinitely nested structure was a great surprise at the time, but despite its visual
appeal and its abstract fascination, it could easily have been forgotten, had it not

Figure P.12. The quantum Hall effect and topology. The unexpected emergence of trefoil symmetry at
infinitesimal scales of nature (as described in chapters 2, 3, and 10) resonates beautifully with trefoil symmetry
in macroscopic nature—as can be seen, for instance, in redwood sorrels found in Montgomery Woods in
Mendocino County, California (photos courtesy of Douglas Hofstadter).
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been for the laboratory realization, several years later, of two-dimensional electron
gases manifesting the quantum Hall effect.

The discovery in 1980 of the quantization of resistance at low temperatures and
high magnetic fields was wholly unexpected. The flat or plateau regions in figures P.10
and P.12 show where the conductivity is an integer multiple of the earlier-mentioned

constant e
h

2
. A schematic illustration of some of the links between the quantum Hall

effect and the butterfly is shown in figure P.10, while figure P.12 is meant to convey a
sense for how topologyʼs abstractions play a key role in this drama.

Astonishingly enough, Hofstadterʼs butterfly plot turns out to be the home of the
quantum Hall effect. Each empty region or gap in the butterfly represents a unique
quantum Hall state, characterized by an integer that corresponds to the quantum
number associated with the Hall conductivity. The butterfly is thus a dazzling
structure built out of these integers.

The quantum Hall effect—or at least the integer quantum Hall effect—is now so
well understood that it is often covered in undergraduate textbooks in quantum and
solid-state physics. Even so, the subject remains at the forefront of physics, since two-
dimensional electron gases exhibiting the quantum Hall effect are the simplest
examples of topological insulators—new exotic states of matter that are revolutioniz-
ing fundamental physics and that offer the potential of groundbreaking technological
applications.

The butterfly graph is testimony to the fact that breathtaking complexity can arise
in very simple systems. It is a one-of-a-kind example of how nature, when subjected

Figure P.13. Catching the butterfly in the laboratory using graphene. (Reprinted by permission from
Macmillan Publishers Ltd, copyright 2013.) [4].
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to competing scales, responds in a magical-seeming way, creating patterns rife with
hidden mysteries. It is particularly fascinating when this happens in the real
quantum world, a world that can be created in a laboratory. For this reason, the
quest for experimental proof of the butterflyʼs reality is one of the hottest activities in
many condensed-matter laboratories today, and indeed telltale signatures of some of
the complex patterns making up the butterfly have recently been observed.
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The butterfly fractal
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Chapter 0

Kiss precise

“A mathematician,” said old Weierstrass,
“who is not at the same time a bit of a poet
will never be a full mathematician.”
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Apollonius of Perga, René Descartes, and Frederick Soddy

Given three mutually tangent circles, how does one
draw a fourth circle that is exactly tangent to all three?

Three great thinkers who independently discovered the solution to this mathe-
matical puzzle were Apollonius of Perga (3rd century BC), René Descartes (17th
century), and Frederick Soddy (20th century)1.

Apollonius of Perga, a Greek geometer who was born around 262 BC in the town
of Perga, now a part of Turkey, was the first mathematician to seriously consider this
question. Among his few surviving works is a book on conic sections, which was the
first systematic study of many geometrical shapes and curves that have remained
central to mathematics ever since. In that great work, Apollonius coined the terms
“ellipse”, “parabola”, and “hyperbola”. He also made important contributions to
astronomy and optics. The lunar crater Apollonius was so named to honor his work
on the history of the Moon.

One of Apollonius’ lost works is a book called Tangencies, purported to provide
methods of constructing circles tangent to various combinations of lines and circles—
more specifically, the problem of drawing a circle that is simultaneously tangent to
three given geometrical entities, where those entities are either (1) three straight lines,
(2) two straight lines and a circle, (3) two circles and a straight line, or (4) three
circles. Tragically, all copies of this important work were destroyed in a great fire at
the Library of Alexandria, and as a result, no one knows what solutions Apollonius
gave to these problems, or whether his solutions were correct. After many of the
writings of the ancient Greeks became available again to European scholars of the
Renaissance, thereby evoking much renewed interest in geometry, the problems
that Apollonius had posed and had tried to answer became, once again, a great
challenge.

Geometrical problems involving tangent circles have intrigued people the world
around for millennia. In the Edo period, the Japanese had a tradition of posing
geometrical puzzles by writing them on public surfaces. One of the more popular of
these riddles was how to calculate the radius of a circle tangent to three given circles
that were tangent to each other. The solution to this was rediscovered by René
Descartes, a French philosopher, mathematician, and writer who was born in 1596,
between Poitiers and Tours. He has been dubbed the founder of modern philosophy,
and much of today’s Western philosophy can even be thought of as a collective
response to his writings. Descartes started out with a strong interest in physics, but
decided to concentrate on mathematics after hearing that Galileo had been arrested
for claiming that the Earth orbits the Sun.

One of the appendices to Descartes’ famous book Discours de la Méthode was an
essay on mathematics called “La Géométrie”. Although its title means “geometry”,
it actually focused on the connections between geometry and algebra. In it,

1A number of other people rediscovered Descartes’ theorem and also generalized it. See [1].
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Descartes introduced what is now known as the Cartesian coordinate system, and
many modern algebraic conventions were invented by him and first appeared in this
essay. For example, Descartes used letters from the beginning of the alphabet for
constants and known quantities, and letters from the end of the alphabet for
variables. So Descartes is the reason we solve for x, and not some other symbol!

The solution to the problem of calculating the radius of a circle tangent to three
given circles that are tangent to each other is today known as “Descartes’ theorem”.
Descartes discussed the problem briefly in 1643 in a letter to Princess Elisabeth of the
Palatinate (1618–80) [2]. An intelligent and accomplished woman, she influenced
many key figures and philosophers, most notably Descartes, and she corresponded
with him extensively. Their epistolary conversation touched on many topics, including
Descartes’ idea of dualism, or the mind being separate from the body. In the above-
mentioned letter to Elisabeth in November of 1643, Descartes posed the Apollonian
challenge of finding a circle that touches each of three given circles in a plane.
Elisabeth’s solution no longer exists, but in a later letter, Descartes remarks that hers
possessed a symmetry and transparency that his lacked. Unfortunately, her writings
were never published, but she clearly was a woman with many intellectual interests,
ahead of her time, and deserving of recognition for her contribution to this problem.

Descartes’ own formula has never become widely known, even among mathe-
maticians. Interestingly, it was rediscovered around 1936 by Frederick Soddy, who
was awarded the 1921 Nobel Prize in Chemistry for the discovery of isotopes. As a
chemist, Soddy had a great interest in how to pack spherical atoms of differing sizes,
and this led him to the study of mutually tangent (or “kissing”) circles. One
particularly elegant configuration starts with a trio of three kissing circles, with a
larger circle outside the trio and kissing them all, as well as a smaller circle inside the
trio and kissing them all. So smitten was Soddy with the formula he found relating the
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radii of all these circles that he published his formula in the unusual form of a poem,
in the journalNature in 1936. Below we quote the first two (out of three) stanzas of the
poem (reprinted from [6] by permission from Nature Publishing Group), and show an
artistic rendition of the situation drawn by Sarah DeBauge.

The poetic piece of mathematics that is described in the last two lines is none
other than Descartes’ theorem2:

κ κ κ κ κ κ κ κ+ + + = + + +( ) 1
2

( ) . (0.1)0
2

1
2

2
2

3
2

0 1 2 3
2

Here the four κi are the curvatures—that is to say, the reciprocals of the radii—of the
four circles.

Descartes’ version of the same formula expresses the curvature of the fourth circle
in terms of those of the initial three mutually tangent circles. We can solve the above
equation in terms of κ1, κ2, and κ3 as follows:

κ κ κ κ κ κ κ κ κ κ± = + + ± + +( ) 2 . (0.2)0 1 2 3 1 2 2 3 3 1

2 For a simple proof of Descartes’ theorem see [4].
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The “±” in Descartes’ formula reflects the fact that there are two solutions
(figure 0.1):

(1) The “−” solution corresponds to an outer circle with smaller curvature
(i.e., larger radius), and we denote its curvature as follows:

κ κ κ κ κ κ κ κ κ κ− = + + − + +( ) 2 . (0.3)0 1 2 3 1 2 2 3 3 1

(2) The “+” solution corresponds to an inner circle with larger curvature (i.e.
smaller radius), and we denote its curvature as follows:

κ κ κ κ κ κ κ κ κ κ+ = + + + + +( ) 2 . (0.4)0 1 2 3 1 2 2 3 3 1

For the solutions to these two equations to be consistent, the outermost, or
bounding, circle, must be considered to have negative curvature. It’s also important
to point out that given any three mutually tangent circles, there are always two other
circles (analogous to the two solutions above) that are tangent to the three circles.

0.1 Apollonian gaskets and integer wonderlands
A beautiful manifestation of Descartes’ theorem appears in patterns describing the
close-packing of circles, called Apollonian gaskets, in honor of Apollonius of Perga.
Apollonian gaskets are fascinating patterns obtained by starting with three mutually
tangent circles and then recursively inscribing new circles in the curvilinear
triangular regions between the circles.

We start with three circles of any size, with each one touching the other two, and
then we draw a larger circle snugly enclosing them, as well as a smaller circle that fits
snugly in the space between them. This creates four roughly triangular spaces
between the circles. In each of those four spaces, we draw a new circle that kisses all
three sides. We keep on going forever, or at least until the circles become too small to
see. The resulting foam-like structure is an Apollonian gasket.

Figure 0.1. A five-circle configuration whose outermost circle has curvature κ −( )0 and whose innermost circle
has curvature κ +( )0 . Both the outermost and the innermost circles are shown in red, and both are tangent to all
three of the gray circles, whose curvatures are κi , with =i 1, 2, 3. The outermost circle can also be a straight
line (as can be seen in the panel on the right), since a straight line can be thought of as a circle with infinite
radius, which means that its curvature equals zero.
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One of the most remarkable aspects of an Apollonian gasket is that if the first four
circles have integer curvatures, then every other circle in the packing will, as well.
This fascinating result can be seen by adding the two roots κ −( )0 and κ +( )0 of
equation (0.2):

κ κ κ κ κ− + + = + +( ) ( ) 2( ). (0.5)0 0 1 2 3

Figure 0.3. The butterfly with gaps labeled by integers that are quantum numbers associated with the quantum
Hall effect. The lower part of the figure shows an underlying Apollonian gasket of the type shown on the right
side of figure 0.1 (explained in chapter 2), where the product of the three integers inside the circle equals the
curvature of the circle. For hierarchical aspects of this type of Apollonian packing, we refer readers to a short
paper by Greg Huber [8].

Figure 0.2. Example of an integral Apollonian gasket, where the integer inside any circle indicates the
curvature of that circle. All curvatures are positive except for that of the outermost bounding circle, which has
curvature −1. Every trio of mutually tangent circles has two other circles to which the three are tangent, and
their curvatures satisfy equation (0.5). An example is the Descartes configuration with curvatures

−2, 3, 2, 1, 15, easily visible in the figure.
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This linear equation implies that if κ κ κ, ,1 2 3 and, say, κ −( )0 are integers, then
κ +( )0 will also be an integer. Figure 0.2 illustrates the construction of one of these
integer wonderlands, which are called integral Apollonian gaskets. It turns out that
there are infinitely many distinct integral Apollonian gaskets, where the curvature of
every single circle at every single level of nesting is an integer. These are fractals that
are “made of integers”, so to speak, and their fascinating properties are discussed in
considerable detail in chapters to come.

The butterfly landscape, first found by Douglas Hofstadter in 1976 [7], and later
discovered to be capable of being decorated with integers (see figure 0.3), is subtly
related to an integral Apollonian gasket. The integers used in decorating the
butterfly are, in fact, the quantum numbers associated with Hall conductivity, an
exotic physical phenomenon where the quantization of electrical resistance occurs
with astonishing precision. This book tells the tale of the marriage of the Apollonian
gaskets’ kiss precise to the precise quantization of the Hall effect.

Appendix: An Apollonian sand painting—the world’s largest artwork
Black Rock Desert in Nevada hosts a sand painting of circumference over nine miles—
the world’s largest single artwork. It is visible from 40 000 feet in the sky, as is shown
in the photo that opens part 1 of this book. Created in 2009 by Jim Denevan and a
team of three colleagues—Caleb, Nick, and Zach—the painting consists of one
thousand circles that form an Apollonian gasket. It was constructed with a roll of
chain-link fence six feet across, which was dragged repeatedly around by a truck,
thus digging trenches into the desert. The result was a set of circular lines etched into
the sand that are 28 feet wide and almost three feet deep in places. Using GPS
technology to give them points on the circumferences of perfect circles, the artists
took fifteen days to complete their “painting”.

Jim Denevan is planning his next project in Antarctica, and he also hopes to push
the boundaries yet further, by collaborating with NASA to produce artworks on the
plains of Mars.
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Chapter 1

The fractal family

Philosophy is written in this grand book (the Universe) which stands continu-
ously open to our gaze, but it cannot be read unless one first learns to understand
the language in which it is written. It is written in the language of mathematics.

—Galileo Galilei, 1623

This chapter opens with the Mandelbrot set, one of the most famous and most
aesthetically appealing fractal objects, and it also discusses simpler fractals, such as
Cantor sets, the Sierpinski gasket, and Apollonian gaskets. The butterfly plot
inherits its “genes” from these fractals. The Mandelbrot set as shown herein may
appear to be merely a distant cousin of the butterfly fractal, but in fact it shares the
butterfly’s soul. However, that this is the case is subtly encoded in notions of number
theory. Furthermore, one of the most important aspects of the butterfly—namely, its
labeling with integer quantum numbers—is rooted in integer Apollonian gaskets,
which are beautiful fractal shapes consisting of circles nested infinitely deeply inside
each other. In other words, the butterfly fractal—a quantum fractal and the star
player in this book—has its DNA encoded in a family of classic fractals reflecting
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the magic, the mystique, and the simplicity of laws of nature that underlie our
endlessly strange quantum/classical world.

What is a fractal?

Many readers will have already been exposed to the awe-inspiring Mandelbrot set.
Shown in figure 1.1, this astonishingly complex and intricate structure has visual
characteristics with universal appeal, and it shares certain features with the butterfly
fractal.

Some of us are reminded by the Mandelbrot set of the excitement we felt when we
realized how greatly our world had expanded when we began to understand
Euclidean geometry, calculus, or some other powerful mathematical concept.
Fractals are indeed the end product of some deep and exciting mathematical ideas,
and yet, like many great mathematical discoveries, they also have a feeling of child’s
play.

The very first explorations in this area of mathematics were made in the latter part
of the 19th century, in an attempt to resolve a conceptual crisis faced by mathema-
ticians when they encountered functions that were non-differentiable. Some of the
pioneers in those early days were Paul du Bois-Reymond, Karl Weierstrass, Georg
Cantor, Giuseppe Peano, Henri Lebesgue, and Felix Hausdorff. The important
discoveries made by these and other mathematicians helped the Polish-French
mathematician Benoît Mandelbrot, several decades later, to invent a new branch
of mathematics that describes shapes and patterns in nature, shapes that fall outside
the framework of Euclidean geometry as previously understood. As Mandelbrot put
it in his book The Fractal Geometry of Nature [1]: “Clouds are not spheres, mountains
are not cones, coastlines are not circles… Nature has played a joke on the
mathematicians. The 19th-century mathematicians may have been lacking in
imagination, but Nature was not…”.

Figure 1.1. The Mandelbrot set. In this figure, the horizontal and vertical axes correspond, respectively, to the
real and imaginary parts of the parameter c in equation (1.1). (Wolfgang Beyer/CC-BY-SA-3.0. https://en.
wikipedia.org/wiki/Wikipedia:Featured_picture_candidates/Mandelbrot_set#/media/File:Mandel_zoom_00_
mandelbrot_set.jpg)
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In the 1970s, Mandelbrot coined the term fractal, which he derived from the Latin
verb frangereʼs past participle fractus, meaning “fragmented” or “irregular”. The
term was intended to describe objects and shapes that are crinkled and fragmented at
all scales, no matter how tiny. In fractals, there is always something more to be seen
as you look at them at smaller and smaller scales. In other words, they exhibit never-
ending structure at all scales from very large to very small. In general, fractals are
shapes whose dimensionality is not a whole number. But what could that possibly
mean?

If you measure the length of a perfectly straight fence first in inches and then in
feet, the first answer will obviously be 12 times greater than the second. This is
because a fence is a one-dimensional entity. On the other hand, if you measure the
area of a field first in square inches and then in square feet, the first answer will
obviously be 144 (that is, 122) times greater than the second. This is because a field is
a two-dimensional entity. Is it conceivable that there is some kind of shape that lies
in between a fence and a field? Could the ratio of two different measurements of such
a shape possibly yield a clue to its strange dimensionality?

Mandelbrot opens his book with the provocative question, “How long is the coast
of Britain?” So let us imagine two surveyors, one with a ruler an inch long and
another with a ruler a foot long, who both set out to measure the length of the coast
of Britain. After they have completed their respective tasks and are comparing notes
at the office, they expect, quite reasonably, that one answer will be 12 times greater
than the other. They are enormously surprised, however, when they find that the first
answer is in fact very close to 121.3 times as big as the second answer. Mandelbrot
showed that it was also true that the same coastline, when measured first in feet and
then in yards, would give answers whose ratio was very close to 31.3 (where the
exponent, 1.3, is the same as before). He concluded that this meant that the British
coast is not like a fence, whose dimension is 1, nor like a field, whose dimension is 2,
but that instead it has an intermediate dimension of roughly 1.3. Mandelbrot thus
coined the word “fractal” to denote any object having non-integral dimension, in
this sense.

1.1 The Mandelbrot set
Benoît Mandelbrot formulated the concept of fractals in the 1960s and 1970s,
although his first published work on the subject didn’t appear until the mid-1970s.
Ironically enough, however, it wasn’t until 1980 that he discovered the fractal that
bears his name, and which today is probably the most famous fractal in the world.
We now will take a look at where it comes from.

Consider a sequence of complex numbers …z z z z z, , , , ,0 1 2 3 4 (where = +z x iy,
and where x and y are real numbers), defined as follows:

= + =+z z c f z( ), (1.1)n n n1
2

Here, c is a fixed complex number, and =z 00 . Each number zn is fed into the very
simple quadratic function f, and this gives a new number +zn 1, which in turn is fed
back into f, and around and around it goes. Where will these numbers meander in
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the complex plane as the “self-feeding” process of iteration is repeated over and over
again, ad infinitum? What kind of asymptotic behavior will they exhibit as n goes to
infinity?

The way such an iteration behaves is of course totally determined by the choice of
the parameter c. There are some values of c such that the sequence z{ }n will diverge
to infinity, and there are others for which it will remain bounded—in fact, it will
never exceed 2 in absolute value—no matter how large n grows. This is a very
fundamental distinction between two types of starting point c, and the Mandelbrot
set is all about this difference. (We refer to c as a “starting point” since when the
iteration is initiated, the very first spot it lands on, after 0, is the number c.)

Indeed, the Mandelbrot set is defined as the set of all values of c for which the
sequence … …z z z z z z, , , , , , ,n0 1 2 3 4 remains bounded for all n. In other words, it is
the set of those complex numbers c for which the images of 0 under the iteration of
the quadratic mapping → +z z c2 remain forever bounded.

The sequence …z z z z z, , , , ,0 1 2 3 4 is sometimes called “the orbit of 0”, since the
initial value is 0 and the subsequent pathway in the complex plane is something like
the orbit of a planet—or rather (since the sequence is a set of discrete points rather
than a continuous curve), it is like a set of periodic snapshots of a planet that is
following a meandering orbit in the sky.

With the aid of a computer, one can check that = − − − −c 0, 1, 1.1, 1.3, 1.38,
and i all lie in the Mandelbrot set, whereas c = 1 and =c i2 do not. It turns out that
for ∣ ∣ ⩽c 2, if the orbit of 0 ever lands outside the circle of radius 2 centered at c = 0,
then the orbit will inevitably tend to infinity. Therefore, the Mandelbrot set is a
compact subset of the disc ∣ ∣ ⩽c 2.

Some orbits, even if they are bounded, never settle down into a regular (periodic)
pattern; they jump around rather randomly forever. Other orbits, however,
eventually do settle down, drawing closer and closer to a single point, which is
called the fixed point of the iteration. Yet other orbits gradually settle down into an
alternation between just two points, bouncing back and forth between them. In other
words, some orbits tend to become periodic, in the limit, while others do not.

A perfectly periodic orbit that comes precisely back to itself after n steps is called
a period-n cycle. The simplest case is of course if n = 1, so that the orbit consists of
just one point—a fixed point of the mapping. The next-simplest case is that of a
period-2 cycle, where the orbit jumps back and forth between two different points in
the plane. And for each positive integer n, there are period-n cycles in the iterative
process that defines the Mandelbrot set.

Most orbits, however, are not exactly periodic, but many orbits approach periodic
behavior as n grows large. In other words, there are many sequences

…z z z z z, , , , ,0 1 2 3 4 that grow closer and closer to a periodic orbit whose period is
some positive integer n. Such limiting orbits are called attractors, or more
technically, period-n attractor cycles.

The set of c-values for which the iteration = ++z z cn n1
2 , when launched from

initial value 0, does not go to infinity is the Mandelbrot set. Given a specific value of
c, the set of points that are hit along the way is known as a Julia set, after the French
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mathematician Gaston Julia. For a stunning view of the Mandelbrot set and some
Julia sets, we encourage readers to watch the delightful animation [2], where each
frame is a magnification of the previous frame, so more and more detail is visible,
revealing new structures more clearly than words could.

Figure 1.2 shows some examples of Julia sets, along with their fractal dimensions.
The fractal dimension (also known as the “Hausdorff dimension”) of the boundary
of the Mandelbrot set is equal to 2. In general, one needs to use a more abstract
notion of dimension (beyond the scope of this book) to quantify the fractal aspect of
the boundary of the Mandelbrot set and the corresponding Julia sets. Although Julia
sets are fascinating and beautiful, we will not devote further attention to them here,
since our main goal is to learn about the butterfly fractal, and that fractal has
numerous provocative parallels with the Mandelbrot set.

The Mandelbrot set consists of a large cardioid-shaped region (see figure 1.3), off
of which sprout numerous (in fact, infinitely many) “bulbs”. The cardioid is the
region of values of c such that, as n goes to infinity, the sequence zn converges to a
single point—the fixed point of the map—which, as was mentioned earlier, is called a
“period-1 attracting cycle”. What this means is that as n grows larger and larger, the
points zn in the orbit draw closer and closer together, eventually converging to a
single value, denoted by z∞. Symbolically, → ∞z zn as → ∞n .

The boundary of the Mandelbrot cardioid is obtained by solving the simple
quadratic equation defining such periodic behavior—namely = +z z c2 . For the
iteration to be stable at any such point, it is necessary and sufficient that the
derivative of f(z) should be less than or equal to 1 in absolute value. Therefore, to

Figure 1.2. Parts (a), (b), and (c) of this figure show the Julia sets for = −c , 11
4

, and − + i0.123 0.745 , with
corresponding fractal dimensions1.0812, 1.2683, and 1.3934, respectively. Part (d) shows a set of dimension 2,
where the c-values include the boundary of the Mandelbrot set.
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find the values of c that form the cardioid’s boundary, all we need to do is solve the
following two simultaneous equations:

= −
′ = =
c z z

f z2 1.

2

The lower equation, ∣ ∣ =z2 1, implies that the complex number z can be written in
polar form as = π θz e1

2
i2 , where πθ2 is a real number equal to the angle that z makes

with the real axis (as measured in radians). Substitution of = π θz e1
2

i2 into the upper
equation lets us solve for z. We will denote the solutions, which are parametrized by

the real number θ, as θc , where = −θ
π θ π θ

c (1 )e e
2 2

i i2 2
.

The real number θ parametrizes the boundary of the cardioid. As θ runs from 0 to 1,
the complex number θc swings in a clockwise direction around the boundary of the

Figure 1.3. The upper two graphs show the Mandelbrot set in two different ways. In each plot one sees bulbs
tangent to the cardioid, each one labeled with a rational number p/q. There is a unique bulb for each rational
number p/q between 0 and 1. These fractions are ordered in a very interesting and very natural way as one
rotates around the cardioid. The cardioid’s boundary, although curved, can be thought of as a real line, where
the complex numbers cp q/ along it are arranged in the same order as the fractions p/q forming a Farey sequence.
This number-theoretical notion is illustrated in the lower part of the figure, which shows the so-called Farey
tree, each of whose rows is defined by first copying the row above it, then taking the Farey sum of each pair of
neighboring fractions. The Farey sum of two fractions p

q
and r

s
is defined to be +

+
p r
q s

. (Of course it is not a sum in
the normal sense of the term; this is an extension of the word.)
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cardioid. For each rational value p
q
of θ along the way, there is a bulb that is tangent to

the main cardioid. These bulbs consist of attracting cycles having period q, where p
q

describes the rotation number of the bulb as = ++z z pq t t . Here, t is the number of
iterates needed to converge to the attracting cycle. Let c p

q
be the parameter value that

hosts a bulb of rotation number p
q
, with p and q relatively prime.

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟= −

π π
c

e e
2

1
2

. (1.2)p
q

i
p
q i

p
q2 2

As the parameter c moves out of the central cardioid into a bulb, the behavior of
the orbit …z z z z z, , , , ,0 1 2 3 4 changes in character. Whereas inside the cardioid, the
orbit always approaches a 1-cycle (a fixed point), inside the bulb labeled by p

q
, the

orbit always approaches a q-cycle (a set of q distinct points that are traced out over
and over again). This kind of mutation in the behavior of an iteration, where, when
some parameter crosses a critical boundary, a stable period-1 cycle loses its stability
and gives rise to a longer stable attracting cycle of period q, is an extremely
important phenomenon in the study of iterative equations such as → +z z c2 , and is
given the name of bifurcation.

Figure 1.3 shows some of the bulbs surrounding the Mandelbrot cardioid,
revealing the high degree of complexity and order underlying the Mandelbrot set.
We now summarize some of the key aspects of the bulbs of the Mandelbrot set, each
one having a close correspondence with the butterfly fractal, as readers will come to
see later in this chapter.

• Sandwiched between any two bulbs associated with the fractions p

q
l

l
and p

q
r

r
, the

next largest bulb is associated with the fraction = +
+

p

q

p p

q q
c

c

l r

l r
. This way of

“adding” fractions is known as “Farey addition” and is illustrated in the
lower part of figure 1.3.

• A period-q bulb has −q 1 “antennae” at the top of its limb.
• Numerical experiments have shown that the radii of these bulbs tend to zero
like

q

1

2 2 .

1.2 The Feigenbaum set
The Feigenbaum set, discovered in 1978 [3] by physicist Mitchell Feigenbaum (two
years before the Mandelbrot set was found), is closely related to the Mandelbrot set.
This set is defined by iterating the quadratic polynomial = +f x x c( )F 2 , where both
x and c are real. Note that this is the very same equation by whose iteration
we defined the Mandelbrot set, except that in the latter case, the variable z and the
constant c were complex. Here, however, we limit ourselves to real numbers. The
phenomena will nonetheless be very rich and astonishing.

What Feigenbaum discovered, using a computer to do experimental mathematics,
was that there are certain orbits of x-values that have period 1, and there are other
orbits of period 2, and so forth. When the parameter c is slowly changed, there will
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be critical moments when some orbits of period 1 will bifurcate and become orbits of
period 2. Likewise, there are some critical values of c where certain orbits of period 2
will bifurcate, becoming orbits of period 4—and so forth. This period-doubling
behavior is the most important aspect of the iteration that Feigenbaum studied.

Beyond a critical value (where the fractal dimension of the Feigenbaum set is
approximately 0.538), the iteration exhibits chaotic behavior in addition to having
small windows where the orbits are periodic (corresponding to bulbs on the real axis
of the Mandelbrot set, where the cycle length is not a power of 2). So-called “chaotic
behavior” of the iteration is characterized by a Lyapunov exponent, which we will
denote as γ, with γ > 0. This number quantifies the rate of exponential divergence of
two nearby points at a distance Δx as we iterate the map n times.

Δ ≈ Δ γx x e (1.3)n
n

0

1.2.1 Scaling and universality

Table 1.1 exhibits the sequence of bifurcation points …c c c, , ,0 1 2 , which are those
values of c where orbits double their periods—more specifically, for each n, cn is that
special value where the period changes from 2n to +2n 1. In 1978, Feigenbaum
observed that as the period of the orbits N approaches infinity, the corresponding
values cN approach a finite limiting value. Moreover, to his great surprise, he
discovered that this convergence was characterized by what is called a power law:

δ δ− ≈ = …∞
−c c , 4.6692016091029909 . (1.4)N

N

This constant δ is known as “Feigenbaum’s number”.
Feigenbaum later showed, even more surprisingly, that all one-dimensional

iterations that have a single quadratic maximum (i.e. that are shaped like a parabola
at their peak) are characterized by exactly the same value of δ. In other words, the
details of the equation constituting the iteration don’t matter; all that matters is the
local behavior just at the function’s very peak and nowhere else. Furthermore, this
same number δ was also found to describe the period-doubling behavior of actual
physical systems, such as dripping faucets and other phenomena involving fluids.

Table 1.1. Convergence of period-doubling bifurcation points and the universal ratio δ.

N Period = 2N Bifurcation parameter cN δ = −
−

− −

−

c c
c c
N N

N N

1 2

1

1 2 –0.75 N/A
2 4 –1.25 N/A
3 8 –1.3680989 4.2337
4 16 –1.3940462 4.5515
5 32 –1.3996312 4.6458
6 64 –1.4008287 4.6639
7 128 –1.4010853 4.6682
8 256 –1.4011402 4.6689
∞ ∞ –1.4011551890…
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Feigenbaum’s discoveries thus provide one of the simplest examples of universal-
ity, a dream scenario for theoretical physicists, where very simple models, often
called “toy models”, can predict the behavior of far more complex systems. The
scaling ratio δ is a critical exponent—a number that usually characterizes a transition
point. In the example above, it is a number that describes the so-called “onset of
chaos”—the transition from regular to chaotic dynamics.

The concepts of scaling and critical exponents originated in physics—specifically,
in the theory of phase transitions (such as the transition from a magnetically
disordered state to an ordered state). Later, these concepts were found to apply to
many other areas of physics, ranging from turbulence all the way to particle physics.
Originally introduced in 1960 and 1970 respectively, scaling and critical exponents
are beautiful and revolutionary ideas, and among the principal early pioneers in
exploring them were Michael Widom, Michael Fisher, and Leo Kadanoff. These
nascent ideas were eventually extended into a comprehensive and elegant theory by
Kenneth Wilson, who discovered a calculational method to describe the phenomena,
for which work he was honored with a Nobel Prize in 1982. As readers will see later
in this book, these ideas also can be applied to describe the behavior of fractal
objects, including topological features of the butterfly.

Theorists should study simplified models.
They are close to the problems we wish to understand.

—Leo Kadanoff (1937–2015)

1.2.2 Self-similarity

Another important feature of the Feigenbaum set is that the sequence of values cN,
shown in table 1.1, is a self-similar set. What does “self-similar” mean? A pattern
or set is said to be self-similar if it is exactly similar (in the sense of Euclidean
geometry) to some part of itself (i.e. the whole has the same shape as one or more
of its parts). (The property of self-similarity is also frequently referred to as scale
invariance.)

A trivial case of self-similarity is provided by a straight-line segment, since it looks
just like any shorter segment that it contains. However, no further detail is revealed
by blowing up such a segment. By contrast, a true fractal shape exhibits non-trivial
self-similarity, because any time any part of it is blown up, new detailed structure is
revealed. This process of revelation of finer and finer structure continues forever, on
arbitrarily small scales.

The self-similarity of the Feigenbaum set is due to the geometric scaling of the
parameter intervals, as is shown in equation (1.4). All of the infinitely many intervals

−+c c( )n n1 are identical, once they are scaled by the factor δ between two consecutive
iterations.

Many entities in the real world, such as coastlines, possess a more abstract type
of self-similarity—that is, where certain parts of the whole shape are not precise
copies of it, but have much in common with it. This is sometimes called statistical
self-similarity, which means that although such a shape is not a precise larger copy of
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smaller parts of itself, its parts at many scales nonetheless are characterized by
statistical properties that are identical to those of the full object.

Strictly speaking, the Mandelbrot set is not precisely self-similar, except at some
points. A very enlightening comparison of the Mandelbrot and Feigenbaum sets can
be made by superimposing them, as is shown in figure 1.4. The two distinct graphs
share only the horizontal axis (real values of the parameter c), since the vertical axis
in the Feigenbaum graph shows the values that the iterations eventually settle into,
once they have gone into an attracting cycle. The red numerals show how all the
x-values where the Feigenbaum set exhibits period-doubling correspond to special
regions of the Mandelbrot set.

1.3 Classic fractals
We will now describe some simpler fractals that will prove to be essential in
understanding the butterfly fractal. Some of these fractals exhibit self-similarity as
defined above.

Figure 1.4. An illustration of the subtle relationship between the Mandelbrot and Feigenbaum sets, which are
defined with the help of the equations = + +f z z c ic( ) ( )M

R I
2 and = +f x x c( )F

R
2 , respectively. Note that

the first equation involves complex numbers, while the second involves only real numbers. The Mandelbrot set
is the graph of cR versus cI when those numbers are such that the sequence z{ }n remains bounded, while the
Feigenbaum set is the graph of cR versus x-values, once the x-iterates have settled on an attracting set. The two
sets share the cR values—the horizontal axis—and hence the parametric window of those cR that correspond to
the period-doubling of the Feigenbaum set also describes the horizontal projections of the two-dimensional
parameter space c c( , )R I , where the Mandelbrot set exhibits period-doubling. (https://commons.wikimedia.org/
wiki/File:Verhulst-Mandelbrot-Bifurcation.jpg)
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1.3.1 The Cantor set

We start with one of the first fractals ever discovered—the Cantor set, which is
sometimes more picturesquely called a “Cantor dust”. This notion is named after the
German mathematician Georg Cantor, who introduced the idea in 1883.

In mathematics the art of asking questions is more valuable than solving problems.
—Georg Ferdinand Ludwig Philipp Cantor (1845-1918).

The simplest, most canonical case of a Cantor set is the 1/3-Cantor set (figure 1.5).
Consider the interval [0,1]. (The square brackets mean that the interval includes its
left and right endpoints: the same interval without its endpoints would be written “]
0,1[”.) Now erase the interval’s middle third, ]1/3,2/3[, leaving two smaller intervals,
[0,1/3] and [2/3,1]. Now erase the middle third of each of these smaller intervals—and
keep on carrying out this “elimination of the middle third” over and over again. If
you do so with a physical pencil and a physical eraser, there is obviously a practical
limit to how far you can carry such a process, but in the mind of a mathematician, it
can be repeated indefinitely. What is left at the end (after an infinite number of
eliminations of middle thirds) is merely a “dust”—an infinite (in fact, uncountably
infinite) subset of the interval [0,1], but which does not contain any interval of non-
zero length. In other words, all the uncountably many points in the Cantor set are
disconnected—and yet it turns out this “pathological” set (as such sets were once
called by skeptical mathematicians in the late 19th century) has non-zero dimension.

Each time we erase a middle third, the total remaining length (called the measure
of the set) decreases by a factor of 2/3. The measure thus starts out at 1, then
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becomes 2/3, then 4/9, then 8/27 etc. The measure clearly tends to zero, so the
dimension of the dust is less than 1. The fractal dimension dc of this Cantor set turns
out to be

= ≈d ln 3 ln 2 0.63. (1.5)c

As is quite obvious from the way it is constructed, the 1/3-Cantor set is exactly self-
similar.

1.3.2 The Sierpinski gasket

We now move from the Cantor set, which is a subset of a line, to the Sierpinski
gasket, which is a subset of a plane. (The dictionary definition of “gasket” is “tight
seal”. Mathematicians use the term to describe a shape that is defined by its “holes”,
sealed tightly by the set.)

To define this strange object, we start with an equilateral triangle. We mark the
midpoint of each side, and draw a new triangle whose vertices are those three
midpoints. In so doing, we will cut the original triangle into four congruent pieces,
the middle one of which is upside-down. Now we throw away the middle triangle
(this is of course reminiscent of eliminating the middle third). Now we focus on the
three remaining triangles, and carry out the same elimination process inside each one
of them. As with the Cantor set, we will keep on repeating this process infinitely
many times. In the end, we will have constructed a fractal in the Euclidean plane.

Figure 1.6 shows the construction of the Sierpinski triangle or gasket. The fractal
dimension of the Sierpinski gasket is, once again, ln 3 / ln 2, and the Sierpinski
gasket is likewise a fractal that enjoys the property of exact self-similarity.

Another fractal that bears a strong similarity to the Sierpinski gasket is sometimes
called the curvilinear Sierpinski gasket; a few stages in its construction are shown on
the right side of figure 1.6. It is made by an iterative process of removing circles from
an initial area that is a concave curvilinear triangle. This type of fractal, also known

Figure 1.5. The construction process that produces the simplest fractal: the “1/3”-Cantor set. We begin with
the line segment shown at the top, and then we chop out its middle third (the result of this is shown just below
the segment). Then we eliminate the middle thirds of the two remaining segments. As we move downwards, we
keep on eliminating more and more middle thirds. The end result of doing this infinitely many times would be
the Cantor set. Of course the Cantor set cannot be drawn, since, although it consists of infinitely many points,
it contains no intervals at all. So you just have to imagine the “slim pickings” that would be left at the very end.
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as an Apollonian gasket, was briefly touched on in the previous chapter, and it has a
close relationship with the butterfly fractal, as we shall see later in this book.

We encourage readers to watch the following amusing video (especially with little
kids around!) [4].

1.3.3 Integral Apollonian gaskets

Integral Apollonian gaskets, already discussed in chapter 0, are exquisite fractals
made out of integers alone. To discuss such entities with precision, we need to define
the curvature of a circle. If a circle has radius R, its curvature is defined to be R1/ .
With this definition, we begin our examination of Apollonian gaskets by imagining
four mutually tangent circles whose curvatures κ κ κ κ, , ,0 1 2 3, satisfy the following
equation:

κ κ κ κ κ κ κ κ κ κ= + + ± + +2 . (1.6)0 1 2 3 1 2 2 3 3 1

The two solutions, which we will denote by κ +( )0 and κ −( )0 , satisfy the following
linear equation:

κ κ κ κ κ+ + − = + +( ) ( ) 2( ). (1.7)0 0 1 2 3

To understand how the above two equations give us an integer Apollonian
fractal, we note that in figure 1.7,

• With κ κ κ= − = =1, 2, 31 2 3 , we find, using equation (1.6), that κ ± =( ) 2, 60 .
• With κ = 21 , κ = 32 , κ = 23 , we find, using equation (1.6), that κ ± = −( ) 1, 150 .
• With κ = 21 , κ = 32 , κ = 63 , κ − = −( ) 10 , we find, using equation (1.7), that

κ + =( 1) 230 .
• With κ = 21 , κ = 32 , κ = 153 , κ − =( ) 20 , we find, using equation (1.7), that

κ + =( ) 380 .

Figure 1.6. This figure shows the construction process that gives rise to both the Sierpinski gasket (left) and the
curvilinear Sierpinski gasket (right). (The sole purpose of the colors is to give aesthetic pleasure.)
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In other words, given four integral curvatures that correspond to four mutually
tangent circles that satisfy equation (1.6), the whole gasket can be constructed using
just the linear equation (1.7).

1.4 The Hofstadter set
TheMandelbrot and Feigenbaum fractals, along with other classic fractals discussed
above, are abstract mathematical objects conceived to illustrate how structures
having great complexity can emerge from very simple nonlinear equations or
geometrical constructions. We now turn to a fractal set that was originally
discovered in the context of quantum physics. It came from fundamental questions
about crystals in magnetic fields—situations that in principle could be studied in a
laboratory. Although this set came out of physics, it can nonetheless be described
purely mathematically, with no reference to any concepts of physics. This butterfly
fractal, which we will often call the “Hofstadter set”, is the star character in the
drama played out in this book.

Several years before fractals became famous, Douglas Hofstadter was studying
how electrons in a crystal—so-called “Bloch electrons”, named after Swiss-American
physicist Felix Bloch—behaved in the presence of a magnetic field. At the time, this
was a long-standing unresolved problem of quantum mechanics, and one reason it
was so fascinating was that it concerned the behavior of an electron caught in the
metaphorical crossfire of two highly contrasting types of physical situation—on the
one hand, a crystal lattice, and on the other hand, a homogeneous magnetic field.

Below, we give a brief introduction to the Hofstadter set [5], bypassing all the
quantum aspects of the problem that will be discussed in the coming chapters. Here
we present this fractal as a purely mathematical object, along the lines of the

Figure 1.7. An example of an integer Apollonian gasket.
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Mandelbrot set. The reason this is feasible is that Harper’s equation—the quantum-
mechanical equation that gives rise to the butterfly graph (equation (6.4))—can be
recast in the form of two coupled equations [6] involving two real variables, r and θ,
which together define a two-dimensional mapping:

πθ
= −

+ ++r
r E

1
2 cos 2

(1.8)n
n n

1

θ θ ϕ= ++ mod( 1). (1.9)n n1

Here E and ϕ represent, respectively, the vertical and horizontal axes of the butterfly
graph. The butterfly itself is the set of pairs ϕ E( , ) that satisfy the following equation:

⎡
⎣⎢

⎤
⎦⎥γ = − =

→∞ N
r
r

lim
1

2
log 0 (1.10)

N N

1

Equation (1.10) simply means that the Hofstadter set consists of values of ϕ and E
for which the two-dimensional mapping given by equation (1.9) does not diverge,
which is to say, it has a Lyapunov exponent of 0 (see equation (1.3)). (It turns out that
negative Lyapunov exponents give the gaps—the empty regions in the butterfly—as
is shown in figure 1.8, and those gaps are the complement of the Hofstadter set.) In
the appendix to this chapter, we briefly outline the relationship between this map and
the quantum map known as Harper’s equation.

In spite of its complexity, there are some simple facts about this fractal. For any
rational value p

q
of the flux variable ϕ, the graph consists of q band-like regions,

Figure 1.8. The left panel shows the energy bands for ϕ = 1/3 (top) and ϕ = 2/5 (bottom). These bands are
values of energies E where the Lyapunov exponent γ = 0. The right panel is a graph of E versus γ illustrates the
Cantor-set structure of the butterfly graph for the irrational flux-value ϕ = −5 1

2
. The lower curve is a blowup

of the interval near E = 0, revealing the self-similar Cantor-set-like structure of the Hofstadter set. The
Hofstadter set for flux-value ϕ consists of values of the energy E that correspond to γ = 0, obtained by iterating
the entire set of θ0 values in the interval [0, 1].
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shown as dark vertical line segments in the plot, in each of which the allowed energy
varies continuously. These q subbands are separated by −q 1 empty regions— white
gaps that represent forbidden energy values—as can be seen in figure 1.9.

To whet the reader’s appetite for the exciting phenomena associated with the
Hofstadter landscape, we note that the gaps of the butterfly fractal represent a highly
sophisticated aspect rooted in destructive interference of matter waves. Such
interference lies at the very heart of the quantum science describing microscopic
particles. Added to this phenomenon is one of the most fascinating aspects of this

Figure 1.9. The upper graph, discovered by Douglas Hofstadter in 1976 (see [5]), shows the allowed energies
E of Bloch electrons in an idealized crystal as a function of the magnetic flux ϕ in which the crystal is
immersed. For a few specific rational values of ϕ, the band structure has been highlighted. Whenever the flux
takes on a rational value (ϕ = p q/ ), there are exactly q bands and −q 1 gaps (white regions) between them.
The red bands and the blue bands, respectively, belong to even-q and odd-q cases. Whenever q is even, the
two central bands “kiss” at E = 0. The lower graph shows the real versus the imaginary part of π ϕEe i2 , with

ϕ⩽ ⩽0 0.5.
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graph—namely, the continuity of the gaps as ϕ varies. This is tied to some beautiful
notions involving the topology of abstract quantum spaces.

1.4.1 Gaps in the butterfly

We now focus in on a key piece of terminology—namely, the word “gap”, which we
used intuitively above, but which needs a bit of spelling-out in order to avoid
confusion in the future. In the remainder of this book, this term will be used with two
closely related but subtly different meanings.

First, there are gaps in the butterfly belonging to any specific value of ϕ, such as
ϕ = 1/3. This means we are focusing our attention on the energy spectrum belonging
to just one value of the magnetic flux. Such a spectrum is, by definition, always a
subset of the original Bloch band (the interval − +[ 4, 4] of the energy axis, which is
vertical). Thus for the flux-value ϕ = 1/3, for example, there are exactly three
smaller bands (three vertical line-segments, one above the other), which are
separated by one-dimensional white zones that stretch from the top of one band
to the bottom of the band just above it. Thus our first sense of the word “gap” refers
to one-dimensional gaps in a one-dimensional spectrum.

The second sense of “gap” refers to two-dimensional zones in the butterfly as a
whole (in other words, we are no longer limiting ourselves to just one value of ϕ).
Basically, this second sort of gap is a diagonal white swath crisscrossing a large (or a
small) portion of the graph. Such a gap is thus a two-dimensional region; in fact, it is
the union of an infinite number of one-dimensional gaps belonging to different
values of ϕ. Thus, for example, the four very salient white wings that meet at the
butterfly’s center (and that give the butterfly its name) are gaps of this second sort;
indeed, all the gaps of this second sort are “wings” of smaller butterflies nested at
various hierarchical levels inside the large butterfly. In future chapters, we will often
use the word “swath” to refer to gaps of this second sort.

1.4.2 Hofstadter meets Mandelbrot

Figure 1.9 shows two different representations of the Hofstadter set, just as the right
and left sides of figure 1.3 show two ways of displaying the Mandelbrot set. This sets
the stage for an interesting comparison between the two sets. The two variables r and
θ in the Hofstadter set play roles that are analogous to the roles played by the two real
variables that define the complex variable z involved in defining the Mandelbrot set,
and the two parameters E and ϕ can likewise be viewed as counterparts to the two real
numbers that define the complex parameter c of the Mandelbrot set. The condition of
a zero Lyapunov exponent in the Hofstadter set is analogous to the requirement on
the variable c that the values of the zn sequence should remain bounded.

An interesting common feature of the two sets is the emergence of regions (bulbs
in the Mandelbrot set; bands in the Hofstadter set) associated with rational numbers.
More technically put, a striking commonality between the Hofstadter and
Mandelbrot sets is the Farey organization of periodic regimes. Therefore, notions
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from number theory turn out to play a key role in descriptions of both the
Mandelbrot set and the Hofstadter set.

On the other hand, the Mandelbrot and the Hofstadter sets are mathematically
quite different. The Mandelbrot set is a dissipative set, meaning that a blob
consisting of an initial set of points shrinks down, in the iteration process, to a
few disjoint sets of points that define attracting cycles, whereas the Hofstadter set is
not dissipative. To obtain the entire butterfly graph, one needs to consider all
possible initial values of r and θ. In contrast, recall that the Mandelbrot set is
obtained by using z = 0 as the sole initial condition. We highlight the common
aspects of these two fractals below.

• The bulbs in the Mandelbrot set are analogous to the energy bands in the
butterfly fractal.

• A period-q bulb with −q 1 “antennae” at the top of its limb corresponds to
the spectrum belonging to a rational value of ϕ with denominator q, which
consists of q bands with −q 1 gaps between them.

• A quantitative parallel between the two sets is tied to the fact that the radii of the
bulbs tend to zero like

q

1

2 2—that is, like the radii of the Ford circles that

determine the horizontal size of the butterflies—as will be explained in chapter 2.
• The periods of the bulbs correspond to the topological quantum numbers—
the Chern numbers of the butterfly.

The butterfly fractal exhibits many familiar characteristics explained in the
context of the simpler fractals described above, and this fact will be highlighted
through the book. As is illustrated in figure 1.8, the butterfly spectrum for any
irrational value of ϕ is a Cantor set, where the total length (or more technically, the
Lebesgue measure) of allowed energies is zero.

1.4.3 Concluding remarks: A mathematical, physical, and poetic magπ
The Hofstadter butterfly is the most central member of a rich family of fractals that
is not yet very well known, despite the large worldwide community of fractal
enthusiasts. As described in this book, the Hofstadter butterfly is a mathematical,
physical, and perhaps also a poetic “Magπ”. Among other things, it encodes the
mathematics of nested tangent circles discovered around 300 BC by Apollonius, and
also the quantum Hall effect, which was discovered in 1980. Furthermore, as readers
of this book will discover, a handful of poems have been inspired by the butterfly
theme. Various facets of this story will echo again and again throughout this book.

We will conclude this chapter with a note stressing the importance of the butterfly
and its family, and focusing in on the fact that for irrational flux-values, the butterfly
spectrum is a measure-zero Cantor set. Around 1980, this mind-boggling idea came
to be known as the Ten Martini Problem.

The spell cast by this exotic notion has a complex history spanning several
decades, and engaging a sizable community of mathematicians and physicists. The
conjecture of a Cantor-set spectrum has its earliest roots in the important 1964 paper
by Mark Ya Azbel’ [6]. (Interested readers should check out Israeli mathematician
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Yoram Last’s 1995 paper “Almost Everything about the Almost Mathieu Operator”
[7]1, which gives a historical summary.)

Mark Azbel lecturing to his physics class2

Perhaps it is important to point out that Azbel”s 1964 paper, which is often
credited with conjecturing the Cantor-set hypothesis for the Harper spectrum, is not
an easy paper to read, and many important aspects described there are not very
transparent. However, some mathematicians and physicists who have carefully
studied Azbel’’s paper feel that they can clearly “smell” the Cantor set in his intricate
analysis, and they thus credit him with that discovery. Azbel’, without ever
mentioning Cantor sets explicitly, pointed out the relationship of the problem’s
energy spectrum to the continued-fraction expansion of the magnetic flux-value,
describing how energy bands split into sub-bands according to the denominators in
the continued-fraction expansion of the magnetic flux.

According to Jean Bellissard, one of the pioneering investigators of the Harper
spectrum and related phenomena, “Azbel”s paper does a serious job in describing
the various levels of renormalization leading to an infinite number of gaps. It is not
rigorous, it does not really prove things but he essentially understood what was
going on.” (private communication).

Michael Wilkinson, who has made important contributions to our understanding
of the hierarchical nature of the Harper spectrum using the framework of the
renormalization group, has the following things to say about Azbel”s work:
“Azbel”s paper is quite remarkable. He understood the essentials of the structure

1 In mathematics, the differential equation + − =a b x y( cos 2 ) 0d y

dx

2

2 is known as Mathieu’s equation (after

French mathematician Émile Léonard Mathieu). Harper’s equation can be viewed as a discrete version of
Mathieu’s equation, and is sometimes referred as the almost Mathieu equation.
2 Freeman Dyson, in his foreword to Mark Azbel”s book Refusenik: Trapped in the Soviet Union, published in
1981 by Houghton Mifflin), wrote the following glowing tribute to Azbel’: “Mark Azbel’ is one of the genuine
heroes of our time, worthy to stand on the stage of history with Andrei Sakharov and Alexander Solzhenitsyn.
I met him first in Moscow in 1956 when he was shy and thin, a brilliant young physicist rising rapidly through
the ranks of the Soviet scientific establishment. He and I had worked independently on the same problem in
solid-state physics. His solution was more general and more powerful than mine. I knew then that he would
become an important scientist. I had no inkling that he would become a famous dissident.”
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of the spectrum without apparently having access to numerical experiments. His
method is, arguably, the first realization of a renormalisation group calculation (he
produces a sequence of transformed equations of motion acting on successively
longer length scales), appearing before the term was introduced in statistical
mechanics. Azbel’ probably didn’t know the term “Cantor set”, but his paper gives
a nearly correct description of the form of the spectrum.” (private communication)3

This figure shows the complex nature of the energy spectrum near an irrational magnetic flux where the energy
bands form a Cantor set. Here, three panels illustrate results of a theoretical framework (renormalization
group transformation). Panel (a) shows the full spectrum of Harper’s equation near an irrational flux close to
3/7 where the energy spectrum (horizontal axis) forms seven clusters with complex fine structure. Panel (b)
shows the second of the seven clusters after a linear transformation that is predicted to resemble Harper-like
spectrum with renormalized magnetic flux. Panel (c) shows Harper-like model produced by renormalization.
For further details, we refer readers to 1987 paper by Wilkinson in Selected Bibliography. (Graphs courtesy of
Michael Wilkinson.)

3 Below we quote Michael Wilkinson’s reply when he was asked to pinpoint exactly where the “zero measure”
aspect is pointed out in Azbel”s paper.
“I find Azbel”s paper extremely hard to read, but there is plenty of evidence that he understood Harper’s
equation very well. He does not mention `zero measure’ specifically, but rather describes a scheme to construct
the spectrum that clearly leads to a zero measure set. The relevant discussion is in section 3, which discusses the
semiclassical construction of the spectrum. The diagram, figure 2, implies that he considers the 4-fold
symmetric case described by Harper’s equation, for which the lack of open orbits implies that the leading
semiclassical approximation is a discrete spectrum. At the top of page 642, column 2 he argues that the
splitting, determined by tunnelling, has a universal form, parametrised by a tunnelling energy scale which is
exponentially small in the transformed commensurability parameter. Because he argues that the equations
describing the further splitting are universally equivalent to the ones describing the original model, his
argument implies that each of the discrete levels splits into discrete levels with a smaller separation. This
algorithm, involving the subdivision of a sequence of point sets, does construct a zero-measure Cantor set.”
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Eleven years later, Douglas Hofstadter, in his doctoral thesis [8],described in
detail the nature of the spectra for rational flux-values, which he had found
computationally. On the basis of those findings, he then showed that for irrationals,
the spectrum must be a Cantor set of measure zero [5]. Although Hofstadter was
inspired by Azbel”s paper, he did not learn about the Cantor-set aspect of the
spectrum from that paper. His numerical proof of the Cantor-set conjecture for
Harper’s equation was the first time the notion of Cantor-set spectra was mentioned
in print.

In 1981, in a talk at the annual meeting of the American Mathematical Society,
mathematician Mark Kac humorously offered ten martinis to anyone who could
rigorously show from first principles that the Harper equation “has all its gaps
there”. This led mathematician Barry Simon to name Kac’s challenge “The Ten
Martini Problem”. In the years thereafter, many people strove to come up with a full
and ironclad proof of the Cantor-set hypothesis, but the challenge was met only in
2009 by mathematicians Artur Ávila and Svetlana Jitomirskaya. All this shows the
worldwide importance of the problem and the fascination and mania that have
gripped a substantial community of mathematical physicists for many years.

Interestingly, the fascination with the subject continues. A recent paper by Ávila,
Jitomirskaya, and C. A. Marx entitled “Spectral Theory of Extended Harper’s
Model and a Question by Erdös and Szekeres” [9] hints at many more mathematical
treasures hidden in this problem. This study proves the Cantor-set nature of the
spectrum for a wide range of lattice geometries, including setups that involve
electrons hopping to both nearest-neighbor and next-nearest-neighbor sites. Their
analysis requires some very delicate number-theoretic estimates, which ultimately
depend on the solution of a problem posed way back in 1950 by the renowned
Hungarian mathematicians Paul Erdös and George Szekeres.

We conclude this chapter with two paragraphs from a letter that Jean Bellissard,
already quoted above, sent me recently. In them, Professor Bellissard’s enthusiasm
and passion for the subject come through vividly as he reminisces about the
mathematical intricacies that underlie this problem:

The Ten Martini problem was more challenging, though. Not only did it ask about
whether the spectrum was a Cantor set for ALL irrational flux-values, but also it was
addressing implicitly the question of the nature of the spectral measure. The main new
tool of study came during the last 15 years with the development of the theory of
cocycles. The earliest hint in this direction came from Michel Herman before he died,
followed by Raphael Krikorian and Hagan Eliasson. Another breakthrough came with
the work of Yoccoz (another former student of Michel Herman) on Siegel disks;
Yoccoz introduced a technique, due to Brjuno, for including all possible irrational
numbers that were inaccessible before. Artur Ávila changed the game by developing
the theory of cocycles. Svetlana Jitomirskaya, who worked for a long time with Yoram
Last, then with Bourgain, jumped on this wagon and was able to finish the job with
Ávila. Today, there are still tiny corners left over for which we do not know the nature
of the spectral measure, but it is almost tight.

What is remarkable is that this problem has been worked on by a very large number
of scientists, both in the physics community and in the mathematical community as

Butterfly in the Quantum World

1-21



well. I once listed 200 seminal papers from physicists that could be counted as
important, and I realized then that most of the leaders of solid-state physics had
contributed to the problem. The mathematical community dealing with the problem
used techniques coming from dynamical systems, from C*-algebras, and from PDE’s,
to fill up the multiple holes that remained over time. It is a remarkable topic. And the
consequences will last for a very long time.

To take wine into our mouths is to savor a droplet of the river of human history.
—Clifton Fadiman

Appendix: Harper’s equation as an iterative mapping
As will be discussed in chapter 6, the difference equation known as “Harper’s
equation”, discovered in the mid-1950s, describes the quantum-mechanical behavior
of an electron in a crystal lattice in the presence of magnetic field. This equation—a
version of the Schrödinger equation in a mathematically idealized situation—is as
follows:

ψ ψ π ϕ ψ ψ+ + + =+ − ( )n k E2 cos 2 (1.11)n n y n n1 1

Here, ψn is the so-called probability amplitude for finding the electron at the crystal
lattice site n. (As will be explained in chapter 5, in contrast to the classical world,
where a particle is described by its position and momentum, in the quantum world, a
particle is described by a wave function whose square gives the “probability
amplitude” for finding the particle at a given position.)

These days, the problem of a Bloch electron in a uniform magnetic field, as
described by Harper’s equation, is frequently referred to as “the Hofstadter
problem”, although occasionally, some articles also refer it as “Azbel–Hofstadter”
problem. In fact, in recent literature, many people have taken to calling Harper’s
equation “the Hofstadter model”. This vast oversimplification troubles Douglas
Hofstadter, who rightly points out that he does not deserve any credit for coming up
with the equation (after all, he was only ten years old when it was published!)—just
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for the discovery of the nature of its spectrum (plus some ideas about its wave
functions).

Without further discussion, we simply note when the constant “2” in front of the
cosine term in Harper’s equation is replaced by a parameter λ, then the more general
equation that results also describes the energy spectrum of electrons in a one-
dimensional quasicrystal, and this has been used to study localization–delocalization
transitions [10].

Harper’s equation can be transformed into an iterative formula (somewhat
analogous to the iterative formula that underlies the Mandelbrot set) by letting

ψ ψ= −r /n n n 1. This operation transforms equation (A.1) into the following equation:

πϕ
= −

+ − ++ ( )
r

r E n k

1

2 cos 2
. (1.12)n

n y
1

The relationship between Harper’s equation and the above iteration is an example
of the “Prüfer transformation” (for further details, we refer readers to the original
paper [11]). The iteration defined in equation (A.2) can be written as a two-
dimensional mapping by introducing a variable θ πϕ= +n k2n y:

πθ
= −

+ ++r
r E

1
2 cos 2

(1.13)n
n n

1

θ θ ϕ= ++ mod( 1). (1.14)n n1

We note that the Lyapunov exponent γ of this map can take on all possible values
from −∞ to 0. However, the Hofstadter set consists only of those pairs ( ϕE, ) for
which γ = 0. The energies that fall in the gaps of the Hofstadter set correspond to
γ < 0. This is illustrated for a particular value of ϕ in figure 1.8.

To obtain the entire butterfly spectrum from this formula, we iterate it starting
with various initial conditions for both r and θ in the interval [0, 1]; only those
eigenvalues E that satisfy equation γ = 0 will belong to the set. The union of all
the allowed values of E as a function of ϕ, for all values of ϕ, is referred to as the
Hofstadter set. This explicit analogy linking the Mandelbrot iteration with Harper’s
equation (when conceived of as an iteration) brings the butterfly fractal a bit
conceptually closer to other well-known fractals, such as the Mandelbrot set.
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Butterfly in the Quantum World
The story of the most fascinating quantum fractal

Indubala I Satija

Chapter 2

Geometry, number theory, and the butterfly:
Friendly numbers and kissing circles

I wish you ladies and gentleman out there knew some of this mathematics. It is
not just the logic and accuracy of it all you’re missing—it’s the poetry too.

—Richard Feynman (BBC interview, “A Novel Force in Nature”)

We begin narrating the butterfly tale by describing how the problem of four
mutually tangent circles, first formulated in 300 BC, as described in chapter 0,
plays an important role in the Hofstadter landscape. The fascinating geometry of
four kissing circles not only underlies every butterfly in this fractal graph but also
determines its recursive structure. This remarkable aspect of the story unfolds as we
marinate the butterfly plot with Ford circles and the Farey tree—concepts that
constitute important parts of the number theory. Therefore, the focus of this chapter
is the number-theoretical aspects of the butterfly, and we leave this enchanting
landscape’s many connections with quantum physics for discussion in the chapters
to come.
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If one glimpses the butterfly for just an eyeblink, one cannot help but be struck by
the convergence of four diagonal white swaths (“wings”) at a central point, two of
them arriving from the left and the other two from the right. If we study the graph
more closely, we will see that essentially this same structure—namely, four white
wings converging to a central point—appears at every scale. That is, there is a
butterfly at every scale.

As can be seen in figure 2.1, showing the full butterfly, the four wings enjoy a
fourfold symmetry. In other words, the Hofstadter butterfly possesses both an up–
down symmetry (invariance under reflection in a horizontal mirror, which is the line
E = 0) and a left–right symmetry (invariance under reflection in a vertical mirror,
which is the line ϕ = 0). This precise fourfold symmetry is partially lost as we zoom
into the graph and look at smaller butterflies.

Consider, for example, the small butterfly whose left edge coincides with the left
edge of the full butterfly (at ϕ = 0), and whose right edge is the vertically centered
member of the trio of bands at flux value ϕ = 1/3. This butterfly’s four wings all
meet on the horizontal line E = 0, at the flux value of ϕ = 1/4. Although the left half
of this butterfly is obviously much bigger than its right half (so it lacks left–right
symmetry), it still enjoys up–down symmetry (i.e. it is invariant when reflected in the

Figure 2.1. The Hofstadter butterfly, horizontally centered at ϕ = 1/2, and enclosed in a red rectangle. The full
graph possesses both a perfect up–down symmetry and a perfect left–right symmetry. This plot also highlights
eight smaller butterflies inside the full butterfly. Four of them (those inside red trapezoids made of solid lines) are
central butterflies, which possess only up–down symmetry, or equivalently, mirror symmetry about the axis E = 0
(that axis shows up as a horizontal white line exactly halfway up the plot). Also highlighted are four off-center
butterflies (those inside red trapezoids made of dashed red lines), and these possess none of the exact symmetries
possessed by the full butterfly. All central butterflies have four wings that meet at a point—a feature that is not
shared by the off-center butterflies. Figure adapted with permission from [3] copyrighted by the American
Physical Society.
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horizontal line E = 0). More generally, all of the infinitely many butterflies whose
centers are located on the horizontal line E = 0—we will call them “central
butterflies”—have wings that meet in a point, and all these butterflies enjoy up–
down symmetry but lack left–right symmetry.

A more extreme case of loss of symmetry is given by the small non-central butterfly
whose left edge is the lowest of the three bands at flux-value ϕ = 1/3, and whose right
edge is the lower of the two (kissing) bands at flux-value ϕ = 1/2. The four white
wings of this sad butterfly do not meet in a single point. More generally, all of the
infinitely many non-central butterflies have wings that fail to meet in a point, and thus
these butterflies enjoy neither horizontal nor vertical mirror symmetry.

For the sake of simplicity, our discussion in this chapter will be mostly confined to
central butterflies, which enjoy up–down but not left–right symmetry. In the
butterfly landscape, off-center butterflies are continuations of the central butterflies,
which control many of their characteristics, such as topology.

In what follows, we will be focusing on how such number-theoretical ideas as
Farey fractions, Ford circles and Apollonian gaskets can be used to characterize the
recursive patterns in the Hofstadter butterfly. In the first half of appendix A,
Douglas Hofstadter briefly sketches the original ideas underlying the butterfly’s
recursive landscape in his own words.

2.1 Ford circles, the Farey tree, and the butterfly
2.1.1 Ford circles

In his 1938 paper entitled simply “Fractions” [1], Lester Ford, an American
mathematician, begins with the following modest remark:

Perhaps the author owes an apology to the reader for asking him to lend his
attention to so elementary a subject, for the fractions to be discussed are, for the
most part, the halves, quarters and thirds of arithmetic. But the fact is that the
writer has, for some years, been looking on these entities in a somewhat new way.
Here will be found a geometrical visualization which will be novel to the reader and
which will supply a visual representation of arithmetical results of diverse kinds.

Figure 2.2 illustrates Ford circles for two fractions p/q and P/Q associated with
real numbers represented on the x-axis of the xy-plane. At each rational point p

q
is

drawn a circle of radius
q

1

2 2 and whose center is the point =x y( , ) ( , )p
q q

1

2 2 . This

circle, known as a Ford circle, is tangent to the x-axis in the upper half of the xy-
plane. This circle constitutes a geometrical representation of the fraction p

q
.

Below, we summarize the key aspects of the mapping of Ford circles onto rational
values of ϕ (and more details of the mapping are given in appendix B):

• Each rational number p
q
on the ϕ-axis can be pictorially represented by a Ford

circle that kisses (i.e. is tangent to) the axis at the value p
q
.

• The Ford circle located at the point p
q
has diameter

q

1
2 .
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• No two Ford circles ever intersect; the only way two Ford circles can meet is
by kissing each other (being tangent at one point). These kisses, described in
chapter 0ʼs discussion of Apollonian gaskets, will emerge as a key ingredient
in characterizing the nesting of the butterfly fractal and its topological
properties.

Figure 2.3 shows the butterfly graph along with a few circles, some kissing
each other. The significance of these “kissing” circles in characterizing the
butterfly landscape will be discussed below, after a short introduction to the
Farey tree.

2.1.2 Farey tree

Farey fractions were independently discovered in the early 1800s by Charles Haros
and John Farey, and they form a beautiful part of number theory. One way of
presenting them is in a Farey tree, as shown in figure 2.4. The tree is built up row by
row, starting at the top, which contains only 0

1
and 1

1
. Each successive row of the tree

inherits all the Farey fractions from the level above it, and is enriched with some new
fractions (all of which lie between 0 and 1) made by combining certain neighbors in
the preceding row using an operation called “Farey addition”. To combine two
fractions a

c
and b

d
, one simply adds their numerators, and also their denominators, so

Figure 2.2. This figure shows how fractions can be represented by circles tangent to the x-axis, as was
discovered by Lester Ford. The upper right panel shows the Ford-circle representation of all the fractions in a
Farey tree with =q 5max . The lower left panel shows Ford’s graphical representation of two fractions p/q and
P/Q, while the lower right panel shows the special case where the Ford circles touch.
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that the Farey sum is +
+

a b
c d

. This Farey sum is often represented by the symbol “⨁”.
Thus

⨁ ≡ +
+

a
c

b
d

a b
c d

. (2.1)

To make the nth row from the n–1st row, one takes neighboring Farey fractions in
the n–1st row and computes their Farey sums; those whose denominator is equal to n
become the new members of the nth row. Another way of characterizing the nth row
of the Farey tree is as the set of all irreducible rational numbers p

q
with

≤ ≤ ≤p q n0 , arranged in increasing order.

Figure 2.3. The butterfly graph shown with a handful of circles that are all sitting on the x-axis (which
measures magnetic flux ϕ, so it is really the ϕ-axis). These circles belong to a special family, infinite in number,
whose members are called Ford circles. A Ford circle always kisses the x-axis at a single rational point, and
indeed there is one at every rational point, and yet no two Ford circles ever intersect each other! In this figure,
each Ford circle is color-coded to match the set of energy bands directly above it. Above the flux-value of 1/3,
for instance, are three highlighted dark-blue bands. More generally, at any rational flux-value p

q
—for example,

, ,1
2

1
3

2
5
, and 3

8
—there is a set of exactly q bands separated by white gaps. However, when q is even, the two

central bands “kiss” on the horizontal line E = 0, so there is no gap between them, as can be seen for ϕ values 1
2

and 3
8
. The butterfly’s left and right edges, which are full Bloch bands corresponding to flux-values of 0/1 and

1/1, are associated with the large red semicircles. A key feature of Ford circles, hinted at in this figure and
further discussed below, is how they are tangent to one another.
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In general, two neighboring fractions in a Farey tree—say, p

q
1

1
and p

q
2

2
—obey the

following identity:

− = ±p q p q 1. (2.2)1 2 2 1

Equation (2.2) is known as the “friendship rule”, and any two rational numbers
connected in this fashion are said to be “friendly numbers”. Thus the left and right
neighbors of any rational number in a Farey tree are called its “friendly numbers”.
(However, two rational numbers that have this property need not belong to the same
level of the Farey tree.)

2.1.3 The saga of even-denominator and odd-denominator fractions

For a given rational value p/q of the magnetic flux, it is quite surprising that the
parity of the denominator—that is, whether q is even or odd—plays an important
role in shaping the butterfly landscape.

First, the dynamics of the Hofstadter set (or of the quantum-mechanical equation
that gives rise to it) responds quite differently to rational flux-values having even and
odd denominators. This can be clearly seen in figure 2.5.

For any p/q where q is even, there are two central bands that touch each other, or
“kiss”, on the horizontal line E = 0. This is called “degeneracy” of the quantum
state. The degeneracy is lifted as one moves away, either leftwards or rightwards,
from this flux value. There is an energy gap above and below the line E = 0, resulting
in the meeting of four wings at p/q, forming the characteristic butterfly pattern.

Figure 2.4. A row-by-row construction of the Farey tree, as described in the text. This figure highlights the
special property of even-denominator Farey fractions (indicated by blue dots) that both of their Farey
neighbors have odd denominators, and that there exists a unique pair of odd-denominator fractions (shown at
the two ends of each dashed blue line) with denominators less than the even denominator.
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By contrast, for any flux-value p/q where q is odd, the single central band breaks
up into many tiny fragments as one moves away, either leftwards or rightwards, but
the fragments all remain clustered very closely around the band at p/q.

It is almost magical how the quantum behavior associated with flux-values having
even and odd denominators is perfectly “in synch” with the number theory of Farey
fractions, where even-denominator and odd-denominator rational numbers behave
differently, as we will now see.

We summarize below the differences between the even-denominator and the odd-
denominator Farey fractions:

(1) The two friendly numbers of any even-denominator fraction (i.e., its left and
right neighbors in its row) always have odd denominators. This is in
contrast to odd-denominator fractions, whose two friendly numbers can
have either even or odd denominators.

(2) For every fraction p

q
1

1
with even denominator q1, there exists a unique pair of

odd-denominator friendly numbers, p

q
2

2
and

p

q
3

3
, whose denominators are

both less than q1.
(3) A set of three fractions such that any pair of them satisfies the friendship

rule will be referred to as a Farey triplet. Symbolically, a Farey triplet is a set
of fractions p

q
1

1
, p

q
2

2
, and p

q
3

3
such that

= ⨁ =
+
+

p

q

p

q

p

q

p p

q q
(2.3)1

1

2

2

3

3

2 3

2 3

− = = = ≠p q p q i j i j1, for all 1, 2, 3, 1, 2, 3, . (2.4)i j j i

As is illustrated in figure 2.2, the three Ford circles associated with any
Farey triplet are all mutually tangent.

The above two conditions, along with Harper’s equation (see chapters 1 and 7)
define the butterfly landscape, in the manner described below.

Figure 2.5. Zooming in on the butterfly near an even-denominator flux-value (ϕ = 1/4) and an odd-
denominator flux-value (ϕ = 1/3).
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Friendly numbers, kissing circles and the butterfly

All rational values p
q
of ϕ, where q is even, have two central bands that touch each

other on the line E = 0. Such touching-points are the centers of all central butterflies.
The left and right edges of any central butterfly are located at rational ϕ values with
odd denominators, which are the friendly numbers of the center. This implies that,
given the location (the x-coordinate, which is to say, the ϕ value) of the center of any
central butterfly, the locations of its two edges are uniquely determined. If the center
is at

p

q
c

c
, then the left and right edges are at p

q
L

L
and p

q
R

R
. These edges’ x-coordinates are

the left and the right friendly numbers of the center’s x-coordinate.
For any central butterfly, the locations of its center and its left and right edges are

related to each other by Farey addition:

= ⨁ =
+
+

p

q

p

q

p

q

p p

q q
. (2.5)c

c

L

L

R

R

L R

L R

As was explained above, equation (2.5) is also the condition for three Ford circles to
be mutually tangent as well as tangent to the horizontal axis. Therefore, the Ford
circles representing the center and the edges of a central butterfly correspond to
configuration c( ) of Descartes’ problem: a collection of four mutually tangent or
kissing circles, commonly called a Descartes configuration, as is shown in figure 2.6.

Equation (2.5), which is the tangency condition for two Ford circles, applies both
to central and to off-center butterflies. However, off-center butterflies do not
necessarily have their centers located at flux-values with even denominators.

The Ford circles representing the two edges and the center of any miniature
butterfly are all mutually tangent, as is shown on the right side of figure 2.7. These
three circles, along with the horizontal x-axis to which the the circles are tangent,
constitute a specific case of four mutually tangent circles, so they satisfy Descartes’
theorem (see chapter 0), namely:

κ κ κ κ κ κ κ κ κ κ= + + ± + +± 2 . (2.6)1 2 3 1 2 2 3 1 3

We can choose κ = q2 L1
2 (left edge), κ = q2 R2

2 (right edge), and κ = 03 (the
horizontal axis). Then equation (2.6) simplifies as follows:

κ κ κ± = ±( ) . (2.7)L R

Clearly, κ+ corresponds to the Ford circle representing the center of the butterfly,
and therefore we have:

κ κ κ κ
κ κ κ

= + =
= − =

+

− ? .
L R c

L R

The significance of the second solution—namely, κ κ κ= ∣ − ∣− L R (shown in red
on the right side of figure 2.7)—will become apparent when we discuss the nesting of
the butterflies, as it corresponds to a tangency condition between two different
generations.
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Echoing the terminology of chapter 0, where a tangency of two circles was
poetically described as a “kiss precise”, we will distinguish between two types of
tangency—those between generations and those within a single generation. More
specifically, an inter-kiss precise means an intergenerational kiss, which is to say, the
tangency of two Ford circles belonging to different generations, while an intra-kiss
precise means an intragenerational kiss, involving the tangency of two Ford circles
belonging to the same generation.

2.1.4 The sizes of butterflies

The width (or the horizontal size) ϕΔ of a butterfly with center p

q
c

c
and left and right

edges p

q
L

L
and p

q
R

R
is given by:

ϕΔ = − = − =
p

q

p

q q q
p q p q

1
, 1. (2.8)R

R

L

L L R
L R R L

2.2 A butterfly at every scale—butterfly recursions
As we examine the full butterfly at smaller and smaller scales, we note that there
exists a central butterfly at every scale, and these miniature versions exhibit every

Figure 2.6. On the left are shown four different types of “Descartes configurations” of four pairwise tangent
circles in a plane. This includes cases where one or more of the circles degenerates to a straight line (a circle
with infinite radius). The butterfly nesting is related to configuration c( ), as is shown in the right part of the
figure, which shows a butterfly whose center is located at flux-value 3/8, and which is represented by the small
Ford circle sitting on the axis at that same flux-value. The left and right edges of the butterfly are located at
1/3 and 2/5, and these values are represented by large Ford circles (in the figure, one sees only half of each large
circle). These three circles, along with the horizontal axis, are all mutually tangent.
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detail of the original graph. A nice illustration of this was shown earlier in the book
(see figure 2.3 in the prelude).

Since the nesting of butterflies goes infinitely far down, it is useful to define a
notion of levels or generations. The top level, or first generation, is the full butterfly,
stretching between ϕ = 0 and ϕ = 1, with its fourfold symmetry. We will say that
butterflies A and B belong to successive generations when B is contained inside A and
when there is no intermediate butterfly between them (i.e., there is no butterfly both
contained in A and also containing B).

Our discussion below includes only those cases where the larger and smaller
butterflies share neither their left edge nor their right edge. In this manner, any
miniature butterfly can be labeled with a positive integer telling which generation it

Figure 2.7. In the red box on the upper left, we see the central butterfly with center at 1/2 (the red “pin”). In the
blue box on the upper right, we see the first-generation butterfly that stretches between 1/3 and 2/5, with its
center (the blue pin) located at 3/8. This is a second-generation central butterfly. Inside it we see a third-
generation butterfly centered on 11/30, and with left and right edges at 4/11 and 7/19. Of course we could
continue going down, down, down, but three levels suffice to give the idea. These ideas involving generations of
central butterflies map elegantly onto isomorphic ideas involving Ford circles, which are shown in the black
box at the bottom of the figure. Ford circles representing the butterfly centers for three successive generations
are shown in red, blue, and green (these colors match the colors of the pins representing the centers of the
corresponding butterflies). The large black circles at values 1/3 and 2/5 correspond, of course, to the second-
generation butterfly’s edges (note their odd denominators), while the blue circle at 3/8 (with even denominator)
corresponds to the blue pin at the center. Inside the second-generation central butterfly is found a third-
generation butterfly centered on 11/30, and the corresponding Ford circle at 11/30 is a third-generation Ford
circle. This figure illustrates both the “inter-kiss precise” and the “intra-kiss precise” conditions.
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belongs to. We will show that this class of butterflies is characterized by a nontrivial
scaling exponent. By contrast, in cases where a nested set of butterflies from different
generations all share a common boundary, the underlying asymptotic scaling
exponent is trivial (see equation (3.12), and the discussion that follows it).

As we have already pointed out, there is a tight correspondence between central
butterflies and Ford circles tangent to the x-axis. Just as each central butterfly can be
assigned to a specific generation, so can Ford circles with even denominators. Recall
that even-denominator ϕ values are the centers of butterflies, and recall also that the
center “pins down” the butterfly completely. Figure 2.7 helps make clear this aspect
of the mapping between butterfly generations and generations of Ford circles.

Butterfly recursions and more kissing circles

We now seek a rule for finding a sequence of nested butterflies as we zoom into a
given flux interval ϕΔ , a sequence that evolves towards an “invariant configuration”
(i.e., a fixed point), where two successive butterfly zooms are exact copies of each
other, except for a scaling factor. We start with a butterfly inside the interval, whose
center is at ϕ value =f l( )

p l

q l

( )

( )c
c

c
, and whose left and right edges are at =f l( )

p l

q l

( )

( )L
L

L

and =f l( )
p l

q l

( )

( )R
R

R
. Let us assume that this butterfly belongs to generation l.

A systematic procedure to describe a nested set of butterflies that converge to the
desired “fixed point” behavior involves three generations. To understand why three
are involved, let us suppose that we begin with the entire butterfly landscape—the
first-generation “mother” butterfly—and from the infinite zoo of smaller butterflies
inside it, we pick one tiny butterfly, which we will refer to as the second-generation
daughter butterfly. The next step is to zoom into this tiny butterfly and choose the
third-generation butterfly—the granddaughter—and we will choose “her” in such a
way that she has the same location relative to the daughter butterfly as the daughter
had relative to her mother.

By repeating this process of zooming into ever-higher generations, we will
converge to fixed-point behavior. The key trick assuring convergence to fixed-point
behavior is always to stick to the same rule for the relative location of two successive
generations of butterflies, as one carries out the successive zooms. Such a sequence of
butterflies evolving towards a stable invariant structure will be called a “butterfly
hierarchy”. Figure 2.8 pictorially shows the process of finding a series of butterflies
that converge to this kind of fixed-point behavior.

The three-step recursion is given by the following equations:

+ = ⨁f l f l f l( 1) ( ) ( ) (2.9)L L c

+ = + ⨁f l f l f l( 1) ( 1) ( ) (2.10)R L c

+ = + ⨁ +f l f l f l( 1) ( 1) ( 1). (2.11)c L R

These equations relate fractions on the ϕ-axis. If we wish, however, we can
instead focus on these fractions’ numerators and denominators. Rewritten in terms
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of the integers p(l ) and q(l ), the above equations become the following recursion
relation:

+ = − −s l s l s l( 1) 4 ( ) ( 1) (2.12)x x x

where =s l p l q l( ) ( ), ( )x x with =x L c R, , . In other words, the denominators p(l ) and
the numerators q(l ) of the flux-values corresponding to the edges (L or R) or the
centers (c) of a butterfly all obey the same recursion relation.

These recursion relations can also be written in matrix form as follows:

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠
⎛
⎝⎜

⎞
⎠⎟

+
= −

−
s l

s l
s l

s l
( 1)

( )
4 1
1 0

( )
( 1)

.

Note that the 2 × 2 matrix in this equation has determinant 1.
Equations (2.10) and (2.11), linking two different generations of Ford circles,

show the significance of the two solutions of Descartes’ equation—that is, equation
(2.7). We summarize these two types of tangencies as follows:

• An intra-kiss precise corresponds to κ κ κ κ= = ++ l l l( ) ( ) ( )c L R (using
equation (2.11)).

• An inter-kiss precise corresponds to κ κ κ κ= − = ∣ − ∣− l l l( 1) ( ) ( )c L R

(using equation (2.10)).

Both types of tangency, intra- and inter-, are visible in figure 2.7.

Figure 2.8. Illustrating the meaning of the notion of a “butterfly hierarchy”, explained in the text. In the top row
are seen first-generation “parent” butterflies, inside which three distinct second-generation butterflies have been
selected, indicated by the small red boxes. The lower row shows these “daughter” butterflies—blowups of
the regions indicated by the red boxes in the upper row. The red boxes in the lower panel in turn indicate the
locations of third-generation “granddaughter” butterflies. The key point is that the boxed butterflies always have
the same relative locations with respect to the centers and edges of their parent butterflies. These three distinct
cases are examples of a single hierarchy characterized by a universal scaling ratio, as is described in the text.
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The butterfly nesting described by equation (2.12) represents the most natural and
the simplest way to describe the self-similar character of the butterfly landscape. In
appendix E, we introduce the notion of the Farey path and characterize this
particular scheme by a sequence of letters—“L”s (for left) and “R”s (for right)—
defining a Farey path in the Farey tree (see figure 2.13). This leads to many other
ways to describe self-similarity, which we refer to as different possible hierarchies,
each characterized by its own unique Farey path.

This idea is further discussed in chapter 4, where each hierarchy is associated with
an irrational number. Just as the “LRLR” hierarchy is associated with the number

+2 3 , for which we coined the term “diamond mean”, there are other hierarchies,
such as the golden and silver hierarchies (which are associated with the golden and
silver means). The diamond hierarchy, apart from being the most important one, is
also unique among all the infinitely many hierarchies, because it has a special hidden
symmetry, which we will discuss below and also in chapter 3.

2.3 Scaling and universality
2.3.1 Flux scaling

Consider three butterflies in a hierarchy, belonging to three successive generations
−l l1, , and +l 1. Their centers are located at the rational numbers −f l f l( 1), ( )c c ,

and +f l( 1)c . Recall that the radius of the Ford circle associated with any given
rational number p/q is q1/(2 )2 , and that the circle’s curvature κ is defined to be the
reciprocal of this radius. Let us denote the curvature of the Ford circle associated
with the butterfly centered at fc(l ) by κ l( )c . The recursion relation (2.12) then tells us
that the curvatures of the Ford circles associated with the centers of our three nested
butterflies satisfy the following equation:

κ κ κ+ = − −l l l( 1) 4 ( ) ( 1) . (2.13)c c c

These Ford circles do not touch each other. How are their radii related? The ratio
of their radii is (by definition) the reciprocal of the ratio of their curvatures. Let us
define the scale factor ζ l( ) as the square root of the ratio of the curvatures of two
Ford circles belonging to generations +l 1 and l:

ζ κ
κ

= +
l

l
l

( )
( 1)

( )
. (2.14)c

c

Plugging this definition into the previous equation, we obtain:

ζ
ζ

= −
−

l
l

( ) 4
1

( 1)
. (2.15)

For large l (that is, when we are many generations down), ζ ζ→ +l l( ) ( 1). We
denote the limiting value of this sequence by ζ*. This number is the fixed point of
equation (2.15), and thus it satisfies the following quadratic equation:

Butterfly in the Quantum World

2-13



ζ ζ ζ κ
κ

− + = = + = +
→∞

* * *
l

l
( ) 4 1 0, lim

( 1)
( )

2 3 . (2.16)
l

c

c

2

The other root of the quadratic equation, −2 3 , represents taking the ζ l( ) in the
reverse order.

It follows that Ford circles corresponding to even-denominator fractions form a
self-similar fractal consisting of circles whose curvatures are asymptotically scaled
by the factor ζ*. No matter what even-denominator fraction we start with, we will
get the same scaling factor. We further note that between two successive levels, the
Ford circles of fL(l ) and +f l( 1)L are tangent, while those of the corresponding fc
and fR are not.

We also note that

κ
κ

κ
κ

κ
κ

→ + → + →l
l

l
l

l
l

( )
( )

1 3 ,
( )
( )

1 3

3
,

( )
( )

3 . (2.17)c

L

c

R

R

L

We now calculate the scaling factor associated with the magnetic flux—that is, the
ratio of the widths of butterflies at different generations. Let us denote the width of
the generation-l butterfly by ϕΔ l( ):

ϕΔ = − =l f l f l
q l q l

( ) ( ) ( )
1

( ) ( )
. (2.18)R L

L R

The ratio of the widths at two successive generations is given by:

ϕ
ϕ

ζ= Δ
Δ +

=
+ +

= = +
→∞ →∞

ϕ * ( )( ) ( )
R

l
l

q l

q l

q l

q l
lim

( )
( 1)

lim
1

( )

1

( )
( ) 2 3 . (2.19)

l l

L

L

R

R

2 2

Note that the scaling of the curvatures of the Ford circles representing the centers
of the butterflies belonging to two consecutive generations is:

κ
κ

κ
κ

+ =
+ + = +

→∞
( )l

l

q l

q l
l

l
( 1)

( )

( 1)

( )
, lim

( 1)
( )

2 3 . (2.20)
l

c

c

c

c

c

c

2

2

2

In other words, the Ford circles associated with the butterflies’ centers scale exactly
like the butterflies themselves.

Here we shall mention only briefly what may well be the most remarkable feature
of the butterfly’s scaling—namely “topological scaling” (which we will discuss in
chapter 9). This is the scaling of the topological quantum numbers of the various
gaps of the butterfly landscape. Interestingly, the topological scaling factor is found
to be equal to ζ = ϕ* R .

2.3.2 Energy scaling

So far, we have only discussed scaling properties along the ϕ-axis of the butterfly
graph. However, the butterfly is a two-dimensional object, so now we turn to the
question of scaling along the energy axis. Unlike the magnetic-flux window associated
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with a butterfly, which we can compute given the butterfly’s center, the corresponding
energy scale has to be determined numerically, as described in chapter 1.

Figure 2.9 illustrates the self-similarity property of the butterfly graph as we
overlay two miniature butterflies—one belonging to the lth generation, and the other
to the +l 1st generation—by magnifying the plot of the +l 1st generation by the
scaling ratio RE along the vertical direction, and by the scaling ratio ϕR along the
horizontal direction. This figure shows the two numbers RE and ϕR , which
characterize the scaling of this two-dimensional landscape. The numerically com-
puted value of RE is approximately 10.

2.3.3 Universality

Characterizing the butterfly graph in terms of scaling ratios such as ϕR and RE may
constitute a first step in pinning down the graph’s universal aspects. Appendix E
discusses universality in a limited sense, commenting on the validity of these scalings
for a class of magnetic flux-values characterized by the tails of their continued-
fraction expansions. More generally, though, the concept of universality means that
other physical systems that have a butterfly-like spectrum should possess exactly
the same scaling ratios. For example, butterfly plots coming from non-square lattices
might have the same scaling ratios as the Hofstadter butterfly does, or perhaps
the Hofstadter butterfly’s scaling ratios will turn out to be unchanged under
other types of modification of the system. Recall the discussion of universality in
chapter 1, where it was pointed out that the same scaling rule that characterizes
period-doubling in quadratic maps (as studied by Mitchell Feigenbaum) was later

Figure 2.9. Two consecutive generations of butterflies, shown in blue and green, overlaid. The blue labeling of
the axes tells us where the blue butterfly is found, and likewise for the green labeling of the axes. This nearly
perfect alignment illustrates the asymptotically exact self-similarity of the butterfly graph. (However, only the
flux scaling has been proven analytically.) The vertical or energy scale factor has so far been determined only
by numerical calculation of the Hofstadter set, and it is approximately π≈9.87 2.
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found to characterize other complex systems, even including dripping water faucets.
In that spirit, it is to be hoped that simple models, such as the system studied by
Hofstadter, may have mathematical properties that will turn up in more complex
systems as well. These observations are but the tip of the iceberg of this fascinating
subject, and a detailed exploration of which features of the butterfly graph are
universal remains to be carried out.

Figure 2.10. The six nested structures on the left are integral Apollonian gaskets that have approximate trefoil
symmetry. As one descends ever more deeply into the gaskets, the smaller gaskets asymptotically approach exact
trefoil symmetry. The curvatures of some of the circles are shown by the integers inside them. Note that in each
gasket, two of the three biggest circles have identical curvature values, and the third one’s curvature differs from
the others by just 1. This is why all these gaskets come very close to having perfect trefoil symmetry. The outer
curvature of each of the upper trio of gaskets is an even number, and for the lower trio, it is odd. For each of
these two trios, the bottom gasket is a blowup of the circle in the middle of the top gasket, and the right gasket is
a blowup of the one on the bottom. Thus the upper gasket’s outermost circle has a curvature of 4, and at its
center we see a very small circle with curvature 56. This circle (actually a gasket) is blown up underneath, and at
its center we see a small circle with curvature 780. Once again, this circle is blown up, giving us the third member
of the upper trio. A lovely fact is that as the magnification is increased, the ratio of the curvature of the innermost
circle to that of the outermost circle of all these gaskets approaches a constant. Thus, in the upper trio, we see

→ → → +56/4 780/56 10864/780 (2 3 )2. And similarly, for the lower trio, we have → →209/15 2911/209
→ +40545/2911 (2 3 )2 . In fact, the ratios of the curvatures of any circles that lie in corresponding positions

converge to exactly the same constant as one zooms inwards, an example on the upper side being
→ → +120/8 1680/120 (2 3 ) .2 The photo on the right is of redwood sorrels found in Montgomery Woods

in Mendocino County, California, showing trefoil symmetry in nature (photo courtesy of Douglas Hofstadter).
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2.4 The butterfly and a hidden trefoil symmetry
We next show that the butterfly scaling ratio ϕR associated with the butterfly
hierarchy characterized by the finite Farey paths “LRL” and “RLR”, described in
appendix E, is related to the nested set of circles in an Apollonian gasket that
matches the Descartes configuration b( ) in figure 2.6.

We consider a special case of Descartes’ theorem (2.6), where κ κ κ κ= = =1 2 3 .
This corresponds to an Apollonian gasket that has perfect trefoil symmetry. The
ratio of the curvatures of the inner and outer circles is determined by the equations:

κ
κ

κ
κ

= + = −+ −( ) ( )3 2 3 ; 3 2 3 ; (2.21)

κ
κ

= +
−

= ++

−
( )2 3

2 3
2 3 . (2.22)

2

The fact that the ratio of these two curvatures is irrational shows that there is no
integral Apollonian gasket possessing exact trefoil symmetry. Interestingly, how-
ever, as can be seen in figure 2.10, in some integral Apollonian gaskets, perfect trefoil
symmetry is asymptotically approached as one descends deeper and deeper into the
gasket, thus getting larger and larger integral values of the curvature, which give
closer and closer rational approximations to the irrational limit, +(2 3 )2.

A most surprising fact is that the ratio of the radii of innermost and outermost
circles exhibits the same scaling as the ratio of the curvatures of the Ford circles
corresponding to two successive generations of the butterfly, as is shown in equation
(2.19). In other words, the scaling underlying nearly trefoil-symmetric Apollonian
gaskets is identical to the magnetic-flux scaling associated with the butterfly graph.

The trefoil symmetry described above may appear rather mysterious, as it lacks
any geometrical picture that may help in visualizing what this symmetry means for
the butterfly landscape. Clearly, none of the butterflies nested inside the butterfly
fractal exhibit this kind of symmetry. The question of where this hidden symmetry
shows up in the Hofstadter landscape will be revisited in chapter 3, where we will
describe the mapping between the butterfly fractal and integral Apollonian gaskets.

2.5 Closing words: Physics and number theory
That number theory plays a crucial role in describing certain physical phenomena is
a quite new finding, and even today it remains relatively unknown among many
theoretical physicists. Back in 1969, Richard Feynman, in replying to a letter sent to
him by Robert Boeninger, wrote the following1: “I don’t know why number theory
does not find application in physics. We seem to need the mathematics of functions
of continuous variables, complex numbers, and abstract algebra.” In the same spirit,
but much more recently, physicist and science writer Michio Kaku, in his 1995 book
Hyperspace, declared: “[S]ome mathematical structures, such as number theory

1 “The Quotable Feynman”, edited by Michelle Feynman, Princeton University Press.
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(which some mathematicians claim to be the purest branch of mathematics), have
never been incorporated into any physical theory” [2] and Kaku then goes on to
suggest that perhaps in the future string theory may do so2. Despite their usual
insightfulness, both Feynman and Kaku turned out to be quite wrong, however,
since, as we have just seen, number theory pervades the butterfly’s structure. And
thus that salient gap in the history of mathematical physics has been filled—without
any need for string theory to come to the rescue!

Appendix A: Hofstadter recursions and butterfly generations
For the first few paragraphs of this appendix, Douglas Hofstadter tells, in his own
words, how he characterized the recursive structure of the butterfly in his work in the
1970s.

Douglas Hofstadter’s own story of his recursive breakdown of the butterfly

In my doctoral thesis and my subsequent 1976 Physical Review article, I partitioned
the butterfly into smaller copies of itself. Each copy was located inside a region that I
called a subcell (see figure 2.11). Having defined subcells, I then showed how the
structure of the full graph could be mapped isomorphically (or more strictly speaking,
homeomorphically) onto the structure found inside any such subcell.3

In the full butterfly, the flux-value ϕ runs between 0 and 1; what I did was to show
that inside any subcell, there is an analogous “local variable”—here I will refer to it as
“α”—that likewise runs between 0 and 1. The nature of the analogy between ϕ and α
can be described as follows. When ϕ takes on, say, the value 2/7, there are seven bands
in the full butterfly forming a “cluster-pattern” of the form “3–1–3” (meaning there
are three bands close together on the left side, one isolated band in the middle, and
three close together on the right). Precisely analogously, in any given subcell, when
that cell’s local variable α takes on the same value (2/7, in our example), we will find
the same number of bands (seven, in this case) inside the given subcell, and moreover
they will be arranged in exactly the same cluster-pattern (“3–1–3”, in this case).

Of course this happy analogy between the full graph and a subcell doesn’t hold
merely in the specific case of 2/7; the same thing can be said for any rational number
p/q—namely, when ϕ takes on that value, there is a particular cluster-pattern in the
entire butterfly involving q bands, and inside any subcell, when the local variable α
takes on that same value, there is an identical cluster-pattern. This elegant mapping
between the full graph and each of its subcells can be further extended to irrational
values of ϕ and α by taking limits using rational approximations. In this systematic
fashion, I was able to show how the mapping between any subcell and the full graph
is complete and perfect.

2 I am grateful to Francisco Claro for bringing this to my attention.
3Note: In Hofstadter’s thesis and article, the ϕ-axis was always oriented vertically, whereas in this book it is
almost always horizontal. However, for the next few paragraphs, we will follow Hofstadter’s convention, with
the ϕ-axis vertical.
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Incidentally, I was led to this insight by the behavior of my graph INT, which is
displayed in the prologue (see figure P.2). In that much simpler graph, the idea of
local variables is somewhat easier to grasp. Inside the full graph (where both x and y
run between 0 and 1), there are very clear copies of it, such as (say) the small copy
located between the x-values of 1/3 and 1/4. (Of course that specific copy of the full
graph, like all the other copies, is tilted at 90 degrees relative to the full graph, and is
also scaled down and slightly bent.) Now imagine that there is a local variable α
inside the little graph that runs from 0 to 1 while x is running from 1/3 to 1/4 inside
the big graph. In other words, we want the local variable α to play the same role
inside the little bent copy of INT that x plays in the big INT graph. For example, in
the full INT graph, the biggest jump-discontinuity of all takes place where =x 1/2,
and so, in the little copy, we want the analogous biggest jump-discontinuity to
happen where α = 1/2. (Incidentally, this jump inside the little copy is located where

=x 2/7.) Is there a precise formula that, given any value of x, tells you what the value
of the local variable α is? Indeed there is, and in fact it’s quite obvious:

α
=

+
x

1
3

. (A.1)

The “3” in the denominator reflects the fact that in this case, we are dealing with the
little copy located between =x 1/3 and =x 1/4. Had we instead chosen the copy

Figure 2.11. Partitioning of the butterfly landscape into three different infinite families of subcells—L-subcells,
C-subcells, and R-subcells—as described by Hofstadter in his 1976 Physical Review article [3]. Figure adapted
with permission from [3] copyrighted by the American Physical Society.
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between 1/4 and 1/5, then the formula would have had a “4” instead of a “3” (and so
forth and on).

This idea of a local variable playing the same role inside a subcell as the main
variable plays inside the full graph constituted the essential idea in my recursive
breakdown of the graph I had discovered. Many of the ideas that I had originally
found in exploring my INT graph, many years earlier, carried through very
straightforwardly to my new Gplot graph. Even the exact same algebraic formula
relating the local variable α to the full-graph variable ϕ held for certain infinite
families of subcells of Gplot (though not all of them).

My first task was to identify and label the subcells of the butterfly containing
copies of the full butterfly (of course the copies were scaled down and distorted, just
as were the copies in INT). I did this as is shown in figure 2.11. I gave the subcells
along the graph’s left side the names …− −L L L L L, , , , ,2 1 0 1 2 , those running down its
backbone the names …− −C C C C C, , , , ,2 1 0 1 2 , and those on its right side the names

…− −R R R R R, , , , ,2 1 0 1 2 .
Once I had precisely identified the small copies of the butterfly inside it, then the next

step was to find formulas relating the local variables α inside the copies to the global
variableϕ. This actually was quite easy, and in the case of theL-subcells andR-subcells,
I soon discovered that the formula was absolutely identical to the formula I’d found for
the subgraphs of INTmany years earlier. This gratifying discovery completely clinched,
in my mind, the intuition I’d had that INT and Gplot were close cousins. In the case of
theC-subcells, the formula connecting the local α variables to the global ϕ variable was
a little more involved, but not greatly so. From my point of view, therefore, the
L-subcells and the R-subcells were the “normal” cases, while the C-subcells were
“exceptional”. Curiously enough, this is essentially the flip side of how Indu Satija

Figure 2.12. We will take the rational flux-values ϕ +l 1 to be the edges and the center of the butterfly for two
generations of the diamond hierarchy. The table above shows the corresponding ϕl for the C-cell, the L-cell,
and the R-cell. (Incidentally, the boldface letters L, C, and R indicate the left edge, the center, and the right
edge of the butterfly, and should not be confused with the letters L C, , and R that label the cells of the butterfly
plot, as shown in figure 2.11.) In this example, the “inner” and “outer” variables (as they are called in
Hofstadter’s paper) coincide with two successive generations of the butterfly only for the C-cell. The table also
shows the band-clustering pattern for ϕ +l 1 as predicted by the recursive scheme. The figure on the right shows
the complete agreement between the predicted clustering pattern, shown on the right side of the box, and the
numerically calculated bands (plotted inside the box).
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characterizes the recursions in Gplot, so our perspectives are perforce slightly different.
But that’s all right—variety is the spice of life! Let one hundred flowers bloom!

Connecting Hofstadter’s breakdown with the butterfly-generations approach

As Hofstadter explained in detail in his 1976 article, the C-cell and L-cell recursions
together describe the clustering patterns of bands and subbands (etc) for all values of
ϕ. Figure 2.12 illustrates this for the set of ϕ values corresponding to the butterfly

hierarchy characterized by the fixed point ϕ = −* 3 1
2

.

As l varies, the flux-valuesϕl
C describe a sequence of butterflies from one generation

to the next, as in the following case: →( , , )0
1

1
2

1
1

→( , , ) ( , , )1
3

3
8

2
5

4
11

11
30

7
19

. Here, each
Farey triplet (explained in appendix B) contains the flux-values defining, respectively,
the left edge, the center, and the right edge of the butterfly in question. Although the
variables ϕl

L and ϕl
R play a crystal-clear role in Hofstadter’s explanation of the

nesting, how they would enter into a description of the hierarchies discussed above has
not yet been elucidated.

As Hofstadter pointed out, the recursive decomposition of the spectrum tells us
that the spectrum for any given rational flux-value ϕ +l 1 consists of three parts,
located inside L, C, and R subcells, separated by gaps from each other. The numbers
of bands inside these cells are given, respectively, by the denominators of ϕl

L, ϕl
C ,

and ϕl
R, which are listed in the table in figure 2.12.

In chapter 3, we will use Hofstadter’s idea of local variables inside subcells to
obtain fixed points and scaling factors ϕR , and we will show that his recursions, which
involve two generations, give the same scaling as the p–q recursions described above.

To conclude our discussion of Hofstadter’s recursions, we note that the ϕ
recursions connect two successive generations, while the recursions involving
integers p and q are three-term recursions involving three generations. There appears
to be no obvious way to obtain the ϕ recursions from the integer recursions for p and
q. Furthermore, it is important to note a commonality between these two distinct
type of recursions. Just like the integer recursions, the ϕ recursions are consistent
with the organization of rational numbers involving friendly numbers. Without
further discussion, we remark that this shared feature may be rooted in the fact that
the ϕ recursions represent Möbius transformations. This is an open issue that needs
to be investigated.

Appendix B: Some theorems of number theory [1]
(1) Each Farey fraction p

q
possesses two friendly numbers.

(2) Even-denominator fractions are never friendly numbers. (This implies that
all friendly numbers of even-denominator fractions have odd denomina-
tors.) In contrast, odd-denominator fractions can be friendly numbers.

(3) Of all fractions that are friendly numbers of p
q
( >q 1), only two have

denominators less than q. As was stated earlier in this chapter, this is the key
property that pinpoints a butterfly at all scales in the butterfly diagram.
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(4) The successive approximants of a simple continued-fraction expansion (see
appendix D) form adjacent fractions.

(5) It is easy to prove that, given any two distinct irreducible fractions p

q
1

1
and

p

q
2

2
, the Ford circles associated with these fractions never intersect—that is,

either they are tangent to each other or they touch each other nowhere
at all.

From figure 2.2, the distance d between the centers of two Ford circles can be
written in terms of the fractions as:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

= + = − = −

= − + − = − + + +

= − − + +
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P
Q

p
q
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Q q

d
P
Q

p
q Q q

P
Q

p
q Q q Q q

Pq pQ
Q q

AD EB

( ) ( ) ; ;
1

2
1

2

1
2

1
2

1 1
2

1
2

( ) 1
( ) .

2 2 2
2 2

2
2

2 2

2 2

2 2 2 2

2

2

2 2
2

• If ∣ − ∣ >Pq pQ 1, the two circles are external to each other.
• If ∣ − ∣ =Pq pQ 1, the two circles are tangent.
• The only other possibility is ∣ − ∣ =Pq pQ 0, which is to say, =P

Q
p
q
.

This proves that the Ford circles belonging to two distinct fractions are either
disjoint or tangent.

Appendix C: Continued-fraction expansions
Any irrational number α can be written as a simple continued fraction with infinitely
many denominators nk, all of which are integers:

α = +
+

+
+

+
+

+ …

n
n

n
n

n
n

n

1
1

1
1

1
1

.0

1

2

3

4

5
6

The denominators >n 0k are generated by the following recursion relation:

α
α

=
−+

n
1

k
k k

1

where α=n [ ]k k . (The notation “ x[ ]” denotes the integer part of x; for example,
π =[ ] 3. ) Here α α=0 . A concise notation for the continued-fraction expansion of
an irrational number α is:

α = …n n n n[ ; , , , ].0 1 2 3
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If one truncates the infinite simple continued fraction of an irrational number α
after a finite number of terms, one obtains a rational approximant belonging to α.
The kth rational approximant of α, denoted by p

q
k

k
, uses the first k denominators of

αʼs infinite continued-fraction expansion.
It can be shown that the rational approximants p q/k k belonging to α are the best

rational approximations of the irrational number, in the sense that no rational
number p/q with <q qk is closer to α than p q/k k. It can also be shown that

α − <
−

p

q q q
1

.k

k k k 1

There is a special class of irrationals whose simple continued-fraction denomi-
nators nk form a periodic sequence. The simplest example of such an irrational is the

golden mean, = …+ [1; 1, 1, 1, ]5 1
2

—that is, nk = 1 for all k. The rational
approximants belonging to the golden mean are ratios of successive Fibonacci
numbers—that is, = +p q F F/ /k k k k1 , where Fk is the kth Fibonacci number (defined by
the recursion = ++ −F F Fk k k1 1, where = =F F 10 1 ).

An irrational whose simple continued-fraction expansion’s denominators are all
equal to the integer m is a quadratic irrational, as it satisfies the quadratic equation
α α− − =m 1 02 . More generally, any real number whose continued-fraction
denominators form a periodic sequence is an irrational solution of a quadratic
equation with rational coefficients, such as = …14 [3; 1, 2, 1, 6, 1, 2, 1, 6 ]. On
the other hand, we note that the irrational number π has a rather erratic simple
continued-fraction expansion, namely: π = …[3; 7, 15, 1, 292, 1, 1, 1, 2 ].

Appendix D: Nearest-integer continued fraction expansion
Below we give a simple algorithm for generating the nearest-integer continued
fraction for any real number.

Given x, take the closest integer n. If >x n, set = −y x n; conversely, if <x n,
then set = −y n x. By construction, y lies between 0 and 1/2, and

= ± = ±x n y n y1/(1/ ). (Choose the appropriate sign—that is, + if = +x n y, an
d − if = −x n y.) So n is the zeroth denominator of the continued fraction (and the
zeroth sign has also been determined). Now set ′ =x y1/ . Since y is between 0 and 1/
2, ′x is at least 2. Now do the same thing for ′x as was just done for x. That will give
the first denominator (and first sign). Repeat this process ad infinitum; that will yield
all the signs and all the denominators.

Appendix E: Farey paths and some comments on universality
An elegant way to express some universal aspects of the butterfly graph is to define a
butterfly hierarchy via a sequence of letters “L” and “R” (for “left” and “right”).
The resulting Farey path takes the center of generation l to the left edge, then to the
right edge and finally to the center of generation (l+1). If the sequence of letters is
infinite, we will call it an “infinite Farey path”. The term “finite Farey path” will
denote a finite series of “L”s and “R”s, representing jumps in the Farey tree that
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connect two successive generations of butterflies. An infinite repetition of a finite
Farey path (thus a periodic Farey path) gives rise to a self-similar butterfly nesting
(i.e., a “butterfly hierarchy”). The infinite repetition can also be preceded by an
arbitrary finite sequence of “L”s and “R”s, which we will call a “starting segment”.
An infinite Farey path made of a starting segment followed by a repeating finite
Farey path is said to be eventually periodic. Four examples of eventually periodic
Farey paths are shown in figure 2.13. Each one corresponds to a different butterfly
hierarchy.

Table 2.1 shows the relationship between the four infinite Farey paths shown in
figure 2.13 and simple continued-fraction expansions whose kth rational approx-
imants, for even values of k, form the centers of butterflies. As can be seen in the
table, the centers of all such butterflies converge to irrational numbers whose tails
are characterized by the period-2 simple continued-fraction expansion:

⎡⎣ ⎤⎦ϕ = … …n n, , ,1, 2, 1, 2, 1, 2 . (E.1)c 1 2

Our discussion above illustrates the importance of eventually periodic Farey
paths in characterizing the universal features of the butterfly, which are intimately
related to the eventually periodic sequence of denominators of the simple continued-
fraction expansion. In other words, the starting segment in an eventually periodic
Farey path (or the opening of the simple continued-fraction expansion) plays no role
in determining the fixed point and the scaling factor that characterize a butterfly
hierarchy.

A nice example of this type of universality emerges if we look at the zooms
associated with the entire set of level-1 butterflies centered at ϕ =

n
1
2c , where

= …n 1, 2, 3 . Following the recursion relations above, it can be shown that,
asymptotically, the centers of these nested butterflies converge to ϕ* n( )c :

ϕ
α

α α=
+

= − = … =
→∞ →∞

*

−
n

n
( ) lim

1
2( )

,
3 1

2
[1, 2, 1, 2, 1, 2 ] lim . (E.2)

l l
c

l
l

2 2

Furthermore, this entire set is characterized by the scaling ratio ϕR given by
equation (2.19).

Table 2.1. Convergence of the ϕc for four initial flux intervals, ϕΔ (1). In all cases, the centers of the fixed-point
butterflies are found to be irrational numbers whose simple continued fractions have tails that oscillate between
1 and 2, and the butterfly flux scaling is given by the constant ζ*. We invite readers to verify this connection
between figure 2.13 and table 2.1 by using either a simple continued-fraction expansion or the butterfly
recursions discussed above.

Panel of figure 2.13 ϕΔ (1) ϕ*
c

(a) –[2/5 1/3] = −[2, 1, 2, 1 ..] 3 1
2

(b) −[1/3 2/7] …[3, 3, 1, 2, 1, 2 ]
(c) −[2/9 1/5] [4, 1, 2, 1, 2, 1, 2 ..]
(d) −[3/7 2/5] …[2, 2, 2, 1, 2, 1, 2 ]
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Figure 2.13. Four examples of eventually periodic Farey paths, each of which starts out, at the top, with a
finite starting segment (whose “L”s and “R”s are not indicated), and later (i.e. lower down) becomes periodic,
by repeating forever a finite Farey path (whose “L”s and “R”s are indicated). For example, case (c) starts off
with “LL” and then becomes periodic, as follows: “LL–LRL–LRL–LRL–…”. A finite Farey path is a finite
sequence of “L”s and “R”s that connects two generations of butterfly through Farey addition. In the figure, the
finite Farey paths that repeat have been made easily visible by having them always link a heavy horizontal gray
line with a shorter one below it; moreover, to make matters maximally simple, we chose repeated finite Farey
paths that are very short: either “LRL” or “RLR”. The displayed Farey paths correspond to the butterfly
hierarchy characterized by a periodic continued-fraction expansion of the form …n n[ , , 1, 2, 1, 2, ]1 2 . What
assures convergence to fixed-point behavior in all four of these cases is the eventual periodicity of the infinite
Farey path taken.
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IOP Concise Physics

Butterfly in the Quantum World
The story of the most fascinating quantum fractal

Indubala I Satija

Chapter 3

The Apollonian–butterfly connection ( )

Sometimes I write drunk and revise sober, and sometimes I write sober and revise
drunk. But you have to have both elements in creation—the Apollonian and the
Dionysian, or spontaneity and restraint, emotion and discipline.

—Peter De Vries

Integral Apollonian gaskets ( s) and butterfly fractals are two classic types of
fractals that are made up of integers. Could they possibly be related? In other words,
is this yet another marvelous example of a physical incarnation of apparently
abstract mathematics? This chapter addresses this fascinating topic, which is still in
its infancy. The discussion below suggests a deep and intricate relationship between
these two fractals. However, a complete understanding of this problem remains
elusive at present.

An integral Apollonian gasket is an intricate hierarchical structure consisting of
an infinite number of mutually kissing (i.e. tangent) circles that are nested inside
each other, growing smaller and smaller at each level. Each hierarchical level is
made of a finite number of quadruples of mutually tangent circles, and associated

doi:10.1088/978-1-6817-4117-8ch3 3-1 ª Morgan & Claypool Publishers 2016
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with each quadruple of circles is a quadruple of integers that are their curvatures (the
reciprocals of their radii). The table in figure 3.1 lists some examples.

As was discussed in chapter 1 and also in chapter 0, the curvatures of the four
kissing circles κi, with i running from 0 through 3, satisfy the following equation:

κ κ κ κ κ κ κ κ κ κ± = + + ± + +( ) 2 . (3.1)0 1 2 3 1 2 2 3 3 1

It is easy to see that κ +( )0 and κ −( )0 satisfy this simple linear equation:

κ κ κ κ κ+ + − = + +( ) ( ) 2( ). (3.2)0 0 1 2 3

If the first four circles have integer curvatures, then every other circle in the packing
does too, thus forming a fractal landscape ruled by integers alone.

The above equations encode the subtle mathematical rules that permit certain
integers to belong to an Apollonian quadruple while barring all other integers from
this elite club. A key question is whether these mathematical subtleties also define

Figure 3.1. The table on the left side lists the curvatures of the circles comprising some members of the
family, with a minus sign attached to the curvature of the outermost bounding circle. The red and blue colors
correspond, respectively, to Apollonian gaskets whose duals are and are not Ford Apollonian gaskets. These
two categories of unfold as one defines their duals, which belong to Descartes configurations of either
type b( ) or type c( ), described in chapter 2 and shown on the right with two examples from each type. Of the
five curvatures displayed on each line of the table, only the first three are needed to describe the corresponding
quadruple. By including all five, however, we highlight the gaskets’ mirror symmetry (the horizontal axis of
symmetry is shown as a dotted brown line).
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or encode the rules that form the butterfly fractal. Appendix A describes a
Diophantine quadratic equation with constraints that determine all integral
Apollonian gaskets.

3.1 Integral Apollonian gaskets ( ) and the butterfly
In chapter 2, we discussed a possible connection between the butterfly fractal and
integer Apollonian gaskets in view of the fact that butterfly configurations can be
associated with Ford circles. In the Hofstadter landscape, there are three rational
numbers that define, respectively, the left edge, the center, and the right edge of a
butterfly, and these three rationals form a Farey triplet ( , , )

p

q

p

q

p

q
L

L

c

c

R

R
. Such a triplet

obeys the Farey sum condition: = +
+

p

q

p p

q q
c

c

L R

L R
. These three rationals can also be

represented in terms of three mutually kissing Ford circles, sitting on a horizontal
axis (a circle of infinite radius), and having curvatures q q2 , 2 ,L c

2 2 and q2 R
2.

Such a quadruple of (generalized) circles is a Descartes configuration of type c( ),
as described in chapter 2. We will refer to such an Apollonian gasket as a “Ford–
Apollonian gasket”, meaning a set of four mutually kissing circles that have
curvatures that make up a quadruple q q q( , , , 0)c R L

2 2 2 , which we will denote as
κ κ κ( , , , 0)c R L . (Here we have dropped the common factor of 2.) In the l k n m{ , , , }
representation described in appendix B, Ford–Apollonian gaskets correspond to
m = 0, and hence they obey the simple quadratic equation =l kn2 .

However, Ford–Apollonian gaskets do not belong to the family of s, as can
be seen from the table in figure 3.1, which consists solely of quadruples of non-zero
integer curvatures of four kissing circles.

3.1.1 A duality transformation

Interestingly, it turns out that Ford–Apollonian gaskets are related to s by a
duality transformation—that is, an operation that is its own inverse (also called an
“involution”). This transformation gives us a bridge connecting the butterfly fractal,
which is made up of Ford–Apollonian quadruples, with the world of integer
Apollonian gaskets. We now proceed to describe this self-inverse transformation
both geometrically and algebraically [1].

If we write the curvatures of four kissing circles as a vector A with four integer
components, we can use matrix multiplication to obtain another such 4-vector Ā. In
particular, consider the matrix D̂:

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
ˆ =

−
−

−
−

¯ = ˆ

D

A DA

1
2

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

.
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The matrix D̂ is its own inverse. As is shown above, if we multiply A (the 4-vector
of curvatures) by D̂, we obtain its dual 4-vector Ā. Since ˆ =D 1

2 , this same
transformation maps the dual gasket back onto the original gasket:

= ˆ ¯A DA.

In sum, multiplication by the matrix D̂ yields the desired duality transformation,
mapping an arbitrary Ford–Apollonian gasket onto its dual gasket.

Figure 3.2. An illustration of a duality (a transformation that is its own inverse) involving s: four
mutually tangent circles (shown in red) and their dual image (shown in blue). Each circle in the dual set passes
through three of the kissing points of the original set of circles, and the reverse holds as well.

Figure 3.3. On the upper left, we see the −( 1, 2, 2, 3) Apollonian gasket. Underneath it is its dual. Note that
− = D̂( 1, 2, 2, 3) (4, 1, 1, 0). The black and blue integers are the curvatures of the set of larger circles in the

and of those in its dual set. On the right, we have overlaid the and its dual. Here one easily sees
how each circle in the dual configuration passes through the tangency points of three mutually kissing circles in
the original configuration.
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Figure 3.2 illustrates this duality relation geometrically. Given an (the four
red circles in the figure), there exists a related Descartes configuration (the blue
circles). Each blue circle is defined by the intersection points of a subset—
specifically, a trio—of the four red circles. Since there are four such trios in any
quadruple, this construction gives us four new circles. This correspondence is further
illustrated in figure 3.3, showing the case of the −( 1, 2, 2, 3).

3.1.2 Illustrating the Apollonian–butterfly connection

Given a butterfly and its representation in terms of Ford circles as discussed above,
we can now map the butterfly onto an using the duality transformation.
Figures 3.4 and 3.5 illustrate the Apollonian–butterfly connection—that is, what
we have called “ ”. In general, every butterfly whose center and edges obey the
Farey triplet rule (and is hence described by a configuration of four kissing Ford
circles) can be mapped to an . In the general case, we write this mapping as
follows:

Figure 3.4. Illustrating the correspondence between an −( 1, 2, 2, 3) (top) and the butterfly centered at
flux-value ϕ = 1/2, and with edges at 0/1 and 1/1. The blue circles are Ford circles, representing the butterfly’s
center and edges, with reduced curvatures (4, 1, 1), all tangent to the horizontal line (whose curvature is zero).
These four circles with curvature 4-vector (4, 1, 1, 0) form a Ford–Apollonian gasket that is dual to the
−( 1, 2, 2, 3) , which is shown in red. As usual, a colored integer inside a circle tells us the circle’s curvature.
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κ κ κ κ κ κ κ≡ = ˆ −

= ˆ − + +

( ) ( ) ( )
( )

q q q D

D q q q q q q q q q q

, , , 0 , , , 0 , , ,

, , , .

c R L c R L

L R c L c R L R R L

2 2 2
0 1 2 3

2 2

The above equations, which determine a trio of denominators q q q{ , , }L c R as a
function of the four curvatures, appear to imply that the corresponding butterfly is
not uniquely determined, as none of the equations involve the trio of numerators
p p p{ , , }L c R . However, the requirement that px and qx must be relatively prime leads
to a unique set of of rationals—a unique Farey triplet { , , }

p

q

p

q

p

q
L

L

c

c

R

R
—given an .

3.2 The kaleidoscopic effect and trefoil symmetry
We next revisit the question of the hidden trefoil symmetry in the diamond hierarchy,
discussed earlier in chapter 2, within the context of . This symmetry came to light
when we realized that there is a set of Apollonian gaskets whose successive levels tend
asymptotically towards perfect trefoil symmetry, corresponding to the scaling ratio of
the butterflies in the diamond hierarchy. We will examine the relationship between
butterflies in the diamond hierarchy and Apollonian gaskets that asymptotically
exhibit trefoil symmetry. This subject is intimately tied to one of the most fascinating
properties of Apollonian gaskets—namely, the “kaleidoscopic effect”.

3.2.1 Seeing an Apollonian gasket as a kaleidoscope

An Apollonian gasket is like a kaleidoscope in which the image of the first four
circles is reflected again and again through an infinite collection of curved mirrors.
In particular, κ +( )0 and κ −( )0 are “mirror images” through a circular “mirror” that

Figure 3.5. This figure, similar to figure 3.4, shows an and the corresponding butterfly centered at flux-
value ϕ = 3/8 and having edges at 1/3 and 2/5. The four circles with curvature 4-vector (64, 25, 9, 0) form a
Ford–Apollonian gasket that is dual to the −( 15, 24, 40, 49) .
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passes though the tangency points of κ1, κ2 and κ3, as is shown in figure 3.7. The
curvature of this circular mirror, which we denote as δ, can be shown to be equal to
the quantity

δ κ κ κ κ κ κ= + +1
2

. (3.3)1 2 2 3 3 1

In the case of Ford–Apollonian gaskets, where the quadruple of curvatures is
κ κ κ{ , , , 0}c R L , the curvature of the mirror simplifies down to δ κ κ= L R .
Before discussing the kaleidoscopic effect in Apollonian gaskets and its relation to

butterfly nesting, we shall briefly review the geometric operation called inversion,
which can be thought of as reflection in a circle. Just as ordinary reflection exchanges
what is on the two sides of the mirror, inversion in a circle maps everything in the
circle’s interior to its exterior, and vice versa—that is, inversion exchanges what is on
the two sides of the “mirror”.

Three key properties of inversion are:
• Circularity is preserved (i.e. circles are carried into circles).
• Tangency is preserved.
• Any circle orthogonal to the “mirror” maps exactly onto itself. (This happens
not because each point on the given circle is individually preserved, but
because the two arcs that together make up the given circle—one inside the
“mirror” and one outside of it—are mapped onto each other.)

Figure 3.6. Here we display the relationship between the flux-values at the center and the edges of the butterfly,
the curvatures κi , with =i 0, 1, 2, 3, of the corresponding , and the quadruple of integers l k m n{ , , , }.
Note that the radius (that is, the inverse of the curvature) of the outermost circle of the that represents a
butterfly is equal to the horizontal size ϕΔ of the butterfly.
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All these properties of inversion are visible in figure 3.7, where both the object
circle (outermost red circle) and its reflected image (innermost red circle) are tangent
to the same set of three black circles, and where each of the three circles remains
invariant under inversion in the dotted (blue) circle [2].

3.2.2 How nested butterflies are related to kaleidoscopes

In our discussion of butterfly hierarchies, the kaleidoscopic aspect of Ford–
Apollonian gaskets (figure 3.7(b)) takes on a special new meaning, as the object
and the mirror represent two successive generations of a butterfly. From our
discussion in chapter 2, we know that the object and the mirror in figure 3.7(b)
can be identified as κ− and κ+, which correspond to the curvatures of the Ford circles
representing two successive levels of butterfly centers:

κ κ κ κ

κ κ κ κ

= + ≡

= − ≡ −

+

−

( )
( )

l

l

( )

( 1).

L R c

L R c

2

2

In terms of butterfly coordinates, the ratio of the object and the image for the
Ford–Apollonian gasket becomes:

⎛
⎝⎜

⎞
⎠⎟

κ
κ

=
+
−

+

−

q q

q q

1

1
. (3.4)R L

R L

2

Figure 3.7. This figure shows the kaleidoscopic nature of Apollonian gaskets, where the outermost and the
innermost circles (shown in red) are mirror images of each other, reflected through the (blue) circle that passes
through the three tangency points of the three other circles. The figures on the left and right show, respectively,
Descartes configurations of types b( ) and c( ), discussed earlier, in chapter 2.
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The corresponding ratio for the that is related to the above Ford–
Apollonian gasket by a duality transformation is given by:

κ
+
−

=
+ +

= + +k q q q q

q q

q

q

q

q
( )
( )

7 4 4
7 . (3.5)L R L L

L R

L

R

R

L

0

0

2 2

In general, the ratios κ
κ
+
−
and

κ
+
−

k ( )
( )

0

0
are not equal. For example, for the diamond

hierarchy, which is the most dominant hierarchy in the butterfly landscape,
→ 3

q

q
R

L
(see equation (2.14)).

κ
κ

κ
κ

→ + = +

→ +

+

−
+

−

( )7 4 3 2 3

7
4

3
.

2

0( )

0( )

Therefore, although κ
κ
+
−
gives the correct scaling for the magnetic flux interval for the

diamond hierarchy, its corresponding does not.
However, in chapter 2, it was shown that the scaling ratio for the diamond

hierarchy is described by an that asymptotically has trefoil symmetry. Figure 3.8
shows an example of a butterfly Apollonian gasket (a Ford–Apollonian gasket), its
corresponding , and also its trefoil-symmetric partner, which encodes its nesting
property, as described in chapter 2.

Intriguingly, the two Apollonian gaskets shown on the bottom left of figure 3.8
are intimately related. We shall now discuss this correspondence for the diamond
hierarchy.

3.2.3 and trefoil symmetry

Given a butterfly represented by κ κ κ{ , , , 0}c R L and its dual partner κ κ κ κ{ , , , }0 1 2 3 ,
there exists another Apollonian gasket that encodes the nesting characteristics of
the butterfly. This “conjugate” Apollonian gasket, which we will denote by

κ κ κ κ−{ , , , }s s s s
0 1 2 3 will be referred to as the symmetric-dual Apollonian gasket

associated with the butterfly. For the diamond hierarchy, it is as follows:

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠κ κ κ κ κ κ κ κ κ κ κ− = − + + + + d, , , ,

2
,

2
,

2
(3.6)s s s s

0 1 2 3 0
1 2 1 2 1 2

⎛
⎝⎜

⎞
⎠⎟= −

+ + +
+q q

q q q q q q
d,

( )

2
,

( )

2
,

( )

2
(3.7)L R

L R L R L R
2 2 2

where = −
d

q q3

2
L R
2 2

. Here, d reflects a deviation from perfect trefoil symmetry and is
invariant for a given “set of zooms” corresponding to different generations of the
butterfly. Since →d 0 asymptotically (as q

q
R

L
approaches 3 in the diamond hierarchy),

we see that these Apollonian gaskets evolve towards perfect trefoil symmetry.

Clearly, the ratio
κ

+

−

k ( )

( )

s

s
0

0
determines the scaling ratio for the diamond hierarchy, as

we saw earlier in equation (2.16). Therefore, for a given butterfly characterized by a
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Farey triplet ( , , )P
Q

P
Q

P
Q

c

c

L

L

R

R
, and its associated κ κ κ κ−( , , , )0 1 2 3 , the size of the

next-generation butterfly for the diamond hierarchy is determined not by the mirror
image of the dual, but by its close cousin—the symmetric-dual Apollonian. In other
words, the parent butterfly “rejects” the mirror image of its dual to describe
the next-generation daughter butterfly. Instead, it “chooses” the with the
highest form of symmetry possible for an —namely, trefoil symmetry.

The example below (see figure 3.9) illustrates the phenomena described above,
explicitly elucidating the relationship between the representing the butterfly
and its trefoil-symmetric partner. We consider the diamond hierarchy as we

Figure 3.8. The upper figure shows the Ford-circle representation of the butterfly centered at flux-value 3/8.
Reflection of the red circle in a circular mirror (dotted) gives another circle (blue), and of course reflecting the
blue circle yields the red circle. The figure on the lower left shows the corresponding dual Apollonian gasket.
The figure on the lower right is the trefoil-symmetric partner of the Apollonian gasket −( 15, 24, 40, 49), with
curvature 4-vector −( 15, 32, 32, 33). The two partners have the same curvature value for their outermost
circles (red) and in addition, their inner circles (shown in blue and green) obey the relation κ κ κ κ+ = +s s

1 2 1 2 .
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zoom into the butterfly sequence in magnetic-flux intervals → → …[ , ] [ , ]0
1

1
1

1
3

2
5

(see
figure 3.5). The equations below list the corresponding dual and also the
symmetric-dual :

→ −
→ − → −
→ − → −
→ − → −

(0 1, 1 2, 1 1) ( 1, 2, 2, 3)
(1 3, 3 8, 2 5) ( 15, 24, 40, 49) ( 15, 32, 32, 33)

(4 11, 11 30, 7 19) ( 209, 330, 570, 691) ( 209, 450, 450, 451)
(15 41, 41 112, 26 71) ( 2911, 4592, 7952, 9633) ( 2911, 6272, 6272, 6273).

By referring back to the four distinct sequences of butterflies that all belong to the
diamond hierarchy (as shown in figure 2.13 in chapter 2), readers can check that

their symmetric-dual is the quadruple − +q q d{ , , , }
q q q

2 2 2L R
c c c
2 2 2

, where d
quantifies the deviation from perfect trefoil symmetry. Although d takes on different
values—namely, 1, 11, 3 and 13 in these four cases (table 3.1)—it approaches a limit
as one zooms further and further into the butterfly. In other words, κ s

3 differs from
κ κ=s s

1 2 by a constant, irrespective of the butterfly generation. This implies that all
such configurations evolve towards exact trefoil symmetry, satisfying the relations

= −
d

q q3

2
L R
2 2

or
−q q3

2
R L
2 2

and κ κ κ κ= = +( )/2s s
3 4 2 3 , as described in equation (3.7).

These equations illustrate an important point regarding —namely, given a
butterfly and its representation as a Ford–Apollonian gasket, there exists a unique
pair of s: the dual of the Ford–Apollonian gasket and its corresponding
symmetric partner defined by equation (3.7). We emphasize again that has

Figure 3.9. Evolution of Apollonian gaskets having approximate trefoil symmetry, and tending asymptotically
towards perfect trefoil symmetry, showing how they shed light on the diamond hierarchy. The relation
κ κ κ κ+ = +s s

1 2 1 2 is satisfied at all levels of the hierarchy.
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been rigorously established for butterflies whose centers lie on the symmetry axis, E
= 0. These butterflies are related by a duality transformation to the subset of the
infinite family characterized by outermost circles whose curvatures are odd
integers. A deeper understanding of this relationship and its extension to off-
centered butterflies remains elusive and is a work in progress.

We close this section by pointing out that the trefoil symmetry hidden in the
butterfly scaling reveals nature’s attempt to restore a left–right symmetry to all the
butterflies in the landscape. The broken symmetry of butterflies, whose origin lies in
the fact that ≠q qL R, is asymptotically recovered as we zoom more and more deeply
into these butterfly hierarchies. The curvatures of the circles that make up the
Apollonian gaskets representing the nested butterflies are given by the symmetrization
of qL and qR (as can be seen in equation (3.7)). This is another example of the many
types of mathematical magic that can be found in the Hofstadter landscape.

Table 3.1. Three levels of four hierarchies a, b, c and d displayed in figure 13 of chapter 2, labeled here by
κ κ= −d s s

1 (which does not depend upon l). We note that κ l( )s
0 and κ+ l( )s are mirror images and the

kaleidoscopic relation between two consecutive generations, where κ l( )0 and κ +l( 1)0 are also mirror images,
is obeyed, since κ = ++ l k l( ) ( 1)s

0 (highlighted in red). This table illustrates the universality as the scaling ratio

ϕR (shown in bold) converges to a constant value = +13.93 .. (2 3 )2. Also see table 2.1 in chapter 2.

l ( ), ,
p

q

p

q

p

q
L

L

c

c

R

R

κ κ κ κ κ− +( , , , , )0 1 2 3 κ κ κ κ κ− = =ϕ
κ
κ

κ
κ+

++R( , , , , ),s s s s s l

l

l

l0 1 2 3
( )

( )

( 1)

( )

s

s
0

0

0

(a) =d 1

1 ( ), ,0
1

1
2

1
1

(−1, 2, 2, 3, 15) (−1, 2, 2, 3, 15), 15

2 ( ), ,1
3

3
8

2
5

(−15, 24, 40, 49, 241) (−15, 32, 32, 33, 209), 13.93

3 ( ), ,4
11

11
30

7
19

(−209, 330, 570, 691, 3391) (−209, 450, 450, 451, 2911), 13.93

(b) =d 11

1 ( ), ,2
7

3
10

1
3

(−21, 30, 70, 79, 379) (−21, 39, 50, 50, 299), 14.23

2 ( ), ,7
23

11
36

4
13

(−299, 468, 828, 997, 4885) (−299, 637, 648, 648, 4165), 13.93

3 ( ), ,26
85

41
134

15
49

(−4165, 6566, 11390, 13791,
67637)

(−4165, 8967, 8978, 8978, 58011), 13.93

(c) =d 13

1 ( ), ,2
5

5
12

3
7

(−35, 60, 84, 109, 541) (−35, 72, 72, 85, 493), 14.09

2 ( ), ,7
17

19
46

2
29

(−493, 782, 1334, 1623, 7971) (−493, 1058, 1058, 1071, 6867), 13.93

3 ( ), ,26
63

71
172

45
109

(−6867, 10836, 18748, 22717) (−6867, 14792, 14792, 14805, 95645), 13.93

(d) =d 3

1 ( ), ,1
5

3
14

2
9

(−45, 70, 126, 151, 739) (−45, 95, 98, 98, 627), 13.93

2 ( ), ,4
19

11
52

7
33

(−627, 988, 1716, 2077,
10189)

(−627, 1349, 1352, 1352, 8733), 13.93

3 ( ), ,15
71

41
194

26
123

(−8733, 13774, 23862, 28903,
141811)

(−8733, 18815, 18818, 18818, 121635), 13.93

Butterfly in the Quantum World

3-12



3.3 Beyond Ford Apollonian gaskets and fountain butterflies
The red-framed entries in table 3.1 show duals of the Ford–Apollonian gaskets that
map to butterfly configurations described by the Ford circles. They constitute only a
subset of the entire set of s. Furthermore, Ford–Apollonian gaskets themselves
describe only some of the butterflies in the full Hofstadter landscape. Below, we
describe some other parts of the butterfly plot that can be related to various members
of the family. The ultimate question of whether one can associate each and
every butterfly configuration with an remains an open challenge.

We recall that Ford–Apollonian gaskets correspond to butterfly configurations
whose centers and edges obey the Farey triplet rule. It appears, however, that the fine
structure at the center and the boundaries of every one of these butterflies can be viewed
as a hierarchy of different kinds of butterflies that do not follow the Farey triplet rule.

A close inspection of the Hofstadter landscape suggests that the entire butterfly
graph can be viewed as consisting of two distinct classes of butterflies. This
distinction is illustrated in figure 3.10. Depending on whether a given butterfly’s

Figure 3.10. The upper two graphs show -type butterflies (red), whose four wings kiss at ϕ = 1/2, and -type
butterflies, also called “fountain butterflies” (blue), whose four wings cross at ϕ = 1/2. In the graph on the
right, the two pairs of wings are displaced in energy. The lower graph displays -type butterflies (pink), whose
four wings kiss at ϕ = 1/4 and ϕ = 3/4, and -type butterflies (blue) centered at ϕ = 1/2, illustrating the fact
that fountain butterflies can be viewed as a continuation in the magnetic flux ϕ of -type butterflies.
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wings kiss or cross, we will say that the butterfly belongs to the “kissing type” or
“ -type” (shown in red), or to the “crossing type” or “ -type” (shown in blue).
Only the -type butterflies obey the Farey triplet rule. -type butterflies, which we
will also call fountain butterflies, appear to map onto non-Ford–Apollonian gaskets.

Figure 3.11 shows some examples of fountain butterflies. As can be seen in figure
3.10, fountain butterflies are a continuation of the kissing butterflies as one varies ϕ.
Without going into further detail, we simply mention that chapter 10 will present a
topological labeling of the gaps that provides a quantitative way of distinguishing
-type butterflies from -type butterflies. Incidentally, it is not necessary to view the

butterfly landscape as consisting of two types of butterflies. The -type alone is
sufficient to describe the butterfly fractal, since fountain butterflies can be regrouped
by ripping apart their four wings, so that they become part of the -type structures
that are off-centered.

Figure 3.11 shows fountain butterflies centered at ϕ = 1/2 with E = 0 or at Emax or
at Emin and their corresponding s. The actual process involved in identifying a
given butterfly with the appropriate Apollonian gasket is rather straightforward for

Figure 3.11. Two examples of the mapping between fountain butterflies and integral Apollonian gaskets.
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-type butterflies, as they are described by Ford circles. For -type butterflies,
however, we do not know a precise rule that defines the mapping. The key point is that
-type butterflies are continuations of -type butterflies, as can be seen in the butterfly

graph. A clear rationale for defining the fountain butterflies is tied to the topological
aspects of the butterflies. As will be shown in chapter 10, every butterfly can be
associated with a set of gaps determined by the flux value that defines the center of the
butterfly and whose topological labeling is controlled by the main butterfly.

Below we summarize some key facts of the fountain butterflies.
• Hierarchical fountain butterflies at E = 0 are believed to be related to the
sequence − + + +n n n n( 4 , 4( 1), ( 2) , ( 2) )2 2 of s—the sequence that
begins with the Ford circle that determines the center of the butterfly. Figure
3.11 shows the and its dual for n = 1.

• Analogously, the fountain butterflies at the upper and lower boundaries
appear to be related to the sequence − + + +n n n( (2 1), (2 3), 2( 1) ,2

+n2( 1) )2 . The and its dual that corresponds to the n = 1 sequence
is shown in figure 3.11.

• We note that both sequences mentioned above have outer circles whose
curvatures are either even or odd integers and which encode the topological
numbers of the gaps that form these fountains. (See figure 10.6 in chapter 10.)

In conclusion, various results described above point toward a deep and beautiful
link between the Hofstadter butterfly and the infinite family of integral Apollonian
gaskets. Among many other things, nature has found a way to use beautiful
symmetric integral Apollonian gaskets in the quantum mechanics of the two-
dimensional electron gas problem. Clearly, the preceding discussion has raised
many more questions than it has answered. Finding a systematic mathematical
framework that relates the Hofstadter landscape to the set of s is a work in
progress, and we hope eventually to solve this problem.

I hope that posterity will judge me kindly, not only as to the things which I have
explained, but also as to those I have intentionally omitted so as to leave to
others the pleasure of discovery.

— René Descartes

Appendix: Quadratic Diophantine equations and s
An is an integer wonderland that has intricate rules for admitting which
integers belong to the set. The rules and regulations determining who is and who is
not allowed entry into this exotic fractal land make for a fascinating topic. However,
delving into such matters here would carry us too far afield; instead, we refer
interested readers to the relevant literature. Rather, our focus here is to discuss the
relationship between s and the butterfly fractal, while not worrying too much
about the kind of rigor that mathematicians prefer. Below we state the rules that
determine these Apollonian gaskets.
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The following simple quadratic equation involving four non-negative integers
l k n, , , and m [3] determines all integral Apollonian gaskets:

+ =l m kn. (A.1)2 2

Here, l k n m{ , , , } is an irreducible quadruple of non-negative integers, with
⩽ ⩽m k n2 and ⩾l m3 . (By “irreducible” is meant that these numbers have no

common factor.) These four integers are related to the quintet of curvatures κi,
with i running from 0 through 4, in the following way:

κ κ κ κ κ= = + = + = + + − = + + +l l k l n l k n m l k n m; ; ; 2 ; 2 .
(A.2)

0 1 2 3 4

The above set of linear equations relating the ki (with i running from 0 to 3)
with the four integers l k n m{ , , , } can be expressed more compactly as a matrix
equation:

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

κ
κ
κ
κ

=

−

≡ ˆ
l
k
n
m

L
l
k
n
m

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 2

. (A.3)

0

1

2

3

Here κ0 is the curvature of the outer bounding circle. We remind readers that the
curvature κ0 is positive. However, it must be taken with a negative sign when one is
using Descartes’ theorem.

Conversely, given the four curvatures κi, with i running from 0 to 3, the four
integers l k n, , , and m can be calculated as follows:

κ κ κ κ κ κ κ κ κ= = − = − = + − −l k n m; ; ; 2 . (A.4)0 1 0 2 0 1 2 0 3

The quadruple of integers l k n m{ , , , } is a good alternative to the quadruple of
curvatures κ κ κ κ{ , , , }0 1 2 4 as a label that uniquely identifies an Apollonian gasket.
For a geometrical interpretation of these integers, we refer readers to the paper by
Kocik [3].
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In many years, flu sweeps the world. The actual strain varies from year to year;
some years it has been Hong Kong flu, some years swine flu. In 1981, it was the
almost periodic flu.

—Barry Simon

This chapter transports readers to another wonderland—the landscape of quasiperi-
odic or almost-periodic patterns. These non-repeating patterns are intimately related
to the butterfly’s fractal aspects. However, our aim here is broader—namely, to
provide an introduction to the subject of quasiperiodicity and quasicrystals, thus
taking a little detour in our journey, and revealing a world that possesses a new type
of order, in spite of the lack of periodicity.

4.1 A tale of three irrationals
1. One of the most famous of all integer sequences is the Fibonacci sequence

…0, 1, 1, 2, 3, 5, 8, 13, 21, 34, , defined by two very simple initial condi-
tions and a recursion relation:

= =F F0; 1 (4.1)0 1

= ++ −F F F . (4.2)l l l1 1

The ratios of successive terms of the Fibonacci sequence converge to the
golden mean:

= + = …
→∞

+F
F

lim
1 5

2
[1; 1, 1, 1, 1, ]. (4.3)

l

l

l

1

The first person to study this sequence extensively was the Italian
mathematician Leonardo of Pisa, more often called Leonardo Fibonacci,
in the early 13th century, although the first several terms of the sequence had
been known for centuries in India, thanks to their connection with Sanskrit
versification. Among those who had commented on the sequence was
the scholar Acharya Hemachandra, a poet and polymath who wrote on
philosophy, history, grammar, and prosody1. For this reason, the Fibonacci
numbers are also sometimes known as the Hemachandra–Fibonacci
numbers.

The even entries in the Fibonacci sequence— …0, 2, 8, 34, 144, (which
we denote as F )l

e —appear every third term, and they satisfy the following
recurrence relation:

1 The Fibonacci sequence turned up in Indian mathematics (around 200 BC) in connection with the Sanskrit
tradition of prosody. It was of interest to scholars of Sanskrit to enumerate all patterns composed of long
syllables, lasting two time units, and short syllables, lasting just one time unit. Counting the number of
different patterns of 2’s and 1’s adding up to a given total time-length yields the Fibonacci numbers. In the
West, the Fibonacci sequence first appears in the book Liber Abaci by Leonardo of Pisa, also known as
Leonardo Fibonacci, in a study of rabbit breeding.
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= ++ −F F F4 . (4.4)l
e

l
e

l
e

1 1

The ratios of successive terms of this sequence converge to a limit, as follows:

⎡
⎣⎢

⎤
⎦⎥= + = + = …

→∞

+F

F
lim 2 5

1 5
2

[4; 4, 4, 4, 4, 4, ]. (4.5)
l

l
e

l
e
1

3

This limiting ratio, the irrational number +2 5 , is a close cousin of the
golden mean, and is sometimes referred to as the fourth metallic mean.

2. A sequence similar to the Fibonacci sequence is given by the recursion relation

P P P= ++ −2 , (4.6)l l l1 1

using the initial conditions

P P= =1, 2, (4.7)0 1

to get it off the ground. These numbers are called the Pell numbers, named
after the English mathematician John Pell, and they start out

…1, 2, 5, 12, 29, 70, 169, , alternating between odd and even integers.
The ratio of consecutive Pell numbers tends to the so-called silver mean,

+1 2 , whose continued fraction is …[2; 2, 2, 2, 2, ]. Thus,

P P P
P

P
= + = + = …

→∞
+ −

+2 , lim 1 2 [2; 2, 2, 2, 2, ]. (4.8)
l

l l l
l

l
1 1

1

3. In our exploration of the butterfly hierarchy in the previous chapter, we came
across a sequence of integers that obeyed the following recursion relation,
and whose terms’ ratios had the following limit:

D D D
D

D
= − = + = …

→∞
+ −

+4 , lim 2 3 [3; 1, 2, 1, 2, 1, 2, ]. (4.9)
l

l l l
l

l
1 1

1

In analogy to the previously discussed limits of ratios of recursively defined
integer sequences, we will refer to +2 3 as the diamond mean.

Quadratic irrational numbers such as the foregoing three—the golden mean, the
silver mean, and the diamond mean—are examples of what are known as Pisot–
Vijayaraghavan numbers, or “PV numbers”, for short. A PV number is a quadratic
irrational (the solution to a quadratic equation with rational coefficients) that has
the property that the product of the number itself with its quadratic conjugate
(obtained by changing the sign of the square root) is equal to ±1. A quadratic
irrational always has the property that the sequence of denominators in its simple
continued fraction is periodic, as we have already noted for +1 2 , the golden ratio

+1 5
2

, and so forth.
Here is a summary of some of the number-theoretical properties of these special

quadratic irrationals:
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• the diamond mean, +2 3 , is a solution of − + =x x4 1 02 , and its
continued-fraction expansion is …[3; 2, 1, 2, 1, ];

• the golden mean, +1 5
2

, is a solution of − − =x x 1 02 , and its continued-
fraction expansion is …[1; 1, 1, 1, 1, ]. Closely related to this is the fourth
metallic mean, +2 5 , which is a solution of − − =x x4 1 02 , and whose
continued-fraction expansion is …[4; 4, 4, 4, 4, ].;

• the silver mean, +1 2 , is a solution of − − =x x2 1 02 , and its continued-
fraction expansion is …[2; 2, 2, 2, 2, ].

In our discussion of the butterfly hierarchies in chapter 2, the relation
D D D= −+ −4l l l1 1 emerged as the key recursion determining the numerators as
well as the denominators of the flux values corresponding to the centers and left and
right edges of central butterflies. (See equations (2.10)–(2.12).) That is, the sequences
of integers D = p l q l( ), ( )l x x —the numerators and denominators of the rational

numbers
p l

q l

( )

( )
x

x
, where =x C L R, , —determine the magnetic flux values (ϕ) of the

center, left edge, and right edge of the infinitely nested butterflies. Here the subscript
l labels the lth generation, or the “zoom”, of the butterfly.

It turns out that self-similar fractal hierarchies are described by irrational
numbers with periodic continued-fraction expansions. In fact, in describing the
phenomenon of asymptotic self-similarity, all that matters is the tail of the
continued-fraction expansion. Therefore, associated with the golden, silver, and
diamond means, there are three classes of irrational numbers, which we will denote
by ζ ζ,1,2 1, and ζ2, respectively:

ζ ≡ … …n n[ , , ,2, 1, 2, 1, 2, 1 ] (4.10)1,2 1 2

ζ ≡ … …n n[ , , ,1, 1, 1, 1 ] (4.11)1 1 2

ζ ≡ … …n n[ , , ,2, 2, 2, 2 ]. (4.12)2 1 2

Here …n n, ,1 2 can be any positive integers; they form the initial entries of the
continued-fraction expansion but they are irrelevant to the asymptotic scaling
properties. This was illustrated in chapter 2, where we saw that the butterfly
hierarchies were described by the scaling ratio equal to the diamond mean, for
the entire set of fixed-point (asymptotic) butterflies centered at ϕ ζ=*

c 12 (see table 2.1).

Aperiodic sequences and the discovery of the Hofstadter butterfly

Taking a historical perspective for a moment, we note that aperiodic sequences played
a central role in the discovery of the Hofstadter butterfly. Linked to the tales of our
three irrationals is the tale of what Douglas Hofstadter dubbed “η-sequences” when he
first came across them in early 1961, and whose nature he explored for years thereafter.
As he states in the prologue—“The grace of Gplot”—it was η-sequences that launched
his study of certain areas of number theory in the 1960s. Because Hofstadter was
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plunged for so long into the study of η-sequences and related phenomena, especially
certain self-similar two-dimensional graphs that very naturally came out of them, he
developed a deep intuition for these things, and that intimacy was what allowed him to
make his discovery of the butterfly and its recursive structure. And as we will see in
chapter 10, for irrational magnetic flux values, the quantum numbers associated with
the bands of the butterfly fractal are examples of η-sequences.

4.2 Self-similar butterfly hierarchies
To describe the self-similar properties of the butterfly fractal, we now proceed to
determine the relationships between the butterfly and various quadratic irrationals.
It will be useful to keep in mind the following important points related to the
emergence of the diamond hierarchy as described in chapter 2:

• The diamond-mean scaling and the recursion relation given in equation
(4.9) emerged from two types of tangency conditions—namely, the “inter-
kiss precise” and “intra-kiss precise” conditions—when we examined the
relationship between equivalent sets of butterflies obtained by zooming
inwards in the original landscape. This set was found to correspond to a
fixed path in the Farey tree, described by the symbol sequences “LRL” or
“RLR”.

• The nested sets of butterflies converged to a single center at ϕ*
c , corresponding

to the even-numbered rational approximants of ζ1,2, shown in table 2.1.

Two very natural analogous questions that we now address are: are there similar
butterfly hierarchies that are related to other quadratic irrationals, such as the
golden and silver means, and how do we track them?

To construct a hierarchy characterized by a given quadratic number, we follow
these three rules:

(1) The rational approximants to a quadratic irrational having even denom-
inators = …f l l( ), 1, 2, 3c are the fractions located at the centers of the
butterflies.

(2) For each center fc(l ), there exists a unique pair of fractions ( f l f l( ), ( )L R )
(with odd denominators), which give the left and the right edges of the
butterfly. These fractions are also the left and right neighbors of fc(l ) in the
Farey tree.

(3) The butterfly spectrum in the flux interval ϕ⩽ ⩽f l f l( ) ( )L R is obtained
numerically, where the energy interval is fixed by the central band of fL.

Figure 4.1 shows three levels of the butterfly hierarchy for the diamond, silver,
and golden means, and table 4.1 summarizes their key characteristics. Figure 4.2
shows Ford-circle representations of the magnetic-flux intervals for these hierarchies.
A graphical illustration of the Farey sums that yield these nested sets of butterflies is
shown in figure 4.3.

As we zoom into any given butterfly, we will find inside it a nested set of
butterflies. The nesting relations between various generations of the butterfly
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depend on the type of hierarchy. For all hierarchies, the triplet ϕ ϕ ϕ( , , )L c R is a
friendly triplet—that is, any two members of this triplet are Farey neighbors—but
different hierarchies have different relationships between two successive gener-
ations of butterflies. In our studies of three different hierarchies, which we have
called the “diamond”, “golden”, and “silver” hierarchies, we have noted the
following facts:

1. In the diamond hierarchy, the center of the lth generation butterfly is friendly
with both the left and the right edges of the +l 1st generation butterfly, and

Figure 4.1. Butterfly plots for three levels of the diamond (red), silver (blue), and golden (green) hierarchies,
where the uppermost graph (black) shows the first level of all three hierarchies (with the short horizontal lines
indicating the sites of zooming-in). Close inspection of both the vertical scale (energy) and horizontal scale
(flux) shows that ζ1,2 is the dominant hierarchy, where the scale factors along the energy axis are approximately
10, 38, and 142, for the diamond and the golden hierarchies. The corresponding scale factors along the flux axis
are (3.73) , (5.83)2 2 and (4.24)4. (Also see table 4.1.) We note that the need to square the scale factors for the
golden case is due to the flipping of the left and right edges between two successive generations.
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their corresponding Ford circles kiss. In addition, the left (or right) edge of
the lth generation is friendly with the left (or right) edge of the +l 1st
generation, with kissing Ford circles.

2. In the golden hierarchy, the center of the lth generation butterfly is friendly
with both the left and the right edges of the +l 1st-generation butterfly, and

Table 4.1. Comparing the scaling ratios ϕR and RE for three quadratic values of the flux, whose even-
denominator approximations are the centers of the butterfly. Each of these three quadratic values represents
the scaling of an infinite set of irrational numbers whose continued-fraction expansions all share the same tail,
each associated with its unique Farey path.

ϕ*
c

Recursion relations for
≡q p s,x x

Farey
pathway ϕR ≈ RE

ζ1,2 = … …[ 1, 2, 1, 2 ] + = − −s l s l s l( 1) 4 ( ) ( 1) LRL + =2 3 3.73205 10

ζ1 = … …[ 1, 1, 1, 1 ] + = + −s l s l s l( 1) 4 ( ) ( 1) LRLRLR =+( ) 4.23606831 5
2

14

ζ2 = … …[ 2, 2, 2, 2 ] + = − −s l s l s l( 1) 6 ( ) ( 1) LRRL + =(1 2 ) 5.828432 38

Figure 4.2. The images on the left, center, and right, respectively, show Ford-circle representations of the
diamond, silver, and golden hierarchies. In each case, the circles represent the center, left, and right edges of
the butterfly, corresponding to three levels, shown in black, blue, and red, respectively. The figure shows the
flipping of the butterfly between successive levels for the golden hierarchy. Furthermore, in the silver hierarchy,
the Ford circles for two consecutive generations do not form a close-packing of circles.
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their corresponding Ford circles kiss. However, the left (or right) edge of
the lth generation is friendly to the right (or the left) edge of the +l 1st
generation with kissing Ford circles.

3. In the silver hierarchy, the center of the lth generation butterfly is friendly
with both the left and the right edges of the +l 1st generation butterfly, and
their corresponding Ford circles kiss. However, neither the left nor the right
edge at the lth generation is friendly with the edges of the +l 1st-generation
butterfly.

Therefore, the simplest and most dominant hierarchy appears to be the
diamond hierarchy, defined by the shortest possible Farey pathway—“LRL”.

Figure 4.3. Farey paths and butterfly intervals for the diamond, silver, and golden hierarchies. The butterfly
edges and centers obtained using Farey sums are explicitly shown. In the diamond hierarchy shown here, the
butterfly edges and centers always converge towards the left, while in the golden hierarchy they oscillate, as is
shown by the dashed lines connecting the butterfly centers (circled-ϕ values). This leads to flipping of the
butterfly between successive levels, for the golden hierarchy, as is shown in figure 4.1. The black lines
connecting Farey neighbors show Farey paths that can be symbolically represented using Ls and Rs. The figure
shows three different hierarchies corresponding to different sequences of Ls and Rs. More generally, any
butterfly hierarchy corresponds to a sequence of Ls and Rs.
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4.3 The diamond, golden, and silver hierarchies, and
Hofstadter recursions

In his thesis and his Physical Review article [1], Douglas Hofstadter, in order to
explain the nature of the infinite nesting of the butterfly inside itself, defined families of
what he called “cells”, “subcells”, “subsubcells” (etc), and gave equations connecting
the “inner variable” of any subcell with the “outer variable” of the cell containing it
(see chapter 2). With the aid of these recursion relations, he was able to explain the
hierarchical clustering-pattern of bands for any flux-value ϕ (see chapter 6), even
including the Cantor-dust spectra belonging to irrational values of ϕ.

Here we will exploit Hofstadter’s recursions to illustrate the self-similar scaling
properties of various hierarchies (such as the diamond, silver, and golden hierarchies
discussed above). In other words, we will solve for the fixed points of these
recursions, as well as the scaling ratios ϕR that characterize the scaling along the
ϕ-axis of the butterflies making up various hierarchies. Although establishing an
equivalence between Hofstadter’s recursions involving continuous variables and this
chapter’s integer recursions using s-values (the numerators p and denominators q
of the edges and centers of butterflies making up a given hierarchy, as shown in
table 4.1) remains an open problem, both ways of looking at the phenomenon lead
to the scaling behavior described above.

The trajectories of the flux-values ϕl connecting two successive generations of
butterflies fall into two distinct categories of C and L cells. Since here we are
focusing on central butterflies—namely, those butterflies whose centers are located
on the line E = 0—we will first discuss the recursions for the C-subshells . As is stated
below, the ϕ trajectories or recursions are sensitive to the relative location of ϕ +l 1
with respect to the “butterfly center” at generation l. Consequently, the prescription
for describing the golden hierarchy, where centers of the butterflies at various
generations follow a zigzag pattern, oscillating to the left and to the right (as can be
seen in figure 4.3), differs from the rules for the diamond and silver hierarchies,
where the butterfly centers at all generations are located to the left of the centers
from the previous generation.

Without further ado, here is Hofstadter’s rule relating the local variables for two
C-cells belonging to successive generations:

C-cells

ϕ =
++

ϕ̄

,1

2l
l

1 1 if ϕ +l 1 is to the left of the butterfly center of generation l, and

ϕ− =
++

ϕ̄

1 ,1

2l
l

1 1 if ϕ +l 1 is to the right of the butterfly center of generation l.

Here, ϕ ϕ ϕ ϕ ϕ¯ = ¯ + ¯ ≡ ¯ +[ ] { } [ ]l l l l l, where the notations “ x[ ]” and “ x{ }” denote
the integer part and the fractional part of an arbitrary real number x,
respectively.

If we denote the integer part of ϕ̄[ ]l by N, we obtain the CN cells shown in
figure 4.4. To describe the diamond, silver, and golden hierarchies, we consider two
distinct cases.
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1. For butterflies whose centers remain on the same side for all generations,
such as the diamond and the silver hierarchies, the ϕ recursion relation is:

ϕ

ϕ

=
+

+

+

N

1

2
1

. (4.13)l

l

1

To determine the asymptotic scaling for this subshell, we first solve the fixed-
point equation:

ϕ ϕ ϕ

ϕ

= = * =
+

+ *
+

N

1

2
1

.l l C

C

1 N

N

This is a quadratic equation, and it determines the fixed point ϕ*
CN
:

ϕ* = + −N N N2
2

.C

2

N

Figure 4.4. Partitioning of the butterfly landscape into various subcells as described by Hofstadter in his 1976
PhysicalReviewarticle [1].Figure adaptedwithpermission from [1] copyrightedby theAmericanPhysical Society.
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This irrational number ϕ*
CN

has the following period-2 continued-fraction
expansion:

ϕ* =
+

+
+

+ ⋯

≡ …

N

N

N N
1

2
1

1

2
1

[2, , 2, , ].CN

The asymptotic butterfly scaling between two successive generations is the
derivative of ϕ +l 1 with respect to ϕl, evaluated at ϕ*:

ϕ
ϕ

Δ
Δ

=
+ + +→∞ ϕ ϕ=

+

* ( )N N N
lim

1

1 2
. (4.14)

l 2
2

l

l

1

The N = 1 butterfly hierarchy is the most dominant CN hierarchy,
characterized by the least amount of shrinking of butterflies between
successive generations. Furthermore, the case N = 0 describes a set of
butterflies where successive generations always share their left edge. Such a
hierarchy of butterflies is characterized by the trivial scaling factor of unity.

2. When the centers of successive butterflies zigzag back and forth from left to
right (this case includes the golden hierarchy), then the ϕ recursion needs to
be modified as discussed above. Below, we illustrate this case for the golden
hierarchy, whose centers are given by ϕ = …1/2, 5/8, 21/34, 89/144,l .
Readers can easily see that this corresponds to ϕ ϕ¯ = +− −1l l2 1 2 1 and
ϕ ϕ¯ = − −2l l2 2 , resulting in the following recursions:

ϕ

ϕ

ϕ

ϕ

− =
+

+

=
−

+

−

+

1
1

2
1

1

1

2
1

2

.

l

l

l

l

2

2 1

2 1

2

The above equations can be rewritten as follows:

ϕ

ϕ

=
−

+ −

1

2
1

2

(4.15)l

l

2

2 1

ϕ

ϕ

=
−

+

+
1

2
1

2

. (4.16)l

l

2 1

2

The fixed-point equation ϕ ϕ ϕ= =→∞ − +
*liml l l g2 1 2 1 gives ϕ = −* 5 1

2g . This

gives ϕ ϕ= + =ϕ * **R (8 13)g g
2 6, in agreement with the result shown in table 4.1.
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The recursions for the rational ϕ = p
q

(as discussed by Hofstadter) and the

recursions for the associated integers p and q (discussed here and in chapter 2) yield
exactly the same scaling exponents for the butterfly.

And now here is Hofstadter’s rule connecting the local variables in L-cells that
belong to successive generations:

L-Cells

ϕ
ϕ

=
+ ++ N

1
2

.l
l

1

Its fixed point is ϕ* = ≡ + + + + …+ + − +
N N N N[ 2, 2, 2, 2, ]

N N( 2) 4 ( 2)

2L

2

N
. The

corresponding scaling exponent is determined by this equation:

ϕ
ϕ

Δ
Δ

= −
+ + + +→∞ ϕ ϕ=

+

* ( )N N
lim

4

2 ( 2) 4
. (4.17)

l 2
2

l

l

1

In parallel with our discussion for the C-cells, the recursion for the L-cells needs to
be modified when the butterfly centers zigzag back and forth.

4.4 Symmetries and quasiperiodicities
It turns out that these three quadratic numbers—the golden, silver, and diamond
means—are associated, respectively, with 5-fold, 8-fold, and 12-fold symmetries. An
illustration of this is given in figure 4.5. Note that these quadratic numbers are

Figure 4.5. With S a/ equal to (from left to right) the diamond mean, the silver mean, and the golden mean,
this figure shows regular polygons whose angles relate to the corresponding quadratic numbers. Here R is
the radius of the circumscribed circle, a is the length of the polygon’s side, and A is the polygon’s area. The
polygons have vertex angles of 30, 45, and 72 degrees respectively, or equivalently, π π,2

12
2
8
, and π2

5
radians.

This reveals the relationship between these quadratic irrationals and 12-fold, 8-fold, and 5-fold symmetries.
The diamond mean stands out here, because of the simplicity of its relationship to both A and R.
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related to the angles at the vertices of a regular pentagon, octagon, and dodecagon,
respectively. In the preceding discussion, we saw that 12-fold symmetry is the
dominant symmetry underlying the Hofstadter butterfly, and this intriguing result
seems to be related to the trefoil symmetry of an Apollonian gasket. In chapter 10,
we will see that these symmetries are also shared by the topological characterization
of the butterfly. The significance of this result remains elusive.

Quasiperiodic patterns associated with quadratic irrationals that underlie the self-
similar butterfly are examples of one-dimensional “quasicrystals”, a new kind of
crystalline structure that lacks the exact periodicity associated with classical crystal
lattices. Experimentally discovered in 1982, and honored with a Nobel Prize in
Chemistry in 2011, quasicrystals constitute a new paradigm at the frontiers of physics.

One-dimensional quasiperiodic patterns are projections of higher-dimensional
periodic lattices. Recent studies have argued that quasiperiodic systems possess
nontrivial topological properties, thanks to their relation to higher-dimensional
entities. In view of this connection between quasicrystals and higher-dimensional
structures, it is conceivable that the study of these sorts of mathematical objects may
have some bearing on other areas of physics, such as string theory [2].

In the appendix below, we give an overview of some of the properties of
quasicrystals, including a brief history of their discovery.

Appendix: Quasicrystals
Modern crystallography started in 1912, with the seminal work of Max von Laue,
who performed the first x-ray diffraction experiment [6]. The crystals von Laue
studied were ordered and periodic, and all the hundreds of thousands of crystals
studied during the 70 years from 1912 through 1982 were also found to be ordered
and periodic. From these observations emerged a paradigm that all crystals are
periodic, and this paradigm was accepted by the community of crystallographers and
by the scientific community in general.

Crystalline structures are in general characterized by sharp diffraction patterns
that reflect the crystal structure and its underlying symmetry. It was an (unproven)
assumption that the existence of sharp peaks in a diffraction pattern from any
material proved the crystalline nature of the material.

Diffraction patterns of crystals are periodic patterns in Fourier space, more
commonly known as “reciprocal space”. (See figure 4.6.) Reciprocal space is a
concept in crystallography that is invaluable for the interpretation of diffraction
patterns. While the atoms are located at sites belonging to the crystal lattice itself,
the reflections arising from certain atomic planes are located at sites belonging to the
reciprocal lattice. There is a fundamental and symmetrical duality that links the
crystal lattice and the reciprocal lattice.

If the structure of a crystal lattice is known, one can easily derive the possible
positions of reflections from it, and the Fourier transform of its electron density
(structure) gives us the intensities that one can expect to see in an experiment. This
technique for simulating diffraction patterns is very useful, as it allows physicists to
compare experimentally obtained patterns with theoretically predicted ones.
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In two-dimensional crystals, the only possible rotational symmetries are 2-fold,
3-fold, 4-fold, and 6-fold. Rotations of higher order (e.g. 5-fold, 7-fold, and so on)
are disallowed ([3]). Therefore, the diffraction patterns found in experiments should
reflect only these four basic symmetries.

Nonetheless, in the year 1982, the 70th anniversary of crystallography, Israeli
materials scientist Dan Schechtman discovered diffraction patterns having a 5-fold
symmetry, a pattern that was inconsistent with any known periodic lattice. In other
words, the systems he was studying defied the long-established canons of crystallog-
raphy that had been derived more than two centuries earlier, which restricted
crystalline symmetries to 2-fold, 3-fold, 4-fold, and 6-fold rotational symmetry axes.

This led to a paradigm shift at the frontiers of physics. The recently found
structures, soon christened “quasicrystals”, exhibited long-range order and sharp
diffraction peaks, despite the lack of a periodic lattice. In 1992, in order to include
quasicrystals, the International Union of Crystallography changed the definition of
a crystal, retaining only the criterion of an essentially sharp diffraction pattern.
Schechtman was awarded the Nobel Prize in Chemistry in 2011.

A.1 One-dimensional quasicrystals

The non-repeating sequences shown in figure 4.7 are examples of one-dimensional
quasicrystals. The sequence of B’s and S’s is perfectly ordered (predictable) but is
aperiodic. The same sequence can be obtained by projecting a regular two-dimensional
lattice onto a line. If the line is at an irrational slope that avoids any lattice plane, then

Figure 4.6. The birth of crystallography, in which scattered waves reveal periodic arrangements of atoms.
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the nearest lattice points projected onto the line will slice it into a quasicrystal
sequence. This is illustrated in figure 4.8.

A.2 Two-dimensional quasicrystals: Quasiperiodic tiles

Two-dimensional quasicrystals come in three varieties:
• octagonal quasicrystals, with local 8-fold symmetry;
• decagonal quasicrystals, with local 10-fold symmetry;
• dodecagonal quasicrystals, with local 12-fold symmetry.

Two-dimensional lattices whose diffraction patterns exhibit 8-fold, 10-fold, and
12-fold symmetry are shown in figure 4.9. These diffraction patterns encode the three

Figure 4.7. The figures inside the top and bottom boxes, respectively, show the construction of the Fibonacci
sequence (associated with the golden mean) and the analogous sequence associated with the diamond mean,
starting with the letters B and S. The figure illustrates an important distinction between the golden hierarchy and
the diamond hierarchy in the butterfly fractal. The ratio of the number of Ss to the number of Bs represents the
magnetic-flux values for the butterfly discussed above. We note that, unlike the golden-mean case, the diamond
hierarchy of the butterfly requires different initial conditions to generate the flux-values corresponding to the
center and to the left and right edges, as can be seen in the three rows on the right side of the figure.
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quadratic numbers discussed above, in the sense that they are characterized by wave
vectors that are collinear but are incommensurate in length. In other words, the ratio
of distances between the bright spots for the 5-fold lattice is equal to the golden
mean, while the analogous ratio in the 8-fold lattice is equal to the silver mean, and
in the 12-fold lattice it is equal to the diamond mean. The fact that πcos

Q
2 equals a

quadratic irrational only for =Q 5, 8, 10, and 12 distinguishes these three special
quadratic numbers from all other irrationals.

The only rotational symmetries that have been observed to date in real materials
are icosahedral, decagonal (or perhaps pentagonal), octagonal, and dodecagonal.
Analysis of quasicrystal tilings of the plane suggests that these may be the only
symmetries that support an ordered quasicrystalline phase.

Figure 4.8. The “slice-and-project” method for obtaining sequences associated with the golden mean. To do
this, one first draws a “slice” (a slanted line whose slope equals the chosen irrational number—say, the golden
mean), and then a second line parallel to the first one. The shaded gray region between the two slices encloses
some of the lattice points of the two-dimensional lattice. When perpendiculars are dropped from those lattice
points onto the lower slice, the “feet” (i.e., the red points thus created) form a non-repeating sequence of two
different-sized intervals, red representing “B” (for “big”) and black representing “S” (“small”). (Such a pattern
of letters, incidentally, forms an example of the η-sequences studied by Douglas Hofstadter.) Some of the lines
intersect the “real world”—that is, lattice sites of the two-dimensional crystal—thereby allowing observation of
the real quasiperiodic structure.
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A.3 A brief history of the discovery of quasicrystals

Figure 4.10 summarizes the history of this discovery in chronological order. To this
pictorial history, one should add the discovery of a natural quasicrystal in 2009.
Before 2009, all known quasicrystals were synthetic alloys produced in the
laboratory under controlled conditions, but in 2009, after a dedicated search, a
new mineral, icosahedrite (Al Cu Fe63 24 13), was found, which suggested that quasi-
crystals can form and remain stable under geological conditions [4]. However, how
icosahedrite was actually formed in nature remains an open question.

Quite surprisingly, aperiodic structures lacking the translational symmetry of
crystals have been known and admired for quite some time. Medieval Islamic
artisans developed intricate geometric tilings to decorate their mosques, mauso-
leums, and shrines. Some of these patterns, called girih tilings, appeared as early as
the 12th century AD [5].

The following excerpts from the 2011 Nobel Prize ceremony convey a sense of the
importance of the discovery of quasicrystals. Figure 4.10 gives a pictorial summary
of the discovery of quasicrystals.

A.4 Excerpts from the ceremony of the Nobel Prize in chemistry in 2011 [6]

For three millennia we have known that five-fold symmetry is incompatible with
periodicity, and for almost three centuries we believed that periodicity was a
prerequisite for crystallinity. The electron diffraction pattern obtained by Dan
Shechtman on April 8, 1982 shows that at least one of these statements is flawed,
and it has led to a revision our view of the concepts of symmetry and crystallinity alike.

Figure 4.9. 5-fold, 8-fold, and 12-fold lattices (left to right) and the diffraction patterns corresponding to them.
In the diffraction pattern coming from a 10-fold symmetry (bottom left), the golden mean has been marked
explicitly on the pattern.
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The objects he discovered are aperiodic, ordered structures that allow exotic
symmetries and that today are known as quasicrystals. Having the courage to believe
in his observations and in himself, Dan Shechtman has changed our view of what order
is and has reminded us of the importance of balance between preservation and renewal,
even for the most well established paradigms. Science is a theoretical construction on
an empirical foundation. Observations make or break theories …

Your discovery of quasicrystals has created a new cross-disciplinary branch of
science, drawing from, and enriching, chemistry, physics, and mathematics. This is in
itself of the greatest importance. It has also given us a reminder of how little we really
know and perhaps even taught us some humility. That is a truly great achievement …

From the presentation speech by Professor Sven Lidin, Member of the Royal
Swedish Academy of Sciences.

Figure 4.10. A summary of the discovery of quasicrystalline order, based on the 2011 Nobel ceremony [6].
© The Royal Swedish Academy of Sciences.
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Butterfly in the Quantum World
The story of the most fascinating quantum fractal
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Chapter 5

The quantum world

One cannot escape the feeling that these mathematical formulae have an
independent existence and an intelligence of their own, that they are wiser
than we are, wiser even than their discoverers, and that we get more out of them
than was originally put into them.

—Heinrich Hertz

The quantum revolution is usually considered to have started in 1900, with the
proposal, made by German physicist Max Planck, that the vibration energies of
atoms forming the walls of a black body are restricted to a set of discrete energy
values—a very bold and wild-seeming yet very carefully worked-out hypothesis in
which Planck himself did not fully believe, but which he nonetheless published since
it was the first theory anyone ever proposed that fully agreed with the experimentally
observed spectra of black-body radiation. It took another 25 years for others to
develop this first very tentative foray into a mature theory—the theory of quantum
mechanics that was then, and that still remains today, a profound challenge to our
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everyday experiences and ingrained intuitions. Perhaps the most inspired period ever
of scientific creativity, the quarter-century of the quantum revolution was jointly
created by many thinkers of extraordinary brilliance and imagination, some of
whom are shown in figure 5.1.

This chapter cannot claim to be a genuine introduction to quantum science; it
offers merely a quick peek into the quantum world1. In it we highlight and partially
explain some of the key quantum phenomena and quantum concepts that are
indispensable to an understanding of the butterfly landscape. The aim of this chapter
is thus twofold:

• Beginning with the wave nature of matter, we present a simple picture of the
quantization of energies in the physical world. It will be useful for readers to
internalize this first image of quantization before learning about the quanti-
zation of Hall conductivity, which is an entirely different kind of thing. The
integer quanta that make up the butterfly fractal, related to the quantization

Figure 5.1. Starting with Max Planck at the top, this figure displays some of the pioneers who created
the quantum revolution. In counterclockwise (but chronological!) order, they are: Albert Einstein (Credit:
Bangkokhappiness/Shutterstock.com), Niels Bohr, Louis de Broglie, Werner Heisenberg, and Erwin Schrödinger.

1 For a relatively simple guide to the quantum world, see [1, 2].
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of Hall conductivity, have their roots in phenomena that are quite distinct
from those that give rise to the quantization of energies in an atom. Keeping
this distinction in mind will help one to appreciate the exotic nature of the
quantum Hall effect that will be presented in chapters to come.

• This chapter also serves as a bridge between parts 2 and 3 of the book, as it
explains the crucial concepts that are necessary to make a transition from the
quantum world of a solitary atom to that of a solid body—a pristine
crystalline structure made up of millions of atoms.

5.1 Wave or particle—what is it?
Try telling someone that an electron can sometimes act like a particle and
sometimes like a wave. This news is bound to cause confusion and skepticism.
When we imagine a particle, we tend to think of a tennis ball or a pebble, perhaps
even an infinitesimal ball bearing, while the mention of waves makes us dream of
huge long swells of water drifting in, every ten or twenty seconds, and breaking on
beaches. Waves are gigantic and spread-out, while particles are tiny and local. No
two things could be more different than a particle and a wave! Perhaps the only
familiar connection between particles and waves is the fact that tossing a pebble in
a pond generates ripples that gracefully spread out in perfect circles. Richard
Feynman once summed up the situation by saying that although we do not know
what an electron is, there is nonetheless something simple about it: it is like a
photon.

The quantum world is very counterintuitive, for it is inhabited by species that
have dual personalities: they can behave both as particles and as waves. These species
are, however, not necessarily alien or extraterrestrial beings. Some of them are very
familiar entities. Indeed, they can be baseballs or even baseball players themselves,
as well as more exotic entities, such as electrons, quarks, or Higgs particles.
Interestingly, they can also be light waves or x-rays or waves vibrating on the string

“WAVE/particle” ambigram by Douglas Hofstadter, reproduced here with his permission.
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of a violin. The revolutionary idea of wave–particle duality was first proposed by
Louis de Broglie in his doctoral thesis in 1924, for which he was awarded the Nobel
Prize in Physics in 1929.

5.1.1 Matter waves

In the quantum world, any particle possesses a wavelength and a frequency (like
waves on the ocean or ripples on a pond), in addition to having usual particle-like
properties, such as mass, size, position, velocity, and electric charge. The quantum
waves that de Broglie postulated, sometimes called “matter waves”, reflect the
intrinsic wave–particle duality of matter. According to de Broglie’s hypothesis, the
wavelength λ associated with any particle is inversely proportional to the particle’s
momentum p, while the frequency ν associated with a particle is proportional to the
particle’s total energy E. The constant of proportionality in both cases is the
fundamental constant of nature h, called Planck’s constant, named after Max
Planck, who, in his pioneering 1900 work on the black-body spectrum, discovered
this number and its central role in nature, and who, for those discoveries, was
awarded the 1918 Nobel Prize in Physics. The following two equations constitute the
core of Louis de Broglie’s hypothesis:

λ ν= =h
p

E
h

; . (5.1)

In most situations, it turns out to be simpler and more natural to use the angular
frequency ω πν= 2 than to use the simple frequency ν. In the case of a rotating body,
the quantity ν is the number of full rotations made by the body per second. Thus a
body that rotates exactly once per second (360 degrees per second) has a simple
frequency of 1 Hz, while its angular frequency is π2 Hz. The angular frequency thus
equals the number of radians turned per second by the body (one radian equaling

π° ≈ °360 /2 57 ). Since the angular frequency is generally more natural, whether we
are talking about rotating bodies or wave phenomena, it is often useful to write
quantum expressions not in terms of the simple frequency ν and Planck’s constant h,
but in terms of the angular frequency ω and the reduced Planck’s constant, which

Matter–wave cartoon.
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equals Planck’s constant divided by π2 , and is denoted by the symbol “ℏ”
(pronounced “h-bar”):

π
= = · −−h

2
1.054571726(47) 10 Joule sec . (5.2)34

Readers will notice the explicit presence of h or ℏ in all equations involving
quantum aspects of a particle. These constants, which have the units of angular
momentum, lie at the heart of quantum science. Since they are extremely small
compared to familiar amounts of angular momentum (such as the angular
momentum of an ice skater doing a spin, or that of a frisbee flying through the
air), quantum effects are usually completely unobservable in the macroscopic
world.

Three years after de Broglie announced his hypothesis about the wave nature of
particles, the idea was confirmed in two independent experiments involving the
observation of electron diffraction. At Bell Labs in New Jersey, Clinton Davisson
and his assistant Lester Germer sent a beam of electrons through a crystalline grid
and, to their amazement, observed interference patterns. They were utterly baffled at
first, but when they heard about de Broglie’s wave–particle hypothesis, they realized
that what they were seeing confirmed de Broglie’s predictions exactly. A few months
later, at the University of Aberdeen in Scotland, George Paget Thomson passed a
beam of electrons through a thin metal film and also observed the predicted
interference patterns. For their independent contributions, Davisson and Thomson
shared the 1937 Nobel Prize for Physics.

5.2 Quantization
The idea that atoms might be like small solar systems, with negatively charged
particles in orbits around a positively charged central particle, was first proposed
by French physicist Jean Baptiste Perrin in 1901, and two years later in a far more
detailed manner by Japanese physicist Hantaro Nagaoka. Unfortunately, almost
no physicists took their ideas seriously. However, just a few years later, very
careful scattering experiments performed by the New Zealander Ernest Rutherford
in Manchester, England showed that some kind of planetary model was in fact
correct.

In 1910, Australian physicist Arthur Haas tried valiantly to incorporate Planck’s
constant into a planetary-style atom but ran into roadblocks. Two years later,
British physicist John William Nicholson went considerably further, but still, his
theories did not match known data. Then in 1913, Danish physicist Niels Bohr
entered the scene. Bohr knew well that a particle in a circular orbit is constantly
undergoing accelerated motion (change of direction being a type of acceleration),
and that, according to classical electromagnetic theory, an accelerating charged
particle must radiate energy away, so it will quickly lose all of its energy and the
system will collapse. In other words, according to classical physics, any planetary
model of an atom is unstable. To explain the stability of atoms, Bohr introduced
some counterintuitive and highly revolutionary concepts. For simplicity, we
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will deviate slightly from Bohr’s original way of presenting his model, and will
instead present it using de Broglie’s wave–particle hypothesis described above.
(Our presentation is anachronistic, as de Broglie first proposed that particles are
wavelike roughly ten years after Bohr developed his model of the atom.)

Figure 5.2 illustrates the key idea of the Bohr model, using de Broglie’s idea. We
imagine an electron moving in a circular orbit, and on that circle we superimpose a
sinusoidal de Broglie wave. If, after one trip around the nucleus, the periodic
waving pattern returns exactly in phase with itself (i.e., if the circumference equals
an integral number of de Broglie wavelengths), then we will get a constructive
interference pattern, where the wave reinforces itself on each new swing around
the atom’s center. Metaphorically speaking, by returning in phase with itself, the
electron “reinforces its existence”, whereas by returning out of phase with itself, it
“undermines its own existence”. The classical story of the electron orbit gradually
decaying and finally going out of existence, as in panel A of figure 5.2, corresponds
to the impossible image shown in panel C, while the image in panel B is deeply
quantum-theoretical, and corresponds to no classical story at all. Alternatively,
you can just accept the idea that an electron in an atom, being a wave at the same
time, is constrained to vibrate with specific frequencies for much the same reason
as a guitar string is.

Whichever way you choose to see it, this very simple idea results in the following
elegant quantization condition for the de Broglie wavelength λ associated with the
electron:

π λ=R n2 , (5.3)

where R is the radius of the orbit and n is a positive integer, = …n 1, 2, 3, 4, . Each
different value of n corresponds to a different possible orbit of the electron around

Figure 5.2. Panel A depicts the behavior of a negatively charged electron in orbit around a positive charge,
according to classical theory. Rather than remaining in a stable circular orbit, the electron would constantly
radiate energy away and thus would spiral ever inwards, until the system collapsed. Quantum theory, however,
allows stable orbits. Panel B shows how a wavelike electron in a circular orbit can interfere constructively with
itself, resulting in a stable orbit. Panel C shows that if the electron’s wavelength does not fit exactly into the
circumference, then the electron interferes destructively with itself, and therefore cannot exist in such an orbit.
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the proton. Using the above relation, along with the classical equation for circular
motion and the expression for the total energy, we get:

= = −mv
R

Ke
R

E mv
Ke
R

;
1
2

. (5.4)
2 2

2
2

2

Here, m is the mass of the electron, v is its velocity, e is its charge, and K is a
universal constant that defines the strength of the electromagnetic attraction
between two given charges (here a proton and an electron).

The last equation above leads to the following quantization condition for the
orbital energy levels of the electron:

= − ≈ − −E
Ke m

n n
( )

2
13.6

electron volts. (5.5)
2 2

2 2 2

The smallest value of n—namely, =n 1—corresponds to the tightest orbit, which is
the orbit of lowest energy, and is thus called the “ground state”. There are infinitely
many other possible orbits of higher energies. Bohr postulated that an electron
can “jump” from any H-atom orbit to a lower-energy H-atom orbit, and in so doing
will release an electromagnetic wave whose energy must (because of the law of
conservation of energy) equal the energy difference between the two H-orbits. This
allowed Bohr to calculate what all the spectral lines of hydrogen should be, and to his
enormous satisfaction, his predictions coincided perfectly and precisely with the
observations of spectral lines coming from the Sun.

Moreover, the mathematical expression that yielded the values of these spectral
lines, and which Bohr had rigorously deduced from his “magical” quantum
hypothesis, coincided precisely with the mysterious empirical formula that had
been guessed in 1885 by Johann Jakob Balmer, a Swiss high-school teacher who was
60 years old at that time. For all his life, Balmer had been obsessed with numerical
patterns in nature and had sought beautiful formulas that matched them, but never
before had he hit such a jackpot. Over many years of careful observation after 1885,
Balmer’s miraculously simple formula had always been totally confirmed, but no
one had ever been able to say what secrets of nature lay behind it. It was just a
wonderfully lucky guess. But now, all of a sudden, the world understood why the
Balmer formula was the way it was, and with that, the profound mysteries of the
atom were starting to be uncloaked.

Given all these reasons, the Bohr model of the hydrogen atom was immediately
accepted by the world physics community, and in 1922, Niels Bohr, for his path-
breaking explanation of the hidden quantum phenomena that lay behind the spectral
lines of hydrogen, was honored with the Nobel Prize in Physics.

At a conference in 1998 in honor of the great Dane, Douglas Hofstadter pointed
out that the name “Niels Bohr” resonates profoundly with the phenomena that its
bearer so beautifully explained:

=NIELS BOHR H-ORB LINES.

It’s a marvelous coincidence. Or is it a coincidence? As the Romans said, Nomen
est omen, which could roughly be translated as “What one’s name conceals, one’s life
reveals.”
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The Bohr model was deeply revolutionary when it was first proposed, but just a
few years later it started to seem rather primitive, since it was far from being a
complete theory of atoms. In fact, it was unable to explain the spectral lines of any
atom other than hydrogen! From 1913 on, intense efforts were made by physicists all
over the world to develop a complete quantum description of atoms—an analogue
to Newton’s equations, describing the behavior of particles, or to Maxwell’s
equations, describing the behavior of electromagnetic waves. At long last, in the
mid-1920s, German physicist Werner Heisenberg and Austrian physicist Erwin
Schrödinger succeeded. They independently devised two radically different frame-
works, each of which connected the final dots and provided precise quantum rules to
describe a physical system. For a while, the two theories were considered to be rivals,
but eventually it was proven—indeed, by Schrödinger himself—that although on the
surface they involved very different images and very different mathematical ideas,
they were nonetheless totally equivalent at a deeper level. Interestingly enough, both
of these theories gave exactly the same results as the Bohr model had given for the
spectrum of the hydrogen atom. Below we will briefly discuss the Schrödinger
theory.

5.3 What is waving?—The Schrödinger picture
If a particle acts like a wave, then a natural question is: what is it that is waving?

“Bohr–Atom” ambigram by Douglas Hofstadter, reproduced here with his permission.
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In 1925, Erwin Schrödinger came up with an equation that predicted the behavior
of a quantum particle, just as Newton’s famous equation F = ma predicts the
behavior of a classical particle. Schrödinger’s equation is a partial differential
equation that describes how the quantum state of a physical system—that is, the
system’s “wave function”—changes across space and over time. The wave function,
usually denoted Ψ tr( , ), encodes all the information there is about the state of the
particle at spatial location r and time t. In the standard interpretation of quantum
mechanics, this function is the most complete description that can be given to a
physical system.

The Schrödinger equation for a non-relativistic particle of mass m moving in a
potential-energy field V runs as follows (here i is −1 ):

⎡
⎣⎢

⎤
⎦⎥

∂
∂

Ψ = − ∇ + Ψi
t

t
m

V t tr r r( , )
2

( , ) ( , ). (5.6)
2

2

To solve this equation for Ψ, one often uses a method called “separation of
variables”, a standard technique for solving partial differential equations. This
transforms the time-dependent Schrödinger equation into the following time-
independent equation:

⎡
⎣⎢

⎤
⎦⎥ ψ ψ− ∇ + =

m
V Er r r

2
( ) ( ) ( ). (5.7)

2
2

The letter E on the right side of this equation represents the energy of the
quantum state Ψ. However, as Schrödinger soon realized, not all values of E will
work. To be more specific, for some special values of E, there will be a solution Ψ to
this equation, but for other values of E, there will be no solution. Those very special
values of E for which there exists a solution Ψ to the Schrödinger equation are called
the eigenvalues of the equation. Also, ψ r( ) is called the eigenfunction belonging to the
eigenvalue E (which is also sometimes called the “eigen-energy” of the particle).

When V r( ) is set equal to the potential-energy field due to the positive
electric charge of a proton, then this equation becomes a full quantum-mechanical
description of the hydrogen atom. In 1926, Schrödinger solved this equation,
determining its eigen-energies, and he found that they coincided exactly with
the quantized energy levels that Niels Bohr’s very early “semiclassical” model had
predicted for electrons in the hydrogen atom. This confirmation of Bohr’s model by
the Schrödinger equation, analogous to the earlier confirmation of Balmer’s formula
by Bohr’s model, was a remarkable event in physics, and showed how deep Bohr’s
intuitions in 1913 had been, and how amazingly precise Balmer’s aesthetics-based
numerological guess in 1885 had been.

The fact that only certain special values of E will allow Schrödinger’s equation to
be solved—a fact that we might call the eigenvalue constraint on the solvability of the
Schrödinger equation—explains many deep phenomena in physics. For example, as
we have just pointed out, this constraint explains why electrons in atoms can only
move in orbits having certain precise energy values (the values that Bohr found in
1913, roughly a dozen years before Schrödinger dreamt up his wave equation).
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These special energy levels are the eigenvalues of the Schrödinger equation for the
hydrogen atom.

The eigenvalue constraint also explains why a free electron in a magnetic field can
only take on the so-called “Landau levels” of energy, rather than any arbitrary
amount of energy at all (as would be possible in classical electromagnetic theory).
The Landau levels are the eigenvalues of the Schrödinger equation for an electron
moving solely under the influence of a magnetic field.

The eigenvalue constraint also explains why electrons in crystals are limited to
having their energies in Bloch bands (regions along the E-axis such that the
Schrödinger equation has solutions), which are separated by energy gaps (comple-
mentary regions along the E-axis such that the Schrödinger equation has no solutions).

Last but not least, it is the eigenvalue constraint that explains why electrons in
crystals in magnetic fields can only take on energies shown in the black bands that
make up the butterfly graph, and cannot take on energies in the white gaps.

Unlike classical waves, whose amplitudes are always real numbers, thewave function
Ψ that obeys the Schrödinger equation takes on complex values, and is not itself a
physically measurable or observable quantity. In other words, unlike water waves, or
waves on a string, or sound waves, or light waves, where what is waving is always a
perfectly familiar, observable entity—for example, theheightof thewaterat some spot in
a lake as circular ripples spread out after a stone has been tossed in, or the displacement
fromequilibriumofapluckedviolin stringas it vibratesbackandforth,or thefluctuating
value of the air pressure at a chosen spot in space, or the rapidly oscillating strengths of
the electric and magnetic fields at some fixed point in space—what is waving in a
quantum-mechanical situation is an abstract, physically unobservable, complex-valued
quantity. This fact about the wave function was deeply bewildering to physicists, who
didn’t know what to make of these invisible, unobservable quantum-mechanical
complex numbers floating about, filling up every point in space, and oscillating with
time, like ghostly ripples ubiquitously undulating in the void.

It was Heisenberg’s mentor Max Born who first successfully interpreted the wave
function Ψ as giving what he called the “probability amplitude” associated with the
particle. According to Born, it is only the absolute square of this amplitude—namely,
∣Ψ ∣tr( , ) 2—that is observable (in some sense). That is, the absolute square of
the complex wave function is a real number that tells the probability of finding
the particle at location r and at time t. For having made this discovery in 1926, Max
Born was awarded the Nobel Prize in Physics many years later (1954).

While the complex probability amplitude encodes all the information about the
state of the particle, the act of taking its absolute value (or “modulus”) and squaring
it means that one loses some information (namely, the phase). This subtle loss of
information is the ultimate source of all quantum-mechanical “weirdness”.

5.4 Quintessentially quantum
We will now discuss two different experiments that illustrate “quantum-mechanical
weirdness”, and that continue to challenge our basic intuitions even today, in spite of
the almost universal acceptance of the laws of quantum physics.
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5.4.1 The double-slit experiment, first hypothesized and finally realized

In 1801, the English physicist Thomas Young introduced the double-slit interfer-
ometer. In such a device, a light wave spreads outward from a point source and is
allowed to pass through two slits in an opaque barrier; once the wave is beyond
those slits, it interferes with itself (in a way, it is more like two waves interfering with
each other, one emanating from each slit), and what results is an interference pattern
on a distant two-dimensional surface. Even today, this type of device remains one of
the most versatile tools for demonstrating interference phenomena for waves of any
imaginable sort.

Here, we will consider a variation on this theme, involving electrons rather than
light. Our hypothetical two-slit experiment (see figure 5.3) was originally dreamt up
by Richard Feynman in volume 3 of his famous Feynman Lectures on Physics [3]. In
Feynman’s thought experiment, deeply inspired by Young’s interferometer, an
electron (which, from many experiments over the past century, we have every
reason to conceive of as a microscopic dot carrying electric charge) is released at
point A towards a screen, and somewhere between point A and the screen there is an
impenetrable wall that has two slits in it, at, say, points P and Q. We immediately see
that the rightward-moving electron can reach the screen and leave a little mark on it
only if it passes through either slit P or slit Q.

This simple conclusion is not merely commonsensical, but totally obvious and not
worth giving a moment’s thought to. Or at least that is what classical thinking would
tell us. But quantum mechanics violates this “obvious” fact, because quantum
mechanics tells us that particles—tiny points moving through space like tiny pebbles
flying through the sky—do not act like pebbles in the sky but like ripples on water.
However, this fact, when first encountered, is very disorienting, to say the least, so let

Figure 5.3. A schematic diagram of the double-slit experiment.
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us first spell out what our deep-seated classical intuitions would predict for such a
setup.

If we were to send a broad stream of electrons from point A toward the screen, we
would expect to find two dark splotches building up on the screen as more and more
electrons came in for landings, each point-like electron leaving a tiny mark where it
landed. This seems absolutely straightforward and obvious. More specifically, we
would expect to see splotches gradually building up at exactly two predictable places
on the screen—namely, at (or very near) the two points on the screen that are
determined by drawing a straight line first from A to P and extending it all the way
to the screen, and then from A to Q and likewise extending it to the screen. These
two straight lines, determined by the point of release and the two slits in the wall,
are the only conceivable trajectories that could carry an electron from point A to the
screen, since the wall, aside from slits P and Q, is impenetrable.

But commonsensical and even watertight though this conclusion may seem, what
we have just described is not what is actually observed on the screen. What is seen on
the screen, instead of two isolated splotches where electrons land, is an interference
pattern—that is, a blurry pattern all over the screen, which is darker in certain areas
and lighter in others—and in no way does it look like two splotches! In fact, oddly
enough, the pattern is darkest exactly halfway between the two hypothetical splotches
that classical thinking gave us, and a short distance from there it fades to zero, and
then a little further away it again becomes dark, and then it fades away to zero again,
then darkens and lightens again, and so forth and so on. This pattern of alternating
lighter and darker zones—the trademark of an interference pattern, just like those
observed by Thomas Young in the early 1800s—is what is symbolized by the wavy
line shown to the right side of the screen in figure 5.3. The peaks of the wavy graph
are the areas where the screen is darkest, and the troughs are where it is lightest.

To further reveal the mysteries of the wave–particle duality intrinsic to quantum
mechanics, Feynman invited his readers to imagine firing just one single electron
toward the screen (rather than a beam comprised of many electrons), and then marking
the position where it strikes the screen, and then repeating this one-electron experi-
ment over and over again. After many electrons have been fired, the marks on the
screen will still comprise an interference pattern, which shows that each electron on its
own was interfering with itself. In other words, each electron on its own somehow
went, in a ghostly manner (or at least in a wavy manner!), through both slits, rather
than through just one or the other of the slits (which is what we would expect of a
particle that manifests itself as a tiny dot wherever it hits the screen).

If we now cover up, say, slit A, so that each electron can pass only through slit B,
then no interference pattern will appear on the screen—just a splotch directly behind
slit B will build up over time. This agrees with our classical intuitions, and shows us
that the intuition-defying interference pattern arises only when we give each electron
the chance to pass through both slits. When an electron is given that chance, it will
always take it, and so, as one electron after after gets released from point A, the
interference pattern gradually takes shape on the screen!

Before Feynman dreamt up his thought experiment (in the early 1960s), experi-
ments of this sort using double-slit setups had been done, and they indeed showed
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the interference pattern we have just described, but they all used a beam of electrons
rather than just one electron at a time. Because of this, these experiments did
not establish a crucial point of Feynman’s thought experiment—namely, that an
individual electron traveling by itself will behave like a wave. Single-electron double-
slit diffraction was first demonstrated in 1974 by Giulio Pozzi and colleagues at the
University of Bologna in Italy, who passed single electrons through a biprism—an
electronic optical device that serves the same function as a double slit—and they
observed the predicted build-up of an interference pattern. A similar experiment
was also carried out in 1989 by Akira Tonomura and colleagues at the Hitachi
research lab in Japan. The actual Feynman-style double-slit experiment, in which
the arrivals of individual electrons in a double-slit situation were recorded one at a
time, was finally realized only in 2012 by Pozzi and colleagues. Perfecting the
double-slit experiment with a single electron continues to obsess many physicists
even today.

The double-slit interference pattern with a single electron makes one dizzy
irrespective of whether we imagine the electron to be a particle or a wave. If we
ask, “Did the electron pass through slit P or slit Q?”, the answer is, “Neither—it
passed through them both.” This is because an electron is a wavelike entity, and we
have to imagine it spreading through space like ripples moving on the surface of a
pond—or if you wish to have a three-dimensional image, then like sound waves
propagating through the air (of course, since sound waves are invisible, they are
harder to imagine than ripples).

The weird thing is that although each electron wears its “wave hat” while
propagating through space (that is, while moving away from point A, passing
through the slits, and approaching the screen), it doesn’t keep that hat on at the very
end. Instead, when it finally lands on the screen, it doffs its “wave hat”, puts its
“particle hat” back on, and deposits a little dot in just one single point on the screen.
Why and how does this weird hat-trick take place? No one can say. This
unfathomable mystery lies at the very heart of quantum mechanics. As Richard
Feynman said, “Nobody can explain quantum mechanics.” Or as Albert Einstein
once wistfully remarked, toward the end of his life, “I have been trying to
understand the nature of light for my entire life, but I have not yet succeeded.”

5.4.2 The Ehrenberg–Siday–Aharonov–Bohm effect (ESAB) [4]

Two examples of quantum phenomena that have no analogues in classical physics
are Heisenberg’s uncertainty principle and quantum tunneling, both discovered in
the early days of quantum mechanics, and both quite famous, even outside physics.
There are also less famous quantum phenomena that were discovered later, such as
the so-called Aharonov–Bohm effect, dating from 1959, and the Berry phase, dating
from 1984, both of which were discovered in Bristol, England, although 25 years
apart. In chapter 9, we will discuss the Berry phase, but here we will discuss the
Aharonov–Bohm effect, published in 1959 by David Bohm and his student Yakir
Aharonov. Shortly after their article was published, Bohm and Aharonov learned
that Raymond Siday and Werner Ehrenberg had published exactly the same result
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a decade earlier. This must have been a great shock to them, but David Bohm, to
his credit, always referred to the discovery thereafter as the “ESAB effect”, and
in this book we shall follow his lead, although “Aharonov–Bohm effect” is the
usual name.

The ESAB effect involves a setup closely related to the double-slit experiment
described above. However, in this case, when an electron is released at point A,
rather than having the possibility of passing through slits in a wall, it has the option
of taking various pathways around an obstacle, after which it lands on a screen,
leaving a mark showing where it hit. The collective pattern built up on the screen by
the landings of many electrons is what we are interested in. Such a setup, since it
involves different pathways quantum-mechanically interfering with each other (just
as in the two-slit experiment) is called an interferometer.

In this case, the obstacle around which the electron must move (wearing its
“wave hat”, of course) will be a tightly wound coil of wire (technically called a
solenoid), which is surrounded by a very intense repulsive electric field (technically
called a potential barrier), which is so strong that it prevents the electron from
entering the solenoid. Thus the electron’s only option is to go around the solenoid,
either to its left or to its right—or more accurately, to pass by it on both sides at
once, like a ripple rippling around a stone jutting up in the middle of a pond. When
the electron hits the screen, it will be wearing its “particle hat”, and will deposit a
mark on it. All the marks together will add up to an interference pattern. The close
analogy between this setup with a solenoid and the earlier-described two-slit
experiment should be clear.

We first imagine that no current is flowing in the wires of the solenoid. In that
case, we will get an interference pattern on the screen. Being an old quantum hand
by now, you of course are not surprised by this at all. It’s self-evident! And thanks to
the equations of quantum mechanics, the exact interference pattern can be
calculated precisely in advance, although nobody in the world can explain why it
happens. So far so good.

Now let us turn on the current. When a current flows in the wires of any solenoid,
a non-zero magnetic field is produced inside the solenoid; however, everywhere
outside the solenoid, the magnetic field remains exactly zero. As a result, we “old
quantum hands” would not expect any change in the interference pattern on the
screen, since the electrons passing outside the solenoid experience exactly the same
magnetic field (namely, zero!) as they did before the current was turned on. Before
1959, most physicists would have bet their bottom dollar that the interference
pattern on the screen would be unaffected by turning on the current.

But in 1949 and then in 1959, first Siday and Ehrenberg and then Aharonov and
Bohm realized that turning on the current causes a perfectly observable and precisely
measurable shift of the interference pattern on the screen. This visible shift in space
corresponds to an invisible phase shift between pathways that pass one way around
the solenoid (say, to its left side) with respect to pathways going the other way
around the solenoid (to its right side). This phase shift equals γ π= ϕ2

h e/
, where ϕ is

the amount of magnetic flux enclosed between the two pathways—that is, ϕ equals
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the magnetic field inside the solenoid times the area of the solenoid. This is said to be
a “geometric phase”, in the sense that it does not depend on the velocity or energy or
momentum of the traveling electron, nor on the time taken by it to travel from the
emitter to the detection screen—just on the geometry of the situation.

Let us try to summarize what is truly weird here—weird not just to classical
physicists, but even to highly experienced “old quantum hands”. In classical
mechanics, the trajectory of a charged particle is not affected by the presence of a
magnetic field in regions of space that the particle never visits. For a particle to be
affected by a nonexistent field is unimaginable. What the ESAB effect teaches us,
however, is that for a charged particle in a quantum situation, there can be an
observable effect produced by a magnetic field even though the particle never “feels”
that field. In figure 5.4, we see that the particle, after passing near the solenoid, while

Figure 5.4. The left side of the upper figure shows a schematic diagram of the ESAB effect. To its right, we first
see (the B = 0 case) an interference pattern on the screen, which is due to quantum-mechanical interference of
the two alternate routes around the solenoid, and below it we see (the >B 0 case) a displacement of the
interference pattern, which is due to the presence of a non-zero magnetic field inside the solenoid, even though
the particle, while following its trajectory, never “feels” the magnetic field. The New Yorker cartoon by Charles
Addams depicts a phenomenon highly reminiscent of the ESAB effect. © 1940 Charles Addams, renewed 1967.
With permission Tee and Charles Addams Foundation.
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always remaining in a region of exactly zero magnetic field, produces an interference
pattern on a screen. When there is no current and thus no magnetic field, the peak of
the interference pattern is precisely centered (the B = 0 picture on the right). When
there is a current and thus a magnetic field (but only inside the solenoid), the peak of
the interference pattern shifts away from the center (the >B 0 picture on the right),
and in fact the whole pattern shifts.

This shift is due to the fact that although the magnetic field is zero at all points of
space that are accessible to the particle (that is, at all points outside the solenoid),
there is another field—a more abstract field—associated with the magnetic field,
called the magnetic vector potential ⃗A, whose value is not zero at those points. The
vector potential ⃗A, invented by the great Scottish physicist James ClerkMaxwell, and
today also known as a “gauge field”, mathematically determines the magnetic field ⃗B
at all points in space (through the equation ⃗ = ∇⃗ × ⃗B A), just as the electric scalar
potential (invented a few decades earlier by the French physicist Siméon Denis
Poisson) mathematically determines the electric field at all points in space. However,
whereas the electric and magnetic fields themselves are observable and measurable,
the scalar and vector potentials are not observable or measurable (or at least in
classical electromagnetic theory, this is the case). Thus quantum mechanics makes us
confront the most peculiar situation of a totally non-observable and non-measurable
(and thus arguably non-physical) variable (the magnetic vector potential) affecting
the observable physical state of a particle. This is troubling, to say the least.

A gauge transformation is a special kind of transformation of the “non-physical”
scalar and vector potentials that changes their values everywhere in space while
leaving the “physical” electric and magnetic fields completely invariant throughout
space. (Specifically, a gauge transformation modifies the the electric scalar potential
by adding a constant to it, and it modifies the magnetic vector potential by adding
the gradient of a scalar to it.)

In the ESAB effect, the phase shift that brings about the shift of the interference
pattern on the screen depends on the magnetic flux enclosed between the two
different pathways, and this is determined by the vector potential (or more
precisely, on its gauge-independent part). What this tells us is that in quantum
mechanics, the electric and magnetic potentials take on just as fundamental a
reality as did, in classical physics, the electric and magnetic fields. To state this in
another way, in classical physics only the electric and magnetic fields were believed
to be fundamental, observable quantities, while the scalar and vector potentials,
though useful for calculations, were seen as merely mathematical aids, which, on
their own, could be neither observed nor measured—not even in principle. But
with the advent of quantum mechanics, it was discovered that the scalar and vector
potentials are not merely mathematical aids, but are themselves first-class physical
entities.

In summary, the ESAB effect has taught us that the magnetic vector potential
(or at least its gauge-invariant part) is a real physical field. This discovery shattered
the old way of thinking about electromagnetic fields, and brought about a totally
new vision of the nature of potentials.
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The ESAB effect is just one example of a far more general phenomenon. As we
will see in chapter 8, in certain situations the wave function of a particle acquires a
phase having a purely geometric origin. This phase, known as the “geometric
phase” or “Berry phase”, is due to an abstract analogue of the magnetic flux
and the vector potential ⃗A inside the solenoid in the ESAB setup described above.
Moreover, in situations such as that of electrons in a two-dimensional crystal in a
magnetic field, the Berry phase itself may be quantized. It is these “phase quanta”,
which are lurking behind the scenes in the geometry and topology of a purely
abstract space, that are key to understanding the quantum numbers associated
with the Hofstadter butterfly. More generally, an understanding of the Berry
phase deepens our appreciation of the underlying geometrical nature of quantum
mechanics.

5.5 Quantum effects in the macroscopic world
Quantum mechanics provides a deep understanding of the properties of solid
materials, just as it provides a deep understanding of a single atom, such as the
hydrogen atom. For example, phenomena like superconductivity—the complete
absence of any resistance to flowing current in certain solid materials—cannot
be explained by classical physics. Even normal electrical conduction, which arises in
metallic and insulating materials, cannot be explained without quantum theory. The
range of resistivity of different materials, running all the way from the very best of
conductors to the very worst of conductors (that is to say, the very best of
insulators), covers more than thirty orders of magnitude! There is simply no way
that classical physics could even begin to explain anything like this. As far as
classical physics is concerned, all of these materials are simply quite similar
combinations of positive nuclei and negative electrons. We are thus led to ask a
most natural question: when many atoms aggregate together to make a whole, what
kinds of new properties can emerge at the level of the whole, and how can quantum
mechanics account for these properties?

In our discussion of solids, we will focus on the way that the electrons in them
determine their properties. In other words, we will discuss only electronic states of
matter2. Electrons in materials can organize themselves in many different ways, and
these various electronic patterns define what are called phases (not to be confused
with the geometrical Berry phases mentioned above, and even less with phases of the
Moon!). Condensed-matter physics is the study of these phases of matter, which can
roughly be classified as metals, semi-metals, insulators/semiconductors, topological
insulators, superconductors, magnets, charge-density wave systems, and spin liquids.
Each of these phases has a common set of characteristics (e.g. all liquids flow). In
this sense, each of the above is an electronic phase.

In what follows, we will limit our discussion to themetallic state and the insulating
state of matter. This will set the stage for our next key topic—namely, the quantum
Hall states of matter, also known as topological insulators, which will be covered in

2For a very accessible lay-level discussion of solid-state physics, see [2].
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the coming chapters. We note that the insulating states described here are called
“band insulators”. They can be classified as ordinary (trivial) insulators or as
topological insulators. In addition, there are Anderson insulators (which are the
result of impurities) and Mott insulators (which require interaction effects, and are
beyond the scope of this book).

We provide a brief summary of this subject by listing some of the key concepts of
condensed-matter physics.

5.5.1 Central concepts of condensed-matter physics [5]

• Periodic potentials
A periodic electric potentialV r( ) arises automatically in a crystal because the
positively charged nuclei in the crystal are arranged in a perfect lattice—an
endlessly repeating spatial pattern. The periodicity of the electric potential is
expressed by the equation = +V Vr r a( ) ( ), where a is a lattice vector. The
primitive unit cell of the crystal is the smallest building block that, when
periodically placed next to itself in space, yields the full crystal lattice.

• Non-interacting electrons and electron gases
In crystals, electrons move under the influence of the just-described periodic
potential, and their behavior and properties are described by the laws of (non-
relativistic) quantum mechanics. It is rather surprising that many aspects of
matter can be understood by assuming that the electrons in such a system
never interact with one another, but that is the case, and in this book only
such phenomena are discussed. A system of non-interacting electrons is
known as an “electron gas”.

• Pauli’s exclusion principle
In our description of non-interacting electrons, we need to take into account a
very deep quantum effect that arises due to the fact that we are dealing with
particles (electrons in particular) that are all perfectly identical. This feature
has no classical analogue, since in classical physics one can always distinguish
identical-seeming particles simply by following their distinct trajectories. In
other words, in classical physics, identical particles simply do not exist; any
two particles can always be distinguished. But in the quantum world, this
deeply intuitive property fails to hold.

Electrons, which are the main actors in solid-state systems, are literally
indistinguishable from each other, and they obey what is known as the “Pauli
exclusion principle”, named after the Austrian-born physicist Wolfgang Pauli
(who, over the course of his life, held Austrian, German, Swiss, and American
citizenships). In 1945, Pauli was awarded the Nobel Prize in Physics for the
discovery of this central quantum-mechanical principle, which states that no
two electrons can ever occupy the same quantum state simultaneously.
Actually, Pauli’s principle is more general than this, as it applies not just to
electrons but to every type of fermion. A fermion is a particle that inherently
possesses half-integer spin—that is, an angular momentum that is an odd
multiple of

2
. Electrons are fermions, since they have spin 1

2
. Pauli’s full
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exclusion principle states that two identical fermions can never occupy the
same quantum state simultaneously.

On the other hand, there are identical particles that can occupy the
same quantum state, and such particles are called bosons. A boson is a particle
that inherently possesses an integral amount of spin—that is, an angular
momentum that is an integer multiple of ℏ. Photons are bosons, since they
have spin 1. As such, they are not subject to the exclusion principle; any
number of photons can occupy the same quantum state, and indeed they tend
to do exactly that.

• Bands and band gaps
The term “electronic band structure” (or just “band structure” for short)
denotes the set of energy values that electrons in a solid may take on. The
allowed energy levels are limited to certain intervals of the energy axis called
“Bloch bands”, “energy bands”, “allowed bands”, or simply “bands”. The
ranges of energy values that an electron may not take on are called “band
gaps” or “forbidden bands” (see figure 5.6). Band theory derives these bands
and band gaps by solving the Schrödinger equation to determine the
quantum-mechanical eigenvalues for an electron in a periodic lattice of
atoms or molecules.

The reader, having seen that in many circumstances quantum mechanics
gives rise to a set of isolated, discrete energy levels, and nothing like the
continuous range of values comprising an energy band, might well ask: why
do solids have bands, as opposed to discrete levels, of energy? This is an
excellent question, and a sketch of the answer is as follows (see figure 5.5).

The electrons in a single isolated atom have discrete energy levels. When
multiple atoms join together to form into a molecule, their wave functions
overlap in space, and because of the Pauli exclusion principle, their electrons
cannot occupy the same state (meaning they cannot have the same energy).
Therefore, each discrete eigenvalue (energy level) splits into two or more
new levels, all clustered close to the original level. As more and more atoms
are brought together, the allowed energy levels have to split into more and
more new levels (again because of the exclusion principle), and thus the
cluster of energy eigenvalues becomes increasingly dense and widens.
Eventually, when there are so many atoms periodically spaced together
that they constitute a macroscopic crystal, the allowed energy levels are
so astronomically numerous and are clustered so densely along certain
portions of the energy axis that they can be considered to form continua, or
bands. Band gaps are essentially the leftover ranges of energy not covered by
any band (see figure 5.5).

If electrons completely fill one or more bands (i.e., occupy all the levels in
them), leaving other bands completely empty, the crystal will be an insulator.
Since a filled band is always separated from the next higher band by a gap,
there is no continuous way to change the momentum of an electron if every
accessible state is occupied. A crystal with one or more partly filled bands is a
metal. These ideas are schematically depicted in figure 5.6.
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Figure 5.5. This schematized diagram shows a pure atomic energy level splitting into two when two identical
atoms are brought together, and into three when three identical atoms are brought together. (The splitting is
due to the Pauli exclusion principle, which forbids electrons to occupy the same state.) When huge numbers of
atoms (1024 of them, say) come together to form a periodic crystal lattice, then what was originally a single
energy level splits into a cluster of enormously many energies, which are so close to each other that they
essentially constitute a continuum. This continuum of energies is called a “Bloch band”.

Figure 5.6. A schematic depiction of the difference between the energy levels belonging to a single atom, to a
metal, and to an insulator. The discrete energy levels belonging to an isolated atom evolve into energy bands
belonging to a crystal, as each atom’s structure is modified by the close approach of other atoms. Inside the
bands, the allowed energies take on a continuum of values. Two neighboring bands are separated by a band
gap or simply a gap—a region of forbidden electron energies. The shaded regions in the figure represent levels
that are occupied. In a metal, the Fermi energy lies inside a partially filled band. In an insulator, the Fermi
energy lies inside the energy gap.
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• Fermi energy
A key notion in band theory is the Fermi level or Fermi energy, denoted EF.
This is the highest energy level occupied by a crystal electron when the crystal
is at a temperature of absolute zero (see figure 5.6). The Fermi level can thus
be thought of as the “surface” of the “sea” of electrons in a crystal—but it
must be remembered that this “sea” lies in the abstract space of energy levels,
not in a physical space.

The position of the Fermi level relative to a crystal’s band structure is a
crucial factor in determining the crystal’s electrical properties (e.g. its
propensity to conduct electric current). At absolute zero, the electrons in
any solid systematically fill up all the lowest available energy states, one by
one by one. In a metal, the highest band that has electrons in it is not
completely full, and hence the Fermi level lies inside that band. By contrast, in
an insulating material or a semiconductor, the highest band that has electrons
in it is completely filled, and just above it there is an energy gap, and then
above that, a band that is completely empty. In such a case, the Fermi level
lies somewhere between the highest filled band and the empty band above it.
In a semiconductor at zero degrees Kelvin, no electrons can be found above
the Fermi level, because at absolute zero, they lack sufficient thermal energy
to “jump out of the sea”. However, at higher temperatures, electrons can be
found above the Fermi level—and the higher the temperature gets, the more
of them there will be.

The Fermi velocity vF is the velocity of an electron that possesses the Fermi
energy EF. It is determined by the equation =E mv1

2F F
2, which, when solved

for the unknown quantity vF, gives the formula =v E m2 /F F .
• Bloch’s theorem
Named after physicist Felix Bloch, Bloch’s theorem states that the energy
eigenstates of an electron moving in a crystal (a periodic potential) can be
written in the following form:

Ψ = ·e ur r( ) ( ), (5.8)i rk

where u r( ) is a periodic function with the same periodicity as that of the
underlying potential—that is, = +u ur r a( ) ( ). The exponential preceding the
periodic function u is a kind of helical wave, or “corkscrew”, which multiplies
the the wave function by a spatially changing phase that twists cyclically as
one moves through space in a straight line.

Inside a crystal, the noninteracting electrons are not free, but are Bloch
electrons moving in a periodic potential. When the potential is zero, the
solutions reduce to that of a free particle with Ψ = ·er( ) i rk and with energy

=E k
m2

2 2
(see figure 5.7). The existence of Bloch states is the key reason

behind the electronic band structure of a solid.
• Crystal momentum
The vector k of a given eigenstate for a crystal electron is that state’s Bloch
vector. When multiplied by , the Bloch vector gives the so-called crystal
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momentum k of that state. Although crystal momentum has the same units
as momentum, and although in some ways an electron’s crystal momentum
acts very much like a momentum, it should nonetheless not be conflated with
the electron’s momentum, because unlike momentum, crystal momentum is
not a conserved quantity in the presence of a potential.

• Brillouin zone
This notion was developed by the French physicist Léon Brillouin (1889–1969).
For any crystal lattice in three-dimensional physical space, there is a “dual
lattice” called the reciprocal lattice, which exists in an abstract space whose
three dimensions are inverse lengths. This space lends itself extremely naturally
to the analysis of phenomena involving wave vectors (because their dimensions
are inverse lengths). If we limit ourselves to crystals whose lattices are perfectly
rectangular (as has generally been done in this book), then given a lattice whose
unit cell has dimensions × ×a b c, the reciprocal lattice’s unit cell will have
dimensions × ×

a b c
1 1 1 . This cell is called the first Brillouin zone. The various

locations in the Brillouin zone—wave vectors—act as indices labeling the
different Bloch states (since there is a one-to-one correspondence between wave
vectors and Bloch states). Thus each point in the Brillouin zone is the natural
“name” of a quantum state.

Figure 5.7. This figure illustrates how the parabolic plot of energy versus k of a free particle (the dashed curve)
breaks up into a set of energy bands and energy gaps (the solid S-shaped curves that do not touch each other)
when particles are constrained to move in a periodic potential.
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5.5.2 Summary

Both the quantized energy levels of an isolated atom and the quantized energy bands
of a crystalline solid are rooted in the wave nature of electrons. In a macroscopic
system, such as a two-dimensional sheet of a solid, there is an additional type of
quantization where geometry and topology play a central role. This fascinating
quantum effect will be the subject of the coming chapters.
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Chapter 6

A quantum-mechanical marriage
and its unruly child

I want to know how God created this world. I am not interested in this or that
phenomenon, in the spectrum of this or that element. I want to know his
thoughts; the rest are details.

—Albert Einstein.

Having dipped into the quantum world and acquainted ourselves with the quantum
Hall effect, we now return to the butterfly landscape. Whence came this wondrously
strange shape? Who could better answer this question than Douglas Hofstadter, who
came across the butterfly in the years 1974–5, and who still recalls those crucial
events of his life almost as if they happened yesterday? He was very pleased to be
asked to tell the tale as he remembers it, and so we will now enjoy a guest chapter
from the pen of Douglas Hofstadter…
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6.1 Two physical situations joined in a quantum-mechanical
marriage

Among the most important and exciting findings of quantum mechanics in its early
days were rigorous explanations of the behavior of electrons in two canonical but
highly contrasting types of physical situation—on the one hand, electrons in a
crystal lattice, and on the other hand, electrons in a (homogeneous) magnetic field.
Per se, these two fundamental types of physical situation are totally unrelated, but of
course there is nothing to prevent one from combining them in a metaphorical
“marriage”. But before introducing them to each other, let’s briefly review the two
partners separately.

As we saw earlier, Swiss physicist Felix Bloch, already in 1928, discovered that
electrons inside a crystal (in the absence of a magnetic field) have energy values that
lie in Bloch bands—that is, their energies range across a continuous swath of possible
values, without any gaps. Bloch also found that such electrons have quantum-
mechanical states (now called Bloch states, naturally) that can be described as
standing waves inside the lattice. Such waves of course oscillated periodically, with a
period depending on their energy.

We also saw earlier thatRussian physicist LevLandau, just two years later, in 1930,
discovered that electrons immersed in a magnetic field (in vacuum, not in a crystal)
have very sharp energy values—Landau levels—that are evenly spaced, like the rungs
of a ladder, with wide energy gaps separating them. Landau also found that such
electrons have quantum-mechanical states that correspond to classical circular orbits
of various radii, yet all these different states share the same period of oscillation (the
reciprocal of the “cyclotron frequency”, whichwas the classical frequency of electrons
making circular orbits in a magnetic field). In other words, this quantum-mechanical
period is independent of the energy the Landau electron possesses.

Thus inside a Bloch band there are no energy gaps, but between Landau levels
there are gaps. A fascinating question was therefore this: what would happen when
these two contrasting situations—one with a continuous spectrum and an energy-
dependent period, the other with a discrete spectrum and an energy-independent
period—were physically combined? More concretely, what would happen to
electrons in a crystal when a magnetic field was turned on? Would the band to
which they belonged somehow split into a set of mini-bands—perhaps “narrow”
Bloch bands, perhaps “thick” Landau levels—separated by mini-gaps? And how
many such “narrow bands” or “thick levels” would there be? And how would they
be spaced? And would the electron’s behavior be periodic, and if so, with what
period? How, in short, would nature manage to reconcile these profoundly opposing
situations? None of this was at all obvious, and solving the Schrödinger equation for
such a hybrid situation was, to say the least, mathematically very challenging.

6.2 The marvelous pure number ϕ
There is one extremely important new physical quantity that arises when the two
situations are combined, and that is the pure number ϕ (“pure” in the sense that it has
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no units attached to it), which measures the magnetic field’s strength in an extremely
natural fashion. How can a pure number, with no units at all, tell how strong a
magnetic field is? The answer is not too subtle and very revelatory; in fact, this
all-important quantity ϕ can be thought of in (at least) three conceptually different
but mathematically equivalent ways, described below.

It all hinges on the fact that there is a fundamental amount of magnetic flux—the
flux quantum, equal to hc/e—that emerges intrinsically out of quantum mechanics.
This minuscule quantity is an inherent fact about our universe, just as are the speed
of light and the charge on the electron. Given that this tiny amount of flux is the
natural chunk of flux, it is as if nature had handed us a measuring stick on a silver
platter! This beautiful and generous favor on nature’s part must not be ignored.

A first way of thinking about the variable ϕ, then, is as how many flux quanta pass
through a unit cell of the lattice. After all, the flux passing through a unit cell is
proportional to the magnetic field B (it equals a B2 in the case of a square lattice,
which is what we are focusing on for the moment), and the flux quantum hc/e is the
natural unit—the unit par excellence—with which to measure that flux. And indeed,
counting the number of flux quanta passing through a unit cell gives a dimensionless

answer—a pure number, a flux divided by another flux—namely, a Be
hc

2
. In truth,

nothing could be more natural than this dimensionless way of measuring the
strength of a magnetic field in a crystal. (By the way, this trick won’t work to
measure a magnetic field in a vacuum, because the trick involves flux, which involves
area, and in a vacuum, unlike in a crystal, there is no scale defining a natural chunk
of area.)

A second way to compute exactly the same number, yet conceptually quite
different, vividly reflects the fact that ϕ is the fruit of the “marriage” of two
unrelated “parents”—the isolated crystal and the isolated magnetic field. How can
one find a pure number that combines the unrelated “genes” coming from each of
ϕʼs parents? Well, the idea is to compute the ratio of two natural geometrical areas,
one coming from each of the two parents. These geometrical areas can be thought of
as the “genes” to exploit. In particular, the salient area having to do with the crystal
alone is the area of a lattice cell (a2). The salient area having to do with the magnetic
field alone is the area of a circle (a Landau–orbit) that intercepts exactly one flux
quantum (this is hc

eB
). Now take the ratio of these two natural areas, and voilà! You

get a pure number, and a very simple calculation shows that it is equal to the
previous number.

A third way to compute the same number reflects, once again, ϕʼs dual origins.
This time we again take a dimensionless ratio, but this new ratio involves two
different “genes”—namely, the ratio of two natural time intervals, one coming from
each of the two parents. The salient time interval having to do with the crystal alone
is the time taken by an electron with momentum h/a to cross a unit cell (h/a is the
canonical momentum for a crystal electron, and the associated velocity is h

am
, with

m being the mass of the electron); this time is therefore =a
h am

a m
h( / )

2
. The salient time

interval having to do with the magnetic field alone is the cyclotron period
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(the reciprocal of the cyclotron frequency eB
mc
, which, as was mentioned before, is

independent of the size of the Landau–orbit). As before, take the ratio of these two
quantities, and voilà once again! The units cancel, you get a pure number, and
another very simple calculation shows that it is equal to the previous two numbers.

Seeing ϕ as a ratio of two independent entities of the same sort (whether they are
areas or time intervals), one coming from each “parent”, is a fundamental and
insight-giving way to look at what ϕ means. Also, seeing ϕ as the number of flux
quanta threading a lattice cell is another deep way to look at what ϕ means, equally
fundamental and insight-giving. Whichever may be your favorite way of conceiving
of what ϕ means, in any case it is a pure number that naturally measures the
magnetic-field strength in the hybrid situation. Indeed, ϕ is the key parameter at the
very heart of the situation.

6.3 Harper’s equation, describing Bloch electrons in a
magnetic field

How can one figure out how to represent the hybrid situation—the marriage of a
crystal lattice and a magnetic field—mathematically? In this section, we will go
through the steps, one by one, that over a few decades led physicists to a deep
equation that captured the essence of the hybrid situation, or at least the essence of
an extremely idealized model of the hybrid situation. That equation—Harper’s
equation—is the very source, root, and wellspring of everything that this
book is about, and so having a sense of this equation’s origins is a crucial part of
the story.

The steps that led up to Harper’s equation involve some fascinating acts of
virtuoso thinking by great physicists, which it will give me great pleasure to talk
about. A number of these steps, however, will be mathematically quite advanced.
For some readers, therefore, this will be a delicious gourmet meal, but for others, it
will be exotic and alien cuisine. I hope, nonetheless, that all readers will try to plow
through the whole section, even if at times it is forbidding. It is my hope that I have
included enough thought-provoking historical and philosophical comments along
the way to make it worthwhile even for readers without great mathematical
knowledge.

The story starts out with one of the simplest and most famous equations of
classical physics, relating two ubiquitous quantities in mechanics: kinetic energy and
momentum. For a classical particle of mass m, the kinetic energy E is a quadratic
function of the momentum p:

=E
p
m2

.
2

It would seem natural to try to carry this equation over to electrons in a crystal.
(By the way, we’ll assume we are dealing with a two-dimensional square lattice
whose cells all have side a, as usual.) As was mentioned in previous chapters, an
electron in a crystal has a crystal momentum k, and the analogical link between
that notion and ordinary momentum is so obvious and so strong that it almost
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inevitably leads to a naïve generalization of the above formula, in which crystal
momentum is simply substituted for momentum. That analogical guess would yield
this formula:

=E
m
k( )

2
.

2

As a function of the wave vector k, this is a parabola, and for small values of k, it
is accurate. However, as was mentioned in the previous chapter, all physical
phenomena in a crystal must be periodic in the wave vector k, and of course a
parabola is not a periodic curve. As most readers will surely know, the quintessential
periodic curves are sines and cosines. If, therefore, we make another tentative guess,
and simply replace the parabola by a cosine function (which, after all, is a parabola
for small arguments), we will get the following equation, hopefully defining the
relation of electron energy E to wave vector k = k k( , )x y in a hypothetical Bloch
band in a two-dimensional crystal:

= +( )E E k a k acos cos . (6.1)x y0

This humble equation, arrived at here by educated guesswork (although it can
also be more rigorously derived) is the starting point for a quantum-mechanical
treatment of the marriage of Bloch electrons to a magnetic field. (I call it “humble”
because it embodies the most idealized model imaginable of a Bloch band, using the
most rudimentary periodic function that exists. The formula reflects what is
commonly called the “tight-binding approximation”.) Over the next few pages, bit
by bit, we will witness this equation turning into a Schrödinger equation, with its left
side turning into an eigenvalue, and its right side turning into a differential operator
acting on a wave function. But let us not jump the gun. One step at a time!

The next step in the process leading to a Schrödinger equation for this marriage
was an extraordinarily bold and ingenious move devised first in the 1930s by English
physicist Rudolf Peierls and then, in the 1950s, in a different form, by Norwegian
physicist Lars Onsager Peierls (see figure 6.1). (As one might guess from his name,

Figure 6.1. Felix Bloch, Lars Onsager, and Rudolf Peierls.
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Peierls was born in Germany, but because of the rise of Nazism, he left Germany for
Britain in the 1930s and remained there for the rest of his life.) Both of these seminal
thinkers must be counted among the major pioneers of 20th century physics.

Onsager and Peierls had the inspiration of replacing the crystal momentum k in
this formula by a quantum-mechanical momentum operator, a replacement that
would convert the sum of cosines into a Hamiltonian operator which could act on a
wave function Ψ; with that stroke, this purely numerical equation would become a
differential equation—indeed, a form of the Schrödinger equation.

The motivation for this strange-seeming substitution is two-fold. First is the fact
that a canonical way to turn a classical equation into a quantum-mechanical
equation is to replace certain numerical variables (e.g. momentum) by corresponding
differential operators. (Dirac, who discovered this trick, referred to it as the replace-
ment of “c-numbers” by “q-numbers”, where presumably “c” stood for “classical”
and “q” for “quantum-mechanical”.) Of course Onsager and Peierls, both being
excellent physicists, were very aware of this method of turning a classical-physics
formula into a quantum-physics formula. Second is the fact that crystal momentum
has the same units as momentum and behaves in many ways like momentum. So if
you were in a daring, risky mood, and if you happened to think of these two ideas at
the same time, you just might dream up the idea of replacing the crystal momentum
by a quantum-mechanical momentum operator. Nonetheless, it is a little like pulling
a rabbit out of a hat. After all, crystal momentum is notmomentum. Treating the two
as if they were synonyms is an intuitive stab in the dark rather than a rigorous act of
reasoning. There is nothing to guarantee that it will even be meaningful to make such
a substitution, let alone that it will be correct. And yet this was the rather wild flash
that came to Onsager and Peierls.

This was already a very clever idea, but carrying it out properly required not just
great care but also some true touches of genius. How, indeed, does one understand
what it means to have a differential operator acting as an argument of a cosine? This
is not self-evident. However, before tackling that subtle mathematical question, let
us figure out—either following in the footsteps of, or perhaps standing on the
shoulders of, the aforementioned giants—just which operator we want to plug into
the above equation.

A clever physics student’s first reflex might be to plug in the “vanilla” momentum
operator − ∇ = − ∂

∂
∂
∂

i i ( , )
x y

, well known to all students of first-year quantum

mechanics, but if one thinks about this for a moment, one realizes that doing this
will not take into account the existence of a magnetic field in the situation.
The crystal is represented by the cosine formula involving the crystal momentum

k, and quantum mechanics itself is represented by the act of substituting a
q-number for a c-number, but as of yet, there is no representation of magnetism
anywhere here.

Spurred on by this oversight, our imaginary physics student might realize that
what is called for here is, so to speak, a “chocolate” momentum operator—that is, a
fancier operator that somehow takes the magnetic field into account. From courses
in classical mechanics, the student might recall that there is a quantity called the
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“canonical momentum” of an electron in a magnetic field, which involves both the
electron’s ordinary momentum ⃗mv and the vector potential ⃗A for the magnetic field
that the electron is immersed in. To be specific, an electron’s “canonical momentum”

is the quantity ⃗ − ⃗mv Ae
c

. (I interrupt the flow very briefly to mention that the rest of
this book uses a slightly different system of units, in which c = 1, and so some of the
equations in this chapter will have factors of c or of c1/ that are lacking in their
counterparts in other chapters.) And now, with a bit of nonchalant hand waving, we
will replace the ordinary momentum term ⃗mv in this expression by the “vanilla”
momentum operator − ∇i , so that we wind up with the “chocolate” momentum
operator − ∇ − ⃗i Ae

c
.

As you can probably tell, there is a lot of slippery conceptual playing-around
going on here, but slippery or not, this is precisely the differential operator that
Onsager and Peierls came up with. And now, for our next trick, we will blithely plug
the chocolate momentum operator into the cosine function, letting it replace k.
(Actually, we first have to divide it by ℏ, since we are replacing k, not k.) What we
will need to do after that is to figure out how to make sense out of the resulting
expression—or if we can’t make sense of it, then hopefully we can at leastmanipulate
it as if it made sense, a bit like whistling in the dark.

Come to think of it, we are not quite ready to tackle that tricky step, because we
haven’t yet said what the vector potential ⃗A should be, if we wish it to capture the
physical situation that we are concerned with. Luckily, finding such an ⃗A is not
terribly hard. If we choose our magnetic field ⃗B to have constant magnitude along
the z direction, then we want a vector potential ⃗A whose curl equals such a magnetic
field. This means that ⃗A has to be a vector field such that ⃗ = ∇ × ⃗B A is a constant
vector pointing in the z direction.

There are, in fact, many such vector fields, all related to each other by gauge
transformations, but to save time and to avoid details, we will skip straight to the
chase and reveal the choice for ⃗A made by Onsager and Peierls. This is ⃗ =A B

x(0, , 0), usually called the Landau gauge. It is easily verified that ∇ × ⃗ = ˆA Bz, as
desired.

If we plug this very simple formula for ⃗A into the definition of our chocolate
momentum operator, we get the following equations for the two non-zero compo-
nents of the operator:

= − ∂
∂

= − ∂
∂

−

p i
x

p i
y

e
c

Bx.

x

y

And now we are cooking with gas!
The main remaining challenge is to interpret the meaning of a mysterious-looking

expression like “ − ∂
∂

iacos( )
x
”. We can get partway there by recalling that for any θ,

θ = +θ θ−e ecos ( )/2i i . If, in place of θ, we plug the differential operator − ∂
∂

ia
x
into
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this expression, we get the following equation (in which we have applied both sides
to a two-dimensional wave function Ψ):

⎜ ⎟⎛
⎝

⎞
⎠− ∂

∂
Ψ =

+
Ψ

∂
∂ − ∂

∂( )
ia

x
x y

e e
x ycos ( , )

2
( , ).

a
x

a
x

Now all we have to do is expand the two exponentials on the right side by
exploiting the elegant power series for ex, known for centuries:

= + +
!

+
!

+
!

+ ⋯e x
x x x

1
2 3 4

.x
2 3 4

What this gives, for the first exponential, is:

Ψ = Ψ + ∂
∂

Ψ +
!

∂
∂

Ψ +
!

∂
∂

Ψ + ⋯
∂

∂e x y x y a
x

x y
a

x
x y

a
x

x y( , ) ( , ) ( , )
2

( , )
3

( , ) .

(6.2)

a
x

2 2

2

3 3

3

Similarly,

Ψ = Ψ − ∂
∂

Ψ +
!

∂
∂

Ψ −
!

∂
∂

Ψ + ⋯− ∂
∂e x y x y a

x
x y

a
x

x y
a

x
x y( , ) ( , ) ( , )

2
( , )

3
( , ) .

(6.3)

a
x

2 2

2

3 3

3

This does feel rather magical, like pulling a rabbit out of a hat, does it not? I say this
in all seriousness, and indeed with a sense of profound wonder, because to me, even
after decades of seeing such manipulations, it still feels mysterious, miraculous, and
nearly mystical. After all, to spell it out very clearly, we started with a very basic high-
school trigonometry function, θcos , whose argument is an everyday angle, like 30 or
60 degrees. For many very highly intelligent people, this is already approaching their
abstraction ceiling, where the oxygen is sparse; however, to a mathematician or
physicist, nothing could be possibly more tangible and concrete. From there we nimbly
leapt to a deeper and more sophisticated vision of the cosine function, involving a sum
of two exponentials of complex numbers—but that nimble leap, although quite a feat
and leading us into far more abstract, far less visualizable territory, was not nearly
bold enough. The next step was to replace each exponential by an infinitely long
polynomial (an idea that ought to make you smile), but even that level of wildness was
still not wild enough, because we then replaced the power-series variable—a complex
number, admittedly, but at least a “thing” that was more or less visualizable—by a
dangling partial differential operator “ ∂

∂x
”, representing a pure action, rather than a

thing. In the end, then, we wound up with a pair of very mysterious-looking power
series equations (6.2) and (6.3) that would leave most cosine-savvy high-school
students choking in the dust. This was a rather dizzying sequence of rapid-fire
generalizations, and yet in a technical physics paper, such manipulations would be
treated as if they were trivial and utterly self-evident. But I think that it’s important, at
least once in a while, to point out and to savor such magically fluid thinking, because it
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lies at the core of what theoretical physics is all about. But enough editorializing for the
moment. Let us return to the story of where Harper’s equation came from.

At this stage of the game, our hypothetical astute physics student would hopefully
recognize the expressions on the right-hand sides of equations (6.2) and (6.3) as the
Taylor expansions of Ψ +x a y( , ) and Ψ −x a y( , ), respectively. In other words, the
effect of the x-component of the chocolate momentum operator has been to translate
the first argument, x, of the wave function Ψ through the lattice distance a, first
rightwards and then leftwards.

A very similar argument holds for the y-component of the chocolate momentum
operator, except that there is also an extra numerical factor involved, which comes
from the nonvanishing y-component of the magnetic vector potential ⃗A. Instead of
merely giving us Ψ +x y a( , ) and Ψ −x y a( , ), the operator will attach phase factors
to both of these values of the wave function.

In short, our humble original equation relating energy to wave number in a highly
idealized Bloch band (equation (6.1)) has bit by bit been turned into a Schrödinger
equation that relates Ψ at point (x,y) of the lattice to four other values of Ψ on the
lattice—namely, those located at the lattice sites +x a y( , ), −x a y( , ), +x y a( , ),
and −x y a( , ), which are the four nearest neighbors of (x,y). Here, then, is the full
Schrödinger equation that we have “derived” (or to put it more accurately, that we
have arrived at via a series of slick sleights of hand):

⎡⎣ ⎤⎦Ψ + + Ψ − + Ψ + + Ψ −

= Ψ

−E x a y x a y e x y a e x y a

E x y

( , ) ( , ) ( , ) ( , )

( , ).

ie
c

Bxa ie
c

Bxa
0

Like any self-respecting Schrödinger equation, this is an eigenvalue equation that
admits of solutions for the wave function Ψ only for certain values of the energy E
on the right side. Finding those values of E as a function of the magnetic field ϕ is
our “Holy Grail”, so to speak.

At this point, it will be useful to introduce some notational conventions. Firstly,
we will divide both sides by E0, giving us E E/ 0 on the right side, but we will replace
this ratio by the letter E (this is just a rescaling of the energy, and turns E into a
dimensionless quantity). Secondly, since it seems that only lattice points ma na( , ) are
involved, with m and n running over integer values only, we can replace the
continuous variables x and y by the discrete variables ma and na, or even by just
m and n. Lastly, we can introduce our old friend, the pure number ϕ, into this
equation. All of this will give us the following equation:

Ψ + + Ψ − + Ψ + + Ψ − = Ψπ ϕ π ϕ−m n m n e m n e m n E m n( 1, ) ( 1, ) ( , 1) ( , 1) ( , ).im im2 2

And just think: this is no longer a differential equation, but a difference equation, since
it only involves discrete positions in a two-dimensional lattice. That’s quite a surprise!

We have come a long way, but we can still simplify this equation quite a bit more
if we guess that Ψ m n( , ) is a product of two independent functions ψm and χn, with χn
being purely periodic along the x-axis (or the n-axis, if you prefer). (This is actually
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not just a guess but a necessary consequence of our prior assumptions.) If we set
χ = en

ik ny and plug it in, then the equation simplifies as follows:

⎡⎣ ⎤⎦ψ ψ ψ ψ+ + + =π ϕ π ϕ
+ −

− − +e e E .m m
im k im k

m m1 1
2 2y y

All that’s left of χn, which represented the wave function’s behavior along the y-axis,
is the number ky in the two exponents. Other than that, there is no more trace of χn.
Everything comes down to behavior along just the x-axis (i.e., the m-axis).

The sum of the two exponentials in the square brackets actually amounts to twice
a cosine, so we can finish up our simplification work as follows:

ψ ψ πϕ ψ ψ+ + − =+ − ( )m k E2 cos 2 . (6.4)m m y m m1 1

Et voilà!
This equation was first published in 1955 by P G Harper (see figure 6.2), a student

of Rudolf Peierls, and thus it is usually called “Harper’s equation”, although it was
independently discovered at about the same time by Gregory H Wannier. Note that
what Peierls, Onsager, Harper, and Wannier did boils the whole problem of a Bloch
electron in a magnetic field down to a one-dimensional difference equation.

I remind readers that ϕ represents the strength of the magnetic field, E represents
the electron’s energy, and ky is just a constant that represents the periodicity of the
wave function along the “boring” y-axis. All the interesting action takes place along
the x-axis, which has here become the m-axis. Now who would ever have guessed
that a one-dimensional difference equation could capture the essence of such a

Figure 6.2. Philip Harper. This image is reproduced with permission from the Heriot-Watt University
Heritage and Information Governance.
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complex physical situation? Well, perhaps someone with great gifts of clairvoyance
might have been able to anticipate that the Schrödinger equation in this
context would have to have more or less this form. The argument would go
something like this: “The first two terms (ψ ψ++ −m m1 1) represent the second spatial
derivative of Ψ, the next term captures both the periodic potential due to the lattice
(via the cosine) and the magnetic field (via ϕ), and the right-hand side represents
the eigen-energy E.” Well, this argument makes a bit of sense after the fact, but it
would take an exceptionally brilliant mind to guess such a subtle equation in
advance.

It’s key to remember that equation (6.4) is an eigenvalue equation, meaning that
for certain values of E, it will have solutions ψm, and for others it will not. What does
“have solutions”mean here? It means that for some values of E, ψm is “well-behaved”
when m gets large. To be more precise, for certain values of E—most, in fact—the
wave function ψm will blow up asm becomes large (positively or negatively), while for
a very special set of other values of E, the wave function ψm will remain bounded, no
matter how largem grows. Unbounded explosions of the wave function as one moves
out towards infinity cannot exist in nature, and thus, to make a long story short, what
makes an E “good” is that the wave function ψm should remain bounded for all m.
Finding all the “good” values of the energy E, given a fixed pure-number strength ϕ
of the magnetic field, is the challenge.

6.4 Harper’s equation as a recursion relation
Harper’s equation can be thought of as a recursion relation that defines each new
term ψ +m 1 as a weighted sum of the previous two terms, ψm and ψ −m 1. To see this, all
we need to do is rewrite it as follows:

ψ ψ ψ= −+ −C ,m m m m1 1

where “Cm” stands for the oscillating quantity πϕ− −E m k2 cos(2 )y . The frequency
with which the coefficient Cm makes a cycle and comes back to where it was is
proportional to ϕ, the magnetic-field strength. In that sense, Cm might remind us of
the cyclotron orbits of an electron in a magnetic field, whose frequency is also
proportional to the magnetic-field strength.

If ϕ is an integer, then Cm is a constant. Harper’s equation then becomes

ψ ψ ψ= −+ −C ,m m m1 1

which, in its extreme simplicity, is reminiscent of the Fibonacci equation.
If ϕ is not an integer, but is rational—say it is 1/3—then Cm first takes on one

value, then a second value, then a third value, and then (since the cosine function is
periodic) it starts all over again, taking on those same values over and over again,
cyclically. If ϕ were 2/5, then the values of Cm would repeat after going through a
cycle of length five. In general, if ϕ equals p/q, the denominator q tells you how long
you will have to wait for the sequence of values of Cm to come back, full circle, to
where they started (courtesy of the cosine).
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If ϕ is not rational, then the sequence of values taken on by Cm doesn’t ever close
back on itself exactly, but on the other hand, its values are almost periodic, in that
after a while, they will nearly come back in a cycle, and if one waits a longer while,
they will come even closer to cycling back—and if one has the patience to wait
infinitely long, they will come back exactly.

6.5 On the key role of inexplicable artistic intuitions in physics
As we recall the origin of Harper’s equation in a daring manipulation of the humble
Bloch-band formula (equation (6.1)), we feel it is important to take our hats off to
Peierls and Onsager, who made this reckless substitution of a quantum-mechanical
operator for the crystal momentum purely intuitively. It was certainly an artistic
move, absolutely indefensible in purely logical terms, and thus it almost feels like
magical thinking.

Other physicists have occasionally pointed out the almost incomprehensible
magic in the thinking processes of the rarest geniuses in physics. For example,
Japanese Nobelist Sin-Itiro Tomonaga, in his marvelous book The Story of Spin [1],
wrote of P A M Dirac’s uncanny hypothesis of second quantization, “We ordinary
mortals stand here bewildered.” That memorable phrase (and it was uttered by
someone who himself was a genius) could apply equally well to the rash and purely
aesthetic leap of imagination made by Onsager and Peierls.

And Steven Weinberg, one of the most distinguished physicists of recent decades,
in his book Dreams of a Final Theory, made a similar comment about Werner
Heisenberg’s astonishing thought processes in 1925, when Heisenberg first came up
with what was eventually called “quantum mechanics”. Weinberg wrote this:

If the reader is mystified at what Heisenberg was doing, he or she is not alone. I
have tried several times to read the paper that Heisenberg wrote on returning
from Heligoland, and although I think I understand quantum mechanics, I have
never understood Heisenberg’s motivations for the mathematical steps in his
paper. Theoretical physicists in their most successful work tend to play one of
two roles: they are either sages or magicians. The sage-physicist reasons in
an orderly way about physical problems on the basis of fundamental ideas
of the way that nature ought to be. Einstein, for example, in developing the
general theory of relativity, was playing the role of a sage; he had a well-defined
problem—how to fit the theory of gravitation into the new view of space and
time that he had proposed in 1905 as the special theory of relativity. He had
some valuable clues, in particular the remarkable fact discovered by Galileo that
the motion of small bodies in a gravitational field is independent of the nature of
the bodies. This suggested to Einstein that gravitation might be a property of
space–time itself. Einstein also had available a well-developed mathematical
theory of curved spaces that had been worked out by Riemann and other
mathematicians in the nineteenth century. It is possible to teach general relativity
today by following pretty much the same line of reasoning that Einstein used
when he finally wrote up his work in 1915.
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Then there are the magician-physicists, who do not seem to be reasoning at all
but who jump over all intermediate steps to a new insight about nature. The
authors of physics textbooks are usually compelled to redo the work of the
magicians so that they seem like sages; otherwise no reader would understand the
physics. Planck was a magician in inventing his 1900 theory of heat radiation, and
Einstein was playing the part of a magician when he proposed the idea of the
photon in 1905. (Perhaps this is why he later described the photon theory as the
most revolutionary thing he had ever done.) It is usually not difficult to understand
the papers of sage-physicists, but the papers of magician-physicists are often
incomprehensible. In this sense, Heisenberg’s 1925 paper was pure magic.

It is important to point out that, contrary to the general opinion of lay people and
even of most physicists themselves, doing physics is an art that is deeply rooted in
aesthetic intuitions and ineffable nuances of taste. What Onsager and Peierls did, for
example, was a poetic act of interpretation of a mathematical expression (namely,
the right side of equation (6.1)). They read into that expression a metaphorical
meaning that no one thinking logically would ever have thought of. Their flash of
replacing the crystal momentum by a generalized momentum operator was a piece
of inspired guesswork, rooted in aesthetics, motivated by an intuitively sensed
likeness. It was a kind of magical thinking.

If one wanted to be harsh, one might call their leap of faith “superstitious
thinking” rather than “magical thinking”, but that would be a gross exaggeration. In
the first place, science is all about the testing of guesses, so that if Onsager and
Peierls’ speculative idea had yielded wrong predictions, they would have simply
dropped it and gone back to the drawing board. That’s the diametric opposite of
superstitious thinking! But in the second place, there is no reason to describe
intuitively motivated guesswork in physics as “superstitious thinking”. The fact is
that some physicists have an uncanny ability to peer behind the veils of nature and to
spot hidden connections that no one else sees. Such artistic thinking is what doing
physics can be, at its best, and it is important to point this out, rather than to
misrepresent physical thinking as just a series of purely logical acts and rigorous
manipulations of mathematical formulas.

It is also interesting to point out that although the “Onsager–Peierls ansatz” (as
Gregory Wannier used to call their aesthetics-based heuristic substitution) gives
perfectly accurate results when a crystal has only a single Bloch band, it is quite
inaccurate when there is more than one Bloch band. So in a sense, Onsager and
Peierls were very lucky in their guess that they could make this substitution. And
decades later, I was lucky that they had been lucky, since it was their ansatz that led
to the equation whose behavior I studied.

6.6 Discovering the strange eigenvalue spectrum of Harper’s
equation

We have now seen how Harper’s equation—Schrödinger’s equation for Bloch
electrons in a magnetic field—was derived (or, if “derived” is too strong a term,
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then at least discovered), and we also understand that the condition defining its
eigenvalues E is that ψm should not blow up as the variable m grows large. But given
a specific value ϕ of the magnetic field, how can these special values of E be
pinpointed?

Up to 1974, many physicists had studied this question and some progress had
been made, but no one knew in detail what the eigenvalue spectrum—the concrete
graph of eigenvalues E as a function of the magnetic field ϕ—looked like. If this
seems strange to today’s readers, it must be explained that at that time, computers,
though quite advanced and used in many disciplines, were not commonly exploited
by physicists—especially not by theoretical physicists, who believed that physics was
done by coming up with equations and then manipulating them with all sorts of
fancy techniques learned in graduate school. In the research group of Gregory
Wannier, a matrix-based method had been devised to characterize the good values
of E, but no one in the group had been able to take advantage of that result to derive
important new facts about the nature of the spectrum.

The basic idea of the matrix-based method was to look at Harper’s equation as a
recipe telling how to compute the couple ψ ψ+( , )m m1 , given the couple ψ ψ −( , )m m 1 . If we
think of these couples as vectors of size 2, then we can rewrite Harper’s equation
using a 2 × 2 matrix:

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝

⎞
⎠

ψ
ψ

ψ
ψ

πϕ ψ
ψ= − = − − −+

− −

( )C E m k1
1 0

2 cos 2 1

1 0 .
m

m

m m

m

y m

m

1

1 1

Let us abbreviate the 2 × 2 matrix as Hm. Then the preceding equation becomes:

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ψ
ψ

ψ
ψ=+

−
H .

m

m
m

m

m

1

1

If we start out with the couple ψ ψ( , )1 0 and then multiply it by the matrix H1, we
will get the couple ψ ψ( , )2 1 . If we multiply this couple by the matrix H2, we will get
the couple ψ ψ( , )3 2 —and so forth. Symbolically,

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝
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⎠

⎛
⎝

⎞
⎠

ψ
ψ

ψ
ψ

ψ
ψ

ψ
ψ= = =H H H H H H .

4

3
3

3

2
3 2

2

1
3 2 1

1

0

So far we have not done much; we have just written out, using matrix notation,
the idea that we can get new values of ψ from old values by using the coefficients in
the recursion relation that is Harper’s equation. But let us now imagine that ϕ is a
rational number—say, 1/3. In this case, the matrices will start repeating after a cycle
of length 3; that is to say, =H H4 1, and =H H5 2, etc. Thus the product H H H6 5 4 will
be equal to the product H H H3 2 1, and likewise, H H H9 8 7 will be exactly the same matrix
once again. If we abbreviate the product H H H3 2 1 asM, then if we want to get ψ m3 for
a very large value of m, all we need to do is use the mth power of M:

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ψ
ψ

ψ
ψ=+ Mm

m

m3 1

3

1

0
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All we have done is to take advantage of the periodicity of the cosine, given that
ϕ = 1/3. But of course the same idea will hold whenever ϕ is a rational number p/q.
In the general case, the matrix M will be the product of q matrices −H H H H...q q 1 2 1,
instead of just three matrices.

So under what circumstances will the terms ψm given by Harper’s equation blow
up when m grows very large? The matrix M gives us a handle on this question.
(Of course the existence of this matrix depends on ϕ being rational, as we have just
indicated, but let’s not worry about that for now.) If putting M to higher and higher
powers results in matrices with larger and larger elements, then we are sunk. So the
question boils down to when high powers of M themselves have bounded elements.

There are theorems about when a matrix put to higher and higher powers will
blow up, and in the early 1970s, Gustav Obermair, while working on this problem
with Wannier, had looked into those theorems, and with their aid he had
demonstrated that what mattered, in this case, was whether the trace of M (the
sum of its two diagonal elements) lay between –2 and +2. If yes, the matrix’s powers
would remain bounded, which was good; if no, the matrix’s powers would blow up,
which was bad. This meant that the condition for E to be an eigenvalue was implicit
in the matrix M. If ϕ were given as, say, 2/5, one would merely need to calculate M,
which in this case would be H H H H H5 4 3 2 1, since the denominator of ϕ is 5, and then to
take the trace of M and see if it is between –2 and +2. This is pretty simple!

Bear in mind, though, that the trace of this product of five matrices (or q matrices,
in the general case) is not a numerical value, because there are two variables in all the
2 × 2 matrices being multiplied together—namely, E and ky. Therefore, the trace of
the matrix M will be a qth-degree polynomial in the variable E. (By the way, the
dependence on the variable ky turns out to be very simple—so simple that we can take
all possible values of ky into account in one fell swoop. All we do is set ky to zero and
relax the condition on the trace of M so that it can lie anywhere between −4 and +4,
instead of between −2 and +2. That allows us to forget about ky.) So in short, we have
found, using this mode of analysis, that for any rational value p/q of ϕ, there will be a
qth-degree polynomial in the variable E, and what we want to know is: when will the
values of this polynomial be less than or equal to 4, in absolute value?

This is more or less where I came in, in the fall of 1974 in Regensburg, Germany.
As I said in my prologue, I was very frustrated that I was unable to participate in the
theorem-proving activity that the senior members of the Regensburg group
(Wannier, Obermair, and Alexander Rauh) were eagerly engaged in, but at some
point I had the good fortune to discover a desktop computer in the hallway, and
since I knew how to program, I made the only contribution I knew how to make,
which was to numerically calculate the “fat roots”, as I called them, of many
different qth-degree polynomials (a fat root being an interval along the x-axis, which
is to say, the E-axis, in which the polynomial is within a distance of 4 of the axis).

These “Harper polynomials” are quite fascinating, as we shall see. Figure 6.3
shows the degree-3 and degree-5 Harper polynomials belonging to ϕ = 1/3 and
ϕ = 2/5, respectively. Note that in these two cases, the subbands lie inside the Bloch
band (which stretches from = −E 4 to = +E 4). Figure 6.4 shows the degree-6
Harper polynomial belonging to ϕ = 1/6, and once again all the subbands are
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contained inside the Bloch band. Could this tendency for subbands to lie inside the
Bloch band be relied on in general? The answer was yes. Alexander Rauh proved an
important theorem to the effect that the “fat roots” of the Harper polynomial for
any rational value of ϕ always lie between = −E 4 and = +E 4. This was an
excellent piece of progress, but there were nonetheless dark clouds on the horizon.

6.7 Continued fractions and the looming nightmare of discontinuity
What worried everyone working on this problem, whether in Regensburg or
elsewhere, was that if there was a qth-degree Harper polynomial for each rational
value p/q of ϕ, then for that rational value of ϕ, there would be q fat roots, and thus q
sub-bands of the original Bloch band. This may not sound too worrisome, unless
you think about how rational numbers are distributed along the number line. Very
close to 1/6, for instance, is the rational number 3/19. The former has six bands,
while the latter has 19 bands. That sounds very different from six bands. We can get

Figure 6.3. In panel (a), we see a cubic Harper polynomial with three “fat roots” along the E-axis. In fact, the
axis itself has been “fattened”, becoming a horizontal strip of thickness 8 located between the parallel lines

= −E 4 and = +E 4. The three “fat roots” are the three intervals along the E-axis where the polynomial makes
three quick passes through the “fat axis”. And of course those intervals are the three mini-bands into which the
original Bloch band splits when ϕ = 1/3. Similarly, panel (b) shows the degree-5 Harper polynomial belonging
to ϕ = 2/5, with its five fat roots along the E-axis. As before, these five “fat roots” are the five mini-bands into
which the original Bloch band splits when ϕ = 2/5.
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yet closer to 1/6 by setting ϕ equal to 10/61, whose 61st-degree polynomial of course
gives rise to 61 bands, which obviously sounds even less like six bands. Then there
are ϕ-values of 100/601, 1000/6001, and so forth, which are clearly approaching 1/6
in the limit, yet they have more and more bands.

This is very worrisome if one believes that the phenomena of physics must be
continuous, meaning that tiny changes in ϕ must be accompanied by tiny changes in
the spectrum belonging to ϕ. It would seem, however, that precisely the reverse is
happening—the closer a rational number gets to 1/6, the greater its denominator
must be, and so the more subbands it will have in its spectrum. This doesn’t sound
like continuity, but like its diametric opposite! This paradox was deeply bewildering
to all the people working on the problem in those days, but happily, there turned out
to be a beautiful resolution to the mystery.

Incidentally, one might imagine that for ϕ = p q/ , there could be fewer than q
bands, because the qth-degree Harper polynomial might enter one side of the “fat
axis” and then turn around inside it, instead of exiting it on the other side. For
instance, in the case of ϕ = 1/3, one could imagine that the “S”-shaped double
reversal made by the polynomial could have taken place entirely within the fat axis,
so there would be only one band, rather than three. As it turns out, however, this
kind of turnaround inside the fat axis never happens. Every time any Harper
polynomial enters the fat axis, it always reemerges from it on the other side without
turning around inside it. This theorem about the behavior of Harper polynomials
associated with all rational values of ϕ was formally proven in a letter to me in the
mid-1970s by an old friend of mine, the mathematician John Mather, with whom
I had been in correspondence.

The only case that resembles the just-described turnaround scenario occurs when
q is even, and it occurs only at the very middle of the E-axis. In those cases, the

Figure 6.4. The Harper polynomial belonging to magnetic-field value ϕ = 1/6. Note that because this
polynomial grazes the “fat axis” at at E = 0, there are two “fat roots” that touch each other at that point,
which gives the misleading impression that for ϕ = 1/6, there are only five bands. In fact, there are six, as there
must be, but two of them kiss at a point, so they look like just one.
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Harper polynomial, after entering the fat axis, slows down, bends toward the
horizontal, and just barely reaches the other side, at which point it turns around
while just grazing its upper (or lower) edge from the inside, in a perfect tangency.
This phenomenon is shown in figure 6.4, for the value ϕ = 1/6. One sees that there
are four normal bands away from the center (two on the left, two on the right), but
that at the very center, where E = 0, the polynomial does not break out of the fat
axis, but elegantly grazes its lower edge from the inside. This curious phenomenon
makes the two middle bands belonging to 1/6 (and more generally, to any even-
denominator rational value of ϕ) “kiss” each other, as was described in chapter 1.
For such values of ϕ, this gives the appearance of only −q 1 bands, but in fact, there
are still q bands—it’s just that two of them gently nuzzle each other at one single
point (E = 0). But that, it must be stressed, is the worst case (or the best, depending
on how you feel about nuzzling). In all other cases, there are exactly q cleanly
separated subbands.

The question remains, however, how those q bands are distributed. Consider, for
the sake of concreteness, values of ϕ that lie close to 1/3, such as ϕ = 100/301. It is
rather confusing, if not downright mystifying, to think that this value’s 301 bands
are situated right next door to the set of just three bands belonging to ϕ = 1/3. And
then think of the 3001 bands belonging to ϕ = 1000/3001, which lie even closer to the
three bands of 1/3! The closer you get to ϕ = 1/3, the more bands there are! From
such simple considerations, it would seem inevitable that the spectrum of Harper’s
equation not only is discontinuous, but is perversely discontinuous!

And yet, it turns out that nature was clever enough to save continuity in a very
elegant fashion. To spell this out, consider the seeming discontinuity just mentioned.
It turns out that for ϕ = 100/301, there are 100 extremely narrow subbands tightly
clustered together very close to the leftmost subband belonging to ϕ = 1/3. These
100 subbands collectively “act like” a single band. And symmetrically, there are also
100 extremely narrow subbands tightly clustered together very close to the rightmost
band belonging to ϕ = 1/3. This leaves 101 subbands still to be accounted for, and
they are found, luckily, just where one would hope to find them: tightly clustered
around the middle band belonging to ϕ = 1/3. In other words, the 301 subbands
belonging to ϕ = 100/301 do a superb job of emulating the three bands belonging to
ϕ = 1/3, by clustering together in three tight groups. If one squints at the spectrum
of ϕ = 100/301, so that one isn’t able to make out the fine details, one sees essentially
the spectrum of ϕ = 1/3. (Figure 6.5 shows this very clearly.) This is a beautiful trick
that nature figured out, to ensure the continuity of the spectrum of Harper’s
equation despite what would seem, at first thought, to be a hopeless situation.

6.8 Polynomials that dance on several levels at once
Looking directly at the graphs of the Harper polynomials sheds considerable light
on this fascinating emulation of one rational number by another rational number
very close to it. Let us take the case of ϕ = 3/19, which is very close to ϕ = 1/6. The
19th-degree Harper polynomial in question is displayed at several different levels of
detail in figure 6.6. Most people have probably never seen or imagined a polynomial
that behaves anything like this. The first view, in panel (a), shows the Harper
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polynomial as seen from very far away. Note the scale—the values on the y-axis are
well over 1 000 000. This is a very strange graph, with cones on both sides (one
pointing up, one pointing down), and what looks like a perfectly horizontal plateau
separating them. Of course, we are seeing that plateau from very far away, so we
can’t be sure whether it is truly horizontal. We still have no idea how many times the
graph crosses the fat E-axis. So we must zoom in on it.

Panel (b) shows the same polynomial but with the values along the y-axis being
much smaller—only about 2000 or so. We have really zoomed in a lot! Now the two
cones that were so salient in panel (a) have become gigantic spikes that sail off the
top and bottom of the frame. But closer to the middle, we see two new cones that
look very much like those old cones, only flipped. (Of course we have to keep in
mind that they are about 1000 times smaller, vertically.) So let’s zoom in once again,
in panel (c).

Now the heights along the y-axis are about 50, and all sorts of structural details
are starting to emerge. Once again, we see two cones (and once again flipped), but
these are much smaller than the previous four—their height is only about 30,

Figure 6.5. Bands for ϕ = 1
3
and ϕ ≈ 1

3
. (Note that the energy axis is vertical here, unlike in figures 6.1 and

6.3.) Although the bands are very numerous when the denominators are large, the fragmented band structure,
when viewed from a distance, very closely resembles the band structure for ϕ = 1

3
. Thus for ϕ = 20

61
, only a few

gaps are visible, and just barely so. For ϕ = 100
301

, one instantly sees two large gaps, but the 298 remaining gaps
between the fragments are far too tiny to make out here. The idea that making radical changes in the number
of bands might nonetheless have no significant visible (or physical) effect is a lovely and subtle idea, showing
how elegant are the solutions that nature finds to paradoxical-seeming situations.
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compared with 1 000 000 and 2000—and they connect to each other at the very
center of the graph. (At this scale, all that we can see of the four cones mentioned
earlier are extremely steep spikes that shoot off the top and bottom of the frame.)
But now, at last, we are getting a good glimpse of some of the “fat roots” of the
polynomial.

For example, near = −E 1.6, we see a very rapid “S”-shaped dance taking place
just around the fat axis. This little dance is blown up in panel (d) of the figure, both
vertically and horizontally, which allows us to view it very clearly. And in fact, one
can’t help but be reminded, by this dance, of the cubic polynomial belonging to
ϕ = 1/3. This is most curious!

And speaking of curiosity, what is going on near = −E 3.1, where the Harper
polynomial is almost perfectly vertical, dashing like crazy to cross the E-axis in as
rapid an eyeblink as possible? Well, as before, let us zoom in on that area of the
graph, expanding both the vertical and horizontal axes until the desired area comes
into view in the desired manner. (See panel (e) of the figure.) Once again, this delicate
little dance, producing three tiny “fat roots” or “bandlets” belonging to ϕ = 3/19, is
very reminiscent of the dance done by the cubic polynomial belonging to ϕ = 1/3.

Figure 6.6. The Harper polynomial belonging to flux-value ϕ = 3
19
, shown at five different levels of

zooming-in.
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To make a long story short, the same can be said for all six of the zigzag dances
done by this 19th-degree Harper polynomial—when appropriately zoomed in on,
they all look very much like the zigzag dance done by the cubic polynomial
belonging to ϕ = 1/3. In sum, it is as if, six times in a row, very locally and very
briefly, the19th-degree polynomial belonging to ϕ = 3/19 were somehow putting on
a mask, assuming a different identity, and emulating the cubic polynomial belonging
to ϕ = 1/3. Is that just a pipe dream, or is it conceivable?

Yes, indeed—it is more than conceivable. This is exactly what is going on, and for
a very good reason. To understand this phenomenon, we need to look at the
continued-fraction expansion of the number 3/19. It is a very short and very simple
expansion—namely:

=
+

3/19
1

6
1
3

.

The fraction looks, at first glance, like 1/6 (since the denominator is 6 + 1/3, which
is very close to 6). But the “correction term”—namely, that “+1/3”—reveals the
secret of what is going on. On a global scale, the spectrum belonging to 3/19 is trying
to emulate that of 1/6, but on a local scale, it is trying to imitate that of 1/3. In short,
this 19th-degree polynomial is actually doing a marvelous job of emulating two
different polynomials at once, on two different scales. It is doing a set of six “local
dances”, each of which looks like the dance for 1/3, and it is doing a “global dance”
that looks like the dance for 1/6. To be more specific about the global dance, this
polynomial makes six rapid triple-crossings of the E-axis in spots that are widely
separated from each other, but that are very close to where the six bands belonging
to ϕ = 1/6 are located. In that sense, the Harper polynomial for ϕ = 3/19 globally
emulates the Harper polynomial for ϕ = 1/6. (It also crosses the E-axis one time at
the very middle, which it has to do, since 19 is odd.)

If we were to take a rational number with a longer continued-fraction expansion,
then its Harper polynomial will do a very complex dance with even more levels of
emulation. For example, consider the Harper polynomial for ϕ = 15/38. The
continued-fraction expansion for this rational number is as follows:

=
−

+

15/38
1

3
1

2
1
7

.

Here, we have three integer denominators—3, 2, and 7—representing three
different hierarchical levels. Most globally, therefore, the Harper polynomial for
ϕ = 15/38 will try to emulate the Harper polynomial for ϕ = 1/3. More locally, it
will try to emulate the Harper polynomial for 1/2, and on the most local level, the
15/38 Harper polynomial will do its best to “dance” just the way the 1/7 Harper
polynomial dances. Jumping through these three hoops at three different scales is a
bit of a trick, but the 15/38 polynomial manages to do it.
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Notice the minus-sign just after the first denominator (“ −3 ...”) in this continued
fraction. This tells us that we are not dealing with the most standard variety of
continued fraction, which features only plus-signs (such fractions are called “simple
continued fractions”). What we have here, instead, is a nearest-integer continued
fraction, which sometimes has plus-signs and sometimes minus-signs. What is the
logic behind the sign choices?

I will explain with an example. In this case, if we try to expand 15/38 as a
continued fraction, the first step is to take its reciprocal, and then we break that into
an integer part and a fractional part. Doing so gives us:

= =
+

=
−

15/38
1

38 15
1

2
8

15

1

3
7

15

.

Why did we replace the expression “ +2 8
15
” by “ −3 7

15
”? Because the quantity we

are working on—namely, + =2 2.533333333 ...8
15

—is slightly closer to 3 than it is

to 2 (in other words, because 7
15

is smaller than 8
15
). Always go for the closer integer!

In general, the trick for making a nearest-integer continued fraction is, at each level
of the fraction, always to take the integer nearest to the quantity you are currently
working on (instead of mechanically just taking the integer just below it, which
would result in a simple continued fraction).

For example, consider the golden ratio, 1.61803..., whose simple continued
fraction we have already referred to a number of times:

+
+

+
+

1
1

1
1

1
1

1 ...

.

This is quite different from the corresponding nearest-integer continued fraction,
because the golden ratio is closer to 2 than to 1, hence the desired expression
necessarily begins with “ −2 ” rather than “ +1 ”. Here, without further ado, is the
nearest-integer continued fraction for the golden ratio:

−
−

−
−

2
1

2
1

2
1

2 ...

.

It is continued fractions of this sort, as opposed to simple continued fractions, that
are best suited for speaking about the recursive patterns that make up Gplot.

If the nearest-integer continued-fraction expansion for a rational value of ϕ has
more denominators than the above two-level and three-level examples, then there
are simply more hierarchical levels of Harper-polynomial dancing, but the patterns
that these dances exhibit, on the most global and the most local scales, as well as on
all intermediate scales, are still specified by the successive denominators in the
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nearest-integer continued fraction for ϕ. This idea, incidentally, was heuristically
suggested by Russian physicist M Ya Azbel’ in a remarkably prescient article,
already in 1964. Although Azbel”s article was not able to describe the spectrum of
Harper’s equation in detail, and was wrong in some ways (for instance, it guessed
that simple continued fractions, rather than nearest-integer continued fractions,
were involved, and it did not state that central bands behave differently from all
other bands, splitting up into a different number of sub-bands, and it thus implied
the wrong number of bands for almost all rational flux-values), it nonetheless
accurately anticipated certain key truths about the nature of the graph.

Like so many important pieces of progress in science, Azbel”s 1964 article [2] was
a mixture of brilliant intuitive guesswork and intellectual rigor, and some of its
central ideas were exactly right, while some were not. But being 60 percent right
(say) and 40 percent wrong is very important, because overall it is a step in the right
direction. Science is an art form that only converges very slowly on the truth, and
sometimes even an article that is only 10 percent right is worth its weight in gold!

6.9 A short digression on INT and on perception of visual patterns
The representation of a real number as a nearest-integer continued fraction is closely
related to the INT function, which I discussed in the prologue. They way I described

xINT( ) there, it is calculated by swapping two sequences (the coun-sequence and
the sep-sequence) belonging to x. However, INT can be defined equivalently in terms
of nearest-integer continued fractions. To show this in a pleasing case, I will
demonstrate it for the famous constant e = 2.718281828.... First, here is how e is
represented as a nearest-integer continued fraction:

= −
+

−
−

+
−

+
−

+
−

e 3
1

1
1

3
1

4
1

1
1

6
1

1
1

8
1

1
1

10 ...

.

Note that the denominators, after a slightly shaky beginning, alternate between
even numbers followed by a minus-sign and 1s followed by a plus-sign. This elegant
pattern continues forever. The nearest-integer continued fraction for eINT( ) is made
from this one by bumping down any denominator followed by a minus-sign, then
converting the minus-sign into a plus-sign, and symmetrically, bumping up any
denominator followed by a plus-sign, then converting the plus-sign into a minus-sign.
That same simple algorithm will yield xINT( ) for any real number x. That’s the
whole story. Here, then, is how the nearest-integer continued fraction for eINT( )
looks:
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= +
−

+
+

−
+

−
+

−
+

eINT( ) 2
1

2
1

2
1

3
1

2
1

5
1

2
1

7
1

2
1

9 ...

.

While I’m on the subject of INT, I should point out that INT shares a most salient
visual feature with Gplot: namely, those delicate, spindly “legs” that rapidly taper
off as they approach the corners of the graph. That is an unmistakable sign that
something deep links these two graphs. (Incidentally, I expressly chose the word
“legs”, because those frail, fine-grained, diagonal needles have forever reminded me
of the spindly elephant-legs in Salvador Dali ́̓ s evocative painting The Temptation of
Saint Sebastian.) If you know INT well, you can’t help but recognize its telltale
presence in Gplot the instant those surrealistic “legs” hit your retina. But if you don’t
know INT... well, that key connection just won’t get made. Too bad! As I said in my
prologue, I just had the luck of being the right person in the right place at the
right time.

And speaking of luck, I have only recently understood how lucky was my
instinctive choice, back in Regensburg, to use color-coding in hand-plotting Gplot
(a decision that came straight out of my prolonged study of η-sequences and INT,
many years earlier). Specifically, my color-coding took into account the nearest-
integer continued-fraction representation of each rational number whose spectrum I
was calculating. For any number whose continued fraction terminated after only one
denominator (such as 1/5 or 4/5, which equals −1 1

5
), I colored its bands black. For

any value of ϕ whose continued fraction had two denominators, I colored the bands
using a second color. For a value whose continued fraction had three denominators,
I colored the bands using a third color. (This kind of color-coding is clearly visible in
figures 6 and 7 of the prologue.)

This choice made the recursive nature of Gplot pop out almost instantly to my
eye. The reason for this visual popping-out is that the subcells of Gplot that contain
distorted copies of the entire graph are automatically highlighted by this kind of
coloring. I realized how important this had been for me when I was looking, not long
ago, at the graph published in 1969 by Dieter Langbein in Physical Review [3] and
exhibited in this book in the “Butterfly Gallery”. I was wondering why it was that
Langbein, who had had so much detail right there in front of his eyes, hadn’t beaten
me to the punch in spotting the beautiful recursions that constitute the heart and soul
of Gplot. Well, one reason is that Langbein didn’t know INT, and so he didn’t
recognize the telltale sign of those spindly legs. A second reason is that in Langbein’s
graph, there is no color-coding (all bands are black), and so there is nothing to
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distinguish different kinds of rational numbers (different in the sense of how many
denominators their nearest-integer continued fractions require). As a consequence, in
Langbein’s graph, no structure pops out to the eye. That is to say, the very same
subbands that so clearly defined the “L” and “R” subcells in my early hand-plotted
graph just blend in anonymously with the rest of the subbands in Langbein’s plot.

Those, in my opinion, are the two main reasons why I had the good fortune to
spot the fundamental recursive nature of Gplot, and why Langbein—as well as the
readers of his article—failed to do so. Such is the fickle nature of fate.

6.10 The spectrum belonging to irrational values of ϕ and the
“ten-martini problem”

Having brought in continued-fraction representations for the values of ϕ, we can
finally broach the subtle but crucial question of the spectra that belong to irrational
values of ϕ. After all, rational numbers are exceptions along the real line; though
they are dense, there are still only countably many of them, while there are
uncountably many irrationals. To put it another way, if one randomly threw an
infinitely fine-tipped dart at a real line scotch-taped to a wall, the probability is
vanishingly small that it would land on a rational number. (Of course, it’s also
vanishingly small that the dart would land on the real line at all, since its width is
infinitesimal compared to the height of the wall, but let’s not worry about that!)
Irrationals are the overwhelming majority of the inhabitants of the real line, and
rationals are super-rare exceptions. So of course we want to know what happens
when an irrational value of ϕ is chosen.

Let’s imagine an irrational number near 1/3, for the sake of concreteness. Just like
the golden ratio, this value of ϕ has a nearest-integer continued fraction that never
ends. At the very top, however, its first denominator is 3. For that reason, whatever
its spectrum is, it will necessarily consist of pieces scattered along the E-axis that, if
one just squints a bit, will look very much like the three bands belonging to ϕ = 1/3.
Suppose furthermore that our irrational ϕ is extremely close to 100/301. Then
its spectrum will emulate not only the three bands of 1/3, but also, on a much
finer-grained level, all of the 100 little tiny bands of 100/301 that cluster around
the leftmost band of 1/3, all of the 101 little tiny bands that cluster around 1/3ʼs
middle band, and all of the 100 little tiny bands that cluster around 1/3ʼs rightmost
band.

But we are of course not done! Since we have posited that this particular value of
ϕ is irrational, so that its continued fraction keeps on going down, down, down, it
follows that the spectrum for this ϕ will continue to fragment endlessly, as we march
down its continued fraction, level by level. Bands (or what look like bands from far
away) will be seen to split into subbands, and those subbands will then split into
subsubbands, and so forth and so on, with no end in sight. Indeed, in the end (after
an infinite number of recursive splittings), there will be no bands left—just an infinite
set of scattered points—a “Cantor dust”, as was discussed in chapter 1.

Incidentally, the construction of the original Cantor set, described in chapter 1,
can be profitably generalized. In Cantor’s original version, what got removed at each
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stage was always just the middle third of each remaining interval. However, a more
general “sparsification maneuver” could delete not just one but several subintervals
of each interval (for example, always divide each interval into seven equal
subintervals, and then remove the 2nd, 4th, and 6th of them). The end result of
this infinitely repeated sparsification maneuver (which we might call “removing
three sevenths”) will have many properties in common with the original Cantor dust,
including that of having measure zero. (This technical term can be taken roughly as
saying that the set of isolated points in question has “no weight”, as compared with
an interval, which, no matter how short, always has positive weight.)

One can also loosen up on the idea that at all stages, the sparsification has to be
done in just the same way. Thus, for example, why not remove the middle third on
the first step, four ninths on the second step, three sevenths on the third step, one third
on the fourth step, and so forth? Just as in the construction of the original Cantor set,
each new act of sparsification will create an ever-larger number of ever-tinier bands
to sparsify further on the next round.

This kind of recursive sparsification process, varying from level to level, would be
far closer to what happens in the case of Gplot. There, the basic idea is that for all n,
the nth denominator in the nearest-integer continued fraction for ϕ dictates how
many subintervals to delete from each band during the nth stage of the process.
(Actually, for the sake of precision, it should be pointed out that the sparsification
operation performed on the central band at E = 0 obeys a slightly different rule, but
this is the basic idea.) This infinite sequence of sparsification operations gives rise,
for each irrational value of ϕ, to a completely unique Cantor dust dictated by the
successive denominators in ϕʼs continued fraction.

Figure 6.7 (left panel) illustrates this idea, focusing on the special case where ϕ
equals the golden mean. This case, because of the periodicity of ϕʼs continued
fraction, gives rise not just to a “random” Cantor set, but to a self-similar Cantor set,
since at every single stage, essentially the same removal process is effected.

This bizarre but wonderful phenomenon—that for any irrational value of ϕ, the
spectrum of Harper’s equation is an uncountable set of points constituting a Cantor
set of measure zero—was quite a surprise to me, but I soon convinced myself of its
truth. Indeed, I devoted a full chapter of my doctoral thesis [4] to proving it as a
theorem. Incidentally, the mere fact that a set of points inside an interval is the end
result of infinitely many successive sparsification operations does not by itself
guarantee measure zero for the final set. To show that measure zero is always the
end result for the spectrum of any irrational flux-value ϕ thus required careful
analysis, on my part, of the nature of the infinitely many sparsification steps along
the way. Luckily I wound up finding a way to show that these steps had the proper
relationship to each other to guarantee measure zero.

When I say that I proved this measure-zero Cantor-set theorem, I should more
precisely explain that I rigorously proved that it was a necessary consequence
of three key postulates that I formulated as a result of carefully observing the nesting
behavior of Gplot. From a visual inspection of Gplot, it’s abundantly clear that my
three postulates are true, but try though I might, I was unable to prove those
postulates formally.
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My conditional demonstration of the Cantor-set conjecture could thus be likened
to a construction firm building the upper 20 floors of a planned 40-floor skyscraper
without having first built the lower 20 floors. For building actual skyscrapers, this
may not be the most efficacious method, although it makes for an amusing image. In
physics, however, this kind of building process is not atypical. Theoretical physicists
are constantly building ornate edifices on shaky if not totally unproven foundations;
after a while, they publish their mental constructions, hoping they will withstand the
earthquakes of experimental tests.

Although, to my chagrin, I hadn’t proven the Cantor-set idea in a full sense,
I knew it was true, and it was certainly a beautiful and significant fact, and so,
shortly after writing it up in my thesis in 1975, I published it in my sole article about
the butterfly in Physical Review [5], and a few years later, and somewhat more
visibly, I stated it in my book Gödel, Escher, Bach [6].

In 1981, the fact—or rather, the conjecture!—that irrational numbers have
Cantor-set spectra was vividly brought to mathematicians’ attention, when math-
ematician Mark Kac, in a talk at the annual meeting of the American Mathematical
Society, described Harper’s equation and its very unusual spectrum, and offered ten
martinis to anyone who could prove that my hypothesis was true. However, Kac
apparently made no reference to my having originated the claim. Perhaps he did not
realize it was due to me. In any case, Kac’s amusing (but very serious) challenge was
further circulated by his mathematics colleague Barry Simon under the catchy
monicker of “the ten-martini problem”, and as such, it aroused considerable interest
and excitement in the mathematical community. A good number of mathematicians

Figure 6.7. On the left, the spectrum of Harper’s equation for ten rational approximations to the golden mean.
From top to bottom, these rationals are: ϕ = 1, , , , , , , , ,1
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on the region of the E-axis near E = 0, allowing us to see the self-similarity of the spectrum very clearly.

Butterfly in the Quantum World

6-27



around the world, not only intellectually stimulated but also hoping to gain ten
martinis at the expense of their distinguished colleague, jumped into the fray.

It took well over thirty years, but finally in 2009, the so-called ten-martini
problem was solved by mathematicians Artur Ávila and Svetlana Jitomirskaya [7].
Unfortunately, Mark Kac was no longer with us when the Ávila–Jitomirskaya paper
was published, so he never tasted the joy of lavishing on its two authors the promised
ten martinis (plus, without doubt, a few on himself).

6.11 In which continuity (of a sort) is finally established
As I stated in the prologue, what most intrigued me, when Gregory Wannier first
described the crystal-in-magnetic-field problem to me, was the weird-sounding
proposition that the rationality or irrationality of a physical parameter—namely,
the magnetic-field strength ϕ—could have some actual, measurable effect in the
world. That idea made no sense to me, since it implied that all of the digits in the
infinite decimal expansion of ϕ not only mattered, but mattered equally. Actually,
not even equally, for in fact this idea made the furthest-away (and thus least
significant) decimals count the most, since it is only by examining the pattern of
digits moving out to infinity that one can tell whether a number is rational or
irrational!

This is a crucial idea, so let me spell it out a bit more. Rational numbers
have periodic decimal expansions while irrational numbers do not—and by
“periodic”, I actually mean eventually periodic. Consider, for instance, the following
real number:

3.14159265358979323846264000000003131313131313131313131313131313131 ...

whose decimal expansion starts out rather bumpily, but eventually winds up settling
down into an infinitely boring repetition of just the digit-pair “31”. This number will
be rational, as long as those 31’s keep on going forever.

But how can one know whether a given sequence of digits is eventually periodic or
not? It may look periodic, as the pattern just exhibited does, but what guarantees
that it actually is periodic? In the case above, after all, one might well have jumped
to the conclusion that the decimal expansion was going periodic when one hit the
sequence of eight 0’s in a row. But that pattern, though seductive, turned out to be
short-lived, and hence deceptive.

I told you that this pattern stays with the 31’s forever, but in order for me to be
able to guarantee you of that, I had to know the entire expansion, all the way to the
bitter end—infinitely many digits. And that’s the rub. One has to know all of a
number’s digits, all the way out to infinity, in order to be sure whether those digits
eventually do or do not go into a cyclic pattern. And most ironically, what happens
at the outset (that is, the initial set of digits, even the initial thousand digits) is
completely irrelevant to this question!

Therefore, if some physical phenomenon actually depended on ϕʼs rationality or
irrationality, then ϕʼs magnitude wouldn’t matter at all—only what happened as
one looked at the infinitely far-out tail of its decimal expansion. This zany-sounding
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idea is reminiscent of astrology, which claims that our innermost nature doesn’t
have to do with local causes, such as the DNA inside every one of our cells,
but instead with phenomena involving stars that are hundreds, thousands, or
millions of light-years away. Things inconceivably far away and inconceivably
remote in time are what determine the course of our lives here on Earth, while things
right here and right now don’t play a role? Such an idea is of course sheer nonsense.
Just as nothing could be more antiscientific than astrology, nothing could be more
nonphysical than the claim that some physical phenomenon depends on the
rationality or irrationality of some physical parameter. Such a claim makes no
sense whatsoever.

Another profound aspect of the nonphysicality of the claim that ϕʼs rationality or
irrationality matters is that it simply makes no sense to think that all of ϕʼs digits are
well-defined. No physical variable in the universe has an infinitely precise, infinitely
sharp value. Do you prefer rational or irrational temperatures? Do you prefer
driving at rational or irrational speeds? Can you, in fact, drive down the highway at
60.000000000... miles per hour, where all the digits after the decimal point are “0”,
forever and ever? Is one’s speed ever defined to infinite precision? Can a physicist
truly believe that it makes perfect sense to ask for, say, the trillionth digit of the
number representing the strength of a magnetic field in a laboratory experiment? If
you think this makes sense, you should probably go sign up for a doctorate in
astrology (and if, by chance, you should happen to make some astronomical
discoveries along the way, then maybe you can include them in an appendix to
your thesis—on page 137, say).

Through this set of mental explorations of the absurd, we are actually getting very
close to the resolution of the problem, because they highlight a major distinction
between mathematics and physics, a distinction that became very clear to me as I
neared the end of my thesis. My hope was to take the strange graph that I had
discovered, and to show that its recursive nature, rather than being paradoxical,
implied that the system’s observable physical behavior was entirely independent of
the rationality or irrationality of ϕ. It was undeniable, of course, that to a
mathematician, rational values and irrational values of ϕ gave rise to wildly
different spectra. After all, for any rational value, the spectrum consisted of a set
of line segments whose total length was a positive number, while for any irrational
value, the spectrum consisted of a Cantor dust consisting of infinitely many isolated
points whose total “length” (or more technically, whose Lebesgue measure) was
exactly zero (and that means 0.00000000..., with infinitely many zeros).

Thus if one moved smoothly along the ϕ-axis and graphed the Lebesgue measure of
the spectrum of ϕ—let’s call it ϕL( )—one would create a graph that was almost
everywhere zero (at irrational values), and yet, for a dense subset of the ϕ-axis (the
rational values), ϕL( ) would have positive values. Through careful topological
reasoning, I was able to prove that ϕL( ) is a function with the peculiar property that
it is continuous at all irrational values and discontinuous at all rational values of ϕ.
Mathematicians rightfully love this kind of crazy-seeming phenomenon, and
there’s nothing wrong with that. It is a beautiful, paradox-grazing idea, and yet in the
end it makes perfect sense. But it has nothing whatsoever to do with the physical world.
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Physicists, too, may admire the pristine and exquisite reasoning that establishes
all the wonderfully counterintuitive properties of the spectrum of Harper’s equation,
but when all is said and done, what they want to get out of the mathematics is
physically meaningful ideas. And this is no less worthy a goal than the goals of
mathematicians. Since I had once thought of myself as a budding mathematician
and had even gone to graduate school in math for a couple of years, I could see
things from either side of the fence. I loved the crazily counterintuitive pure math,
but I also wanted to use that math to reach a physically realistic conclusion. And so I
began with the undeniable fact that no physical variable is ever infinitely sharply
defined. What that means is that there is necessarily an uncertainty ϕΔ in the value
of ϕ. It doesn’t matter how small this uncertainty is, but what is crucial is that no
matter what the situation is, it is always nonzero. No magnetic field is precisely
defined for infinitely many decimals.

And so, what happens if one looks at the spectrum not just for one sharp value of
ϕ, but at those of a set of closely surrounding values of ϕ—namely, all those that lie
in the interval of size ϕΔ centered on ϕ? Suppose one were simply to take the union of
the spectra of all those neighboring values of ϕ—what would that give? This
amounts to “jiggling” the graph a little bit back and forth along the ϕ-axis, so that it
blurs it a bit. Such jiggling, no matter how mild, creates what I called a smeared
version of Gplot. In figure 8 of the prologue are displayed the smeared graphs
belonging to two different values of ϕΔ (roughly 1/35 and 1/100). Although to some
people these graphs might look a little bit scary, like eerie monsters, they are
nonetheless completely “normal” in the sense of being physically meaningful,
physically realistic spectra.

Once again using careful topological reasoning (a skill that I’d picked up to some
extent while briefly wearing my mathematics graduate-student hat), I studied the
effect of jiggling the graph, and I discovered some theorems about smeared versions
of Gplot. To my delight, I was able to demonstrate that in a smeared graph, for all
values of ϕ, whether rational or irrational, there are at most +

ϕΔ
11 bands. However

small ϕΔ is, this is a finite number. In other words, the infinitude of the Cantor sets
disappears totally when a graph is smeared. Even the very large number of bands for
rational values with high denominators goes away. The number of bands in a
smeared graph is uniformly bounded, for all ϕ. In short, jiggling the graph yields a
completely ordinary, “vanilla” spectrum, which, as one moves along the ϕ-axis,
varies continuously in every way that one could hope for. There are no more sets of
measure zero, no more “pathological” behavior; no matter how small ϕΔ is, the
Lebesgue measure of the blurred spectrum at every single value of ϕ will be positive
and will vary continuously with ϕ. That is totally reasonable physical behavior.

Here is how I put it in my 1976 Physical Review article [5]:

As ϕΔ approaches zero, the fine structure of the graph is bit by bit recovered; the
infinitely fine-grained detail never returns (for positive ϕΔ ), but more and more
of it is revealed by decreasing the uncertainty ϕΔ . Of course, at the unphysical
value ϕΔ = 0, the entire graph returns.
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In some ways, this result was the intellectual climax of my doctoral work. I had
first found a wildly counterintuitive, nonphysical-seeming spectrum, and then I had
shown that despite its craziness, it was nonetheless completely reconcilable with
ordinary physics.

6.12 Infinitely recursively scalloped wave functions: Cherries on the
doctoral sundae

In my thesis, after exploring the eigenvalues belonging to Harper’s equation, I
turned briefly to the wave functions that corresponded to them. Given any value of
the magnetic flux ϕ, if you pick a particular eigen-energy E, it will determine a one-
dimensional wave function ψn defined for integer values of n. This wave function at
first seems to be defined only on discrete lattice points, rather than along the entire
continuum of which the lattice points are only a very sparse subset. This
unfortunately makes no sense, since to be physically meaningful, a wave function
must be defined at every point in space (whether it is one-dimensional, two-
dimensional, or three-dimensional). This sparseness would therefore seem to be a
major flaw marring the theory.

However, on examining the mathematics of so-called “magnetic translation
operators”, I noticed that the existence of the flux quantum hc/e provides a way
to fill in the wave function along the whole line. The idea, in a very rough nutshell, is
that there is a way to combine the flux quantum with the lattice constant a to define a
second natural length unit (other than a itself) that has the special property of being
the one-dimensional wave function’s (spatial) period. Exploiting this periodicity
allows one to “fold back” the wave function on top of itself over and over again,
each time filling in more points along the continuum between lattice sites, where at
first there seemed to be no wave function at all. This way of filling in the curve stage
by stage can be done only a finite number of times for any rational value of ϕ, thus
adding points here and there but still leaving gaps almost everywhere—but if ϕ is
irrational (and remember that irrationality is by far the most common case), then
this folding-back-and-filling-in process can be done infinitely many times, which will
convert the initially very sparsely defined wave function into a fully defined,
completely continuous solution to the Schrödinger equation.

I will not enter into the details here, but this new insight allowed me to calculate
and plot out the one-dimensional wave functions for certain rational values of ϕ and
certain eigenvalues E. In particular, I plotted the wave functions belonging to three
rationals whose continued fractions were closely related:

ϕ = 1
5

,1

ϕ = =
+

2
11

1

5
1
2

,2
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ϕ = =
+

+

17
93

1

5
1

2
1
8

.3

My idea was that ϕ ϕ ϕ, ,1 2 3 (and further rational values of ϕ) are all approaching a
limiting irrational valueϕ∞, whose nearest-integer continued fractionwould start out as
theirs do, but would never come to an end. Figure 6.8 shows the three wave functions
plotted together.The crudest of them, consistingofonly6 (=5+1)points, belongs toϕ1,
and looks like a chain dangling between two posts. The next one, belonging to ϕ2, is
finer-grained, consisting of 12 (= 11 + 1) points, and looks like several scallops linked
together to form a chain. The final one, belonging to ϕ3, is yet more detailed, as it
consists of 94 (= 93 + 1) points, and it, too, looks like a chain with scallops, but if one
looks more closely, one notices scallops on the scallops. Aha! You can see what’s
coming... If there were a ϕ4 with one more term in its continued fraction, its wave
function would be yet finer-grained and triply scalloped, and so forth and so on. In the
limit, then, the wave function belonging to the limiting irrational value ϕ∞ would fit in
with all these approximations, but it would be defined at all points, and it would feature
“infinitely recursive scalloping”, or if youwish, cusps densely distributed over the entire
axis.Now thatwouldbequite somewave function!Asyou can imagine, this unexpected
discovery was, in a sense, a delicious cherry on the sundae of my doctoral work.

There is, however, something ironic about this cherry on the sundae. We have just
seen that the wave function for an irrational value of ϕ (and thus for almost all
values of ϕ, since the rationals constitute a set of but measure zero on the real axis) is
infinitely recursively scalloped, meaning that it is constantly changing direction, no
matter how tiny the scale on which one inspects it. Such a microscopically
zigzagging function is “pathological”, in the old 19th-century sense, in that it does
not have a well-defined slope anywhere. The irony is that Harper’s equation is the
endpoint of a pathway of mathematical manipulations whose starting point was a
single Bloch band with “chocolate” momentum operators inside it instead of wave
numbers kx and ky (this is the Peierls–Onsager ansatz). This new differential

Figure 6.8. The wave functions of three very close rational values of ϕ—namely, ψ ( )1
5

(shown with triangles),
ψ ( )2

11
(shown with circles), and ψ ( )17

93
(shown with dots)—superimposed. Each new value has one extra

denominator in its nearest-integer continued fraction, and fills in more of the interval than the preceding values
did. Scallops are visible at three levels of granularity. As more levels of the continued fraction come into play,
finer scallops are involved. In the limit of an irrational value of ϕ, the wave function will be defined at all points
of the interval, and its shape will be infinitely recursively scalloped.
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operator was interpreted as a Hamiltonian, and as such it yielded a version of
Schrödinger’s equation, which, being a differential equation, assumes that the
function satisfying it is differentiable (in fact, not just differentiable, but infinitely
differentiable, as is clear from equations (6.2) and (6.3)). So although we started out
with differential operators (which make sense only with a smooth function to act on),
we wound up with a wave function that could never be the solution to any differential
equation! This bizarre situation grazes paradox in a tantalizing way. Once again, we
are seeing the curious results of “magical thinking” in physics—in this, case, the
esthetically motivated but nonrigorous heuristic substitution intuitively made by
Peierls and Onsager, which led, many years later, to a beautiful set of interrelated
discoveries that run deeply against the meaning of the differential operators that gave
rise to them. Why it all works out so perfectly is far from fully understood!

6.13 Closing words
It was at this point, in late 1975, that I bowed out of physics. Little did I suspect that
from these humble beginnings would flow so many other results in the coming
decades. Although I didn’t participate in those discoveries, I have watched them
from the sidelines with great interest, and it gives me a feeling of pride and privilege
to have had the good fortune of playing a role in the launching of this fertile,
multifaceted area of research in physics.

Appendix: Supplementary material on Harper’s equation

Various butterfly plots shown in other parts of this book were obtained by treating
the Harper equation (6.4) as an eigenvalue equation that, given a rational flux-value
ϕ = p q/ , involves diagonalizing a q × q matrix. For ⩾q 3, this matrix equation can
be written as follows:
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where π ϕ= −C n kcos(2 )n y . The lower-left and upper-right corner terms ±e ikx in this
matrix reflect Bloch’s theorem, which assumes periodic boundary conditions—
namely, ψ ψ= +en

ik
n q

x . In a handful of very simple cases, such as ϕ = 1, , ,1
2

1
3

1
4
, the

eigenvalues E can be determined analytically. However, for >q 4, the above matrix-
eigenvalue problem can only be solved numerically.

This method, involving finding the eigenvalues of a q × q matrix, is equivalent to
the Regensburg group’s method, described earlier in this chapter by Douglas
Hofstadter and used by him in his explorations, which involves the trace of a
product of q successive 2 × 2 matrices.
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In the years since Douglas Hofstadter published his well-known article, the nature
of the Harper wave functions and energies belonging to rational flux-values
that tend to an irrational limit has been studied. Some of the results are exhibited
in figure 6.9, which shows the scale-invariance of the fractal characteristics of the
energy and the wave function for the golden-mean flux. We note that the wave
function never decays to zero and the heights of the wave-function sub peaks far
from the center approach a well defined fraction, a universal number, of the height
of the central peak [8, 9].

Some Analytic Results
I Analytic expressions for the energy dispersions E(kx, ky) for a few simple cases [9]
(a) For ϕ= 1 the energy spectrum consists of a single band withE= 2(cos kx+

cos ky).
(b) For ϕ = 1/2, the energies of two bands denoted as E+ and E− are

= ± +±E k k2 cos cosx y
2 2 .

(c) For ϕ = 1/3, the three bands with energies denoted as E0, E1, E2, where

θ π= ±E i2 2 cos(
2
3

).i Here θ = +k k
1
3

arccos[(cos 3 cos 3 )/2 2 ]x y .

(d) For ϕ = 1/4, the energies for four bands, denoted as E++, E+−, E−+, E−−

are given by = ± ± + +±±E k k4 2[3
1
2

(cos 4 cos 4 )]x y
2 .

Figure 6.9. The left panel shows the wave functions plotted as a function of lattice sites n for three different
lattice sizes N for the E = 0 state of the golden-mean flux. From top to bottom: = = =N N N4181; 987; 233.
This figure illustrates the self-similarity of the wave function: it looks just the same when we zoom into the
original lattice. Moreover, peaks in the wave function occur at lattice sites whose positions are Fibonacci
numbers, which are the denominators of the best rational approximations to the golden mean. For the same
three lattice sizes, the panel on the right illustrates self-similarity of the energy spectrum.
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II Brief summary of semiclassical results for energy levels
There have been many theoretical studies of the Bloch electrons in a

magnetic field using semiclassical limit of quantum mechanics.These studies
express energy levels as a power series expansion in magnetic flux ϕ. For
example, semiclassical result for energies for small value of flux ϕ near a
rational flux p/q known as the Landau levels is given by,

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

ϕ ϕ ϕ

ϕ ϕ

= − + + − + +

+
×

+ + + ( )

E n n

n n O

( ) 4 (2 1)
16

1 (2 1)

64 3
( 1) . (6.5)

n

2
2

3
3 3 4

The semiclassical analysis can also be used to derive the expression for
energy near a rational flux value where ϕ ϕ′ = − p q/ is small, known as
Wilkinson–Rammal formula. In other words, analytic expression can be
obtained near any rational value of flux and this explains Landau-level
structure near rational flux values as described in chapter 7.

It turns out that for special cases where two bands touch, forming a
conical intersection (known as a Dirac cone) in the (E, kx, ky) graph, energy
levels (sometimes referred as Dirac levels) differ from the usual Landau level-
like behaviour described above and the semiclassical result is given by,

⎜ ⎟⎛
⎝

⎞
⎠ϕ ϕ ϕ= − ′ − ′ + ′E n

n
O2 2 1

2
( ) (6.6)n

1/2
5/2

In other words, in contrast to Landau levels exhibiting linear dependence
on ϕ or ϕ′, Dirac levels are characterized by a square root dependence in the
magnetic flux. For further details on various semiclassical results, we refer
readers to the paper by Rammal and Bellissard [10]. The selected bibliog-
raphy at the end of the book lists some other important papers in the field
such as those by Wilkinson, Helffer and Sjöstrand, Rammal and Bellissard.

There exists a great variety of topics that have been discussed in connection with
Harper’s equation. The selected bibliography at the end of the book lists some of the
important papers in this field.

References
[1] Tomonaga S-I 1998 The Story of Spin (Chicago: University of Chicago Press)
[2] Azbel’MYa 1964 Energy spectrum of a conduction electron in a magnetic field JETP 19 634
[3] Langbein D 1969 The tight-binding and the nearly-free-electron approach to lattice electrons

in external magnetic fields Phys. Rev. 180 633
[4] Hofstadter D R 1975 The Energy Levels of Bloch Electrons in a Magnetic Field PhD thesis

University of Oregon
[5] Hofstadter D R 1976 Energy levels and wave functions of Bloch electrons in rational and

irrational magnetic fields Phys. Rev. B 14 2239

Butterfly in the Quantum World

6-35

http://dx.doi.org/10.1103/PhysRev.180.633
http://dx.doi.org/10.1103/PhysRevB.14.2239


[6] Hofstadter D R 1979 Gödel, Escher, Bach: an Eternal Golden Braid (New York: Basic Books)
[7] Ávila A and Jitomirskaya S 2009 The ten martini problem Ann. Math. 170 303–42
[8] Ketoja K and Satija I I 1994 Renormalization approach to quasi periodic tight binding

models Phys. Lett. A 194 64
[9] Wen X G and Zee A 1989 Winding number, family index theorem, and electron hopping in a

magnetic field Nucl. Phys. B 316 641
[10] Rammal R and Bellissard J 1990 An algebraic semi-classical approach to Bloch electrons in

a magnetic field J. Physique 51 1803

Butterfly in the Quantum World

6-36

http://dx.doi.org/10.4007/annals.2009.170.303
http://dx.doi.org/10.1016/0375-9601(94)00709-X
http://dx.doi.org/10.1016/0550-3213(89)90062-X
http://dx.doi.org/10.1051/jphys:0199000510170180300


Part III

Topology and the butterfly



IOP Concise Physics

Butterfly in the Quantum World
The story of the most fascinating quantum fractal

Indubala I Satija

Chapter 7

A different kind of quantization:
The quantum Hall effect

Not only is the universe stranger than we think, it is stranger than we can think.
—Werner Heisenberg

The quantum Hall effect is one of the most remarkable of all condensed-matter
phenomena, quite unanticipated by the physics community at the time of its
discovery in 1980 [1]. The basic experimental observation is the quantization of
resistance, in two-dimensional systems, to an extreme precision, irrespective of the
sample’s shape and of its degree of purity. This intriguing phenomenon is a
manifestation of quantum mechanics on a macroscopic scale, and for that reason,
it rivals superconductivity and Bose–Einstein condensation in its fundamental
importance.
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7.1 What is the Hall effect? Classical and quantum answers
The classical Hall effect was named after Edwin Hall, who, as a 24-year-old physics
graduate student at Johns Hopkins University, discovered the effect in 1878. His
measurement of this tiny effect is regarded as an experimental tour de force,
preceding by 18 years the discovery of the electron. The classical Hall effect offered
the first real proof that electric currents in metals are carried by moving charged
particles.

As is shown in figure 7.1, the basic setup of Hall’s experiment consists of a very
thin sheet of conducting material, which is subjected to both an electric field ⃗E and a
magnetic field ⃗B . The electric field, lying in the plane of the conductor, makes the
charges in the conductor move, setting up an electric current I. The magnetic field,
on the other hand, is perpendicular to the conductor, and according to the classical
laws of electricity and magnetism, it exerts a so-called Lorentz force on these moving
charges, pushing them sideways in the plane, perpendicular to the current I. This
results in an induced voltage, perpendicular to both I and B, which is known as the
Hall voltage. The Hall resistance, usually denoted by Rxy, is deduced from Ohm’s
law, V = IR, so it equals the ratio of the transverse Hall voltage to the longitudinal
current I. The Hall conductance, which is the reciprocal of the Hall resistance, is
denoted by σxy.

Figure 7.1. The basic setup of Edwin Hall’s 1878 experiment. The graph on the right shows that Hall
resistance increases linearly with the magnetic field.
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Just over a century later, in 1980, a quantum-mechanical generalization of Edwin
Hall’s classical effect was discovered by German physicist Klaus von Klitzing. What
today is called the “integer quantum Hall effect” took the physics world deeply by
surprise. Von Klitzing was investigating the transport properties of a certain
semiconductor device (namely, a silicon MOSFET, short for “metal-oxide semi-
conductor field-effect transistor”) at very low temperatures and in high magnetic
fields. His experiment revealed two novel features closely related to, but quite
distinct from, what Hall had found (which was a purely linear increase in Hall
resistivity with the magnetic field). These features were:

• Plateaus—that is, step-like structure—in Hall resistance (or conversely,
plateaus in Hall conductivity, since conductance is the reciprocal of resist-
ance), as can be seen in figure 7.2.

• Not just plateaus, but quantization of resistivity, meaning that the Hall
resistivity assumes periodically spaced values—namely, integer multiples of a

new fundamental constant σ = e
hH
2
(where e is the charge on the electron and

h, as always, is Planck’s constant).

This very surprising discovery earned von Klitzing the Nobel Prize in Physics in
1985. Appendix A contains some excerpts from the announcement of the Nobel
Prize [2].

The quantum Hall effect arises in two-dimensional electronic systems, commonly
known as two-dimensional electron gases, which are immersed in a strong magnetic
field. There are a variety of techniques to construct two-dimensional electron gases.
Von Klitzing’s 1980 discovery relied on the existence of a two-dimensional electron

Figure 7.2. On the left, German physicist Klaus Klitzing (Copyright © 2005, Birkhäuser Verlag, Basel.
DOI 10.1007/3-7643-7393-8.) and the discovery of the quantum Hall effect. On the right, the integer quantum
Hall effect, characterized by quantized plateaus of resistance. More specifically, the resistivity of the material
assumes only values that are integer multiples of the fundamental physical constant e

h

2
.
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gas in a semiconducting device. By the middle of the 1960s, such systems could be
physically realized, thanks to the great technological progress that followed the
invention of the transistor roughly twenty years earlier.

Figure 7.3 schematically shows an example of a two-dimensional electron gas, in
which the energy bands in a gallium-arsenide/aluminum-arsenide alloy are used to
create a quantum well. Electrons from a silicon donor layer fall into the quantum
well to create the electron gas.

7.2 A charged particle in a magnetic field: Cyclotron orbits and their
quantization

7.2.1 Classical picture

We open our explanation of the quantum Hall effect by giving a purely classical
description of the motion of an electron with charge −e in the presence of a uniform
magnetic field ⃗B , which we will assume is directed along the z-axis. If the electron
has velocity ⃗v , it will experience a Lorentz force − ⃗ × ⃗ev B due to the magnetic field,
and its motion will be described by Newton’s equation ⃗ = ⃗F ma , broken down into x-
and y-coordinates, as follows:

¨ = − ˙mx eBy (7.1)

¨ = + ˙my eBx. (7.2)

Figure 7.3. Schematic illustration of a rectangularly shaped quantum well in a semiconductor, which becomes
the home for a two-dimensional electron gas. The horizontal axis represents an ordinary coordinate of physical
position, while the vertical axis represents energy. (To create the energy barriers that define the well, it is
common to use an alloy of gallium-arsenide and aluminum-arsenide, as is shown in this figure, rather than pure
aluminum-arsenide.) The two dark circles represent positive silicon ions that have donated electrons to the
quantum well. (Of course the gas consists of millions of electrons, not just two.) The wave function of the
lowest energy level for an electron caught in the quantum well is indicated by the dashed line.
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The general solution to these coupled differential equations is periodic motion in
a circle of arbitrary radius R:

ω δ ω δ⃗ = + +r R t t(cos( ), sin( )). (7.3)

Here, ω = eB
m

is known as the classical cyclotron frequency, and δ is an arbitrary
phase associated with the motion. Note that the period of the orbit is independent of
the radius. In fact, the radius R and the tangential speed ω=v R are proportional to
each other, with constant of proportionality ω. Thus a fast particle will travel in a
large circle and will return to its starting point at exactly the same moment as a slow
particle traveling in a small circle. Such motion is said to be isochronous, much like
that of a harmonic oscillator (e.g. a pendulum with small amplitude), whose period
is independent of the amplitude of the oscillation.

7.2.2 Quantum picture

To treat the problem quantum-mechanically, we must solve the corresponding
Schrödinger equation, and, as in the case of the hydrogen atom, we find that this
yields a quantized set of electron energies:

⎛
⎝⎜

⎞
⎠⎟ω ω= + =E n

eB
m

1
2

, , (7.4)n

where = …n 1, 2, 3, . These quantized energy levels are known as Landau levels,
and the corresponding wave functions as Landau states, after the Russian physicist
Lev Landau, who pioneered the quantum-mechanical study of electrons in magnetic
fields (see figure 7.4).

The Landau wave functions are products of Gaussian functions (bell-shaped
curves) and certain polynomials called Hermite polynomials. Without going into

Figure 7.4. The quantization of electron orbits in a magnetic field results in equally spaced energy levels—
Landau levels. The spacing of these levels is proportional to the classical cyclotron frequency ω = eB

m
. The

colorful drawing on the right shows many electrons simultaneously executing cyclotron orbits, where each
colored plane in the stack represents a different Landau level.
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detail, we will simply state that these wave functions describe waves that spread out
over a characteristic distance known as the magnetic length lB:

=l
eB

. (7.5)B

The existence of both a natural length scale lB and a natural energy scale ω in this
physical situation is a purely quantum phenomenon (as can be seen from the
presence of ℏ in the formulas for both of these natural units). In the classical
situation, there was no such natural unit of length. Note that the new length scale is
nonetheless closely related to the classical cyclotron frequency of an electron in a
magnetic field, eB

m
.

Associated with the natural quantum-mechanical magnetic length lB is a natural
quantum-mechanical unit of area:

π =l
h e
B

2 . (7.6)B
2

This formula reveals a natural physical interpretation for the magnetic length, which
is that the area that it determines—namely, πl2 B

2—intercepts exactly one quantum of

magnetic flux, Φ = h
e0 . We can thus write:

π = Φ
l

B
2 . (7.7)B

2 0

Furthermore, it can be shown that each Landau level is highly degenerate, with
the degeneracy factor ν being given by the total number of flux quanta penetrating
the sample of area A,

ν =
Φ

Φ =BA h
e

, . (7.8)
0

0

The model we have just discussed allows one to understand the quantization of
Hall conductivity, as is shown in appendix C. The crux of the matter is that if a
Landau level (with ν quantum states) is completely filled, the Hall conductance is
quantized. Furthermore, the quantum number associated with Hall conductivity is
determined by the number N of filled Landau levels. Thus if the Fermi energy lies in
the N th gap, then the transverse or Hall conductivity is:

σ = N
e
h

. (7.9)xy

2

Since the Fermi energy resides in a gap between bands (see figure 7.5), quantum
Hall systems are insulators, and yet, strangely enough, they exhibit Hall conduc-
tivity. How is it possible for a system that, in the bulk, is an insulator, to conduct
current? This mystery will be resolved by the intuitive semiclassical arguments given
below. Then, for the next two chapters, what will occupy us is the deep topological
basis underlying the quantization of this strange type of conductivity in the presence
of a periodic lattice.

Butterfly in the Quantum World

7-6



7.2.3 Semiclassical picture

The circularity of the Landau orbits followed by electrons in a two-dimensional
electron gas immersed in a magnetic field shows why a sample with such a gas will be
an insulator: there is no net flow in any direction, since a circle is a closed loop.
However, as is explained below, this insulator, although it does not conduct current
in its interior, does conduct current along its edges (although only in one direction
along each edge). This effect takes place for purely topological reasons, independent
of the details of the sample’s geometry.

In any high-precision measurements, such as those involving the quantum Hall
effect, a natural question arises about the consequences of the finite size of the
sample—specifically, effects that take place at the sample’s boundaries. To describe
such effects, we focus on electrons confined inside a slab of finite width. Near the
edges of such a sample, the confining potential well produces an upward bending of
the Landau levels (see figure 7.6). Wherever a bent Landau level intercepts the Fermi
energy, a one-dimensional “edge channel”, or “skipping orbit”, is formed.
Classically, this can be envisioned as shown in figure 7.7—namely, as an electron
bouncing along the edge of the sample in a succession of semicircles.

Soon after the discovery of the quantum Hall effect, the importance of these edge
channels in the transport properties of the two-dimensional gas was recognized, and
several edge-related theories were then developed, based on different approaches,
and there is now ample experimental evidence that the current in a Hall bar is indeed
flowing very close to the sample’s edges.

The edge of a quantum Hall system is a one-way street for electrons.

As is shown in figure 7.7, although electrons in the bulk of the sample cannot move,
the electrons along the sample’s edge can and do move. An electron near the edge of
the sample doesn’t have enough room to complete its classical circular orbit.
Instead, it will hit the boundary of the sample, be reflected by it, will start another

Figure 7.5. On the left side, the so-called “Landau fan” plots Landau levels, labeled by their quantum numbers
=n 0, 1, 2 ..., as a function of magnetic field strength. The zigzagging red line shows how the Fermi energy

varies with field strength for a fixed electron density. The staircase on the right side shows the quantum Hall
states whose quantum numbers = …N 1, 2, 3, correspond to the Fermi energy lying in the first, second, third
(etc) gap between Landau levels.
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circle and will hit the boundary again, and so forth. Since the electron is continually
moving in one direction, we can think of the sample’s edge as a one-dimensional
“wire”. However, this wire is very different from an ordinary one-dimensional wire.
In this wire, the electron can move only in one direction, whereas in a normal one-
dimensional wire, electrons can move in either direction.

This one-way current is very important when impurities are taken into consid-
eration. In an ordinary one-dimensional wire, electrons will be reflected back by an

Figure 7.7. In the middle of the left-hand panel are shown cyclotron orbits inside an electron inside a two-
dimensional electron gas in a thin sample, as well as two bouncing trajectories (red and blue) of electrons at the
sample’s two edges. Such classical trajectories, called “skipping orbits”, consist of a sequence of successive
semicircles. The skipping orbits on both edges of the sample carry current; however, since the two edges are
located on opposite sides of the sample, the currents they carry flow in opposite directions. By contrast, the
circular orbits inside the sample carry no current. In the right-hand panel we see that the edge states not only
exhibit “one-way traffic flow” but are also unaffected by the presence of impurities—the electrons simply go
around any impurity, never getting reflected backward.

Figure 7.6. Schematic energy-level diagram for a two-dimensional electron gas in a magnetic field with an
infinite confining potential at the edges of the sample, as was shown in figure 7.3. The normally flat Landau
levels (see figure 7.4) bend upwards as they approach the walls of the potential well. States below the Fermi
energy EF are occupied (solid blue circles). The edge channels are located where the Fermi energy cuts across
the Landau levels.
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impurity, and such reflections are the main reason that there is resistance at low
temperatures. In the case of a one-way edge state, however, electrons cannot be
reflected by an impurity, since they cannot move in the “wrong” direction. Therefore,
whenever an electron encounters an impurity, it simply goes around it and keeps
moving forward. The fact that no reflections take place implies that impurities do not
disrupt the transport resulting from the edge states. This is why the quantization of the
Hall conductivity is so precise and so independent of the number of impurities.

To summarize this semiclassical explanation of the quantum Hall effect, an
energy gap results from the quantization of the closed circular orbits that electrons
follow in a sample sitting in a magnetic field. The interior of a quantum Hall sample
is thus inert, like an insulator. However, at the sample’s boundary, a different type of
motion occurs, which allows charge to flow in one-dimensional edge states, though
only in one direction at each edge. This unidirectionality makes those states
insensitive to scattering from impurities, and this explains why the Hall resistance
is so precisely quantized.

7.3 Landau levels in the Hofstadter butterfly
As has been stated above, the quantum Hall effect is tied to the gap structures—the
regions of forbidden energy—in the energy spectrum of the electrons in a magnetic
field. The coming chapters will explore the quantum Hall effect associated with the
butterfly spectrum, where the electrons are subjected both to a magnetic field and to
a periodic potential of the crystal lattice. The spectrum of such a system is
characterized by gaps that are continuous functions of the magnetic field, except
at discrete points.

We note that the problem of an electron moving in a lattice immersed in a
magnetic field can be analyzed in two entirely complementary ways, by considering
either the magnetic field or the lattice as a perturbation:

(1) The electron’s motion in the lattice can be thought of as being perturbed by
the turning-on of a magnetic field. This is called the weak-field limit,
meaning that one starts with Bloch states and treats the magnetic field as
a perturbation. Harper’s equation was originally derived from this point of
view, where a single Bloch band in a tight-binding model is perturbed by a
weak magnetic field, as was described by Douglas Hofstadter in the
previous chapter.

(2) Alternatively, one can think of the electron’s motion in a homogeneous
magnetic field as being perturbed by the turning-on of a very weak periodic
potential (due to a crystal lattice). This is called the strong-field limit. Here
one begins with the Landau-level scenario and treats the periodic potential
of the lattice as a perturbation.

A wonderful and deep surprise is that although one obtains exactly the same
equation in both of these cases, in the second case, the magnetic flux per unit cell ϕ is
replaced by its reciprocal ϕ1/ (how this happens is explained in [3]). So far in our
discussion, we have adopted the first viewpoint, in which a single Bloch band
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subjected to magnetic flux p/q is split into q subbands. By contrast, in the strong-field
case, each Landau level carrying one quantum unit of Hall current is split into p sub-
bands (since p is the denominator of ϕ=q p/ 1/ ).

Certain regions of the butterfly spectrum strongly resemble a spectrum consisting
solely of pure Landau levels (see figure 7.4). Such a spectrum arises when there is a
magnetic field but no lattice. One would expect this kind of spectrum to continue to
hold if one were to turn on an extremely weak lattice as a perturbing potential, and
this does indeed happen. Interestingly, however, this to-be-expected effect happens
not only for a small magnetic field (where the magnetic length is large and thus the
lattice is nearly irrelevant), but also at the boundaries of all miniature butterflies,
irrespective of the value of the magnetic flux. This can be seen in the lower panel of
figure 7.8. In short, then, the presence of Landau-like levels densely distributed

Figure 7.8. The four dotted circles in the upper panel reveal that in the Hofstadter butterfly there are regions in
which one can see an almost Landau-level-like spectrum. (Consider a very small flux-value such as ϕ = 0.03,
and look at the very narrow energy levels that are roughly evenly distributed at that flux-value.) In the lower
panel we zoom into the area defined by the upper panel’s red box. Once again, at the four corners of the sub-
butterfly, we again see an almost Landau-level-like spectrum. These energy levels, which are almost equally
spaced, can be spotted not only at the edges of the full butterfly, but also at the edges of all of its miniature
replicas, which occur at magnetic flux-values of all sizes, whether small or large.
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throughout the butterfly, and on all scales, is a consequence of the butterfly’s
recursive structure. This result can be understood using semiclassical analysis, as is
shown in the appendix to chapter 6.

However, as we will show later in the book (see figure 10.1 in chapter 10), in these
Landau-level-like regimes of the butterfly spectrum, the Hall-conductivity quantum
numbers associated with two neighboring gaps differ by a fixed integer that need not
be equal to unity, as is the case for the Landau-level scenario where the Hall
conductance is given by equation (7.9). This integer jump is equal to min q q[ , ]L R ,
where qL and qR denote, respectively, the denominators of the rational flux-values
that determine the left and the right boundaries of a butterfly.

7.4 Topological insulators
It is a marvelous fact that the quantum theory of two-dimensional gases of non-
interacting electrons has many hidden treasures waiting to be discovered. Among the
recently unearthed treasures are the so-called “topological states of matter”, which
constitute an emerging frontier of research in condensed-matter physics, involving
new and exotic states of matter and new kinds of phenomena in single-particle band
theory. Quantum Hall states are the first and simplest examples of topological
insulators [4].

Topological insulators are a broad class of unconventional materials that insulate
in their interior but conduct current along their edges. The edge transport is said to
be “topologically protected”, meaning that it depends only on the existence of an
edge (a topological feature), but not on the exact geometry of the edge. Quantum
Hall systems are distinct from all other known states of matter. Close cousins of
quantum Hall states are what are known as quantum spin Hall states, where instead
of one-way edge transport, there is two-way transport, due to the two opposite spin
directions, as is shown in figure 7.9.

Topological insulators provide a topological basis for classifying states of matter,
with ordinary insulators being topologically trivial. These recent experimental
discoveries and theoretical insights (which we will examine more closely in the
coming two chapters) have carried the frontiers of condensed-matter physics down
new and exciting pathways, which seem to strongly confirm Albert Einstein’s faith in
the deep rightness of using a geometrical approach to frame and to understand
nature’s most fundamental laws.

Remarks

There are special conditions under which the Hall conductance exhibits plateaus at
certain fractional values. This effect—the fractional quantum Hall effect—cannot be
explained using the framework of a non-interacting two-dimensional electron gas,
since electron–electron interactions are key in producing the fractional plateaus. The
topic is therefore beyond the scope of this book.
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Appendix A: Excerpts from the 1985 Nobel Prize press release [2]
Summary

When an electric current passes through a metal strip there is normally no difference in
potential across the strip, if measured perpendicularly to the current. If, however, a
magnetic field is applied perpendicularly to the plane of the strip, the electrons are
deflected towards one edge and a potential difference is created across the strip. This
phenomenon, termed the Hall effect, was discovered more than a hundred years ago by
the American physicist E H Hall. In common metals and semiconductors, the effect
has now been thoroughly studied and is well understood.

Entirely new phenomena appear when the Hall effect is studied in two-dimensional
electron systems, in which the electrons are forced to move in an extremely thin surface
layer between, for example, a metal and a semiconductor. Two-dimensional systems do
not occur naturally, but, using advanced technology and production techniques
developed within semiconductor electronics, it has become possible to produce them.

For the last ten years there has been reason to suspect that, in two-dimensional
systems, what is called Hall conductivity does not vary evenly, but changes “step-wise”
when the applied magnetic field is changed. The steps should appear at conductivity
values representing an integral number multiplied by a natural constant of fundamental
physical importance. The conductivity is then said to be quantized. It was not expected,
however, that the quantization rule would apply with a high accuracy. It therefore
came as a great surprise when in the spring of 1980 von Klitzing showed exper-
imentally that the Hall conductivity exhibits step-like plateaus which follow this rule
with exceptionally high accuracy, deviating from an integral number by less than
0.0000001.

Von Klitzing has, through his experiment, shown that the quantized Hall effect has
fundamental implications for physics. His discovery has opened up a new research field
of great importance and relevance.

Figure 7.9. Schematic illustration of edge states, or surface states, in quantum spin Hall topological insulators,
where electrons with spin up propagate in one direction while electrons with spin down propagate in the
opposite direction.
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Because of the extremely high precision in the quantized Hall effect, it may be used
as a standard of electrical resistance. Secondly, it affords a new possibility of
measuring the earlier-mentioned constant, which is of great importance in, for
example, the fields of atomic and particle physics. These two possibilities in measure-
ment technique are of the greatest importance, and have been studied in many
laboratories all over the world during the five years since von Klitzing’s experiment.
Of equally great interest is that we are dealing here with a new phenomenon in
quantum physics, and one whose characteristics are still only partially understood.

Appendix B: Quantum mechanics of electrons in a magnetic field
As was stated in chapter 6, the quantum treatment of a planar electron in a
transverse magnetic field ⃗B comes from replacing the x- and y-components of the
momentum vector ⃗ =p p p( , )x y (these are “c-numbers”, in Dirac’s terminology) by a
pair of “q-number” operators, as follows:

→ − ∂
∂

→ − ∂
∂

−

p i
x

p i
y

eBx.

x

y

(Here, as in chapter 6, we are using the magnetic vector potential ⃗ =A B x(0, , 0),
called the “Landau gauge”.) The resulting Schrödinger equation is:
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Since there is no explicit dependence on y anywhere in the above equation, we
look for solutions of the form ψ =x y f x e( , ) ( ) ik yy . This leads to the following
equation for f(x):

− + − =( )
m

d f
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eBx k Ef x
2
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2
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2

This equation is identical to the Schrödinger equation for a one-dimensional
harmonic oscillator, whose eigenfunctions and eigenvalues are:

⎛
⎝⎜

⎞
⎠⎟ψ ϕ ω= − = +x y x

k

eB
e E n( , ) ; ( 1/2), (B.3)n

y ik y
n c

y

where ωc equals the cyclotron frequency eB
m
, and where the functions ϕn are

harmonic-oscillator wave functions labeled by the same quantum number n that
labels the discrete energy levels—that is, the Landau levels. Note that the
eigenvalues of this system, unlike its eigenfunctions, are independent of ky. This
results in degenerate levels whose degree of degeneracy is equal to ν ϕ= BA/ 0
(A being the area of the sample), as was mentioned earlier in this chapter.
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Appendix C: Quantization of the Hall conductivity
We start with the expression for σxy, the classical Hall conductance [1]. Here,Q is the
total electrical charge of the system, and A is its area,

σ = Q
BA

. (C.1)xy

To obtain a quantum expression for Hall conductivity [5], we consider a system
with N filled Landau levels. (This means there is no longitudinal current, so the
longitudinal conductance σxx is equal to zero.) As each Landau level is ν-fold
degenerate, ν= =Q N e NBAe h/2 . (Here we have used equation (7.8), which gives
ν = Φ =BA BAe h/ /0 .) This gives us the desired result:

σ = N
e
h

. (C.2)xy

2

The validity of this expression has been proven more rigorously, even in the
presence of impurities. However, although this explains quantization, it does not
give a topological basis for it. That will be done in the following chapters.
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Chapter 8

Topology and topological invariants:
Preamble to the topological aspects of the

quantum Hall effect

Physics concerns not just the nature of things, but the interconnectedness of the
natures of all things.

—Charles Frank, 1976.

As we saw in chapter 7, the integer quantum Hall effect involves the astonishingly
precise quantization of Hall conductivity. More specifically, this effect is all about
the unexpected discovery that Hall conductivity comes in integer multiples of the

fundamental quantity σ = e
hH
2
, where e is the charge on the electron and h is Planck’s

constant. The values of laboratory measurements of Hall conductivity turn out to be
integer multiples of e h/2 to nearly one part in a billion.

Such extreme precision is absolutely unprecedented in condensed-matter physics.
In contrast to atomic and particle physics (especially quantum electrodynamics), in
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condensed-matter physics, the difference between theoretical predictions and exper-
imental findings can be quite large—typically in the range of several percent. The
error bars here are usually much larger than in atomic and particle physics for the
following reasons:

• As the great Wolfgang Pauli once said, “Solid-state physics is the physics of
dirt.” And what Pauli said was not altogether silly, although it was certainly
haughty! Indeed, solids, particularly quantum Hall systems, are typically
dirty. They may be filled with impurities, including crystal defects. Such
impurities make the data noisy.

• Condensed-matter theories are not as quantitatively accurate because of the
complexity of macroscopic physical systems, compared to systems on the
size of atoms or smaller, where the phenomena involve very few entities
interacting inside a pure vacuum. Phenomena inside solids are very different
from that. They have far less symmetry than phenomena taking place in a
vacuum.

• A crystal, unlike empty space, is not isotropic. Unlike empty space, a crystal
establishes a preferred frame of reference that defines what is moving and
what is still. And unlike empty space, a crystal can “enjoy” various states of
disorder.

• Also unlike empty space, a crystal has a finite temperature, which gives to all
phenomena a statistical blur.

• Once again, unlike empty space, a crystal is made up of a vast number of
pieces, which constitute interacting degrees of freedom.

• Last but not least, the fine-structure constant of quantum electrodynamics,

α = ≈e
c

1
137

2
, is a very small expansion parameter whose smallness allows

perturbation theory to make accurate predictions in atomic physics.
Although perturbative theories such as the BCS theory of superconductivity
and Fermi liquid theory are extremely successful and deep theories, the
quantitative accuracy of their predictions does not come close to the accuracy
one can achieve in atomic and particle physics.

8.1 A puzzle: The precision and the quantization of Hall conductivity
Why is Hall conductivity so precise, and why is it quantized?

The answer to these questions lies in the fact that the integer quantum Hall effect is a
very special quantum effect. The effect is a consequence of a topological state of
matter. In other words, the quantization of Hall conductivity has its roots in
topology, a fairly recent branch of mathematics in which an orange and a potato are
“the same”—that is, they are topologically indistinguishable from each other (and
also from a baseball bat, a soup bowl, and a curving strand of spaghetti). By
contrast, a doughnut and a coffee cup (that is, a cup with a handle) are topologically
distinct from all those entities, but they are topologically indistinguishable from each
other (and also from a rubber band, a funnel, and a piece of macaroni, since all these
diverse objects share the feature of having one hole).
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The quantization of Hall conductivity, computed in a perfectly non-interacting
model, remains pristine despite the inevitable presence of interactions and impurities,
and this marvelous fact is a consequence of topological reasons. Indeed, quantum
Hall systems are topological insulators, as was briefly mentioned in chapter 7. As was
hinted in that chapter and as will be explained below, the quantum Hall effect
involves a different kind of quantization from that of such familiar observables as
energy and angular momentum. It does not depend directly on quantum coherence
of the sort that is responsible for the quantized orbits inside an atom. To quote Allan
MacDonald, a physicist who has made important contributions to the field,
“Quantum coherence plays a supporting role rather than a starring role in this
drama.” Two-dimensional electron gases exhibiting this type of quantization are
cold enough so that quantum coherence holds, and such systems can be charac-
terized by wave functions that evolve according to the Schrödinger equation. The
integer quantum numbers of the two-dimensional electron gas are hidden in the
wave function.

The quantization of Hall conductivity is due to topological invariants known
as Chern numbers, named after Shiing-shen Chern (1911–2004), a Chinese-born
American mathematician who was a pioneer in differential geometry. The quanti-
zation is rooted in the geometry and topology of an abstract space underlying the
quantum system. To introduce readers to this exotic type of behavior, we will begin
this chapter by discussing two key concepts, both of which can be introduced at a
classical level. Indeed, as was once stated by Roman Wladimir Jackiw, a theoretical
physicist who championed the subject of quantum anholonomy: the quantum-
mechanical revolution has not erased our reliance on the earlier classical physics.
Here, then, are those two key concepts:

(1) Topological invariants: Using simple geometrical shapes, we will show how
the intimate relationship between geometry and topology gives rise to
integer topological invariants.

(2) Anholonomy: This concept applies to a physical system that fails to return to
its original state after executing a closed pathway (and thus seeming to
“return home”) in a curved space. The fascinating Foucault pendulum,
which does not return to its starting state after a full rotation of the Earth,
illustrates this important phenomenon. Sharing a common mathematical
theme with anholonomy is the more abstract notion of a Berry phase, in
which a particle’s initial wave function, as a result of the particle’s under-
going a cycle, acquires a phase factor of purely geometric origin.

8.2 Topological invariants
Topology originated from a branch of geometry that describes manifolds (a fancy
term for “shapes”) in two-dimensional, three-dimensional, or higher-dimensional
spaces. (Included in the set of such spaces are very abstract spaces that go well
beyond the geometrical notions that we are used to; for example, they include
Hilbert spaces, a notion used in quantum physics, which have infinitely many
dimensions.) If one manifold can be continuously deformed into another one, we say
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the two have the same topology; otherwise, they are topologically different.
Examples: the surface of a sphere and the surface of a cube are topologically
equivalent, while the surface of a sphere and the surface of doughnut (a torus) are
topologically different, because a torus has a hole while a sphere has none.

To distinguish different manifolds, mathematicians developed topological indices,
which are topologically invariant quantities that take on integer values. For two
objects having the same topology, the index takes the same value. Otherwise, the
values are different.

8.2.1 Platonic solids

To illustrate topological invariants, we will use the example of convex polyhedra in
three-dimensional space—the Platonic solids [1], named after the ancient Greek
philosopher Plato who, in his dialog the Timaeus, theorized that everything in the
universe was composed of exceedingly small objects shaped like these regular solids.
In three-dimensional Euclidean geometry, a Platonic solid is a convex polyhedron
all of whose faces are mutually congruent regular polygons, and at whose every
vertex the same number of faces meet. There are five distinct objects in 3-space that
meet those criteria (see table 8.1), and each is named after its number of faces—the
tetrahedron (four faces), the hexahedron (six faces), the octahedron (eight faces),
the dodecahedron (twelve faces), and the icosahedron (twenty faces). The results
described below apply to any convex polyhedron, and more generally to any
polyhedron whose boundary is topologically equivalent to a sphere and whose faces
are topologically equivalent to disks.

Table 8.1. For all five Platonic solids, the Euler index − +V E F (number of vertices minus number of edges
plus number of faces) equals 2. This number is a topological invariant, because its value remains constant no
matter how the object is distorted (as long as it is not broken in any way).

Name Image
Vertices

V
Edges
E

Faces
F

Euler characteristic:
V − E + F

Tetrahedron 4 6 4 2

Hexahedron or
cube

8 12 6 2

Octahedron 6 12 8 2

Dodecahedron 20 30 12 2

Lcosahedron 12 30 20 2
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Let the number of faces of such a polyhedron be F, let its number of edges be E,
and let its number of vertices be V. We then define a new quantity χ, known as the
Euler index, named after the 18th-century Swiss mathematical genius Leonhard
Euler, who, among his almost endless achievements, was responsible for much of the
early work in topology:

χ = − +F E V . (8.1)

Surprisingly, no matter which polyhedron one chooses, the number obtained
when one computes χ is always equal to 2. The cube, for example (referred to earlier
as a “hexahedron”), has 6 faces, 12 edges and 8 vertices, and, as was claimed above,

− + = − + =F E V 6 12 8 2. This easy-to-compute integer χ is one of the simplest
examples of a topological invariant, capturing a deep topological aspect of an
object’s shape or structure, regardless of the way the object is bent.

A great discovery of the last few decades is that a topological invariant also rules
the dynamics of the electrons in the quantum Hall effect. Just as the Euler index χ is
a topological invariant belonging to a simple geometric entity, the integer that
underlies Hall conductivity is a more abstract topological invariant called a “Chern
number”. Just as Euler’s χ does not depend on shape, the Chern number does not
depend on the shape or other details of the experiment.

8.2.2 Two-dimensional surfaces

To gain a feel for some topological invariants applying to objects other than
polyhedra, we turn next to a topological index defined for two-dimensional closed
surfaces. This index, like most topological invariants in physics, arises as the integral
of a geometric quantity. It is defined as follows:

∫χ
π

κ= ds
1

2
. (8.2)

S

Here κ is the local curvature of the surface—a concept that we shall now define.
First of all, let us consider curves in a Euclidean plane. If the curve is a circle (the

simplest case), then the reciprocal of its radius, κ = R1/ , is defined to be its local
curvature (and the curvature is the same at every point of the circle). Clearly, the
smaller the circle, the greater the curvature, and vice versa. And a straight line, being
a circle of infinite radius, has zero curvature, which makes perfect sense, since it is
not curved at all.

For curves that are not circular, the curvature will vary from point to point. The
local curvature will of course be greater at points where the curve turns more
sharply, and lower where it approaches straightness. To obtain the precise numerical
value of the curvature, one finds the circle that best fits the curve at the point in
question, and the inverse radius of that circle is defined to be the local curvature at
that point.

This notion of local curvature can be extended from two-dimensional curves to
three-dimensional manifolds (surfaces in 3-space), such as a tin can, a fruit bowl,
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an egg, someone’s cheek, and so forth. The most naïve approach to defining the
local curvature of such an object (that is, the idea based on the simplest possible
analogy to the two-dimensional case) would be, given a point on the object’s
surface, to try to find “the best-fitting circle” at that point. Unfortunately, however,
this naïve approach doesn’t work, because in general, many different circles of
different radii will fit snugly against the object at the chosen point, since at each
point on the object’s surface, there are infinitely many different directions that one
could choose.

To be very concrete, consider a straight section of pipe with a circular cross-
section. An ordinary ruler (which has zero curvature) can be placed on it lengthwise,
and the two objects will match exactly. This suggests that at every point, the piece of
pipe, like the ruler, has zero local curvature. On the other hand, a circular washer of
the proper size will also fit snugly inside the pipe. This fact suggests, contrariwise,
that at every point, the pipe has the same local curvature as the washer’s circum-
ference (which is not zero). This discrepancy shows why generalizing the notion of
curvature to manifolds in three-dimensional space is tricky. Nonetheless, there is an
elegant way to make the generalization.

Imagine a smooth fruit bowl longer than it is wide. Now imagine standing a thin
napkin ring (balanced upright on its circumference) on the bowl’s lowest point and
twiddling an imaginary knob that increases or decreases the ring’s radius. The goal
of such twiddling is to make the ring match the bowl’s shape as exactly as possible at
that spot. If you orient the ring so it is aligned with the bowl’s long axis (say, east–
west) and then twiddle its radius until you find the best fit, you will wind up with a
relatively large radius (i.e., low curvature), whereas if you align the napkin ring with
the bowl’s short axis (north–south) and again twiddle in search for the best fit, you’ll
wind up with a ring with a relatively small radius (i.e., high curvature). And if you
orient the napkin ring in some intermediate direction (northwest–southeast, say),
you’ll wind up with an intermediate-size radius for the best-fitting one. In fact, there
will be a continuum of different radii, depending on the angle at which you orient the
napkin ring.

The key idea for defining the Gaussian curvature of the bowl at its bottom (or at
any other point) starts with the fact that among all these differently oriented circles,
there is one whose curvature κmax is greatest and one whose curvature κmin is least.
These two circles’ curvatures are known as the manifold’s principal curvatures at that
point. (By the way, some 250 or so years ago, Euler proved that for any point of any
manifold, the extremal circles are always oriented at 90 degrees to each other.) We
now define κ, the local Gaussian curvature of the bowl at this point (or at any given
point), as the product of the two extremal curvatures: κ κ κ= max min. For the pipe,
since the minimal curvature is 0, it doesn’t matter what the maximal curvature is,
since their product will always be 0. Thus the local curvature at every point of the
pipe equals 0. On the other hand, for the fruit bowl, the two perpendicular napkin
rings standing upright on the bowl’s bottom both have non-zero curvature, so their
product will be non-zero.

The Gaussian curvature of a manifold at any specific point turns out to be an
intrinsic measure of curvature at that point, which means that its value could, in
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principle, be calculated by a being that inhabits the surface itself, without using
circles (or napkin rings) that stick upwards or outwards into an extra spatial
dimension; one does not have to look, at or even be aware of, the space in which the
object is embedded. Thus an ant living on a basketball could in principle calculate
the basketball’s curvature without ever knowing about three-dimensional space.

For a sphere of radius R, κ κ= =
R
1

max min , so κ =
R

1
2 . Consider next a horse’s

saddle, and pick some point near its middle. At that spatial point, if you move
backwards or forwards (i.e., headwards or tailwards, if the saddle is sitting on a
horse), the saddle curves upwards, while if you move sideways, the saddle curves
downwards. For this reason, we assign the two curvatures opposite signs, so that
κ > 0max and κ < 0min . Thus the Gaussian curvature at that point, κ κmax min, will be
negative.

Finally we can return to the integral exhibited earlier, which integrates the
Gaussian curvature over the entire surface of the manifold in question. The value
obtained is called the manifold’s total Gaussian curvature. And it turns out, rather
miraculously, that for any two-dimensional closed manifold, the total Gaussian
curvature is always an integer. This is a consequence of a beautiful theorem, the
Gauss–Bonnet theorem in differential geometry. It is named after Carl Friedrich
Gauss, who was aware of a version of the theorem but never published it, and Pierre
Ossian Bonnet, who published a special case of it in 1848.

8.2.3 The Gauss–Bonnet theorem

∫χ
π

κ= = −ds g
1

2
2(1 ). (8.3)

S

In this equation, g is the genus of the object in question—that is, the number of
handles it possesses (always an integer, of course). Both g and the number χ are
topological invariants. For a sphere, which clearly has no handle, g = 0 and hence
χ = 2. For a torus, g = 1 and thus χ = 0. A coffee mug has one handle, and so,
topologically speaking, it is a torus; that is to say, coffee mug = doughnut(at least as
viewed by a topologist). For a delightful discussion of this theorem, we highly
recommend the article by Daniel Henry Gottlieb [2].

The Gauss–Bonnet theorem states that the integral of the curvature over the
whole surface is “quantized” (restricted to integer values, in this case), and is a
topological invariant. This theorem, relating geometry to topology, was generalized
by Shiing-Shen Chern to quantum systems, in order to describe the geometry of
wave functions, which are complex-valued functions. In the generalized Gauss–
Bonnet–Chern theorem, although the lefthand side is an integer, it is not always
an even integer, and thus g cannot be interpreted as the number of handles, as is
explained later in this chapter.

The key question for us is how to define curvature in quantum systems,
characterized by wave functions in a Hilbert space. To answer this question, we
now introduce anholonomy, a phenomenon that is rooted in curved space and that
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therefore relates directly to the notion of curvature for classical as well as for
quantum systems.

8.3 Anholonomy: Parallel transport and the Foucault pendulum
At any given moment, a physical system’s state is characterized by a set of numerical
parameters, and in classical physics, most systems studied have the property that when
they are modified and then brought back to their original states, all of their parameters
have resumed their original values. In other words, the excursion to other states and
back leaves no lasting trace. When this is the case, the system is said to be holonomous.
By contrast, an anholonomous system is one in which at least one parameter describing
the system does not return to its original value, so in a sense, the system has a kind of
“memory” of having traveled to other “places” and then having come back “home”.

Parallel transport

As a first illustration of anholonomy, we consider a vector moving on a surface. We
will stipulate that the vector moves such that it remains parallel (i.e., tangent) to the
surface, and also that it keeps a fixed angle with respect to the pathway along which
it is moving. This kind of motion of a vector is known as parallel transport. If the
vector undergoes a series of parallel transports and eventually comes back to where
it started, and if the surface in which it is traveling is flat (as in the left half of
figure 8.1), then the vector will return to its initial state unchanged.

However, if the surface is curved—for example, the surface of a sphere (the right
half of figure 8.1)—then the vector will be found to point in a different direction after
traveling around a closed loop, even though it never rotated. The change in direction
will, in fact, be proportional to the integral of the Gaussian curvature of the surface
contained within the loop, which in turn is proportional to the solid angle enclosed

Figure 8.1. The parallel transport of a vector in a flat space and in a curved space. Reproduced with
permission of MPQ&LMU Munich.
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by the loop. The angular difference between the vector’s direction before and after
such a loop will depend only on the chosen loop and the nature of the surface, but
not on anything else, such as the speed of the vector’s movement. This is why the
effect is called “geometric”. This phenomenon has in fact been appropriated, in
modern geometry, to define local curvature as follows:

The local curvature at a specific point of a given surface is defined as the angular
shift of a vector after it has been parallel-transported around an infinitesimal
loop located at that point, divided by the area of the loop.

This definition is immediately generalizable to quantum states in parameter space,
and thus it provides a way to define the curvature of a Hilbert space. However, before
venturing into the deep waters of quantum anholonomy, we will look carefully at a
case of anholonomy in classical physics—namely, the Foucault pendulum.

The Foucault pendulum: an example of classical anholonomy

An iconic example of anholonomy and parallel transport in a classical system is the
Foucault pendulum. In 1851, the French physicist Léon Foucault introduced a
simple device that he designed in order to demonstrate very concretely the Earth’s
rotation. This device turns out to be a canonical example of anholonomy, in which a
variable of a physical system does not return to its initial state after the system has
made a “round trip”.

Foucault pendulums are often shown in museums, where they swing back and
forth above a stationary horizontal circle on the floor; the circle’s center is directly
below the balance point of the pendulum. What one observes is, firstly, that such a
pendulum’s direction of swing changes noticeably in the course of a few minutes, but
also—and more surprisingly—that after 24 hours have elapsed (at which point one
would naturally think that the system would have “come back home again”), it is
not swinging in the same plane as it was swinging in at the outset (figure 8.2).

That is, as the Earth rotates through an angle of π2 radians (360 degrees), the
system’s cyclic pathway results in the plane of oscillation of the pendulum rotating
through a smaller angle. An observer on Earth witnesses that the orientation of the
pendulum—that is, of its plane of oscillation—slowly rotates during the course
of the day, and in general does not return to its original orientation after 24 hours.
The difference between the initial and final orientations of the pendulum is called the
“phase shift”, and is our main focus here.

The pendulum’s trajectory starts out in one plane. The forces exerted on it (the
Earth’s gravity and the tension in the wire) produce a vanishing vertical torque, and
so the plane of the pendulum’s swing undergoes parallel transport as the Earth turns,
carrying the pendulum along a circular pathway (a line of latitude).

The precession of a Foucault pendulum can be calculated in classical mechanics
using the Coriolis force. However, in addition to this traditional type of explanation,
the Foucault precession has a purely geometrical explanation, which is not only
simpler but also more elegant. Let us look into this.
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8.4 Geometrization of the Foucault pendulum
Before we discuss the “geometrization” of the Foucault pendulum, we note the
following.

• Pendulum moving on a Euclidean plane.
A pendulum that is slowly carried along any pathway in a Euclidean plane

always maintains a fixed direction in space. This is because gravity acts
downward (perpendicular to the plane), so it cannot affect the orientation of
the pendulum.

• Straight lines on a sphere are great circles.
To understand which paths on a sphere should be called “straight”, we resort

toNewton’s first law, and define a straight line to be a path that a particle follows
in the absence of external forces. In this case, the particles in question are moving
on the surface of a sphere. On the Earth’s surface, the equator is an example of
such a “straight line”. It divides the Earth into two mirror-symmetric halves. In
the absence of external forces, any particle set in motion along the equator

Figure 8.2. Image from November 2, 1902, celebrating the 50th anniversary of the original demonstration by
Léon Foucault of the rotation of the Earth under the grand dome of the Panthéon in Paris in 1851. After just
one hour, the public could see that the plane of oscillation of the pendulum had already rotated by 11 degrees.
As is shown in the graph on the right, there is no rotation of the pendulum’s direction if it is swinging at the
equator, and one full turn (360 degrees) if it is swinging at the north or the south pole; at all other latitudes, the
amount of rotation varies as a continuous function of the latitude.
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cannot distinguish the two hemispheres, and thus has to stay on the equator. (Of
course the equator is not a straight line in 3-space. If we were to allow the particle
to leave the surface of the Earth, it would travel along a different trajectory.) If
the sphere is rotated, the equator changes its orientation, but it remains a
“straight line”. All such “rotated equators” on a sphere are called great circles or
geodesics. Alternatively, we may think of a great circle as the intersection of the
sphere with a plane that passes through the sphere’s center.

When a pendulum is carried around a great circle, the angle between the
pendulum’s swing and the great circle never changes. If, however, the pendulum
is taken along a path that is not a great circle—for example, a path of fixed
latitude other than the equator—then the angle between the pendulum’s swing
and the path does change.

Triangular paths on a sphere

Before discussing a pendulum that moves along a circle at a fixed latitude, let us
consider a triangular pathway C on the sphere—that is, a pathway consisting of
three great-circle segments, as shown in figure 8.3. Let θ1, θ2, and θ3 be the angles at
the vertices of the triangle. We want to see how the pendulum’s plane of oscillation
changes as it follows the closed triangular pathway.

There is no change while the pendulum moves along any one segment. There is a
change, however, each time that the pendulummoves from one segment to the next. At
those moments, the angle between the plane of oscillation and the path is changed by
the angle between the two segments at the point where they meet. Therefore, the total
change of the pendulum’s plane of oscillation—the pendulum’s phase shift α C( )—is
the sum of these three discrete changes, minus π. (The π comes from the fact that in a
Euclidean plane, where the phase shift is zero, the sum of the angles of a triangle equals
π.) Thus the pendulum’s total phase shift is given by the following formula:

α θ θ θ π= + + −C( ) . (8.4)1 2 3

If we combine this with the definition given above for local curvature (namely, the
angular shift of a vector that has been parallel-transported around a loop, divided by
area of the loop), we get a formula relating the phase shift for a triangular pathway
C on a sphere of radius R to the area A of the triangle—namely, α =C A R( ) / 2.

The quantity α C( ) is the solid angle subtended at the center of the sphere by the
triangle defined by the path C. The net phase shift is a continuous function of the
path, and so is the enclosed area. Therefore, the above equation, α =C A r( ) / 2, also
holds in the general case, which proves the Gauss–Bonnet theorem for all closed
paths C of area A on the sphere. In other words, equation (8.4) is the Gauss–Bonnet
formula for a geodesic triangle, ∫ κ θ θ θ π= + + −dS 1 2 3 , where the integration is
carried out over the surface of the triangle.

Foucault pendulum trajectories: paths of constant latitude on the sphere

Consider now a pendulum moving around a circle C at a fixed latitude θ0. (In the
case of a Foucault pendulum, of course, instead of someone moving the pendulum
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along the fixed-latitude circle C, it is simply carried along such a pathway by the
Earth’s rotation.) Although C is not a great circle, we can approximate it by a
spherical polygon—that is, the union of a large number of short segments of
great circles, where each such segment runs along the path for a short distance (see
figure 8.3(C)). The pendulum keeps a fixed angle with respect to each of the three
geodesic segments. The net phase shift of a Foucault pendulum is thus equal to the
sum of the three vertex angles of the spherical polygon, which, by Gauss–Bonnet,
equals the solid angle subtended at the center of the Earth by the cyclic path.

Strictly speaking, the surface whose intrinsic curvature gives rise to the phase shift
of a Foucault pendulum is not the Earth’s physical surface, but a more abstract
surface—namely, the surface of constant gravitational field along which the
pendulum moves. (By this is meant any surface on which the field’s magnitude is
constant, but not the field’s direction.) Conveniently, however, when we are talking
about the Earth’s gravitational field (the field due to a point having mass), all such
abstract surfaces are all perfectly spherical, and they all have their center at the
Earth’s center, and therefore the surface giving rise to the Foucault precession
coincides with the Earth’s (nearly perfectly) spherical shape. This makes it very
natural to phrase the precession result in terms of the Earth’s physical curvature.

Figure 8.3. (A) A spherical triangle, whose three sides are segments of great circles. When a pendulum (whose
oscillation direction is represented by the arrows) is taken along such a triangular path, the angle of the
pendulum’s swing with respect to each great-circle segment remains constant. Thus, only the angles between
two segments contribute to the anholonomy—that is, to the overall angular shift of the pendulum. (B) The
path of the Foucault pendulum at latitude θ0, over the course of one day. (C) A circle of fixed latitude
approximated by segments of great circles tangent to it. Adapted from [5] and [6] with the permission of the
American Association of Physics Teachers.
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In summary, unlike a cyclic pathway followed on a flat surface, which makes a
system always return to its initial state (a holonomic process), a cyclic pathway on a
curved surface results in a mismatch between the system’s initial and final states.

By describing the classical Foucault pendulum as an oscillator transported
around a cyclic pathway on a surface of a sphere, we “geometrize” it.

This important insight is summarized in the following way by Alfred Shapere and
Frank Wilczek in their book Geometric Phases in Physics [3]:

How does the pendulum precess when it is taken around a general path C? For
transport along the equator, the pendulum will not precess. [...] Now if C is
made up of geodesic segments, the precession will all come from the angles where
the segments of the geodesics meet; the total precession is equal to the net deficit
angle, which in turn equals the solid angle enclosed by C (modulo π2 ). Finally,
we can approximate any loop by a sequence of geodesic segments, so the most
general result (on or off the surface of the sphere) is that the net precession is
equal to the enclosed solid angle. This result may seem rather esoteric, but its
generality and geometric nature suggest its depth. In fact, the mathematics
describing it is essentially identical to that describing the motion of a charged
particle in the field of a magnetic monopole.

8.5 Berry magnetism—effective vector potential and monopoles
The boldface sentence closing the above quote applies, remarkably enough, not only
to the precession of a Foucault pendulum but also to the Berry phase—the quantum
form of anholonomy that arises in a wide variety of physical phenomena. Below we
highlight some of the key aspects of this universal picture, with additional details
given in the appendix. The discussion is applicable to both classical and quantum
systems, and it forms a preamble to our revelation, in the following chapter, of the
secrets of the topological quantization of the quantum Hall effect.

Rather surprisingly, it turns out that fictitious magnetic monopoles—the exotic
hypothetical particles pictured and briefly described in figure 8.4—are hidden in the
mathematics of anholonomy. The key variable in an anholonomic system is γ, the
shift after the system goes around some cyclic pathway and returns home. For
the Foucault pendulum, for example, γ is the total twist angle, or the precession
angle, of the pendulum after a 24 h period has elapsed.

Michael Berry’s central result, as described in [3] (see the appendix for details),
states that the anholonomic shift γ can be written in two different ways—either as a
surface integral (the left side of the equation below) or as a line (contour) integral
(the right side):

⎡
⎣⎢

⎤
⎦⎥∫ ∮γ = − = ·

* *
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d
dx

d
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d
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d
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Here, n is a complex unit vector whose phase encodes the twist or the precession
of the pendulum as described in the appendix, while the variables x1 and x2
coordinatize the surface that the pendulum is moving on. To bring this equation
closer to the comfort level of nonspecialists, we note that on a spherical surface, the
integrand in the surface integral above is just the solid angle subtended, at the center
of the sphere, by the system’s cyclical pathway.

The sole reason for introducing the complex vector n here—an ingenious trick—is
to bring out the hidden analogy that such a system has with quantum wave
functions, which are also complex-valued. Indeed, in the next chapter, we will see
that the identical formula, but with n replaced by the wave function, gives the Berry
phase. We also note in passing that the two formulas given above for γ, one
calculating it as a surface integral and the other as a line integral, are equal, thanks
to Stokes’ theorem in vector calculus, which relates a surface integral to a line
integral.

Let us take a sphere (such as the Earth) as our surface. In that case, one can show
that γ is the solid angle subtended by the surface S at the sphere’s center. If we
integrate over the whole sphere, we obtain the total curvature of the sphere, which is
π4 . Dividing the total curvature by π2 gives us the topological invariant χ, which is
equal to 2, for a sphere. In other words, we can relate equation (8.5), which gives the

Figure 8.4. A magnetic monopole—an isolated magnet having only one magnetic pole, either South or
North—is a hypothetical elementary particle suggested in 1931 by British physicist Paul Adrien Maurice
Dirac, in analogy to a point electric charge (an electric monopole, either positive or negative). Magnetism
in the real physical world (e.g. in bar magnets and electromagnets) does not arise from magnetic
monopoles. In fact, no magnetic monopole has ever been experimentally observed, nor is there any
experimental evidence suggesting that magnetic monopoles exist somewhere in our universe. Nonetheless,
the grand unified and superstring theories of particle physics predict their existence. Moreover, some
condensed-matter systems contain effective magnetic monopoles as quasiparticles, which means that
such systems exhibit certain behaviors that are mathematically analogous to the presence of magnetic
monopoles.
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twist angle of the pendulum, to equation (8.3)—the Gauss–Bonnet theorem—as
follows:

⎡
⎣⎢

⎤
⎦⎥∫ ∫γ

π π
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This equation reveals the profound fact that anholonomy can be thought of as a kind
of curvature. We note that χ will be an integer—a topological quantum number—
provided that we integrate over the entire surface S.

To give readers a head start on seeing how all this relates to the topological
quantum numbers that characterize the different levels of Hall conductivity, or to
the topological quantum numbers that decorate every nook and cranny of the
Hofstadter butterfly, we point out that if the vector n plays the role of the wave
function, then γ plays the role of the Berry phase and χ plays that of the topological
quantum number. In the Berry-phase literature, the quantity κ, which emerges out of
the analogies in equation (8.6) like a rabbit popping out of a hat, is known as the
“Berry curvature”.

We hope readers will experience an “aha” moment upon seeing how cleverly
nature exploits one single idea but realizes it differently in many highly diverse
contexts. Michael Berry himself put it as follows: “A circuit tracing a closed path in
an abstract space can explain both the curious shift in the wave function of a particle
and the apparent rotation of a pendulum’s plane of oscillation.” In other words,
although the classical and the quantum systems that exhibit anholonomy involve
very different physics, they have topological aspects that are captured in one and the
same mathematical language [4].

Monopoles: where do they come from?

From the above formula for anholonomy (whether classical or quantum)
emerges an elegant theoretical description that deepens our understanding of these
phenomena.

Physicists have a deep drive to seek simple ways to picture anything new they
encounter. They pursue this goal with great alacrity, driven by their natural faith that
all physical phenomena, when viewed from the right perspective, are connected in
some way. Their journey usually begins with questions like “Where does this
phenomenon belong within the framework of familiar equations or familiar laws of
physics?” or “To what familiar physical phenomenon might this new phenomenon be
analogous?”A sense of simplicity and elegance plays a central role in reincarnating, in
exotic new contexts, mathematical ideas that originally sprang up in completely
different contexts. To show how this kind of self-questioning helped physicists to
discover the proper ideas yielding a deep understanding of the quantumHall effect, we
now focus on analogies linking anholonomy to previously known phenomena.

Since anholonomic processes involve phase shifts, it is intuitively plausible that
such processes might have some deep analogical links to Maxwell’s equations.
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Indeed, readers familiar with particle physics will recall that phases are associated
with gauge fields, and Maxwell’s equations are perhaps the simplest form of gauge
fields known to physicists. In fact, the gauge invariance of Maxwell’s equations is the
core reason underlying the fundamental law of conservation of charge.

As it turns out, this intuitive guess that there might be an analogical link
connecting electromagnetic phenomena to anholonomy is deeply correct. The
curvature κ in equation (8.6) can be interpreted as an effective magnetic field. This
fictitious magnetic field, today commonly called the “Berry curvature”, along with
its corresponding vector potential (the “Berry connection”), forms the crux of the
mathematics of anholonomic processes. This radically novel way of describing
anholonomy, often called “Berry magnetism”, has many striking features, some of
which are disanalogies with genuine electromagnetism. For instance, unlike the
actual equations of Maxwell, which have no solutions involving magnetic monop-
oles, Berry magnetism permits the existence of (effective) magnetic monopoles.

To see how the mathematics underlying anholonomic phenomena can be
manipulated to give something that has the formal appearance of electromagnetic
theory, let us rewrite equation (8.5) in the following way:

⎡
⎣⎢

⎤
⎦⎥∫ ∫ ∫∮γ κ= − ≡ ⃗ · ⃗ = ⃗ · ⃗ ≡

* *
i

d
dx

d
dx

d
dx

d
dx

dx dx B dS A dR dS
n n n n

, (8.7)
S S S

b
1 2 2 1

1 2 eff eff

where ⃗ = − = ∇ × ⃗* *
B i A[ ]d

dx
d
dx

d
dx

d
dx

n n n n
eff

1 2 2 1
eff . These equations suggest that ⃗Beff can be

viewed as a kind of curvature—the Berry curvature, denoted by κb. Recall that Berry
curvature is the curvature of some type of abstract space. In the special case of the
Foucault pendulum moving on the surface of a spherical Earth, that abstract space
coincides with the concrete surface of the Earth.

Readers can easily check that ⃗Aeff has the following property,

β→ ⃗ → ⃗ − ∇⃗βe A An nIf , then . (8.8)i
Reff eff

Equation (8.8) is strongly reminiscent of the gauge transformations obeyed by a true
magnetic vector potential (also sometimes called a “gauge potential” in electro-
dynamics, as described in chapter 5). If we interpret ⃗Aeff as a kind of effective vector
potential, then ⃗Beff will be the “magnetic field” associated with that vector potential.

This analogy gives birth to a variation on the theme of electromagnetism—namely,
the above-mentioned Berry magnetism. Incidentally, in the case of a Foucault
pendulum moving on the surface of a spherical earth, the fictitious magnetic field

⃗Beff equals
⃗R

R3 . This “magnetic field” can be thought of as the field due to a (fictitious)

magnetic monopole sitting at the center of the earth (whose surface is assumed to be a
sphere). Next we show how all this is related to Maxwell’s equations.

Accommodating monopoles into Maxwell’s equations

A seeming contradiction arises here, due to the basic theorem of vector calculus that
says that the divergence of a curl is always zero. In this case, ⃗Beff is defined as the curl
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of the vector potential ⃗Aeff (symbolically, ⃗ = ∇ × ⃗B Aeff eff ), which would imply that
the divergence of ⃗Beff (that is, ∇ · ⃗Beff ), must equal zero everywhere, but this is
equivalent to saying that there are no point sources of magnetism, ergo no
monopoles. How, then, can we have ⃗ = ∇ × ⃗B Aeff eff , while at the same time having
∇ · ⃗Beff not equal to zero?

The resolution of this contradiction comes from realizing that the vector potential
induced by anholonomy—that is, ⃗Aeff—must be a singular function. In other words,
nature can reconcile the existence of monopoles with Maxwell’s equations as long as
there are vector potentials that “act badly” in certain regions of space.

Fortunately, physicists are already familiar with this type of scenario, thanks to
Dirac, who showed, in his 1931 article, that the presence of a monopole amounts to
having a vector potential that is singular along a line (usually called a Dirac string).
Dirac proposed that a magnetic monopole could be envisioned as a semi-infinitely
long thin string of magnetic flux (that is, a line that has one end in a finite region of
space, but in the other direction goes out forever—like a water hose with a nozzle
that one can hold in one’s hand, but whose source of water is infinitely far away).
The accessible end of the Dirac string, where the magnetic flux spills out, acts like a
magnetic point charge (in other words, an isolated North or South pole, with no
partner anywhere).

Dirac’s ideas, building on pioneering work done in 1918 by the German
theoretical physicist Hermann Weyl, led him to a very striking result: namely,
that if even one magnetic monopole exists, then all electric charge in the universe
must be quantized (that is, the electric charge of any subatomic particle must always
be an integral multiple of a fixed, fundamental, minimal amount of charge). Put
otherwise, the existence of magnetic monopoles would immediately explain why an
electron cannot be sliced in half. Dirac was so thrilled with this revelation that he
concluded his famous paper with the characteristically British understatement, “One
would be surprised if Nature made no use of it.”

Paul Dirac forged a completely new style of doing theoretical physics, one that
has been deeply influential ever since. By a long-standing tradition, distinguished
visitors to the University of Moscow are invited to write on a blackboard a short
statement for posterity. The blackboard quote (reproduced with the permission of
Professor Sardanashvily, Moscow State Univerisity) that Dirac left behind after his
visit there eloquently sums up his philosophy.
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The elegance, inherent beauty, and universality of anholonomic phenomena in
classical and quantum physics, including Yang–Mills theory, which revolutionized
particle physics in the 1950s and 1960s, constitute an impressive testimony to what
Dirac envisioned and believed in. And yet, we still do not really know why Dirac’s
philosophy seems to apply so accurately to nature. These elusive ideas are closely
related to what Eugene Wigner (a Hungarian-American theoretical physicist who
received the Nobel Prize in Physics in 1963) called “the unreasonable effectiveness of
mathematics in the physical sciences.”

In the upcoming chapter, we will continue our exploration of how Berry
magnetism relates to quantum anholonomy—namely, we will look at the Berry
phase as well as some strange interlopers, such as magnetic monopoles and Dirac
strings—with all these ideas linked by the common theme of gauge transformations.
Our ultimate aim in that chapter will be to reveal the secrets behind the quantization
of Hall conductivity.

8.6 The ESAB effect as an example of anholonomy
Before concluding this chapter, we wish to point out that the ESAB effect, which we
discussed in chapter 5, is an example of quantum anholonomy, where what is
parallel-transported is not a tangent vector but the phase of the wave function of an
electron. This is the phase that plays the key role in the drama of “quantum
weirdness”.

On the subject of the ESAB effect, John Preskill, an American theoretical
physicist and currently the holder of the Richard P Feynman Chair of Theoretical
Physics at Caltech, has stated, “This effect is to electrodynamics just as the cone is
to Riemannian geometry. As a resident of a cone can infer the existence of the
curvature at the tip without ever visiting the tip directly, the electron that
propagates in a field-free region can know about the nonvanishing magnetic field
inside a perfectly shielded solenoid, even though it never experiences the field
directly.”

We remind readers that a cone, just like a straight segment of circular pipe, is a
manifold that is flat (i.e. has zero intrinsic curvature) almost everywhere. The non-
zero curvature of a cone is completely concentrated at just one single point: its tip.
Parallel transport of a vector around a closed path on a cone results in a rotation of
the vector (by an angle equal to the so-called “deficit angle” of the flattened cone,
which is the angle between the two edges if the cone is sliced open up to its tip, and
laid flat on a table) as long as the closed path encircles the cone’s tip. Residents of the
flat cone can thus detect the far-away non-flatness of their surface without ever
visiting the tip, simply by carrying out parallel transport on a looping pathway that
encircles it. It is the cone’s tip that plays the role of a magnetic monopole in the
ESAB effect.

As was explained above, the magnetic field of a monopole can be thought of as a
kind of curvature, and this reveals the ESAB effect to be an essentially geometrical
phenomenon. In an ESAB setup with a particle of charge q (e.g. an electron), the
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effective magnetic field—the field of the monopole—happens to be equal to q/
times the magnetic field of the solenoid, which is exactly zero everywhere except
inside the solenoid—the region where the wave function of the electron vanishes.
This makes the region of space that is visitable by the electron not simply connected;
and this in turn provides an example of the kind of singularity that necessarily
characterizes a Dirac string.

Appendix: Classical parallel transport and magnetic monopoles
Below we summarize Michael Berry’s discussion of classical parallel transport on
the surface of a sphere, casting it in a form generalizable to quantum mechanics. It
shows how anholonomy can be expressed as an effective magnetic flux due to an
effective magnetic monopole sitting at the sphere’s center.

Let us consider a vector ê1 that is transported by changing the radius vector r̂
under two constraints: firstly, that ˆ · ˆ =e r 01 , and secondly, that the orthogonal triad
made up of ˆ ˆe r,1 , and ê2, where ˆ = ˆ × ˆe e r2 1 , must not twist. When r̂ returns to its
original direction after a circuit on the sphere, ê1 does not return to its original
direction. The law of parallel transport is given by:

ω
ˆ = × ˆde

dt
e , (8.9)1

1

where ω is the angular velocity of the triad ˆ ˆ ˆe r e( , , ).1 2

We now define a complex vector ψ in a plane perpendicular to r̂ as follows:

ψ = ˆ + ˆe ie( ) 2 . (8.10)1 2

In terms of ψ, the parallel-transport law—that is, equation (8.9)—becomes:

ψ ψ· =*
d
dt

Im 0, (8.11)

where “Im” stands for the imaginary part (of a complex quantity).
To find the anholonomic shift γ of a system, we follow the passage of ˆ ˆe e( , )1 2

relative to a local basis of unit vectors ˆ ˆu v, , defined at each point on the sphere.
Specifying a local basis is equivalent to specifying the complex unit vector

= ˆ + ˆu ivn ( ) 2 , (8.12)

where ψ = γ−x en( ) i x( ) and with γ x( ) being the angle between the transported ê and
the local û. This gives the anholonomy shift as:

⎡
⎣⎢

⎤
⎦⎥∫∮ ∮γ γ= = − = ·

* *
*

d t
dt

dt i
d
dx

d
dx

d
dx

d
dx

dx dx i
d
dx

dx
n n n n

n
n( )

. (8.13)
S 1 2 2 1

1 2

The integrand, when expressed in spherical polar coordinates, can be interpreted
as the magnetic field of a monopole [3]. The net anholonomy then becomes the
magnetic flux that is enclosed by the surface that caps the circuit.
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9.1 The Berry phase
We now sail into the quantum world, which features anholonomic effects associated
with the intrinsic curvatures of certain abstract spaces. Anholonomic processes and
the topological invariants connected with them turn out to be an inherent aspect of
the quantum world. In fact, the ultra-precise quantization of Hall conductivity is a
salient member of this family of phenomena. Moreover, the integer quantum numbers
that label the gaps of the Hofstadter butterfly are also subtly encoded in the geometry
and topology of a two-dimensional electron gas immersed in a magnetic field.

As was hinted in the previous chapter, quantum anholonomy is strongly
analogous to classical anholonomy, which occurs when a vector undergoes parallel
transport along a closed pathway on a curved surface. However, quantum
anholonomy, rather than involving the change of a visible angle, involves a change
in the phase of a quantum state. Luckily, the phase of a complex number z, although
it is more abstract, can still be thought of as a kind of angle—namely, the angle
(often called the “argument”) made by z, when it is plotted in the complex plane,
with the real axis. Thus quantum anholonomy can still be described as a geometrical
effect, coming about as the parameters defining the physical system’s state vary
while the system traces out a cyclic loop in a more abstract type of space.

This remarkable quantum effect was first described clearly by Michael Berry, a
mathematical physicist at the University of Bristol, in a paper in 1984 [1], and it
became known as the “Berry phase”. Subsequently, Berry has been honored with
numerous scientific and mathematical awards, as well as being knighted by Queen
Elizabeth in 1996. (Images used with the permission of Professor Sir Michael Berry.)
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There is an amusing historical footnote to this story. In August of 1983, Michael
Berry, shortly after submitting his seminal paper “Quantal phase factors accompany-
ing adiabatic changes” for publication, described his results to Barry Simon, who
instantly saw a connection to holonomy and the curvature of Hilbert space. In Simon’s
opinion, this viewpoint takes at least some of the mystery out of what Berry had called
“remarkable and mysterious results”. Incidentally, Simon’s work [2] on this topic was
published in 1983, while Berry’s paper, to which Simon’s paper was a reaction,
appeared in 1984. As Berry put it in one of his writings, “Thanks to a referee’s delay
and an accident of astronomy, his paper appeared in 1983, mine in 1984.”

Berry’s discovery, rooted in general principles of quantum physics, was initially
quite a surprise to the physics community. It was hard to understand how such a
fundamental phenomenon had been overlooked for almost fifty years after the
quantum revolution. As the great generality of Berry’s phase gradually emerged, so
did the appreciation of its beauty and importance, and along came the surprising
realization that physicists were already very familiar with several phenomena that
are in fact special cases of the Berry phase. Among them were Indian physicist
Shivaramakrishnan Pancharatnam’s discovery, in 1956, of a geometric phase in the
context of optical polarization, as well as the discovery, first made in 1949 by
Werner Ehrenberg and Raymond Siday and later made in 1959 by Yakir Aharonov
and David Bohm, of the now-celebrated ESAB effect, which was discussed in
chapter 5.

In short, Berry’s discovery provided a deeper understanding of, and a significant
unification of, a set of highly diverse phenomena that had formerly been thought of
as unrelated effects. Until Berry’s article appeared, the physics community was
unaware of the fact that all those phenomena belonged to a single family. This
family even includes the celebrated gauge theories, so central to today’s particle
physics. The story is elegantly told in the book Geometric Phases in Physics, edited
by Shapere and Wilczek ([3]).

As was noted on the special occasion simultaneously commemorating the 50th
anniversary of Aharonov and Bohm’s paper and the 25th anniversary of Berry’s
paper, “Like good wine, the Aharonov–Bohm effect and the Berry phase become
finer and more appreciated with time. Even though they appear in textbooks and
encyclopedias, the number of researchers thinking and publishing papers on these
two effects is increasing annually. The Aharonov–Bohm effect and the Berry phase
keep being observed in new systems, and with every day that passes, novel
applications are routinely found.”

The mathematics that explains the topological nature of the Berry phase is rather
technical. Through examples given below, we attempt to convey the essence of what
it is about, leaving various technical details to appendices A, B, C and D. Our
discussion here will highlight the diversity, universality, and richness of the notion of
Berry phase. Despite the complexity of the phenomenon, there is still something very
simple and profound about it, a foretaste of which readers already got in chapter 8.

To put it very succinctly, the smoothly varying Berry curvature of an abstract
space, thanks to the Gauss–Bonnet theorem for quantum systems (which we will call
the “Gauss–Bonnet–Chern theorem”), gives us the Berry phase (an integer), which
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sets the stage for finding topological invariants. This flow of abstract ideas can be
roughly schematized as follows:

→ → – –
→ →

anholonomies curved abstract spaces Gauss Bonnet Chern theorem
topological invariants topological quantization

Berry magnetism: effective vector potentials, magnetic fields, and monopoles

Before illustrating the Berry phase in specific quantum systems, we summarize the
key points. Our discussion will highlight the analogies that tie quantum anholonomy
very tightly to classical anholonomy.

The Berry phase can be described in terms of an effective vector potential and the
corresponding effective magnetic field, and in fact to effective magnetic monopoles
(whose counterpart does not exist in real electromagnetism). The Berry phase is
therefore intimately tied to Dirac strings and to vortex structures in wave functions.
Both of these phenomena are related to the singular nature of the vector potential,
which plays the key role in determining the existence or nonexistence of monopoles.
Furthermore, in the quantum Hall example discussed below, the fact that the
effective magnetic monopoles are found only inside spectral gaps (regions of energy
that are quantum-mechanically forbidden) reflects the essence of the quantum Hall
effect—namely, its origin in edge effects, as described in chapter 5.

• Berry curvature
The mathematical framework underlying the Berry phase is outlined in

appendix A. Interestingly, the final expression for quantum-mechanical
anholonomy, denoted by γ, is precisely parallel to the expression for classical
anholonomy, which was given in equation (8.4). The key point here is that the
cyclic “trip” during which the phase of the wave function ψ changes by γ takes
place in a two-dimensional parameter space denoted by ⃗ =R R R( , )x y . The
final result is expressed either as a surface integral in Rx–Ry space or as a line
integral taken over a closed loop in this space. These two formulas, which by
Stokes’ theorem are equivalent, involve an effective magnetic field or an
effective vector potential, respectively. We can see this below:

⎡⎣ ⎤⎦∫
∫ ∫

∮

∮

γ ψ ψ ψ ψ ψ ψ

κ

= ∂ ∂ − ∂ ∂ = < ∇ > · ⃗

≡ ⃗ · = ⃗ · ⃗ ≡ ·

* * ⃗i dR dR i dR

B dR dR A dR dR dR .

S
R R R R x y R

S
x y

S
b x yeff eff

x y x y

Here, the effective magnetic field ⃗Beff is equal to ψ ψ ψ ψ∂ ∂ − ∂ ∂* *i ( )R R R Rx y x y
,

which can be interpreted as a curvature—the Berry curvature κb, which was
discussed in the previous chapter. In this formula for quantum anholonomy,
the (complex-valued) wave function ψ plays the role played by the (complex)
vector n in the previous chapter.

The reason one can interpret the expression ψ ψ< ∣∇ ∣ >⃗R as an effective
vector potential is that if we systematically change the phase of the wave
function ψ (thus carrying out a gauge transformation), that change requires a
simultaneous change in ⃗Aeff in order to keep ⃗Beff unchanged, and that set of
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coordinated changes and constitutes an exact parallel to what happens in
electrodynamics, as can be seen below:

ψ ψ β→ ⃗ → ⃗ − ∇⃗ ⃗ → ⃗βe A A B BIf , then , assuring that . (9.1)i
Reff eff eff eff

• Monopoles: extraterrestrial ghosts
Effective magnetic monopoles emerge as the star players in the Berry

phase drama. The reconciliation of Berry magnetism with Maxwell’s
equations, which allow no magnetic monopoles, is a consequence of the
fact that the effective vector potential becomes singular in certain regions of
space (something that never happens in genuine electromagnetism).
However, the word “space” might be misleading. We thus wish to
emphasize the fact that the effective magnetic monopoles behind the scenes
of the Berry phase do not reside in ordinary three-dimensional space, but in
a more abstract space.

In general, the physics community has long been accustomed to physical
phenomena that take place in highly abstract spaces, and it enthusiastically
embraces very abstract theories, such as that of the Berry phase, which is tied
to the curvature of a Hilbert space, and this abstract kind of curvature can in
turn be envisioned as resulting from a monopole. In fact, condensed-matter
theoreticians feel a special pride when some new type of particle that has
never before been seen in the real world makes its debut in a condensed-
matter system, even if this “sighting” takes place only in some highly abstract
space in the theory, rather than in physical space. The discovery of such a
high abstraction that nonetheless accurately describes some aspects of the
physical world is a remarkable triumph of the human mind.

The effective monopoles that we encounter in Berry phases are rather
ghostly, existing only in a curious nonphysical space, and signaling strange
characteristics of a wave function. For instance, the topological aspect of
the Berry phase may appear as a vortex—a tiny whirlpool-like structure—in
the wave function of the particle, reflecting the fact that it is impossible to
choose the phase of the wave function at all points in space in such a way as
to make the wave function normalizable. (This technical idea is spelled out in
greater detail in appendix C.) Berry monopoles also arise in the equally
abstract venue of strings—namely, the Dirac strings that can be interpreted as
effective vector potentials having singularities in certain regions.

In his beautiful theory of geometric phases, Michael Berry showed that
monopoles reside only in special spots of the parameter space where there is a
degeneracy—namely, those spots where two eigenvalues coalesce. In the
examples below, such a point is a crossing point where two different quantum
states share the same energy. Without dwelling on how such a degeneracy
could “know” about the topology, we simply note that the adiabatic
formulation of Berry phases requires the energy eigenvalues to be well
separated, and hence one should expect some sort of “catastrophe” to occur
at degeneracy points, since they violate this requirement.
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• Topological quantum numbers
Topological quantum numbers, such as those associated with quantum

Hall conductivity, are related to the “magnetic charge” g of effective
magnetic monopoles, which plays the role of a proportionality constant in
the equation ⃗ =

⃗
B g R

R
eff 3 (an exact parallel to Coulomb’s law, in which electric

charge acts as a proportionality constant defining the strength of the electric
field due to a point charge). In a quantum Hall situation, where the effective
monopole shows up as a vortex in the wave function, what determines these
quantum numbers is the total vorticity that one encounters while “swimming”
in a certain limited region of the two-dimensional landscape known as
“reciprocal space”, or k-space—specifically, in the Brillouin zone in k-space
(or more precisely, in the magnetic Brillouin zone, which is very closely
related to the ordinary one).

9.2 Examples of Berry phase
We now give two examples of the notion of Berry phase. As we have stated before,
they arise as a result of quantum anholonomy, in which the phase of a wave function
changes as the system follows a cyclic pathway in an abstract space. Here we will
also encounter exotic spaces inhabited by strange creatures—monopoles, vortices,
and Dirac strings—all closely related to the Berry phase. These examples will set the
stage for understanding the quantization of Hall conductivity.

In the examples below, the parameter ⃗R may be a real magnetic field (denoted by
⃗B ), and it is thus very important to distinguish between ⃗B (the parameter) and ⃗Beff (the

effective magnetic field, whose sources are the effective monopoles). Unlike the
parameter ⃗B , whose dimensions are those of dimensions of a normal magnetic field,
the effective magnetic field ⃗Beff (or Berry curvature) has dimensions of the inverse
square of a real magnetic field. Therefore, the “magnetic flux” due to ⃗Beff passing
through a two-dimensional surface in ⃗B -space is dimensionless. Keeping these subtle
points in mind helps one not to confuse the Berry magnetic field with the normal one.

Example 1. Spin in a magnetic field

A simple example of the Berry phase is the textbook problem of an electron in the
presence of a magnetic field ⃗B having constant magnitude but changing in direction,
as shown in figure 9.1. The electron is fixed in space, so that its only degree of
freedom is its spin. In such a situation, the electron’s position and momentum play
no role in the equations. This type of system is a familiar one in classical physics, and
is described by the following Hamiltonian:

σ= − ⃗ · ⃗H B
1
2

, (9.2)

where σ
2
represents the spin of the electron, and σ = 12 . If we introduce a unit vector

ˆ =
⃗

B B
B
, then the endpoints of B̂ trace out a unit sphere called the “Bloch sphere”, as
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is shown in figure 9.1. The points on the sphere can be parametrized by the pair of
angles θ ϕ( , ), where:

θ θ ϕ= ˆ =
+

+
⃗ = ⃗ϕB e

B iB

B B
B Bcos ; ; ( , ).z

i x y

x y
2 2

Figure 9.1 shows the key aspects of this problem. (Appendices B and C provide
additional details.) The problem of a spin- 1

2
particle in a magnetic field is mapped to

the problem of a magnetic monopole whose magnetic field ⃗Beff , pointing radially
outwards from the origin of the parameter space ⃗B , is given by:

⃗ =
⃗

B
B
B

1
2

. (9.3)eff 3

The pre-factor of 1
2
comes from the spin of the particle, which, in multiples of ℏ, is

equal to 1
2
. The Berry phase due to the spin- 1

2
particle sweeping out a closed loop on

the Bloch sphere (representing a magnetic field of constant magnitude) will be equal
to the solid angle subtended at the center of the sphere by the cyclic pathway. This
elegant result is precisely analogous to the case of the Foucault pendulum.

Figure 9.1. An electron with spin 1
2
moves along a loop in an abstract parameter space. Panel (a) shows the

geometry of the Berry phase. The electron’s state vector, or wave function, acquires a phase shift as the
parameters change adiabatically (i.e., very slowly) along the closed cycle C. In the case shown in the figure,
there is a spherically symmetric effective magnetic field ⃗Beff due to the effective monopole at the origin, and the
Berry phase is proportional to the solid angle subtended at the origin by the cyclic pathway C traced out by the
electron’s quantum state. The green straight lines in panel (b) show that for any value of the magnetic field
there are two possible values of the electron’s energy, one positive and one negative; these are due to the
electron’s two possible spin-states (spin-up and spin-down). Where these two lines cross (at ⃗ =B 0), there is a
degeneracy in the energy. It can be shown that such degeneracies give rise to Dirac monopoles.
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This quantum anholonomy is also reflected in the coalescing of two energy
eigenvalues (as shown in figure 9.1(b)), which gives rise to a degeneracy point where
a monopole is located. In other words, unlike the Foucault-pendulum situation,
where the classical anholonomy can be interpreted as resulting from a (gravitational)
monopole located at the center of the spherical earth, the effective monopole in the
spin- 1

2
situation “lives” in the more abstract parameter space of ⃗B , and in fact it sits

at that space’s origin.
In appendix C, we show that the monopole singularity is due to the lack of a good

global gauge; this gives rise to a vector potential that has a Dirac-string singularity
or a vortex in the wave function. Figure 9.2 gives a schematic drawing of a gauge
transformation that can move the Dirac string without having any effect on the
magnetic flux that determines the anholonomy.

Example 2. A lattice with two bands: a simple model of the quantum Hall effect

The simplest model of the quantum Hall effect is a lattice in a magnetic field whose
allowed energies lie in two bands separated by a gap. Such a system is an insulator
when one of its bands is filled and the other one is empty. The three panels of figure
9.3 show the essential aspects of such a quantum Hall system: a Brillouin
zone having the topology of a torus’s surface, edge states residing in the gap (not
on the torus’s surface), and a wave function that is singular at certain isolated points
in the Brillouin zone. (Appendix D provides further details.)

Such a system is described by an effective Hamiltonian of this form:

σ= − ⃗ · ⃗( ) ( )H k k h k k, , . (9.4)x y x y

This bears a strong resemblance to the Hamiltonian of a spin- 1
2
particle in a

magnetic field, with one exception: the magnetic field ⃗h depends on the wave vector

Figure 9.2. Schematic representation of the magnetic flux Ω (where γΩ = ) due to a Dirac monopole (the red
dot) through the loop C, and also showing the effect of a gauge transformation, which moves the Dirac string.
Reproduced with permission of Dr Patrick Bruno, European Synchrotron Radiation Facility.
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Figure 9.3. This figure summarizes the key aspects of Berry magnetism in a quantum Hall system. Panel (A)
shows the Brillouin zone for a two-dimensional square lattice. This zone in reciprocal space (the space of Bloch
wave-numbers k k( , )x y ) is periodic in both of its dimensions, which means that its left and right edges should be
identified (i.e., brought together and “glued”, as is suggested by the two parallel vertical red arrows), and
analogously, so should the top and bottom edges (the parallel horizontal black arrows). Carrying out these two
“gluing” operations (shown in the middle) results in a manifold in the form of a torus (see the right side). The
torus’s surface is thus simply a different way of representing the Brillouin zone. Panel (B) is a graph of energy
versus wave number, showing the nature of a two-band structure, for a finite crystal (that is, a crystal with
edges). The two bands are separated by a gap. However, in a system with edges, there exist extra states whose
energies lie in the gap between the two bands. The energy of such states depends on kx (in the graph roughly
linearly), and at the spot in kx-space where those energies cross (indicated by the red dot), there is a degeneracy.
(Note the resemblance to the right side of figure 9.1.) Any such energy degeneracy is the telltale sign of a
magnetic monopole. Since the degeneracy lies in the gap, the monopole is inside the torus, not on its surface
(thus not in the Brillouin zone). The graph in panel (C) shows, using arrows, the phase of the wave function,
plotted in the Brillouin zone. There are four clearly visible vortices where the wave function’s phase’s direction
is ill-defined, meaning also that its amplitude vanishes. These vortices are thus the locations of singularities in
the wave function.
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⃗ =k k k( , )x y , which lies on the surface of a torus, in contrast to the Bloch sphere,

which applies to a spin- 1
2
particle in a constant magnetic field. This alternative

Hamiltonian gives rise to a two-band spectrum (the pink regions in figure 9.3(B)),
separated by a gap (the white region between the two bands).

Second, we note that the energy spectrum shown in figure 9.3 describes a two-
dimensional system of finite size, such as a surface of a cylinder of finite length.
Unlike a sample of infinite size, systems having finite size can have eigen-energies
that lie inside the gap between the bands. In other words, while the bands (pink)
represent all the possible energies of an infinite system, the two levels (blue and
green) inside the gap correspond to two extra states (edge modes) that belong to wave
functions localized at the two boundaries of the (non-infinite) sample. The reason
that some states can exist inside the inter-band gap is that there are edges in this
physical setup. As was pointed out by Barry Simon [2], the Hamiltonian for a sample
of finite size can be obtained via a smooth interpolation of the Hamiltonian given in
equation (9.4), which describes an infinite system. Appendix D explicitly shows this
interpolation for the simple two-band model described here.

The third key point is that the system described by the effective Hamiltonian in
equation (9.4) must have its magnetic monopole located at ⃗ =h k k( , ) 0x y , just as in

the earlier example of the spin- 1
2
electron, where a monopole was located at the

origin of the magnetic field (i.e., at ⃗ =B 0). As is stated in appendix D, this cannot
occur inside either band, but occurs instead in the gap between them. The crossing-
point of the two edge-mode energies (the red dot in figure 9.3(B)) is the degeneracy
point, and it thus “houses” the monopole—an incarnation of the quantum
anholonomy that is intrinsic to such systems. It is important to note that the
monopole resides inside the gap—that is, not on the surface of the Brillouin zone—
and it holds the secret to the topology of quantum Hall systems.

A graph of the phase of the wave function in k-space, shown in figure 9.3(C),
shows a key feature of the system—namely, the absence of any good global gauge [4].
This manifests itself through the presence of vortices at certain points in the Brillouin
zone. It can be shown that, analogously to the spin- 1

2
situation on the Bloch sphere

(discussed in detail in appendix C), there exists no single global gauge that applies to
the wave function at all points in the Brillouin zone. The vortices thus represent
singularities in the wave function. At such points, the wave function’s phase is
undefined, since its amplitude vanishes, which gives rise to a vortex in k-space. In the
present case, the vorticity at such points is the anholonomy associated with the wave
functions. For further details, we refer readers to the paper by Hatsugai [5].

9.3 Chern numbers in two-dimensional electron gases
The two-band model of the quantum Hall effect just described leads naturally to a
generalization of the quantum Hall effect to other systems, such as the Hofstadter
butterfly, whose fractal pattern reflects all possible quantum Hall states for non-
interacting electrons in a lattice.
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As was explained in chapters 5 and 7, the energy spectrum of electrons in a crystal
consists of bands. When the Fermi energy lies in a gap between bands, we have a
system some of whose bands are fully occupied at zero temperature. Associated with
any filled band n, we can define the Berry phase γn for the wave function as the
integral of an effective magnetic field, Beff, also known as the Berry curvature κb,
over the entire Brillouin zone, as described in detail in the previous chapter, and also
in appendix A below. Using the mathematical framework given in appendix A (see
equations (A.8) and (A.9)), one obtains the following expression for the geometric
phase γn and the corresponding topological invariant σn, known as the Chern number
of the nth band, and associated with the wave function ψn:

⎡⎣ ⎤⎦∫ ∫σ
γ
π π

κ
π

ψ ψ ψ ψ= ≡ = ∂ ∂ − ∂ ∂* *dk dk
i

dk dk
2

1
2 2

. (9.5)n
n

b x y k n k n k n k n x y
torus torus

x y x y

A comparison of this equation with equation (8.2) reveals the tight analogy
between Chern numbers and the Euler index. Specifically, the Chern numbers σn in
equation (9.5) are quantum analogues of the Euler index χ. The fact that χ can take
on only integer values—the “quantization” of χ, so to speak—is due to the fact that
one is integrating the local curvature over the entire manifold. Analogously, the
quantization of σn stems from the fact that we are integrating the Berry curvature
over the entire Brillouin zone, taking into account the “filled-band condition” (that
is, the fact that all the states in reciprocal space are occupied). This condition holds
because the system in question is an insulator.

We can concisely summarize the tight analogy between classical and quantum-
mechanical anholonomies in the following list of parallels:

χ σ

⟷
⟷
⟷
⟷

local curvature Berry curvature
total curvature Berry phase

Euler index Chern number
monopole in real space monopole in reciprocal space

n

Finally, we note that the Chern number σn is an integer—a topological invariant
belonging to band n. If there are N filled bands, so that the Fermi energy lies in the
gap just above the N th band, then we can define a topological invariant σ associated
with the entire system, as follows:

∑σ σ=
=

(9.6)
n

N

1

n

9.4 Conclusion: The quantization of Hall conductivity
After all of this abstract mathematics and these subtle physical concepts, we finally
arrive at the remarkable result that the Chern numbers given by equation (9.5),
when they are summed over all the bands, as in equation (9.6), yield the
quantum number associated with Hall conductivity. In other words, the
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experimentally accessible quantum Hall conductance σxy is given by this theoretical
expression:

⎡
⎣
⎢⎢

⎡⎣ ⎤⎦
⎤
⎦
⎥⎥∫∑σ ψ ψ ψ ψ

π

σ

= ∂ ∂ − ∂ ∂

=

* *i dk dk
e

h

e
h

2

.

n

xy k n k n k n k n x y
torus

2

2

x y x y

This remarkable result, the climax of the story, as summarized in figure 9.4, due to
David Thouless and collaborators, is commonly referred to as the TKNN formalism
[6]. The model in which they developed these ideas was a two-dimensional electron
gas in a lattice in a homogeneous magnetic field perpendicular to the lattice—in
other words, the same model as was used by Hofstadter in his calculations of
the butterfly spectrum. In this model, one takes into account the interactions of the
electrons with the nuclei in the lattice, but one ignores any interactions among the
electrons themselves. This model allows a rather simple mathematical treatment, and
yet it already contains the essential features that give rise to the quantization and the
stability of Hall conductivity.

This result is the conclusion of a fascinating story as summarized in figure 9.4.
Thanks to its combination of abstractness and simplicity, it represents a great

Figure 9.4. Each gap in this colorful butterfly is a distinct topological state labeled by a Chern number, and
each Chern number is associated with a particular quantum Hall state, as is shown by the left-pointing arrows.
(Photograph: Author: George M Bergman, Source: Archives of the Mathematisches Forschungsinstitut
Oberwolfach.)

Butterfly in the Quantum World

9-12



triumph of theoretical physics. It shows that certain beautiful and simple ideas of
geometry and topology, presented in these past two chapters, constitute the heart
and soul of one of the most exotic phenomena of all of contemporary physics—the
quantum Hall effect. Moreover, the integers labeling the gaps in the infinitely
recursive butterfly encode this fact in their own beautiful way. It is hard to believe
that all this complexity was already lurking unsuspected in the colorful plot that a
graduate student in Regensburg drew by hand in his notebook, some forty years
ago, using numbers provided to him by a desktop computer that had roughly the
computing power of a hand-held calculator.

9.5 Closing words: Topology and physical phenomena
The geometry and topology of curved spaces are central elements of general
relativity and of the gauge theories of contemporary particle physics. This chapter
has pointed out that the very same theme also underlies the remarkable phenomenon
of the quantization of Hall conductivity.

Quantum Hall states are the simplest examples of a wide class of condensed-
matter systems in which geometry and topology play a starring role. Even in the
fractional quantum Hall effect and in quantum spin Hall effects, where Chern
numbers play no role whatsoever, topology is still the key factor. The fact that
geometry and topology can profoundly illuminate a wide variety of subtle and
important physical phenomena has, over the past forty years, opened up a
fundamental new way of looking at diverse areas of physics.

Approaching the mysteries of physics through geometry, a philosophy in which
Albert Einstein deeply believed, has inspired some of the greatest minds in physics
today. This approach has yielded both great beauty and profound clarity, although
of course following this pathway is not always easy or straightforward. That, for
better or worse, is the nature of life.
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Appendix A: Berry magnetism and the Berry phase

I have had my results for a long time, but I do not yet know how I am to arrive at
them.

—Karl Friedrich Gauss

The Berry phase is an example of anholonomy—the phenomenon in which the
parameters characterizing a physical system are continuously altered but then in the
end most of them return to their initial values (so that one feels that one has “come
home”), while one or more other parameters fail to do so. A simple case of classical
anholonomy that we have already looked at is the Foucault pendulum. We now
briefly outline the essential ingredients of Berry’s ideas about geometric phases in
quantum-mechanical situations.

Consider a quantum system in an eigenstate ψn with energy En, described by a
time-independent Hamiltonian H:

ψ ψ=H x E x( ) ( ). (A.1)n n n

In the absence of any additional perturbation, as the system evolves in time, it will
remain in the same energy eigenstate, but its wave function will undergo a periodic
oscillation of phase with the frequency E /n . This periodically varying wave
function can be expressed more formally as follows:

ψ ψ=x t e x( , ) ( ). (A.2)n
iE t

n
/n

Let us now suppose that during the time interval ⩽ ⩽t T0 , some parameters
…R R, ,1 2 , which we collectively denote as ⃗R t( ), are slowly changing, with the values

of ⃗R t( ) tracing out a curve C in an abstract space. The state of such a system evolves
according to the time-dependent Schrödinger equation. However, if the parameters

⃗R t( ) vary sufficiently slowly with time (i.e., adiabatically), then equation (A.1) will
remain valid at each instant of time. In the case of cyclic evolution, where the system
returns to its starting point after a time interval T (that is, ⃗ = ⃗ +R t R t T( ) ( )), we can
write:

ψ ψ=H t E t t( ) ( ) ( ) (A.3)n n n

ψ ψ= = ∮γ −t T e e( ) . (A.4)n
i i E t dt

n
( )n

In addition to the phase ∮−e E t dt( )i
n , commonly known as a dynamical phase, one is

allowed to throw in an extra phase factor γei , which depends only on the geometry of
the path in the parameter space ⃗R. This phase factor is included to account for what
is known as “gauge freedom”, which means that one has the freedom to assign a
phase to the wave function at each point in parameter space. (The magnitude of the
wave function, however, cannot be tampered with anywhere.)
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If we substitute the wave function in equation (A.4) into the time-dependent
Schrödinger equation ψ ψ ψ= = ∂H E t i( )n t , it can be shown [7] that:

∮γ ψ ψ= < ∇ > · ⃗⃗i dR. (A.5)R

(An expression such as < ∣ >A x y B x y( , ) ( , ) , using Dirac’s classic “bra” and “ket”
notation, represents a scalar product, and is equal to ∫ *A B dx dy.)

Remarkably, one can identify an “effective electromagnetism” lurking in this
situation by thinking of ψ ψ< ∣∇ ∣ >⃗R as an effective magnetic vector potential, which
we will denote by ⃗Aeff :

ψ ψ⃗ = < ∇ >⃗A i . (A.6)Reff

Here, ∇ ⃗R is the gradient operator in the abstract parameter space. The parameters
collected in the vector ⃗R might, for instance, represent angles θ and ϕ, if the
parameter space is, say, the surface of a sphere.

Equation (A.5) then becomes:

∮γ = ⃗ · ⃗A dR. (A.7)eff

A more intuitive understanding of the angle γ may be obtained if we use Stokes’
theorem to rewrite the above integral as a surface integral:

∫ ∫γ = ∇ × ⃗ · ⃗ = ⃗ · ⃗A dS B dS . (A.8)
S

R
S

eff eff

This can be interpreted as saying that we have an effective magnetic field Beff, a
gauge-invariant quantity, associated with the gauge field ⃗Aeff , as follows:

ψ ψ⃗ = ∇ × ⃗ = < ∇ × ∇ >B A i . (A.9)R R Reff eff

For ⃗ =R R R( , )x y , we can write the above equation as follows:

⎡⎣ ⎤⎦∫ ψ ψ ψ ψ⃗ = ∂ ∂ − ∂ ∂* *B i dR dR . (A.10)
S

R R R R x yeff x y x y

Why is it reasonable to think of ⃗Beff as an effective magnetic field?
If we systematically change the phase of the wave function at all points in space

by altering its phase (i.e. if we carry out a gauge transformation, as defined earlier),
then to compensate for this alteration, we must simultaneously carry out a change in

⃗Aeff , so that ⃗Beff will be unchanged:

ψ ψ β→ ⃗ → ′⃗ = ⃗ − ∇⃗ ⃗ → ⃗βe A A A B B; ; . (A.11)i
Reff eff eff eff

If one chooses β so as to make ′A⃗ vanish everywhere, then the phase factor γ can
be eliminated. However, this will be possible only if β⃗ = ∇⃗A Reff has a solution at all
points. That is, the vector potential ⃗Aeff , or the wave function that determines this
vector potential, must be smoothly defined everywhere. However, it may happen
that this is possible only locally, and there may not exist a well-defined solution at all
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points in parameter space, because of the singular nature of the wave function. That
is, it may not be possible in general to find a global convention that leads to a single-
valued, normalizable wave function for all values of the parameters. In such cases,
we have a scenario that leads to quantum anholonomy.

Berry curvature and the quantum analogue of the Gauss–Bonnet theorem

One can now assign a geometrical meaning to ⃗Beff , which, unlike ⃗Aeff , is a gauge-
invariant quantity. This interpretation of ⃗Beff stems from its analogical link to the
Gaussian curvature. We can see this from equation (A.8), which can be viewed as the
quantum analogue of the Gauss–Bonnet theorem. It defines quantum curvature as a
sort of angular mismatch, where “angle” more accurately means phase. This ⃗Beff is
called the “Berry curvature” and is denoted by κb.

It is this curvature that may lead to non-zero values of γ, as can be seen from
equation (A.5). The phase factor γ is a result of quantum anholonomy—a quantum
analogue to the angular shift of a classical vector when it has completed a cyclic path
in a curved space.

It is important to stress the following points regarding the effective magnetism
just defined:

• The effective magnetic field is defined not in ordinary 3-space, but in a more
abstract parameter space. In particular, in a two-dimensional electron gas in
which quantum Hall states can arise, the parameter space is the space of
Bloch vectors k k( , )x y , which constitutes a two-dimensional torus—namely,
the Brillouin zone.

• ⃗Beff and the corresponding geometric phase γ depend only on the the
geometry of the curve C and the eigenstates of the system.

Appendix B: The Berry phase and 2 × 2 matrices
Michael Berry noted that the mathematics of geometrical phases is, in its simplest
form, a subset of the mathematics of 2 × 2 matrices. Therefore, although the
concepts and ideas associated with the Berry phase are subtle, there are examples
where the underlying mathematics is quite simple—namely, all it takes is under-
standing the properties of 2 × 2 matrices.

The mathematical framework underlying the Berry phase for the classic textbook
example of an electron in a magnetic field in vacuum can be expressed in terms of a
2 × 2 matrix. This is also the case when the two-dimensional electron gas in a square
lattice is subjected to a magnetic flux of ϕ = 1

2
, and where the fickle electrons can

hop from any given nucleus to its nearest neighbors not only along the lattice’s two
principal axes, but also along the diagonals of the lattice. These two examples were
discussed above to illustrate quantum anholonomy.

The appearance of 2 × 2 matrices in quantum physics is associated with cases
when the quantum state or wave function is a two-component object. Such states
are standardly referred to as spinors, and each component corresponds to one of
the two possible states of the particle. An example of a two-component wave

Butterfly in the Quantum World

9-16



function is given by the quantum-mechanical states of particles such as electrons.
These particles carry intrinsic spin—one of the mysterious aspects of quantum
science. Spin is a quantum-mechanical property with no classical analogue.
Fermions—the particles that constitute ordinary matter—have half-integer spin
(meaning that their spin, when measured in units of ℏ, is equal to 1

2
or 3

2
or 5

2
, etc).

Within the set of all fermions, spin-1
2
particles constitute by far the most important

subset.
With all the mystique surrounding this strange quantum property, there is

something very simple, at least in mathematical sense, about the quantum behavior
of an isolated spin-1

2
particle. It is quite gratifying that such a particle, in the presence

of a magnetic field, is completely describable by a 2 × 2 matrix. The wave function is
a spinor, with one component corresponding to spin parallel to the magnetic field,
and the other component corresponding to spin antiparallel to it.

Appendix C: What causes Berry curvature? Dirac strings, vortices,
and magnetic monopoles

Although mathematically intriguing, the concepts of effective magnetism and Berry
curvature are quite abstract, probably leaving some readers wondering how all this
can be expressed in terms of the more familiar quantum-mechanical notion of wave
functions. To shed a different and perhaps clearer light on quantum anholonomy,
then, we will take a closer look at the wave function for a spin- 1

2
particle in a

magnetic field. The Hamiltonian is as follows:

σ= − ⃗ · ⃗H B
1
2

. (C.1)

In quantum physics, the three components of the spin operator σ ⃗—namely, σ σ, ,x y

and σz—are represented by the 2 × 2 Pauli spin matrices. The system described by
this Hamiltonian can be solved using standard quantum methods. The eigenvalues
are given by = ±±E B. It will suffice for us to consider just one of the eigenstates of
the system, such as this:

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

θ

θ
Ψ = α

ϕ

ϕ

−

+
e

e

e

sin
2

cos
2

. (C.2)i

i

i

/2

/2

Here α is an arbitrary phase factor. Setting this phase to a value of one’s choice is
commonly called the choice of gauge. In his famous quantum-mechanics textbook,
Leonard Schiff writes:

We can change the phase of the eigenfunction by an amount [...], which is
permissible, since the phases of the eigenfunctions are arbitrary at each instant of
time.
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One might well think that phases such as α in equation (C.2) are irrelevant.
However, it turns out that this is not always the case, as was swiftly realized by the
physics community after Michael Berry’s discovery of geometric phases, which he
argued are experimentally accessible.

The crux of the matter lies in the fact that it is not possible to write an expression
for the wave function in such a way that it is nonsingular everywhere in the
parameter space ⃗B , as we show below. We will look at three different choices for the
phase α, and we will see that there is no “good gauge”—that is, a gauge that works at
all points on the Bloch sphere. Otherwise put, there is no expression for α that yields
wave functions that are single-valued and normalizable at all points in the parameter
space. Here are the three cases we’ll consider:

1. Suppose we choose α = 0. If we fix θ and make a full circle in ϕ, we should
come back to the same wave function. However, because of the ϕ/2 in the
above equation, we see that the wave function returns with its phase shifted
by π. Thus this choice for α fails to give single-valued wave functions on the
Bloch sphere. Still, one might think there could be other ways to accomplish
this goal, so that for each couple θ ϕ( , ), we have a unique eigenstate.

2. Suppose instead that we choose α ϕ= /2. There are two tricky points on
the sphere now: the north and south poles. At the former, where θ = 0, the
eigenstate is (1, 0). At the latter, it is ϕe(0, )i . That is, at the south pole, the
eigenstate depends upon the direction in which we approach the pole. (And
by the way, had we chosen α ϕ= − /2, then the south pole would work just
fine, but in that case the north pole would have the ambiguous-phase
problem.)

3. One can try to overcome this problem of phase ambiguity at the poles by
choosing a gauge that is a linear combination of the above two possibilities,
each multiplied by a function that vanishes at the singularity:

⎜ ⎟

⎜ ⎟

⎛

⎝

⎜⎜⎜⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠

⎟⎟⎟⎟

θ θ θ

θ θ θ
Ψ =

+

+

ϕ

ϕ ϕ

−

−

e e

e e e

cos
2

cos
2

sin
2

sin
2

cos
2

sin
2

.

iB i

i iB i

Here, B is some arbitrary constant. The good news is that this state is single-
valued everywhere, which solves the ambiguity problem at the poles. The bad
news, however, is that a new problem arises: at θ ϕ π= = ±π B,

2
, the wave

function vanishes. This means that the wave function cannot be normalized.
That is, if we demand a single-valued function, what we end up with is a
vortex somewhere.

We invite readers to try other possibilities and confirm that there is no well-
defined gauge that works globally—that is, there is no way to fix α so that we have a
single-valued, normalizable wave function everywhere on the Bloch sphere. And
thus, if we go back to equation (A.11), we cannot get rid of the geometric phase shift
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that results from following a cyclic path. This fact results in a singularity in the Berry
curvature, and that is what leads to quantum anholonomy.

Dirac strings

Readers can easily verify that in the gauge choices discussed above, the correspond-
ing vector potentials exhibit Dirac string singularity, as displayed below. For
instance, using spherical polar coordinates θ ϕ=B B sin cosx , θ ϕ=B B sin siny

and θ=B B cosz , one can show:

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
α ϕ

θ

θ
α ϕΨ = = ⃗ = = −

+
−

ϕ
( )

e
A

B B B
B B( /2)

cos
2

sin
2

; ( /2)
1

2
1

( )
, , 0 . (C.3)

i z
y x

This wave function is single-valued at all points on the sphere, but it is ill-defined at
θ π= , and this is reflected in the corresponding vector potential as a singularity
along the line = −B Bz , which is the predicted Dirac string.

If we flip the sign of α, we get:

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
α ϕ

θ

θ
α ϕΨ = − = ⃗ = − = −

−

ϕ−

( )
e

A
B B B

B B( /2)
cos

2

sin
2

, ( /2)
1

2
1

( )
, , 0 . (C.4)

i

z
y x

This wave function is single-valued at all points on the sphere, but it is ill-defined at
θ = 0, and this is reflected as a singularity in the corresponding vector potential
along the line = +B Bz , which we identify as another Dirac string.

The above two sample calculations give the flavor of why Dirac’s singular strings
are inevitable.

Appendix D: The two-band lattice model for the quantum Hall effect
We now describe the Berry phase in a quantum Hall system—a square lattice
immersed in a magnetic field (the same system as was studied by Hofstadter). As was
shown in chapter 7, the situation is described by Harper’s equation:

ψ ψ πϕ ψ ψ+ + − =+ − ( )m k E2 cos 2 . (D.1)m m y m m1 1

Unlike the spin-1
2
situation described above, where the parameter space can be

realized as a sphere, the parameter space here is the space of Bloch wave-number
vectors k k( , )x y . This space—a Brillouin zone—is not a sphere but a torus, as is
shown in figure 9.3. If we are dealing with a rational magnetic flux-value p/q, then
the edges of the Brillouin zone will be defined by ky lying within the interval

π π− +q q[ / , / ] on one axis (as can be seen from the periodicity of the cosine in
equation (D.1)), and kx lying within the interval π π− +[ , ] along the perpendicular
axis. Such a modified Brillouin zone is called a magnetic Brillouin zone.
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In the above model, all rational flux-values except for ϕ = 1/2 support a quantum
Hall state. However, for the simple case of flux-value 1

2
, a generalization of Harper’s

equation in which the crystal electrons can hop along diagonals (in addition to
nearest-neighbor hopping) turns out to be the ideal model to describe the Berry
phase in a quantum Hall system. Such a system maps exactly onto a spin-1

2
situation

in a magnetic field, as described above. With the diagonal hopping, which we will
denote by Jd, the Hamiltonian of this system can be transformed as follows [5]:

σ= − ⃗ · ⃗( )H k k h, , (D.2)x y

= = =h J k h J k h J k k2 cos ; 2 cos ; 4 sin sin . (D.3)x x x y y y z d x y

Although the problem is thereby mapped to a spin-1
2
problem in a magnetic field,

we note that there is no point in the Brillouin zone where h = 0 (which is the location
of the monopole). Therefore, the fictitious monopole in the quantum Hall problem
exists outside the reciprocal space and, in view of the crossing-point of the two energy
eigenvalues of the edge modes, we can pinpoint the monopole inside the gap. We
refer readers to the paper by Hatsugai for additional details [5].

Remark: locating the monopole

One way to obtain ⃗ =h 0—the point in parameter space where the monopole resides—
is to analytically continue ky in the complex plane. If we write = +k k iky y

r
y
i , this

yields a Hamiltonian that, in general, is non-Hermitian. Interestingly, it has real
eigenvalues when π=k /2x and + =k J k kcos sin sin 0x d x y

2 2 2 2 . The latter equality is
possible because ky is complex, and this fact determines the localization length of the
edge modes. This leads to E = 0 as a possible eigenstate, where ⃗ =h 0, and we have
twofold degeneracy.

We close this section with a remark that often makes newcomers trying to
understand the quantum Hall effect uncomfortable—namely, although the Chern-
number formula involves no edges, thereby implying that the bulk on its own
“knows” everything about the nontrivial topology of quantum Hall states, edge
states are nonetheless necessary to actually produce the quantum Hall effect. In other
words, yes, the infinite sample “knows” all about the nontrivial topology associated
with the band structure, but to bring these topological aspects to “life” so that we
can actually see them, we need to bring in edges. It is the presence of edges that
allows us to see the topological aspect of the quantum Hall effect, by providing
“shelter” to the magnetic monopole whose fingerprint is “hiding” in the properties of
the bulk.
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Butterfly in the Quantum World
The story of the most fascinating quantum fractal

Indubala I Satija

Chapter 10

The kiss precise and precise quantization

The sweet, soft freshness that blooms on a baby’s limbs—does
anyone know where it was hidden so long?
Yes, when the mother was a young girl, it lay pervading her heart

in the tender and silent mystery of love—the sweet, soft freshness that
has bloomed on the baby’s limbs.

Rabindranath Tagore

Having just swooped through anholonomic loops in curved spaces, we now return to
the butterfly landscape—home of the quantum Hall effect. The home we return to is
a sweet home and a beautiful home, hosting quantum Hall states, which, as we will
soon see, are reincarnations of integral Apollonian gaskets. Nature surprises and
delights us again with the revelation that the quantum world, in all its mystery, is a
beautiful world when viewed from the proper perspective.

The theme of this chapter is to assign the proper address to each of the inhabitants
of the butterfly landscape. Equipped with some knowledge of topology and
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topological quantum numbers, we will label parts of the butterfly with integers that
can be observed in laboratories. In the landscape, these states are nested, and their
topological addresses form hierarchical patterns exhibiting self-similarity and
universal scaling.

Incidentally, shortly after Douglas Hofstadter found the butterfly’s recursive
structure, his doctoral advisor Gregory Wannier and the Chilean physicist Francisco
Claro proved [1] that any white swath in the butterfly can be labeled by a pair of
integers. This important result is known as the “gap-labeling theorem”. However,
since Claro and Wannier’s formulation is somewhat distinct from from the
topological approach we are stressing here, we will not go into it.

The correspondence between the butterfly fractal and integer Apollonian gaskets
( s) was laid out earlier in this book, in chapter 3. What we there called “ ”

(Apollonian–butterfly connection) will take on a new meaning when viewed from a
topological perspective. Each quantum Hall state, characterized by topological quan-
tum numbers, turns out to be an in disguise, where topological numbers are
lurking in the curvatures of the kissing circles. As is explained below, these fractal
objects made up of integers encode the topology of the entire family of nested butterflies.

Although the energy axis makes no explicit appearance in this picture, the
topological quantum numbers determine the sizes of the energy gaps, and therefore,
in a subtle way, the Apollonian viewpoint encodes more than just the partitioning of
the butterfly along the magnetic-flux axis. This chapter thus tells, in one fell swoop,
the tale of two precisions: “the kiss precise” and “precise quantization”.

As was stated way back in chapter 1, the word “gap” in this book refers to a one-
dimensional vertical white line-segment between two neighboring bands at one
specific flux-value. In contrast, to refer to a two-dimensional diagonal white area,
the word “swath” is used instead. Each two-dimensional swath is the union of an
infinite number of one-dimensional gaps belonging to all the values of ϕ lying in an
interval. Thus, for example, the four very salient white wings that meet at the
butterfly’s center—the wings that give the butterfly its name—are swaths in the sense
just defined; indeed, all swaths are wings of smaller butterflies found at various
hierarchical levels inside the large butterfly.

What is remarkable is that every swath in the graph, no matter how large or small
it might be, is naturally associated with a pair of topological integers. It is this
chapter’s purpose to explain this topological labeling of the butterfly graph at every
scale, highlighting the topological nature of this self-similarity. Each point in the
butterfly graph, whether it belongs to a black band or to a white swath, can be
labeled by two integers, which are quantum numbers of topological origin. For a
point in a swath, the first of these two integers is the quantum number associated
with the Hall conductivity.

We will now give more details of the story by describing how to assign a
“topological address” to each of the infinitely many swaths of the butterfly, each one
representing a distinct quantum Hall state. Then we will revisit the relationship
between the butterfly and Apollonian gaskets, and will show how the topological
address of each quantum Hall state is encoded in the integer curvatures of the
underlying Apollonian gasket. We will conclude by revealing the existence of
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Apollonian gaskets with trefoil symmetry that describe the quantum Hall topology
as the sizes of the butterflies with centers at E = 0 shrink to zero.

10.1 Diophantus gives us two numbers for each swath in the butterfly
One very general way of determining the topological label for a gap (i.e., the pair of
Chern numbers) was sketched in the previous chapter. However, for the square-
lattice model that was studied by Hofstadter, there is a very elegant and simple
number-theoretical way to determine such labels; in fact, it turns out that the
integers in question are the solutions to equations of a sort first studied by
Diophantus of Alexandria around 250 AD, and today known as Diophantine
equations. The Diophantine method yields a complete labeling of all swaths at all
scales in the Hofstadter butterfly.

We will now give a Diophantine recipe to determine the Chern numbers attached
to all the diagonal swaths of the butterfly. We begin very humbly, looking merely at
the (one-dimensional, vertical) gaps in the spectrum of a particular rational flux-
value ϕ = p

q
. At this flux-value, there will be q bands, and thus −q 1 gaps between

them. As we slide up the graph at this fixed flux-value, moving from lowest to
highest energy, we can assign to each of these gaps an integer r, running from 1 to

−q 1. Now let us focus on a particular gap, meaning that we choose some particular
value for r.

The next step in our recipe is to write down a very simple Diophantine equation
that has the three integers p q, , and r as its coefficients:

σ τ+ =p q r. (10.1)

In this equation, p q, , and r are constants given to us, while σ and τ are unknown
integers (positive, negative, or zero) that we wish to solve for. These solutions, σ and
τ, will constitute the label that will be assigned to the white swath, of which our
chosen one-dimensional white gap is merely one of infinitely many vertical cross-
sections. There is, by the way, a most remarkable fact here, which is that this label
does not depend on which value of p/q we choose.

To make these ideas very concrete, let us take a maximally simple case. We will
calculate the label for the swath that runs diagonally across the whole butterfly, from
its lower left-hand corner to its upper right-hand corner. (If you look at figure 10.1,
this is the swath labeled “[1, 0]”, although identifying it through its label is cheating
a little bit, since at this point we are trying to calculate those values. But no matter.)
To follow the Diophantine recipe, we need to select some specific flux-value ϕ that
has a gap making up part of this swath. That’s easy—choose ϕ = 1/3. Given that q =
3, this flux-value’s spectrum has three bands and thus just two gaps, of which the
lower one belongs to this swath, and that means that r = 1. Plugging these three
values into equation (10.1) gives us the following Diophantine equation to solve:

σ τ+ =1 3 1.

Nothing could be simpler: σ = 1 and τ = 0. So these two numbers—[1, 0]—
constitute the topological label attached to this very large swath of the butterfly. We
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will of course want to check that this label, as claimed, doesn’t depend on our having
reached it through our choice of ϕ = 1/3. We want it to be independent of the flux-
value that we chose.

So let us try a different flux-value in the right range—say, ϕ = 2/5. At this flux-
value, there are five bands and thus four gaps, and of these, it’s not the lowest this
time, but the second-lowest, that lies in the swath in question. (You can see this by
locating 2/5 on the ϕ-axis, then spotting the five bands, and thus the four gaps,
located directly above it.) Given that = =p q2, 5, and r = 2, the Diophantine
equation we want to solve is this one:

σ τ+ =2 5 2.

Well, once again, solving this equation is trivial. We need merely pick σ = 1 and
τ = 0, exactly as before, and we see that the label we get this time—[1, 0]—is
identical to the label that we calculated earlier.

Although we have shown only two sample cases and found that the labels they
gave agreed, this agreement is not a coincidence. It illustrates a general theorem—

namely, that a label found through the Diophantine recipe does not depend on the
particular flux-value ϕ that was chosen. One just has to be careful to choose r so that
the rth gap in ϕ’s spectrum lies in the swath in question.

Let us take one more example, this time focusing on a smaller two-dimensional
gap. The swath we just labeled was a “forward slash”; now we will label a

Figure 10.1. Swaths in the butterfly graph, labeled with topological quantum numbers σ τ[ , ]. The small
butterfly on the right (whose ϕ-axis runs from 1/3 to 2/5) is a blowup of a little region inside the full butterfly
just to its left. That region is delimited by a black rectangular box centered at ϕ = 3/8. In these two butterflies,
pairs of integers comprising the topological addresses of swaths have been inserted in swaths that are large
enough for the numbers to fit in. In smaller swaths, because of lack of room, we have inserted only the first
number of the pair—namely, σ.
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“backward slash”. In figure 10.1, our swath runs from the topmost point of the
lowest band of ϕ = 1/3 to the bottommost point of the lower band of ϕ = 1/2. In the
figure, its label is −[ 2, 1], although once again, strictly speaking, we’re not supposed
to know those numbers yet, since our purpose is to calculate them.

To calculate this swath’s topological label, we need to pick a particular ϕ in
between 1/3 and 1/2, so let’s once again use ϕ = 2/5, which has five bands and four
gaps between them. This time, however, it’s the lowest band that belongs to the
swath in question, so r = 1. Given that p = 2 and q = 5, our Diophantine equation
becomes:

σ τ+ =2 5 1.

One solution to this equation is σ = +3 and τ = −1, since × − × =3 2 1 5 1.
Another solution is σ = −2 and τ = +1, since − × + × =2 2 1 5 1. Yet another
solution is σ = −7 and τ = +3, since− × + × =7 2 3 5 1. And there are many more.

In fact, there are infinitely many solutions to any such Diophantine equation.
Indeed, it is easy to see that if σ τ[ , ] is a solution of equation (10.1), then so is

Figure 10.2. In this highly colorful graph, swaths having the same Chern number are shown in the same color.
Here we can see that the topological quantum numbers labeling off-center butterflies (such as those framed by
pink trapezoids) are determined by those that label the central butterflies, through continuity in ϕ, as is
illustrated by the explicit labeling of the swaths labeled by Chern numbers ±2, ±3, and ±4. The fact that it is
possible to derive the Chern numbers of all the off-centered butterflies from those that are centered at E = 0
highlights the importance of the central butterflies in the butterfly landscape.
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σ τ+ −q p[ , ], and so is σ τ− +q p[ , ]. This observation leads us to a formula for the
entire family of solutions, given any particular solution σ τ[ , ]:

σ τ+ − = ± ± …nq np n[ , ], 0, 1, 2, . (10.2)

Which member of this infinite family do we wish to use to label the swath? It turns
out that for the rectangular lattice, what we want is the smallest possible σ (in
absolute value). In this case, that means σ = −2, which goes along with τ = +1, and
so our topological label for the swath is −[ 2, 1]. We won’t bother calculating the
label using a different value of ϕ, but the reader is encouraged to do so, in order to
confirm that indeed, the swath’s label is independent of the flux-value that is used in
calculating it.

There are several independent proofs (for specifics, see [2]) of the fact that the
minimal-size integer σ that (with an appropriate partner τ) solves the Diophantine
equation σ τ+ =p q r is the Chern number associated with the Hall conductivity for
the rth gap in the spectrum of ϕ = p

q
. The Chern partner of σ—namely, τ—is also a

topological number, but at this point in time, the physical significance of τ
unfortunately remains obscure. In the colorful butterfly graph shown in figure 10.2,
regions with the same Chern number are shown with the same color. Figure 10.3
summarizes some useful identities obeyed by the topological integers.

Figure 10.3. A few useful identities related to the topological integers [3]. Here, the notation “ x{ }” denotes the
fractional part of the real number x, and the notation “⌊ ⌋x ”, often called the “floor” function, denotes the
integer part of x—that is, the largest integer not greater than x.
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10.1.1 Quantum labels for swaths when ϕ is irrational

Equation 10.1 can be rewritten as follows:

σ τ+ =p
q

r
q

. (10.3)

This equation depends on ϕ being rational, since it makes reference to the numerator
p and the denominator q, but one feels tempted to try to extend its meaning to
irrational values of ϕ. The first step is of course to replace the expression “p/q” by the
real variable ϕ:

σϕ τ+ = r q. (10.4)

The remaining question is how to interpret the expression “r/q” in the case of an
irrational value of ϕ—and luckily, there is a natural way to do that. The quantity r/q
is essentially telling us how far upwards we have climbed in the one-dimensional
spectrum belonging to flux-value ϕ; in other words, how many bands have been
filled (the filled bands lie below us) and how many bands are empty (the empty bands
lie above us). Thus if r = 1, we are at the very bottom, with no bands filled, and if

= −r q 1, we are at the top, with all bands filled. Now since an irrational number is
the limit of fractions whose numerator and denominator increase beyond limit, the
quantity r/qwill approach 0 when we are at the bottom of the spectrum of an irrational
ϕ, and it will approach 1 when we are at the top. In short, independently of ϕ, the
physical interpretation of 0 is “completely empty”, while 1 means “completely full”. It
now seems very natural to replace the fraction r/q by a new continuous variable ρ—a
“filling-factor”—which ranges from 0 to 1 and which tells us how far up we have
climbed in the spectrum belonging to ϕ, independently of whether ϕ is rational or
irrational. In terms of ρ, our Diophantine equation then becomes the following:

σϕ τ ρ+ = . (10.5)

Of course, when ϕ and ρ take on irrational values, this is no longer a Diophantine
equation, but astonishingly enough, when ρ is picked so that we are at the height of a
swath whose label we know from rational values of ϕ, this equation has a unique
solution for integers σ and τ, and that solution will coincide with the known label for
the swath. This fact once again underscores the topological robustness of the labels
attached to all the swaths in the butterfly.

10.2 Chern labels not just for swaths but also for bands
Let us go back for a moment to rational values of ϕ, which are the only values whose
spectra consist of bands, since the spectrum of any irrational ϕ consists of infinitely
many isolated pointsmaking up a Cantor set. So let’s assume that ϕ is rational. Now
suppose that we would like to assign a quantum label to each of the q bands
belonging to ϕʼs spectrum, not just to its −q 1 gaps. It would seem very likely that
such a label would be simply related to the labels of the gaps lying just above and
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below the band in question. Indeed, that is exactly the case, and the relationship is as
simple and natural as one could hope for.

To help us express this relationship, let us attach subscripts to the integers σ and τ
making up the labels of the −q 1 gaps in ϕʼs spectrum, counting from the bottom, as
always. Thus the lowest gap would have label σ τ[ , ]1 1 , the next-lowest gap would be
σ τ[ , ]2 2 , and so forth. We will now invent an analogous notation for bands. Let’s
write the label for the rth band in ϕʼs spectrum (counting from the bottom up, just as
for gaps) as follows: σ τ[ , ]r

b
r
b . With this notation, the label of the band is computed

from the labels of its neighboring gaps as follows:

σ σ σ= − − , (10.6)r
b

r r 1

τ τ τ= − − . (10.7)r
b

r r 1

The band’s label is given by the differences between the σʼs and the τʼs labeling the
gap just above and the gap just below.

It can be shown that when ϕ = p
q
, the left side of equation (10.6) can take on only

two possible values: either σ = −pr
b or σ = −q pr

b . In other words, the Hall
conductances associated with the q bands belonging to ϕ form a sequence of
integers oscillating between two values. These sequences turn out, in fact, to be what
Douglas Hofstadter called η-sequences (see chapter 3).

10.3 A topological map of the butterfly
The topological trajectories lurking in the butterfly can be summarized in a graph of
ϕ versus ρ, shown in figure 10.4. Today such graphs are known as Claro–Wannier
diagrams [4], after Francisco Claro and Gregory Wannier, who revisited the
problem of a crystal in a magnetic field shortly after the discovery of the butterfly.
A Claro–Wannier diagram is a kind of “skeletal butterfly” that highlights the swaths
using straight lines; for each straight line in it, its slope equals the swath’s Chern
number σ, and the x-intercept determines the swath’s other Chern number, τ.

Below we list several important consequences of the relations summarized in what
we have called our “Chern notes”. In particular, we give the precise rules for filling
in the topological map of the butterfly at all scales. In our presentation, we will label
every small butterfly with a pair of Chern numbers, writing the pair as “ σ σ〈 〉+ −( , ) ”,
where the “+” and “−” subscripts symbolize the fact that there is always one positive
and one negative Chern number, which together determine the two diagonal swaths
of the given butterfly.

1. By consulting the Chern notes, readers can easily verify that any central
butterfly whose center is located at a flux-value p q/c c whose denominator qc is
even is characterized by the Chern numbers 〈 − 〉( , )

q q

2 2
c c .

2. According to the Chern notes, the Chern numbers of a hierarchical set of gaps
that define the fine structure of the butterfly near any rational flux-value—say,
ϕ = p q/0 0 0—are obtained by “tilting” the flux-value and the ρ values a very
small amount. Using the relations ϕ ϕ δϕ= +0 and ρ ρ δρ= +0 , and the
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corresponding quantum numbers σ σ σ= + Δ0 and τ τ τ= + Δ0 , and then
finally taking the limit as δϕ and δρ go to zero, we obtain:

ϕ σ τ σ
τ

Δ + Δ = Δ
Δ

= −
q

p
0; . (10.8)0

0

0

Since both σΔ and τΔ are integers and p0 and q0 are relatively prime, the
simplest solutions of equation (10.8) are:

σ τΔ = ± Δ = ∓nq np, , (10.9)0 0

Figure 10.4. The lower graph, made of crisscrossing diagonal lines, is called a Claro–Wannier diagram for the
butterfly. It is a pictorial representation of the Diophantine equation σϕ τ ρ+ = discussed above. Since this
equation is a linear equation with parameters σ and τ, its graph is a straight line with slope σ. This particular
Claro–Wannier diagram uses just the values 1, 2, and 3 for σ; these integers can be seen in the figure, labeling
the slopes of the lines. A few of the intercepts with the x-axis (actually the ϕ-axis) are also labeled. The upper
graph is the usual butterfly with some additional lines shown in color, which outline the swaths that have
Chern numbers of 1, 2, and 3. The color-coding in the upper graph matches that used in the Claro–Wannier
diagram below it, and this illustrates the deep correlation between the topological structure of the butterfly and
the ideas captured in the Claro–Wannier diagram.
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where = …n 0, 1, 2, . These solutions describe the fine structure of the
butterfly near a flux-value ϕ0. Those solutions that exist in the immediate
vicinity of ϕ = p q/0 0 are the “finite n” solutions of equation (10.2), the
Diophantine equation that we discussed earlier.

Figure 10.5 is a topological map of the butterfly, showing the distribution
of Chern numbers. In addition to the dominant gaps, this plot shows the fine
structure of central butterflies, both near their centers and at their edges.

In chapter 3, butterflies were divided into two categories: -type and
-type (the latter were also called “fountain butterflies”). Our topological

labeling reveals that there is a quantitative distinction between these two
types. Consider the >n 0 solutions of the Diophantine equation for a flux-
value p/q. As was stated earlier, Harper’s equation does not support these
solutions, since only n = 0 solutions are realized by this system. Interestingly,
these higher-n solutions are located at flux-values very close to ϕ = p q/ , as is
shown in figure 10.5. This effect can be seen in that figure, near ϕ = 1/2.

10.4 Apollonian–butterfly connection: Where are the Chern numbers?
In chapter 3, we showed how integral Apollonian gaskets ( s) encode butterfly
configurations in the Hofstadter landscape. We now broach the following two key
questions:

1. Do Chern numbers apply in some fashion to Apollonian gaskets? Do they
describe some special geometric property of configurations of four kissing circles?

2. Given four kissing circles making up an , along with their integer
curvatures, what are the Chern numbers of the corresponding butterfly?

Figure 10.5. In panel (A), we see the Chern-number labeling of some of the major swaths in the butterfly, and
their corresponding fine structure. This figure illustrates the fact that the higher-n solutions (that is, with >n 1)
of the Diophantine equation for a given flux-value ϕ lie very close to that flux-value. Each color-coded dot lies
at a rational flux-value (see the numbers at the bottom of the graph) and is located inside a swath whose left
and right Chern values are displayed inside parentheses of the same color. Panel (B) is a blowup of the region
inside the red box in (A). It shows some of the fine structure near ϕ = 1/2.
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We would ideally like to find an answer to the first question along the lines of our
discussion in chapter 8, where we saw how the Gauss–Bonnet theorem relates
certain integer invariants computed geometrically from a manifold to the manifold’s
topological genus (see section 8.2). Unfortunately, however, how to extend the
concept of Chern numbers so that it can apply to an that encodes the butterfly
is unknown at this time. We believe a satisfactory answer can be found, perhaps
within the mathematical framework of conformal and Möbius transformations.
Work along these lines is currently in progress.

Since we cannot answer the first question, we will focus on the second one,
following the discussion in chapter 3, which relates an ʼs four curvature values
to the flux-values that define the center and edges of the corresponding butterfly. (See
section 3.2). One can then use results from section 3.3 to express Chern numbers in
terms of curvatures, as we will describe below.

We recall that three mutually tangent circles with integer curvatures κ1, κ2, and κ3
form an integral Apollonian gasket provided that κ ±( )0 —the curvature of the outer
bounding or inner circle, as defined below—is also an integer:

κ κ κ κ± = + + ± Δ( ) 2 , (10.10)0 1 2 3

where

κ κ κ κ κ κΔ = + + . (10.11)1 2 2 3 1 3

Clearly, the Apollonian gasket will have integer curvatures if and only if Δ is a
perfect square. Let δ be its square root:

δ = Δ . (10.12)

As was pointed out in chapter 3, δ is the curvature of the “dual circle”—that is, the
circle passing through the tangency points of the three inner circles. It turns out that
Δ encodes the Chern numbers of the butterfly at least in the cases where the
mathematical framework underlying is well established.

As was shown in chapter 3, our “Holy Grail” of is fully realized for central
butterflies, since the hoped-for is the dual of the triplet of Ford circles
corresponding to the center and the two edges of the butterfly. In this case, it is an
easy exercise to show that δ = Δ is a perfect square. We can then write down an
explicit formula for the Chern number of the quantum Hall state in terms of the
curvatures of the three inner circles of the corresponding . The Chern numbers
for a butterfly centered at flux-value ϕ = p

q
c

c
are:

σ δ κ κ κ κ κ κ= ± = ± + + = ±±
q

2
1
2

( )
2

. (10.13)c
1 2 2 3 1 3

1 4

As is shown in figure 10.3, central butterflies determine the topological quantum
numbers of the entire butterfly landscape, since the topological numbers of off-
centered butterflies can be determined by continuity in ϕ across the butterfly gaps.
This raises an interesting question as to whether the Apollonian representations of
the butterflies centered at E = 0 axis play any role in determining the Apollonian
gaskets that represent the off-centered butterflies.
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Figure 10.6 illustrates the for the fountain butterflies. The relationship
between the Chern numbers of these butterflies and the curvatures of the corre-
sponding Apollonian gaskets is a topic still under investigation and will not be
discussed here.

10.5 A topological landscape that has trefoil symmetry
We now discuss the idea in a completely different context, where nature seems
to want to hand us a big surprise. Suppose we zoom down into the full butterfly
following the diamond hierarchy, looking at it on ever smaller scales. It turns out
that in so doing, we will encounter a topological landscape possessing trefoil
symmetry. This unexpected fact is intimately related to the hidden trefoil symmetry
of the butterfly, encountered in chapters 2 and 3, describing the the ϕ-axis scaling of
the butterflies constituting the diamond hierarchy.

Let us recall, from chapter 2, that a pair of triplets p p p( , , )L c R and q q q( , , )L c R ,
which determine the coordinates ( , , )

p

q

p

q

p

q
L

L

c

c

R

R
of a generic central butterfly, satisfies

the following recursion relation, linking three different generations ( −l 1, l and
+l 1) of butterfly zooms:

+ = − −s l s l s l( 1) 4 ( ) ( 1), (10.14)x x x

Figure 10.6. Chern-2 swaths in the butterfly and the s that correspond to them. The red and blue zones
show the -type and -type butterflies. The continuity of the swaths having Chern number 2 is reflected in the
corresponding s.
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where =s p q, and =x L c R, , . In view of equation (10.13), the Chern numbers of
the butterflies satisfy the same recursions given by equation (10.14):

σ σ σ+ = − −l l l( 1) 4 ( ) ( 1). (10.15)

Equation (10.15) results in a fixed-point solution of the ratio of integers at two
successive levels:

σ
σ

+ = → + =σ ϕ
l

l
R l R

( 1)
( )

( ) 2 3 . (10.16)

It is easy to show that the topological integer τ has the same scaling behavior as
does σ. Therefore, the topological landscape, where the nested quantum Hall states
are kaleidoscopic images, exhibits trefoil symmetry. In some special cases, the
topological quantum numbers associated with butterflies in the diamond hierarchy
are given explicitly by the curvatures of s that asymptotically approach perfect
trefoil symmetry, as in figure 10.7. The quest for a deeper understanding of the
relationship between (1) the s that encode topology and (2) the dual and
symmetric-dual Apollonian gaskets that represent the butterfly is, however, still only
in its infancy.

Figure 10.7. A set of Apollonian gaskets having “almost trefoil symmetry”. These gaskets encode the sequence
…(4, 15, 56, 209, 780, 2911, ), representing Chern numbers associated with the magnetic-flux interval

→[1/3 2/5]. The two numbers at the top of each circle show the curvatures of the outermost and the
innermost circles, which are each other’s “mirror images” (via circular inversion in a circle that passes through
the tangency points of the trio of nearly identical circles).
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Finally, we note that although it would be premature to speculate on the
importance of the hidden trefoil symmetry and the associated topological scaling
in the butterfly or the quantum Hall states, results from theoretical physics very
often connect to the real world with scaling relations that tend to be “universal”. In
other words, the validity of the topological scaling may extend beyond the basic
model used by Hofstadter to study crystal electrons in a magnetic field. Just as a
simple quadratic map can predict the behavior of a dripping faucet (see chapter 1),
so topological scaling, emerging from the smallest energy intervals and flux intervals
in the butterfly fractal, may have implications that extend beyond the confines of this
book. This is an exciting prospect, since the topological integers in this case are the
quantum numbers of Hall conductivity states, and hence are observable in
laboratory experiments.

10.6 Chern-dressed wave functions
So far, our discussion of topological aspects has been confined to the butterfly
spectrum, which depicts the allowed energies of an electron in a lattice immersed in a
magnetic field. We now wish to point out that the electron’s wave functions also have
topological aspects [5].

As was shown in chapter 6, the wave function for an electron in such a system
exhibits the same type of self-similar structure as does the plot of eigen-energies.
However, in sharp contrast to bulk matter (which has no edges), the energy gaps in a
finite sample (which by definition has edges) contain certain exceptional states that
exhibit electrical conductivity. These conducting states are localized at the edges of
the sample, and are known as edge modes. In fact, the number of edge modes equals
the Chern number associated with that gap, and also determines the degree of
splitting of the peak in the wave functions for band-edge states. It is curious,
however, that the phenomenon of the splitting of the peak arises even in an infinite
crystal that has no edges at all. Such edge-modes, residing in the interior of the
sample, encode topological quantum numbers associated with Hall conductivity.
This “Chern-dressing” of the peaks is shown in figure 10.8.

10.7 Summary and outlook
The fact that quantum Hall states—exotic topological states of matter—are
“reincarnations” of integer Apollonian gaskets is a fascinating result. How unex-
pected that a beautiful and abstract piece of mathematics from well over 2000 years
ago would turn up in the midst of “dirty” two-dimensional insulators! Yes,
takes on a special meaning when discussed in the context of topological states of
quantum Hall systems. It’s fair to say that when we observe the quantum Hall effect
in a laboratory, what we are seeing is, in some sense, a reincarnation of an
Apollonian gasket from way back in 300 BC!

Although the task of establishing a rigorous mathematical framework relating the
butterfly and s is an open problem, all the figures and other types of evidence
presented above leave little doubt about the validity of this connection.
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Circle-packing can be viewed as the art of placing tangent circles on the plane,
leaving as little unoccupied space as possible. It is a very attractive field of
mathematics, and it is deeply related to the beautiful and rich geometric trans-
formation known as “inversion in a circle”. Our discussion above shows that the
close-packing of circles holds the secret of precise quantization in the quantum Hall
effect.

The butterfly, with its underlying mixture of complexity and order, remains in
many ways a profound enigma. To be sure, all fractals, such as the Mandelbrot set,
are mysterious. But what is particularly fascinating about the butterfly is how both
fractality, which is rooted in two competing periodicities, and topology, which is

Figure 10.8. In this figure, we are looking at the (theoretically predicted) wave functions for the case where the
flux-value ϕ equals the golden mean. The left side of the figure shows three subbands, highlighting a gap that
hosts four edge modes, and that therefore represents a quantum Hall state with quantum number 4. On the
right side are shown the wave functions belonging to the band’s center (blue) and the band’s edge (red). Every
peak of the band-center’s wave function splits into two peaks for the band-edge’s wave function. This makes a
doublet of size four, encoding the quantum number associated with the quantum Hall state. The figure at the
bottom is a blowup that illustrates the doublet structure of the band-edge states.
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quintessentially quantum in nature, are interwoven in it. Furthermore, each point in
the empty swaths of the butterfly graph describes, to a close approximation, a
macroscopic quantum effect of astonishing precision, which is immune to all the
standard confounding factors in condensed-matter systems, such as impurities and
interactions.

The butterfly graph as a whole describes all possible phases of a two-dimen-
sional electron gas that arise as one varies the filling-factor ρ and the magnetic
field ϕ. With a remarkable mix of fragmentation of bands and smoothness of gaps,
all of these infinitely many phases, each one characterized by an integer, not only
coexist, but form a fractal made entirely of integers. The order and the complexity
of the butterfly show how nature reacts to a quantum situation where there are
two competing periodicities. Experimentalists believe that the study of the
butterfly offers the possibility of discovering materials with novel exotic properties
that are beyond our present imagination. Who knows how many more mysteries
and hidden treasures are yet to be discovered in the butterfly, and in related
landscapes?

Quantum Hall states are the simplest examples of topological insulators that
provide a topological classification of states of matter. It is conceivable that there
may emerge a corresponding classification of butterfly-type structures, based on
symmetry and topology, as one considers graphs analogous to the butterfly that arise
in other topological insulators.

The fact that integer quantum Hall states are reincarnations of integral
Apollonian gaskets opens new doors for understanding other topological states in
terms of Apollonian gaskets. In fact, there are examples of “rational” Apollonian
gaskets, where the rational curvatures of the first four mutually tangent circles give
all circles with rational curvatures... This might be a potential route to the
understanding of fractional quantum Hall states, but as of yet it is unexplored.

As we think of the butterfly and its relation to the quantum Hall effect, it is
important to remember how the underlying theme of the quantum Hall effect has
cropped up in a wide variety of seemingly unrelated problems in physics; thus, there
are publications with such titles as “Black holes and quantum Hall effects”,
“Quantum Hall quarks”, “Quantum computation in quantum Hall systems”, and
“Higher-dimensional quantum Hall effect in stringtheory”. This suggests that there
exists a much broader perspective from which to view the butterfly fractal, home of
the quantum Hall effect, and host of all possible quantum Hall states of non-
interacting fermions.

We conclude our discussion with a another piece of poetic mathematics, by
Thorold Gosset1 with a wishful speculation that nature has perhaps found ways to
use the following mathematics in some physically interesting ways.

1 Thorold Gosset sent a copy of the poem to Donald Coxeter (whose area of expertise was higher dimensions)
on the occasion of his wedding, in the Round Church in Cambridge. It was be published in Nature, January 9,
1937.
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The Kiss Precise (Generalized)
by Thorold Gosset

And let us not confine our cares
To simple circles, planes and spheres,
But rise to hyper flats and bends
Where kissing multiply appears.
In n-ic space the kissing pairs
Are hyperspheres, and Truth declares—
As n + 2 such osculate
Each with an n + 1 fold mate.
The square of the sum of all the bends
Is n times the sum of their squares.
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Chapter 11

The art of tinkering

Receiving emails is like receiving artificial flowers. Send me real ones!
—Indradev1

This short chapter is devoted to the glory of physics laboratories, where theoretical
ideas are tested and new phenomena are uncovered.

Experimentation plays many roles in science. One of its key roles is to test
proposed theories. Another is to reveal the need for new theories, either by showing
that an accepted theory is incorrect or by exhibiting an unexpected new phenomenon
that is in need of explanation. The quantum Hall effect is an example of the latter.

Beyond the beautiful mathematics and the abstract concepts, the ultimate fate of
any theory rests on what transpires when concrete experiments are carried out.

1 The author’s father. To understand the essence of this quote, one needs only to compare the tingling that one
feels upon looking at the sentence that Dirac himself wrote out on a Moscow blackboard (see section 8.5) with
the more mundane feeling one has when reading the same sentence simply typed out on a page.
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Theory and experiment go hand in hand, and neither can survive without the other.
If theoreticians are composers, then experimentalists are performers—the people
who bring the music to life. And experimental science is every bit as much about the
art of tinkering as it is about the pursuit of scientific knowledge.

The most basic rule of science is that if you have a theory about some aspect of how
the world works, you must absolutely test it through experiments. If the experiments
confirm your theory, that is terrific news; if not, then you must revise your theory, and
further experimentation must be carried out. As Richard Feynman once put it:

It doesn’t matter how beautiful your theory is;
it doesn’t matter how smart you are.

If it doesn’t agree with experiment, it’s wrong.

On the surface, Nature seems to behave in an extremely complicated way. And
yet, very often, underlying this complexity are found simple and beautiful patterns,
when the phenomena are described in the language of mathematics. For example, we
do not know why F = ma, yet we still have full faith in this marvelous equation,
because so many observations are consistent with it. Physics, like natural science in
general, is a reasonable enterprise based on carefully acquired experimental evidence,
constructive criticism, rational discussion, and a sense of aesthetics. It provides us
with knowledge of the physical world, and it is experiments that provide the evidence
that underpins this knowledge.

(Einstein photograph credit: Bangkokhappiness/Shutterstock.com)
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It is important to know that revolutionary theories like Einstein’s theory of
general relativity, de Broglie’s theory of wave–particle duality, and Dirac’s pre-
diction of antiparticles won approval—and in some cases, Nobel prizes—only after
their predictions were confirmed by experiment. Of course, some of the greatest of
all physicists have believed in their theories no matter what, simply because they
were convinced that their theories possessed an inevitable kind of mathematical
beauty. These scientists, having a deep sense of faith in the profound elegance of
nature, were persuaded that nature ought to obey the simple, symmetrical,
mathematical rules that they had come up with [2].

11.1 The most beautiful physics experiments
The history of science is, in many ways, a history of experimentation. Major
milestones in how we understand the world have been marked by experiments so
ingenious, so simple, and so Earth-shaking that they can take your breath away.

Robert P Crease, a member of the Philosophy Department at the State University
of New York at Stony Brook and the official historian at Brookhaven National
Laboratory, recently asked physicists to nominate the most beautiful experiment of
all time. The ten most frequently named experiments have some features in
common, including simplicity and beauty. Most of the experiments took place on
tabletops, and none required more computational power than that of a slide rule or
calculator. The following list, taken from Physics World, was ranked according to
popularity, the top prize going to an experiment that vividly demonstrated the
quantum nature of the physical world [1]. The winners provide a bird’s-eye view of
more than 2000 years of discovery.

• Young’s double-slit experiment applied to the interference of single electrons.
• Galileo’s experiment on falling bodies (1600s).
• Millikan’s oil-drop experiment (1910s).
• Newton’s decomposition of sunlight with a prism (1665–6).
• Young’s light-interference experiment (1801).
• Cavendish’s torsion-bar experiment (1798).
• Eratosthenes’ measurement of the Earth’s circumference (3rd century BC).
• Galileo’s experiments with balls rolling down inclined planes (1600s).
• Rutherford’s discovery of the nucleus (1911).
• Foucault’s pendulum (1851).

Other experiments that were nominated by physicists included:
• Archimedes’ experiment on hydrostatics.
• Roemer’s observations of the speed of light.
• Joule’s paddle-wheel heat experiments.
• Reynolds’ pipe-flow experiment.
• Mach and Salcher’s acoustic shock wave.
• Michelson and Morley’s measurement of the null effect of the ether.
• Röntgen’s detection of Maxwell’s displacement current.
• Oersted’s discovery of electromagnetism.
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• The Braggs’ x-ray diffraction of salt crystals.
• Eddington’s measurement of the bending of starlight.
• Stern and Gerlach’s demonstration of space quantization.
• Schrödinger’s cat thought-experiment.
• Trinity test of a nuclear chain reaction.
• Wu et alʼs measurement of parity violation.
• Goldhaber’s study of neutrino helicity.
• Feynman’s dipping of an O-ring into a glass of ice water.

This last example showed that the post-launch disintegration of the space shuttle
Challenger on January 28, 1986 was due to the fact that the primary O-ring was not
properly sealed in unusually cold weather at Cape Canaveral. Its inclusion in
the above list is particularly gratifying to those who are deeply frustrated by
bureaucracy. While NASA officials were explaining in detail why it would have cost
billions of dollars to measure the rate at which frozen O-rings would recover their
shape (and therefore why NASA was not negligent in the death of the seven
astronauts aboard the Challenger that fateful day), Richard Feynman, listening in
his capacity as a presidential committee member, clamped a section of O-ring with a
clamp he had bought for $1.43 the day before at a local hardware store, and dunked
it in a glass of ice water that had been provided to him as a committee member. At
the height of the bureaucratic doubletalk, Feynman pressed his button to ask a
question. With the TV cameras focused on him, he removed the O-ring from the
water and released the clamp. The world watched while the O-ring regained its
original form a thousand times too slowly to guarantee a safe shuttle launch.

Perhaps each one of us has our own personal favorite. For some, it could be the
discovery of x-rays by Wilhelm Röntgen (for which the first Nobel Prize in Physics
was awarded, in 1901), simply because of the enormous importance of x-rays from
then on; for others, it could be the Casimir effect (conjectured in 1948 and
experimentally confirmed in 1996), which reveals a mind-boggling roiling and
boiling taking place ceaselessly and ubiquitously in the supposedly “empty”
vacuum. And then for others, it could be the discovery of the Higgs boson, whose
yet-to-be-measured properties may encode the next level of secrets of this
universe.

As will be shown in the next, and concluding, chapter of this book, the challenge
of detecting traces of the Hofstadter butterfly in a physics laboratory has been a long
journey, filled with many creative ideas and thoughts. Many dedicated scientists are
pursuing this journey today, but despite a number of encouraging first steps, they are
still far from arriving at the hoped-for destination.
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Chapter 12

The butterfly in the laboratory

Measure what is measurable, and make measurable what is not so.
—Galileo Galilei

An experiment is a question that science poses to Nature, and a measurement is
the recording of Nature’s answer.

—Max Planck

Ever since it was first revealed in print, some 40 years ago, the eye-catching butterfly
plot has tantalized experimental physicists. They would deeply love to observe its
fractality in their laboratories, but finding traces of it has proved remarkably difficult.
Some people believe that laboratory observations of the fractal nature of the butterfly
could well pave the way for new kinds of materials with exotic properties whose
potential is yet to be imagined. But others are skeptical. Does nature truly behave in
the curious way that Douglas Hofstadter’s “Gplot” predicts? Why should anyone
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believe in the highly counterintuitive properties of a bizarre-looking graph that was
calculated using an extremely stripped-down model of a crystal?

Among the drastically idealized assumptions underlying the model that gave rise
to the fractal butterfly are the following: (1) each electron in the crystal is very tightly
bound to its nucleus; (2) the electrons in the crystal move in only two dimensions; (3)
the crystal electrons, despite their electrical charges, do not interact with each other;
(4) there is just one Bloch band in the crystal; (5) the sole Bloch band’s defining
equation is maximally simple—and there are numerous other assumptions as well.
And so one might well wonder: do the weird mathematical properties of the
butterfly, all flowing out of this unrealistically simple model, have any chance of
ever being seen in a real laboratory setup?

Hunting the butterfly: a new frontier in exploring properties of matter

As was discussed in earlier chapters, the achievement of a theoretical understanding
of the quantum behavior of an electron in a crystal lattice under the influence of a
magnetic field was an important milestone in condensed-matter physics, and it took
almost 40 years of research. The collective effort involved some of the pioneers of
20th-century physics, including Lev Landau, Rudolf Peierls, Lars Onsager, Gregory
Wannier, and Mark Azbel’. However, the full richness of this quantum system
started to come into view only after the contributions made by Douglas Hofstadter
in 1976.

The butterfly is a pictorial representation of the fractal energy spectrum of a two-
dimensional crystal immersed in a perpendicular magnetic field B. It can be seen as
the inevitable outcome of a “competition” between two characteristic areas that
define the physical situation: (1) the area intercepting one natural flux quantum
Φ = h

e0 , and (2) the area of one unit cell of the given crystal (a2). (As was pointed out
in chapter 7, the situation can also be described in terms of two competing temporal
periodicities, or two competing amounts of magnetic flux.) This competition gives
rise to a spectrum having many properties that are unprecedented in any area of
physics, and this is of course most provocative.

Unfortunately, however, the experimental conditions for the salient features of
the Hofstadter butterfly to emerge clearly from hiding are quite stringent. The
central problem is that for those telltale traces to be detectable, the magnetic flux
passing through a unit cell of the crystal has to be on the order of one flux quantum,
which for a normal crystal would require an enormously intense magnetic field.
More quantitatively, the condition is this:

ϕ = Φ
Φ

= ≈Ba
h e( )

1, (12.1)
0

2

which, in the case of typical semiconductor lattices, amounts to magnetic fields B of
strength greater than 60 000 tesla (see figure 12.1). Such intense magnetic fields were
unimaginable when Hofstadter did his work, and even with today’s technology they
remain far out of range.
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When Hofstadter published his Physical Review article in 1976 [1], there was no
chance of actually observing the fractal properties that he described in it.
Nonetheless, in section 10 of that paper, Hofstadter very briefly commented on
the possibility of experimentally observing traces of the butterfly, as is shown below:

Figure 12.1. This graph shows, as a function of the size of a lattice’s unit cell, the strength of the magnetic field
that would be needed for the dimensionless flux-value ϕ to be on the order of 1 (where fractal effects become
clearly visible). If we are dealing with normal crystals with typical lattice spacings—about 1 nanometer—then
the technical challenge of creating a sufficiently strong magnetic field is huge. Moreover, for there to be any
hope of the setup yielding observable traces of fractality, the field strength must also be controlled very
carefully and measured with great accuracy. The three labeled dots on the curve in the graph correspond to,
respectively: (1) the unit cell of a typical crystal; (2) the unit cell in the graphene experiment described in the
text; and (3) the unit cell of an artificial crystal lattice, as will be discussed below.
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We live in a special time in the history of science, when during a single
professional lifetime, experimental techniques can move from being “absolutely
impossible” to being “routinely realizable”. This turns out to be the case for the
strange spectra of crystal electrons in magnetic fields, and it is reflected in the recent
upsurge in the number of citations of Hofstadter’s original paper, as one can see in
figure 12.2. The reason behind the upsurge is that ingenious new experimental
techniques have allowed the fractal behavior of real physical systems to begin to
emerge from the woodwork. This is a most exciting thing to see happen!

For years, experimentalists dreamed up innovative ways to try to catch glimpses
of the elusive butterfly, which came out of its chrysalis (Douglas Hofstadter’s
Regensburg notebooks) in the mid-1970s. However, it took almost 40 years before
actual traces of a butterfly were found in the quantum world. (Coincidentally, it took
almost the same number of years, starting with Lev Landau’s 1933 paper, to work
out the essential theory of the quantum behavior of Bloch electrons in a magnetic
field!) To conjure up the Hofstadter butterfly in a laboratory requires sophisticated
tinkering with pieces of experimental apparatus—arguably a high form of art—
combined with deep originality, patience, and perseverance. For that reason, this
achievement is justly considered to be a huge leap in materials-science research, a
leap that will impact both the fundamental and technological frontiers of science.

Below we will give a brief overview of some of most striking recent advances in
nanotechnology, and how they have led to laboratory confirmation of one of the
most intriguing theoretical predictions in condensed-matter physics. Readers will get
a taste of what went on behind the scenes in order to realize the extremely
challenging laboratory conditions that allowed Hofstadter’s Gplot fractal graph
to emerge, at least a bit, from hiding. We note that in addition to the various

Figure 12.2. Citations by year of Hofstadter’s 1976 Physical Review B paper [1] (from Google Scholar). The
recent upward surge is due primarily to the experimental confirmation of some aspects of the butterfly graph.
The photograph of Douglas Hofstadter wearing a butterfly shirt is reprinted here with his permission.
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approximations alluded to above, all the experiments described below were carried
out at non-zero temperatures, and therefore it may appear almost magical that real-
world laboratory setups have now fairly accurately reproduced strange phenomena
formerly belonging only to the highly theoretical and highly idealized world
explored by Hofstadter.

The experimental efforts to catch the butterfly (or if not to catch it, then at least to
sight it) can be grouped into two distinct categories, and stem from two different
stages of technological development:

(1) ones that use artificial crystals, with a cell size of approximately 100
nanometers and a magnetic-field strength B of roughly 1 tesla (beginning
around 1990);

(2) ones that use moiré patterns made with graphene, with a cell size of
approximately 10 nanometers and a magnetic-field strength B of roughly
50 tesla (beginning around 2013).

It is important to point out that laboratory setups do not directly measure the
allowed and forbidden electron energies that make up the butterfly graph.
Experimental verification of the butterfly involves measuring other quantities, and it
is only from them that certain aspects of the butterfly graph can be indirectly inferred.

What do the laboratory experiments actually measure?

The experiments to be described below measure the longitudinal resistance Rxx and
the transverse (or Hall) resistance Rxy, as discussed in chapter 7. The theoretical
variables of interest are the reciprocals of these measured quantities—specifically,
the longitudinal conductivity σ = R1/xx xx and the transverse conductivity
σ = R1/xy xy. To make a comparison with theoretical predictions, what one wants
to look at is regions where σxx equals zero and where σxy does not equal zero. Such
regions constitute plateaus in the quantum Hall regime that correspond, in the
butterfly graph, to gaps. In short, making a plot of the experimentally measured
longitudinal and transverse conductivities as a function of magnetic field strength ϕ
reveals gaps, which hopefully should agree with the gaps predicted by the butterfly.
The process of constructing a theoretical plot of σxy versus ϕ, given the butterfly
graph, is illustrated in figure 12.3. (This kind of calculational process can also be run
backwards, meaning that an experimentally measured spectrum can be constructed
from an experimental plot of of σxy versus ϕ.)

In addition, experiments can also measure ρ, the density of charge carriers. The
filling-factor ρ, measured as a function of ϕ, gives the Chern number σ, the quantum
number associated with Hall conductivity. In particular, σ is the slope of the
various ρ-versus-ϕ lines (recall the Diophantine equation ρ σϕ τ= + , discussed in
chapter 10). A theoretical set of graphs of ρ versus ϕ, known as a Claro–Wannier
diagram, is displayed on the left side of figure 12.4, for a handful of values of σ. Such a
diagram is a kind of skeletal butterfly graph. In it, curves of constant σ are straight
lines having integer slopes (see chapter 10, figures 10.3 and 10.5). As we will see below,
experiments revealing traces of such a Claro–Wannier diagram provide some of the
most convincing arguments for the detection, in the laboratory, of the butterfly fractal.
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In the real world, where various idealizations used in the derivation of the
Hofstadter spectrum may hold only partially, the following two features can be
taken as quite strong indications of the presence of the butterfly:

• The Hall conductance can vary nonmonotonically and can even fluctuate in
sign as the magnetic flux is varied. This is illustrated in figure 12.3.

• The Hall conductance plateaus remain quantized in integral multiples of e h/2 .
The experimentally observed quantized levels coincide with the theoretically
predicted slopes of the gap trajectories in the ρ-versus-ϕ Claro–Wannier
diagram, in accordance with the Diophantine equation ρ σϕ τ= + described
above.

Not just tinkering: numerical simulations of experimental systems

It is important to note that experimental studies are often accompanied by numerical
simulation of the experimental system—a theoretical kind of modeling that helps in
understanding the system and in guiding the interpretation of what is observed in the
laboratory. In other words, computational experiments and laboratory experiments go
hand in hand, as one tries to extract information from any type of experimental data.

Figure 12.3. This graph illustrates the construction of theoretical Hall plateaus from the butterfly graph, as a
function of the magnetic field strength ϕ, while keeping the Fermi energy constant. These theoretical Hall
plateaus can then be compared to the actual ones measured in the laboratory. Or it can be done the other way
around—that is, the experimental measurements of the Hall conductivity can be used to construct an empirical
energy-spectrum graph, and that graph can then be compared to the butterfly graph. We note that Hall
conductivity is a nonmonotonic function of ϕ and also changes sign—two telltale features of the butterfly
graph that are absent in a quantum Hall system without an underlying lattice.
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In order to observe the butterfly spectrum experimentally, the single-band picture
described in earlier chapters is not always suitable. In the fervent chase after the
Hofstadter butterfly, some experiments are done in a low-magnetic-field regime, where
the spectrum is dominated by Landau levels that gradually widen into bands as the
magnetic field is increased. Figure 12.5 displays the results of a numerical simulation
of such a situation. In it, one sees the so-called “Landau fan” regime exhibiting
discrete Landau levels characterized by the single quantum number σ. Here, the graph
of electron density versus flux-value ϕ (actually, the reciprocal of ϕ, in this case) passes
through the origin and corresponds to τ = 0 in a Claro–Wannier diagram. In the high-
magnetic-field regime, the Landau-fan structure is preserved except that the straight
lines are now characterized by two integers σ τ( , ), which is consistent with the Claro–
Wannier diagram. In this case, computational simulations reveal many butterflies,
with each Landau level mutating into a butterfly as lattice effects come into play.

12.1 Two-dimensional electron gases, superlattices, and the
butterfly revealed

In order to try to observe the Hofstadter butterfly in a laboratory, one needs to have
a two-dimensional electron gas in a crystal lattice subjected to a perpendicular
magnetic field. Moreover, the dimensions of the lattice’s unit cell and the strength of
the producible magnetic fields should be such that the magnetic flux intercepted by a

Figure 12.4. This figure shows a Claro–Wannier diagram—a “skeletal butterfly”—where the energy gaps of
the Hofstadter spectrum are simplified down to linear trajectories parametrized as ρ σϕ τ= + . In the actual
butterfly diagram, the linear trajectories become discontinuous, as is shown by the black vertical lines in
between the colored lines. The integers shown in the graph are Chern numbers—that is, the quantum numbers
associated with Hall conductivity. As is explained in the text, the Claro–Wannier diagram is crucial for
interpreting the experimental results.
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unit cell of the lattice (as measured in units of the magnetic flux quantum hc/e)
should be on the order of unity, as is shown in figure 12.2.

To capture the fractal aspects of the butterfly experimentally, one needs to be able
to detect not just the largest gaps, but also minigaps inside the spectrum. It is
therefore essential to have the possibility of tuning (1) the charge carrier density,
(2) the Fermi energy, and most importantly (3) the size of the lattice and the strength
of the magnetic field, so that the magnetic length, the lattice spacing, and the gap
sizes are all comparable. Finally, the purity of the sample is important, and
experiments have to be done at low temperature. The discussion below describes
how some of these challenges are met in laboratories.

Experimental realization of a two-dimensional electron gas

Two-dimensional electron gases—key players in the hunt for the butterfly—were
first realized experimentally around 1960 [3]. It was shown that electrons can be

Figure 12.5. Panel (A) shows the theoretically computed Landau-fan diagram (with energy E proportional to
magnetic field B, as discussed in chapter 7), often referred to as the conventional quantum Hall effect—that, is
the quantum Hall effect without a crystal lattice. The zigzagging red line shows the Fermi energy for a fixed
electron density as a function of the magnetic-field strength. Panel (B) shows how the discrete Landau levels
are modified by the introduction of a two-dimensional periodic potential, neglecting the coupling between the
Landau levels, where each Landau level splits into a band. (Adapted from [2] reproduced with permission.)
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made to accumulate on the surface of a semiconducting silicon crystal by applying a
voltage to the crystal. In earlier studies, electrons had been confined between silicon
(a semiconductor) and silicon oxide (an insulator). Later studies used GaAs and
AlGaAs, both semiconductors, the combination being commonly known as a
“GaAs–AlGaAs hetero-junction”.

Artificial crystals

Experimentalists have, in their chase for the butterfly, devised setups with a two-
dimensional superlattice located directly above a two-dimensional electron gas. This
imposes a superstructure having a spatial period that is far larger than that of a
typical crystal, thus resembling the idea proposed by Hofstadter—namely, that of
making a crystal with such a large unit cell that one sidesteps the need to create a
magnetic field of some wildly inconceivable strength. The period of the lattice and
the amplitude of the periodic modulation are adjustable parameters, which allow the
experimentalist to manipulate the widths of minibands and minigaps, in order to try
to observe telltale traces of fractal aspects of the butterfly.

The minigaps in the fractal energy spectrum become observable only if the
magnetic length =l h eB/B , which characterizes cyclotron motion, is of the same
order as the wavelength of the periodic potential, which characterizes the Bloch
waves. Therefore, the ability to tune lattice parameters in order to resolve tiny gaps
in the butterfly is essential if one is striving to reveal fractal aspects of the spectrum.

When one is using an ordinary crystal lattice, where the interatomic spacing is a
few ångströms, attaining sufficiently large magnetic fields is impossible, as the field
strengths would have to be in excess of 10 000 tesla. The main experimental effort
therefore has been to lithographically define artificial superlattices with unit-cell
dimensions on the order of tens of nanometers; the idea is that with such large unit
cells, magnetic fields achievable in the lab can yield a magnetic flux ϕ that is
sufficiently large to “net” the butterfly.

One way to create an artificial two-dimensional periodic potential that mimics a
two-dimensional crystal with a huge unit cell is to manufacture a metallic layer
perforated by periodically spaced tiny holes whose diameter is approximately half the
lattice period a. Figure 12.6 shows a schematic diagram of such an artificial crystal
lattice placed above a two-dimensional electron gas confined between two layers of
semiconductors. Without going into detail, we will merely note that there are quite a
few ways to create an artificial crystal in which all spatial degrees of freedom are
modulated in a periodic fashion, just as in a real crystal, but with the added benefit that
experimenters have full control over the periodicity and geometry of this crystal. We
refer readers to Martin Geisler’s doctoral thesis [2] for various references and details.

Some of the early pieces of research that exploited this type of methodology to try
to demonstrate the butterfly spectrum are:

1. “Magnetoresistance oscillations in a grid potential: indication of a
Hofstadter-type energy spectrum” (1991) [4].

2. “Landau subbands generated by a lateral electrostatic superlattice: chasing
the Hofstadter butterfly” (1996) [5].
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3. “Evidence of Hofstadter’s fractal energy spectrum in the quantized Hall
conductance” (2001) [6].

4. “Laterally modulated 2D electron system in the extreme quantum limit”
(2004) [7].

5. “Detection of a Landau band-coupling-induced rearrangement of the
Hofstadter butterfly” (2004) [8].

Figure 12.7 shows results from one such experiment [8]—one of the first experi-
ments that provided some evidence for the reality of the butterfly fractal. It exhibits
the measured Hall conductance, along with a comparison of these empirical data
with theoretical results that, using gaps of the butterfly, predict the sizes of the Hall
plateaus. As was discussed in section 7.3, the weak-lattice limit (or the strong-field
limit) gives a different topological map of the butterfly, since its primary gaps are
now labeled with quantum numbers (0, 1) instead of −(1, 1). This is due to the fact
that if we begin with the Landau-level description of the quantum Hall effect and
perturb it with a lattice, then the energy diagram is parametrized by ϕ = q p1/ /
(instead of ϕ = p q/ ), and this implies that each Landau level splits into p subbands.
We note that in this case, the Hall conductivity is quantized with quantum number
σ + −N( 1), where N is the index of the Landau band.

Figure 12.6. A cartoon version of a system—a modulated sample (a metallic layer with holes)—placed
directly over a two-dimensional electron gas. The system is subjected to an applied current I and a
perpendicular magnetic field B. Both the longitudinal voltage Vxx and the transverse (or Hall) voltage Vxy

can be measured, thus determining the longitudinal resistance Rxx and the transverse (or Hall) resistance
Rxy—or their reciprocals, the longitudinal conductance σxx and the transverse (or Hall) conductance σxy.
(Adapted from [2] reproduced with permission.)

Butterfly in the Quantum World

12-10



These early results, although encouraging, did not go far enough to reveal any
fine-grained structure hinting at fractality. One limitation was that it was not
possible to tune the magnetic field or the carrier density. Consequently, these early
experiments did not observe quantized minigaps in the spectrum, which are a crucial
aspect of the butterfly fractal. One feature of this experimental system—and a
feature not present in the highly idealized model studied by Hofstadter—was the
coupling between the Landau bands. It turns out that this coupling cannot be

Figure 12.7. Panel (A) shows the experimentally measured longitudinal resistivity (in black) and Hall resistivity
(in red), using an artificial crystal having square lattice cells of size = ±a 102.7 0.5 nm. (Here the resistivities are
denoted by the Greek letter “ρ”, in contrast to the usual roman “R”.) Panel (B) shows the theoretical butterfly
spectrum, where the integers in the graph are values of the topological quantum number σ, which determines
the Hall conductivity. On the right side of this figure, panels (a–c) highlight the green region of (A), where the
magnetic field varies between 0.6 and 0.7 tesla. In this region, Landau bands N = 13 and N = 14 are filled, and
the inverse magnetic flux ϕ−1 (denoted in the figure by

Φ
Φ
0 ) is roughly 2/3. This leads to a three-fold splitting of the

band. Panel (a) shows a theoretical blowup of butterflies, along with a sequence of σ values as the Fermi energy
enters various gaps. Specifically, the sequence (0, 1, 0, 1) for the Hall-conductance quantum number σ (written in
black, next to the descending staircase-like red lines) comes out of the Diophantine equation. To make it possible
to compare this theoretical plot with experimental findings, panel (b) displays this same theoretically predicted
sequence of σ-values using the sizes of gaps as plateau widths (shown in red) obtained from the theoretical
butterfly. To simulate disorder and finite temperature, this curve is convoluted (black)—a procedure that is
necessary, since it is not easy to calculate the butterfly spectrum for a dirty system at finite temperature. Panel (c)—
a blowup of part of the green region of part (A) of this figure—shows the experimentally observed longitudinal
conductivity and Hall conductivity. The expected nonmonotonic behavior, where the Hall conductivity nearly
takes on quantized values, confirms the theoretical prediction. The dotted circles in (b) and (c) help bring out the
agreement between theory and experiment. (Adapted from [2] reproduced with permission.)
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ignored, particularly as one tries to resolve higher-order gaps. Therefore, although
the experiment we have just described confirmed some of the minigaps (we refer
readers to the original paper for further details), the original Hofstadter butterfly
spectrum does not apply to this setup, because it did not take into account any kind
of coupling between Landau bands.

12.2 Magical carbon: A new net for the Hofstadter butterfly
The year 2013 witnessed a major breakthrough in the laboratory verification of the
Hofstadter butterfly spectrum. At the heart of this remarkable achievement lay a
wonder material—graphene—a completely new kind of two-dimensional crystal,
and a rapidly rising star on the horizon of materials science and condensed-matter
physics.

At the present time, graphene is the ultimate two-dimensional conducting system.
It can be thought of as a single layer of carbon atoms that has been isolated from a
graphite crystal. Appendix A summarizes some of the properties of this astonishing
material, whose discovery was rewarded by the 2010 Nobel Prize in Physics [9].

This natural two-dimensional crystal soon emerged as a highly suitable candidate
for catching the butterfly in a laboratory. The key breakthrough was the idea of
using moiré patterns, which are interference patterns that become visible when two
lattices are superimposed, as shown in figure 12.8. This elegant geometrical trick,
carried out by superimposing two different hexagonal lattices—graphene and boron
nitride—created an emergent hexagonal lattice with a far larger unit cell, whose
linear dimensions were on the order of 10–14 nanometers. The experimenters were
also able to use very powerful magnetic fields, having strengths of up to 45 tesla.
These parameter values in the B-versus-a space depicted in figure 12.2 lie well inside
the critical gray region in that figure—the only zone in which it would be
theoretically possible to detect some of the fractal aspects of the butterfly graph.
We note that as long as the point (B,a) falls in the desirable gray zone in figure 12.2,
it is advantageous to have a relatively small lattice cell and a relatively large
magnetic field, because that combination of parameters gives the best chance for
detecting minigaps in the spectrum. Numerous laboratories substantiated this idea,
and the reader is referred to the original papers.

As Cory Dean and his collaborators explained in their 2010 paper [10] in Nature
Nanotechnology, superimposing graphene on the standard substrate of silicon dioxide
yields a highly disordered superlattice. By contrast, superimposing graphene on the
hexagonal substrate of boron nitride is a more promising idea, because boron nitride
has a lattice constant very close to that of graphene, and it also has an atomically
smooth surface that is relatively free of dangling bonds and charge traps. And indeed,
the moiré pattern that arises as a result of superimposing a layer of graphene on a
layer of hexagonal boron nitride and then rotating it forms a hexagonal superlattice
(see figure 12.8) whose length scale is on the order of 10 nanometers (roughly 40 times
greater than the length scale of the lattices of graphene and boron nitride). This moiré
superlattice, in combination with very powerful magnetic fields, opens up unprece-
dented experimental avenues for testing the fractal spectrum.
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Comparing GaAs/ALGaAs and graphene-hexagonal boron nitrate heterostructures

GaAs/ALGaAs superlattices, although they have a very large lattice spacing (about
100 nanometers), unfortunately have a very limited ability to tune the carrier density
and other parameters, which is crucial if one wishes to map out the entire Hofstadter
butterfly spectrum. In order to be able to observe the miniband structure, it is
necessary to reduce the period of the superlattice to length scales comparable to the
Fermi wavelength of the electrons, which is about 50 nanometers in GaAs
heterojunctions. Furthermore, fabricating such lattices while maintaining coherent
registry and without introducing disorder is a daunting task.

Figure 12.8. At the top is shown the hexagonal lattice structure of graphene. The drawing just below it shows the
very similar hexagonal lattice structures of graphene and boron nitride. The drawing just below that depicts the key
idea, showing what happens when a layer of graphene is superimposed on a layer of boron nitride and then slightly
rotated; the result is a moiré pattern that still possesses hexagonal symmetry, but on a considerably larger scale.
Indeed, the linear size of the unit cell of the emergent moiré lattice is on the order of 10 nanometers, which is much
greater than that of the two substrates, which is about 0.25 nanometers. Finally, the drawing on the lower right
shows the powerful magnet at the National HighMagnetic Field Laboratory that was used in the experiment. The
cross-section reveals the complexity of the equipment, and thus affords some sense of the remarkable recent
advances in generating very high magnetic fields. This national laboratory houses several world-record magnets,
including a 45-tesla hybrid magnet, which combines resistive and superconducting magnets to create the strongest
steady magnetic field available anywhere. The lab’s 35-tesla resistive magnet is the strongest such magnet in the
world, and its 25-tesla Keck magnet boasts the highest homogeneity of any resistive magnet. (Adapted from [11]
with permission and the permission of the National High Magnetic Field Laboratory.)
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In contrast, superimposing graphene and hexagonal boron nitride (hBN), whose
crystal lattices are structurally almost identical to each other, results in a periodic
moiré pattern. The size of the unit cell of the moiré superlattice is a function of the
angle between the two substrate lattices, and it can be tuned so that the superlattice
runs through all the different desired length scales. Moreover, hBN provides an ideal
substrate for achieving graphene devices with high mobility, which is crucial for the
purposes of high-resolution quantum Hall measurements. Finally, gating in
graphene allows the Fermi energy to be continuously varied through the entire
Bloch band of the moiré lattice. An experimental setup with lattice sizes on the order of
10 nanometers and with high magnetic fields (up to 30–40 tesla) has the possibility of
giving high enough magnetic flux-values to allow many minigaps of the butterfly
spectrum to be observed. In summary, a moiré superlattice produced by superimposing
graphene with hBN yields an ideal platform for experimentally capturing the fractal
structure of the Hofstadter butterfly.

Three research groups—one based in Manchester, England, another at Columbia
University, and a third at MIT—worked independently at the National High
Magnetic Field Laboratory in Florida and observed signatures of the butterfly
fractal. Each of these groups used moiré superlattices that had relatively large unit
cells (their dimensions were on the order of tens of nanometers), but which differed
in other aspects. The Manchester and MIT groups used single-layer graphene, while
the Columbia-led experiment used two layers of graphene. By trying out different
relative orientations of the two lattices, the teams were able to find orientations that
yielded superlattices with appropriately large spacings. The teams then determined
the energy spectra of the electrons in their superlattices by measuring the electrical
conductivity in very strong magnetic fields—up to about 35 tesla for the Columbia
group, 17 tesla for the Manchester group, and 43 tesla for the MIT group. These
experimental findings were received with great excitement by the condensed-matter
physics community. Here are some of the main articles:

1. “Hofstadter’s butterfly and the fractal quantum Hall effect in moiré
superlattices” (2013) [11].

2. “Cloning of Dirac fermions in graphene superlattices” (2013) [13].
3. “Massive Dirac fermions and Hofstadter butterfly in a van der Waals

heterostructure” (2013) [12].

Figures 12.9, 12.10 and 12.11 provide a small sampler of experimental results.
The graphs in them, all reflecting real laboratory studies, give a taste of the kind of
measurements done in the laboratory and how they seem to confirm at least some
aspects of the butterfly’s intricate structure. The quantum Hall states that were
observed were found to correspond well with the predicted spectral gaps in a
Hofstadter-type energy spectrum. In addition to Hall conductivity, the experiment-
ers also measured the filling-fraction ρ, and from the graph of ρ versus magnetic flux
ϕ they were able to obtain the topological quantum numbers σ and τ. The references
given below contain much more information, and show results from many different
measurements. Taken all together, they make a strong collective case that the real
energies of real electrons in real crystals immersed in real magnetic fields do in fact
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possess some of the key features of the highly theoretical spectrum discovered by
Douglas Hofstadter in the mid-1970s.

We emphasize that such experimental measurements do not constitute a direct
detection of the fractal spectrum, but they strongly suggest the existence of a
Hofstadter butterfly that has not yet quite flown into the net. It goes without saying
that no experiment could ever see the butterfly in its entirety, since it is a fractal with
structure on infinitely many levels, and of course nothing in nature goes down
infinitely far like that, with infinite amounts of detail. Nonetheless, when one gathers
together many different observations, and especially when one recalls that these data
come from three independent groups, one can have little doubt that many of the
essential aspects of the exotic nesting behavior first spotted by Hofstadter have
actually been detected in real laboratories.

Figure 12.9. The upper half shows two graphs from the experiment of Dean et al, showing both longitudinal
and Hall conductivity plotted as functions of the flux-value. The sudden sign-reversal of σxy (the Hall
conductivity), accompanied by an enhancement of the longitudinal conductivity near flux-value ϕ = 1/2, is in
complete agreement with the butterfly graph displayed underneath. The gapless spectrum belonging to ϕ = 1/2
(recall that since the denominator is even, it has two bands that kiss in the middle) leads to a large value of σxx,
and the sign-reversal of the Chern number is reflected in the sign-reversal of σxy. (Adapted from [11]
reproduced with permission.)
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Below we quote some recent statements from physicists involved in this research
as they shared their results with reporters, who of course are always eager to learn
about exotic new scientific discoveries:

This is a very good example of a fundamental discovery that opens doors that
we do not even know about yet. Why go to a distant planet? We go there to
discover what’s out there. We do not yet know what this new world will result
in and what will emerge out of this.

—Cory Dean, experimental physicist at the City College of New York.

We found a cocoon. No one doubts that there is a butterfly inside.
—Pablo Jarillo-Herrero, experimental physicist at MIT.

Using the 45 tesla hybrid magnet, researchers at the MagLab observed the
long-predicted but never-before-seen fractal known as the Hofstadter butter-
fly. This work enriches our understanding of the basic physics of electrons in a
magnetic field and opens a new route for exploring the role of topology in
condensed matter systems.
—A post on the website of the National High Magnetic Field Laboratory.

12.3 A potentially sizzling hot topic in ultracold atom laboratories
Ultracold atoms at micro-kelvin to nano-kelvin temperatures are now emerging as a
highly versatile new tool for exploring many condensed-matter phenomena, such as

Figure 12.10. A sampler of experimental results of Dean and collaborators from their 2013 Nature paper,
showing what happens with a smaller lattice cell. Panel (a) shows a Landau fan diagram, which reveals some of
the fine structure of the butterfly, lurking in the color-coded graph of longitudinal conductance. Panel (b)
shows the Hall conductivity for a fixed value of the magnetic field, corresponding to the dashed white line near
the top of panel (a). The panel on the lower right shows the results for various temperatures ranging from 2 K
to 20 K, where the integers in parentheses show the quantum numbers σ τ( , ). The upper right panel shows the
Hall conductance at 2 K. (Adapted from [11] reproduced with permission.)
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the quantum Hall effect. Here, highly disciplined neutral cold atoms are “fooled” into
behaving like charged particles in a magnetic field. This trickery is achieved by using
laser-induced hopping, where a controlled phase can be imposed upon particles
moving around a closed loop, thus creating a synthetic magnetic field. This artificial
field, mimicking a real magnetic field, makes totally neutral fermionic atoms (i.e.
atoms that are fermions—that is, atoms with half-integer spin), such as 6Li and 40K,
act in much the same way as charged electrons act in a real magnetic field.

A two-dimensional crystalline environment for these cold neutral atoms can be
manufactured by making “optical lattices”—artificial lattices formed by the

Figure 12.11. These graphs are taken from a 2013 Science paper by Hunt and collaborators ([19] reprinted with
permission). Panel (A) shows the Hall conductance (here denoted by the letter “G”) that was measured for
magnetic fields up to 45 tesla. The lower graph (B) (reproduced with permission of Professor Greiner, Harvard
University) shows a theoretical Claro–Wannier diagram, where energy gaps in the Hofstadter spectrum are
represented as linear trajectories ρ σϕ τ= + . The gray lines indicate gaps for σ− ⩽ ⩽4 4. The red lines
superimposed on the theoretical Claro–Wannier diagram were taken directly from the upper graph, and thus
constitute experimental data. Note the considerable agreement between the gray theoretical lines and the red
experimental ones. Panel (C) shows the theoretical Hofstadter-like energy spectrum for the lowest Landau level of
a system incorporating both spin and symmetry-breaking terms. The black points indicate regions of dense energy
bands; intervening spectral gaps are color-coded to the associated Hall conductance. Panel (D) shows the
conductance traces within the Landau level at magnetic-field values of 43 tesla (top) and 19 tesla (bottom). The
emergence of Hofstadter-butterfly minigaps, recognizable as nonmonotonic sequences of quantized conductance
plateaus, is evident in the 43-tesla data. The monotonic sequence observed in the 19-tesla data shows the quantum
Hall effect in the total absence of a lattice potential, or for a very weak lattice potential. (Adapted from [12]
© 2013 American Association for the Advancement of Science, reproduced with permission.)
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interference of laser beams, producing a spatially periodic pattern (see figure 12.12).
When an atom interacts with light (an electromagnetic field), the energy of its
internal states depends on the intensity of the field. Therefore, a spatially varying
field intensity induces a spatially varying potential energy that acts as a potential-
energy landscape that can be used to trap ultracold atoms in a periodic fashion in
space. The resulting arrangement of trapped atoms has much in common with an
ordinary crystal lattice [17].

Two independent research groups have created optical lattices with ultracold
neutral atoms moving in them, and these atoms mimic the behavior of electrons in

Figure 12.12. The top panel (a) shows an optical standing wave generated by superimposing two laser beams
(Figure reproduced from [14] with permission, copyright 2008 Nature Publishing Group.). The antinodes (or
nodes) of the standing wave form a periodic array of microscopic laser traps for the atoms. Such a “crystal of
light”, in which cold atoms can move and can be stored, is called an optical lattice. If several standing waves
are made to overlap, higher-dimensional lattice structures can be formed, such as the two-dimensional optical
lattices shown in panel (b) (Figure reproduced with prermission of [15], Harvard University.). Panel (c) is a
cartoon (Figure reproduced from [16] with permission. Copyright 2016 American Physical Society.) showing
ultracold atoms interacting with two perpendicular laser beams (red) that, being coherent with each other, can
interfere and produce path-dependent phases. The atoms, even though they are electrically neutral, behave just
like charged particles in a two-dimensional lattice in a magnetic field. They can tunnel between lattice sites,
where tunneling involves absorbing and emitting photons in the laser beams.
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an ordinary crystal lattice moving under the influence of a strong magnetic field. The
result is a novel realization of the idealized Hamiltonian used by Hofstadter [18].

In one such setup, rubidium atoms tunnel between sites in a two-dimensional
square lattice in a regime where tunneling involves absorbing and emitting photons
produced by lasers. Interaction with these lasers produces path-dependent phases for
the atoms, and this mimics a magnetic field acting on the lattice-bound electrons. It
turns out that in this fashion, one can make sufficiently intense synthetic magnetic
fields that the system enters the desirable regime in which it is possible to observe
aspects of the fractal spectrum of a two-dimensional electron gas in an ordinary
lattice in a real magnetic field.

As of this writing, cold-atom experiments have not yet observed the fractal
pattern that is associated with the model explored by Hofstadter, but they have
provided compelling evidence that the model’s Hamiltonian has been physically
realized. Extensive efforts are currently underway in various laboratories to capture,
for once and for all, the celebrated fractal beast. However, it still remains to be seen
whether ultracold electrically neutral atoms—a very orderly species acting like
cloned soldiers—can mimic the behavior of noninteracting charged particles. But
there is great promise in the optical lattices produced by crisscrossing laser beams
and the controlled motion of neutral atoms in such lattices. Perhaps this technique
will provide just the right landscape that will allow empirical confirmation of the
theoretical model studied by Hofstadter.

Meanwhile, the obsession with spotting this beloved butterfly somewhere in the real
world continues to occupy center stage in our scientific adventures. As we commem-
orate the four decades of the Hofstadter butterfly, we hope that this journey will lead
us into brand-new territories—and along the way revealing yet other unknown and
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unimagined secrets of this wonderful and endlessly intriguing quantum world that we
macroscopic classical creatures have the good fortune to inhabit.

Appendix: Excerpts from the 2010 Physics Nobel Prize
press release [9]

Graphene—the perfect atomic lattice

A thin flake of ordinary carbon, just one atom thick, lies behind this year’s Nobel Prize
in Physics. Andre Geim and Konstantin Novoselov have shown that carbon in such a
flat form has exceptional properties that originate from the remarkable world of
quantum physics. Graphene is a form of carbon. As a material, it is completely new—
not only the thinnest ever, but also the strongest. As a conductor of electricity, it
performs as well as copper. As a conductor of heat, it outperforms all other known
materials. It is almost completely transparent, yet so dense that not even helium, the
smallest gas atom, can pass through it. Carbon, the basis of all known life on Earth,
has surprised us once again.

Geim and Novoselov extracted the graphene from a piece of graphite such as is
found in ordinary pencils. Using regular adhesive tape they managed to obtain a flake
of carbon with a thickness of just one atom—this at a time when many believed it was
impossible for such thin crystalline materials to be stable. However, with graphene,
physicists can now study a new class of two-dimensional materials with unique
properties. Graphene makes experiments possible that give new twists to the
phenomena in quantum physics. Also a vast variety of practical applications now
appear possible, including the creation of new materials and the manufacture of
innovative electronics. Graphene transistors are predicted to be substantially faster
than today’s silicon transistors and result in more efficient computers. Since it is
practically transparent and a good conductor, graphene is suitable for producing
transparent touch screens, light panels, and maybe even solar cells. When mixed into
plastics, graphene can turn them into conductors of electricity while making them
more heat-resistant and mechanically robust. This resilience can be utilized in new
super-strong materials, which are also thin, elastic, and lightweight. In the future,
satellites, airplanes, and cars could be manufactured out of the new composite
materials.
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The butterfly gallery:
Variations on a theme of Philip G Harper

Large Divided Oval Butterfly. This bronze sculpture by Henry Moore, weighing in at over eight tons, seems to
hover weightlessly over the surface of the reflecting pool at Berlin’s House of World Cultures.
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It is always fascinating to hear what kinds of variations a great composer can come
up with when creatively exploring the possibilities lurking implicitly within a given
theme—for example, Sergei Rachmaninoff’s Rhapsody on a Theme of Paganini, J S
Bach’s Goldberg Variations, and so forth—and when the composer is Nature herself,
one’s curiosity will be particularly piqued.

In this mini-gallery, the theme is Harper’s equation and all that comes out of it.
On this theme, nature has composed some beautiful variations that reflect the
immense richness, diversity, and universality of the patterns inherent in the theme.
This gallery of various reincarnations of the Hofstadter butterfly features Bloch
electrons that reside in various types of non-square lattices (including the quasi-
periodic Penrose lattice), or in lattices that are subject to additional complications,
such as electron–electron interactions or a Zeeman splitting or spin–orbit coupling.

The first display in the Gallery is from the 1969 paper by Dieter Langbein.
Although today readers can immediately recognize the butterfly in this image,
Langbein, who did not know the 1964 paper by Azbel’ and probably had no
background in number theory, did not realize his graph’s recursive aspect—the heart
and soul of this graph. Otherwise, as Douglas Hofstadter said in the Prologue, this
image might have been known the world ’round as the “Langbein butterfly”.

The last display in the gallery is from the world of particle physics—indeed, from
the colorful world of quarks and antiquarks, described by the laws of quantum
chromodynamics (QCD). This rare beast, here dubbed the “quantum-chromody-
namical butterfly”, was first sighted, by a lovely coincidence, in the University of
Regensburg’s Physics Department—the very place where Gplot was first sighted, in
November of 1974. Thus the venue where the Hofstadter butterfly was born some 40
years ago has now given birth to a sequel—perhaps encoding new secrets of nature.

Without further ado, we now embark on our Variations on a theme of P G Harper.
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Bloch electrons in tetragonal and hexagonal lattices, by Dieter Langbein, from his 1969 Physical Review article
“The tight-binding and the nearly-free-electron approach to lattice electrons in external magnetic fields” [1]
(image reproduced with permission). The upper two panels show results for a tetragonal (square) lattice, while
the lower two are for a hexagonal lattice. Also, the left panels and the right panels, respectively, come from
analytic and numerical work.

Butterfly in the Quantum World

13-3



Gplot, by Douglas Hofstadter, from his 1975 University of Oregon doctoral thesis “The energy levels of Bloch
electrons in a magnetic field” [2] (image reproduced with permission).
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Top panel: Electrons in a hexagonal lattice by Francisco Claro and Gregory Wannier, from their 1979 Physical
Review B article “Magnetic subband structure of electrons in hexagonal lattices” [3] (copyright American
Physical Society). Bottom panel: Electrons in a honeycomb lattice, by R Rammal, from his 1985 Journal de
Physique article “Landau level spectrum of Bloch electrons in a honeycomb lattice” [4].
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Bloch electrons cavort in kagome lattices, by Yi Xiao, Vincent Pelletier, Paul M Chaikin, and David A Huse.
So-called “kagome lattices” look like the woven pattern of a bamboo basket. The term was coined by Japanese
physicist K Fushimi, who spliced together the roots “kago” (bamboo basket), and “me” (woven pattern). This
graph is taken from Xiao et alʼs 2003 Physical Review article “Landau levels in the case of two degenerate
coupled bands: kagome lattice tight-binding spectrum” [5] (Copyright American Physical Society).

Harper meets Penrose, by Tetsuo Hatakeyama and Hiroshi Kamimura, from their 1987 Solid State
Communications article “Electronic properties of a Penrose tiling lattice in a magnetic field” [6] (reproduced
with kind permission of Elsevier).
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The butterfly flies away, by Alejandro Kunold and Manuel Torres, from their 2000 Physical Review article
“Bloch electrons in electric and magnetic fields” [7] (copyright American Physical Society).
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Electrons remember their spin, by Wouter Beugeling, featuring spin-orbit coupling (left) and Zeeman splitting
(right) for the honeycomb lattice, from Beugeling’s 2012 University of Utrecht doctoral thesis “Topological
states of matter in two-dimensional fermionic systems” [8] (copyright American Physical Society, reproduced
with permission).

Braid structure when electrons interact at long distance, by Jean Bellissard and Armelle Barelli, from their 1993
Journal de Physique article “Semiclassical methods in solid-state physics: two examples” [9].
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Electrons interact with each other, by Hyeonjin Doh and Sung-Ho Suck Salk, from their 1998 Physical Review
article “Effects of electron correlations on the Hofstadter spectrum” [10] (copyright American Physical
Society).
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Instantons carry traces of the Hofstadter butterfly, by Denise Freed and Jeffrey A Harvey, from their 1990
Physical Review article “Instantons and the spectrum of Bloch electrons in a magnetic field” [11] (copyright
American Physical Society).

Quantum-chromodynamical butterfly, by Gergely Endrödi, from his 2014 paper “QCD in magnetic fields: from
Hofstadter’s butterfly to the phase diagram”, given at the 32nd International Symposium on Lattice Field
Theory, held at Columbia University [12]. (Reproduced with permission of Dr Endrodi, University of
Frankfurt.)
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Divertimento

While writing this book, I had the privilege of communicating by email with some
very special people to whom I am extremely grateful. Below I share a few of these
emails, since they tell interesting tales that are now part of the history of this book-
writing project.

1. Who came up with the name “butterfly”?
Here are some replies to the queries I sent out asking who coined the term
“butterfly” for Hofstadterʼs graph of the spectrum of Harperʼs equation.

Douglas Hofstadter
In answer to your query, I myself did not come up with the name “butterfly” for

Gplot. It never occurred to me to see it that way (or if it did at some point, it would just
have been a random private thought, and I wouldn’t ever have suggested that term as a
way to refer to the graph—thatʼs not my style, or at least it wasn’t my style back then).
Itʼs a charming term, no doubt, but it didn’t come from me! I have no idea who first
called Gplot a “butterfly” in print. Sorry not to be able to help you out on that! Yours,
Doug.

Francisco Claro
Emeritus Professor of Physics at the Universidad Católica de Chile in Santiago,
Chile

Having no idea who first named Hofstadterʼs Butterfly, I wrote Jean Bellissard to find
out. Am still waiting for his reply and am also keeping an eye on my files to see if the
butterflyʼs birth certificate appears somewhere. Francisco

Jean Bellissard
Professor of Mathematics and Physics at Georgia Tech

I have been thinking about your question and my conclusion is: I don’t know. I
thought Doug Hofstadter was at the origin. I have scanned my own archives to figure
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out when I started using the term. I feel like it was after the end of the eighties. I gave a
talk at the Seminar Bourbaki in 1991, which appeared in Astérisque in 1992.
“Le Papillon de Hofstadter, d’après B. Helffer et J. Sjöstrand”, Séminaire
Bourbaki, 44e année, 1991–92, #745 (novembre 1991). Published in Astérisque, 206,
(1992), pp. 7–40.

Apparently that was the first time I was using the term “Hofstadter Butterfly”. I did
not invent it, but it was in the air for a long time and I just chose to use this term as an
advertisement for the problem. However, scanning my own work prior to that date
(with Rammal, Barelli, Seiler, Simon) or the work of others during the eighties about
this problem (Aubry, Wilkinson, Helffer-Sjöstrand), I did not see this term being used
before 1991. I wonder whether the term did not come from people using it in connection
with the high Tc superconductors. I remember P. W. Anderson discussing the
Hofstadter spectrum in connection with “flux phase” and the RVB theory. But I
could not point to this reference explicitly. I suppose you already asked Yosi Avron,
since the picture of the butterfly which is now very famous came from one of his former
students.

Well, if you find out, please let me know. I have buried this period into my memory,
since I am now surrounded by people much younger who have no clue about what I am
talking about concerning anything before 1995.

Finally, the answer to my query was found... The word “butterfly” first occurred
in none other than Douglas Hofstadterʼs very own Physical Review article [1], on
page 2241, where he writes:

The large gaps form a very striking pattern somewhat resembling a butterfly...

Yes, in the end it was Douglas Hofstadter himself who first used the term “butterfly”
in his Physical Review article, but over the years he forgot all about having done so!

When asked quite recently what he thought about this unexpected revelation,
Hofstadter wrote: “I still think that this kind of concrete visual association was not
really my own personal style. On the other hand, I vividly remember that back in
those days, mymother always used to see animal forms in my abstract line drawings—
drawings in which I never intended to depict any animals at all—and so I surmise that
one day when I showed her Gplot, she probably said to me, in an offhand way, ‘It
looks like a butterfly!’ and that was most likely the origin of the term.”

2. The Butterfly meets Dick Feynman
Doug Hofstadter shared with me the following tale, which triggered endless
speculations in my mind about what the butterfly graph might have meant to
Richard Feynman, one of the greatest minds of the last century.

In the summer of 1975, when I was in the throes of working out the details of
Gplotʼs structure and proving that the “smeared” versions of Gplot were always
perfectly continuous, I had the good fortune of visiting Feynman in his Caltech office
and spending a few hours in conversation with him. That afternoon we talked about
many things, but when I showed him Gplot and explained to him what it was, he
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was absolutely thunderstruck, and instantly asked his secretary to photocopy it not
just for himself but even more for his teen-aged son Carl, who, he told me, would
love it.

When I told Feynman about the smeared versions of Gplot, he spontaneously used
the verb “jiggle” instead of “smear”, and so, in my prologue, as a tip of the hat to him,
I used that verb a couple of times. I also recall that almost the very moment that I
wrote Harperʼs equation on his blackboard, Feynman casually commented that it
looked like it must be its own Fourier transform, a fact that I myself had recently
realized (but only after months of thinking about it). Needless to say, the lightning-
quickness of his insight bowled me over.

In my Physical Review article and in my PhD thesis, I very briefly thanked
Feynman, though I didn’t explain in either place why I did so. What I was actually
thanking him for was his great enthusiasm for the grace of Gplot, which was so instant
and so infectious that it gave me a big boost of self-confidence.

After I read this tale, my curiosity and sheer hunger to know what transpired
between father and son as they stared together at the butterfly graph were mixed with
delicious thoughts, drowning me in a wild ocean of imagination. In my attempts to
contact Carl Feynman, I sent emails to several members of the faculty and the
administrative staff at Caltech, to Perseus Books (the publisher of a collection of
Feynmanʼs letters, edited by Feynmanʼs daughter Michelle), and to Feynmanʼs old
friend and colleague FreemanDyson. I received only two responses: one fromFreeman
Dyson, who said that he did not know Carl Feynman (I was touched by his immediate
response to my email), and one from Alan Rice, Caltechʼs Division Administrator for
Physics, Mathematics, and Astronomy, who wrote the following note:

Dear Dr Satija,
Richard Feynman was a striking man, and many individuals recall their interactions

with him, even after several decades. (Dick and I first met in 1980 while waiting to cross
a busy street. His response to my question was so passionate that he simply stopped
walking halfway across, stranding us in traffic!)

Thanks for your interest in expanding Feynmanʼs scientific legacy, itʼs a very rich
fabric.

Carl does not often join in the publicity. We will, however, pass along your question
and leave him to respond if he wishes.

Alan Rice

And yes, I finally did hear back from Carl Feynman, and here is his response:

Dear Prof Satija,
I would have been 13 or 14 in 1975. I later became fascinated by fractals, like many

mathematically-inclined people of my generation, but at the time I would of course not
have heard of them. The image of the Hofstadter butterfly is familiar to me, in the
sense that when I see the red-and-blue presentation of it, I think to myself, “Ah, that
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thing again.” Alas, I have no memory of seeing—or talking about—the Hofstadter
butterfly in 1975. Presumably I saw it sometime between that day and this.

I’m sorry to be such a lousy source. If you have more questions, I am of course
happy to cooperate.

–Carl F

And so, in the end, did father and son ever talk about the butterfly? We may never
know...

Robert Boeninger, Richard Feynman, and Doug Hofstadter
Sometimes it seems that we live in an incredibly small world, as the following tale

shows. While my book was being copy-edited, I found out about a new book of
quotations from Richard Feynman, lovingly compiled by his daughter Michelle, and
so, being a great devotee of Feynman, I immediately bought it. In riffling through it
I came across a surprising claim by Feynman to the effect that number theory plays
no role in physics (a fact for which he said he knew no reason). Since this Feynman
quote was so close in spirit to the Michio Kaku remark I’d already put in chapter 2’s
conclusion, I felt I should definitely include it there as well. Doug Hofstadter, when
he saw this small new addition, was very intrigued, and asked me if the compilation
of Feynman quotes told when or where Feynman had made this provocative
comment. I accordingly looked it up in the book and wrote back to him, saying that
it was apparently taken from a letter that Feynman wrote in May, 1969 to someone
named Robert Boeninger, a name completely unknown to me. When Doug received
my email he instantly wrote back as follows:

Figure 14.1. Robert Boeninger and Douglas Hofstadter meeting in Göttingen, early February 1975.
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Wow! This is a totally unexpected revelation, and is quite incredible! You would
have had no reason to suspect this, Indu, but Robert Boeninger is one of my closest,
dearest, oldest friends. We met way back in fourth grade (early 1954), when we were
both just 9 years old, at Stanford Elementary School. Ever since then, we've been
super-close friends, sharing thoughts about everything under the sun, always deeply
fascinated by number theory. Our passions for mathematics grew together and were
intricately intertwined for many years. In the early 1960s, Robert and I talked all the
time about eta-sequences, INT, and related matters, and for years we explored
mathematics together. In fact, my book “Gödel, Escher, Bach” grew out of a 32-page
letter I wrote (in longhand!) to Robert in the summer of 1972.

Some years later, in the mid-1970s, Robert was living in Hamburg, Germany, far
north of Regensburg, where I was living, and a couple of times during my struggles
during that forlorn period, I badly needed a break, so I took the eight-hour train ride
and stayed for a day or two with Robert and his family. The most intense such get-
together, however, was when Robert and I both took trains, he heading south and I
north, and met at the midpoint: on a platform of the train station in Göttingen, the
fabled university town where Gauss, Dirichlet, Riemann, Hilbert, Planck, Born, and
countless other stellar math and physics figures once lived. (See Figure 1.) During
that unforgettable weekend, Robert and I talked nonstop about my trials and
tribulations with my Doktorvater, and together we tried to dream up ways to prove
that Gplot was an infinitely recursive structure. A beautiful long walk we took
through the Göttingen forests, unexpectedly winding up at an exquisite teahouse atop
a high hill, later inspired the dialogue “Magnificat, Indeed” in “Gödel, Escher,
Bach”.

In short, Robert was on the front lines with me all the way from my exuberant eta-
sequence days to my despairing doctoral days. Toward the end of the
Acknowledgments in my thesis, I wrote this paragraph: “Perhaps the most needed
moral support of all was given by my old friend Robert Boeninger. My conversations
with him in Stanford, Hamburg, and Göttingen were highly valuable. They deeply
influenced my patterns of thought, and my state of mind, for which I owe special
thanks.” And so, quite marvelously, the quote from Feynman that you stumbled upon
twists Robert Boeninger, Richard Feynman, and Doug Hofstadter magically together
in a tight little loop. I am smiling with amazement and delight!

3. Three mementos from Doug Hofstadter’s filing cabinets
Douglas Hofstadter was recently rummaging around in his old files connected with
his doctoral research, and he chanced upon a number of intriguing documents
that provide a glimpse into what the Hofstadter butterfly and the science underlying
it meant to some of the pioneers of condensed-matter physics. Here are three of
those items.

3.1. Gregory Wannier writes to Lars Onsager

The first item is a letter written by Gregory Wannier to Lars Onsager in August of
1975. (Hofstadter had no memory of how this letter had come to be in his files, nor
of why it was in such bad shape and on pink paper.) Onsager was a Norwegian-born

Butterfly in the Quantum World

14-5



American physical chemist and theoretical physicist who won the Chemistry Nobel
Prize in 1968. It was Onsagerʼs work, along with that of Rudolf Peierls, that opened
the way for Peierls’ student P G Harper to come up with his now-famous equation,
the equation whose eigenvalues form the butterfly graph.

Incidentally, Gregory Wannier does not refer to the equation as “Harperʼs
equation”. He himself had independently found exactly the same equation in the
mid-1950s and had struggled with it for a long time, though he never published any
of his findings, which apparently were sparse. Then in the mid-1970s, Wannier,
Gustav Obermair, and Alexander Rauh—none of them aware of Harperʼs work—
rediscovered the equation and started working hard on it together. Mysteriously, it
was only in the late 1970s that they finally learned of Harperʼs work.

In his letter, Wannier describes some progress he has recently made on the
problem, and then, toward the end, he mentions Hofstadterʼs computer plot,
saying: “It looks much more complicated than I ever imagined it to be.” It doesn’t
seem at all likely that if Wannier had understood the graphʼs recursive structure at
that time, he would have completely left out all mention of that structure. After all,
the ideas about infinite nesting were just too surprising and too radical to blithely
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skip over. We can thus infer that even at that late date, Wannier hadn’t yet fully
understood or accepted the graphʼs recursive nature. (Of course, by the time
Hofstadter had his doctoral defense, only four months later, Wannier was on board
with, and even excited about, the new ideas.) Onsager died in 1976 and Wannier in
1983, and we do not know whether Wannier ever heard back from Onsager.

3.2. Leo Falicov savors the butterfly

The second item is a refereeʼs report, dated March 1976, concerning Douglas
Hofstadterʼs article “Energy levels and wave functions of Bloch electrons in rational
and irrational magnetic fields” [1], which Hofstadter had submitted a month earlier
to the Physical Review. In it, the anonymous referee waxes effusive about the article,
likening it to a Mozart divertimento.

Sixteen years later, the theoretical physicist Leo Falicov met Hofstadter and
revealed to him that he had been the anonymous voice behind that report. Falicov,
who was born in Argentina in 1933 and died in the United States in 1995, not only
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was a world-renowned condensed-matter theorist, but also loved poetry and was an
accomplished pianist. A curious twist in the story is that one of Falicovʼs own
coworkers—probably a post-doc of his—was Dieter Langbein, who in 1969 had
come within a hairʼs breadth of discovering the recursive secrets of the Harper
spectrum.

3.3. Gregory Wannier embraces the butterfly

The final item is a short note written to Hofstadter at Indiana University in early
1980 by his old Doktorvater. Wannier presumes that since his ex-student has left
physics for other pastures, he probably no longer wishes to keep copies of his
Physical Review article. It is touching to read Wannierʼs words: “For me, on the
other hand, the article is like one of my own”; they reveal that in 1980, he had come
to embrace with deep affection the ideas that several years earlier he had dismissed
as “numerology”. Wannier finally realized the beauty of the ideas that had been
under his nose for a while without his understanding them, and in the end
he was very gracious about acknowledging his less than ideal behavior in the
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years 1974–1975 (this was in a 1979 letter that Hofstadter came across but decided is
too personal to publish here). Thus was rekindled all the prior warmth between
Doktorant and Doktorvater.

Reference
[1] Hofstadter D R 1976 Energy levels and wave functions of Bloch electrons in rational and

irrational magnetic fields Phys. Rev. B 14 2239
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Gratitude

I am blessed to have a very warm, talented, and highly dedicated group of friends
and colleagues who have helped me shape this book.

First, I feel tremendous gratitude to Douglas Hofstadter for sharing his memories
of when he first glimpsed Gplot, and for writing an inspiring history of the butterfly
graph. My small book about the Hofstadter butterfly would not have been complete
without Doug’s prologue, “The grace of Gplot”, for which I just do not have enough
words to thank him. When I first sent him an out-of-the-blue email with a nearly
complete draft of this book, I waited for his response for a few days, which seemed
like an eternity. I was in a state of sheer panic, with “butterflies in my stomach”,
imagining that my book’s draft had disappeared—even from his trash!—and I could
almost hear the deafening sound of the dreaded e-shredding. At last, though, I
received his reply, and it was not only with huge relief but with sheer joy that I read
it. His encouraging remarks and kind words to this complete stranger about her
book added new sparks and colors to my confidence, and in addition, the friendly
way he talked about poetry and outdoor adventures brought new life to the last
phase of my writing. Here is his reply, which he wrote on March 9, 2015 (and at
3.35 AM, on top of it all!):

Dear Prof. Satija,
Thank you so much for your kind note a few days ago. I was astonished and hugely

flattered to learn that someone had written a book in which Gplot plays a starring role.
I’m very gratified to know that you have done this.

This evening I downloaded your draft and looked carefully through it, from start to
finish. It is an amazing tour de force! I never realized that there was any connection
between Gplot and Apollonian gaskets (marvelous, magical mathematical objects that
they are!), or between Gplot and the Berry phase, or between Gplot and many other
things that you mention. I would have to read your book carefully from cover to cover
in order to understand the many connections that you describe, but even without having
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done so, it is thrilling to me to see the great excitement and the deeply sincere, almost
childlike sense of wonder that you exude in describing all these beautiful, interrelated
scientific phenomena. That’s a wonderful gift!

You asked if I could describe what I felt when I first glimpsed Gplot (which was
back in the fall of 1974 in Regensburg, Germany). Well, your request comes at a very
timely moment, since just this evening I wrote a long letter to a friend in which I did
exactly what you wished. I’ll attach that letter to this email. It will give you a pretty
accurate picture of how I felt when I first glimpsed Gplot’s hidden essence, sitting all
alone in my quiet Regensburg office one November day in 1974.

I wish to thank you once again for the magnificent labor of love that you have
produced. I will be very proud once it comes out, and I’ll certainly purchase numerous
copies to give to my more scientifically inclined friends (and even to a few others!).

I send you my warmest wishes, and I hope that your sparklingly lively book will
enjoy a truly grand success!

Sincerely,
Douglas Hofstadter.

P.S.—Before sending this letter off, I looked you up on the Web and broke into a
broad smile when I saw a photo of you standing at the edge of the Grand Canyon. That
was quite a coincidence, since just this past November I hiked down the Canyon and
then back up with my son Danny and his friend Charles.

I also saw your tribute to your father1, in which you describe, after he had lost the
ability to speak, his wordless way of mouthing the words to poetry that he loved and
had memorized, and how he expired while filling in the final words to a favorite poem
that you couldn’t fully remember. That is an amazingly touching image, and between
the lines you convey many powerful emotions and intangible ideas. Poetry, like music,
is one of humanity’s great collective creations, and savoring beautiful poems is a deeply
rewarding way to spend some of one’s precious time on earth.

As Doug described in the prologue, when he met me in person a few weeks later,
he volunteered to be the copy editor of the book. Being a perfectionist of the highest
order, perhaps he could not condone any writeup about his beloved butterfly that
did not live up to his standards. In any case, Doug made numerous revisions that
brought immense clarity and logical flow to almost all parts of the book. He was
extremely critical at times, raising important questions that eventually led to huge
improvements.

So the book has been cleansed, both inside and outside. It has been given a long
dip in the holy water of the Ganges, purifying its soul. And Doug, in his humble
way, mentioned in one email to me that he was simply trying to polish the “diamond
in the rough”. Well, he adjusted almost every paragraph of the book, yet without
changing its DNA. In spite of many revisions, I could always recognize my
“Cinderella”. By now, her rags have almost disappeared, replaced by beautiful

1 See also http://www.washingtonpost.com/opinions/poetry-and-my-father/2012/01/19/gIQA9KSLJQ_story.html
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clothes and ornaments, but she still remains the same old Cinderella that I created
before handing Doug my manuscript.

For Doug, proofreading chapter 6 was a kind of homecoming, bringing him back
to the “home” he had left behind 40 years ago. And so chapter 6 evolved into a
“guest lecture” by him. His passion and intimacy with the subject of this book is
evident in almost every sentence he wrote in that chapter. Perhaps it reflects his
nostalgia for physics or his love for his beloved Gplot, to whom he is still attached
like a child.

I should also mention that Doug was not just the copy editor of my book, he was
also my mentor and friend. His detailed lively emails filled with humor, in-depth
analysis, and comforting words were always source of great joy and inspiration.
They kept me moving in this project—a task that at times felt like it had no end in
sight. Doug was so open and forthcoming that we communicated without the
slightest hesitation to express our likes and dislikes about various aspects of the task
of perfecting this book. Yes, it was a great pleasure and a great privilege to work
with him. Some parts of me may be exhausted from this ultramarathon, but deep
inside, I feel rested and rewarded from this incredible, somewhat magical journey
that I did not envision when I started writing this book. I am truly blessed and
fortunate to have had this opportunity.

So this book is at last ready to come out of its hiding. Thank you, Doug, thank
you so much for being so gracious, so kind—I am touched.

From the bottom of my heart, my very special gratitude goes to my two
wonderful colleagues Erhai Zhao and Predrag Nikolic. Erhai was always there
for me when I needed suggestions or clarifications on various scientific issues to fine-
tune my writing. In my numerous moments of confusion, he was my savior
whom I could call on at any time. Having Erhai, particularly during the last
stages of this journey, was absolutely critical, and I cannot imagine crossing the
finish line without him. I also owe many thanks to Predrag Nikolic, who brought
clarity to my understanding of various condensed-matter concepts. Special thanks to
Francisco Claro, for his various comments that added some new colors to the book.
Various discussions and comments from Greg Huber were also very helpful.

My unbounded gratitude goes to John Blackwell, Sarah DeBauge, and Daniel
Dakin (see figure 15.1), without whom this book would have never seen its completion.
Both John and Sarah were students of mine, and they radiated such passion for
quantum physics that we had an immediate resonance. They were such a joy to work
with, and lots of fun to be around. During mymost intense periods of writing, we three
would often meet up for lunch or a drink, and our conversations would often digress
from the book, gravitating mostly towards Feynman, whom we all adored. It was a
sheer delight to hear John tell us some incredible stories about Feynman.

During these conversations, it occurred to me that John must have been quite an
anomaly in his business career, since for a period of ten years, during his business
trips, he was constantly reading Feynman’s “red books”, and he would spend all his
evenings in hotel rooms thinking about what it all meant.

A mathematics graduate from University College London, John contributed a
few paragraphs to various parts of the book. I am specially thankful to him for his
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suggestion that I start the chapter on fractal geometry with the Mandelbrot set, as it
opened up new ways for me to see the butterfly graph. How right John is in his
statement: “Physics professors seem to wonder if they should have been math
professors and vice versa. This book illustrates that the real fun is at the boundary
between the two.” John also tirelessly proofread the book several times, helping me
to overcome my seemingly infinite deficiency regarding the word “the”, and
correcting countless other errors.

Sarah was an art-history major at Stanford University, and these days, at George
Mason University, she is taking physics courses. In addition to her lovely rendition
of “The kiss precise” in chapter 0, Sarah’s artistry is reflected in many images of this
book. She, too, proofread the book again and again, and she graciously tended to
my frequent requests to fix old images as well as creating new ones. I admire her
patience, as very often my instructions were very imprecise, since I myself didn’t
know what I wanted, and so figuring it out required a lot of experimentation.
Having Sarah, someone so well-versed in both art and scientific culture, was a real
treasure during the course of writing this book.

I am indebted to Dan for his thorough and comprehensive reading of the book,
for checking every equation and figure, and for his various comments and
suggestions about what fit in and what did not. His instincts, his insights, and his
ability to spot errors with microscopic precision were all highly impressive. Dan and
I collaborated about a decade ago before he left academia and moved on to
challenges in industry. His love for physics has nonetheless stayed on course—the
butterfly plot has been attached to the pinboard in his office ever since 2006

Figure 15.1. From left to right: Dan, John, Indu, Doug, and Sarah at George Mason University, 2015.
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(see figure 15.2). Also, his seven-year-old daughter has taken to signing her name
Sara . Perhaps the Hofstadter butterfly has a nickname, too—the -butterfly.

I deeply want to thank my family for their support and enthusiasm (figure 15.3),
and for having put up with my butterfly-mania during the writing of this book.

Figure 15.2. The pinboard in Dan Dakin’s office. The butterfly picture has been posted on this pinboard since
2006, when Dan moved to his office at Optical Air Data Systems.

Figure 15.3. Top: four generations of my family in India. Bottom: my family in USA.
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There are other people whose presence in the background I constantly felt and
who definitely had a role in shaping this book. In particular, I want to acknowledge
two of my teachers. At Bombay University, Abbas Rangwala had such a friendly
and lively way of teaching quantum mechanics and introducing abstract concepts
that I fell in love with those things almost instantaneously. And at Columbia
University, my teacher and PhD mentor Richard Friedberg had the gift of a nearly
magical mathematical intuition, and his extraordinary visual way of approaching
abstract concepts is a gift I got from him. It made theoretical physics so much fun
and joyful. This style has stayed with me ever since my student days, becoming part
of me, and in my own teaching I continue to strive to pass it on to my students.

This book is a tribute to my teacher Richard Friedberg, one of the most brilliant
physicists I have encountered in my life. It was a great privilege for me to do my PhD
thesis with him. In the process of writing this book, I had many sudden awakenings,
reminding me how those days of graduate studies at Columbia University trans-
formed me and made me the person and physicist I am today. One of the most
important things that my work with Richard cultivated in me was to be absolutely in
love with what I do, and to remain almost immune to the highly competitive culture
that pervades the scientific community today. Among the top scorers in the famed
Putnam exam in mathematics in 1956, Richard was unconventional and absent-
minded, and he cared little about what was going on around him. Many adored him
just the way he was. I love the following quote from his book, Adventurer's Guide to
Number Theory: “The difference between the theory of numbers and arithmetic is
like the difference between poetry and grammar”, which reveals a side of Richard
that many may have missed. I should also mention that one of the most memorable
moments of my life was the day of my PhD exam (scheduled at noon) when he did
not show up. When we called his home, he was still sleeping, but he quickly arose

Photograph of Richard Friedberg, reproduced here with his permission.
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and rushed to join the other members of my PhD committee (namely, Joaquin
Luttinger, Pierre Hohenberg, and Alfred Muller), who patiently waited over an hour
until he showed up.

I am at a complete loss for words to thank my dearest friend Radha Balakrishnan—
a very special person and collaborator who has brought immense joy and magic to
my scientific adventures. After reading a draft of my book, Radha wrote, “When I
saw your mention of poetic mathematics, I was so reminded of the legends of
Lilavati and her father Bhaskara, who gave her math problems in the form of
poetry.”

How naïve it was of me to have forgotten Lilavati, a beautiful and highly
inspiring Indian tale from the 12th century! Bhaskara II, who lived from 1114 to
1185, was one of India’s greatest mathematicians and astronomers. In addition, he
wrote Lilavati, which consists of 279 verses in Sanskrit, each of which sets up a
mathematics problem. Much like the legends of Archimedes’ bathtub and Isaac
Newton’s apple, there is a legend that claims that Bhaskara composed that book
for his daughter Lilavati. Readers can easily access further details of the intriguing
tale of Lilavati by searching for it on-line, but with a bit of caution, as there are
numerous misquotations on the web about Lilavati. (I am very grateful to
Professor M S Sriram, a scholar on the history of the subject, for pointing some
of them out.)

Bhaskara concludes Lilavati by stating: “Joy and happiness are indeed ever-
increasing in this world for those who have Lilavati clasped to their throats, decorated
as the members are with neat reductions of fractions, multiplications, and involutions,
pure and perfect as are the solutions, and tasteful as is the speech which is
exemplified.” Coincidentally, 2014, the year in which I started writing this book,
was the 900th anniversary of the birth of Bhaskara—an event commemorated by
several academic conferences across India—and it almost feels as if behind my intense
drive to write this book there was an angel, reminding me to honor this great
mathematician and to salute his poetic mathematics. In fact, I decided to close my
book with a coda that is a short excerpt from Lilavati—a little gem of poetic verse
where love, beauty, and mathematics are intertwined, causing a special and unpar-
alleled glow. Just before the coda, I included special poems that were inspired by the
Hofstadter butterfly. They were written in response to the “Lilavati Competition in
Poetic Math and Science”, which I launched. The first of these poems is one that was
composed jointly by myself and Doug Hofstadter. I sent Doug a first attempt, he
revised it, then it went back and forth via email for a while, and we argued like little
kids about a few words here and there. The final result pleases us both, though.

Many, many thanks to the staff members of IOP Concise—Jacky Mucklow,
Chris Benson, Steve Trevett, Andrew Giaquinto, Karen Donnison, Joel Claypool,
and Jeanine Burke for their dedicated efforts in bringing this book to fruition.

In conclusion, I want to pay tribute to two great physicists who continue to guide
me and to inspire me in all the ups and downs of my quest to fathom the mysterious
quantum world.

First, I wish to pay deep tribute to Paul Adrien Maurice Dirac, who coded my
DNA with his principle of mathematical beauty: “We do not really know what the
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basic equations of physics are, but they have to have a great mathematical beauty.
We must insist on that...” There’s nothing deeper or truer than that! And yet I feel
compelled to mention that I have one small disagreement with Dirac, for he once
said: “I do not see how a man can work on the frontiers of physics and write poetry
at the same time. They are in opposition.” To me, however, the two activities are not
incompatible at all.

Secondly, I want to say how grateful I am to Richard Feynman—a
great physicist, great teacher, and great human being, with an incredible zest for
life—for all the joy he continues to bring to our lives, inspiring us in our scientific
adventures and struggles, and showing us all how to be creative in science while
enjoying every minute of it. I am reminded of a quote from a student of
Michelangelo: “The great ruler of Heaven looked down and, seeing these artists’
attempts, resolved to send to Earth a genius. He further endowed the genius with a
true moral philosophy and a sweet, poetic spirit, so that the world would marvel.”
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Before concluding my book with a coda—a short excerpt from Lilavati, a little
gem of poetic verse where love, beauty, and mathematics are braided together—I
briefly intervene, to a handful of poems inspired by the Hofstadter butterfly.

Thefirst one is a“Salute” composedbyDouglasHofstadter andmyself, our love letter
to this divine entity. In addition, I include four other poems that I received in response to
a challenge I launched on theWeb, called the “Lilavati Competition in PoeticMath and
Science”. As I stated in the announcement of this competition:

Scientists and mathematicians often strive for mathematical beauty with the same
depth and eagerness as painters, sculptors, and other artists. The Lilavati competition
strives to interlace the abstract poetry of science and mathematics embedded in its great
equations and intriguing concepts with the poetry of natural beauty and language,
adding a new dimension to one of the highest forms of artistry created by humans...

I ammost grateful to the contributors—Bala, Carlos, Julia, and Sachin—for having
lent their own types of verbal joy to this celebration of four decades of the Hofstadter
butterfly. For me, the gesture of concluding the book with short pieces of verse is also a
special way to honor Bhaskara, whose 900th birthday was celebrated last year, and
also a very special way to pay homage to my late father, who loved poetry.
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Selected bibliography

Below, in the interests of providing a useful historical overview, we provide a
chronological list of selected references concerning the theory of Harper’s equation
and its spectrum (the Hofstadter butterfly), grouped in four categories: (1) papers going
up till the discovery of the butterfly (these include some classic papers from pioneers in
the field); (2) papers published after the discovery of the butterfly; (3) popular or less
technical articles; and (4) review articles. The second category includes certain papers
that are of historic importance, as they appeared right after the discovery of the
butterfly, as well as papers reporting important breakthroughs or results that, in our
view, revealed new facets of this rich subject. (Experimental papers are not included in
this list.) Some of the papers listed below have also been cited in various chapters in the
book, of course. Given that as of the current writing, Hofstadter’s paper has been cited
roughly 2500 times (according to Google Scholar), there will inevitably be many
valuable papers that are not included in this short and necessarily highly subjective list.
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We conclude with a short summary of some of the most seminal papers in the field,
as provided by Jean Bellissard, who is one of the field’s key players.

I want to emphasize the following contributions, which I consider to be seminal for
this problem.

Original papers: Landau 1930 (diamagnetism of metals), Peierls 1933 (effective
approach to periodicity and magnetic field).

Onsager 1952: magnetic oscillations. Seminal paper, used every day today in
magnetic field experiments, together with the book of I M Lifshitz and A M Kosevich,
“Theory of magnetic susceptibility in metals at low temperatures”, which is THE
reference on magnetic oscillation and semiclassical analysis. Experimentalists at the
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High Magnetic Field facilities (Tallahassee, Grenoble, Toulouse…) use this book as
their main reference.

Among the earliest contributions, Luttinger (1951), Adams (1952), Luttinger and
Kohn (1955) are certainly important ones. Brailsford (1957), Blount (1962),
Roth (1962), Wannier and Fredkin (1962), Pippard (1964) were also significant.
The work of Zak (1964) was also a breakthrough. It was eventually used by Alex
Grossmann to prove that the C*-algebra generated by the magnetic translations was
type II, which, at the time, was a tremendous result. (I believe he published this article
in 1968 in an obscure Israeli journal. Grossmann was a close friend of Zak.)

But I would put an emphasis on the work of Chambers published in 1965, since he
proposed a formula that has been used over and over by mathematicians since I
brought it to the attention of Barry Simon in 1982 (see our joint paper). Needless to
say, Chambers already understood the renormalization scheme, but he explicitly
claims that it is useless in practice since physical effects will wash out the small gaps
(which is true, but so what? the usual prejudice of physicists against math). I am not
sure if he knew about Azbel”s work, but I did not check.

You should also note the work of Langbein (1969), Rauh (1974), and Rauh,
Wannier, and Obermair (1974) at the time when Hofstadter was working on his PhD
thesis under Wannier’s guidance.

All this accumulation of works culminated with the PhD thesis of Douglas R
Hofstadter in 1975. It is a very early example of fractal, at a time when Benoît
Mandelbrot had not yet coined the word “fractal”. Hofstadter was a student of Wannier,
together with Francisco Claro. Claro and Wannier published a paper in 1978 in which
they introduce a gap labeling, which was eventually interpreted as the corresponding
Chern numbers of the part of the spectrum with energy smaller than the gap.

In 1978, Aubry and André made a breakthrough for the Harper model. First they
introduced a duality (due actually to Bernard Derrida from Saclay) leading to an
argument in favor of an Anderson metal–insulator transition (this was really new at
the time). In addition, they numerically computed the Lebesgue measure of the
spectrum as a function of the coupling constant v in the almost Mathieu operator, and
found the wonderful formula 4|v-1|. This formula was later proved by using an
argument due to Thouless. They also surmised that the Lyapunov exponent was
zero for v < 1 and Ln(v) otherwise.

The rigorous mathematical studies really started in 1981. I proposed a gap-labeling
theorem based on K-theory (Bellissard and Simon 1982), then the use of Aubry duality
and of the KAM theorem led to a proof of the existence of a metal–insulator transition
(1982). Then came my paper with Barry Simon in which we proved in a generic way
that all gaps but the central one were open for the almost Mathieu operator. This was
proved rigorously for the Harper model by Choi, Elliott, and Yui (1990) in a beautiful
paper, demonstrating that many gaps were actually tiny.

Michel Herman gave a very simple argument to prove that the Lyapunov exponent
(in the transfer-matrix approach) was bounded from below by the Aubry–André
formula (published at the end of a very long paper sometime in 1984).

Do not overlook the seminal series of papers by Helffer and Sjöstrand during the
eighties. Using a modern version of semiclassical analysis (Hörmander’s microlocality),
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they proved a great number of results only hinted at by physicists before. They used the
work of Azbel’ and some of his formulae to analyze the spectrum more carefully. I
contributed to this program in a different way, using the C*-algebraic approach.

My work with Rammal (1990) gives explicit formulas for the gap edges at rational
magnetic fluxes, proving that the derivative was discontinuous. I proved in 1994 that
the gap edges were Lipshitz continuous for a much broader class of models than just the
Harper one.

Most of these mathematical works in the 1980s were incomplete: a large class of
irrational numbers (with zero Lebesgue measure) for the magnetic flux was excluded
for a long time. In addition, in the one-dimensional version of the almost Mathieu
model, there is a phase which might be responsible for some resonance effect and a
subset of zero Lebesgue measure was excluded from the results.

The Ten Martini problem was more challenging, though. Not only did it ask about
whether the spectrum was a Cantor set for ALL irrational flux-values, but also it was
addressing implicitly the question of the nature of the spectral measure. The main new
tool of study came during the last 15 years with the development of the theory of
cocycles. The earliest hint in this direction came from Michel Herman before he died,
followed by Raphael Krikorian and Hagan Eliasson. Another breakthrough came with
the work of Yoccoz (another former student of Michel Herman) on Siegel disks;
Yoccoz introduced a technique, due to Brjuno, for including all possible irrational
numbers that were inaccessible before. Artur Ávila changed the game by developing
the theory of cocycles. Svetlana Jitomirskaya, who worked for a long time with Yoram
Last, then with Bourgain, jumped on this wagon and was able to finish the job with
Ávila. Today, there are still tiny corners left over for which we do not know the nature
of the spectral measure, but it is almost tight.

What is remarkable is that this problem has been worked on by a very large number
of scientists, both in the physics community and in the mathematical community
as well. I once listed 200 seminal papers from physicists that could be counted as
important, and I then realized that most of the leading figures in solid-state physics had
contributed to the problem. The mathematical community dealing with the problem
used techniques coming from dynamical systems, from C*-algebras, and from PDE’s,
to fill up the multiple holes that remained over time. It is a remarkable topic. And the
consequences will last for a very long time.

“So what do you think it’s all about? Life, I mean.
What’s the purpose? What are we doing here?”

“To work hard … to love someone … and to have some fun ….
And if you are lucky … somebody loves you back.”

Katherine Hepburn’s reply to her biographer, fromKate Remembered by A Scott Berg
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