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1. Introduction

1.1. Motivation and outline

These lectures are devoted to the Keldysh formalism for the treatment of out–
of–equilibrium many–body systems. The name of the technique takes its origin
from the 1964 paper of L. V. Keldysh [1]. Among the earlier approaches that are
closely related to the Keldysh technique, one should mention J. Schwinger [2]
and R. P. Feynman and F. L. Vernon [3]. The classical counterparts of the Keldysh
technique are extremely useful and interesting on their own. Among them the
Wyld diagrammatic technique [4] and the Martin–Siggia–Rose method [5] for
stochastic systems.

There are a number of pedagogical presentations of the method [6–8]. The
emphasis of these notes is on the functional integration approach. It makes the
structure of the theory clearer and more transparent. The notes also cover modern
applications such as the Usadel equation and the nonlinearσ–model. Great atten-
tion is devoted to exposing connections to other techniquessuch as the equilib-
rium Matsubara method and the classical Langevin and Fokker-Planck equations,
as well as the Martin–Siggia–Rose technique.

The Keldysh formulation of the many–body theory is useful for the following
tasks:
• Treatment of systems that are not in thermal equilibrium (either due to the

presence of external fields, or in a transient regime) [1,6,8].
• Calculation of the full counting statistics of a quantum mechanical observable

(as opposed to an average value or correlators) [9,10].
• As an alternative to the replica and the supersymmetry methods in the theory

of disordered and glassy systems [11–15].
• Treatment of equilibrium problems, in which the Matsubara analytical con-

tinuation may prove to be cumbersome.
The outline of these lectures is as follows. The technique isintroduced and ex-

plained for the simplest possible system, that of a single bosonic state (harmonic
oscillator), which is later generalized to real (phonons),or complex (atoms)
bosonic fields. Their action and Green functions are introduced in Chapter 2. Bo-
son interactions, the diagrammatic technique and the quantum kinetic equation
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6 A. Kamenev

are treated in Chapter 3. Chapter 4 is devoted to a bosonic particle in contact with
a dissipative environment (bath). This example is used to establish connections
with the classical methods (Langevin and Fokker–Planck) aswell with the quan-
tum equilibrium technique (Matsubara). Fermions and fermion–boson systems
are treated in Chapter 5. Covered topics include the random phase approxima-
tion and the quantum kinetic equation. Non–interacting Fermions in the presence
of quenched disorder are treated in Chapter 6 with the help ofthe Keldysh non-
linearσ-model.

1.2. Closed time contour

The standard construction of the zero temperature (or equilibrium) many–body
theory (see e.g. [7, 16]) involves the adiabatic switching “on” of interactions at
a distant past, and “off” at a distant future. A typical correlation function has
the form of a time ordered product of operators in the Heisenberg representa-
tion: C(t, t′) ≡ 〈0|T Â(t)B̂(t′)|0〉, where|0〉 is the ground-state (or thermal
equilibrium state) of theinteracting Hamiltonian,Ĥ . This state is supposed
to be given by|0〉 = Ŝ(0,−∞)|〉0, where|〉0 is the (known) ground-state of
the non–interactingHamiltonian, Ĥ0, at t = −∞. The Ŝ–matrix operator
Ŝ(t, t′) = eiĤ0te−iĤ(t−t′)e−iĤ0t

′

describes the evolution due to the interac-
tion Hamiltonian,Ĥ − Ĥ0, and is thus responsible for the adiabatic switching
“on” of the interactions. An operator in the Heisenberg representation is given
by Â(t) = [Ŝ(t, 0)]†Â(t)Ŝ(t, 0) = Ŝ(0, t)Â(t)Ŝ(t, 0), whereÂ(t) is the oper-
ator in the interaction representation. As a result, the correlation function takes
the form:

C(t, t′) = 0〈| T Ŝ(−∞, 0)Ŝ(0, t)Â(t)Ŝ(t, t′)B̂(t′)Ŝ(t′, 0)Ŝ(0,−∞)|〉0

=
0〈| T Â(t)B̂(t′)Ŝ(∞,−∞)|〉0

0〈| Ŝ(∞,−∞)|〉0
, (1.1)

where one employed:0〈| Ŝ(−∞, 0) = e−iL 0〈| Ŝ(∞,−∞)Ŝ(−∞, 0), and in-
terchanged the order of operators, which is always allowed under theT–operation
(time ordering). The idea is that, starting att = −∞ at the ground (or equi-
librium) state,|〉0, of the non–interacting system and then adiabatically switch-
ing interactions “on” and “off”, one arrives att = +∞ at the state|∞〉. The
crucialassumptionis that this state is unique, independent of the details of the
switching procedure and is again the ground–state, up to a possible phase factor:
eiL = 0〈| |∞〉 = 0〈| Ŝ(∞,−∞)|〉0.

Clearly this isnot the case out of equilibrium. Starting from some arbitrary
non–equilibrium state and then switching interactions “on” and “off”, the system
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Fig. 1. The closed time contourC. Dots on the forward and the backward branches of the contour
denote discrete time points.

evolves to some unpredictable state. The latter depends, ingeneral, on the pecu-
liarities of the switching procedure. The entire construction sketched above fails
since we have no knowledge of the final state.

One would like, thus, to build a theory that avoids references to the state at
t = +∞. Since traces are calculated, one still needs to know the final state.
Schwinger’s suggestion is to take the final state to be exactly the same as the
initial one. The central idea is to let the quantum system evolve first in the for-
ward direction in time and then to “unwind” its evolution backwards, playing the
“movie” in the backward direction. One ends up, thus, with the need to con-
struct a theory with the time evolution along the two–branchcontour,C, depicted
on Fig. 1.2. Then, no matter what the state att = +∞ is, after the backward
evolution the system returns back to the known initial state. As a result, the uni-
tary evolution operator,̂Ut,t′ ≡ e−iH(t−t′), along such a closed time contour is
always a unit operator:

ÛC ≡ 1 . (1.2)

In this construction there is no switching of interactions in the future. Both
switchings “on” and “off” take place in the past: “on” – at theforward branch of
the contour and “off” – at the backward one. This way the absence of information
about thet = +∞ state is bypassed. There is a price to pay for such luxury: a
doubling of degrees of freedom. Indeed at every moment of time one needs
to specify a field residing on the forward branch as well as on the backward
branch of the contour. As a result, the algebraic structure of the theory is more
complicated. The difficulties may be minimized, however, bya proper choice of
variables based on the internal symmetries of the theory.
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2. Free boson systems

2.1. Partition function

Let us consider the simplest possible many–body system: bosonic particles oc-
cupying a single quantum state with an energyω0. It is completely equivalent, of
course, to a harmonic oscillator. The secondary quantized Hamiltonian has the
form:

Ĥ = ω0 a
†a , (2.1)

wherea† anda are bosonic creation and annihilation operators with the commu-
tation relation[a, a†] = 1. Let us define “partition function” as:

Z =
Tr{ÛCρ̂}

Tr{ρ̂} . (2.2)

If one assumes that all external fields are exactly the same onthe forward and
backward branches of the contour, thenÛC = 1 and thereforeZ = 1.

The initial density matrix̂ρ = ρ̂(Ĥ) is some operator–valued function of the
Hamiltonian. To simplify the derivations one may choose it to be the equilibrium
density matrix,ρ̂0 = exp{−β(Ĥ − µN̂)} = exp{−β(ω0 − µ)a†a}. Since
arbitrary external perturbations may be switched on (and off) at a later time, the
choice of the equilibrium initial density matrix does not prevent one from treating
non–equilibrium dynamics. For the equilibrium initial density matrix:

Tr{ρ̂0} =

∞∑

n=0

e−β(ω0−µ)n = [1 − ρ(ω0)]
−1 , (2.3)

whereρ(ω0) = e−β(ω0−µ). An important point is that, in general, Tr{ρ̂} is an
interaction– and disorder–independentconstant. Indeed, both interactions and
disorder are supposed to be switched on (and off) on the forward (backward)

Reminder: the bosonic coherent state|φ〉 (〈φ| ), parameterized by a complex
numberφ, is defined as a right (left) eigenstate of the annihilation (creation)
operator:a|φ〉 = φ|φ〉 (〈φ|a† = 〈φ|φ̄ ). The matrix elements of anormally

orderedoperator, such as the Hamiltonian, take the form
〈φ|Ĥ(a†, a)|φ′〉 = H(φ̄, φ′)〈φ|φ′〉. The overlap between two coherent states

is [17] 〈φ|φ′〉 = exp{φ̄φ′}. Since the coherent state basis is overcomplete, the
trace of an operator,̂A, is calculated with the weight:

Tr{Â} = π−1
∫∫
d(ℜφ) d(ℑφ) e−|φ|2 〈φ|Â|φ〉.
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parts of the contour sometime after (before)t = −∞. This constant is, therefore,
frequently omitted – it never causes a confusion.

The next step is to divide theC contour into(2N − 2) time steps of lengthδt,
such thatt1 = t2N = −∞ andtN = tN+1 = +∞ as shown in Fig. 1.2. One
then inserts the resolution of unity in the coherent state overcomplete basis [17]

1 =

∫∫
d(ℜφj) d(ℑφj)

π
e−|φj|

2 |φj〉〈φj | (2.4)

at each pointj = 1, 2, . . . , 2N along the contour. For example, forN = 3 one
obtains the following sequence in the expression for Tr{ÛCρ̂0} (read from right
to left):

〈φ6|Û−δt
|φ5〉〈φ5|Û−δt

|φ4〉〈φ4|1̂|φ3〉〈φ3|Û+δt
|φ2〉〈φ2|Û+δt

|φ1〉〈φ1|ρ̂0|φ6〉 , (2.5)

whereÛ±δt
is the evolution operator during the time intervalδt in the positive

(negative) time direction. Its matrix elements are given by:

〈φj+1|Û±δt
|φj〉 ≡ 〈φj+1|e∓iĤ(a†,a)δt |φj〉 ≈ 〈φj+1|φj〉 e∓iH(φ̄j+1,φj)δt , (2.6)

where the last approximate equality is valid up to the linearorder in δt. Ob-
viously this result is not restricted to the toy example, Eq (2.1), but holds for
any normally–orderedHamiltonian. Notice that there is no evolution operator
inserted betweentN andtN+1. Indeed, these two points are physically indistin-
guishable and thus the system does not evolve during this time interval.

Exercise: show that〈φ|eκa†a|φ′〉 = exp
{
φ̄φ′eκ

}
. Puttingκ = −β(ω0 − µ), one finds

〈φ1|ρ̂0|φ2N 〉 = exp
{
φ̄1φ2Nρ(ω0)

}
.

Combining all such matrix elements along the contour together with the expo-
nential factors from the resolutions of unity, Eq. (2.4), one finds for the partition
function (2.2):

Z =
1

Tr{ρ0}

∫∫ 2N∏

j=1

[
d(ℜφj) d(ℑφj)

π

]

e
i

2N∑

j,j′=1

φ̄jG
−1

jj′
φj′

, (2.7)
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where the2N × 2N matrix iG−1
jj′ stands for:

i G−1
jj′ ≡











−1 ρ(ω0)
1−h −1

1−h −1

1 −1
1+h −1

1+h −1











, (2.8)

andh ≡ iω0δt. It is straightforward to evaluate the determinant of such amatrix

det
[
iG−1

]
= 1−ρ(ω0)(1−h2)N−1 ≈ 1−ρ(ω0) e

(ω0δt)
2(N−1) → 1−ρ(ω0) , (2.9)

where one has used thatδ2tN → 0 if N → ∞ (indeed, the assumption was
δtN → const). Employing Eqs. (A. 1) and (2.3), one finds:

Z =
det−1

[
iG−1

]

Tr{ρ0}
= 1 , (2.10)

as it should be, of course. Notice, that keeping the upper–right element of the
discrete matrix, Eq. (2.8), is crucial to maintain this normalization identity.

One may now take the limitN → ∞ and formally write the partition function
in the continuous notations,φj → φ(t):

Z =

∫

Dφ̄φ e iS[φ̄,φ] =

∫

Dφ̄φ exp






i

∫

C

[
φ̄(t)G−1φ(t)

]
dt






, (2.11)

where according to Eqs. (2.7) and (2.8) the action is given by

S[φ̄, φ] =

2N∑

j=2

[

iφ̄j
φj − φj−1

δtj
− ω0φ̄jφj−1

]

δtj +i φ̄1

(

φ1−ρ(ω0)φ2N

)

, (2.12)

whereδtj ≡ tj − tj−1 = ±δt. Thus a continuous form of the operatorG−1 is:

G−1 = i∂t − ω0 . (2.13)

It is important to remember that this continuous notation isonly an abbreviation
that represents the large discrete matrix, Eq. (2.8). In particular, the upper–right
element of the matrix (the last term in Eq. (2.12)), that contains the information
about the distribution function, is seemingly absent in thecontinuous notations.

To avoid integration along the closed time contour, it is convenient to split
the bosonic fieldφ(t) into the two componentsφ+(t) andφ−(t) that reside on
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the forward and the backward parts of the time contour correspondingly. The
continuous action may then be rewritten as

S =

∞∫

−∞

dt φ̄+(t)[i∂t − ω0]φ+(t) −
∞∫

−∞

dt φ̄−(t)[i∂t − ω0]φ−(t) , (2.14)

where the relative minus sign comes from the reverse direction of the time inte-
gration on the backward part of the contour. Once again, the continuous notations
are somewhat misleading. Indeed, they create an undue impression that theφ+(t)
andφ−(t) fields are completely independent from each other. In fact, they are
connected due to the presence of the non–zero off–diagonal blocks in the discrete
matrix, Eq. (2.8).

2.2. Green functions

One would like to define the Green functions as:

G(t, t′) = −i
∫

Dφ̄φ eiS[φ̄,φ] φ(t)φ̄(t′) ≡ −i〈φ(t)φ̄(t′)〉 , (2.15)

where both time arguments reside somewhere on the Keldysh contour. Notice,
the absence of the factorZ−1 in comparison with the analogous definition in the
equilibrium theory [17]. Indeed, in the present constructionZ = 1. This seem-
ingly minor difference turns out to be the major issue in the theory of disordered
systems, Chapter 6.

According to the general property of Gaussian integrals (see Appendix A), the
Green function is the inverse of the correlator matrixG−1, Eq. (2.8), standing in
the quadratic action. Thus, one faces the unpleasant task ofinverting the large
2N × 2N matrix, Eq. (2.8). It may seem more attractive to invert the differential
operator, Eq. (2.13). Such an inversion, however, is undefined due to the presence
of the zero mode (∼ e−iω0t). The necessary regularization is provided by the
off–diagonal blocks of the discrete matrix. The goal is to develop a formalism
that avoids dealing with the large discrete matrices and refers to the continuous
notations only.

The easiest way to proceed is to recall [17] that the Green functions are traces
of time–orderedproducts of the field operators (in the Heisenberg representa-
tion), where the ordering is done along the contourC. Recalling also that the
time arguments on the backward branch are alwaysafter those on the forward,
one finds:

〈φ+(t)φ̄−(t′)〉 ≡ iG<(t, t′)=
Tr{a†(t′)a(t)ρ̂0}

Tr{ρ̂0}
=

Tr{eiĤt′a†eiĤ(t−t′)a e−iĤtρ̂0}
Tr{ρ̂0}
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=
e−iω0(t−t

′)

Tr{ρ̂0}

∞∑

m=0

m[ρ(ω0)]
m = ne−iω0(t−t

′) ;

〈φ−(t)φ̄+(t′)〉 ≡ iG>(t, t′)=
Tr{a(t)a†(t′)ρ̂0}

Tr{ρ̂0}
=

Tr{eiĤtaeiĤ(t′−t)a† e−iĤt
′

ρ̂0}
Tr{ρ̂0}

=
eiω0(t

′−t)

Tr{ρ̂0}

∞∑

m=0

(m+ 1)[ρ(ω0)]
m=(n+ 1)e−iω0(t−t

′) ;

〈φ+(t)φ̄+(t′)〉 ≡ iGT (t, t′)=
Tr{T [a(t)a†(t′)]ρ̂0}

Tr{ρ̂0}
(2.16)

= θ(t− t′)iG>(t, t′) + θ(t′ − t)iG<(t, t′) ;

〈φ−(t)φ̄−(t′)〉 ≡ iGT̃ (t, t′)=
Tr{T̃ [a(t)a†(t′)]ρ̂0}

Tr{ρ̂0}
= θ(t′ − t)iG>(t, t′) + θ(t− t′)iG<(t, t′) ;

where the symbolsT and T̃ denote time–ordering and anti–time–ordering cor-
respondingly. Hereafter the time arguments reside on the open time axist ∈] −
∞,∞[. The Planck occupation numbern stands forn(ω0) ≡ ρ(ω0)/(1−ρ(ω0)).

Notice the presence of non–zero off–diagonal Green functions 〈φ−φ̄+〉 and
〈φ+φ̄−〉. This is seemingly inconsistent with the continuous action, Eq. (2.14).
This is due to the presence of the off–diagonal blocks in the discrete matrix, that
are lost in the continuous notations. The existence of the off–diagonal Green
functions does not contradict to continuous notations. Indeed,[i∂t−ω0]G

>,< =

0, while [i∂t − ω0]G
T,T̃ = ±δ(t − t′). Therefore in the obvious2 × 2 matrix

notationsG−1 ◦ G = 1, as it should be. The point is that the inverse of the
operator[i∂t − ω0] is not well-defined (due to the presence of the eigenmode
(∼ exp{−iω0t}) with zero eigenvalue). A regularization must be specified and
the off-diagonal blocks of the discrete matrix do exactly this.

The θ–function in Eq. (2.16) is the usual Heaviside step function. There is
an uncertainty, however, regarding its value at coincidingtime arguments. To
resolve it, one needs to refer to the discrete representation one last time. Since
the fieldsφ̄ always appear one time stepδt after the fieldsφ on the Keldysh
contour, cf. Eq. (2.6), the proper convention is:

GT (t, t) = GT̃ (t, t) = G<(t, t) = n . (2.17)

Obviously not all four Green functions defined above are independent. Indeed, a
direct inspection shows that fort 6= t′:

GT +GT̃ = G> +G< . (2.18)
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One would like therefore to perform a linear transformationof the fields to benefit
explicitly from this relation. This is achieved by the Keldysh rotation.

2.3. Keldysh rotation

Define new fields as

φcl(t) =
1√
2

(
φ+(t) + φ−(t)

)
; φq(t) =

1√
2

(
φ+(t) − φ−(t)

)
(2.19)

with the analogous transformation for the conjugated fields. The subscripts“cl”
and“q” stand for theclassicaland thequantumcomponents of the fields corre-
spondingly. The rationale for these notations will become clear shortly. First, a
simple algebraic manipulation of Eq. (2.16) shows that

− i〈φα(t)φ̄β(t′)〉 ≡ Ĝαβ =

(
GK(t, t′) GR(t, t′)
GA(t, t′) 0

)

, (2.20)

where hereafterα, β = (cl, q). The cancellation of the(q, q) element of this ma-
trix is a manifestation of identity (2.18). SuperscriptsR,A andK stand for the
retarded, advancedandKeldyshcomponents of the Green function correspond-
ingly. These three Green functions are the fundamental objects of the Keldysh
technique. They are defined as

GR(t, t′) =
1

2

(

GT −GT̃ −G< +G>
)

= θ(t− t′)(G> −G<) ;

GA(t, t′) =
1

2

(

GT −GT̃ +G< −G>
)

= θ(t′ − t)(G< −G>) ; (2.21)

GK(t, t′) =
1

2

(

GT +GT̃ +G> +G<
)

= G< +G> .

In the discrete representation each of these three Green functions is repre-
sented by anN × N matrix. Since bothG< andG> are, by definition, anti-
Hermitian (cf. Eq. (2.16)), Eq. (2.21) implies:

GA =
[
GR
]†

GK = −[GK ]† , (2.22)

where the Hermitian conjugation includes complex conjugation, as well as trans-
position of the time arguments. The retarded (advanced) Green function a is
lower (upper) triangular matrix. Due to the algebra of triangular matrices, a prod-
uct of any number of upper (lower) triangular matrices is again an upper (lower)
triangular matrix. This leads to the simple rule:

GR1 ◦GR2 ◦ . . . ◦GRl = GR ;

GA1 ◦GA2 ◦ . . . ◦GAl = GA , (2.23)
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RG AG KGRG AG KG

Fig. 2. Graphic representation ofGR, GA, andGK correspondingly. The full line represents the
classical field component,φcl, while the dashed line – the quantum component,φq .

where the circular multiplication signs are understood as integrations over inter-
mediate times (discrete matrix multiplication). At coinciding time arguments,
one finds (cf. Eqs. (2.17) and (2.21)):

GR(t, t) +GA(t, t) = 0 . (2.24)

Although in the discrete representation bothGR andGA do contain non–zero
(pure imaginary, due to Eqs. (2.22), (2.24)) main diagonals(otherwise the matrix
Ĝ is not invertible), the proper continuous convention is:θ(0) = 0. The point
is that in any diagrammatic calculation,GR(t, t) andGA(t, t) always come in
symmetric combinations and cancel each other due to Eq. (2.24). It is thus a
convenient and noncontradictory agreement to takeθ(0) = 0.

It is useful to introduce graphic representations for the three Green functions.
To this end, let us denote the classical component of the fieldby a full line and
the quantum component by a dashed line. Then the retarded Green function
is represented by a full-arrow-dashed line, the advanced bya dashed-arrow-full
line and the Keldysh by full-arrow-full line, see Fig. 2.3. Notice, that the dashed-
arrow-dashed line, that would represent the〈φq φ̄q〉 Green function, is identically
zero due to identity (2.18). The arrow shows the direction fromφα towardsφ̄β .

For the single bosonic state (cf. Eq. (2.16)):G> = −i(n+ 1)e−iω0(t−t
′) and

G< = −ine−iω0(t−t
′), wheren = n(ω0) = ρ(ω0)/(1 − ρ(ω0)) is the Planck

occupation number (since the system is non–interacting theinitial distribution
function does not evolve). Therefore:

GR(t, t′) = −iθ(t− t′) e−iω0(t−t′) ;

GA(t, t′) = iθ(t′ − t) e−iω0(t−t
′) ; (2.25)

GK(t, t′) = −i(1 + 2n(ω0)) e
−iω0(t−t′) .

Notice that the retarded and advanced components contain information only about
the spectrum and are independent of the occupation number, whereas the Keldysh
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component does depend on it. Such a separation is common for systems that are
not too far from thermal equilibrium. Fourier transformingwith respect to(t−t′)
to the energy representation, one finds:

GR(A)(ǫ)= (ǫ− ω0 ± i0)−1 ; (2.26)

GK(ǫ) = (1 + 2n(ω0))(−2πi)δ(ǫ− ω0) = (1 + 2n(ǫ))(−2πi)δ(ǫ− ω0) .

Therefore for the case of thermal equilibrium, one notices therefore that

GK(ǫ) = coth
ǫ

2T

(
GR(ǫ) −GA(ǫ)

)
. (2.27)

The last equation constitutes the statement of thefluctuation–dissipation theorem
(FDT). As it is shown below, the FDT is a general property of thermal equilibrium
that is not restricted to the toy example, considered here. It implies the rigid
relation between the response and correlation functions.

In general, it is convenient to parameterize the anti-Hermitian (see Eq. (2.22))
Keldysh Green function by a Hermitian matrixF = F †, as:

GK = GR ◦ F − F ◦GA , (2.28)

whereF = F (t′, t′′) and the circular multiplication sign implies integration over
the intermediate time (matrix multiplication). The Wignertransform (see below),
f(τ, ǫ), of the matrixF is referred to as the distribution function. In thermal
equilibrium:f(ǫ) = coth(ǫ/2T ).

2.4. Keldysh action and causality

The Keldysh rotation from the (φ+, φ−) field components to (φcl, φq) consider-
ably simplifies the structure of the Green functions (cf. Eqs. (2.16) and (2.20)). It
is convenient, therefore, to write the action in terms ofφcl, φq as well. A simple
way of doing it is to apply the Keldysh rotation, Eq. (2.19), to the continuous
action, Eq. (2.14), written in terms ofφ+, φ−. However, as was discussed above,
the continuous action, Eq. (2.14), loses the crucial information about the off–
diagonal blocks of the discrete matrix, Eq. (2.8). To keep this information, one
may invert the matrix of Green functions, Eq. (2.20), and usethe result as the
correlator in the quadratic action. The inversion is straightforward:

Ĝ−1 =

(
GK GR

GA 0

)−1

=

(
0 [G−1]A

[
G−1

]R
[G−1]K

)

, (2.29)

where the three components of the inverted Green function, labelled in advance
asA,R andK, satisfy:
[
G−1

]R(A)
= [GR(A)]−1 = i∂t − ω0 ± i0 ; (2.30)
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[
G−1

]K
= −[GR]−1 ◦GK ◦ [GA]−1 = [GR]−1 ◦ F − F ◦ [GA]−1 ,

where parameterization (2.28) was employed in the last line. It is easy to see
that [GR]−1 and [GA]−1 are lower and upper triangular matrices correspond-
ingly, thus justifying their superscripts. The continuousnotations may create an

impression that
[
G−1

]K
= (2i0)F and thus may be omitted. One should remem-

ber, however, that this component is non–zero in the discrete form and therefore
it is important to acknowledge its existence (even if it is not written explicitly).

Once the correlator Eqs. (2.29), (2.30) is established, onemay immediately
write down the corresponding action:

S[φcl, φq] =

∫ ∞∫

−∞

dtdt′ (φ̄cl, φ̄q)t

(
0 [GA]−1

[
GR
]−1

[G−1]K

)

t,t′

(
φcl
φq

)

t′
, (2.31)

where it is acknowledged that the correlator is, in general,a non–local function
of time. The Green functions, Eq. (2.20), follow from the Gaussian integral
with this action, by construction. Notice that the presenceof [G−1]K = (2i0)F
(with a positive imaginary part) is absolutely necessary for the convergence of
the corresponding functional integral.

The structure of the Gaussian action given by Eq. (2.31) is very general and
encodes regularization of the functional integral. Since the Keldysh component
carries the information about the density matrix, there is no further need to recall
the discrete representation. The main features of this structure are:
• Thecl − cl component is zero.

This zero may be traced back to identity (2.18). It has, however, a much simpler
interpretation. It reflects the fact that for a pure classical field configuration (φq =
0) the action is zero. Indeed, in this caseφ+ = φ− and the action on the forward
part of the contour is cancelled exactly by that on the backward part. The very
general statement is, therefore, that
S[φcl, φq = 0] = 0 . (2.32)

Obviously Eq. (2.32) is not restricted to a Gaussian action.
• Thecl − q andq − cl components are mutually Hermitian conjugated upper

and lower (advanced and retarded) triangular matrices in the time representation.
This property is responsible for the causality of the response functions as well
as for protecting thecl − cl component from a perturbative renormalization (see
below).
• The q − q component is an anti-Hermitian matrix (cf. Eq. (2.22)) witha

positive–definite imaginary spectrum. It is responsible for the convergence of the
functional integral. It also keeps the information about the distribution function.
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As was already mentioned, these three items are generic and reproduce them-
selves in every order of perturbation theory. For the lack ofa better terminology,
we’ll refer to them as thecausality structure.

2.5. Free bosonic fields

It is a straightforward matter to generalize the entire construction to bosonic sys-
tems with more than one state. Suppose the states are labelled by an indexk,
that may be, e.g., a momentum vector. Their energies are given by a function
ωk, for exampleωk = k2/(2m), wherem is the mass of the bosonic atoms.
One introduces then a doublet of complex fields (classical and quantum) for
every statek : (φcl(t; k), φq(t; k)) and writes down the action in the form of
Eq. (2.31) including a summation over the indexk. Away from equilibrium, the
Keldysh component may be non–diagonal in the indexk: F = F (t, t′; k, k′).
The retarded (advanced) component, on the other hand, has the simple form
[GR(A)]−1 = i∂t − ωk.

If k is momentum, it is more instructive to Fourier transform to real space
and to deal with(φcl(t; r), φq(t; r)). Introducing a combined time–space index
x = (t; r), one may write down for the action of the free complex bosonicfield
(atoms):

S0 =

∫∫

dx dx′
(
φ̄cl, φ̄q

)

x

(
0 [GA]−1

[
GR
]−1

[G−1]K

)

x,x′

(
φcl
φq

)

x′

, (2.33)

where in the continuous notations

[GR(A)]−1(x, x′) = δ(x − x′)

(

i∂t′ +
1

2m
∇2
r′

)

, (2.34)

while in the discrete form it is a lower (upper) triangular matrix in time (not
in space). The[G−1]K component for the free field is only the regularization
factor, originating from the (time) boundary terms. It is, in general, non–local in
x andx′, however, being a pure boundary term it is frequently omitted. It is kept
here as a reminder that the inversion,Ĝ, of the correlator matrix must posses the
causality structure, Eq. (2.20).

In an analogous way, the action of free real bosons (phonons)is (cf. Eq. (B. 9)):

S0 =

∫∫

dx dx′
(
ϕcl, ϕq

)

x

(
0 [DA]−1

[
DR
]−1

[D−1]K

)

x,x′

(
ϕcl
ϕq

)

x′

, (2.35)

where

[DR(A)]−1(x, x′) = δ(x− x′)
(
− ∂ 2

t′ + v2
s ∇ 2

r′
)
, (2.36)
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in the continuous notations. In the discrete representations[DR(A)]−1 are again
the lower (upper) triangular matrices. Here too the Keldyshcomponent,[D−1]K ,
here too is just a regularization, originating from the (time) boundary terms. It
is kept in Eq. (2.35) to emphasize the casuality structure ofthe real boson Green
functionD̂(x, x′), analogous to Eq. (2.20):

D̂(x, x′) =

(
DK DR

DA 0

)

;
DR(A)(ǫ, k) = ((ǫ± i0)2 − v2

sk
2)−1 ;

DK = DR ◦ F − F ◦DA ,
(2.37)

whereF = F (t, t′; r, r′) is a symmetric distribution function matrix.

3. Collisions and kinetic equation

3.1. Interactions

The short range two–body collisions of bosonic atoms are described by the local
“four–boson” Hamiltonian:Hint = λ

∑

r a
†
ra

†
rarar, where indexr “numerates”

spatial locations. The interaction constant,λ, is related to a commonly useds–
wave scattering length,as, asλ = 4πas/m [18]. The corresponding term in the
continuous Keldysh action takes the form:

Sint = −λ
∫

dr

∫

C

dt (φ̄φ)2 = −λ
∫

dr

∞∫

−∞

dt
[
(φ̄+φ+)2 − (φ̄−φ−)2

]
. (3.1)

It is important to remember that there are no interactions inthe distant past,
t = −∞ (while they are present in the future,t = +∞). The interactions
are supposed to be adiabatically switched on and off on the forward and back-
ward branches correspondingly. That guarantees that the off–diagonal blocks
of the matrix, Eq. (2.8), remain intact. Interactions modify only those matrix
elements of the evolution operator, Eq. (2.6), that are awayfrom t = −∞.
It is also worth remembering that in the discrete time form the φ̄ fields are
taken one time stepδt after the φ fields along the Keldysh contourC. There-
fore the two terms on the r.h.s. of the last equation should beunderstood as
(
φ̄+(t + δt)φ+(t)

)2
and

(
φ̄−(t)φ−(t + δt)

)2
correspondingly. Performing the

Keldysh rotation, Eq. (2.19), one finds

Sint[φcl, φq] = −λ
∞∫

−∞

dt
[
φ̄q φ̄cl(φ

2
cl + φ2

q) + c.c.
]
, (3.2)
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Fig. 3. Graphic representation of the two interaction vertexes of the|φ|4 theory. There are also two
conjugated vertexes with a reversed direction of all arrows.

wherec.c. stands for the complex conjugate of the first term. The collision action,
Eq. (3.2), obviously satisfies the causality condition, Eq.(2.32). Diagrammati-
cally the action (3.2) generates two types of vertexes depicted in Fig. 3.1 (as well
as two complex conjugated vertexes, obtained by reversing the direction of the
arrows): one with three classical fields (full lines) and onequantum field (dashed
line) and the other with one classical field and three quantumfields.

Let us demonstrate that adding the collision term to the action does not vi-
olate the fundamental normalization,Z = 1. To this end one may expand
eiSint in powers ofλ and then average term by term with the Gaussian action,
Eq. (2.33). To show that the normalization,Z = 1, is not altered by the colli-
sions, one needs to show that〈Sint〉 = 〈S 2

int〉 = . . . = 0. Applying the Wick
theorem, one finds for the terms that are linear order inλ: 〈φ̄qφ̄clφ2

cl + c.c.〉 ∼
[
GR(t, t)+GA(t, t)

]
GK(t, t) = 0, and〈φ̄q φ̄clφ2

q+c.c〉 = 0. The first term van-
ishes due to identity (2.24), while the second one vanishes because〈φqφ̄q〉 = 0.
There are two families of terms that are second order inλ. The first one is
〈φ̄qφ̄clφ2

clφ
′
qφ

′
cl(φ̄

′
cl)

2〉 ∼ GR(t′, t)GA(t′, t)[GK(t, t′)]2, while the second is
〈φ̄qφ̄clφ2

clφ
′
qφ

′
cl(φ̄

′
q)

2〉 ∼ [GR(t, t′)]2GR(t′, t)GA(t′, t), whereφ′α ≡ φα(t′).
Both of these terms are zero, becauseGR(t′, t) ∼ θ(t′ − t), whileGA(t′, t) ∼
GR(t, t′)∗ ∼ θ(t − t′) and thus their product has no support1. It is easy to
see that, for exactly the same reasons, all higher order terms vanish and thus the
normalization is unmodified (at least in a perturbative expansion).

1Strictly speaking,GR(t′, t) andGA(t′, t) are both simultaneously non–zero at the diagonal:
t = t′. The contribution of the diagonal to the integrals is, however,∼ δ2tN → 0, whenN → ∞.
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/ 3/ 3
Fig. 4. Graphic representation of the two interaction vertexes of theϕ3 theory. Notice the relative
factor of one third between them.

As another example, consider the real boson field, Eq. (2.35), with the cubic
nonlinearity:

Sint=
κ

6

∫

dr

∫

C

dt ϕ3 =
κ

6

∫

dr

∞∫

−∞

dt
[
ϕ3

+−ϕ3
−

]
=κ

∫

dr

∞∫

−∞

dt
[
ϕ2
clϕq+

1

3
ϕ3
q

]
.(3.3)

The causality condition, Eq. (2.32), is satisfied again. Diagrammatically the cu-
bic nonlinearity generates two types of vertexes, Fig. 3.1:one with two classical
fields (full lines) and one quantum field (dashed line), and the other with three
quantum fields. The former vortex carries the factorκ, while the latter has a
weight ofκ/3. Notice that for a real field the direction of the lines is not speci-
fied by arrows.

Exercise: Show that there are no corrections of second order inκ to the partition function,Z = 1.
Check, that the same is true for the higher orders, as well.

3.2. Saddle point equations

Before developing the perturbation theory further, one hasto discuss the saddle
points of the action. According to Eq. (2.32), there are no terms in the action
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that have zero power of both̄φq andφq . The same is obviously true regarding
δS/δφ̄cl and therefore one of the saddle point equations:

δS

δφ̄cl
= 0 (3.4)

may always be solved by

φq = 0 , (3.5)

irrespectively of what the classical component,φcl, is. One may check that this
is indeed the case for the action given by Eqs. (2.33) plus (3.2). Under condi-
tion (3.5) the second saddle point equation takes the form:

δS

δφ̄q
=
([
GR
]−1 − λ |φcl|2

)

φcl =

(

i∂t +
∇2
r

2m
− λ |φcl|2

)

φcl = 0 , (3.6)

This is the non–linear time–dependent (Gross–Pitaevskii)equation [18], that
uniquely determines the classical field configuration, provided some initial and
boundary conditions are specified.

The message is that among the possible solutions of the saddle–point equa-
tions for the Keldysh action, there is always one with a zero quantum component
and with a classical component that obeys the classical (non–linear) equations of
motion. We shall call such a saddle point –“classical” . Thanks to Eqs. (2.32)
and (3.5), the action at the classical saddle–point field configurations is identi-
cally zero. As was argued above, the perturbative expansionin small fluctuations
around the classical saddle point leads to a properly normalized partition func-
tion,Z = 1. This seemingly excludes the possibility of having any other saddle
points. Yet, this conclusion is premature. The system may posses “non–classical”
saddle points – such thatφq 6= 0. Such saddle points do not contribute to the par-
tition function (and thus do not alter the fundamental normalization,Z = 1),
however, they may contribute to the correlation functions.In general, the action
at anon–classicalsaddle point is non–zero. Its contribution is thus associated
with exponentially small (or oscillatory) terms. Examplesinclude: tunnelling,
thermal activation (considered in the next chapter), Wigner-Dyson level statis-
tics, etc.

Let us develop now a systematic perturbative expansion in deviations from the
classicalsaddle point. As was discussed above, it does not bring any new infor-
mation about the partition function. It does, however, provide information about
the Green functions (and thus various observables). Most notably, it generates the
kinetic equation for the distribution function. To simplify further consideration,
let us assume thatφcl = 0 is the proper solution of the classical saddle–point
equation (3.6) (i.e. there is no Bose condensate).
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3.3. Dyson equation

The goal is to calculate thedressedGreen function, defined as:

G
αβ(t, t′) = −i

∫

Dφ̄φ e i(S0+Sint) φα(t)φ̄β(t′) , (3.7)

whereα, β = (cl, q) and the action is given by Eqs. (2.33) and (3.2) (or for
real bosons: Eqs. (2.35) and (3.3), withφ → ϕ). To this end one may expand
the exponent in deviations from the classical saddle point:φq ≡ 0 and (in the
simplest case)φcl = 0. The functional integration with the remaining Gaussian
action is then performed using the Wick theorem. This leads to the standard
diagrammatic series. Combining all one–particle irreducible diagrams into the
self–energy matrix̂Σ, one obtains:

Ĝ = Ĝ+ Ĝ ◦ Σ̂ ◦ Ĝ+ Ĝ ◦ Σ̂ ◦ Ĝ ◦ Σ̂ ◦ Ĝ+ . . . = Ĝ ◦
(

1̂ + Σ̂ ◦ Ĝ

)

, (3.8)

whereĜ is given by Eq. (2.20) and the circular multiplication sign implies inte-
grations over intermediate times and coordinates as well asa 2 × 2 matrix mul-
tiplication. The only difference compared with the text–book [17] diagrammatic
expansion is the presence of the2 × 2 Keldysh matrix structure. The fact that
the series is arranged as a sequence of matrix products is of no surprise. Indeed,
the Keldysh index,α = (cl, q), is just one more index in addition to time, space,
spin, etc. Therefore, as with any other index, there is a summation (integration)
over all of its intermediate values, hence the matrix multiplication. The concrete
form of the self–energy matrix,̂Σ, is of course specific to the Keldysh technique
and is discussed below in some details.

Multiplying both sides of Eq. (3.8) bŷG−1 from the left, one obtains the
Dyson equation for the exact dressed Green function,Ĝ:
(

Ĝ−1 − Σ̂
)

◦ Ĝ = 1̂ , (3.9)

where1̂ is the unit matrix. The very non–trivial feature of the Keldysh technique
is that the self energy matrix,̂Σ, possesses the same causality structure asĜ−1,
Eq. (2.29):

Σ̂ =

(
0 ΣA

ΣR ΣK

)

, (3.10)

whereΣR(A) are lower (upper) triangular matrices in the time domain, while
ΣK is an anti-Hermitian matrix. This fact will be demonstratedbelow. Since
bothĜ−1 andΣ̂ have the same structure, one concludes that the dressed Green



Many–body theory of non–equilibrium systems 23

function,Ĝ, also possesses the causality structure, like Eq. (2.20). As a result,
the Dyson equation acquires the form:

(
0 [GA]−1 − ΣA

[
GR
]−1 − ΣR −ΣK

)

◦
(

G
K

G
R

G
A 0

)

= 1̂ , (3.11)

where one took into account that[G−1]K is a pure regularization (∼ i0F ) and
thus may be omitted in the presence of a non–zeroΣK . Employing the specific
form of [GR(A)]−1, Eq. (2.34), one obtains for the retarded (advanced) compo-
nents:
(

i∂t +
1

2m
∇2
r

)

G
R(A) = ΣR(A) ◦ G

R(A) . (3.12)

Provided the self–energy componentΣR(A) is known (in some approximation),
Eq. (3.12) constitutes a closed equation for the retarded (advanced) component of
the dressed Green function. The latter carries the information about the spectrum
of the interacting system.

To write down the equation for the Keldysh component, it is convenient to
parameterize it asGK = G

R ◦ F − F ◦ G
A, whereF is a Hermitian matrix in

the time domain. The equation for the Keldysh component thentakes the form:
([GR]−1 − ΣR) ◦ (GR ◦ F − F ◦ G

A) = ΣK ◦ G
A. Multiplying it from the

right by ([GA]−1 − ΣA) and employing Eq. (3.12), one finally finds:
[

F,

(

i∂t +
1

2m
∇2
r

)]

−

= ΣK −
(
ΣR ◦ F − F ◦ ΣA

)
, (3.13)

where the symbol[ , ]− stands for the commutator. This equation is the quantum
kinetic equation for the distribution matrixF. Its l.h.s. is called thekinetic term,
while the r.h.s. is thecollision integral (up to a factor). As is shown below,
ΣK has the meaning of an “incoming” term, whileΣR ◦ F − F ◦ ΣA is an
“outgoing” term. In equilibrium these two channels cancel each other (the kinetic
term vanishes) and the self-energy has the same structure asthe Green function:
ΣK = ΣR◦F−F◦ΣA. This is not the case, however, away from the equilibrium.

3.4. Self-energy

Let us demonstrate in the case of one specific example, that the self-energy ma-
trix, Σ̂, indeed possesses the causality structure, Eq. (3.10). To this end, we con-
sider the real boson action, Eq. (2.35), with theκϕ3 nonlinearity, Eq. (3.3), and
perform the calculations up to the second order in the parameter,κ. Employing
the two vertexes of Fig. 3.1 one finds that:
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Fig. 5. Self-energy diagrams for theϕ3 theory.

thecl−cl componentis given by the single diagram, depicted in Fig. 3.4a. The
corresponding analytic expression isΣcl−cl(t, t′) = 4iκ2DR(t, t′)DA(t, t′) = 0.
Indeed, the productDR(t, t′)DA(t, t′) has no support (see, however, the footnote
in section 3.1).

the cl-q (advanced) componentis given by the single diagram, Fig. 3.4b. The
corresponding expression is:

ΣA(t, t′) = 4iκ2DA(t, t′)DK(t, t′) . (3.14)

SinceΣA(t, t′) ∼ DA(t, t′) ∼ θ(t′ − t), it is, indeed, an advanced (upper trian-
gular) matrix. There is a combinatoric factor of4, associated with the diagram
(4 ways of choosing external legs× 2 internal permutations× 1/(2!) for having
two identical vertexes).

the q-cl (retarded) componentis given by the diagram of Fig. 3.4c:

ΣR(t, t′) = 4iκ2DR(t, t′)DK(t, t′) , (3.15)

that could be obtained, of course, by the Hermitian conjugation of Eq. (3.14) with

the help of Eq. (2.22):ΣR =
[
ΣA
]†

. SinceΣR(t, t′) ∼ DR(t, t′) ∼ θ(t− t′), it
is, indeed, a retarded (lower triangular) matrix.

the q-q (Keldysh) componentis given by the three diagrams, Fig. 3.4d–f. The
corresponding expressions are:

ΣK(t, t′) = 2iκ2
[
DK(t, t′)

]2
+6i

(κ

3

)

κ
[
DA(t, t′)

]2
+6iκ

(κ

3

)[
DR(t, t′)

]2
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= 2iκ2
([
DK(t, t′)

]2
+
[
DR(t, t′) −DA(t, t′)

]2
)

, (3.16)

where the combinatoric factors are: 2 for diagram d and 6 for eand f. In the last
equality, the fact thatGR(t, t′)GA(t, t′) = 0, due to the absence of support in
the time domain, has been used again. Employing Eq. (2.22), one findsΣK =

−
[
ΣK
]†

. This completes the proof of the statement thatΣ̂ possesses the same

structure asD̂−1. One may check that the statement holds in higher orders as
well. In Eqs. (3.14)–(3.16) one has omitted the spatial coordinates, that may be
restored in an obvious way.

Exercise: Calculate the self–energy matrix for the|φ|4 theory to the second order inλ. Show that it
possesses the causality structure.

3.5. Kinetic term

To make further progress in the discussion of the kinetic equation it is convenient
to perform the Wigner transformation (WT). The WT of a distribution function
matrix,F(t, t′; r, r′), is a function:f(τ, ǫ; ρ, k), whereτ andρ are the “center of
mass” time and coordinate correspondingly. According to definition (2.28), the
F matrix appears in a product withGR −GA (orDR −DA). Since the latter is
a sharply peaked function atǫ = ωk (cf. Eq. (2.26) for free particles, while for
interacting systems this is the condition for having well-defined quasi–particles),
one frequently writesf(τ, ρ, k), understanding thatǫ = ωk.

To rewrite the kinetic term (the l.h.s. of Eq. (3.13)) in the Wigner represen-
tation, one notices that the WT ofi∂t is ǫ, while the WT of∇2

r is −k2. Then

Reminder: The Wigner transform of a matrixA(r, r′) is defined as

a(ρ, k) ≡

∫

dr1 A

(

ρ+
r1

2
, ρ−

r1

2

)

eikr1 .

One may show that the Wigner transform of the matrixC = A ◦B is equal to:

c(ρ, k) =

∫∫

dr1dr2

∫∫
dk1dk2

(2π)2d
a

(

ρ+
r1

2
, k + k1

)

b

(

ρ+
r2

2
, k + k2

)

ei(k1r2−k2r1).

Expanding the functions under the integrals inki andri, one finds:

c(ρ, k) = a(ρ, k) b(ρ, k) + (2i)−1
(
∇ρa∇kb−∇ka∇ρb

)
+ . . . .
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e.g. [F,∇2
r ]− → [k2, f ]− + i∇kk

2∇ρf = 2ik∇ρf , where the commutator van-
ishes, since WT’s commute. In a similar way:[F, i∂t]− → −i∂τ f . If there
is a scalar potentialV (r)a†rar in the Hamiltonian, it translates into the term
−V (φ̄clφq + φ̄qφcl) in the action and thus−V (r) is added to[GR(A)]−1. This,
in turn, brings the term−[F, V ]− to the l.h.s. of the Dyson equation (3.13), or
after the WT:iE∇kf , whereE ≡ −∇ρV is the electric field. As a result, the
WT of the Dyson equation (3.9) takes the form:

(

∂τ − vk∇ρ − E∇k

)

f(τ, ρ, k) = Icol[f ] , (3.17)

wherevk ≡ k/m andIcol[f ] is the WT of the r.h.s. of Eq. (3.13) (timesi). This
is the kinetic equation for the distribution function.

For real bosons with the dispersion relationǫ = ωk, the kinetic term is (cf.
Eq. (2.36)):[ǫ2 − ω2

k,F]− → 2i
(
ǫ ∂τ − ωk(∇kωk)∇ρ

)
f = 2iǫ

(
∂τ − vk∇ρ

)
f ,

wherevk ≡ ∇kωk is the group velocity. As a result, the kinetic equation takes
the form:

(
∂τ − vk∇ρ

)
f(τ, ρ, k) = Icol[f ], where the collision integralIcol[f ] is

the WT of the r.h.s. of Eq. (3.13), divided by−2iǫ.

3.6. Collision integral

Let us discuss the collision integral, using theϕ3 theory calculations of section
3.4 as an example. To shorten the algebra, let us consider a system that is spatially
uniform and isotropic in momentum space. One, thus, focuseson the energy
relaxation only. In this case the distribution function isf(τ, ρ, k) = f(τ, ωk) =
f(τ, ǫ), where the dependence on the modulus of the momentum is substituted by
theωk = ǫ argument. Employing Eqs. (3.14)–(3.16), one finds for the WTof the
r.h.s. of Eq. (3.13)2 :

ΣR ◦ F − F ◦ ΣA → −2i f(τ, ǫ)

∫

dωM(τ, ǫ, ω)
(

f(τ, ǫ− ω) + f(τ, ω)
)

;

ΣK → −2i

∫

dωM(τ, ǫ, ω)
(

f(τ, ǫ− ω)f(τ, ω) + 1
)

, (3.18)

where the square of the transition matrix element is given by:

M(τ, ǫ, ω) = 2πκ2
∑

q

∆d(τ, ǫ− ω; k − q)∆d(τ, ω; q) . (3.19)

2Only products of WT’s are retained, while all the gradient terms are neglected, in particular
D

K → f (dR − d
A). The energy–momentum representation is used, instead of the time–space

representation as in Eqs. (3.14)–(3.16), and in the equation for ΣR ◦ F − F ◦ ΣA one performs a
symmetrization between theω andǫ− ω arguments.
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Here∆d ≡ i(dR − d
A)/(2π) andd

R(A)(τ, ǫ; k) is the WT of the retarded
(advanced) Green function. One has substituted the dressedGreen functions into
Eqs. (3.14)–(3.16) instead of the bare ones to perform a partial resummation of
the diagrammatic series. (This trick is sometimes called theself–consistent Born
approximation. It still neglects the vertex corrections.) Assuming the existence of
well defined quasi–particles at all times, one may regard∆d(τ, ǫ, k) as a sharply
peaked function atǫ = ωk. In this case Eq. (3.19) simply reflects the fact that
an initial particle withǫ = ωk decays into two real (on mass-shell) particles with
energiesω = ωq andǫ−ω = ωk−q. As a result, one finally obtains for the kinetic
equation:

∂f(ǫ)

∂τ
=

∫

dω
M(ǫ, ω)

ǫ

[

f(ǫ−ω)f(ω) + 1− f(ǫ)
(
f(ǫ−ω) + f(ω)

)]

, (3.20)

where the time arguments are suppressed for brevity.
Due to the identity: coth(a−b) coth(b)+1 = coth(a)

(
coth(a−b)+coth(b)

)
,

the collision integral is identically nullified by

f(ǫ) = coth
ǫ

2T
. (3.21)

whereT is a temperature. This is the thermal equilibrium distribution function.
According to the kinetic equation (3.20), it is stable for any temperature (the latter
is determined either by an external reservoir, or, for a closed system, from the
total energy conservation). Since the equilibrium distribution obviously nullifies
the kinetic term, according to Eq. (3.13) theexactself–energy satisfiesΣK =
coth(ǫ/(2T ))(ΣR − ΣA). Since also the bare Green functions obey the same
relation, Eq. (2.27), one concludes that in thermal equilibrium theexactdressed
Green function satisfies:

D
K = coth

ǫ

2T

(
D

R − D
A
)
. (3.22)

This is the statement of thefluctuation–dissipation theorem(FDT). Its conse-
quence is that in equilibrium the Keldysh component does notcontain any ad-
ditional information with respect to the retarded one. Therefore, the Keldysh
technique may be, in principle, substituted by a more compact construction – the
Matsubara method. The latter does not work, of course, away from equilibrium.

Returning to the kinetic equation (3.20), one may identify “in” and “out”
terms in the collision integral. Most clearly it is done by writing the collision
integral in terms of the occupation numbersnk, defined asf = 1 + 2n. The
expression in the square brackets on the r.h.s. of Eq. (3.20)takes the form:
4 [nǫ−ωnω − nǫ(nǫ−ω + nω + 1)]. The first term:nǫ−ωnω, gives a probabil-
ity that a particle with energyǫ−ω absorbs a particle with energyω to populate a
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state with energyǫ – this is the “in” term of the collision integral. It may be traced
back to theΣK part of the self-energy. The second term:−nǫ(nǫ−ω + nω + 1),
says that a state with energyǫ may be depopulated either by stimulated emission
of particles with energiesǫ− ω andω, or by spontaneous emission (unity). This
is the “out” term, that may be traced back to theΣR(A) contributions.

Finally, let us discuss the approximations involved in the Wigner transforma-
tions. Although Eq. (3.13) is formally exact, it is very difficult to extract any
useful information from it. Therefore, passing to an approximate, but much more
tractable, form like Eqs. (3.17) or (3.20) is highly desirable. In doing it, one has
to employ the approximate form of the WT. Indeed, a formally infinite series
in ∇k∇ρ operators is truncated, usually by the first non–vanishing term. This
is a justified procedure as long asδk δρ ≫ 1, whereδk is a characteristic mi-
croscopic scale of the momentum dependence off , while δρ is a characteristic
scale of its spatial variations. One may ask if there is a similar requirement in the
time domain:δǫ δτ ≫ 1, with δǫ andδτ being the characteristic energy and the
time scale off , correspondingly? Such a requirement is very demanding, since
typically δǫ ≈ T and at low temperature it would allow to treat only very slow
processes: withδτ ≫ 1/T . Fortunately, this is not the case. Because of the
peaked structure of∆d(ǫ, k), the energy argumentǫ is locked toωk and does
not have its own dynamics as long as the peak is sharp. The actual criterion is
therefore thatδǫ is much larger than the width of the peak in∆d(ǫ, k). The
latter is, by definition, the quasi–particle life–time,τqp , and therefore the condi-
tion is τqp ≫ 1/T . This condition is indeed satisfied by many systems with the
interactions that are not too strong.

4. Particle in contact with an environment

4.1. Quantum dissipative action

Consider a particle with the coordinateΦ(t), living in a potentialU(Φ) and at-
tached to a harmonic stringϕ(t;x). The particle may represent a collective de-
gree of freedom, such as the phase of a Josephson junction or the charge on a
quantum dot. On the other hand, the string serves to model a dissipative envi-
ronment. The advantage of the one–dimensional string is that it is the simplest
continuum system, having a constant density of states. Due to this property it
mimics, for example, interactions with a Fermi sea. A continuous reservoir with
a constant density of states at small energies is sometimes called an “Ohmic” en-
vironment (or bath). The environment is supposed to be in thermal equilibrium.

The Keldysh action of such a system is given by the three terms(cf. Eqs. (B. 5)
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and (2.35)):

Sp[Φ̂] =

∞∫

−∞

dt

[

−2 Φq
d 2Φcl
dt2

− U (Φcl + Φq) + U(Φcl − Φq)

]

;

Sstr[ϕ̂] =

∞∫

−∞

dt

∫

dx ϕ̂T D̂−1 ϕ̂ ; (4.1)

Sint[Φ̂, ϕ̂] = 2
√
γ

∞∫

−∞

dt Φ̂T (t) σ̂1 ∇xϕ̂(t, x)
∣
∣
∣
x=0

,

where we have introduced vectors of classical and quantum components, e.g.
Φ̂T ≡ (Φcl,Φq) and the string correlator,̂D−1, is the same as in Eqs. (2.35),
(2.36). The interaction term between the particle and the string is taken to be the
local product of the particle coordinate and the string stress atx = 0 (so the force
on the particle is proportional to the local stress of the string). In the time domain
the interaction is instantaneous,Φ(t)∇xϕ(t, x)|x=0 → Φ+∇ϕ+ − Φ−∇ϕ− on
the Keldysh contour. Transforming to the classical–quantum notations leads to:
2(Φcl∇ϕq + Φq∇ϕcl), that satisfies the causality condition, Eq. (2.32). In the
matrix notations it takes the form of the last line of Eq. (4.1), whereσ̂1 is the
standard Pauli matrix. The interaction constant is

√
γ.

One may now integrate out the degrees of freedom of the Gaussian string to re-
duce the problem to the particle coordinate only. Accordingto the standard rules
of Gaussian integration (see. Appendix A), this leads to theso–called dissipative
action for the particle:

Sdiss = −γ
∫ ∞∫

−∞

dtdt′ Φ̂T (t) σ̂T1 ∇x∇x′D̂(t− t′;x− x′)
∣
∣
∣
x=x′=0

σ̂1

︸ ︷︷ ︸

−L̂−1(t−t′)

Φ̂(t′) . (4.2)

The straightforward matrix multiplication shows that the dissipative correlator
L̂−1 possesses the standard causality structure of the inverse Green function, e.g.
Eq. (2.29). Fourier transforming its retarded (advanced) components, one finds:

[

LR(A)(ǫ)
]−1

= −
∑

k

k2

(ǫ± i0)2 − k2
= ± i

2
ǫ+ const, (4.3)

where we putvs = 1 for brevity. Theǫ–independent constant (same forR and
A components) may be absorbed into the redefinition of the harmonic part of the
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potentialU(Φ) = constΦ2 + . . . and, thus, may be omitted. In equilibrium the
Keldysh component of the correlator is set by the FDT:
[
L−1

]K
(ǫ) = coth

ǫ

2T

([
LR
]−1 −

[
LA
]−1
)

= iǫ coth
ǫ

2T
. (4.4)

It is an anti–Hermitian operator with a positive–definite imaginary part, rendering
convergence of the functional integral overΦ.

In the time representation the retarded (advanced) component of the correlator

takes a simple local form:
[
LR(A)

]−1
= ∓ 1

2 δ(t − t′) ∂t′ . On the other hand, at
low temperatures the Keldysh component is a non–local function, that may be
found by the inverse Fourier transform of Eq. (4.4):

[
L−1

]K
(t− t′) =

iπT 2

sinh2(πT (t− t′))

T→∞−→ i2Tδ(t− t′) . (4.5)

Finally, for the Keldysh action of the particle connected toa string, one obtains:

S[Φ̂] =

∞∫

−∞

dt

[

−2 Φq

(
d 2Φcl
dt2

+
γ

2

dΦcl
dt

)

−U (Φcl + Φq)+U(Φcl − Φq)

]

+ iγ

∫ ∞∫

−∞

dt dt′ Φq(t)
πT 2

sinh2(πT (t− t′))
Φq(t

′) . (4.6)

This action satisfies all the causality criterions listed insection 2.4. Notice, that in
the present case the Keldysh (q− q) component is not just a regularization factor,
but rather a quantum fluctuations damping term, originatingfrom the coupling
to the string. The other manifestation of the string is the presence of the friction
term,∼ γ∂t in theR and theA components. In equilibrium the friction coeffi-
cient and fluctuations amplitude are rigidly connected by the FDT. The quantum
dissipative action, Eq. (4.6), is a convenient playground to demonstrate various
approximations and connections to other approaches.

4.2. Saddle–point equation

Theclassicalsaddle point equation (the one that takesΦq(t) = 0) has the form:

−1

2

δS[Φ̂]

δΦq

∣
∣
∣
∣
∣
Φq=0

=
d 2Φcl
dt2

+
γ

2

dΦcl
dt

+
∂U(Φcl)

∂Φcl
= 0 . (4.7)

This is the deterministic classical equation of motion. In the present case it hap-
pens to be the Newton equation with the viscous force:−(γ/2)Φ̇cl. This approx-
imation neglects bothquantumandthermalfluctuations.
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4.3. Classical limit

One may keep the thermal fluctuations, while completely neglecting the quantum
ones. To this end it is convenient to restore the Planck constant in the action (4.6)
and then take the limit̄h → 0. For dimensional reasons, the factorh̄−1 should
stand in front of the action. To keep the part of the action responsible for the
classical equation of motion (4.7) free from the Planck constant it is convenient
to rescale the variables as:Φq → h̄Φq. Finally, to have temperature in energy
units, one needs to substituteT → T/h̄ in the last term of Eq. (4.6). The limit
h̄ → 0 is now straightforward: (i) one has to expandU(Φcl ± h̄Φq) to the first
order inh̄Φq and neglect all higher order terms; (ii) in the last term of Eq. (4.6)
the h̄ → 0 limit is equivalent to theT → ∞ limit, see Eq. (4.5). As a result, the
classical limit of the dissipative action is:

S[Φ̂] = 2

∞∫

−∞

dt

[

−Φq

(
d 2Φcl
dt2

+
γ

2

dΦcl
dt

+
∂U(Φcl)

∂Φcl

)

+ iγ T Φ2
q

]

. (4.8)

Physically the limith̄ → 0 means that̄hΩ̃ ≪ T , whereΩ̃ is a characteristic
classical frequency of the particle. This condition is necessary for the last term
of Eq. (4.6) to take the time–local form. The condition for neglecting the higher
order derivatives ofU is h̄≪ γΦ̃2

cl, whereΦ̃cl is a characteristic classical ampli-
tude of the particle motion.

4.4. Langevin equations

One way to proceed with the classical action (4.8) is to notice that the exponent
of its last term (timesi) may be identically rewritten in the following way:

e−2γT
∫
dtΦ2

q(t) =

∫

Dξ(t) e−
∫
dt [ 1

2γT
ξ2(t)−2iξ(t)Φq(t)] . (4.9)

This identity is called the Hubbard–Stratonovich transformation, whileξ(t) is an
auxiliary Hubbard–Stratonovich field. The identity is proved by completing the
square in the exponent on the r.h.s., performing the Gaussian integration at every
instance of time and multiplying the results. There is a constant multiplicative
factor hidden in the integration measure,Dξ.

Exchanging the order of the functional integration overξ andΦ̂, one finds for
the partition function:

Z=

∫

Dξ e−
1

2γT

∫
dt ξ2
∫

DΦcl

∫

DΦq e
−2i
∫
dtΦq

(
d 2Φcl

dt2
+ γ

2

dΦcl
dt

+
∂U(Φcl)

∂Φcl
−ξ

)

. (4.10)
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Since the last (imaginary) exponent depends only linearly on Φq(t), the integra-
tion overDΦq results in theδ–function of the expression in the round brackets.
This functionalδ–function enforces its argument to be zero at every moment of
time. Therefore, among all the possible trajectoriesΦcl(t), only those that satisfy
the following equation contribute to the partition function:

d 2Φcl
dt2

+
γ

2

dΦcl
dt

+
∂U(Φcl)

∂Φcl
= ξ(t) . (4.11)

This is a Newton equation with a time dependent external force ξ(t). Since, the
same arguments are applicable to any correlation function of the classical fields,
e.g.〈Φcl(t)Φcl(t′)〉, a solution strategy is as follows: (i) choose some realization
of ξ(t); (ii) solve Eq. (4.11) (e.g. numerically); (iii) having itssolution,Φcl(t),
calculate the correlation function; (iv) average the result over an ensemble of
realizations of the forceξ(t). The statistics of the latter are dictated by the weight
factor in theDξ functional integral. It states thatξ(t) is a Gaussian short–range
(white) noise with the correlators:

〈ξ(t)〉 = 0 ; 〈ξ(t)ξ(t′)〉 = γT δ(t− t′) . (4.12)

Equation (4.11) with the white noise on the r.h.s. is called the Langevin equation.
It describes classical Newtonian dynamics in presence of stochastic thermal fluc-
tuations. The fact that the noise amplitude is related to thefriction coefficient,γ
and to the temperature is a manifestation of the FDT. The latter holds as long as
the environment (string) is at thermal equilibrium.

4.5. Martin–Siggia–Rose

In section 4.4 one derived the Langevin equation for a classical coordinate,Φcl,
from the action written in terms ofΦcl and another field,Φq. An inverse pro-
cedure of deriving the effective action from the Langevin equation is known as
the Martin–Siggia–Rose (MSR) [5] technique. It is sketchedhere in the form
suggested by De-Dominics [5].

Consider a Langevin equation:

Ô[Φ] = ξ(t) , (4.13)

whereÔ[Φ] is a (non–linear) differential operator acting on the coordinateΦ(t)
andξ(t) is a white noise force, specified by Eq. (4.12). Define the “partition
function” as:

Z[ξ] =

∫

DΦJ [Ô] δ
(
Ô[Φ] − ξ(t)

)
≡ 1 . (4.14)
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It is identically equal to unity by virtue of the integrationof theδ–function, pro-
videdJ [Ô] is the Jacobian of the operatorÔ[Φ]. The way to interpret Eq. (4.14)
is to discretize the time axis, introducingN–dimensional vectorsΦj = Φ(tj)
andξj = ξ(tj). The operator takes the form:Oi = OijΦj + ΓijkΦjΦk + . . .,
where a summation is taken over repeated indexes. The Jacobian,J , is given
by the absolute value of the determinant of the followingN × N matrix: Jij ≡
∂Oi/∂Φj = Oij + 2ΓijkΦk + . . .. It is possible to choose a proper (retarded)
regularization where theJij matrix is a lower triangular matrix with a unity main
diagonal (coming entirely from theOii = 1 term). Clearly, in this case,J = 1.
Indeed, consider, for example,̂O[Φ] = ∂tΦ −W (Φ). The retarded regularized
version of the Langevin equation is:Φi = Φi−1 + δt(W (Φi−1) + ξi−1). Clearly
in this caseJii = 1 andJi,i−1 = −1−W ′(Φi−1)δt, while all other components
are zero; as a resultJ = 1.

Although the partition function (4.14) is trivial, it is clear that all the meaning-
ful observables and the correlation functions may be obtained by inserting a set of
factors:Φ(t)Φ(t′) . . . in the functional integral, Eq. (4.14). Having this in mind,
let us proceed with the partition function. Employing the integral representation
of theδ–function with the help of an auxiliary fieldΨ(t), one obtains:

Z[ξ] =

∫

DΦ

∫

DΨ e−2i
∫
dtΨ(t)

(
ÔR[Φ(t)]−ξ(t)

)

, (4.15)

whereÔR stands for the retarded regularization of theÔ operator and thus one
takesJ = 1. One may average now over the white noise, Eq. (4.12), by per-
forming the Gaussian integration overξ:

Z =

∫

Dξ e−
1

2γT

∫
dt ξ2Z[ξ] =

∫

DΦΨ e−
∫
dt [2iΨ(t)ÔR[Φ(t)]+2γTΨ2(t)] , (4.16)

The exponent is exactly the classical limit of the Keldysh action, cf. Eq. (4.8) (in-
cluding the retarded regularization of the differential operator), whereΦ = Φcl
andΨ = Φq. The message is that the MSR action is nothing, but the classical
(high temperature) limit of the Keldysh action. The MSR technique provides a
simple way to transform from a classical stochastic problemto its proper func-
tional representation. The latter is useful for an analytical analysis. One example
is given below.

4.6. Thermal activation

Consider a particle in a meta-stable potential well, plotted in Fig. 4.6a. The
potential has a meta-stable minimum atΦ = 0 and a maximum atΦ = 1 with the
amplitudeU0. Let us also assume that the particle’s motion is over-damped, i.e.
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Fig. 6. a) A potential with a meta-stable minimum. b) The phase portrait of the Hamiltonian system,
Eq. (4.19). Thick lines correspond to zero energy, arrows indicate evolution direction.

γ ≫
√
U ′′. In this case one may disregard the inertia term, leaving only viscous

relaxation dynamics. The classical dissipative action (4.8) takes the form:

S[Φ̂] = 2

∞∫

−∞

dt

[

−Φq

(
γ

2

dΦcl
dt

+
∂U(Φcl)

∂Φcl

)

+ iγ T Φ2
q

]

. (4.17)

The corresponding saddle point equations are:

γ

2
Φ̇cl = −∂U(Φcl)

∂Φcl
+ 2iγT Φq ; (4.18)

γ

2
Φ̇q = Φq

∂2U(Φcl)

∂Φ2
cl

.

These equations possess theclassicalsolution: Φq(t) ≡ 0 andΦcl(t) satisfies
the classical equation of motion:γ2 Φ̇cl = −∂U(Φcl)/∂Φcl. For the initial con-
dition Φcl(0) < 1 the latter equation predicts the viscous relaxation towards the
minimum atΦcl = 0. According to this equation, there is no possibility to es-
cape from this minimum. Therefore the classical solution ofEqs. (4.18) doesnot
describe thermal activation. Thus one has to look for another possible solution of
Eqs. (4.18), the one withΦq 6= 0.

To this end let us make a simple linear change of variables:Φcl(t) = q(t)
andΦq(t) = p(t)/(iγ). Then the dissipative action (4.17) acquires the form of a
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Hamiltonian action:

iS = −
∫

dt
(
pq̇−H(p, q)

)
; H(p, q) ≡ 2

γ

[

−p ∂U(q)

∂q
+ Tp 2

]

, (4.19)

where the fictitious Hamiltonian,H , is introduced3. It is straightforward to
see that in terms of the new variables the equations of motion(4.18) take the
form of the Hamilton equations:̇q = ∂H/∂p and ṗ = −∂H/∂q. One needs,
thus, to investigate the Hamiltonian system with the Hamiltonian Eq. (4.19). To
visualize it, one may plot its phase portrait, consisting oflines of constant energy
E = H(p(t), q(t)) on the(p, q) plane, Fig. 4.6b. The topology is determined
by the two lines of zero energy:p = 0 andTp = ∂U(q)/∂q, that intersect
at the two stationary points of the potential:q = 0 and q = 1. The p = 0
line corresponds to the classical (without Langevin noise)dynamics (notice, that
the action is identically zero for motion along this line) and thusq = 0 is the
stable point, whileq = 1 is the unstable one. Due to Liouville theorem, every
fixed point must have one stable and one unstable direction. Therefore, along
the “non–classical” line:p = T−1∂U(q)/∂q, the situation is reversed:q = 0 is
unstable, whileq = 1 is stable. It is clear now that, to escape from the bottom
of the potential well,q = 0, the system must move along the non–classical line
of zero energy until it reaches the top of the barrier,q = 1, and then continue
to drop according to the classical equation of motion (moving along the classical
line p = 0). There is a non–zero action associated with the motion along the
non–classical line:

iS = −
∫

dt pq̇ = −
1∫

0

p(q)dq = − 1

T

1∫

0

∂U(q)

∂q
dq = − U0

T
, (4.20)

where one has used thatH = 0 along the integration trajectory. As a result, the
thermal escape probability is proportional toeiS = e−U0/T , which is nothing but
the thermal activation exponent.

4.7. Fokker-Planck equation

Another way to approach the action (4.17) is to notice that itis quadratic inΦq
and therefore theDΦq integration may be explicitly performed. To shorten nota-
tions and emphasize the relation to the classical coordinate, we shall follow the

3Amazingly, this trick of rewriting viscous (or diffusive) dynamics as a Hamiltonian one, works
in a wide class of problems. The price, one has to pay, is the doubling of the number of degrees
of freedom:q andp in the Hamiltonian language, or “classical” and “quantum” components in the
Keldysh language.
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previous section and denoteΦcl(t) ≡ q(t). Performing the Gaussian integra-
tion overΦq of eiS[Φ̂], with S[Φcl,Φq] given by Eq. (4.17), one finds the action,
depending onΦcl ≡ q only:

iS[q] = − 1

2γT

∞∫

−∞

dt
(γ

2
q̇ + U ′

q

)2

. (4.21)

One may now employ the same trick, that allows to pass from theFeynman
path integral to the Schrödinger equation. Namely, let us introduce the “wave
function”, P(q, t), that is a result of the functional integration ofeiS[q] over all
trajectories that at timet pass through the pointqN ≡ q. Adding one more
time step,δt, to the trajectory, one may writeP(qN , t + δt) as an integral of
P(qN−1, t) = P(q + δq, t) overδq ≡ qN−1 − q :

P(q, t+ δt) = C

∫

dδq e
−

δt
2γT

(
γ
2

−δq
δt

+U ′
q(q+δq)

)2

P(q + δq, t) (4.22)

= C

∫

dδq e
− γ

8T

δ2
q

δt

[

e
δq
2T

U ′
q(q+δq)−

δt
2γT (U ′

q)
2

P(q + δq, t)
]

,

where the factorC from the integration measure is determined by the condition:
C
∫
dδq exp

{
−γδ2q/(8Tδt)

}
= 1. Expanding the expression in the square brack-

ets on the r.h.s. of the last equation to the second order inδq and the first order in
δt, one finds:

P(t+ δt)=

(

1+
〈δ2q 〉
2T

U ′′
qq+

1

2

〈δ2q 〉
4T 2

(
U ′
q

)2− δt
2γT

(
U ′
q

)2

)

P+
〈δ2q 〉
2T

U ′
qP ′

q

+
〈δ2q 〉
2

P ′′
qq = P(t) + δt

(
2

γ
U ′′
qq P +

2

γ
U ′
qP ′

q +
2T

γ
P ′′
qq

)

, (4.23)

where〈δ2q 〉 ≡ C
∫
dδq exp

{
−γδ2q/(8Tδt)

}
δ2q = 4Tδt/γ. Finally, rewriting the

last expression in the differential form, one obtains:

∂P
∂t

=
2

γ

[
∂

∂q

∂U

∂q
+ T

∂2

∂q2

]

P =
2

γ

∂

∂q

[
∂U

∂q
P + T

∂P
∂q

]

. (4.24)

This is the Fokker–Planck (FP) equation for the evolution ofthe probability dis-
tribution function,P(q, t). The latter describes the probability to find the particle
at the pointq(= Φ) at time t. If one starts from an initially sharp (determin-
istic) distribution: P(q, 0) = δ(q − q(0)), then the first term on the r.h.s. of
the FP equation describes the viscous drift of the particle in the potentialU(q).
Indeed, in the absence of the second term (T = 0), the equation is solved by
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P(q, t) = δ(q − q(t)), whereq(t) satisfies the deterministic equation of motion
(γ/2)q̇(t) = −∂U(q(t))/∂q 4 . The second term describes the diffusion spread-
ing of the probability distribution due to the thermal stochastic noiseξ(t). For a
confining potentialU(q) (such thatU(±∞) → ∞) the stationary solution of the
FP equation is the equilibrium Boltzmann distribution:P(q) ∼ exp{−U(q)/T }.

The FP equation may be considered as the (imaginary time) Schrödinger equa-
tion: Ṗ = ĤP , where the “Hamiltonian”,̂H, is nothing but the “quantized” ver-
sion of the classical Hamiltonian, introduced in the previous section, Eq. (4.19).
The “quantization” rule isp → p̂ ≡ −∂/∂q, so the canonical commutation re-
lation: [q, p̂]− = 1, holds. Notice that before applying this quantization rule,
the corresponding classical Hamiltonian must benormally ordered. Namely,
the momentum̂p should be to the left of the coordinateq, cf. Eq. (4.19). Us-
ing the commutation relation, one may rewrite the quantizedHamiltonian as:
Ĥ = T p̂2 − p̂U ′

q = T
(
p̂− U ′

q/(2T )
) (
p̂− U ′

q/(2T )
)
− (U ′

q)
2/(4T ) + U ′′

qq/2
(we took γ/2 = 1) and perform the canonical transformation:Q = q and
P̂ = p̂ − U ′

q/(2T ). In terms of these new variables the Hamiltonian takes the

familiar form: Ĥ = T P̂ 2 + V (Q), whereV (Q) = −(U ′
Q)2/(4T ) + U ′′

QQ/2,

while the “wave function” transforms as̃P(Q, t) = eU(Q)/(2T )P .

4.8. From Matsubara to Keldysh

In some applications it may be convenient to derive an actionin the equilibrium
Matsubaratechnique and change to the Keldysh representation at a later stage to
tackle out–of–equilibrium problems. This section intendsto illustrate how such
transformation may be carried out. To this end consider the following bosonic
Matsubara action:

S[Φm] = γ T

∞∑

m=−∞

1

2
|ǫm||Φm|2 , (4.25)

4To check this statement one may substituteP(q, t) = δ(q − q(t)) into theT = 0 FP equation:
δ′q(q − q(t))(−q̇(t)) = (2/γ)

[
U ′′

qqδ(q − q(t)) + U ′

qδ
′

q(q − q(t))
]
. Then multiplying both parts

of this equation byq and integrating overdq (by performing integration by parts), one finds:q̇(t) =
−(2/γ)U ′

q(q(t)).

Reminder: The Matsubara technique deals with the imaginary timeτ confined to the interval
τ ∈ [0, β[ , whereβ = 1/T . All bosonic fields must be periodic in this interval:φ(τ + β) = φ(τ),

while the fermionic fields are antiperiodic:ψ(τ + β) = −ψ(τ). It is convenient to introduce the

discrete Fourier (Matsubara) transform, e.g.φm =
β∫

0

dτφ(τ) e iǫmτ , where for bosons

ǫm ≡ 2πmT , while for fermionsǫm ≡ π(2m + 1)T andm = 0,±1, . . ..



38 A. Kamenev

whereΦm = Φ̄−m are the Matsubara components of a real bosonic field,Φ(τ).
Notice, that due to the absolute value sign:|ǫm| 6= i∂τ . In fact, in the imaginary
time representation the action (4.25) has the non–local form:

S[Φ] = −γ
2

∫ β∫

0

dτ dτ ′ Φ(τ)
πT 2

sin2(πT (τ − τ ′))
Φ(τ ′) . (4.26)

This action is frequently named after Caldeira and Leggett [19], who used it to
investigate the influence of dissipation on quantum tunnelling.

To transforn to the Keldysh representation one needs to double the number
of degrees of freedom:Φ → Φ̂ = (Φcl,Φq)

T . Then according to the causal-
ity structure, section 2.4, the general form of the time translationally invariant
Keldysh action is:

S = γ

∫
dǫ

2π

(
Φcl,Φq

)

ǫ

(
0 [LA(ǫ)]−1

[
LR(ǫ)

]−1
[L−1]K(ǫ)

)(
Φcl
Φq

)

ǫ

, (4.27)

where[LR(A)(ǫ)]−1 is the analytical continuation of the Matsubara correlator
|ǫm|/2 from theupper (lower)half–plane of the imaginary variableǫm to the real
axis: −iǫm → ǫ. As a result,[LR(A)(ǫ)]−1 = ±iǫ/2. The Keldysh component
follows from the FDT:[L−1]K(ǫ) = iǫ cothǫ/(2T ), cf. Eqs. (4.3) and (4.4).
Therefore the Keldysh counterpart of the Matsubara action,Eqs. (4.25) or (4.26)
is the already familiar dissipative action, Eq. (4.6), (without the potential terms,
of course). One may now include external fields and allow the system to deviate
from the equilibrium.

4.9. Dissipative chains and membranes

Instead of dealing with a single particle connected to a bath, let us now consider
a chain or lattice of coupled particles, witheach oneconnected to a bath. To
this end, one (i) supplies a spatial index,r, to the field: Φ(t) → Φ(t; r), and
(ii) adds the harmonic interaction potential between nearest neighbors particles:
∼ (Φ(t, r) − Φ(t, r + 1))2 → (∇rΦ)2 in the continuous limit. By changing
to the classical–quantum components and performing the spatial integration by
parts (cf. Eq. (B. 9)), the gradient term translates to:Φq∇2

rΦcl+Φcl∇2
rΦq. Thus

it modifies the retarded and advanced components of the correlator, but it does
notaffect the(q − q) Keldysh component:

[LR(A)]−1 =
1

2
δ(t− t′) δ(r − r′)

(
∓ ∂t′ +D∇2

r′
)
, (4.28)

whereD is the rigidity of the chain or the membrane. In the Fourier representa-
tion: [LR(A)(ǫ; k)]−1 = 1

2

(
± iǫ−Dk2

)
. In equilibrium the Keldysh component
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is not affected by the gradient terms, and is given by Eq. (4.4) (in the real space
representation it acquires the factorδ(r − r′)). In particular, its classical limit
is (cf. Eq. (4.5))[L−1]K = i2Tδ(t − t′)δ(r − r′). As a result, the action of a
classical elastic chain in contact with a bath is:

S[Φ̂] = 2

∫

dr

∞∫

−∞

dt

[

−Φq

(

Φ̇cl −D∇2
rΦcl +

∂U(Φcl)

∂Φcl

)

+ i2T Φ2
q

]

, (4.29)

where the inertia terms have been neglected and we putγ/2 = 1 for brevity.
One may introduce now an auxiliary Hubbard–Stratonovich field ξ(t; r) and

write the Langevin equation according to section 4.4:

Φ̇cl −D∇2
rΦcl +

∂U(Φcl)

∂Φcl
= ξ(t; r) , (4.30)

whereξ is a Gaussian noise:〈ξ(t; r)ξ(t′; r′)〉 = 2Tδ(t− t′)δ(r− r′) with short–
range correlations.

Let us consider an elastic chain sitting in the bottom of the (r–independent)
meta-stable potential well, depicted in Fig. 4.6a. If a sufficiently large piece of
the chain thermally escapes from the well, it may find it favorable to slide down
the potential, pulling the entire chain out of the well. To find the shape of such an
optimally large critical domain and its action, let us change to the Hamiltonian
variables of section 4.6:q(t; r) ≡ Φcl(t; r) andp(t; r) ≡ 2iΦq(t; r). The action
(4.29) takes the Hamiltonian form:

iS = −
∫∫

drdt
(
pq̇ −H(p, q)

)
; H ≡ −p ∂U(q)

∂q
+ pD∇2

rq + Tp 2, (4.31)

and the corresponding equations of motion are:

q̇ =
δH

δp
= D∇2

rq − U ′
q(q) + 2Tp ; (4.32)

ṗ =−δH
δq

= −D∇2
rp+ pU ′′

qq(q) .

These are complicated partial differential equations, that cannot be solved in gen-
eral. Fortunately, the shape of the optimal critical domaincan be found. As was
discussed in section 4.6, the minimal action trajectory corresponds to a motion
with zero energy,H = 0. According to Eq. (4.31), this is the case if eitherp = 0
(classical zero–action trajectory), orTp = U ′

q(q) −D∇2
rq (finite–action escape

trajectory). In the latter case the equation of motion forq(t; r) takes the form of
the classical equation in the reversed time:q̇ = −D∇2

rq+U ′
q(q) = Tp . Thanks

to the last equality the equation of motion forp(t; r) is automatically satisfied
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5. In the reversed time dynamics theq(t; r) = 0 configuration is unstable and
therefore the chain develops a “tongue” that grows until it reaches the stationary
shape:

−D∇2
rq + U ′

q(q) = 0 . (4.33)

The solution of this equation gives the shape of the criticaldomain. Once it is
formed, it may grow further according to the classical equation q̇ = D∇2

rq −
U ′
q(q) andp = 0 with zero action. The action along the non–classical escape

trajectory, paid to form the “tongue” is (H(p, q) = 0):

−iS=

∫∫

drdt pq̇=
1

T

∫∫

drdt
(
U ′
q(q)−D∇2

rq
)
q̇=

1

T

∫

dr
(

U(q)+
D

2
(∇rq)

2
)

, (4.34)

where in the last equality an explicit integration over timeis performed. The
escape action is given therefore by the static activation expression that includes
both the potential and the elastic energies. The optimal domain, Eq. (4.33), is
found by the minimization of this static action (4.34). One arrives, thus, at a ther-
modynamic Landau-type description of the first–order phasetransitions. Notice,
that the effective thermodynamic description appears due to the assumption that
H(p, q) = 0 and, therefore, that all the processes take an infinitely long time.

5. Fermions

5.1. Free fermion Keldysh action

Consider a single quantum state, with the energyǫ0. This state is populated
by spin-less fermions (particles obeying the Pauli exclusion principle). In fact,
one may have either zero, or one particle in this state. The secondary quantized
Hamiltonian of such a system has the form:

Ĥ = ǫ0 c
†c , (5.1)

wherec† andc are fermion creation and annihilation operators of the state ǫ0.
They obey standardanticommutation relations:{c , c†}+ = 1 and{c , c}+ =
{c† , c†}+ = 0, where{ , }+ stands for the anti-commutator.

One can now consider the evolution operator along the Keldysh contour,C
and the corresponding “partition function”,Z = 1, defined in exactly the same
manner as for bosonic systems: Eq. (2.2). The trace of the equilibrium density

5Indeed,T ṗ = ∂tq̇ = −D∇2
r q̇ + q̇U ′′

qq = T (−D∇2
rp + pU ′′

qq). This non–trivial fact reflects

the existence of an accidental conservation law:H
(
p(t; r), q(t; r)

)
= 0 – locally! While from the

general principles only the total global energy has to be conserved.
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matrix is Tr{ρ0} = 1 + ρ(ǫ0), where the two terms stand for the empty and the
singly occupied state. One divides the Keldysh contour into(2N − 2) time in-
tervals of lengthδt ∼ 1/N → 0 and introduces resolutions of unity in2N points
alongC, Fig. (1.2). The only difference from the bosonic case in section 2.1 is
that now one uses a resolution of unity in thefermioniccoherent state basis [17]:

1 =

∫∫

dψ̄j dψj e
−ψ̄jψj |ψj〉〈ψj | , (5.2)

whereψ̄j andψj aremutually independentGrassmann variables. The rest of the
algebra goes through exactly as in the bosonic case, section2.1. As a result, one
arrives at:

Z =
1

Tr{ρ0}

∫∫ 2N∏

j=1

[
dψ̄j dψj

]
e
i

2N∑

j,j′=1

ψ̄jG
−1

jj′
ψj′

, (5.3)

where the2N × 2N matrixG−1
jj′ stands for:

iG−1
jj′ ≡











−1 −ρ(ǫ0)
1−h −1

1−h −1

1 −1
1+h −1

1+h −1











, (5.4)

andh ≡ iǫ0δt. The only difference from the bosonic case is the negative sign
before theρ(ǫ0) matrix element, originating from the minus sign in the〈−ψ2N |

Reminder: the fermionic coherent state|ψ〉 ≡ (1 − ψc†)|0〉, parameterized by a
Grassmann numberψ (such that{ψ, ψ′}+ = {ψ, c}+ = 0), is an eigenstate of
the annihilation operator:c|ψ〉 = ψ|ψ〉. Similarly: 〈ψ|c† = 〈ψ|ψ̄, whereψ̄ is

another Grassmann number,unrelatedto ψ. The matrix elements of anormally
orderedoperator, such as e.g. the Hamiltonian, take the form

〈ψ|Ĥ(c†, c)|ψ′〉 = H(ψ̄, ψ′)〈ψ|ψ′〉. The overlap between any two coherent
states is〈ψ|ψ′〉 = 1 + ψ̄ψ′ = exp{ψ̄ψ′}. The trace of an operator,̂A, is
calculated as: Tr{Â} =

∫∫
dψ̄ dψ e−ψ̄ψ〈−ψ|Â|ψ〉, where the Grassmann

integrals aredefinedas:
∫
dψ 1 = 0 and

∫
dψ ψ = 1.
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coherent state in the expression for the fermionic trace. Tocheck the normaliza-
tion, let us evaluate the determinant of such a matrix:

det
[
iG−1

]
= 1+ρ(ǫ0)(1−h2)N−1 ≈ 1+ρ(ǫ0) e

(ǫ0δt)
2(N−1) → 1+ρ(ǫ0).(5.5)

Employing the fact that the fermionic Gaussian integral is given by the deter-
minant (unlike theinversedeterminant for bosons) of the correlation matrix,
Appendix A, one finds:

Z =
det
[
iG−1

]

Tr{ρ0}
= 1 , (5.6)

as it should be. Once again, the upper–right element of the discrete matrix,
Eq. (5.4), is crucial to maintain the correct normalization.

Taking the limitN → ∞ and introducing the continuous notations,ψj →
ψ(t), one obtains:

Z =

∫

Dψ̄ψ e iS[ψ̄,ψ] =

∫

Dψ̄ψ exp






i

∫

C

[
ψ̄(t)G−1ψ(t)

]
dt






, (5.7)

where according to Eqs. (5.3) and (5.4) the action is given by

S[ψ̄, ψ]=

2N∑

j=2

[

iψ̄j
ψj − ψj−1

δtj
− ǫ0ψ̄jψj−1

]

δtj + i ψ̄1

(

ψ1 +ρ(ǫ0)ψ2N

)

, (5.8)

whereδtj ≡ tj − tj−1 = ±δt. Thus the continuous form of the operatorG−1 is
the same as for bosons, Eq. (2.13):G−1 = i∂t − ǫ0. Again the upper–right ele-
ment of the discrete matrix (the last term in Eq. (5.8)), thatcontains information
about the distribution function, is seemingly absent in thecontinuous notations.

Splitting the Grassmann fieldψ(t) into the two componentsψ+(t) andψ−(t)
that reside on the forward and the backward parts of the time contour correspond-
ingly, one may rewrite the action as:

S =

∞∫

−∞

dt ψ̄+(t)[i∂t − ǫ0]ψ+(t) −
∞∫

−∞

dt ψ̄−(t)[i∂t − ǫ0]ψ−(t) , (5.9)

where the dynamics ofψ+ andψ− arenot independent from each other, due to
the presence of non–zero off–diagonal blocks in the discrete matrix, Eq. (5.4).
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The four fermionic Greens functions:GT (T̃ ) andG<(>) are defined in the
same way as their bosonic counterparts, Eq. (2.16):

〈ψ+(t)ψ̄−(t′)〉 ≡ iG<(t, t′) = −Tr{c†(t′)c(t)ρ̂0}
Tr{ρ̂0}

= −nF e−iǫ0(t−t
′) ;

〈ψ−(t)ψ̄+(t′)〉 ≡ iG>(t, t′) =
Tr{c(t)c†(t′)ρ̂0}

Tr{ρ̂0}
= (1 − nF ) e−iǫ0(t−t

′); (5.10)

〈ψ+(t)ψ̄+(t′)〉 ≡ iGT (t, t′) = θ(t− t′)iG>(t, t′) + θ(t′ − t)iG<(t, t′) ;

〈ψ−(t)ψ̄−(t′)〉 ≡ iGT̃ (t, t′) = θ(t′ − t)iG>(t, t′) + θ(t− t′)iG<(t, t′) ;

The difference is in the minus sign in the expression forG<, due to the anti–
commutation relations, and the Planck occupation number isexchanged for the
Fermi one:n → nF ≡ ρ(ǫ0)/(1 + ρ(ǫ0)). Equations (2.17) and (2.18) hold for
the fermionic Green functions as well.

5.2. Keldysh rotation

It is customary to perform the Keldysh rotation in the fermionic case in a different
manner from the bosonic one. Define the new fields as:

ψ1(t) =
1√
2

(
ψ+(t) + ψ−(t)

)
; ψ2(t) =

1√
2

(
ψ+(t) − ψ−(t)

)
. (5.11)

This line is exactly parallel to the bosonic one, Eq. (2.19).However, following
Larkin and Ovchinnikov [20], it is agreed that the “bar” fields transform in a
different way:

ψ̄1(t) =
1√
2

(
ψ̄+(t) − ψ̄−(t)

)
; ψ̄2(t) =

1√
2

(
ψ̄+(t) + ψ̄−(t)

)
. (5.12)

The point is that the Grassmann fieldsψ̄ arenot conjugated toψ, but rather are
completely independent fields, that may be chosen to transform in an arbitrary
manner (as long as the transformation matrix has a non-zero determinant). No-
tice, that there is no issue regarding the convergence of theintegrals, since the
Grassmann integrals arealwaysconvergent. We also avoid the subscriptscl and
q, because the Grassmann variablesneverhave a classical meaning. Indeed, one
can never write a saddle–point or any other equation in termsof ψ̄, ψ rather they
must always be integrated out in some stage of the calculations.

Employing Eqs. (5.11), (5.12) along with Eq. (5.10), one finds:

− i〈ψa(t)ψ̄b(t′)〉 ≡ Ĝab =

(
GR(t, t′) GK(t, t′)

0 GA(t, t′)

)

, (5.13)
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where hereaftera, b = (1, 2). The presence of zero in the(2, 1) element of this
matrix is a manifestation of identity (2.18). Theretarded, advancedandKeldysh
components of the Green function are expressed in terms ofGT (T̃ ) andG<(>) in
exactly the same way as their bosonic analogs, Eq. (2.21), and therefore posses
the same symmetry properties: Eqs. (2.22)–(2.24). An important consequence of
Eqs. (2.23), (2.24) is:

Tr
{

Ĝ1 ◦ Ĝ2 ◦ . . . ◦ Ĝk
}

(t, t) = 0 , (5.14)

where the circular multiplication sign involves integration over the intermediate
times along with the2 × 2 matrix multiplication. The argument(t, t) states that
the first time argument of̂G1 and the last argument of̂Gk are the same.

Notice that the fermionic Green function has a different structure from its
bosonic counterpart, Eq. (2.20): the positions of theR,A andK components in
the matrix are exchanged. The reason, of course, is the different convention for
transformation of the “bar” fields. One could choose the fermionic convention
to be the same as the bosonic (butnot the other way around!), thus having the
same structure, Eq. (2.20), for fermions as for bosons. The rationale for the
Larkin–Ovchinnikov choice, Eq. (5.13), is that the inverseGreen function,̂G−1

and fermionic self energŷΣF have the same appearance asĜ:

Ĝ−1 =

( [
GR
]−1 [

G−1
]K

0
[
GA
]−1

)

; Σ̂F =

(
ΣRF ΣKF
0 ΣAF

)

, (5.15)

whereas in the case of bosonsĜ−1, Eq. (2.29), and̂Σ, Eq. (3.10), look differently
from Ĝ, Eq. (2.20). This fact gives the form Eq. (5.13), (5.15) a certain technical
advantage.

For the single fermionic state (see. Eq. (5.10)):

GR(t, t′) = −iθ(t− t′) e−iǫ0(t−t
′) → (ǫ− ǫ0 + i0)−1 ;

GA(t, t′) = iθ(t′ − t) e−iǫ0(t−t′) → (ǫ− ǫ0 − i0)−1 ; (5.16)

GK(t, t′) = −i(1 − 2nF ) e−iǫ0(t−t′) → (1 − 2nF (ǫ))(−2πi)δ(ǫ− ǫ0) .

where the r.h.s. provides also the Fourier transforms. In thermal equilibrium, one
obtains:

GK(ǫ) = tanh
ǫ

2T

(
GR(ǫ) − GA(ǫ)

)
. (5.17)

This is the FDT for fermions. As in the case of bosons, the FDT statement
is a generic feature of an equilibrium system, not restricted to the toy model.
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In general, it is convenient to parameterize the anti-Hermitian Keldysh Green
function by a Hermitian matrixF = F† as:

GK = GR ◦ F − F ◦ GA , (5.18)

The Wigner transform ofF(t, t′) plays the role of the fermionic distribution func-
tion.

One may continue now to a system with many degrees of freedom,counted by
an indexk. To this end, one simply changes:ǫ0 → ǫk and perform summations
overk. If k is a momentum andǫk = k2/(2m), it is instructive to transform to the
real space representation:ψ(t; k) → ψ(t; r) andǫk = k2/(2m) = −(2m)−1∇2

r.
Finally, the Keldysh action for a non–interacting gas of fermions takes the form:

S0[ψ̄, ψ] =

∫∫

dx dx′
2∑

a,b=1

ψ̄a(x)
[
Ĝ−1(x, x′)

]

ab
ψb(x

′) , (5.19)

wherex = (t; r) and the matrix correlator[Ĝ−1]ab has the structure of Eq. (5.15)
with

[GR(A)(x, x′)]−1 = δ(x− x′)

(

i∂t′ +
1

2m
∇2
r′

)

. (5.20)

Although in continuous notations theR and theA components look seemingly
the same, one has to remember that in the discrete time representation, they are
matrices with the structure below and above the main diagonal correspondingly.
The Keldysh component is a pure regularization, in the sensethat it does not
have a continuum limit (the self-energy Keldysh component does have a non–
zero continuum representation). All this information is already properly taken
into account, however, in the structure of the Green function, Eq. (5.13).

5.3. External fields and sources

Let us introduce an external time–dependent scalar potential−V (t) defined along
the contour. It interacts with the fermions as:SV =

∫

C
dt V (t)ψ̄(t)ψ(t). Ex-

pressing it via the field components, one finds:

SV =

∞∫

−∞

dt
[
V+ψ̄+ψ+−V−ψ̄−ψ−

]
=

∞∫

−∞

dt
[
Vcl
(
ψ̄+ψ+−ψ̄−ψ−

)
+Vq

(
ψ̄+ψ++ψ̄−ψ−

)]

=

∞∫

−∞

dt
[
Vcl
(
ψ̄1ψ1 + ψ̄2ψ2

)
+Vq

(
ψ̄1ψ2 + ψ̄2ψ1

)]
, (5.21)
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where theVcl and theVq components are defined in the standard way for real
bosonic fields:Vcl(q) = (V+±V−)/2. Notice that the physical fermionic density
(symmetrized over the two branches of the contour):̺ = 1

2

(
ψ̄+ψ++ψ̄−ψ−

)
is

coupled to thequantumcomponent of the source field,Vq . On the other hand,
the classical source component,Vcl, is nothing but an external physical scalar
potential, the same at the two branches.

Notations may be substantially compactified by introducingvertex gamma–
matrices:

γ̂cl ≡
(

1 0
0 1

)

; γ̂q ≡
(

0 1
1 0

)

. (5.22)

With the help of these definitions, the source action (5.21) may be written as:

SV =

∞∫

−∞

dt

2∑

a,b=1

[
Vcl ψ̄aγ

cl
abψb + Vq ψ̄aγ

q
abψb

]
=

∞∫

−∞

dt ˆ̄ψVαγ̂
αψ̂ , (5.23)

where the summation index isα = (cl, q).
Let us define now the “generating” function as:

Z[Vcl, Vq] ≡
〈
eiSV

〉
, (5.24)

where the angular brackets denote the functional integration over the Grassmann
fields ψ̄ andψ with the weight ofeiS0 specified by the fermionic action (5.19).
In the absence of the quantum component,Vq = 0, the source field is the same
at both branches of the contour. Therefore, the evolution along the contour still
brings the system back to its exact initial state. Thus one expects that the classical
component alone does not change the fundamental normalization,Z = 1. As a
result:

Z[Vcl, Vq = 0] = 1 . (5.25)

One may verify this statement explicitly by expanding the action in powers of
Vcl and employing the Wick theorem. For example, in the first order one finds:
Z[Vcl, 0] = 1+

∫
dt Vcl(t) Tr{γ̂clĜ(t, t)} = 1, where one uses thatγ̂cl = 1̂ along

with Eq. (5.14). It is straightforward to see that for exactly the same reasons all
higher order terms inVcl vanish as well.

A lesson from Eq. (5.25) is that one necessarily has to introducequantum
sources (that change sign between the forward and the backward branches of the
contour). The presence of such source fields explicitly violates causality, and thus
changes the generating function. On the other hand, these fields usually do not
have a physical meaning and play only an auxiliary role. In most cases one uses
them only to generate observables by an appropriate differentiation. Indeed, as
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was mentioned above, the physical density is coupled to the quantum component
of the source. In the end, one takes the quantum sources to be zero, restoring the
causality of the action. Notice that the classical component,Vcl, doesnothave to
be taken to zero.

Let us see how it works. Suppose we are interested in the average fermion
density̺ at timet in the presence of a certain physical scalar potentialVcl(t).
According to Eqs. (5.21) and (5.24) it is given by:

̺(t;Vcl) = − i

2

δ

δVq(t)
Z[Vcl, Vq]

∣
∣
∣
Vq=0

. (5.26)

The problem is simplified if the external field,Vcl, is weak in some sense. Then
one may restrict oneself to the linear response, by defining the susceptibility:

ΠR(t, t′) ≡ δ

δVcl(t′)
̺(t;Vcl)

∣
∣
∣
Vcl=0

= − i

2

δ2 Z[Vcl, Vq]

δVcl(t′)δVq(t)

∣
∣
∣
∣
Vq=Vcl=0

.(5.27)

We add the subscriptR anticipating on physical grounds that the response func-
tion must beretarded(causality). We shall demonstrate it momentarily. First, let
us introduce thepolarizationmatrix as:

Π̂αβ(t, t′) ≡ − i

2

δ2 lnZ[V̂ ]

δVβ(t′)δVα(t)

∣
∣
∣
∣
∣
V̂=0

=

(
0 ΠA(t, t′)

ΠR(t, t′) ΠK(t, t′)

)

. (5.28)

Due to the fundamental normalization, Eq. (5.25), the logarithm is redundant for
theR and theA components and therefore the two definitions (5.27) and (5.28)
are not in contradiction. The fact thatΠcl,cl = 0 is obvious from Eq. (5.25).
To evaluate the polarization matrix,Π̂, consider the Gaussian action, Eq. (5.19).

Adding the source term, Eq. (5.23), one finds:S0+SV =
∫
dt ˆ̄ψ[Ĝ−1+Vαγ̂

α]ψ.

Integrating out the fermion fieldŝ̄ψ, ψ̂ according to the rules of fermionic Gaus-
sian integration, Appendix A, one obtains:

Z[V̂ ]=
1

Trρ̂0
det
{

iĜ−1+iVαγ̂
α
}

=det
{

1+Ĝ Vαγ̂α
}

=eTr ln(1+Ĝ Vαγ̂
α), (5.29)

where one used normalization, Eq. (5.6). Notice, that the normalization is exactly
right, sinceZ[0] = 1. One may now expandln(1+Ĝ Vαγ̂α) to the second order in
V and then differentiate twice. As a result, one finds for the polarization matrix:

Παβ(t, t′) = − i

2
Tr
{

γ̂αĜ(t, t′)γ̂βĜ(t′, t)
}

. (5.30)
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Substituting the explicit form of the gamma-matrices, Eq. (5.22), and the Green
functions, Eq. (5.13), one obtains for theresponseand thecorrelation compo-
nents:

ΠR(A)(t, t′)=− i

2

[

GR(A)(t, t′)GK(t′, t) + GK(t, t′)GA(R)(t′, t)
]

; (5.31)

ΠK(t, t′)=− i

2

[
GK(t, t′)GK(t′, t)+GR(t, t′)GA(t′, t)+GA(t, t′)GR(t′, t)

]
.

From the first line it is obvious thatΠR(A)(t, t′) is indeed a lower (upper) trian-
gular matrix in the time domain, justifying their superscripts. Moreover, from the
symmetry properties of the fermionic Green functions (sameas Eq. (2.22)) one
finds: ΠR = [ΠA]† andΠK = −[ΠK ]†. As a result, the polarization matrix,̂Π,
possesses all the symmetry properties of the bosonic self-energyΣ̂, Eq. (3.10).

Exercise: In the stationary case:̂G(t, t′) = Ĝ(t− t′). Fourier transform to the energy domain and
write down expressions for̂Π(ω). Assume thermal equilibrium and, using Eq. (5.17), rewriteyour
results in terms ofGR(A) and the equilibrium distribution function. Show that in equilibrium, the

response,ΠR(A)(ω), and the correlation,ΠK(ω), functions are related by the bosonic FDT:

ΠK(ω) = coth
ω

2T

(
ΠR(ω) − ΠA(ω)

)
. (5.32)

Equation (5.31) forΠR constitutes the Kubo formula for the density–density
response function. In equilibrium it may be derived using the Matsubara tech-
nique. The Matsubara routine involves, however, the analytical continuation from
discrete imaginary frequencyωm to real frequencyω. This procedure may prove
to be cumbersome in specific applications. The purpose of theabove discussion
is to demonstrate how the linear response problems may be compactly formu-
lated in the Keldysh language. The latter allows to circumvent the analytical
continuation and yields results directly in the real frequency domain.

5.4. Tunnelling current

As a simple application of the technique, let us derive the expression for the
tunnelling conductance. Our starting point is the tunnelling Hamiltonian:

Ĥ =
∑

k

[

ǫ
(c)
k c†kck + ǫ

(d)
k d†kdk

]

+
∑

kk′

[

Tkk′ c
†
kdk′ + T ∗

kk′ d
†
k′ck

]

, (5.33)

where the operatorsck anddk′ describe fermions in the left and right leads, while
Tkk′ are tunnelling matrix elements between the two. The currentoperator is:

Ĵ = d
dt

∑

k c
†
kck = i[Ĥ,

∑

k c
†
kck]− = −i∑kk′

[

Tkk′ c
†
kdk′ − T ∗

kk′ d
†
k′ck

]

.
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To describe the system in the Keldysh formalism, one introduces the the four–

component spinor:̂̄ψk =
(
ψ̄

(c)
1k , ψ̄

(c)
2k , ψ̄

(d)
1k , ψ̄

(d)
2k

)
, a similarly one for the fields

without the bar, and the4 × 4 matrices:

Ĝk=

(

Ĝ(c)
k 0

0 Ĝ(d)
k

)

; T̂k,k′ =

(
0 Tkk′ γ̂

cl

T ∗
kk′ γ̂

cl 0

)

; Ĵkk′ =

(
0 iTkk′ γ̂

q

−iT ∗
kk′ γ̂

q 0

)

.(5.34)

In addition to the already familiar Keldysh structure the spinors and matrices
above possess the structure of the left–right space. In terms of these objects the
action and the current operator take the form:

S =

∞∫

−∞

dt
∑

kk′

ˆ̄ψk

[

δkk′ Ĝ−1
k − T̂k,k′

]

ψ̂k′ ; Ĵ(t) = −
∑

kk′

ˆ̄ψkĴk,k′ ψ̂k′ . (5.35)

The current is expressed through theγq vertex matrix in the Keldysh space be-
cause any observable is generated by differentiation over the quantumcompo-
nent of the source field (the classical component of the source does not change
the normalization, Eq. (5.25)).

One is now in a position to calculate the average tunnelling current up to the
second order in the matrix elementsTk,k′ . To this end one expands the action up
to the first order inTk,k′ , and applies the Wick theorem:

J(t) = i

∞∫

−∞

dt′
∑

kk′

Tr
{

Ĵkk′ Ĝk′ (t, t′)T̂k′kĜk(t′, t)
}

(5.36)

=

∞∫

−∞

dt′
∑

kk′

|Tkk′ |2Tr
{

γ̂qĜ(c)
k (t, t′)γ̂clĜ(d)

k′ (t′, t) − γ̂qĜ(d)
k′ (t, t′)γ̂clĜ(c)

k (t′, t)
}

=

∞∫

−∞

dt′
∑

kk′

|Tkk′ |2
[

G(c)R
k(t,t′)G

(d)K
k′(t′,t)+G(c)K

k(t,t′)G
(d)A
k′(t′,t)−G(d)R

k′(t,t′)G
(c)K
k(t′,t)−G(d)K

k′(t,t′)G
(c)A
k(t′,t)

]

.

Now let us assume a stationary situation so that all the Greenfunctions depend on
the time difference only. We shall also assume that each leadis in local thermal
equilibrium and thus its Green functions are related to eachother via the FDT:
G(c)K
k (ǫ) = (1− 2n

(c)
F (ǫ))[G(c)R

k (ǫ)−G(c)A
k (ǫ)]. Similarly for the “d”–lead with

a different occupation functionn(d)
F (ǫ). As a result, one finds for the tunnelling

current:

J=

∞∫

−∞

dǫ

π

[
n

(d)
F (ǫ) − n

(c)
F (ǫ)

]∑

kk′

|Tkk′ |2
[
G(c)R
k − G(c)A

k

][
G(d)R
k′ − G(d)A

k′

]
. (5.37)
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If the current matrix elements may be considered as approximately momentum
independent:|Tkk′ |2 ≈ |T |2, the last expression is reduced to:

J = 4π|T |2
∞∫

−∞

dǫ
[
n

(c)
F (ǫ) − n

(d)
F (ǫ)

]
ν(c)(ǫ) ν(d)(ǫ) , (5.38)

where the density of states (DOS) is defined as:

ν(ǫ) ≡ i

2π

∑

k

[
GRk (ǫ) − GAk (ǫ)

]
. (5.39)

5.5. Interactions

Consider a liquid of fermions that interact through instantaneous density–density
interactions:Ĥint = − 1

2

∫∫
drdr′ : ˆ̺(r)U(r − r′)ˆ̺(r′) : , where ˆ̺(r) = c†rcr

is the local density operator and: . . . : stands for normal ordering. The corre-
sponding Keldysh contour action has the form:Sint = 1

2

∫

Cdt
∫∫
drdr′U(r −

r′)ψ̄rψ̄r′ψrψr′ . One may now perform the Hubbard–Stratonovich transforma-
tion with the help of a real boson fieldϕ(t; r), defined along the contour:

e

i
2

∫

C

dt
∫∫
drdr′U(r−r′)ψ̄rψ̄r′ψrψr′

=

∫

Dϕe
i
∫

C

dt
[

1
2

∫∫
drdr′ϕrU

−1

rr′
ϕr′+

∫
drϕrψ̄rψr

]

, (5.40)

whereU−1 is a kernel, that is inverse to the interaction potential:U−1 ◦ U =
1. One notices that the auxiliary bosonic field,ϕ, enters the fermionic action
in exactly the same manner as a scalar source field. FollowingEq. (5.21), one
introducesϕcl(q) ≡ (ϕ+ ± ϕ−)/2 and rewrites the fermion–boson interaction
term asψ̄aϕαγαabψb , where summations are assumed overa, b = (1, 2) andα =

(cl, q). The free bosonic term takes the form of:1
2ϕU

−1ϕ→ ϕαU
−1σ̂αβ1 ϕβ .

At this stage the fermionic action is Gaussian and one may integrate out the
Grassmann variables in the same way it was done in Eq. (5.29).As a result, one
finds for the generating function, Eq. (5.24), of the interacting fermionic liquid:

Z[V̂ ] =

∫

Dϕ e

i

∞∫

−∞

dt
∫∫

drdr′ϕ̂ U−1σ̂1ϕ̂ +Tr ln
[
1+Ĝ (Vα+ϕα)γ̂α

]

. (5.41)

Quite generally, thus, one may reduce an interacting fermionic problem to a the-
ory of an effective non–linear bosonic field (longitudinal photons). Let us demon-
strate that this bosonic theory possesses the causality structure. To this end, one
formally expands the logarithm on the r.h.s. of Eq. (5.41). Employing Eq. (5.14)
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and recalling that̂γcl = 1̂, one notices that forϕq = Vq = 0 the bosonic action
is zero. As a result, Eq. (2.32) holds.

To proceed we shall restrict ourselves to the, so called,random phase approx-
imation (RPA). It neglects all terms in the expansion of the logarithm beyond
the second order. The second order term in the expansion is conveniently ex-
pressed through the (bare) polarization matrixΠα,β (see Eq. (5.30)) of thenon–
interactingfermions. The resulting effective bosonic theory is Gaussian with the
action:

SRPA[ϕ̂, V̂ ]=

∫∞∫

−∞

dtdt′
∫∫

drdr′
[

ϕ̂
(

U−1σ̂1−Π̂
)

ϕ̂ −2 ϕ̂Π̂V̂ −V̂ Π̂V̂
]

. (5.42)

One notices that the bare polarization matrix plays exactlythe same role as of the
self-energy,̂Σ, cf. Eqs. (3.9), (3.10), in the effective bosonic theory. Asa result,
the full bosonic correlator(U−1σ̂1 − Π̂) possesses all the causality properties,
listed in section 2.4.

Finally, let us evaluate thedressedpolarization matrix of the interacting fermi–
liquid in the RPA. To this end one may perform the bosonic Gaussian integra-
tion in the RPA action (5.42) to find the logarithm of the generating function:

i lnZRPA[V̂ ] = V̂
(

Π̂ + Π̂(U−1σ̂1 − Π̂)−1Π̂
)

V̂ . Finally, employing the defi-

nition of the polarization matrix, Eq. (5.28), and performing simple matrix alge-
bra, one finds:

Π̂RPA = Π̂ ◦
(

1 − σ̂1U ◦ Π̂
)−1

. (5.43)

It is straightforward to demonstrate that the dressed polarization matrix possesses
the same causality structure as the bare one, Eq. (5.28). Forthe response com-
ponent of the dressed polarization,Π̂

R
RPA, the second factor on the r.h.s. of

Eq. (5.43) may be considered as a modification of the applied field,Vcl. Indeed,
cf. Eq. (5.27),̺ = Π̂

R
RPA ◦ Vcl = Π̂R ◦ V scrcl , where the screened external po-

tentialV scrcl is given by:V scrcl =
(

1 − σ̂1U ◦ Π̂R
)−1

◦Vcl. This is the RPA result

for the screening of an external scalar potential.

5.6. Kinetic equation

According to Eq. (5.30) to evaluate the bare (and thus RPA dressed, Eq. (5.43))
polarization matrix, one needs to know the fermionic Green function,Ĝ. While
it is known in equilibrium, it has to be determined self–consistently in an out–
of–equilibrium situation. To this end one employs the same idea that was used
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in the bosonic theory of chapter 3. Namely, one writes down the Dyson equation
for the dressed fermionic Green function:
(

Ĝ−1
0 − Σ̂F

)

◦ Ĝ = 1̂ , (5.44)

where the subscript “0” indicates the bare Green function. The fermionic self-
energy,ΣF turns out to have the same structure asĜ−1, Eq. (5.15). Thus theR
andA components of the Dyson equation take a simple form:
(

i∂t +
1

2m
∇2
r

)

GR(A) = Σ
R(A)
F ◦ GR(A) . (5.45)

Employing the parameterizationGK = GR◦F−F◦GA, whereF is a Hermitian
matrix, along with Eq. (5.45), one rewrites the Keldysh component of the Dyson
equation as:
[

F ,
(

i∂t +
1

2m
∇2
r

)]

−

= ΣKF −
(
ΣRF ◦ F − F ◦ ΣAF

)
= −i Icol[F ] . (5.46)

This equation is the quantum kinetic equation for the distribution matrixF . Its
l.h.s. is thekinetic term, while the r.h.s. is thecollision integralwith ΣKF having
the meaning of an “incoming” term andΣRF ◦ F −F ◦ΣAF that of an “outgoing”
term.

The simplest diagram for the fermionic self-energy matrix,Σ̂abF , is obtained
by expanding the Hubbard–Stratonovich transformed action, Eq. (5.40), to the

second order in the fermion–boson interaction vertex,ˆ̄ψaϕαγ̂
α
abψ̂b, and applying

the Wick theorem for both fermion and boson fields. As a result, one finds:

Σ̂abF (t, t′) =
(

γ̂αac Ĝcd(t, t′) γ̂βdb
)

〈ϕα(t)ϕβ(t′)〉 =
(

γ̂cl Ĝ(t, t′) γ̂cl
)ab

iDK(t, t′);

+
(

γ̂cl Ĝ(t, t′) γ̂q
)ab

iDR(t, t′)+
(

γ̂q Ĝ(t, t′) γ̂cl
)ab

iDA(t, t′), (5.47)

where summations over all repeated indexes are understood and the spatial argu-
ments have the same general structure as the time ones. The boson Green func-
tion is denoted as〈ϕα(t)ϕβ(t′)〉 = iDαβ(t, t′). Finally one finds for theR, A
(i.e. (1, 1) and(2, 2)) andK (i.e (1, 2)) components of the fermionic self-energy:

Σ
R(A)
F (t, t′) = i

(

GR(A)(t, t′)DK(t, t′) + GK(t, t′)DR(A)(t, t′)
)

; (5.48)

ΣKF (t, t′) = i
(

GK(t, t′)DK(t, t′) + GR(t, t′)DR(t, t′) + GA(t, t′)DA(t, t′)
)

= i
(

GK(t, t′)DK(t′, t) +
(
GR(t, t′) − GA(t, t′)

)(
DR(t, t′) −DA(t, t′)

))

,
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where in the last equality one had used thatGR(A)(t, t′)DA(R)(t, t′) = 0, since
these expressions have no support in the time domain (see, however, the foot-
note in section 3.1). For the same reason:Σ21

F (t, t′) = i
(
GA(t, t′)DR(t, t′) +

GR(t, t′)DA(t, t′)
)

= 0. As expected, the retarded and advanced components are
lower and upper triangular matrices correspondingly, withΣR = [ΣA]†, while
ΣK = −[ΣK ]†. Notice the close resemblance of expressions (5.48) to their
bosonic counterparts, Eqs. (3.14)–(3.16).

If one understands the bosonic Green function,D̂, as the bareinstantaneous
interaction potential (i.e.DR = DA = U(r − r′)δ(t − t′) andDK = 0), one
finds: ΣRF = ΣAF = iUGK(t, t)δ(t − t′) andΣKF = 0. In this approximation the
r.h.s. of the kinetic equation (5.46) vanishes (sinceF is a symmetric matrix) and
so there is no collisional relaxation. Thus one has to employan approximation
for D̂ that contains some retardation. The simplest and most convenient one is
the RPA, whereD̂ = (U−1σ̂1 − Π̂)−1, cf. Eq. (5.42), with a matrix̂Π that is
non–local in time. This relation may be rewritten as the Dyson equation forD̂,
namely(U−1σ̂1 − Π̂) ◦ D̂ = 1̂. One may easily solve it for the three components
of D̂ and write them in the following way:

DR(A) = DR ◦
(

U−1 − ΠA(R)
)

◦DA ; DK = DR ◦ ΠK ◦DA. (5.49)

Performing the Wigner transform following sections 3.5, 3.6, the kinetic term
(the l.h.s. of Eq. (5.46)) is exactly the same as for the complex boson case (one
has to take into account the gradient terms to obtain a non–zero result for the WT
of the commutator). The result is (cf. Eq. (3.17)):

(

∂τ − vk∇ρ − E∇k

)

fF(τ, ρ, k) = Icol[fF] , (5.50)

wherevk = ∂kǫk, E is an external electric field and the collision integral,Icol,
is i times the WT of the r.h.s. of Eq. (5.46). On the r.h.s. one may keep only the
leading terms (without the gradients). One also employs a parameterization of the
Keldysh component of the fermionic Green function through the corresponding
distribution function:GK → g

K = fF(gR − g
A), wherefF(τ, ρ, k) is the WT

of F . Assuming, for brevity, a spatially uniform and momentum isotropic case,
one may restrict oneself tofF(τ, ǫk) = fF(τ, ǫ). As a result, one finds for the
collision integral:

Icol[fF(ǫ)]= i

∫

dω
∑

q

DR(ω, q)DA(ω, q)∆g(ǫ− ω, k − q) (5.51)

×
[(

ΠR − ΠA
) (

1 − fF(ǫ− ω)fF(ǫ)
)
− ΠK

(
fF(ǫ) − fF(ǫ− ω)

)]
,
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whereΠαβ = Παβ(ω, q), while the time index,τ , is suppressed for brevity and
the notation

∆g(ǫ, k) ≡
i

2π

(
g
R(ǫ, k) − g

A(ǫ, k)
)

(5.52)

is introduced. For free fermions∆g(ǫ, k) = δ(ǫ− ǫk). At this stage one may ob-
serve that if the bosonic system is at equilibrium:ΠK = coth(ω/2T )

[
ΠR − ΠA

]
,

then the fermionic collision integral is nullified by:

fF(ǫ) = tanh
ǫ

2T
. (5.53)

Indeed,1−tanh(b−a) tanh(b) = coth(a)
(
tanh(b)−tanh(b−a)

)
. One should

take into account, however, that the bosonic degrees of freedom arenot indepen-
dent from the fermionic ones. Namely, components of the polarization matrixΠ̂
are expressed through the fermionic Green functions according to Eq. (5.31). In
the WT representation these relations take the form:

ΠR − ΠA= iπ

∫

dǫ′
∑

k′

∆g(ǫ
′, k′)∆g(ǫ

′ − ω, k′ − q) [fF(ǫ′ − ω) − fF(ǫ′)] ;

ΠK(ω, q) = iπ

∫

dǫ′
∑

k′

∆g(ǫ
′, k′)∆g(ǫ

′−ω, k′−q) [fF(ǫ′−ω)fF(ǫ′) − 1] .(5.54)

Due to the same trigonometric identity the equilibrium argument can be made
self-consistent: if the fermionic system is in equilibrium, Eq. (5.53), then com-
ponents of̂Π satisfy the bosonic FDT, Eq. (3.22).

One may substitute now Eqs. (5.54) into Eq. (5.51) to write down the closed
kinetic equation for the fermionic distribution function.Most conveniently it is
done in terms of the occupation numbers, defined asfF ≡ 1 − 2n 6 :

∂nǫ
∂τ

=

∫∫

dωdǫ′M
[

nǫ′nǫ−ω(1−nǫ)(1−nǫ′−ω)−nǫnǫ′−ω(1−nǫ′)(1−nǫ−ω)
]

, (5.55)

where the transition probability is given by:

M(ǫ, ω) =4π
∑

q,k′

|DR(ω, q)|2 ∆g(ǫ−ω, k−q)∆g(ǫ
′, k′)∆g(ǫ

′−ω, k′−q).(5.56)

Equation (5.55) is a generic kinetic equation with a “four–fermion” collisional
relaxation. The first term in the square brackets on its r.h.s. may be identified as
“in”, while the second one as “out”. Each of these terms consists of the prod-
uct of four occupation numbers, giving a probability of having two initial states

6To derive this expression one should add and subtractnǫnǫ′−ωnǫ′nǫ−ω in the square brackets.



Many–body theory of non–equilibrium systems 55

RD AD

,k ,k,k q

,q ,q

' , 'k q

', 'k
RD ADRD AD

,k

Fig. 7. Structure of the four–fermion collision integral. The full lines are fermionic Green func-
tions; the wavy lines are the RPA screened interaction potential. The fermionic loop represents the
polarization matrix,̂Π(ω, q).

occupied and two final states empty. Forn(ǫ) given by the Fermi function the
“in” and the “out” terms cancel each other. Therefore in thermal equilibrium the
components of thedressedfermionic Green function must satisfy the FDT:

GK = tanh
ǫ

2T

(
GR − GA

)
. (5.57)

The structure of the transmission probabilityM is illustrated in Fig. 5.6. The
three factors of∆g enforce that all three intermediate fermionic particles must
satisfy energy–momentum conservation (stand on mass–shell), up to the quasi-
particle life–time. The real factor|DR|2 is associated with the square of the
matrix element of the screened interaction potential (in the RPA).

6. Disordered fermionic systems

6.1. Disorder averaging

We consider fermions in the field of a static (quenched) space–dependent scalar
potentialUdis(r). The potential is meant to model the effect of random static
impurities, dislocations, etc. Since one does not know the exact form of the
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potential, the best one can hope for is to evaluate the statistical properties of var-
ious observables, assuming some statistics forUdis(r). It is usually a reasonable
guess to prescribe a Gaussian distribution for the potential. Namely, one assumes
that the relative probability for a realization of the potential to appear in nature is
given by:

P [Udis] ∼ e−πν τ
∫
dr U2

dis(r) , (6.1)

whereν is the bare fermionic DOS at the Fermi level andτ , called themean–free
time, measures the strength of the random potential.

In this chapter we concentrate on non–interacting fermions. We would like
to evaluate, say, the response function,ΠR, in presence of the random potential
and average it over the realizations ofUdis with the weight given by Eq. (6.1).
The crucial observation is that the response function,ΠR, may be defined as
variation of the generating function, Eq. (5.27), andnot the logarithmof the
generating function. More precisely, the two definitions with, Eq. (5.28), and
without, Eq. (5.27), the logarithm coincide due to the fundamental normalization,
Eq. (5.25). This isnot the case in the equilibrium formalism, where the presence
of the logarithm (leading to the factorZ−1 after differentiation) is unavoidable
in order to have the correct normalization. Such a factorZ−1 = Z−1[Udis]
formidably complicates the averaging overUdis. Two techniques were invented
to perform the averaging: the replica trick [21] and the super-symmetry (SUSY)
[22]. The first one utilizes the observation thatlnZ = limn→0(Z

n − 1)/n, to
perform calculations for an integer number,n, replicas of the same system and
taken→ 0 at the end of the calculations. The second one is based on the fact that
Z−1 of thenon–interactingfermionic system equals toZ of a bosonic system in
the same random potential. One thus introduces an additional bosonic replica
of the fermionic system at hand. Both of these ideas have serious drawbacks:
the replica technique requires analytical continuation, while the SUSY is not
applicable to interacting systems.

The Keldysh formalism provides an alternative to these two methods by insur-
ing thatZ = 1 by construction. One may thus directly perform the averaging of
the generating function, Eq. (5.24), over realizations ofUdis. Since the disorder
potential possesses only the classical component (it is exactly the same on both
branches of the contour), it is coupled only toγ̂cl = 1̂. The disorder–dependent
term in the averaged generating function has the form:

∫

DUdis e
−
∫
dr

[

πντU2
dis(r)−iUdis(r)

∞∫

−∞

dt ˆ̄ψtγ̂
clψ̂t

]

(6.2)
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= e

− 1
4πντ

∫
dr
∫∞∫

−∞

dtdt′ (ψ̄a
t ψ

a
t )(ψ̄

b

t′
ψb

t′)
,

wherea, b = 1, 2, and there is a summation over repeated indexes. One can
rearrange the expression in the exponent on the r.h.s. of thelast equation as
(
ψ̄at ψ

a
t

) (
ψ̄bt′ψ

b
t′

)
= −

(
ψ̄at ψ

b
t′

) (
ψ̄bt′ψ

a
t

)
7 and then use the Hubbard–Stratonovich

matrix field,Q̂ = Qabt,t′(r):

e

1
4πντ

∫
dr
∫∞∫

−∞

dtdt′(ψ̄a
t ψ

b

t′)(ψ̄
b

t′
ψa

t)
=

∫

DQ̂ e

−
∫
dr

[

πν
4τ

Tr{Q̂◦Q̂}− i
2τ

∫∞∫

−∞

dtdt′Qab
t,t′

ψ̄b
t′
ψa

t

]

, (6.3)

where the spatial coordinate,r, is suppressed in botĥQ andψ̂. At this stage the
averageaction becomes quadratic in the Grassmann variables and they may be
integrated out leading to the determinant of the corresponding quadratic form:
Ĝ−1

0 + Vαγ̂
α + i

2τ Q̂. All the matrices here should be understood as having a
2×2 Keldysh structure along with anN ×N structure in discrete time. One thus
finds for thedisorder averagedgenerating function:

Z[V̂ ] =

∫

DQ̂ e iS[Q̂;V̂ ] , (6.4)

where

iS[Q̂; V̂ ] = −πν
4τ

∫

dr Tr{Q̂ 2} + Tr ln

[

Ĝ−1
0 +

i

2τ
Q̂+ Vαγ̂

α

]

. (6.5)

As a result, one has traded the initial functional integral over the static field
Udis(r) for the functional integral over the dynamic matrix field̂Qt,t′(r). At
first glance, it does not strike as a terribly bright idea. Nevertheless, there is a
great simplification hidden in this procedure. The point is that the disorder po-
tential, beingδ–correlated, is a rapidly oscillating function. On the other hand, as
one will see below, thêQ–matrix field is a slow (both in space and time) function.
Thus it represents the truemacroscopic(or hydrodynamic) degrees of freedom
of the system, that happen to be the diffusively propagatingmodes.

6.2. Non–linearσ–model

To execute this program, one first looks for the stationary configurations of the
action (6.5). Taking the variation over̂Qt,t′(r), one obtains:

Q̂
t,t′

(r) =
i

πν

[

Ĝ−1
0 +

i

2τ
Q̂
]−1
∣
∣
∣
∣
t,t′;r,r

, (6.6)

7The minus sign originates from commuting the Grassmann numbers.
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whereQ̂ denotes a stationary configuration of the fluctuating fieldQ̂. For the
purpose of finding the stationary configurations one has omitted the small source
field, V̂ . It is important to notice that the spatially non–local operator

[
Ĝ−1

0 +
i

2τ Q̂
]−1

(t, t′; r, r′) on the r.h.s. is taken at coinciding spatial pointsr′ = r.
The strategy is to find first a spatially uniform and time–translationally invari-

ant solution of Eq. (6.6):Q̂
t−t′

, and then consider space and time–dependent
deviations from such a solution. This strategy is adopted from the theory of
magnetic systems, where one first finds the uniform static magnetized configu-
rations and then treats spin–waves as smooth perturbationson top of such static
uniform solutions. From the structure of Eq. (6.6) one expects that the saddle–
point configurationQ̂ possesses the same structure as the fermionic self–energy,
Eq. (5.15) (more accurately, one expects that among the possible saddle points
there is a “classical” one, that satisfies the causality structure, Eq. (5.15)). One
looks, therefore, for a solution of Eq. (6.6) in the form of:

Q̂
ǫ
≡ Λ̂ǫ =

(
ΛRǫ ΛKǫ
0 ΛAǫ

)

. (6.7)

Substituting this expression in Eq. (6.6), one finds

ΛR(A)
ǫ =

i

πν

1
[

GR(A)
0

]−1

+ i
2τ Λ

R(A)
ǫ

∣
∣
∣
∣
∣
∣
∣
r,r

=
i

πν

∑

k

1

ǫ−ξk+ i
2τ Λ

R(A)
ǫ

= ±1, (6.8)

whereξk ≡ k2/(2m) − µ and one adopts
∑

k . . . = ν
∫
dξk . . ., whereν is the

DOS at the Fermi surface. The summation over momentum appears because the
matrix on the r.h.s. is taken at coinciding spatial points. The signs are chosen so
as to respect causality: the retarded (advanced) Green function is analytic in the
entire upper (lower) half-plane of complex energyǫ. One has also assumed that
1/(2τ) ≪ µ. The Keldysh component, as always, may be parameterized through
a Hermitian distribution function matrix:ΛK = ΛR ◦F −F ◦ΛA = 2Fǫ, where
the distribution functionFǫ is not fixed by the saddle point equation (6.6) and
must be determined through the boundary conditions. As a result one obtains:

Λ̂ǫ =

(
1 2Fǫ
0 −1

)

. (6.9)

Transforming back to the time representation, one obtainsΛ
R(A)
t−t′ = ±δ(t− t′ ∓

0), where∓0 indicates that theδ–function is shifted below (above) the main
diagonal,t = t′. As a result, Tr̂Λǫ = 0 andS[Λ̂] = 0, as it should be, of course,
for any purelyclassicalfield configuration, Eq. (6.7). There is, however, a wider
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class of configurations, that leave the action (6.5) invariant (zero). Indeed, any
field configuration of the form:

Q̂ = T̂ ◦ Λ̂ ◦ T̂ −1 , (6.10)

whereT̂t,t′(r) = T̂t−t′ , and thus commutes witĥG0, obviously does not change
the action (6.5). This is the zero–mode Goldstone manifold.The standard way
to introduce the massless modes (“spin–waves”) is to allow the deformation ma-
tricesT̂ to be slow functions oft+ t′ andr. Thus the expression (6.10) param-
eterizes the soft modes manifold of the field̂Q. One may thus restrict oneself
only to the field configurations given by Eq. (6.10) and disregard all others (mas-
sive modes). An equivalent way to characterize this manifold is by the condition
(cf. Eq. (6.9)):

Q̂ 2 = 1̂ . (6.11)

Our goal now is to derive an action for the soft–mode field configurations
given by Eqs. (6.10) or (6.11). To this end one substitutesQ̂ = T̂ ◦ Λ̂ ◦ T̂ −1

into Eq. (6.5) and cyclically permutes thêT matrices under the trace sign. This
way one arrives at̂T −1 ◦ Ĝ−1

0 ◦ T̂ = Ĝ−1
0 + T̂ −1 ◦ [Ĝ−1

0 , T̂ ]− = Ĝ−1
0 + iT̂ −1 ◦

[∂t+vF∇r, T̂ ]−, where one has linearized the dispersion relation near the Fermi
surfacek2/(2m) − µ ≈ vFk → ivF∇r. As a result, the desired action has the
form:

iS[Q̂] = Tr ln
[

1 + iĜT̂ −1[∂t, T̂ ]− + iĜT̂ −1[vF∇r, T̂ ]−

]

, (6.12)

whereĜ is theimpurity dressedGreen function, defined as:(Ĝ−1
0 + i

2τ Λ̂)Ĝ = 1̂.
For practical calculations it is convenient to write it as:

Ĝǫ(k)=
(
GRǫ (k) GKǫ (k)

0 GAǫ (k)

)

=
1

2

(

GRǫ (k) [1̂ + Λ̂ǫ] + GAǫ (k) [1̂ − Λ̂ǫ]
)

, (6.13)

with

GR(A)
ǫ (k) = (ǫ− ξk ± i/(2τ))

−1
; (6.14)

GKǫ (k) = GRǫ (k)Fǫ −Fǫ GAǫ (k) .

Notice that
∑

k Ĝǫ(k) = −iπν Λ̂ǫ and
∑

k GRǫ (k)GAǫ (k) = 2πντ , while the
other combinations vanish:

∑

k GRǫ (k)GRǫ (k) =
∑

k GAǫ (k)GAǫ (k) = 0, due to
the complexξk–plane integration.

One can now expand the logarithm in Eq. (6.12) to the first order in the∂t term
and to the second order in the∇r term (the first order term in∇r vanishes due to
the angular integration) and evaluate traces using Eq. (6.14). For the∂t term one
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finds:πν Tr{Λ̂T̂ −1[∂t, T̂ ]−} = πν Tr{∂tQ̂}, where one used that Tr{∂tΛ̂} = 0.
For the∇r term, one finds:− 1

4πνDTr{(∇rQ̂)2}, whereD ≡ v2
F τ/d is the

diffusion constant andd is the spatial dimensionality8. Finally, one finds for the
action of the soft–mode configurations [14]:

S[Q̂]= iπν

∫

dr Tr

{
1

4
D
(
∇rQ̂(r)

)2− ∂tQ̂(r)−iVαγ̂αQ̂(r)− i

π
V̂ T σ̂1V

}

, (6.15)

where the trace is performed over the2 × 2 Keldysh structure as well as over
theN × N time structure. In the last expression we have restored the source
term from Eq. (6.5). The last term,̂V T σ̂1V is the static compressibility of the
electron gas. It originates from the second order expansionof Eq. (6.5) inV̂ ,
while keeping the high energy part of theGRGR andGAGA terms. Despite of
the simple appearance, the action (6.15) is highly non–linear due to the condition
Q̂ 2 = 1. The theory specified by Eqs. (6.11) and (6.15) is called thematrix non–
linear σ–model(NLσM). The name came from the theory of magnetism, where
the unit–lengthvector, σ(r), represents a local (classical) spin, that may rotate
over the sphereσ2 = 1.

6.3. Usadel equation

Our goal is to investigate the physical consequences of the NLσM. As a first step,
one wants to determine the most probable (stationary) configuration,Q̂

t,t′
(r), on

the soft–modes manifold, Eq. (6.11). To this end one parameterizes deviations
from Q̂

t,t′
(r) asQ̂ = T̂ ◦ Q̂ ◦ T̂ −1 and chooseŝT = eŴ , whereŴt,t′(r) is the

generator of rotations. Expanding to the first order inŴ , one finds:Q̂ = Q̂ +

[Ŵ◦, Q̂]−. One may now substitute such âQ–matrix into the action (6.15) and

require that the term linear in̂W vanishes. This leads to the saddle–point equation
for Q̂. For the first term in the curly brackets on the r.h.s. of Eq. (6.15) one

obtains:12 Tr{Ŵ ◦∇rD
(
∇rQ̂◦ Q̂− Q̂◦∇rQ̂

)
} = −Tr{Ŵ ◦∇rD

(
Q̂◦∇rQ̂

)
},

where one employed that∇rQ̂ ◦ Q̂ + Q̂ ◦ ∇rQ̂ = 0, sinceQ̂
2

= 1̂. For the

second term one finds: Tr{Ŵt,t′
(
∂t′ + ∂t

)
Q̂
t′,t

}. It is written more compactly
in the energy representation, where∂t → −iǫ, and thus the second term is:
−iTr{Ŵ ◦ [ǫ, Q̂]−}. Demanding that the linear term in̂W vanish, one finds:

∇r

(
DQ̂ ◦ ∇rQ̂

)
+ i[ǫ, Q̂]− = 0 . (6.16)

8One uses thatvF = k/m and
∑

k
GR

ǫ (k) k
m
GA

ǫ (k) k
m

= 2πντv2
F
/d = 2πνD, while the

correspondingR−R andA−A terms vanish. Employing Eq. (6.13), one then arrives at1
4

Tr{[1̂ +

Λ̂ǫ](T̂ −1∇rT̂ )[1̂ − Λ̂ǫ](T̂ −1∇rT̂ )} = − 1
8

Tr{(∇r(T̂ Λ̂ǫT̂ −1))2} = − 1
8

Tr{(∇rQ̂)2}.
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This is the Usadel equation for the stationaryQ̂–matrix, that must also satisfy

Q̂
2

= 1̂. In the time representationi[ǫ, Q̂]− → −{∂t, Q̂}+.
If one looks for a solution of the Usadel equation (6.16) in the subspace of

“classical” (having the causality structure) configurations, then thecondition

Q̂
2

= 1̂ restricts the possible solutions tôΛ, Eq. (6.9) (with a yet unspecified
distribution matrixFt,t′(r)). Therefore, in the non–superconducting case the Us-
adel equation is reduced to a single equation for the distribution matrixFt,t′(r).
It contains much more information for the superconducting case (i.e. it also de-
termines the local energy spectrum and superconducting phase). Substituting
Eq. (6.9) into the Usadel equation (6.16), one finds:

∇r

(
D∇rF

)
+ i[ǫ,F ]− = 0 . (6.17)

Finally, performing the time Wigner transform,Ft,t′(r) → fF(τ, ǫ; r), as ex-
plained in section 3.5, one obtains:

∇r

(
D∇rfF

)
− ∂τ fF = 0 . (6.18)

This is the kinetic equation for the fermionic distributionfunction fF(τ, ǫ; r) of
the disordered system. It happens to be the diffusion equation. Notice, that it is
the same equation for any energyǫ and different energies do not “talk” to each
other (in the adiabatic case, where the WT works). This is a feature of non–
interacting systems. In the presence of interactions, the equation acquires the
collision integral on the r.h.s. that mixes different energies between themselves.
It is worth mentioning that elastic scattering does not showup in the collision
integral. It was already fully taken into account in the derivation of the Usadel
equation and went into the diffusion term,D∇2

r .
As an example, let us consider a disordered one–dimensionalwire of lengthL

[23], attached to two leads, that are kept at different voltages. There is a stationary
current passing through the wire. We look for the space dependent distribution
function, fF(ǫ; r), that satisfiesD∇2

rfF = 0 in a stationary setup (for a space
independent diffusion constant,D). As a result,

fF(ǫ; r) = fL(ǫ) + (fR(ǫ) − fL(ǫ))
r

L
, (6.19)

wherefL(R)(ǫ) are the distribution functions of the left and right leads. The
distribution function inside the wire interpolates the twodistributions linearly.
At low temperatures it looks like a two–step function, wherethe energy separa-
tion between the steps is the applied voltage,eV , while the height depends on
position. Such a distribution was measured in a beautiful experiment [23]. Com-
paring equation (6.18) with the continuity equation, one notices that the current
(at a given energyǫ) is given byJ(ǫ) = D∇rfF = D (fR(ǫ) − fL(ǫ)) /L. And
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thus the total current isJ = e
∑

k J(ǫ) = e νDL
∫
dǫ (fR(ǫ) − fL(ǫ)) = e2 νDL V .

This is the Drude conductivity:σD = e2νD.

6.4. Fluctuations

Our next goal is to consider fluctuations near the stationarysolution,Q̂
t,t′

(r).

We restrict ourselves to the soft–mode fluctuations that satisfy Q̂2 = 1 only, and
neglect all massive modes that stay outside this manifold. As was already stated
above these fluctuations of thêQ–matrix may be parameterized as

Q̂ = e−W ◦ Q̂ ◦ eW . (6.20)

The part ofW that commutes witĥQ does not generate any fluctuations, therefore

one restrictsW to satisfy:W ◦ Q̂+ Q̂ ◦ W = 0. SinceQ̂ may be diagonalized
according to:

Q̂ =

(
1 2F
0 −1

)

=

(
1 F
0 −1

)

◦
(

1 0
0 −1

)

◦
(

1 F
0 −1

)

, (6.21)

any generatorW that anticommutes witĥQ may be parameterized as

W=

(
1 F
0 −1

)

◦
(

0 w
w 0

)

◦
(

1 F
0 −1

)

=

(
F ◦ w F ◦ w ◦ F − w
−w −w ◦ F

)

, (6.22)

wherewt,t′(r) andwt,t′(r) are arbitrary Hermitian matrices in time space. One,
thus, understands the functional integration overQ̂ as an integration over Hermi-
tianw andw. The physical meaning ofw is a deviation of the fermionic distribu-
tion function,F , from its stationary value. At the same time,w has no classical
interpretation. To a large extent it plays the role of the quantum counterpart ofw,
that appears only as the internal line in the diagrams.

One may now expand the action, Eqs. (6.15), in powers ofw andw. SinceQ̂
was chosen to be a stationary point, the expansion starts from the second order.
In a spatially uniform case one obtains:

iS(2)[W ]=2πν

∫

dr

∫∫
dǫ1dǫ2
4π2

wǫ1ǫ2(r)
[
−D∇2

r + i(ǫ1 − ǫ2)
]
wǫ2ǫ1(r). (6.23)

The quadratic form is diagonalized by transforming to the momentum represen-
tation. As a result, the propagator of smallQ̂–matrix fluctuations is given by:

〈wǫ2ǫ1(q)wǫ3ǫ4(−q)〉W = − 1

2πν

δǫ1ǫ3δǫ2ǫ4
Dq2 + iω

≡ −δǫ1ǫ3δǫ2ǫ4
2πν

D(ω, q) , (6.24)
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whereω ≡ ǫ1−ǫ2 and the objectD(ω, q) = D(ǫ1−ǫ2, q) = (Dq2+i(ǫ1−ǫ2))−1

is called adiffuson. It is an advanced (retarded) function of its first (second) en-
ergy argument,ǫ1(2), (or correspondinglyt1(2)). The higher order terms of the
action’s expansion describe non–linear interactions of the diffusons with vertices
calledHikami boxes. These non–linear terms are responsible for the localization
corrections. If the distribution functionF is spatially non–uniform, there is an
additional term in the quadratic actioniS̃(2)[W ] = −2πνDTr{w∇rFw∇rF}.
This term generates non–zero correlations of the type〈ww〉 and is actually neces-
sary for the convergence of the functional integral overw andw. In the spatially
uniform case, such a convergence term is pure regularization (the situation that
was already encountered before).

One can now derive the linear density response to the appliedscalar potential.
According to the general expression, Eq. (5.28), the retarded response is given
by

ΠR(t, t′; r, r′) = − i

2

δ2Z[V̂ ]

δVcl(t′; r′)δVq(t; r)

∣
∣
∣
∣
∣
V̂=0

= νδt,t′δr,r′ +
i

2
(πν)2

〈
Tr{γ̂qQt,t(r)}Tr{γ̂clQt′,t′(r′)}

〉
, (6.25)

where the angular brackets stand for the averaging over the action (6.15). In the
Fourier representation the last expression takes the form:

ΠR(ω; q)=ν+
i

2
(πν)2

∫∫
dǫdǫ′

(2π)2
〈
Tr{γ̂qQǫ,ǫ+ω(q)}Tr{γ̂clQǫ′+ω,ǫ′(−q)}

〉
.(6.26)

Employing Eq. (6.22), one finds the linear inW terms:

Tr{γ̂qQǫ,ǫ+ω(q)}∼2 (Fǫwǫ,ǫ+ω(q) − wǫ,ǫ+ω(q)Fǫ+ω) ; (6.27)

Tr{γ̂clQǫ′+ω,ǫ′(q)}∼2(Fǫ′+ωwǫ′+ω,ǫ′(q)Fǫ′ − wǫ′+ω,ǫ′(q) + wǫ′+ω,ǫ′(q)) .

For a spatially uniform distribution〈ww〉 = 0 and only the last term of the last
expression contributes to the correlator. The result is:

ΠR(ω; q) = ν +
i

2
(πν)24

∫
dǫ

2π
(Fǫ −Fǫ+ω) 〈wǫ′+ω,ǫ′(−q)wǫ,ǫ+ω(q)〉

= ν

[

1 +
iω

Dq2 − iω

]

= ν
Dq2

Dq2 − iω
, (6.28)

where we have used the fact that for any reasonable fermionicdistributionF±∞ =
±1 and therefore

∫
dǫ(Fǫ−Fǫ+ω) = −2ω. The fact thatΠ(ω, 0) = 0 is a conse-

quence of the particle number conservation. One has obtained the diffusion form
of the density–density response function. Also notice thatthis function is indeed
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retarded (analytic in the upper half–plane of complexω), as it should be. The
current–current response function,KR(ω; q) may be obtained using the continu-
ity equationqj + ω̺ = 0 and isKR(ω; q) = ω2ΠR(ω; q)/q2. As a result the
conductivity is given by

σ(ω; q) =
e2

iω
KR(ω; q) = e2νD

−iω
Dq2 − iω

. (6.29)

In the uniform limitq → 0, one obtains the Drude result:σ(ω; 0) = e2νD.

6.5. Spectral statistics

Consider a piece of disordered metal of sizeL such thatL≫ l, wherel ≡ vF τ is
the elastic mean free path. The spectrum of the Schrödinger equation consists of
a discrete set of levels,ǫn, that may be characterized by thesample–specificDOS,
ν(ǫ) ∼ ∑

n δ(ǫ − ǫn). This quantity fluctuates wildly and usually cannot (and
need not) be calculated analytically. One may average it over the realizations of
disorder to obtain a mean DOS:ν(ǫ). The latter is a smooth function of energy
on the scale of the Fermi energy and thus at low temperature may be taken as
a constantν(ǫF ) ≡ ν. This is exactly the DOS that was used in the previous
sections.

One may wonder how to sense fluctuations of the sample–specific DOSν(ǫ)
and, in particular, a given spectrum at one energyǫ is correlated with itself at
another energyǫ′. To answer this question one may calculate the spectral corre-
lation function:

R(ǫ, ǫ′) ≡ ν(ǫ)ν(ǫ′) − ν2 . (6.30)

This function was calculated in the seminal paper of Altshuler and Shklovskii
[24] in 1986. Here we derive it using the Keldysh NLσM.

The DOS isν(ǫ) = i
∑

k(GRk (ǫ)−GAk (ǫ))/(2π) = (〈ψ1ψ̄1〉−〈ψ2ψ̄2〉)/(2π) =

− ˆ̄ψσ̂3ψ̂/(2π), where the angular brackets denote quantum (as opposed to disor-
der) averaging and the indexes are in Keldysh space. To generate the DOS at

any given energy one adds a source term−
∫
dǫ/(2π)Jǫ

∫
dr ˆ̄ψǫ(r)σ̂3ψ̂ǫ(r) =

−
∫∫

dtdt′
∫
dr ˆ̄ψt(r)Jt−t′ σ̂3ψ̂t′(r) to the fermionic action. Then the DOS is ob-

tained byν(ǫ) = δZ[J ]/δJǫ. After averaging over disorder and changing to the
Q̂–matrix representation in exactly the same manner as above,the source term
is translated toπν

∫
dǫ/(2π)Jǫ

∫
drTr{Q̂ǫ,ǫ(r)σ̂3}. The derivation is the same

as the derivation of Eq. (6.15). It is now clear thatν(ǫ) = 1
2ν〈Tr{Q̂ǫ,ǫσ̂3}〉Q.

SubstitutingQ̂ǫ,ǫ = Λ̂ǫ one findsν(ǫ) = ν, as it should be, of course. It is
also easy to check that the fluctuations aroundΛ̂ do not change the result (all the
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fluctuation diagrams cancel due to the causality constraints). We are now in the
position to calculate the correlation function:

R(ǫ, ǫ′) ≡ δ2Z[J ]

δJǫδJǫ′
− ν2 = ν2

[
1

4
〈Tr{Q̂ǫ,ǫσ̂3}Tr{Q̂ǫ′,ǫ′ σ̂3}〉Q − 1

]

. (6.31)

Employing the parameterization of Eqs. (6.20)–(6.22), onefinds up to the second
order inW :

Tr{Q̂σ̂3} = 2 [1 + F ◦ w + w ◦ F + w ◦ w + w ◦ w] . (6.32)

Since〈ww〉 = 0, the only non–vanishing terms contributing to Eq. (6.31) are
those with now andw at all (they cancelν2 term) and those of the type〈wwww〉.
Collecting the latter terms one finds:

R(ǫ, ǫ′) (6.33)

= ν2

∫

dr

∫∫
dǫ1dǫ2
4π2

〈(wǫ,ǫ1wǫ1,ǫ+wǫ,ǫ1wǫ1,ǫ)(wǫ′,ǫ2wǫ2,ǫ′ +wǫ′,ǫ2wǫ2,ǫ′)〉Q .

Finally, performing the Wick contractions according to Eq.(6.24) and taking into
account that

∫
dǫ1D

2(ǫ − ǫ1; q) = 0, due to the integration of a function that is
analytic in the entire upper half–plane ofǫ1, one finds:

R(ǫ, ǫ′) =
1

(2π)2

∑

q

[
D2(ǫ− ǫ′; q) +D2(ǫ′ − ǫ; q)

]
, (6.34)

where theq–summation stands for a summation over the discrete modes ofthe
diffusionoperatorD∇2

r with the zero current (zero derivative) at the boundary of
the metal. This is the result of Altshuler and Shklovskii forthe unitary symmetry
class. Notice that the correlation function depends on the energy differenceω =
ǫ− ǫ′ only.

For a small energy differenceω < EThouless ≡ D/L2 only the lowest ho-
mogenous mode,q = 0, of the diffusion operator (the so called zero–mode)
may be retained and thus:R(ω) = −1/(2π2ω2). This is the universal ran-
dom matrix result. The negative correlations mean energy levels’ repulsion. No-
tice that the correlations decay very slowly – as the inversesquare of the en-
ergy distance. One may notice that the true random matrix result RRMT (ω) =
−(1 − cos(2πω/δ))/(2π2ω2), whereδ is the mean level spacing, contains also
an oscillatory function of the energy difference. These oscillations reflect dis-
creteness of the underlying energy spectrum. Theycannotbe found by the per-
turbation theory in small fluctuations near theΛ̂ “point”. However, they may be
recovered once additional stationary points (not possessing the causality struc-
ture) are taken into account [25]. The saddle–point method and perturbation
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theory work as long asω > δ. Currently it is not known how to work with the
Keldysh NLσM atω < δ.

In the opposite limit,ω > EThouless, the summation over modes may be
replaced by an integration and thusR(ω) = −cd/ω2−d/2, wherecd is a posi-
tive dimensionality dependent constant. This algebraic decay of the correlations
is reflected by many experimentally observable phenomena generally known as
mesoscopic fluctuations.

The purpose of these notes is to give the reader a general perspective of the
Keldysh formalism, its structure, guiding principles, itsstrength and its limita-
tions. Due to space limitations, I could not include many topics of contemporary
research interests into this introductory course. I hope tofulfill some of the gaps
on future occasions.

I am indebted to V. Lebedev, Y. Gefen, A. Andreev, A. I. Larkin, M. Feigel-
man, L. Glazman, I. Ussishkin, M. Rokni and many others for numerous discus-
sions that shaped these notes. I am sincerely grateful to theschool organizers for
their invitation. The work was supported by the A.P. Sloan foundation and the
NSF grant DMR–0405212.

Appendix A. Gaussian integration

For any complexN × N matrix Aij , wherei, j = 1, . . .N , such that all its
eigenvalues,λi, have a positive real part:ℜλi > 0, the following statement
holds:

Z[J ]=

∫ ∞∫

−∞

N∏

j=1

dℜzjdℑzj
π

e
−

N∑

ij

z̄iAijzj+
N∑

j

[z̄jJj+J̄jzj]
=
e

N∑

ij

J̄i(A
−1)ijJj

detA
, (A. 1)

whereJj is an arbitrary complex vector. To prove it, one may start from a Hermi-
tian matrix, that is diagonalized by a unitary transformation:A = U †ΛU , where
Λ = diag{λj}. The identity is then easily proven by a change of variables (with
unit Jacobian) towi = Uijzj. Finally, one notices that the r.h.s. of Eq. (A. 1) is
an analytic function of bothℜAij andℑAij . Therefore, one may continue them
analytically to the complex plane to reach an arbitrary complex matrixAij . The
identity (A. 1) is thus valid as long as the integral on its l.h.s. is well defined, that
is all the eigenvalues ofAij have a positive real part.

The Wick theorem deals with the average value of a stringza1 . . . zak
z̄b1 . . . z̄bk

weighted with the factorexp

{

−
N∑

ij

z̄iAijzj

}

. The theorem states that this av-
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erage is given by the sum of all possible products of pair-wise averages. For
example,

〈zaz̄b〉 ≡
1

Z[0]

δ2Z[J ]

δJ̄aδJb

∣
∣
∣
∣
J=0

=
(
A−1

)

ab
; (A. 2)

〈za1za2 z̄b1 z̄b2〉≡
1

Z[0]

δ4Z[J ]

δJ̄a1 J̄a2δJb1Jb2

∣
∣
∣
∣
J=0

=A−1
a1b1

A−1
a2b2

+A−1
a1b2

A−1
a2b1

, (A. 3)

etc.
The Gaussian identity for integration over real variables has the form:

Z[J ] =

∞∫

−∞

N∏

j=1

dxj√
π
e
−

N∑

ij

xiAijxj+2

N∑

j

xjJj

=
e

N∑

ij

Ji(A
−1)ijJj

√
detA

, (A. 4)

whereA is asymmetriccomplex matrix with all its eigenvalues having a positive
real part. The proof is similar to the proof in the case of complex variables: one
starts from a real symmetric matrix, that may be diagonalized by an orthogonal
transformation. The identity (A. 4) is then easily proved bythe change of vari-
ables. Finally, one may analytically continue the r.h.s. (as long as the integral is
well defined) from a real symmetric matrixAij , to acomplex symmetricone.

For an integration over two sets ofindependentGrassmann variables,̄ξj and
ξj , wherej = 1, 2, . . . , N , the Gaussian identity is valid forany invertiblecom-
plex matrixA:

Z[χ̄, χ] (A. 5)

=

∫∫ N∏

j=1

dξ̄jdξj e
−

N∑

ij

ξ̄iAijξj+
N∑

j

[ξ̄jχj+χ̄jξj]
= detA e

N∑

ij

χ̄i(A
−1)ijχj

.

Hereχ̄j andχj are two additional mutually independent (and independent from
ξ̄j andξj) sets of Grassmann numbers. The proof may be obtained by e.g.brute
force expansion of the exponential factors, while noticingthat only terms that
are linear inall 2N variablesξ̄j and ξj are non–zero. The Wick theorem is
formulated in the same manner as for the bosonic case, with the exception that
every combination is multiplied by the parity of the corresponding permutation.
E.g. the first term on the r.h.s. of Eq. (A. 3) comes with a minussign.
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Appendix B. Single particle quantum mechanics

The simplest many–body system of a single bosonic state (considered in Chapter
2) is of course equivalent to a single–particle harmonic oscillator. To make this
connection explicit, consider the Keldysh contour action Eq. (2.11) with the cor-
relator Eq. (2.13) written in terms of the complex fieldφ(t). The latter may be
parameterized by its real and imaginary parts as:

φ(t) =
1√
2ω0

(
p(t) − i ω0 q(t)

)
;

φ̄(t) =
1√
2ω0

(
p(t) + i ω0 q(t)

)
. (B. 1)

In terms of the real fieldsp(t) andq(t) the action, Eq. (2.11), takes the form:

S[p, q] =

∫

C

dt

[

p q̇ − 1

2

(
p2 + ω2

0q
2
)
]

, (B. 2)

where the full time derivatives ofp2, q2 andp q were omitted, since they con-
tribute only to the boundary terms, not written explicitly in the continuous nota-
tion (they have to be kept for proper regularization). Equation (B. 2) is nothing
but the action of the quantum harmonic oscillator in the Hamiltonian form. One
may perform the Gaussian integration over thep(t) field to obtain:

S[q] =

∫

C

dt

[
1

2
q̇2 − ω2

0

2
q2
]

. (B. 3)

This is the Feynman Lagrangian action of the harmonic oscillator, written on the
Keldysh contour. It may be generalized for an arbitrary single particle potential
U(q):

S[q(t)] =

∫

C

dt

[
1

2

(
q̇(t)

)2 − U
(
q(t)

)
]

. (B. 4)

One may split theq(t) field into two components:q+(t) andq−(t), residing on
the forward and backward branches of the contour, and then perform the Keldysh
rotation:q± = qcl ± qq. In terms of these fields the action takes the form:

S[qcl, qq] =

∞∫

−∞

dt

[

−2 qq
d 2qcl
dt2

− U (qcl + qq) + U(qcl − qq)

]

, (B. 5)
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where integration by parts was performed in the termq̇q q̇cl. This is the Keldysh
form of the Feynman path integral. The omitted boundary terms provide a con-
vergence factor of the form∼ i0q2q .

If the fluctuations of the quantum componentqq(t) are regarded as small, one
may expand the potential to the first order and find for the action:

S[qcl, qq] =

∞∫

−∞

dt

[

−2 qq

(
d 2qcl
dt2

+
∂U (qcl)

∂qcl

)

+ i0q2q +O(q3q )

]

. (B. 6)

In this limit the integration over the quantum component,qq, may be explic-
itly performed, leading to a functionalδ–function of the expression in the round
brackets. Thisδ–function enforces the classical Newtonian dynamics ofqcl :

d 2qcl
dt2

= −∂U (qcl)

∂qcl
. (B. 7)

For this reason the symmetric (over forward and backward branches) part of the
Keldysh field is called the classical component. The quantummechanical infor-
mation is contained in the higher order terms inqq, omitted in Eq. (B. 6). Notice,
that for the harmonic oscillator potential the terms denoted asO(q3q ) are absent
identically. The quantum (semiclassical) information resides, thus, in the con-
vergence term,i0q2q , as well as in the retarded regularization of thed 2/(dt2)
operator in Eq. (B. 6).

One may generalize the single particle quantum mechanics onto a chain (or
lattice) of harmonically coupled particles by assigning anindexr to particle co-

ordinates:qr(t), and adding the spring potential energy:v2s
2 (qr+1(t) − qr(t))

2.
Changing to spatially continuous notations:ϕ(t; r) ≡ qr(t), one finds for the
Keldysh action of the real (phonon) field:

S[ϕ] =

∫

dr

∫

C

dt

[
1

2
ϕ̇ 2 − v2

s

2
(∇rϕ)2 − U

(
ϕ
)
]

, (B. 8)

where the constantvs has the meaning of the sound velocity. Finally, splitting
the field into(ϕ+, ϕ−) components and performing the Keldysh transformation:
ϕ± = ϕcl ± ϕq, and integrating by parts, one obtains:

S[ϕ+, ϕ−]=

∫

dr

∞∫

−∞

dt
[
2ϕq

(
v2
s ∇2

r − ∂2
t

)
ϕcl−U(ϕcl+ϕq)+U(ϕcl−ϕq)

]
.(B. 9)

According to the general structure of the Keldysh theory thedifferential operator
on the r.h.s.,

(
− ∂2

t + v2
s ∇2

r

)
, should be understood as the retarded one. This
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means it is a lower triangular matrix in the time domain. Actually, one may
symmetrize the action by performing the integration by parts, and write it as:

ϕq
(
− ∂2

t + v2
s ∇2

r

)R
ϕcl + ϕcl

(
− ∂2

t + v2
s ∇2

r

)A
ϕq.
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