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Both the multifractality and multilacunarity spectrum are embodied in the analytic structure of a new generalized energy inte-
gral. A first application is made to non-trivial linear Cantor sets and exact results are obtained for dimensions, for periodicity of

oscillations in order-g correlation and for entropies.

1. Introduction

In the theory of dynamical systems the central role
of characterizing the metric and ergodic properties
of the sets which are invariant under the iteration of
maps, is taken by the invariant normalized measures
they support. It is remarkable that these measures
often give information on the geometry of the set and,
in particular, on its fractal properties. For example,
given a strange set J and a finite measure u, consider
for each positive 7, the energy integral

o(0= [ [ =1~ dutn) du»), )
JJ

where || x—y| is.a suitable norm on J, and define the
divergence abscissa T as

T=inf{1; @(7) =+0o0} . (2)
! Work supported in part with a MPI 60% grant.

2 Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Bo-
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It is a well known result of fractal geometry (Frost-
man’s theorem) [1] that 7 is a lower bound to the
Hausdorff dimension of J.

In this Letter we extend this result by introducing
a new generalized energy integral (GEI) whose sin-
gularities give the generalized dimensions (GD) of
the set J. The definition of the GD we adopt is the
following [2]. Consider the minimal covering € of
the set J with balls of radius / and, denoting with B(x;
/) the ball whose center is at xeJ, compute the cover
function D,(/) according to

Dy() = q_%log(; u(B(x; 1))) log~'l.  (3)

If the function D, (/) has a limit for /-0 then we call
this limit D, the generalized dimension of order g of
the set J with respect to the measure . We also recall
that the Legendre transform of the GD gives the f(«)
spectrum of singularities of the measure x4 and this
is one of the reasons for investigating the GD [3].

The covering procedure illustrated above has a
continuous counterpart [2]. In fact if we define the

331



Volume 140, number 6

g-correlation integral C,(l) according to

D= [ n=1 B D) du) (4)
J
then
D, = lim ——'%8CalD) (5)
o q—1 logl

2. Generalized energy integral

We define the generalized energy integral @,(1) as

0= [ |1y

X pf 2 (B(x; |x—yl)) du(x) du(y) - (6)

We observe that @,(1) can be written as the Mellin
transform of the Stieltjes measure dC,(/),

D,(1)= jl“'dC‘q(l), (7

where

&= | [ =px-y)
J J

X pui=2(B(x, lx=yl)) du(x) du(y) . (8)

It is easy to check that Cq(l) is proportional to the
correlation function C,(/) previously defined. In-
deed using a standard argument in fractal geometry
we observe that u(B(x, r)) defines itself a measure
and

&= [dnte) | u2(Bx Ie—y1) du()
J

B(x,/)
/
= [ aueo [w2Bxn) auBen).
J 0

- ﬁf u=1(B(x; 1)) du(x)
J

1
=q___1Cq(1)9 (9)

where on the second line the inner integration is
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meant to be on r. Now, according to (5) the g-cor-
relation integral scales as C, (/) ~ /P9~ for / small.
As a consequence if we take this into account in the
Stieltjes integral (7) becomes

4
@, (1)~ leaw—”—f—l dl, (10)
0

where 4 is the diameter of J. The smallest real 7 for
which the GEI diverges, is 7= (¢—1)D,. This sug-
gests extending Frostman’s theorem by defining the
spectrum of the generalized dimensions directly from
the divergence abscissa of the GEIL:

Dq=ﬁinf{r; @,(1)=+0o0}. (11)

Taking (11) as a definition for the GD, one can in-
vert the procedure in the following way. First com-
pute the GEI through (6), take its inverse Mellin to
obtain C,(/) and finally look at the power law scal-
ing of C (/).

We applied [4] this technique successfully to some
dynamical systems in the case ¢g=2, where the GEI
(6) reduces to the ordinary energy integral (1). Ad-
ditional results were obtained for the linear Cantors.
In particular the meromorphic structure of @(7) was
proven, which implies the appearance of oscillations
in log!/ for C(l), in agreement with numerical ex-
periments [6,7]. Moreover, if J arises as the invar-
iant set under the smooth map T and the norm is
replaced by the dynamic norm
lx=yle=max | T'x-T%|, keZ*, (12)

Sisk—
the residue of the pole of @*(t) at =D, scales for
large k as exp[ —kh, (1) ], where h,(u) is the 2-Renyi
entropy [8] of the measure u (which is supposed to
be invariant and ergodic [9] under the mapping 7).
This allows one to grasp the 2-entropy with a new
exact formula.

Using the GEI @,(1) with g a parameter and 7 a
complex number, these and similar results can be ex-
tended to any g. For instance oscillatory corrections,
which have been numerically observed for some g# 2,
are exhibited by a// correlation functions C,(/); they
are not in general trivially related to each other and
we propose to call them the multilacunarity spec-
trum [6b,16]. They all have their roots in the com-
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plex poles of the GEI. The positions of the real poles
give the dimension spectrum. If the dynamic norm
is used, defining @ %(7), the residues of the poles at
t=(g—1)D, scale for large k as
exp[—k(g—1)k,(1)], where h,(u) is the g-Renyi
entropy of the measure u.

We have started this program on a variety of ex-
amples, both analytically and numerically. In this
Letter we restrict the analysis to be particular family
of Cantors for which the singularities of the GEI can
be relatively simply and explicitly determined.

3. Multifractal linear Cantor sets

Let L: [0,1]-R be a piecewise linear map of the
unit interval such that L —'[0,1] is the disjoint union
of s sets:

L-'[0,1]1= UIj, IjﬁI/=0, forl#j .
j=1

The length of each I, is the scale A;< 1. The invariant
set for this map is the Cantor set:

)= FiL"’[O,l]. (13)

We can put on J a set of L-ergodic measures u char-
acterized by the fact that each I, has a weight:
pi=u(;nJ) and >5_, p;=1. Each of these measures
is called a balanced measure with weights (p, ..., Ds).
These measures have two other interesting proper-
ties [10]. Letting L; ' be the jth inverse band of L
defined on [0,1], A a measurable set of J and f(x)
a continuous scalar function on J, we have

u(L;7'A)=pu(A), (14a)

10 dux)= $ o [ AL xy aue . (1a)
1 =ty

Using the property (14b) it is possible to find a
functional equation for @,(t). Since we are inter-
ested in the singular behaviour of @,(7), we apply
the balance property (14b) to each variable in (6)
but collecting the terms with the same L;~'. Indeed
the terms like |L;' —L;'y| with i#j give a finite
contribution to the integral since the points L;'x
and L[ 'y are at a positive distance. We obtain
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o,0)= 3 5t [ [1Lrtx-rLrin—
= 7

Xpue=2(B(L7'x, \Li 'x=Li'yl)) du(x) du(y)
+¥,(1), (15)

where ¥,(1) is an entire function of 7.

To go further we need a scaling condition on the
measure of the ball B(x, |x—y|). Using again the
balance property we have

U(B(L;'x, |L7'x=L;'y|)
=pij9(qu‘x—L,-‘1yll
J
—IL;'z—Li ' x|) du(z)

- %o 00L XLy
J

J#Ei
—|Li'z—L7 x||) du(z) . (16)
If we require that

max diameter(L;'[0,1])

1<igs

< min distance(L;7'[0,1}, L74[0,1]),

Igis<s—1

(17)

then the second term in the right hand side of (16)
vanishes and we obtain (using the linearity of the
L)

u(B(L7'x, IL7'x=L;'yl))
=p,u(B(x, |x—¥)) . (18)

The technical condition (17) is introduced here for
simplicity. It means that the non-empty intervals of
the Cantor set are smaller than the empty intervals.
Equality is reached for the ordinary ternary Cantor
set, for which of course (18) holds. The condition
could probably be always relaxed at the cost of a more
refined asymptotic analysis. In section 4 we also pro-
pose an alternative. Here we continue using (18),
which allows to rewrite (15) as a functional equation

¢q(r)<1— 5 p;a,.-f)=qu(r). (19)
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Therefore @, () is a meromorphic function of 7 and
the poles are located at the solutions of

Y piAit=1. (20)
i=1

For a given g, the real solution 7{®’ = (¢—1)D, of
(20) is exactly the same one would obtain using the
thermodynamic formalism [11]. We point out that
D, is just the fractal dimension of the set [12] and
is independent of the balanced measure which ap-
pears in the integral (6). We expect that @,(7) does
not depend on the measure at least for systems such
as the mixing repellers which can be nicely approx-
imated with sequences of linear Cantors [13-15].
When the scales are equal (4;=4) but not the
weights, we get explicitly all the poles of @,(7),

7" =log (; pj’) log~'A+2minlog=' 2,

n=0,+1, £2, ..., (21)

providing a description of the multifractal multila-
cunar measure g The generalized spectrum of di-
mension is given by

7
g—-1

=L 10g (z p;1>1og—‘/1. (22)
g—-1 =1

Although D, is not defined for g=1, we can obtain
D, by a limiting process. This is the case for the above
Cantor sets, and the first term in the right hand side
of (22) gives

D = lepjlogp0>log“l, (23)

which is just the information dimension [12], given
by the ratio of the Shannon-Kolmogorov entropy of
the measure —X7_, p;logp; and its Lyapunov ex-
ponent —logA [9,11,13]. If we suppose (as it hap-
pens for g=2) that the residues r{” of the poles
™ of @,(1) decrease sufficiently fast for n large and
do not all vanish, then we can take the inverse Mellin
transform of the GEI, obtaining
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Co(l)=214=1Pa

0 r(n)
X "; :IZ"’ll cos(2nn log—'Alog [—ys™ + BLP)

(24)

where y{" =arg(t{") =arg(r{").

The correlation functions exhibit oscillations in
log / with the same period for any ¢g. We have already
noticed that these features have been observed nu-
merically for the ternary Cantor set [7] and are re-
lated to the lacunarity. Here, for a class of Cantor
sets, we explicitly establish the connection between
the multilacunarity spectrum and the meromorphic
structure of the GEL

Finally to obtain the g-Renyi entropies for the
Cantor sets considered above, we consider the limit

lim ——l—qlog r$9, (25)

where r{9) is the residue of the GEI (computed with
the dynamic norm (12)) at the pole D,. Using again
the method illustrated above and the technique in
section IV of ref. [5] one easily obtains

hy() = l—it—zlog (g pf) =h (), (26)

which is precisely the expression for the ¢g-Renyi en-
tropy one obtains using the thermodynamical
formalism.

4. Discussion and conclusion

First a possible alternative. The EI can be gener-
alized as

é1("-')= f

Xpui=2(B(3(x+yp); dlix—yl)) du(x) du(y) ,
(27)

lx—=yl=*

a more symmetric definition. It would make
straightforward the above analysis for any linear
Cantor set with arbitrary scales, because the analog
of (18) for the scaling of the ball holds without any
restriction (such as (17)) on the structure of the set.
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As a consequence eqgs. (21) and (22) which give the
dimension spectra, in agreement with the results of
the thermodynamical formalism and the lacunarity
structure, hold in full generality.

Moreover the correlation integral corresponding
to (27), and given by the r.h.s. of (8) where B(x,
lx—yl) is replaced by B(;(x+y), 3lx—yl|), turns
out to be much more convenient for numerical com-
putations. Indeed some preliminary numerical re-
sults, obtained with this definition, are in excellent
agreement with-our theoretical resuits and will be re-
ported elsewhere.

The only inconvenience is that the equivalence
with the standard definition of the correlation in-
tegral C,(/) hasnot yet been proved, even though we
expect it to hold asymptotically.

We conclude by observing that the linear Cantor
sets are a basic tool to understand more general sys-
tems. For example, any non-linear expanding map
with an invariant Cantor set can be approximated in
a dynamic and “fractal” sense by a sequence of lin-
ear Cantor systems [13-15]. Moreover every hy-
perbolic map, with more complicated invariant sets,
behaves topologically as the linear Cantor systems,
the role of the sets L ~"[0,1] being taken by the Mar-
kov partitions. All this suggests that the energy in-
tegral formalism could be applied to a larger class of
dynamical systems.

We finally point out that for smooth sets endowed
with the Lebesgue measure, the GEI is easily com-
putable. This ard the extension to more general non-
hyperbolic systems will be the object of future work.
One can also observe that the definition (11) of the
GD can be used for actual computations. For a given
set J and the physical measure one can indeed ap-
proximate the GEI by using a time series and detect
the divergence abscissa by any analytic continuation
procedure. This procedure was already used in ref.
[4] to compute D, for the Henon attractor.

To summarize, in our opinion the generalized en-
ergy integral has the advantage of collecting a variety
of information on the possibly multifractal and/or
multilacunar set J and measure x into a single object.
It enjoys natural relations to other fractal concepts
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and is reasonably manageable mathematically and
numerically.
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