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Corrections to the Scaling Laws of Integrated Wavelets 
from Singularities of Mellin Transforms. 

E. ORLANDINI, M. C. TESI and G. TURCHETTI 
Universitd d i  Bologna, INFN Sexione d i  Bologna - Bologna, Italy 

(received 29 September 1992; accepted in final form 29 December 1992) 

PACS. 03.20 - Classical mechanics of discrete systems: general mathematical aspects. 

Abstract. - By considering the Mellin transform of the Integrated Wavelet Transform (IWT), we 
show that correction to scaling laws for the IWT can be conveniently described in terms of the 
meromorphic spectrum of the Mellin transform. Relevant singularities are the same as the ones 
obtained with the energy integral formalism. 

The wavelet transform has been widely used in recent times as a useful tool in analysing 
the local behaviour of systems exhibiting scaling laws [l ,  21. Integrated wavelet transforms 
(IWT) were also recently introduced and it was shown that basically the same results as from 
correlation integrals, concerning global exponents, can be obtained [3,41. 

The basic difference between the usual correlation integral and an integrated wavelet 
transform is the use of a smooth monotonic function rather than a stepwise function to 
analyse the behaviour of the invariant measure of a given dynamical system. 

Since the scaling law and its corrections are conveniently described by considering the 
meromorphic spectrum of the Mellin transform of the correlation integrals (energy 
integrals) [5] ,  it is natural to apply the same technique to the IWT. The result is that the 
singularities associated to the measure are the same as the one obtained for the energy 
integral (lying on the right half complex plane), while other singularities, related to the 
peculiar nature of the wavelet transform, are present but completely separated from the 
previous ones (left half complex plane). 

The leading correction to the scaling law is determined by the former set of singularities 
while the second set gives completely negligible terms vanishing exponentially fast at short 
distance. 

For self-similar systems like Cantor sets the correction term is periodic with the same 
period in both cases and it is shown that the integrated wavelet transform's Fourier 
components of order m are damped by a factor exp [ - cm], where c is a constant. As a 
consequence the correction term of the IWT is much smoother with respect to the correlation 
integral as fully confirmed by numerical results. 

We refer, for the class of wavelets considered here, to the definitions of ref. 121 and [41. 
Given a compact subset J of a metric space (with the metric ( 1  - 11) endowed with a probability 
Bore1 non-atomic measure ,u and a monotone decreasing function g: R+R of class C' 
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(g'(t) G 0 for t 2 0), the integrated wavelet transform is defined by 

where lim l-pg(?-/Z) = 0 for p 2 0 and Z > 0. 
1+0+ 

The Mellin transform of the IWT is given by 
m 

Y p ( a )  = j1-"dTp(Z). (2) 
0 

When p = 0, it can be checked that dT/dZ > 0 and therefore 
positive measure just as for the energy integral case. 

Interchanging the integration orders, we can write 

(a)  is the Mellin transform of a 

Yp (a> = @(a + P) y p  (a)  , (3) 

where @(a) is the energy integral 

and 

In order to evaluate Y p ( a ) ,  we must observe that the integral in the r.h.s. of (4) is well 
defined for %a + p < a, where E > 0 is the so-called divergence abscissa and is a lower bound 
to the Hausdorff dimension of the set [6]. Conversely the integral in the r.h.s. of (5) is well 
defined for %a + p > 0. As a consequence in the strip -p %a < -p + Z both integrals are 
well defined and it is possible to continue analytically the result in the whole a-plane. 

It is evident that the dynamical singularities associated to the measure are in the right 
a + p-plane, while the wavelet transform singularities are in the left plane. For simplicity we 
choose from now on the following scaling function: 

g(t) = exp [ - tl (6) 

and explicitly verify, in the simple case of a system defined on [0, 13 with p(x) equal to the 
Lebesgue measure, that the limits interchange leading to (3) is correct. We have for 
p = o  

and it is relevant to observe that dTo (Z)/dl behaves as a constant for 1 + 0 and as 111 for 
I+ W .  

Computing Y o ( a ,  R) = 1 1  -"dTo(Z) for finite R, one verifies that the previous behaviours 

to be taken correctly. So we recover the result (3) which explicitly 

R 

0 
allow the limit R+ 
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Fig. 1. - a) In C(Z) - D,ln ( 1 )  for the ternary Cantor set with p1 = p 2  = 1/2. b )  In I To(.!) I - D,ln (1) for 
the same Cantor set, using the scaling function g(t)  = exp [ - tl. 

reads in this case Yo(a) = @(a) y o b ) ,  where @(a) = 2/(1 - a) - 2/(2 - a), y o b )  = F(a + 1) and 
r is the Euler function. 

Another interesting case is given by a self-similar system like the Cantor with two equal 
scales AI = A2 = A and equal weights p ,  = p ,  = 1/2, where the singularities of @(a) are known 
to be equally spaced on a straight line parallel to the imaginary axis [51: 

ln2 i2xm a,= - + - h 1 / A  l n l / h '  

Even in this case yo (a) = F(a + 1) and it is easy to show that the residues F, of Yo (a) at the 
poles a, are related to the residues r, of @(a) by 

F, = r,F(l + a,) = r,exp - - [ In;;Am]* 

It was shown [7] that r, decrease almost as m while we can see here that the ?, have a 
very fast exponential decay. As a consequence the behaviour of the n;yT corrections to the 
scaling, which is still given by a periodic function in In A, will be very smooth since only the 
first Fourier coefficient has a significant amplitude. Figure 1, where C(1) is compared with 
To (1) for the Cantor set mentioned above, fully c o n h s  this result which is extensible to any 
linear Cantor and to Julia set [8]. 

We remark that the method illustrated in this letter can be easily extended to the study of 
local properties of the measure employing the usual wavelet transform instead of the 
integrated wavelet transform. 
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