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We consider the Mellin transform of the correlation integrals and show that the divergence abscissa is the correlation dimension.
The analytic structure of the Mellin transform is explicitly described for some Julia and Cantor sets, The existence of oscillations
in the correlation integral for the Cantor sets is proved. Extensions of the results to the order d correlation integrals are discussed.

The analysis of the geometrical properties of
attractors for the flow of differential equations and
maps or fractals of any physical origin invariably
involves the computation of a generalized dimen-
sion [1].

The Hausdorff dimension D in general escapes
numerical investigations while bounds to it like the
fractal and the correlation dimensions [2] can be
computed even though the algorithms are always
quite time consuming [3].

The correlation dimension » is defined as the
exponent of the power law behavior C(/) ~/* of the
correlation function: deviations from linearity in the
log C(1) versus log / were observed and can seriously
affect the extrapolation procedure [4].

In this letter we first show how the correlation
integral is related to the “energy integral”, widely used
in the mathematical literature [ 5], by a Mellin trans-
form [6] and that the correlation dimension corre-
sponds to the abscissa of divergence of the Mellin
transform. For some simple models we have worked
out the exact analytic structure of the Mellin trans-
form and we find that for the analytic curves we con-
sidered it has only poles on the real axis so that
C(l)~{ as I-0. For fractal sets like the Cantor with
one scale 4, there is a sequence of poles on a line par-
allel to the imaginary axis whose abscissa is precisely
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v. As a consequence C(/) behaves like /* but exhibits
oscillations.

The Mellin transform of the “order d correlation
integrals” ([7,8] defines the “order d energy inte-
grals” which have the same singularity structure as
the ordinary energy integrals with a residue at the first
pole on the real axis which is proportional to
exp(—dK,), asymptotically in d, where X, is the sec-
ond Renyi entropy [7] (a lower bound to the Kol-
mogorov entropy).

Let EcR" be a compact set and u a probability
measure with support on E; the energy integral is
defined by

x
D(a; )= I ;“‘%‘_):E_ﬁ‘(a_yl (1)
ExE Y
where | | denotes the euclidean norm in R*. The

equilibrium measure u., (x; ) is the one which min-
imizes @ for a given . The Hausdorff dimension D
is defined by

D=inf{a: P(a, pheq) =00} . (2)

For any other measure we define a divergence
abscissa

v(u:ix:f{a: (o, p) =0} 3)

and one can show that
345
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) <D. (4) [0, 11-[0, ¢/2], ¢> 2,
The correlation integral is defined by T(x)=¢gx, 0<x<}, (10)
k= [ U-1z-p) dutx) duty) (5) =q(1-x), j<x<l,

ExE

and C(; u) is a positive Stieltjes measure with supprt
on [0, 4] where J is the diameter of the set. The Mel-
lin transform of C(/; u) gives the energy integral

J
®(es =1 dC(tp) (6)
0

The correlation dimension defined by Procaccia is
the limit (if it exists)

lim 98.CG A N
1-0

When the limit (7) exists it is, under suitable condi-
tions, equal to ¥(u) defined by (3) which turns out
to be the correlation dimension.

For a certain number of models &(«; 1) has been
computed exactly. We have considered the Julia sets
for the quadratic map z’' =z2—p with p=0 (circle)
and p=2 (segment) with u equal to the balanced
measure [6] *. For p=0 u is uniform and

_ Ir'il—-o)
P(a)= —_—4_F2(1—§a) ) (8)
while for p=2 we have

1 dx

d#(x)=;m,
and

(Ta-a) Y
o= i) )

In both cases () appears to be meromorphic, the
lowest pole is at =1 and the correlation integral can
be exactly computed: in the first case it vanishes as /,
in the second as —/ log / (which makes the extrapo-
lation very hard). The difference is that the pole is
simple in the former case, double in the second.

The second type of model we consider, still a
repeller, is the one-scale Cantor set; let T be the map

¥ In general the equilibrium measure and the balanced measure
are not the same.
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and denote by T !(x), T3 '(x) the two inverses
defined on [0, ¢/2]

Tr'(x)=ix, T3'(x)=1-Ax, A=l/q. (11)

On the Cantor set E=lim,, ,,. T _,(I), where 1 is any
interval in [0, 1], we can define an invariant bal-
anced measure according to Zygmund [9]. It can then
be shown, exploiting the balance properties of the
measure, that

P(a)=(1-41"")""R(®), (12)

where R(c) is an entire function of «. As a conse-
quence @(«) is meromorphic with poles at

log2+. 2R

i n=0, =1, ... (13)
logg logg

A=

The correlation integral turns out to be

C( l) —_ Ilog 2/og ¢

® log ! )
X Y B, cos(2nn——+ n 14
,Z‘o logg A (14)

and exhibits oscillations since the B, which are pro-
portional to the residue of the poles, can be shown to
be non-zero at least for n< ¢ log ¢. These results can
also be extended to the Cantor with s scales.

When no analytic results are available one can use
a numerical procedure to compute @(a) and to
approximate its singularities if p is the “physical
measure” (Sinai-Bowen-Ruelle measure) p,, [1]
such that

N
[0) ditnty =1im 5, 3 AT"50)

JeC(R"), (15)

where X, is any point in the basin of attraction of E
(up to a set of zero Lebesgue measure). In such a
case both @(a; up,) and C(J; py can be approxi-
mated by a finite sum and are still related by the Mel-
lin transform. A rational interpolation of Padé¢ type
can then be used to extract the singularities of



Volume 119, number 7 PHYSICS LETTERS A

$ January 1987
Table 1 -

Smallest real pole, with non-vanishing residue, of the { m/n] Padé interpolations to ®(«) for the Hénon map. N iterations are considered
with initial point xo= (0.1, 0.1).

N [3/2] [3/3] [4/3] [4/4] [5/4] (5/5]
2048 1.203 1211 1.228 1.215 1.227 1.222
8192 1.196 1.200 1.200 1.200 1.200 1.201

32768 1.196 1.200 1.199 1.200 1.201 1.200

2 -1 N-1 .
Y ¥ WTrx-Tix|~=.

P(a; o3 N) =N(N-— 1)éZ0 j=kd1
(16)

For the Hénon map, for which the existence of a
physical measure is only conjectured, the values of
v(a,,) obtained with the interpolation of ®(1/n, g
N) for 1 €n<13, N<2!% with the {[m/m], [m—1/m]
Padé approximants for m<5, see table 1, are stable
and in good agreement with the values quoted in the
literature (we remark that the singularities of @(a)o®
are the same as P(«); the independence on o was
numerically checked and suggests that the results are
reliable).

Finally we observe that the “order 4 energy
integral”

o= [ it w@ dy),  an
EXE

where
dot 12

be-ra=( T 175 Tor?) a8)

is the Mellin transform of the “order 4 correlation
integral” C,(c; p) defined by (5) where | | is
replaced by | |

The analytic structure of @ (cx; ) is expected to
be the same as P(«; 4) and the residue at the pole
a=v to be given by ve~“*? asymptotically in d.

For the Cantor set with one scale we were able to
prove that

d—1

D,(a) =2—dl_—l( ) /12")

k=0

P(a)+S(ax) , (19)

where S(«) is an entire function of «a so that the res-
idue at a=v=Ilog 2/log q is

1—22@-D\""
r,,=27(——1—_—17——) g~dlos2 (20)

r being the residue at the pole a=» of ®(a). These
results do extend to the Cantor with two scales. For
some hyperbolic totally disconnected Julia sets
(Fatou’s dust) a result similar to (20) can be
obtained.

Noted added. For the Cantor set with s scales 4, ...
4; the Hausdorff dimension D, given by
AP+ ... +A2=1, is obtained for a balanced mesure
with weights p;= 47 and the second Renyi entropy can
be explicitly computed and reads
K= ~log(A3P+...+3P).

We wish to thank J.-D. Fournier for useful
discussions.
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