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WITH INVARIANT MEASURES ON JULIA SETS 

BY M. F. BARNSLEY1, J. S. GERONIMO2 AND A. N. HARRINGTON 

I. Introduction. Let C be the complex plane and T: C —• C be a non
linear polynomial of the form T\z) = zn + kxz

n~~l + ••• + kn. Consider the 
sequence {Tn(z)}f « = 1 , 2 , . . . , where T°(z) = z and Tn(z) = To Tn~l(z). 
The general theory of sequences of this form has been developed by Fatou [5,6], 
Julia [8] and Brolin [4]. In their research a fundamental role is played by the 
Julia set B, which is the set of points in C where {Tn(z)} is not normal. 

Fatou and Julia established the possible structures B can have and showed 
that these depend in a complicated way on the coefficients of T\z). Among 
other things they demonstrated that B may be the unit circle, a straight line, a 
generalized Cantor set, or a set containing an infinite number of Jordan curves. 
However, in all cases, B is compact and T~~l(B) - B. 

In 1965 Brolin established some electrical properties of the set B. He 
showed that the logarithmic capacity of B is positive and that there exists an 
equilibrium charge distribution u. He also proved that, for T: B —• B, u is in
variant and the system (B, u, T) is strongly mixing. It is the purpose of this 
note to develop more fully the properties of the equilibrium measure on B and 
to investigate the monic polynomials orthogonal with respect to this measure. 

H. Results. We begin with the following 

DEFINITION 1. u is a balanced ^invariant measure on B if u is a probability 
measure supported on B such that for any complete assignment of branches of 
r " 1 , J/"1, ƒ = 1, 2, . . . , nt u(T]-l{S)) = u(S)/n for each Borel set S. 

REMARK 1. One can show [2] that there is only one balanced 7Mnvari
ant measure on B and that the measure constructed by Brolin is balanced. 
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For any T-invariant measure one has fB f du = fBf° Tdu, however if u is 
balanced one has 

THEOREM 1. Let u be the balanced T-invariant measure on B, and ƒ 6 
L1 (B, u), then 

JifBt m\z))du(z) = ƒ f(z)du(z). 

PROOF. It is sufficient to take ƒ to be a characteristic function Xs f°r a n 

arbitrary w-measurable set S C Tj~l(B). With these assumptions one has T^l(B) 
Pi S, k ¥* /, contains only a countable number of points and Tj"1(x) G 5 <=> 
x e 71S). Therefore 

£ fB t xs(T^(z))du(z) = i / ^ ( ^ ( ^ o o = -n<ns)\ 

Now using the fact that u is balanced and then the assumption on S one has 

\u(T(S)) = KT-^nS))) = «(5) = fBxsdu. 

Before continuing on to the next theorem we review some algebraic facts 
about the polynomial P(z) = T(z) - c, where c is a complex variable. Set sm = 
2?=i(Trl(c))m> m = 1, 2, . . . , /i - 1. It is well known (Gaal [7, pp. 24-25]), 
that sm = -wfcm - XltL"l

1klsm_l where fy is the coefficient of zn~* in P and 
is independent of c for ƒ = 1, 2, . . . , « - 1. Thus the value of sm depends only 
on the polynomial T and not on c. This leads to 

THEOREM 2. Let u be the balanced T-invariant measure on B, and let f 
fGLl(B, u). Then 

fBz'f(T(z))du(z) = ^ JBf(z)du(z) forj = 1, 2, . . . . * - 1. 

PROOF. Applying Theorem 1 yields 

/t=i 

= iiB
f(&du® for/=l,2,...,«-l. 

One now has the following relations among the monic orthogonal polynomials 
associated with u. 
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THEOREM 3. Let u be the balanced T-invariant measure on B. Let {Pt} 
be the sequence of monic polynomials orthogonal with respect to u, with Pt of 
degree I, satisfying fBPn(z)Pm(z)du(z) = 0,n^m, then 

(1) P^-z + kJn. 
(2) Pin(z)=PAHz))forl = 0 , 1 , 2 , . . . . 
(3) PJz) = T\z) + kjn for I = 0, 1, 2, . . . . 

PROOF. (1) is proved by integrating Px(z) and using Theorem 2. To prove 
(2) it is sufficient to show that Pt(T(z)) is orthogonal to polynomials of the form 
z'(T{z))m, j = 0, 1, 2, . . . , « - 1 ; m = 0, 1, . . . , / - 1. Denoting conjugation 
by - and applying Theorem 2 to the following integral yields 

jBz>'(7lz)rP{7W)du(z) = ^ fBz>»P{z)du(z) = 0 

since P7(z) is an orthogonal polynomial of degree /. Finally (3) follows from (1) 
and (2) by induction. 

REMARK 2. From the electrical interpretation of B one can see that if B 
is an interval [a, b] on the real line then du(x) = 7r_1((Z? - x)(x - a))"l^2dx 
and {Pt(x)} are the shifted Chebyshev polynomials associated with du. 

REMARK 3. Under the Mobius transformation (z, Tz) —• (Rz, RTz) with 
R(z) = z + k1/n one can transform Tto a topologically equivalent T = zn + 
k2z

n~2 + • • • + kn. In this case the iterates of T are monic orthogonal poly
nomials associated with dïï. 

Let U and D be the components of the complement of B, and the unit 
circle, respectively containing °°. Fatou [5, 6] has shown that there is a func
tion analytic at °°, normalized so that F(z) = z + 0(1), which obeys the Böttcher 
functional equation 

(4) Fim) = (mr-
F may be extended to be a well-defined analytic function in any simply-connected 
subregion of U. 

THEOREM 4. 

(5) (?nk(
z))1/nk = m(i + o(z-*»k)) 

and the [nk - l/nk] Padè approximant to the moment generating function 

SKETCH OF THE PROOF. Let F(z) = z + b0 + bjz + • • •. Then from 
electrical considerations one has 

(6) log F{z) = j B log(z - x)du(x). 
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Expanding the above equation yields bQ = -fBxdu(x) = k1/n. From the itera

tion of (4) one obtains F(z) = (F(Tk(z)))1/nk. (5) can now be retrieved by sub

stituting in the power series for F and using equation (1). The Padé formula 

follows from differentiation using (5) and (6) and replacing z by 1/z. 

REMARK 6. If B is connected, F maps U conformally onto D. An equa

tion related to (5) for polynomials orthogonal with respect to a measure on a 

rectifîable Jordan curve is proved in Szegö [10, p. 372] , (see also Smirnoff [9]). 

However, as noted earlier, B may contain an infinite number of Jordan curves 

or be disconnected. 

REMARK 7. It follows from Brolin's construction of u that the poles of 

our Padé approximants become dense on B in the limit as nk —• °°. This is of 

considerable interest to Padé approximant theory because cases where one has 

total pole control for an infinite subsequence are desirable but not common: ex

amples are usually restricted to measures which are supported on the real line. 

The special case when T is quadratic has been investigated by Barnsley 

et al [1] and Bessis et al [3] . 

Further considerations of the electrical properties, as well as more detailed 

results concerning the orthogonal polynomials and the three term recurrence re

lation satisfied by them when the measure is supported on the real line, are 

given in Barnsley et al [2] . 
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