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ABSTRACT. We study the Schrodinger operator H = —A 4+ V on the product
of two copies of an infinite blowup of the Sierpinski gasket, where V is the
analog of a Coulomb potential (AV is a multiple of a delta function). So H is
the analog of the standard Hydrogen atom model in nonrelativistic quantum
mechanics. Like the classical model, we show that the essential spectrum of H
is the same as for —A, and there is a countable discrete spectrum of negative
eigenvalues.

1. Introduction. Nonrelativistic quantum mechanics may be viewed as the study
of the Schrodinger operator

H=-A+4+V (L.1)
on Euclidean space. On any space where a Laplacian may be defined, it makes sense
mathematically to consider the analog of (1.1), whether or not there is any physical
interpretation of the resulting theory. Indeed there are many such spaces, including
the fractals studied here, where there is no obvious analog of classical mechanics.

We will work with fractals built from the Sierpinski gasket (SG) and the Laplacian
on SG constructed by Kigami (see [17] and [25] for accounts of this construction).
Since SG is the analog of the unit interval, we will first need to blowup SG to K,
the analog of the line, and then take products to obtain the analog of Euclidean
space. The theory of Laplacians in these contexts is developed in [2¢] and [24].
Other work on quantum mechanical analogs in the fractal context includes [27] and
[£9] on the Heisenberg uncertainty principle, [2i] on eigenvalue clusters, [1Z] on
square-well potentials, and [{4] on harmonic oscillators.

In this paper we study the analog of the Coulomb potential in 3-space which gives
the Hydrogen atom model that is discussed in every book on quantum mechanics.
This model can be solved explicitly, while the fractal analogs cannot (perhaps it is
better to say that it seems implausible that explicit solutions will be discovered in
the near future). Thus we will be more interested in the general theoretic develop-
ment of Schrédinger operators as presented in the books of Reed and Simon [27]
(see also [13]), as these developments allow one to obtain the following conclusions
without having to know the explicit solutions:

(i) the operator is self-adjoint and bounded below;
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(ii) the essential spectrum is the same as for the free Hamiltonian —A (in this
case [0,00));

(iii) there are a countable number of discrete eigenfunctions with eigenvalue below
the bottom of the essential spectrum (negative eigenvalues).

Our goal is to obtain analogous results in the fractal setting, as well as to estimate
the counting function for the negative eigenvalues in (iii) above. We note also that
the spectrum of —A in (ii) consists of discrete eigenvalues with infinite multiplicity,
or more precisely the closure of this set of eigenvalues. Presumably these eigenspaces
split into eigenvalue clusters, so that there will be nonessential positive eigenvalues.
Our methods do not rule out the occurrence of singular continuous spectrum for H.

To begin our investigation we need to address the question: what potentials V'
should we choose to be the analogs of the Coulomb potentials —c|r — Z|~! in R?
for ¥ a point in R3 and ¢ a positive constant? (Note that we choose a negative
coefficient in order to have an attracting force as in the Hydrogen atom.) While
there may be other ways of looking at this question, we observe simply that the
Coulomb potentials have two basic properties:

(a) AV is a multiple of a delta function;
(b) V vanishes at infinity.

Moreover, these properties characterize the Coulomb potentials. Indeed, if AV =
AV’ and both V and V’ vanish at infinity, then V' — V' is harmonic and vanishes
at infinity, hence must be identically zero.

With this in mind, we propose to define a Coulomb potential on any noncompact
space with a Laplacian to be a function V satisfying (a) and (b) above. Note that
(a) allows two parameters, one being the point where the delta function is concen-
trated, and one being the constant multiple. Since harmonic functions will satisfy a
maximal principle in any reasonable theory, condition (b) will uniquely determine
the potential once these parameters are chosen. Of course, not every space will
have Coulomb potentials: for Euclidean space RY with standard Laplacian, there
are no Coulomb potentials for N = 1 or 2. Also, for N > 4, the Hamiltonian H
with Coulomb potential will not satisfy conditions (i), (ii), (iil) above. Thus, with
our definition, only dimension N = 3 has a satisfactory theory. This might lead
some readers to prefer a different definition; perhaps V(z) = —cd(z, %)~ ! for some
canonical metric d on the space. The trouble with this approach is that on many
interesting spaces we might not have any canonical metric, even though we might
be able to come up with a Lipschitz equivalence class of metrics that is in some
sense natural. In the fractal setting, we could argue that the effective resistance
metric on K, is canonical, but this does not help when we pass to products.

The advantage of defining Coulomb potentials by (a) and (b) is that the nature
of fundamental solutions of the Laplacians as called for in (a) is one of the first
questions that will be addressed in any theory. In particular, if one has a heat
kernel hs(z,y) (representing e*2), then

Vix) = C/OOO he(x,y) dt (1.2)

will satisfy (a) if the integral converges, and typical heat kernel estimates will en-
able us to decide whether or not (b) holds. Even more than that, good heat kernel
estimates will allow us to obtain detailed information about V', such as the rate of
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decay at infinity and the rate of blowup as 2 approaches the singularity y; informa-
tion that can then be used to establish conditions (i), (ii) and (iii). This is exactly
the strategy we follow in this paper.

Let K = SG denote the Sierpinski gasket, the unique nonempty compact set in

the plane satisfying
2

K=|JFK (1.3)
=0
where F;x = %(er gi) and (qq, q1, g2) are the vertices of an equilateral triangle. For
any infinite word w = (w1, wa,...) with w; = 0,1, or 2, define the blowup Ko as
the union of the nested sets

KCFJ'KCFJ'FJKC ... (1.4)

We will always assume that the blowup is nondegenerate, meaning that the blowup
word w is not eventually constant. This means K., is noncompact and has no
boundary, with a well defined notion of 2z — 0o in Ko. Eachset F,t - F 1 Fyr - -
Py K for any finite word (wy, . .., wy,) is called a cell of level k—m, or just a (k—m)-
cell. These cells are all similar to K, of Euclidean size 2%~ and each cell in
K has three neighboring cells on the same level (thanks to the nondegeneracy as-
sumption). Each cell splits naturally into three cells of one higher level, intersecting
at points:
FJII"'FJiFwi"'Fw;K: UFJS"'FJiFwi"'FwLFiK'

There is a natural self-similar measure p on K, that is characterized by u(C) = 37"
if C' is an n-cell. The blowup K., with measure p is a fractal analog of the line
with Lebesgue measure.

Kigami constructs a self-similar energy £ on K that easily lifts to K. We can
regard £ either as a bilinear £(u, v) or quadratic £(u) = E(u, u) form on a space of
functions domé& defined by

. 5\"
) = i (3) X (0~ w6 o) (15
where x and y vary over the boundary vertices of all m-cells, and x [y means x
and y are boundary vertices of the same m-cell. In other words, the energy is just a
renormalized limit of graph energies on graphs approximating K.,. The Laplacian
may then be defined by the weak formulation

Elu,v) = /(fAu)v dp for all v € dom€&. (1.6)
There is also an equivalent pointwise formula
Au(z) = lim §5m Z (u(y) —u(x)) (4 terms in the sum) (1.7)

as a renormalized limit of graph Laplacians.

In terms of the energy, each m-cell has size on the order of (%)m We can make
this precise in terms of the effective resistance metric, which is discussed in Section 2.
Also in this section we discuss heat kernel estimates for the semi-group e*®. These

are essentially due to Barlow and Perkins [1!], using probabilistic methods. When
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we pass from K., to a product (Ko )", the heat kernel transforms as a product.
In Section # we use this observation to estimate the fundamental solution (—A)~!
and the resolvent (I — A)~!. In particular we show that Coulomb potentials exist
when N > 2, and we prove a relative compactness argument that is valid only for
N = 2. This sets the stage for Section 4, where we prove the properties (1), (ii), and
(iii) for (K )?, and we find the growth rate for the eigenvalue counting function for
negative eigenvalues. In Section % we briefly discuss extensions to other self-similar
fractals.

The results here are closely related to results on the harmonic oscillator Hamil-
tonians in [14]. In that context we are able to give more precise information on the
potentials, and we work on K, rather than on products.

Notation. We write A < B to mean that there exists a positive constant ¢ inde-
pendent of the quantities A and B such that A < ¢B. We write A =~ B to mean
A< Band B A

2. Heat kernel estimates. Let K., be any nondegenerate infinite blowup of SG.
Our goal in this section is to give the heat kernel estimates on K. First we discuss
the resistance metric. Recall the definition

R(x,y) = &E(@) ! for x,y € S, (2.1)

where @ minimizes £(u) subject to the conditions u(x) = 0 and u(y) = 1 (here the
energy is over SG). We make the same definition for x,y € Ko, with the energy
taken over K. On SG we have the estimate,

o (g)n < R(z,y) < e (g)n (2.2)

where n is the largest value such that x and y belong to adjacent n-cells. Of course
n is positive on SG. We show the same estimates on K., where now n may be any
integer.

Theorem 2.1. There exist posilive conslants c1,ca such that (2.2) holds on K,
with n being the largest integer such that x and y belong to adjacent n-cells.

Proof. Let C and C’ be (n+1)-cells containing = and y. Since they are not adjacent,
OC and 9C" are disjoint. Define u on V;,_1 by setting u equal to one on dC’ and zero
elsewhere, and then extending it harmonically. Note that u(z) = 0 and u(y) = 1

because u is constant on C' and C’. Thus £(@) < E(u). But £(u) = 6 (ﬁ)nfl and

3
this yields the lower bound in (2.2) with ¢; = L.

For the upper bound we consider the adjacent n-cells C"' and C'" containing x

and y, and let z = C" N C”. If 4(z) > % we consider the restriction of @ to C".

Since it takes on values separated by at least % on an n-cell, the energy of @ on C”

is bounded below by a multiple of (%)n In particular, this gives a lower bound for
the energy of @ on Koo, hence the upper bound in (2.2). If @(z) < i repeat the

argument on C"'. O

The heat kernel estimates on K, have the form

- 0B
he(z,y) ~ ¢ e e (FEH)T

for
a=log3/logh, 5 =logh/log(5/3), and v = log2/log(5/2) (2.4)
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and some positive constant ¢, holding for all ¢ > 0. The values of « and [ may be
interpreted as

a=d/(d+1),5=d+1 where d = log3/log(5/3)

is the Hausdorfl dimension of SG in the resistance metric. (The value v may be
interpreted as v = 1/(d,, — 1) where d,, = log5/log2 is the walk dimension of SG;
in fact the value of v is immaterial in what follows.)

Theorem 2.2. The estimate (2.3) holds for all x,y € Ko for the heat kernel on
K, for allt > 0.

Proof. The result is essentially proved by Barlow and Perkins [{1]. We just have to
note a couple of minor modifications. The first is that the estimate is proved on the
space K, made up of two copies of K «, constructed by a constant blowup word and
glued at the boundary points. The second is that the estimates are given in terms
of the Euclidean distance |z—y|. However, when (2.2) holds we have |z —y| = (%)n,
so that in fact

|z — y| = Rz, y)'os?/ 1056/, (2.5)
and with this substitution the estimates in [11] are exactly of the form (2.3).

To see that we can transfer the estimates from K. oo 10 Ko we need the following
observation: for any two points z,y € K~ and any bounded neighborhood U con-
taining z and y there exists an isometric neighborhood U in Ko with corresponding
points &, 7 (these will vary with the neighborhood U). For our purposes it suffices
to take U to be a finite blowup F,'o---0 F K. For n large enough, Z and g will
be far from the boundary of 17, so for fixed t the values hy (Z,§) and ﬁt/(gj, q) for
§ a boundary point of U and ' < t will be substantially smaller than h+(%,7). By
probabilistic reasoning, it follows that both the Dirichlet and Neumann heat ker-
nels 2P (z, ) and hY (&,7) will be comparable to f; (&, §) and so satisfy the bounds
(2.3). These then transfer to the identical h”(z,y) and A (x,3) on U. But then
hi(x,y) is the limit of either of these as n — oo and U — K, so (2.3) holds for
he(z,y). O
3. Resolvent estimates on products. Now consider the product space (Kq)"
for N > 2. Note that by (2.4) we have aN = log(3")/log5 > 1. The heat kernel
on (Ku)Y is simply the product

hiv(xa y) - ht(xla yl)ht(an y2) T ht(xNa yN)' (31)
We extend the metric R(x,y) from K4 to (Ko )™ by
1/8~

N
RN (z,y) = ZR(%‘,?JJ)M : (3.2)

Then (2.3) extends to

2,5 |~
W (z,y) ~ toN eme(FE2) (3.3)

We obtain a kernel GV (z, y) for (—A) ! on (K ) by integrating the heat kernel
G¥wg) = [ A @) dr (34)
0

Using the estimate (3.3) and the change of variable t — tR" (x,3)” we obtain
GN (@, ) = RN (, y) ). (35)



748 ROBERT S. STRICHARTZ

This uses the fact that the integral

e -
/ tfaNefct dt
0

is finite; near zero the second factor dominates, while near infinity the fact that
aN > 1 makes the first factor integrable.

Note that the exponent in (33.5) is negative, so GV (z, -) vanishes at infinity. Since
any two fundamental solutions of —A differ by a harmonic function, and a harmonic
function vanishing at infinity must be zero by the maximal principle, it follows that
(3.4) gives the unique fundamental solution of —A vanishing at infinity.

Similarly, we get a kernel R™ (x,7) for the resolvent (I — A)~! from the integral

RY(p) = [ e h ) . (3.6)
0
Theorem 3.1. There exists § > 0 such that
RN (2,y) S BN (2, ) oM emeRT @), (3.7)
Proof. By the same argument used to obtain (3.%) we have
’RN(x, y) S RN(.I, y)ﬁ(lfaN) / 67tRN(r,y)ﬁt7aNefct’7 dt, (38)
0

so it suffices to estimate the integral in (3.8). For R¥(z,y) < 1 we can drop
the first factor, so it suffices to consider the case R™(x,y) > 1. We split the
integral at t = R™(x,y) #/2. For t below this value we discard the first factor,
and the third factor gives us e~ B @) and enough decay to make the integral
converge. For large values of ¢ we discard the third factor, and the first factor gives
us e RV @7, O
Theorem 3.2. Let N = 2. Then for any z € (Kx)?, the operator (I — A)~!
followed by multiplication by G*(-,z), whose kernel is K(x,y) = G*(x,2)R*(x,v),
is a compact operator on L*((Ku)?).

Proof. First we observe that (I —A)™! is a bounded operator on L?((K)?) for any
N. This is an immediate consequence of spectral theory or (3.5), but it can also
be deduced from the estimate (3.7). Let Ks(z,y) = xs(2)G?(x, 2)R?(z, y) where
Xs denotes the characteristic function of the ball of radius s about z in the R(x,y)
metric. Because G?(z, z) decays as z — oo, it follows that the operator with kernel
K (x,y) is the norm limit of the operators with kernel K;(z,y) as s — oo. Since the
norm limit of compact operators is compact, it suffices to show that the operators
with kernel K,(z,y) are compact. We will do this by showing that they are of
Hilbert-Schmidt class, namely

/ / K o(, ) () dp(y) < oc. (3.9)

Now (Ko ) behaves like a space of dimension Nd, for d = log3/log(5/3). In
particular

p(Bs(z)) < sM, (3.10)

and RV (z,2) ® is locally integrable if @ < Nd. To show the finiteness of (3.%)
it suffices to bound [|R?*(z,y)|?dp(y) independently of z, and then to bound
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I5.¢2) |G?(x, 2))?dp(x). The second factor on the right in (3.7) controls the in-
tegral of |[R%(x,y)|? for y away from x, so both estimates require only the local
integrability of RV (z,y)?*~*N)  in other words,

26(aN — 1) < Nd for N = 2. (3.11)
But (2.11) is the same as N < 2log5/log 3, which is clearly valid for N = 2. |

Note that (3.11) is not valid for N > 3. So the proof of Theorem %.Z is only valid
for N = 2.

4. Spectrum of the hydrogen atom Hamiltonian. Let H = —A 4+ V for
V(z) = —cG*(z,y) on (Ku)? for some fixed y € (K )? and positive constant c.

Theorem 4.1. H is a self-adjoint operator whose essential spectrum coincides with
the essential spectrum of —A.

Proof. Theorem 3.2 says that V is a relatively compact perturbation of —A, so
the result follows from Weyl's essential spectrum theorem (Corollary 2 to Theorem
XII.14 in [22]). O

The essential spectrum of —A on K, is described in Teplyaev [2¢]. There is a
countable set F of eigenvalues of infinite multiplicity (the associated eigenfunctions
give an orthonormal basis of L?(K,)). The essential spectrum is the closure of E,
which is essentially a Cantor set related to the Julia set of the polynomial z(5 — ).
Of course I is a subset of [0, 00], but we also know that 0 € E, so 0 is the bottom
of the essential spectrum. It follows immediately that —A on (K, )? has pure point
spectrum E + E with infinite multiplicity, the essential spectrum is (£ + F), and 0
is the bottom of the essential spectrum.

Theorem 4.2. H is bounded below.

Remark 1. This follows from a general theorem of Kato and Rellich ([22] Theorem
X.12), but verifying the hypotheses of the theorem is not very different from the
proof below.

Proof. We use the Sobolev embedding theorem

2/q
</ (u)qdu> S E@) +1ull} for g — 4d/(d 1), (4.1)
(Koo)?

This is proved in [23] for a 4-fold covering of K2, but the same proof works for
(Ko )? because we have the same heat kernel estimates. We need to show
(Hu,u) > —b||ju||3 for some constant b, (4.2)

which is equivalent to
of  CEplu@P dut) <&@ +b [ uf dn (43)
(Ko)?
We apply Holder’s inequality to the integral on the left side of (4.3), over any ball

B:(y), with dual indices p and p’ with p’ = ¢/2 = 2d/(d —1),p = 2d/(d+ 1) =
2log3/logh > 1. We obtain

1/p 2/q
/BE@)G @ ylu@) dulz) < </BE(y)G (x,y)”> </Bg(y) Jul du) (4.4)
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The first integral on the right side of (+1.4) is finite, because the estimate (3.5)
. ) N  (d-1)2d
dominates the integrand by R?(z,7)?"2)? and 3(2a — 1)p = S < 2d. By

taking £ small enough we may make the integral as small as desired. Using (4.1)
we obtain

/B ( )Gz(x,y)IU(x)IZ)du(x) < 6(E(w) + [|ull3). (4.5)
=(y
But we have the trivial estimate
/ G (z, y)|u(@)]? dp(x) < Ms|[ull3 (4.6)
(Koo )*\Be(y)

where M; is the maximum value of G?(z,y) outside B.(y). Choosing § = 1/c and
adding (4.5) and (4.5) we obtain (4.3). O

Again this argument will not work on (K )Y for N > 3.

Theorem 4.3. H has a countable set of eigenfunctions with negalive eigenvalues.

Proof. By a general theorem ([?2] Theorem XIIL.1) it suffices to show that the
max-min formula

. (Hu,u) . (Hu,u)

Aj = max min ———— = min max —— - (4.7)
dimL=juclt ||ull3  dimL=j+1wel ||u||3

yields an infinite number of negative values. This just means that there exist spaces

L of arbitrarily large dimension on which the quadratic form (Hu,u) is negative, in

other words
ew) < ¢ [ GPlolute)Pduto). (48)

This is essentially a dilation argument that requires the potential G2(x,%) not to
decay too rapidly at infinity.

Start with any compactly supported eigenfunction u, so —Awu = Au for some fixed
A. Then &(u) = Mul|l3. If we dilate u by composing with F,, o Fy, , 0+ 0 Fy,
the resulting function u satisfies —Au = 5™ \u, hence €(u) = 5~ ™)||u||3. On the

other hand, we have
3 mB(2a—1)
G*(z,y) > &1 (g) (4.9)

on the support of u, so

[l l3-

3) mB(2a—1)

/ G*(z,y)lu(z)Pdp(z) = e (3

Since (%)ﬁ(zafl) = 2 > 1L, if we take m large enough we can make (£.%) hold.
More generally, we can start with a {inite set uy, us, ..., u, (for any n) of compactly
supported eigenfunctions with disjoint supports and pass to their dilations ii; =
u; 0 Fy, ool . By the above argument we may take m large enough so that
(4.8) holds for each #;. Since these functions also have disjoint supports it follows
that (4.2) holds for their span. O

With a little more effort, we can estimate the growth rate of the eigenvalue
counting function for negative eigenvalues approaching zero. Let

N(—¢) =#{)\; < —¢} fore > 0. (4.10)
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Theorem 4.4. N(—¢)~c % ase — 0 for

(10g %) log9
(10g %) logh
Proof. We start with the known estimate

Ni(z) = z©

for the eigenvalue counting function on SG with either Dirichlet or Neumann bound-
ary conditions. It follows easily that

No(z) ~ 22 (4.11)

where N3(x) is the eigenvalue counting function on SG x SG with either Dirichlet
or Neumann boundary conditions.

Next we cut up (Ko )? into a union of cells of varying levels on which V is close
to being constant. Say

(Koo )? = UCy, (disjoint except at boundary points), (4.12)
where C}, has level ng, and let
My, = sup G*(-, y) and my, = inf G*(-, ). (4.13)
Ch Ck

We will choose the decomposition (4.1:2) so that My and my, are of comparable size.
Define

Vt = —emyg on Gy
{ V- = —cMg on Cy, (414)
so that
Vo<V <VvT, (4.15)

and let H* = —A + V*. Let D denote the subspace of L? Ndom & of functions
vanishing on the boundaries of the cells Cy. Let N denote the space of L? functions
with possible discontinuities on the boundaries of the cells C, with finite energy in

each cell Cy. We define

-
A; =  min max< u;u> (4.16)
dlnzléj\%Jrl ueEL ||U||2
and
AT =  min  max <H+—u,2u> (4.17)
J dim L1 ucl [lull3
It follows easily that
A7 <A <A (4.18)

(Note that )\]i are not eigenvalues of H¥). Since the cells Ci behave independently

in the definitions of )\Ji, we know that the values A; are just the union over k of
the Neumann eigenvalues of —A on Cj translated by —cMy, so

{0 ={5" ) — My} (4.19)
where {uY} are the Neumann eigenvalues of SG x SG. Similarly,

{AF} = {5 p — omy} (4.20)
where {uP} are the Dirichlet eigenvalues of SG x SG.
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Now it follows from (4.18), (4.1%) and (4.11) that
N(e) < N el = 5w — e My < —c}
= Z#{Mz <5 (e My —e)}
k

<D 9T (eMy — ) (4.21)

k
since 5 = 3. Similarly we obtain lower bounds with M}, replaced by my. For the
decomposition (4.12) we want to take cells Cy, of level ny on which R(z,y) =~ (%)nk

The exact numbers will depend on the point y, but it is clear that we can always
do this so that the number of cells with ny = n for any n € Z is at least one and is
bounded above by a universal constant. Note that (3.5) implies

nk

Thus we obtain N
(&) 9 n {83
N(—e€) =~ 9~ -] — . 4.23
x 2o (e(5) ), (29
We can write ¢ = (8)r for r = —loge/1og(9/5). Then the nonzero contributions
to (4.23) correspond ton = —r. We need to observe that 9- (%)2(1 = 92~ (log9/log5)
1 to conclude that (4.23) is a geometrically converging series, and

2ar
N(*E) ~ 9. (§) _ 9r(27(10g9/ log 5)) _ 576'

9
O

5. Other fractals. Consider a more general connected self-similar fractal K in R™
satisfying

No

K=|JFK (5.1)

i=1
analogous to (1.3), where {F;} are contractive similarities and let K be an infinite
blow-up defined by (i.1). We assume that there is a metric d(x,y) on K, that may
or may not be related to the FEuclidean distance and a contraction factor p such
that d(Fix, Fyy) =~ pd(z,y) for all i. (More generally, one would like to allow the
factor p to depend on i, but we are not able to say anything in this generality.) We
assume a separation condition on (5.1) such as the open set condition that allows
us to define a self-similar measure p with

pw(FuK) = pl*! for = 1/N,. (5.2)
In particular p(F; N F;) = 0 if ¢ # j. Note that
d=logu/logp (5.3)

is the Hausdorff dimension of K with respect to the d(z, y) metric and the dimension
of the measure p.
We assume that there exists a self-similar energy form £ on K, (with domain
dom &) satislying
Ng
1 .
Elu,v) = Z —E(uo Fy,vo F;) for u,v supported in K (5.4)

tn
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and some s < 1. We define a Laplacian via the weak formulation
E(u,v) =— /(Au) vdp for all vedomé. (5.5)

Finally we assume that the heat kernel associated to the Laplacian satisfies the
estimate

he(, ) ~ 120D (5.6)
for some positive constant «, 3,v. We will discuss below some cases in which all
the above assumptions are valid.

The reader should note that there are many different ways that heat kernel
estimates appear in the literature. Some of these differences depend on the choice of
the metric d(z,y), but others are more arbitrary. In many examples the parameters
£ and 7y are related by v = (ﬁlfl), so only two parameters appear. One observation
we make is that, at least for the results described here, the parameter v plays no
role. Thus it seems unwise to insist on this relationship, which may turn out not to
hold in all cases. The parameter 3 is often interpreted as a “walk dimension”, and
so is denoted d,,. The parameter « is often written as ds/2 for d; interpreted as a
“gpectral dimension”, but this is predicated on the assumption that the Laplacian
is an operator for order 2. This is false for most PCF fractals, and remains to be
decided for SC. The factor t* is sometimes written as V(z, t%), the volume of the
ball of radius of radius % about 2. This is the so-called “Li-Yau” form. Of course,
it may or may not be the case that V(x,t%) has a power law growth: this is a
statement about dimensionality. Then o = 4 for the dimension d. In many cases it
is known that 2 < d,, < 1+ d, with d < 2 if the fractal embeds isometrically in the
plane. It is also known that heat kernel estimates are stable under rough isometrics
[¢]. The reader may consult [i], [] and [{#] for further discussion of heat kernel
estimates.

We consider the product space (Ko )" with Laplacian and metric extended as in
Section Z. We have the estimate (3.5) holding for the kernel GV (z,y) of (—A)™1,
so we need the condition

1
5 <N (5.7)
for the kernel to vanish at infinity, allowing the choice V(z) = —cG¥ (z,y) for a
Coulomb potential.
Next we consider the analog of Theorem 3.2, which is the key to Theorem 4.2

We do not immediately assume N = 2. It is clear that the same argument will work
if (3.11) holds, which is equivalent to

1
a—d/2p
(we are assuming here that d/25 < «). One set of assumptions that are valid in
many examples are the following:

N < (5.8)

af=dand a < 1. (5.9)
Under these assumptions the conditions on N are just
1 2
—<N<—, (5.10)
! !

and there is always at least one integer N satisfying them. Note that if % <a<l
then N = 2 is the only allowable choice, while for a = % the only choice is N = 3.
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Next we consider the analog of Theorem 4.4. (The analog of Theorem 4.2 is also
valid.) If we are to have estimates of the form (3.6), we must in fact have
log p1
o= , (5.11)
log(sp)

as this follows from (%.4) as in [14] for the growth rate of the eigenvalue counting
function on K, Ny(x) = z“ (the same « as in (5.6)). Note that s < 1 already implies
the second condition o < 1 in (5.4). We then have

Ny(z) ~ =V (5.12)
for the eigenvalue counting function (Dirichlet or Neumann) on K~. The same
reasoning as in the proof of Theorem 4.4 leads to the estimate

N() = 3 (o) epm 0N gy )N (5.13)

n

for the eigenvalue counting function for H on (K, )". Using (3.11) this is the same
as
N(-e)m 3 N (eprd0om) e (514

the analog of (4.23). We define r so that ¢ = p~#1=aN)" Then the sum in (%.14)
extends from around n = —r (shifted by the constant ¢ in (5.14)) to infinity. We
thus need the condition

ppli—eNe (5.15)
in order for the right side of (5.14) to be a geometrically convergent series, in which
case

N(—e) s (up1-am)y -, (5.16)
Using (5.3) the condition (3.13) is equivalent to
d—af(aN —1) > 0, (5.17)
and (5.18) becomes
N(—e)=¢9 (5.18)
for
5= (%) N (5.19)

(note that (5.17) implies > 0). In particular, if we assume (%.9), then (5.10)

implies (%.17), and (%.18) becomes

2—aN
§ = (aNl) aN. (5.20)

For highly symmetric P.C.F. fractals, such as Lindstrgm’s nested fractals, if we
take the distance to be the effective resistance metric, the heat kernel estimates
(5.8) hold and also (5.9) is valid. Thus both Theorems 4.2 and 4.4 hold, provided
N satisfies (5.10), and § is given by (5.290).

Another type of example is the Sierpinski carpet SC. Here we use the Euclidean
distance. Then p = 1/8,p= 1/3, so d = log8/log3. There is a sell-similar energy
satisfying (5.4) for a value of s numerically approximated as slightly less than .8.
The heat kernel estimate (5.¢) holds for o = log 8/ 1og(8/s) and 5 = log(8/s)/ log 3,
so aff = d, so (5.%) holds. Since % < a < 1 in this example, we must take N = 2,
and (5.20) holds. There are other variants of SC for which similar results hold. See
[3]-[3], [19], [13] and [18] for details.
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