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The Mellin transform of the correlation integral is introduced and proved to be equal to the ener-

gy integral whose divergence abscissa is a lower bound to the Hausdorff dimension. For some Julia
sets exact results are obtained. For the linear Cantor sets on the real axis it is shown that the energy
integral is meromorphic, and the real pole, determining the divergence abscissa, has a sequence of
satellite poles equally spaced on a line parallel to the imaginary axis, which explain the oscillations
observed in numerical calculations of the correlation integral. The order-d generalized energy in-

tegrals are introduced as Mellin transforms of the order-d correlation integrals and for the Cantor
sets they are proved to have the same singularities as the ordinary energy integrals. Letting rd be

the residue of the real pole corresponding to the divergence abscissa it is proved that
limd „(—d '1nrd) is the second Renyi entropy. Some numerical results obtained for the energy in-

tegrals are discussed.

I. INTRODUCTION

After the recent rise of interest in the chaotic behavior
of deterministic systems, several investigations were de-
voted to understanding the geometrical properties of
strange attractors (or repellers). ' The generalized dimen-
sions and the entropies were usua11y considered and nu-
merical methods to compute them have been developed.
In the mathematical literature the theory of dimensions is
developed using the "energy integrals" ' while the "corre-
lation integrals" are introduced in the physical literature.
In this work we show that the Mellin transform, which
proved to be fruitful in the analysis of the Julia sets, is
the bridge between correlation and energy integrals.

The analytic structure of the energy integrals is investi-
gated and for a class of Cantor sets it is rigorously
described. For the Cantor sets with a single scale A, or s
scales k&, A,2, . . . , A,, the energy integra1 is meromorphic
and the pole on the real axis corresponding to the correla-
tion dimension is followed by equally spaced satellites sit-
ting on a line parallel to the imaginary axis. As a conse-
quence one can prove that the correlation integral, defined
according to Grassberger and Procaccia, has infinitely
many oscillation s. Numerical evidence for such a
phenomenon was given.

For any integer d & 2 we define the "order-d energy in-
tegrals" as the Mellin transform of the "order-d correla-
tion integrals" considered by Grassberger and Procaccia '

and Takens. For the Cantor set their analytic structure is
the same as for d =2, and for d~ oo it is shown that the
residue at the pole corresponding to the correlation di-
mension determines the entropy Kq (second Renyi entro-

For two simple Julia sets' of the quadratic map

z'=z —p (the circle for p =0 and the segment for p&0),
the energy integral for the balanced measure proves to be
a meromorphic function with all the poles on the real
axis. The satellites of the dominant pole, which make the
correlation integral oscillate, seem to be related to fractal
sets. '

For other dynamical systems numerical results can be
obtained using the physical (invariant, ergodic) measure
defined by the time averages. The numerical detection of
the dominant pole and its residue is easily carried out us-
ing rational interpolations to the energy integrals, and, for
the Henon map, the comparison with the results obtained
from the correlation integrals is favorable.

The plan of the work is the following: in Sec. II we in-
troduce the Mellin transforms and quote the basic proper-
ties of the correlation integrals, in Sec. III we analyze the
analytic structure of the Cantor sets, in Sec. IV the gen-
eralized order-d energy integrals are defined as Mellin
transforms of the corresponding order-d correlation in-
tegrals and explicit results are derived for the Cantor sets.
Finally, in Sec. V the order-d energy integrals for the Ju-
lia sets are analyzed and numerical results are discussed
for the attractor of the Henon map. "

II. ENERGY AND CORRELATION INTEGRALS

e.; =diam(B;) & e (2.1)

We recall the definitions of the Hausdorff and fractal
dimensions D and F of a compact set and quote a
theorem on the energy integrals which allows bounds to
be obtained. The definitions of D and F are purely topo-
logical: Let [B; ] be a covering of a compact set E H)R"
with
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and let H(e;a) be v(p) &D . (2.10)

H(e;a)= inf ge;, a&0 (2.2)

where the infimum is on all possible coverings. The limit
for e~O diverges for a & D

0, a)D
H(a)= lim H(e;a)= '

~~o
'

(x) ) cx &D. (2.3)

The numerical computation of D is manifestly impossible;
moreover, if we choose a covering with spheres of radius e
and let N (e) be the least number for a covering of E, then
if we define the fractal dimension

InN(e)F= lim sup~-0 in@
(2.4)

it can be easily shown that, since H(e;a) &N(e)e and
N(e) & e '~+ for any p, provided that e is small enough,
taking the limit @~0,we must have

D&F . (2.5)

The fractal dimension or capacity F can be numerically
computed even though the computing time increases rap-
idly with n. For the one-dimensional expanding sets and
for the hyperbolic Julia sets it has been proved that
F=D ]2

Lower bounds to D can be obtained if we introduce a
probability measure. Let p be a normalized measure with
support in E and define the energy integral 4(a) by

dp(x )dp (y)4 a;p = (2.6)

4(a) =2I (1 —a) sin J p ~

'
~

o(p) dp .

(2.7)

The equilibrium measure p,q(a) is defined for any a as
the measure corresponding to the infimum of @(a;p,).
Then the following result is true (see corollary 6.5 of Ref.
3).

D = inf [a:&[a;p,q(a)] = co ] . (2.8)

where
~ ~ ~ ~

denotes any norm in R". This is an obvious
generalization of the electrostatic energy. Another useful
expression of the energy integral involves the Fourier
transform o(p) of the measure and for EC:R explicitly
reads (see Appendix A)

(2.12)

According to (2.11) we recall that C(1) is a nondecreasing
function of l and dC(l) is a Stieltjes measure. The corre-
lation dimension v introduced by Grassberger and Procac-
cia is the limit (when it exists)

lnC (l)v= lim
0 lnl

(2.13)

If C(1)=l f(l) with v&0, lnf (l)=o( 1nl), then the above
limit exists. If we further assume that
f (1)=[ In(h/I)] g(l) where m &0 with g(l), g'(I) bound-
ed in [O,e] and f(l), f'(1) bounded in [e,b, ] for some
e & 0, then the lowest value of a for which N(a) diverges
is also v.

For some models, where the energy integral is mero-
morphic with a pole in v (divergence abscissa), we can
take the Mellin antitransform of &P(a) and so we deter-
rnine the correlation integral up to a set of zero Lebesgue
measure; it was found to be of the form quoted above.

The energy integral @(a) can be taken as the starting
point to obtain bounds to the Hausdorff dimension. This
is achieved by analyzing the singularities of N(a): ac-
cording to (2.6) this function is holomorphic in Rea &0
and there it is bounded by

~

@(a)
~

& b, ' . Among the
singularities of N(a) located on the real positive axis, the
one nearest to the origin is specially relevant because it de-
fines the divergence abscissa of 4(a) and the correspond-
ing lower bound to the Hausdorff dimension.

In all the models explicitly solved, see Sec. III, C&(a)
was found to be meromorphic and the structure of C(l)
could be determined. Here we simply recall that the mea-
sures dC(l) whose Mellin transforms have isolated poles
are well known. For a real simple pole we have

We remark that since all the norms in R" are equivalent,
one can easily show that v(p) is independent of the norm,
while the analytic structure in a can depend on it. For
the maps in R" with n )2 the Euclidean norm is used as
customary in the physical literature.

We can easily prove that N(a; p ) is the Mellin
transform of the correlation integral C(l;p) defined by

C(1;p, )= f 5(l —~~x —y~~)dp, (x)dp(y) . (2.11)

Indeed letting 6 denote the diameter of E and dropping
the reference to p in C and 4 we have

l dC l = l 6l —x —y dpxdpy
= J ~~x —

y~~ dp(x)dp(y)=N(a) .

v(p)= inf [aA&(a;p)= oo ] (2.9)

As a consequency D is the least value of o. for which the
energy integral computed with the equilibrium measures
diverges. If we do not know the equilibrium measure and
we replace in (2.8) p,„with any other measure p, the new
quantity

g —a
4(a) = 1 1~C(l) =-

v

4(a) =
(v —a)

l~C(l) =

for a real multiple pole

k
m —] k

ln—
k=O k. l

bounds D from below for a pair of the complex conjugate poles
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4(a) = +c.c.~C(l)
v+ig —a

l Bcos n ln —+P

Since T maps [O, l] into disjoint intervals of [0,1] and it
is contractive with contraction rate k, the Cantor set E is
given by the preimages of I= [0,1],

E= lim T "(I)= 8 U Tk "(I) . (3.3)
where B=(v +zlz) '~ and tanp= —zl/v. Complex mul-

tiple poles lead to analog expressions for C(l); given any
superposition of poles the corresponding C(l) can also be
immediately written.

For the regular sets with continuous measures we have
examined, 4(a) has only real poles while for a fractal like
the Cantor set 4(a) has poles on lines parallel to the
imaginary axis: in the former case f(l) is analytic in

[0,6], in the second f ( l) is a periodic function of In(b, /1)
and C(l) exhibits damped oscillations.

III. THE CANTOR SETS

k =1,2, . . . , 2"

The Cantor set can also be generated by the maps

Tk '(x)=ok(1 —A, )+M, (3.4)

with eo ——0, e1 ——1, then E is immediately found as the clo-
sure of the set of preimages of zero which read

x =e, (1 —A, )+ezk(1 —A. )+ . +E„A"',(1 —A, ) . (3.5)

A Stieltjes invariant measure dp is obtained, according to
Zygmund, ' as the weak limit of the following sequence of
measures dp„(x). Letting

A. The Cantor set with one scale

qx, 0&x & —,

T(x)= '

q(1 —x), —, (x (1, (3.1)

We first consider a Cantor set E C: [0, 1] with a single
ratio of dissection A. =1/q with q &2. Let T denote the
map [0,1]~[O,q/2]

2fl

T "([0,1])= U Ik,
k=1

where Ik are ordered disjoint intervals of equal length A.",
we consider a continuous nondecreasing function p„(x)
constant for x EII„ linear for x GIk with slope (2A, )

and values (k —1)2 ",k2 " at the ends of Ik. For any in-
terval (x&,xz ) C:Ik we define

X~

p„(xi,xz)—:f dp„(x)
and by T& '(x), Tz (x) the two inverses on

[0,1]C [O,q/2]
=p, „(xz ) —P„(xi ) = —(2X) "(xz —x

& ), (3.6)

T, '(x)=M, Tz '(x)=1 —M . (3.2) and observing that the preimages of (x&,xz) are disjoint

lz„+ &( T '( ix, x))z=l„zi+( T& ( &x, x)z) P+„+i( T'z(x &,xz) )

=2k(2k) '"+"(xz—x))=p„(x),xz) . (3.7)

Moreover, one obviously has

lz+(T, ( , , xz)x)=@+((Tz (x, ,xz))—1 —1

1= —,P„(, z), (3.8)

(3.9)

The Fourier transform cr(p) of the measure is known and
reads'

+ oo 2

~
a(p)

~

'= f e'&" dp(x)

oo

cos —
A, "(1—A, )

k=1
(3.10)

In order to determine the analytic structure of 4(a) one

and in the limit n~oc one obtains a measure p which is
invariant and balanced (if for a generic subset A of [0,1)
a suitable covering is considered):

p( )A=@(T 'A), p(T, A)=p(Tz A)= —,p(A) .

can exploit the invariance and balance properties of the
measure which imply

1 1f f(x)dp(x)= —,
' f f(T, '(x))dp(x)

1

T2 x dp x . 311

Using this invariance on N(a) we obtain

2

4(a) = —,
' g f ~

T '(x) —Tk '(y)
~

dp(x)dp(y)
j,k=1

X —P dP X dP g

1f ~

1 —A.x —A.y ~
dp(x)diaz(y)

2
4(a)+s(a),

where s(a) is an entire function of a because
I —M —Xy) 1 —2A, )0. As a consequence
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4(a) = 1—
2

s(a), (3.12)
we obtain

D D D D
p1 ——A, 1, p2 ——A,2, k1+ A@2 1 o (3.20)

which shows that N(a) is meromorphic with poles at As a consequence, all the singularities of @(a) are given

ln2 . 2mn

ink ink,

.ln2 . 2~n+i, n =0, +1, . . . .
lnq lnq

'
by

g2D —a g2D —a (3.21)

(3.13)

QO lnlC (1)=1'" '"~ g B„cos 2~n +P„
n=0 lnq

(3.14)

B. The Cantor set with two scales

We consider the mapping

T(x)= ~

X 0&x &

1 —x (x &1
(3.15)

with A, »0, A.2~0, X1+A,2 & 1 and its inverses

T, '(x)=X1x, T2 '(x)=1—A2x . (3.16)

The Cantor set is the limit set of the preimages of any
closed subinterval of [0,1], and we consider an invariant
probability measure p such that

1 1f f(x)dp(x) =p, f f(T1 '(x))d1u(x)
1

+p2 f f(T2 '(x))dp(x), (3.17)

with p1+p2 ——1. The existence of such a measure has
been proved in Ref. 14. Using the invariance of the mea-
sure on C&(a) we obtain

4(a) =(P12( +P2A2 )N(a)

+2plp2 f, l

1 —~1x —~2y
l

d1M(x)d1 (y)

(3.18)

and since A, 1x+A,2y & X1+A2 & 1 the last integral in (3.18)
is an entire function of a and the singularities of N(a) are
determined by

The real pole gives the Hausdorff dimension D = ln2/lnq
(since it is equal to the fractal dimension) and is followed
by a sequence of satellites. The residue of the first poles
(for q )4) can be proved to be nonzero (see Appendix B)
and the correlation integral exhibits oscillations

h(tub) = —p1 lnp1 —p21np2,

A, (pb)= f ln
l
T'(z)

l drab ———p1 in'. 1
—p21nk2 .

C. The Cantor set with s scales

We consider a mapping T(x) defined in [0,1] with s
inverses defined by

Tz (x)=az+kjx, j=1,2, . . . , s (3.22)

with 0&a1&a1+k1- « a, &a, +A,, &1 which im-
plies k1+A.2+ . +A,, &1. Letting the Cantor set E be
defined by F.= lim„T "(I) for IC:[0,1] and p, be a
measure such that

S

f f(x)dp(x)= g pi f f(Ti x)dp(x), . (3.23)
j=1

with g.pj =1 it is easy to show that the singularities of
C&(a) are given by

The zeros of (3.21) are necessarily isolated, because the
left-hand side (lhs) is an entire function of a. Therefore
4(a) is meromorphic. Furthermore, one proves easily
that the zeros remain inside a finite strip parallel to the
imaginary axis.

It is important to note that the Cantor sets with two or
more scales (see below) satisfy the open set condition of
the theorem (8.6) in Ref. 3, so the value of D which max-
imizes (3.19) is exactly the Hausdorff dimension of the set
E. Then it is not surprising that if we use the balanced
measure with probabilities p1 ——A.

~
and p2 ——A.z to com-

pute the energy integral, its (real) abscissa of divergence is
just the Hausdorff dimension of the set. It can be shown
that this measure is the maximal pressure measure for the
function D ln

l
T—'(z) l, i.e., the unique ergodic measure

which maximizes the expression sup I h (p)
D f ln —

l

T'(z)
l
dp] =0 where h(1u) is the Kolmogorov

entropy of p and the supremum is taken on the set of T-
invariant probability measures on the Cantor set. This
follows because the Cantor set is a mixing repeller' and
the Kolmogorov entropy and the Lyapunov exponent
A, (pb) of a balanced measure pb with weights p1,p2 read'

G(pl p2 a) p l~1 +p2~2 (3.19) y g2D —a (3.24)

under the constraint p1+p2 ——1.
For real positive a Eq. (3.19) has only one solution:

indeed, G is a monotone increasing function of cx with6~+ 0o for a~+ ca and G(p1,p2, 0)=p1+p2 & 1. Let
v be the real positive solution of (3.19): since v=v(p1, p2)
we maximize it-with respect to p1 and p2. Letting D be
the maximum of v and observing that it is achieved when

a
G(p1, 1 —p, ,D)=0,

~P1

where a =D is the unique real positive solution of (3.24).

IV. THE GENERALIZED ENERGY INTEGRALS

The energy integral @(a) is defined as the mean of the
distance

l
lx —y l l

of two points of a set F. raised to the
power —o, ; the generalized energy integral of order d has
the same definition where the distance of two points is re-
placed by the distance llx —ylld of two pieces of orbit
formed by d consecutive points.
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d —1

j=0

1/2

(4.1)

(4.2)

cd(1)= f &(1 —
I
lx y I ld

—)dp(x)de(y»

then dCd(l) is a positive Stieltjes measure and 4d(a) is its
Mellin transform

4d(a)= f 1 dCd(l) . (4.3)

Labeling the order-d energy integral by Nd(a) we write

@d(a)= f, , llx —y ld dl (x)dp(y) .

Just as in Sec. II it is obvious to check that letting Cd(l)
be the generalized correlation integral

According to Csrassberger and Procaccia, " if C(1) vanishes
like 1 then Cd(l) also does, and if Cd(l)=l'fd(l) for the
same v independent of d with fd(l) regular at 1 =0, then—dKp2

fd(0)=e for d~+ oo where E2 is the second Renyi
entropy, defined in Sec. (4.1) of Ref. 1.

If fd(l) is analytic for 1 =0 then the smallest real pole—dK2of (I)d(a) is at a =v and the residue behaves as ve for
d~op. The structure of 4d(a) can be analyzed in the
case of the Cantor sets: the singularities of &Pd(a) are the
same as for @(a) and consequently fd(l) has not a finite
limit as l~O even though it is bounded. However, the
residue at the smallest real pole should still behave as—dK~
ve ' for d~+ oo.

For the Cantor set with a single scale using the invari-
ance with respect to the balanced measure, we obtain

@d(a)=-' f (~ lx —y I'+ Ix —y I'+
I

Tx —Ty I'+ +
I

T' 'x —T" 'y I') "dv(x)dl (y)

+ —,
'

1 —Ax+y + x —y + Tx —Ty + + ~T" x —T y dpxdpy
where the last integral defines an integer function of a since 1 —A, (x +y) is strictly positive.

Using the invariance with respect to the measure k times we have

I (l 2k+f2(k —))+. . . +g2+ 1)
I

21

+
I

Tx —Ty
I

+ +
I

T ' "x —T ' "y
I ]j dp(x)dp(y)+Ek(a),

where Ek(a) is an entire function of a, and finally for k =d —1

d&d(a) =
d —1

g2k
2 k 0

—a/2

+(a)+E(a), (4.4)

where again e(a) is an entire function.
As a consequence if r is the residue of &P(a) at the pole a =D, the corresponding pole of @d(a) has a residue rd which

reads

d2d

rd 2r
1 —A.

e
—d 1n2 (4.5)

The law of convergence of ( —lnrd ) Id is in this case explicit.
In the case of a Cantor set with two scales, still using d —1 times the invariance of the measure we obtain

&bd (a) =N(a)
2

Pk) Pkd )
(~k) ~kd )

+~2 ~kd )
+ + ~kd + ) +E(a)

kl, . . . , k~ l
——1

Letting v be the real positive pole of N(a) and r be its residue, the corresponding residue rd of the same pole of Nd(a) is
given by

rd r
k I, k2' ', kg

(Pk)Pk2 Pkd )) l~k) ~kd )+~2 ~kd )+ +~kd )+ l (4.6)

prom (4.6) we obtain an upper bound by replacing the square brackets with 1 and a lower bound by replacing every term
in the square brackets with 1.

As a consequence we write if r & 0 (when r & 0 the bounds are intercharged)

rd
k I,k2', kd —I

(Pk,P'k Pk ) & rd & r
kl, k2, . . . , k~ l

——1

(Pk, Pk, Pkd
2 (4.7)
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TABLE I. First singularity of the Pade interpolations to N( —1/k ) for the Henon map started at the
point xo = (0.1,0.1).

2"=2048
2' =8192
2' =32768

[3/2]

1.203
1.196
1.196

[3/3]

1.211
1.200
1.200

[4/3]

1.228
1.200
1.199

[4/4]

1.215
1.200
1.200

[5/4]

1.227
1.200
1.201

[5/5]

1.222
1.201
1.200

and observing that the sums are equal to (p ~ +pq )
' the

limit —(1/d) lnrd for d~+ oo can be computed and
reads

Kp ———ln(p, +p~) .2 2 (4.&)

The procedure is easily generalized to the Cantor sets with
s scales and the result for the second Renyi entropy reads

K2 = —»(p i+p2+ +p. ) . (4.9)

We have shown' that for hyperbolic polynomial totally
disconnected Julia sets of degree n, the generalized energy
integral allows one to compute the entropy (in this case
second Renyi entropy =Kolmogorov entropy = inn) with
respect to the balanced measure (Brolin measure) if the or-
dinary energy integral has a pole at the divergence abscis-
sa with residue different from zero.

In Ref. 14 it was shown that the Cantor set with s
scales is isomorphic to the one-sided (p~,p2, . . . ,p, ) shift,
where p&,p2, . . . ,p, are the weights of the balanced mea-
sure. So it is easy to compute the Kolmogorov entropy
K~(p), which has the expression

K ) (p ) = —g p; ln(p; ) .
i=1

(4.10)

V. NUMERICAL RESULTS

Even though the results obtained for the Cantor sets
can suggest the analytic structure to be expected for N(a)
when dealing with attractors (or repellers) with a simple
scaling law, if one really wants to compute the Haussdorff
dimension (or a lower bound to it) for a given system nu-
merical methods have to be used. The location of the

If we now consider the second Renyi entropy, first of all it
is easy to prove that K2(K&, and then, adapting the
theorem (4.1) in Ref. 17, one can show that K2 is isomor-
phism invariant.

It remains to compute the Kz entropy of the one-sided
(p&,p2, . . . ,p, ) shift. But, following again Ref. 17 (Sec. 6
of Chap. IV), it is easy to show that Kz is given by (4.9).
The topological entropy of the s-Cantor set is lns and this
value is the Kolmogorov entropy and the second Renyi
entropy of the balanced measure with equal weights
p;=1/s, i =1,2, . . . , s.

I (1—a)C&a =
I [1—(a/2)]

(5.2)

as shown in Appendix A. In the first case N(a) =2 N(a)
is Stieltjes and the method works remarkably well; in the
second, due to the double poles, the convergence is much
slower.

The method was tested on the Henon map x'= Tx de-
fined by

x'=y + 1 —1.4x,
y'=0. 3x.

To carry on the computations we assumed that the Henon
map admits the "physical measure" p~h (Sinai-Bowen-
Ruelle measure), ' that is an invariant ergodic measure
with support on the attractor E C 8" and such that

J f dp ~ ——lim —g f(T"xo), fC 4(R")x-~ X„
where xo is any point in the basin of attraction of F. (up
to a set of zero Lebesgue measure).

We recall that a class of very similar maps (Lozi-
Misiurewicz) has physical measure. So we have

smallest real pole of N(a) or &Pd(a) can be found by inter-
polating with rational approximation the function com-
puted at a sequence of negative values of a. The best
choice was almost invariably found to be a= —1/n for
n =1,2, . . . . Since N(a) behaves as b, it is convenient
to interpolate @(a)=6 4&(a).

Indeed, as a stability check of the position of the small-
est real pole, one should interpolate r +(a) and vary r
around ~=A. The results should not depend on ~ and
consequently the variation with r (the computational time
is absolutely negligible) can allow to estimate the error.

The rational interpolations of the [n /n] type were first
checked on two explicit examples given by the Julia sets
for the quadratic map z'=z (circle) for which

I (1 —a)
d&(a) =—

I [1—(a/2)]
and the z' =z —2 (interval [—2, 2] ) for which

2

TABLE II. The same for W( —1/k)b ' ", 6=2.58.

2"=2048
2' =8192
2' =32768

[3/2]

1.229
1.220
1.220

[3/3]

1.213
1.195
1.194

[4/3]

1.220
1.199
1.198

[4/4]

1.218
1.187
1.195

[5/4]

1.220
1.199
1.200

[5/5]

1.223
1 ~ 199
1.195
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(5.4)
TABLE IV. Poles and residues of the Pade interpolations to

—N( —k)A "for the Julia set z'=z, 6=2.

After computing an orbit on the attractor of length N the
N(a) is evaluated at a= —1/n for n &10. For a fixed
value of N the smallest real pole a =v obtained for several
[mlm] and [m +1/m] rational interpolations of Pade
type with m =3,4, 5 is quite stable. The results do not
change if one scales @(a) according to r N(a) as one
should expect since the singularity structure is not altered.

This transformation is useful to separate the spurious
singularities due to numerical noise (such as poles with
large real part and nonnegligible residue) from the real
singularities: the former are extremely sensitive to ~ while
the latter are stable. The optimal choice seems to be ~
close to 6, the diameter of the set. The accuracy increases
with N but with %=2"=2048 it is already of 1%. In
Tables I and II the results obtained for various approxi-
mants are reported for the Henon attractor.

A more detailed investigation of the singularity struc-
ture of &P(a) could be made if the coefficients of @(a)
were exactly known. In Tables III and IV we exhibit the
poles and residues of the first Pade interpolations of the
sequences 4( —1/n)6 '/" and 4( —n)b, " for the Julia
set z'=z where 6=2.

In the first case one observes a very fast convergence to
the first singularities while in the second case the conver-
gence is much slower, an accuracy =10 on the first
pole being reached with the [8/8] rather than [3/3] ap-
proximant. Nevertheless, there are sets like the Cantor

Poles

5.880
1.043

22.74
4.293
1.016

15.02
3.812
1.008

48.13
10.07
3.425
1.003

87.23
19.28
7.082
3.141
1.000 4

[3/2]

[3/3]

[4/3]

[4/4]

[5/5]

Residues

1.195
0.705

2.69
0.757
0.665

1 ~ 70
0.619
0.652

3.76
1.02
0.496
0.643

4.96
1 ~ 31
0.616
0.390
0.638

Poles

3.724
1.000 8

[3/2]

Residues

0.700
0.639

TABLE III. Poles and residues of the Pade interpolations to
—N( —1/k)5 ' " for the Julia set z'=z', 6=2.

and the real Julia sets for which the moments of the mea-
sure dp can be exactly computed by recurrence and conse-
quently the 4(2n) are also exactly known (see Appendix
C). In this case accurate results can be obtained if one
computes sufficiently high approximants using a suitably
large number of significant digits. When the singularities
are double poles as in 5.2 the method still works but the
convergence slows down.

11.22
3.190
1.000 06

7.924
3.072
1.000 007

[3/3]

[4/3]

[4/4]

1.66
0.439
0.637

0.989
0.372
0,637

APPENDIX A

In this Appendix we sketch a derivation of formula
(2.7) which relates the energy integral 4(a) to the Fourier
transform of the measure. We define a kernel K(p) ac-
cording to

K(p)=(2~) " ' f e' "~~x~~ dx,

21.75
6.072
3.017
1.000 000 4

2.31
0.553
0.333
0.637

and the Fourier transform of dp, (x) as

o'(p) =(2vr) "/ f e'&'"dp(x), (A2)

37.42
10.16
5.200
3.000 8
1.000 000 001

[5/5]
3.05
0.734
0.319
0.319
0.637

@(a)=(2')" J K(p)
~

cr(p)
~

dp . (A3)

If n =1 then

where the support of the measure is a subset E of R". It
is not hard to prove that the energy integral is given by
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OO

Jt(p) = — x cos(px ) dx
v'Z~

&2m- 2
—I (1—a)sin Ip I

(A4)

APPENDIX B

The residue of @(a) at a pole

ln2 . 2m.
CXn = + if/

lnq lnq
(B1)

dp(x) = dx

4 —x
—2&% &2. (A5)

in agreement with (2.7).
Using these results we compute 4(a) for the Julia set of

the quadratic map z'=z —2 for which

is given by

Pn
2k" 1 —Af I q —x —y I

"dV(x)ds (y) .
ink "

lnq

(B2)

Indeed, inserting in (2.7),

V 2rr f cos(px )
d

1

~ ~4
where Jo denotes the Bessel function, we find

@(a)=—I (1 —a) sin f p 'Jo(2p)dp
7T 0

1 . aa I (1—a)I"(a/2)=—sin
2 I [1—(a/2)]

(A6)

and the residue is manifestly nonvanishing if

2mn ) rr(2n —1),In(q —2)
lnq

(B3)

As a consequence

1Imr„=— )
—In2/ Inq

lnq

)& sin 2~n dp, (x)dp(y),
ln(q —x —y)

lnq

I (1—a)
I [1—(a/2) ]

2

(A7)

4(a)= f Ie ' —e 'I dH, d8

—a

where formula 6.574.2 (p. 692) of Gradshteyn' and the
product formula for I functions I (x)1 (1—x)
=sr/sin(mx ) have been used.

Finally we sketch the computation of @(a) for the cir-
cle with uniform measure, that is, the Julia set of the map
Z'=Z'.

since the argument of the sine varies between (2n —1)m
and 2vrn Cond. ition (B4) is equivalent to

1n& ——
2

lnq

2
ln 1 ——

(B5)

1

2
lnq

2
ln 1 ——

q lnq

8
(B6)

and condition (B4) is surely satisfied for

Since —ln(1 —x) is a convex function we have
—ln(1 —x) (2x ln2 for 0 (x (—,', and we have

2
dHidOp . (AS) q lnq

8
(B7)

Changing the variables according to 0&
——v+u, 02 ——v —u

we obtain

@(a)=
z f (rr

I
u

I
)

I
sinu

I

—du

For q =4 only the first residue is proved to be nonvanish-
ing and the number increases with q. For the ternary
Cantor only numerical evidence for the residues to be
nonzero can be given.

2 +' I (1 —a)
u sin u du=

I [1—(a/2)]
according to formula 3.821.1 (p. 446) of Gradshteyn.

For comparison with (A7) we compute 4(a) for a uni-
form measure on [—2, 2]. The map T under which such a
set is invariant is given by (3.1) with q =2. The uniform
measure is invariant and ergodic with respect to T. In
this case

APPENDIX C

When the moments pk of the measure dp are known
the sequence N(2n) can be computed recursively. Letting

pk = f x"dp(x), (Cl)

when E| R is a one-dimensional set, one has

2 2@(~)=,f dx f dy Ix —y I

=2- 2n 2n
@(2n)= g ( —1) ~ pkpq„

k=o
(C2)

The divergence abscissa is still 1 as for (A7) since the set
is the same, but the analytic structure is very different.

For the Cantor set with one scale the balance property of
the measure one allows to write a recurrence for the pk.
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Using (3.11) we have G(z) = f = g pkz",
k=o

(C5)

PI = —, fo dP(x)+ & f
k

1 —— dp(x),
q

(C3) where a = —,[1+(1+4g)'~ ] and satisfies the functional
relation

which leads to the recurrence G(z)= 1
G

1 —qz 1 —qz
2 (C6)

1 1
pk ———1—

2q

( 1)k

2q

—1
k —1

1=0

'k

Pl (C4)

initialized by po ——1, p ~
———, . For the Julia set of

z'=z —q with q )2 the generating function of the mo-
ments with respect to the balanced measure is

Replacing (C5) into (C6) we find pzk+ ~

——0 and

k

k
k —21

P2k ——~ q k P21
l=o

initialized by p, =1,p, =q.
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