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Integrated wavelets on fractal sets: I. The correlation 
dimension 
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Abshnd. We define the integrated wavelet transform of a measure on a set I and, using 
the thermodynamic formalism, we rigorously show that, for a large class of dynamical 
systems, it gives the correlation dimension of I. We recover qualitatively the same result 
analysing the Mellin transform of the wavelet. We apply this method to the numerical 
analysis of some hyperbolic and non-hyperbolic invariant sets. 

AMS classification scheme numbers: 41Axx, UAxx, 58Fll, 58F12.58F15 
PACS numhen: 64.60A 

1. Introduction 

The wavelet transform, although recently introduced (see [I] and references 
therein), has already a large field of applications. Notably, interest in using the 
wavelet transform to study many physical phenomena involving a scale invariance 
has considerably increased. In particular, it allows the computation of the local 
exponents associated with the singularities of multifractal measures [2,3]. The aim 
of this paper is to prove that, defining an integrated wavelet transform (IWT), one 
can obtain in fact a new method to determine a global fractal exponent, which is 
nothing hut the correlation dimension. In analogy to the Hausdorff dimension, this 
exponent arises as a transition point between two asymptotic behaviours (0 and m) 

of the IW. 
(a) We first recall the definition and some rigorous properties of the wavelet 

transform used in the study of fractal sets. Given a compact subset J of a metric 
space (with the metric 1 1  . 1 1 )  endowed with a probability Bore1 non-atomic measure 
p and a function g : R -+ R of class q t  and also satisfying the properties 

(i) a-pg(r la)  = 0 pointwise for r > 0 and for any p 3 0 ,  

t PHYMAT, DCpartement de Mathhatiques, Universitd de Toulon et du Var, BP 132, 83957 La Garde 
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(ii) g'(r) < 0 for r E (0, CY), g'(r) > 0 for r E (CY, + m) and ryg'(r) summable on 
[O,m)foranyy>-l, 
the wavelet transform of the measure p is defined as 

TJa, b)=-$]g(e) I a dp(x), 

In [2] we proved that 

b)l>O]>B 

where 

is the local scaling exponent at position b, B(b, I )  being a ball of radius t and centre 
bEJ. 

(b) We now introduce the IWT averaging over all the positions b as 

and we get the following results: 

(Rl) For a large class of dynamic invariant sets, described in section 2 
(conformal mixing repellers), we prove that if liminf,,,+ Irp(a)l and lim supn-,,+ 
ITp(a)l are finite and non-zero for a certain p, then this p is unique and coincides 
with the correlation dimension of J, defined as a root of the topological pressure. 

(R2) We show that the situation described in (Rl) occurs in full generality for the 
dynamical systems whose correlation integral scales with a power law. A rigorous 
computation can be performed on the multifractal ternary Cantor set. The link 
between the IWT and the correlation integral is given by the Mellin transform of the 
derivative of the wavelet. 

The proofsof (Rl) and (R2) require assumption (i) but we have to substitute (ii) 
by a stronger one: 

(ii)' g(r) is monotone for r > 0. 
(R3) We report explicit numerical computations of the IWT in the case of linear 

Cantor sets and for non-hyperbolic invariant sets. 
( c )  We now want to compare the use of the wavelet transform applied to fractal 

sets with the more general wavelet transforms of signals and this discussion will also 
motivate and justify assumptions (i) and (ii)'. Given a real signal s ( x ) ,  x E R, with a 
certain degree of smoothness (e.g. Holder regularity or local differentiability), the 
wavelet transform of s ( x )  is defined as in (1.1) but settingp = 1, dp(x) = s ( x )  dx and 
the argument of g being the real number ( x  - b) /a .  Then, under some assumptions 
on g, among which is the condition of zero mean, JT:g(r)  dr = 0, it is possible to 
establish some necessary and sufficient conditions for the asymptotic behaviour Of 
the wavelet transform which reflect the local or global regularity of the signal (see 
the article by Holschneider and Tchamitchian in [3] for a detailed exposition of 
these results). In the case of fractal measures p, the situation changes considerably. 
First of all the signal s ( x )  is replaced by the highly irregular Radon-Nykodim 
density, dp(x)/dx, where x belongs to a metric space J which is not necessarily a 
subset of R; the signal is now a positive quantity and the argument of the wavelet is 
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a distance IIx - bll/a,  so that we only need to consider it on the positive semiaxis. 
Thus, there are now no more reasons for the assumptions required for signals, in 
particular the zero mean condition, to  be really necessary in analysing fractal 
measures. 

We in fact proceed in a different manner. First we are able, for the conformal 
repellers, to characterize the asymptotic transition point of the IWT as a fractal 
dimension;t moreover, if the wavelet is adapted (see below for the definition), the 
!hit  (3.1) ho!ds, !iEking the ~syr?lp!o!ic behavionr of the !w with the preceding 
fractal dimension. To achieve these results, the crucial assumption is (i), the fast 
decay of the wavelet at infinity and its localization around zero. The hypothesis of 
monotonicity is of a technical nature and some numerical investigations with the 
so-called 'Mexican hat', g ( r )  = (1 - r2)  exp(-r2/2), show that it could be relaxed. 

We then formally show that the IWT can be written as the Mellin transform of the 

holds with some sort of uniformity. In  this derivation the monotonicity of the 
wavelet is not necessary but, to put the method on a rigorous basis, we would nekd a 
general mathematical theory of the correlation integral, which is still missing. Note, 
however, that the condition of a wavelet of zero mean never enters in either the 
rigorous or formal arguments quoted earlier. 

derivative of the wavelet, at least if the scaling (4:4) for the corre!a_tion integral 

2. The dynamical system 

The dynamical systems we consider are the disconnected conformal mixing repellers 
[4-81; they comprise a large.class of dynamic invariant sets, including the hyperbolic 

T-'(I) is a disjoint union of subsets of I ('cookie-cutter' Cantor sets-see [6-81 for a 
detailed analysis). 

We summarize a few properties of these systems used in the following proofs 
(see also [4,6,7]). If J denotes the invariant set under the mapping T (usually J is a 
subset of a Riemannian manifold, with the metric 1 1 . 1 1  eventually adapted), then 
there exists a closed connected set V 3 J ;  which is the closure of its interior, where 
T is of the class C'+', E > 0, and the derivative D,T (or D T ( x ) )  at the point x is 
conformal (a scalar times an isometry) and uniformly expanding, that is, IlD,T"ll> 
A", I > 1, for any x E V and n 3 0. We denote by the same symbol ( 1 . 1 1  the distance 
taken on V. Then the pre-image of each subset of V is the disjoint union of s (the 
degree of the map) subsets of V: we denote by T;', i = 1, . . . , s the inverse 
branches of T globally defined on V. We set Akc :.... *,< = TG-' . . . T;:V and A,:, = 
Ak ,,..., kn nJ, where ki = 1, . . . , s, and in the following we often interchange the' two 
since the measures considered are concentrated on J; moreover, we define the 
partition of J of order n as 

discoEEeded h ! i E  sets !9j and the exp2ndi.g maps T of the interva! I for which 

&@"I= U A k , ,  . . . , k. 
ki ..... k. 

k(=l,. . . ,= 

We finally obtain J = mLO d"), where do) = V. 
On each set Ak,,...,km the derivative of T" is uniformly bounded (by a standard 

tThis requires the introduction of the non-negative parameter p in the definition of the wavelet 
transform. 
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distortion argument [4]), that is, 

I-M Ghez and S Vaienti 

For these sets, the action of 7' is topologically mixing [4]; this allows us to find an 
uncountable set of ergodic measures pp, b E R, with support J and mutually singular 
(Gibbs measures), each of which being equivalent (with a continuous Radon- 
Nykodim derivative) to a probability Bore1 measure up satisfying the following 
remarkable condition [lo, 71: 

where A is any measurable subset of J where T is injective and P(B) is the 
topological pressure of the function, -6 log llDxTll [4, 111. In the following we 
interchange pp and us, as they are (uniformly) equivalent. The generalized 
dimensions Ds(q) ,  q E Z, of these measures, defined according to the standard 
partition function approach [12], have been proved to be the solution of the 
equation [5-8,131 

We are now ready to formulate the main result of this paper. 
P(Bq - DB(q)(q - 1)) = qP(B). (2.3) 

3. Rigorous results 

In this section we exclusively refer to the systems considered in section 2. 

Definition. We say that the wavelet g is p-adapted to the measure p, or simply p -  
adapted, for p a 0 ,  if both the limits liminf.,,+ IT,(a)l, limsup,,,+ IT,(a)( are 
different from 0 and +W. 

Theorem. Let us suppose that the wavelet g is p adapted to pp; then the value of p 
is unique and is equal to D8(2) or, equivalently, it is the unique solution of 

Remark 1. Sometimes we say that a wavelet is adapted if it is p adapted for a 
(unique) p .  The dimension 4 ( 2 )  is usually called the 'correlation dimension': it is a 
lower bound to the Hausdorff dimension of the set d,(J) and, for several systems 
(see also section 4), is equal to the scaling exponent given by the correlation integral 
method developed extensively in [14,15]. In particular, for p = 0, the measure p, 
('balanced measure') has a useful time series representation [4,9]. In section 4, the 
connection with the correlation integral will be made more explicit. 

Remark 2. The Gibbs measures ps are dense in the set I of invariant measures on 
the repeller in the norm topology [4]; since Dp(2)  < d,(J),  for any ,!3, we conjecture 
that, whenever lim sup.-,+ ITp(a)l< + m for a measure p E I, p 6 d,(J).  

P(2B - P )  = 2P(B). 

Conditions like that stated in remark 2 are investigated in [19]. 

As an easy consequence of the theorem, we have the following necessary 
condition for the adaptedness of g, which is particularly interesting in view of the 
numerical applications. 
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Corollary. If the wavelet is DB(2) adapted, then 

(3.1) 

Proof of the theorem. For any n > 0, the integral in (1.3) is done on the Cartesian 
product d(") X d"); we split the integral in two parts, the first computed on the 
diagonal elements of d") x d"), which are the Cartesian products of two equal sets 
and the other computed on the products of two different elements of d"), which are 
disjoint. 

The second part of the integral, which we call &(a) ,  is zero in the limit a+Oc, 
since the argument of g is hounded away from 0 and m (being J compact) and by 
property (i) of the wavelet. By (i) and (ii)' we can assume, without restriction, g > 0 
on R+. So we have (since we replace pp with up, we use the symbol =, meaning 
'uniformly hounded from above and below by a constant independent of n') 

Applying property (2.2) n times, we get 

The term . . . T*,'x - TLnl . . . T,,'yII is bounded from above and below by an 
expression of the type II&' llDT;o!,(T;m!,-, . . . T;,'E)ll IIx - yll, where we set 
Ti:TT,'E = 5 and 5 E V takes the values for which the product is respectively 
maximum and minimum. We note that the norm of the product of derivatives is 
equal to the product of the norms since the derivatives are conformal; still from the 
conformal property of the derivatives, the products in 5 can be arranged as 

(3.2) 

where 

i k  ,... k.= T;,' . . . T;!E E A k  ,... kn. 

By the distorsion argument, we can replace, up to  a uniform bound in n, tjk,...km with 
any other point in Ak,. , ,*"nJ; we call qk,...rn this point. By property (ii)', we can 
bound g from above and below by an expression of the type 

where C" are the factors given by (2.1); we will not write them explicitly since they 
will be absorbed by the rescaled a which we are going to define. Then 
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Observing that, for a rescaled a, the integral on the right-hand side gives itself an 
IW, we gett 

I-M Gher and S Vaienti 

4 + kn 

We then factorize in the sums Eh,...km respectively the maximum and the minimum of 
Tp.  For sufficiently small values of a, these terms can be replaced, up to a uniform 
constant, by Tp(cua), where CY is now a particular factor ~ ~ D T " ( ~ J l . . . J m ) ~ ~ - l  fixed 
Oncc and for 311; we here the acjaptednens of the wav&t. w e  then ge.! 

1 
1-expn -2p(B) +-log I I D T " ( ~ k , . . . k " ) l l P Z B ) .  ( n k ,  ... kn 

When rt -  + 00, the term (Un) log z k ,  ... h" I I D T " ( q * , . . . * . ) I ( P - 2 p  converges to P(2p - 
p )  [4,6-8, lo]; since p is clearly independent of n and the preceding relation is true 
for any n, then p must satisfy the equation 

P(2B - P I  = 2PW). 
By the convexity properties of the functional P [4, 111 it follows that p is unique 
and, comparing with (2.3), we finally have p = D&). 0 

4. Examples 

For smooth domains J in R", our method recovers the integer dimension of J .  Thus, 
it is sufficient to compute the transition point for an n-unit hypercube in R" with 
respect to the Lebesgue measure. In fact we have the following. 

rrupusrrron. LXL J = LU, 11 UT: LIIC UIIIL ~ryp~::rcuvc UL m m u  p(w, = ut ' . . . ' W. 
the n-dimensional Lebesgue measure. Then, if the wavelet g is p-adapted to 
n --.. :.:... 1 .. r - r n  4," L^ .L^ ___:. L___^ _^__ L^ :.. ma" ....A ..,-1..--1.. -1.. 

P , P = ~ .  

Proof. We decompose J in 2" hypercubes 4 of sides 4, just dividing each side of J in 
two equal parts. Put rt the cube with a vertex at 0 = (0, . . . , 0). Since 

where i = 2, . . . , 2" and II.I) is any norm in R", dilatating .ft up to J, we easily get 
the Jacobian of the transformation being 2-%, 

from which T,(a/2) = ZP-"T,(a), which gives the result. 

t We are not able to achieve this step if the repeller is connected; a suitable use of the Markov partition 
of I should allow us to overwme this difficulty. 

0 
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In this case the adaptedness of some wavelet can be easily proved. Let, for 
example, g ( r )  be equal to e-'; using for the computation of the IW the norm 
I ~ X - Y J I = C ~ ~ = , , I X ; - ~ , ~ ,  we easily get 

2" W )  =ap-" + o(1) a+0+ (4.1) 

which shows a transition point at p = n, where the IWT has a finite positive limit. 
The next step is to compute the IWT for fractal sets. We proceed as follows: we 

show, with an heuristic argument, that, for a large class of fractals, precisely those 
satisfying the scaling (4.4) below, the wavelets considered in section 1 are adapted. 
We can only compute the IWT in a rigorous way for a class of multifractal ternary 
Cantor sets, for a particular subsequence a.+O+, and show that it gives the 
correlation dimension, in accordance with the theorem. Finally we give some 
examples on the numerical utilization of the IWT. 

4.1. A qualitative analysis 

By a useful trick already used in [15] in a different context, we can write (1.3) as 

(4.2) 
where A is the diameter of J and dC(r) is the Stieltjes measure defined by the 
monotone increasing positive function 

w=[[ e ( r -  Ilx-Yll)dP(x)dP(Y) (4.3) 
I J  

where 0 is the Heaviside function. From now on we neglect the term in the brackets 
on the right-hand side of (4.2), since it vanishes in the limit a+0+ by property (i). 
For an invariant ergodic measure p, we can express C(r )  as a double time series and 
change it in the correlation integral mentioned in the remark of section 3, whose 
scaling for several fractal sets has been found to obey [14] 

C(r ) - r"  r+O+ (4.4) 
where U is called the correlation dimension of J. The scaling (4.4) was rigorously 
proved for a few smooth sets and a formal expression was computed for a class of 
multifractal Cantor sets, using the theory of the energy integral [U]. In all these 
cases the scaling exponent v coincides with 4 ( 2 )  given by (2.3). 

Extending (4.4) up to A, we can express the IWT approximately as the Mellin 
transform of g', namely 

By properties (i) and (ii)', the integral on the right-hand side is finite when a-+O+. 
For example, it is equal to u r ( v )  for g ( r )  = e-' ([17], p 312). We can also write (4.5) 

logIT,(a)l .-0* - ( u - p ) l o g a + W ~ ( a ) l  (4.6) 

as 
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which is consistent with the corollary of the theorem and where Q ( a )  is a function of 
order 1 for a + O+. t 

Remark. Until now we have used the scaling of the correlation integral to compute 
the IWT by means of representation (4.2). But the procedure could be inverted: if 
one knows the asymptotic structure of the IW for a+O+, one could try to compute 
the correlation integral just taking a suitable inverse wavelet transform of T,(a). We 
think that this would be an interesting subject to investigate. 

I -M Ghez and S Vaienti 

4.2. Multifractal ternary Cantor sea 

We recall that the ternary Cantor set on the unit interval is generated by two inverse 
branches with the same slope A = 3,  but the following considerations also hold for 
O < A < f .  To make these sets multifractals and then distinguish among the 
generalized dimensions, we endow them with the balanced measure q of positive 
weights pI,  p 2 .  p1 #p2.  which is an invariant and ergodic probability measure 
satisfying a condition like (2.2) (see [8] and references therein), namely 

'I(TTIA) = p ; q ( A )  i = l , 2  (4.7) 
where p1 +p2 = 1 and A is any measurable subset of the unit interval. 

The generalized dimensions D,(q) corresponding to this measure satisfy [XI 

Clearly, our theorem works as well for this class of measures; moreover, we can 
prove the following: 

Proposition. For the ternary Cantor set on the unit interval with the measure 7 of 
weights pI ,  p z ,  the IWT can be computed with the subsequence a =A",  and the 
transition point is D,(2). 

Proof. Applying (4.7) to the integral (4.3) for 0 < A =z f ,  we get 

W r )  = (P: + p W - )  or, iterating, c(Anr) = (p: +p:)"C(r). (4.9) 
Computing the IWT in the form (4.2) with the subsequence a = P, neglecting again 
the term into the brackets and using the scaling (4.9), we have 

17#")1= (p: +p;)nA-"P I C(r)g'(r)  dr  1 .  (4.10) 

When n+ +m, the integral in (4.10) is finite by (i) and (ii)'; the same is true for 
IT,(A")l if p is equal to log(p:+p:)/logA, that is, 4 ( 2 )  given by (4.8). 

Remark. In the particular case of the linear Cantor sets with the balanced measure, 
a different average of the wavelet transform was proposed in [18] to  detect the 
fractal dimensions. 

0 

t We must observe that the scaling (4.4) is usually modulated by periodic factors in logo ('lacunarity', see 
[16]), which could induce damped oscillations in the asymptotic behaviour of T,(o);  for example, V(o)  
could be itself a periodic function of logo. We will return to this point in part 4.2 of this section. 
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4.3. Numerical computurions 

We now want to illustrate the numerical applications of the IW. 
We checked the scaling (4.6) on the linear Cantor set on [0,1] generated by two 

inverse branches of slope A, = 4 and A, = $, with the balanced measure of weights 
p1 = p 2  = 4. We have a general implicit formula for the correlation dimension 4, 
similar to (4.8), namely 

A;&p: + A;&p: = 1. (4.11) 

In our case, we get 

We performed the numerical computation of the IW with the functions g , ( r )  = e-' 
and gz(r )  = e-', averaging over the predecessors of any point in the unit interval 
with the same probability, up to 14 iterations, for which the computation becomes 
stable. 

Figures l(n) and 2(a)  show the results as log-log plots for both the wavelets. In 
particular, the value detected for v is 0.655 3 . . . with g, and 0.648 7 .  . . with g, 
(compare with the true solution of (4.11) computed above). 

As predicted in the last footnote, the asymptotic behaviour of logIT,(u)l is 
affected by oscillations. Their amplitude is very small and does not appear in figures 
l(a) and 2(a), but it is particularly evident in figures l ( b )  and 2(6),  where we plot 
log IG(a)l- D2 loga, D, being the true value for the dimension. The period of the 
oscillations has been found to be (log 2 ) / 2 .  We performed the same computations 
for the ternary Cantor set with balanced measure and the functions g, and g,. We 
report the results in figures 3 and 4; the period of the oscillations is log3, which is 
the same as found for the oscillations of the correlation integral in 1161 and for the 
oscillations of the usual wavelet in [3]. 

- e p  , , . , , . , . , , ___ 

1 f 
L d a l  h S C 1  

Eyre 1. ( 0 )  log IT,(o)l versus log n for the Cantor set with scales A ,  = 4 and A2 = a ,  
with g ( r )  = e-'; The value for the correlation dimension is v = 0.655 3 . .  .. ( b )  
lag IT,(o)l- D2 log (I versus log a for the Cantor set of part ( a )  with g ( r )  = C'. 
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Figure 2. ( a )  As figure l(a) far g ( r )  = C"; the value for the correlation dimension is 
v = O  . 6 4 8 7 . . .  (b), Asfigure I(b)forg(r)=e& 

Figures 3(b) and 4(b) show that the wavelet g, works better than g,  in the range 
of small values of a, comparable with the scales of the set, determined by the largest 
order of iteration. This is certainly related to the rate of decay of the IWT, which is 
measured by the quantity (see (4.5)) 

(4.12) 

These oscillations can he easily explained by an argument similar to that proposed in 
[16] for the correlation integral. As said in the proof of the theorem, we can apply 
the balance property (4.7) only to the Cartesian product of equal sets in order to 

Lad.) L O d 4  

Figure 3. ( a )  As figure I(a) far the ternary Cantor set, with g ( r )  = C'; the value for the 
correlation dimension is v =0.6378, , .. (b) As figure I(b) for the ternary Cantor set, 
with g(r)  =e-'. 
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- 2  vi;-::: 
-. 

- - - $ :,.,,, - 
I 

I 

h- 
eo 

- - s" 
-6 

-0.LS 

-0.l55 
-12 -LO - B  4 -4 -12 -LO -8 -8 -4 

bd4 l a n w  

Fwre 4. ( a )  As figure 3(n) for E(.) =e-"; the value for the correlation dimension is 
v = 0.639 2 .  . . . ( b )  As figure 3(b) for g ( r )  = ec". 

compute the IW: the term we neglect converges to zero for a+O+ faster than any 
power of a by property (i). For the linear Cantor set with scales A, = 4 and A, = 
and the measure of weights p ,  = p z  = i, we thus get 

G(a) = a G ( k )  + +T0(4a) + o(1) a-*o+. (4.13) 
It is easy to check that the general real solution of (4.13) without the o(1) term is of 
the form a"ly(log a ) ,  where W is a continuous periodic function of log a of period 
(log 2)/k,  k E N and a is just given by (4 .11 ) .  For the ternary Cantor set with equal 
scales $, we get 

To(a) = 4&(3a) + o(1) a + 0 +  (4.14) 

- - -pq -9 

i-o,oo5/; I 

D - 0 0 1  
;. -4 

s' ~ 

- 

-5 

-8 -0015 
-12 -10 -8 -e -4 -12 -10 -8 4 -4 

I.&I L0.W 

Figure 5. ((I) As figure I ( n )  for the period-doubling Cantor set with p(r )=e- ' ;  the 
value for the correlation dimension is u=O.4976 . .  .. ( b )  As figure I ( b )  for the 
period-doubling Cantor set, with g ( r )  =e- ' ;  here and for figures 6(b), 7(b )  and 8(b),  we 
use for D2 the value of v found numerically. 
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Figore 6. ( a )  As figure S(a) for g ( r )  = e-''; the value far the correlation dimension is 
U = 0.495 1 . . ... ( b )  As figure 5 ( b )  far g ( r )  = e-'', 

which admits a general solution of the form (without the o(1) term) a"v(loga), 
where I) is a continuous periodic function of log a of period (log 3 ) / k ,  k E N and 

The next applications show that the IW works as well for non-hyperbolic sets. 
We first consider the period-doubling Cantor set generated by the logistic map 

a = log 2/log 3. 

x '  =ar(l  - x )  (4.15) 
where a =a, = 3.569 945 6 is the point of onset of chaos via period-doubling 
bifurcations (see, for instance, [12,14]). The value of the correlation dimension 
found by the correlation integral technique [14] is U = 0.500 f 0.005, which is in 
good agreement with the value computed by means of the IW, which gives 

lad.) Lop(*) 

Figure 7. ( a )  As figure l ( a )  for the Henan attractor, with g(r) =e-'; the value for the 
correlation dimension is U = 1.1977. .  .. (b )  As figure 1 ( b )  for the Henon attractor, 
with g ( r )  = e-'. 
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Figure 8. (a )  As figure 7(a)  for g ( r )  =e-"; the value for the wrrelation dimension is 
u=1.1942 . . . .  (b)Asfigure7(b)forg(r)=e-". 

v = 0.497 6 .  . ., for g ( r )  = e-' and v = 0.495 1 . . ., for g ( r )  = e-'. The IW was 
computed giving equal weights to the elements of the partition constructed, iterating 
215 times the critical point of the mapping, as explained in [3] and [12]; the iterates 
of the critical point x = 4 accumulate in fact on the attracting set of (4.15). In figures 
5(b) and 6(b)  we show the oscillations of the IW for decreasing values of a. 

In figures 7 and 8 we report the computation of the IWT for the HCnon attractor 
generated by the mapping x '  = 1 - axz + y ;  y' = bx, with a = 1.4 and b = 0.3. The 
preceding vaiues found for the correiation dimension were, for exampie, U = 
1.21fO.Olin[14]and v=1.199f0.003in[20].The1wrgaveus v=1.1977. .., for 
g ( r )  =e-' and U = 1.1942. . ., for g ( r )  = The IW was computed assuming, as 
usual, the existence of an ergodic physical measure on the attractor and then 
approximating the integral by an ergodic mean, with a number of iterations equal to 
1OOOO. The oscillations are shown very clearly by our method, although they appear 
more irreguiar than for ihc one-dimensiunai Cantor seis described above. Tne same 
difficulty arises using the correlation integral technique, and this is assumed to be 
related to the non-hyperbohciky of the mapping, more precisely to the presence of 
homoclinic tangencies (see [20] and references therein). 

5. Zonciusion 

In conclusion, we think that the IW is a powerful tool with which to analyse fractal 
sets and that its range of applicability could be extended beyond the mixing repellers 
or the deterministic invariant sets. 
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