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Abstract

A recursive technique for the determination of Jacobi matrices associated with multi-
fractal measures generated via Iterated Functions Systems is described. This technique
allows for the stable determination of large-rank matrices, a task for which the conventional
approach, classical polynomial sampling, is proven here to be severely ill-conditioned.

Application to the integration of smooth functions is presented in a physical example,
and relevance of this new technique to the study of the asymptotic properties of orthogonal
polynomials of singular measures is discussed. Further applications to the study of almost
periodic quantum systems are briefly mentioned.

1 Introduction

Among the nicest examples of measures on the real line we can count those for which moments
exist, and uniquely determine the measure. They give rise to what is called a determined moment
problem [1, 2]. A wide variety of techniques has been developed to solve this problem, that
is to say, to recover the original measure from the knowledge of its moments. Solving for a
measure may have different meanings. For us, it will be equivalent to determine the (tridiagonal)
Jacobi matrix which translates the recurrence relations of the associated system of orthonormal
polynomials. In fact, from this information one can immediately derive Gaussian summation
formulae for integrals of sufficiently smooth functions, and integration is what measures are for.
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We shall outline in the paper other well-known reasons behind this prominent rôle of orthogonal
polynomials.

Moments are not the sole source of information that one might want to consider in this
quest for the Jacobi matrix. In fact, significant progress in this field has been obtained by
admitting usage of the larger class of operations called polynomial sampling: The common
hypothesis is made that one is able to compute–whether experimentally or theoretically–the
integrals of suitable polynomials, whose degree ranges from zero to a certain maximum. For
instance, Chebyshev polynomials have played with success the rôle of sampling polynomials in
many instances, and efficient algorithms have been designed for this scope [3, 4, 5, 6].

Nevertheless, sampling with classical orthogonal polynomials cannot be a procedure of
general purpose, and there exists a wide class of measures for which it turns out to be severely
ill-conditioned. We shall prove that this class consists of measures supported on a finite interval
(hence, leading trivially to a determined moment problem) but possessing a singular, fractal
character. The proof unveils the mechanism behind the exponential divergence of the condi-
tioning number of this problem, and poses a serious challenge to our capability of dealing with
these objects.

A first example in this class is offered by the equilibrium measure of the Julia set of
P (z) = z2−λ, which, for λ ≥ 2, is supported on the real axis. However, the algebraic properties
of these measures permit to compute the Jacobi matrix via a (stable) recurrence algorithm
parameterized by λ [7, 8], (valid also for polynomials of higher degree [9]).

In this paper we consider the wider class of equilibrium measures of linear Iterated Func-
tions Systems, I.F.S., characterized by affine scaling relations, whose parameters can be chosen
appropriately, in order to approximate arbitrarily well any measure [10]. Since they also per-
mit the efficient encoding of these objects, the related approximation problem [11, 12, 13] is
endowed with important practical applications. The determination of the associated Jacobi
matrices cannot be performed here by algebraic means, and therefore constitutes a challenging
and interesting problem, which is solved in this work by means of a Stieltjes-like technique.

The plan of the paper is the following: In the next section we introduce the formalism
of I.F.S. A few basic notions on orthogonal polynomials follow in Sect. III. Sections II and III
are review, and can be skipped by the reader already acquainted with theory and notations.
In Sect. IV we discuss the ill-conditioning of classical polynomial sampling when applied to
singular measures, illustrating the theory with numerical examples. Sect. V is the heart of the
paper: We explain a constructive procedure for the computation of Jacobi matrices associated
with I.F.S. balanced measures. The stability of this procedure is proven in Sect. VI, and its
numerical performance, compared to that of classical polynomial sampling is tested in a number
of significant cases in Sect. VII. A first application of our results is presented in Sect. VIII,
where we discuss the integration of continuous functions with respect to fractal measures. The
Conclusions summarize the work and we anticipate further investigations.
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2 Linear Iterated Functions Systems

The class of singular measures studied in this paper is generated by systems of iterated functions
(I.F.S.) [14, 15, 16, 17]. An I.F.S. is a finite collection of mappings

φi : K → K, i = 1, . . . , M, (1)

on a compact metric space K, with associated probabilities πi; πi > 0,
∑

i πi = 1. In this paper
K will be the [0, 1] interval of the real line. We denote by d the distance in K. The maps {φi}
are required to be contractive: there exist positive constants εi such that

d(φi(x), φi(y)) ≤ εi d(x, y), ∀x, y ∈ K, ∀i = 1, . . . ,M, (2)

with εi < 1, to ensure the uniqueness properties that we shall need in the following.
These maps allow us to construct a measure on K with given similarity properties, ex-

tending a procedure already present in Zygmund [18]. This can be done in two steps. First, we
consider the unique solution of the equation

A =
⋃

i=1,...,M

φi(A), (3)

in P(K), the set of all subsets of K. The set A is invariant under the action of shrinking it to
smaller copies of itself, and glueing these copies together. Second, we define a stochastic process
for which A is the attractor: This is the discrete-time Markov process on K with transition
probabilities P (x, B):

P (x,B) =
M∑

i=1

πi χB(φi(x)), (4)

where B is a Borel subset of K and χB(x) is its characteristic function. A realization of this
process can be obtained starting from an initial point x ∈ K, and applying repeatedly a mapping
φσ chosen each time in a random, independent fashion from the full set of maps, with probability
πσ. The images of x rapidly converge to, and wander on, the attractor A defined by eq. (3). The
equilibrium measure induced by (4) on A is the singular, multi-fractal measure we are about to
study. Because of eq. (4), this measure is equivalently defined by the “balance” property

∫

K

f dµ =
M∑

i=1

∫

K

πi(f ◦ φi) dµ, (5)

holding for any continuous function f on K. This equation is going to be a crucial tool in our
investigation.

A convenient choice of the maps φi is that of linear affine transformations, for which we
adopt the notation

φi(x) = δix + βi, i = 1, . . . , M, (6)

where δi, βi are real constants and the contraction rates δi have modulus less than one. Without
loss of generality, we shall always assume that φ1(0) = 0, and that the support of µ is included
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in [0, 1]. Linear I.F.S. permit a large number of formal manipulations. One of these is the
recursive determination of the moments of the balanced measure µ, which can be derived
choosing f(x) = xn in eq. (5):

µn =
∫

K

xn dµ(x) =
∫

K

M∑

i=1

πi (
n∑

j=0

(
n
j)xjδj

i β
n−j
i ) dµ =

M∑

i=1

πi

n∑

j=0

(
n
j)δj

i β
n−j
i µj . (7)

Eqs. (7) are a triangular set of relations which permit us to determine µn recursively. (A theory
for the determination of the moments of non-linear I.F.S. has been developed by Vrscay [19].)

In the case of disconnected I.F.S. (i.e. those for which the sets at r.h.s. of eq. (3) do
not intersect each other) the multi-fractal properties of I.F.S. balanced measures can be easily
computed: The spectrum of generalized dimensions Dq follows from the equation

M∑

j=1

pq
jδ
−τ
j = 1, (8)

whose unique solution defines τ as a function of q. One then obtains Dq = τ(q)
1−q . From eq. (8) one

is able to tailor the map parameters in order to obtain various multi-fractal spectra. Therefore,
the relative simplicity of linear I.F.S. balanced measures makes them an optimal tool for the
study of singular measures on the real line. We shall now set the stage to investigate the set of
associated orthogonal polynomials.

3 Orthogonal Polynomials and Jacobi Matrices

According to Gautschi [3], the determination of the Jacobi matrix associated with a given mea-
sure is a fundamental problem. In fact, knowledge of the Jacobi matrix enables one to: i) build
recursively the complete system of associated orthogonal polynomials, ii) evaluate orthogonal
sums via the Clenshaw’s algorithm [20], and iii) obtain weights and locations for Gaussian
points, with immediate application to numerical quadratures. Let us briefly recall these facts,
mainly to fix notations.

The set of orthonormal polynomials {pn}n∈N w.r.t. a positive measure µ is defined by the
relations: ∫

pj(x)pl(x) dµ(x) = δj,l, (9)

where δj,l is the Kronecker delta. Orthonormal polynomials satisfy a three-term recurrence
relation

xpj(x) = rj+1pj+1 + Ajpj(x) + rjpj−1(x), (10)

initialized by
p−1 = 0, p0 = 1, (11)

from which the sequence pn(x) can be computed, when the real coefficients Aj , rj ≥ 0 are
known.
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The Jacobi matrix J is constructed as the real, symmetric, tridiagonal matrix whose
diagonal and outer diagonals are the vectors Aj and rj , respectively. The non-zero entries of J
are therefore

Ji,i = Ai, Ji+1,i = Ji,i+1 = ri+1, i = 0, 1, . . . (12)

In terms of the Jacobi matrix, the recurrence relation (10) can be written as Jp(x) = xp(x),
where p(x) is the vector whose components are the orthonormal polynomials evaluated at site
x.

While J is an operator in l2, the space of square summable sequences, we shall indicate
by JN the N−dimensional truncation of J . This finite-rank matrix is in direct relation with
the zeros of the orthogonal polynomial pN (x). In fact, if x̄ is one of these, the N dimensional
vector (p0(x̄), p1(x̄), . . . , pN−1(x̄)) is an eigenvector of JN of eigenvalue x̄. Hence, the N distinct
zeros of pN (x), denoted by xl,N , l = 1, . . . , N , compose the full spectrum of JN , and can be
computed accordingly.

Diagonalization of JN permits the calculation of the so-called Christoffel numbers, wl,N ,
required in Gaussian quadrature formulae: they become the squares of the first component of
the normalized eigenvectors. Gauss first formula, which we shall use in the following, reads:

∫ 1

0

f(x) dµ =
N∑

l=1

wl,Nf(xl,N ) + R. (13)

If f has the required regularity properties, the remainder R can be simply expressed as R =
f(2N)(ξ)
k2

N 2N !
, kN = 1/(r1r2 . . . rN ), and ξ ∈ (0, 1). A second Gauss formula can also be derived,

which combined with the first leads sometimes to the determination of upper and lower bounds
to the integral (13)–notably when f is a totally monotonic function. Numerical integration
can therefore be reduced to the diagonalization of the Jacobi matrix JN . We shall return to
this point in Section VIII, when we discuss the integration of smooth functions w.r.t. a fractal
measure.

4 Classical Polynomial Sampling of Singular Measures

The linear character of the I.F.S. maps φi defined above permits the recursive evaluation of
the moments µn, eq. (7), and, more generally, of the modified moments σn =

∫
qn(x) dµ,

where {qn(x)} is any set of polynomials, not necessarily orthogonal, but linked by a three-
term recurrence relation: xqn = αnqn+1 + βnqn + γnqn−1. Modified moments are the basis of a
computational procedure to evaluate the Jacobi matrix which mainly consists of a Cholewsky
decomposition of the Gram matrix associated with the set {qn} [4, 5, 6]. For measures supported
on an interval, a common choice for the set {qn} is that of Chebyshev polynomials of the first
kind. Other classical polynomials can also be employed, whence the name of classical polynomial
sampling, to be distinguished from the standard technique (sampling with ordinary moments).
Classical polynomial sampling leads to well-conditioned algorithms for a wide class of measures,
and it is usually superior to the standard technique [3], but (despite some progress reported in
[21]) it is almost as bad as the latter when applied to singular measures, as we shall now prove.
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The construction of Gaussian quadratures from modified moments has been studied in
depth by Gautschi [3]: He performed the stability analysis of the set of equations

σk :=
∫

qk(x)dµ(x) =
n∑

i=1

wi,nqk(xi,n), k = 0, 1, . . . , 2n− 1, (14)

where {qk} are sampling orthogonal polynomials, associated with a sampler measure σ, in princi-
ple different from the sampled measure µ. These equations follow from the Gaussian summation
formulae (13), which are exact for polynomials of degree strictly less than 2n. In eq. (14), the
sampler measure is known, as well as its orthogonal polynomials and the moments σk. The un-
knowns are the Gaussian points and the Christoffel numbers (also called Gaussian weights). We
take them to be the entries of the 2n-dimensional solution vector (w1,n, . . . , wn,n, x1,n, . . . , xn,n),
which we denote by y. Then, the system of equations (14) can be formally written as F (y) = σ.
Its relative asymptotic condition number kn is defined in terms of the inverse Jacobian (partial
derivatives) matrix of F , F−1

y :

kn :=
‖σ‖
‖y‖ ‖F

−1
y (y)‖, (15)

where we can choose any convenient norm, like e.g. Euclidean: ‖y‖22 =
∑2n

j=1 |yj |2. The condi-
tion number so defined has a transparent meaning: Suppose that a relative error ε affects the
determination of the vector σ; the relative error occurring in the solution vector y is then kn×ε.
Therefore, kn measures the stability of any procedure leading from moments to Gaussian points
and weights. Since the Jacobi matrix can be obtained from these latter via a stable procedure
(and viceversa), kn is also an indicator of the conditioning of the determination of the Jacobi
matrix starting from moments. We shall now use Gautschi’s analysis to expose the failure of
classical polynomial sampling when applied to singular measures.

The Jacobian matrix Fy is readily written; it can be factored as (we shall define our terms
in a moment)

Fy = Ξ Λ, (16)

and therefore ‖Λ−1Ξ−1‖ determines the conditioning of the problem. We shall study separately
the potentiality for ill-conditioning of these matrices. To illustrate our theory, we shall consider
three different measures on [−1, 1]:

• The orthogonality measure of Chebyshev polynomials of the first kind, dσ = 1
π
√

1−x2 dx;

• The orthogonality measure of Legendre polynomials, dσ = 1
2 dx;

• The balanced measure of the I.F.S. with M = 2, δ1 = δ2 = 2
5 , β1 = 0, β2 = 3

5 , π1 = π2 = 1
2 ,

which can be dilated and translated so to be symmetrical on [−1, 1].

The numerical computations involving the third measure are only possible employing the stable
solution algorithm to be presented in the next section.

Let us first examine the matrix Λ, which is simply defined in terms of the Christoffel
numbers, wi,n, by

Λ = diag(1, . . . , 1, w1,n, w2,n, . . . , wn,n). (17)

6



Since
∑

i wi,n = 1, the norm of Λ−1 is piloted by the non-uniformity of the distribution of wi,n,
and a large value of this norm reveals the presence of Gaussian points of low weight. Quite
evidently, this is a characteristic of the sampled measure alone. In Fig. 1 we show the Euclidean
norms of the inverse Λ matrices associated with the singular and the two classical measures
introduced above. The power-law behaviour of the classical examples contrasts sharply with
the exponential growth of the singular case. We have an explicit rule for the Chebyshev norm:
‖Λ−1‖2 = (n+n3)1/2, n being the matrix dimension, and we can explain–at least qualitatively–
the reason for the other behaviour.

In fact, from a Green function argument we know that pn(x) grows exponentially in n
when x lies in one of the gaps in the support of the singular measure. Now, Gaussian points
(i.e. zeros of the associated orthogonal polynomials) can as well lie in such gaps, like in the
example presented in Fig. 1: odd polynomials of a symmetric measure must have a zero at the
origin–here at the center of the largest gap. Let w(0) be the weight associated with this point.
At the same time, it must be

∫
pl(x)dµ = 0 for any l, and for l < 2n this integral can be exactly

replaced by a Gaussian sum, which includes the term pl(0)w(0). When l is even, the first factor
is exponentially large in l, thus demanding an exponentially smaller Christoffel weight w(0).

A more subtle interplay between sampled and sampling measure is at the root of the
conditioning properties of the matrix Ξ, which is defined as follows:

Ξ =




q0(x1,n) . . . q0(xn,n) q′0(x1,n) . . . q′0(xn,n)
q1(x1,n) . . . q1(xn,n) q′1(x1,n) . . . q′1(xn,n)
. . . . . . . . . . . . . . . . . .
q2n−1(x1,n) . . . q2n−1(xn,n) q′2n−1(x1,n) . . . q′2n−1(xn,n)


 . (18)

The inverse Ξ−1 can be obtained explicitly, in terms of the fundamental Hermite interpolation
polynomials hl and kl of degree 2l−1, belonging to the abscissae xi,l, for j = 1, . . . , n, as shown
in [3]. For our purposes, it is not important to reproduce here all the explicit formulae, but to
report just the last, which gives the Frobenius norm of Ξ−1 in terms of an integral with respect
to the sampler measure σ of a suitable interpolation polynomial gn(x):

νn := ‖Ξ−1‖2F =
∫

gn(x)dσ(x). (19)

The polynomial gn(x) is uniquely determined by the sampled measure, via

gn(x) :=
n∑

j=1

[h2
j (x) +

1
w2

j,n

k2
j (x)]. (20)

Quoting Gautschi, the magnitude of gn(x) on the support of σ determines the Frobenius
norm of Ξ−1. Indeed, we think that we get a better picture of what is going on if we turn this
statement around, and we say that what enhances–sometimes dramatically–the norm of Ξ−1 is
the magnitude of the measure σ outside the support of µ. In fact, gn(x) is positive, and it is
constrained on the Gaussian points of µ by:

gn(xi,n) = 1, g′n(xi,n) = 0. (21)
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Therefore, gn is order of unity on the spectrum of µ, the sampled measure. To the contrary, it
tends to blow up (like all interpolating polynomials) in the regions not populated by Gaussian
points, reaching values which are larger the wider the intermediate regions between such points
and the higher the polynomial order n. Now, we must obviously think of gn as fixed, since it
depends on the measure we are about to sample, while we are at freedom of choosing σ, the
sampling measure. This has the following effect.

On the one hand, measures associated with classical polynomials (e.g. Chebyshev) are
absolutely continuous, their Gaussian points are smoothly distributed on the interval supporting
the measure, and they give rise to polynomials gn with nicely uniform oscillations, like those
plotted in Fig. 2. On the other hand, Cantor-like supports of singular measures are characterized
by gaps at all scales, Gaussian points crowd sets of zero Lebesgue measure, and the related gn

polynomials reach large amplitudes in the gaps, as one can see from Fig. 3. Increasing the degree
n enhances two strictly related phenomena: oscillations in the large gaps increase dramatically,
and smaller gaps are “discovered” and pop out. Therefore, the interplay between the smooth
distribution of Gaussian points of the sampler measure, and the oscillations of gn polynomials
of the singular sampled measure makes us expect an exponential divergence of the integrals
(19) with respect to n. Notice that, again, in the case of the opposite combination (singular
sampling of classical measures), no ill-conditioning is predicted!

This theory can be verified by direct numerical computation: in Fig. 4 we plot νn, the
Frobenius norms of Ξ−1, as a function of n, when a classical measure is sampled by another
classical measure or by the singular I.F.S. measure. In all cases the norm is bounded and the
problem is well-conditioned. In Fig. 5 the singular measure is sampled by the classical measures.
We notice an exponential increase of νn, which starts at values of n of about ten.

To end this section, we can summarize our results as follows: We expect that classical poly-
nomial sampling of any measure supported on a Cantor set is ill-conditioned. This is manifest
in the exponential divergence of the norms of both Λ−1 and Ξ−1. On the contrary, sampling
of classical measures via “singular” polynomials does not show any symptom of potential ill-
conditioning. Having diagnosed the illness, let us now turn to a cure.

5 Recursive Computation of the Jacobi Matrix for Linear
I.F.S.

In the preceding section we have seen that ill-conditioning of classical polynomial sampling is
caused by the fact that the measure associated with the sampling polynomials (say, Chebyshev)
and the sampled measure are mutually singular. On the contrary, the former ought to be
supported on the same set of the latter, to provide an effective sampling. Hence, one might
think of using the very same orthogonal polynomials of the singular measure to do the sampling.
Since these polynomials are the unknowns of the problem, the idea is at least imaginative.
Nevertheless, the simple rescaling properties of I.F.S. measures permit us to get around this
problem, via an algorithm which after the fact resembles that originally proposed by Stieltjes
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in 1884 [22], quoted in [3]: The recurrence relations (10) imply that

An =
∫

pn(x)xpn(x) dµ ; rn =
∫

pn−1(x)xpn(x) dµ. (22)

We shall try to determine directly the integrals in (22): This is the essence of the Stieltjes
approach.

To achieve this goal, a simple but crucial observation is contained in the following Lemma:

Lemma 1 For any n,

pn(φi(x)) =
n∑

l=0

Γn
i,l pl(x), (23)

and the coefficients Γn
i,l, l = 0, . . . , n can be determined recursively from the map parameters

δi, βi, πi, for i = 1, . . . , M and from the Jacobi matrix entries Aj, for j = 0, 1, . . . , n − 1, and
rm, for m = 0, 1, . . . , n.

Proof. It is immediate that the n-th degree polynomials pn(φi(x)) can be expanded on the
first n orthogonal polynomials, with coefficients denoted by Γn

i,l. The recursive determination
of the Γ’s can be simply proven by induction, showing in the passage that the highest order
polynomial, pn, appears always in these manipulations in the form of the product rnpn.

Because of the last observation, the coefficients in the expansion of rnpn can be determined
without knowing rn. Let p̃n(x) = rnpn(x) be this polynomial. We can therefore write a second
decomposition:

p̃n(φi(x)) = Γ̃n
i,n p̃n(x) +

n−1∑

l=0

Γ̃n
i,l pl(x), (24)

where the coefficients Γ̃ can be computed recursively as in Lemma 1, on the basis of the
knowledge of only Aj , rj , for j = 0, 1, . . . , n− 1. We shall make use of this fact in the following.

Let us now focus our attention on the non-diagonal entries of the Jacobi matrix:

Lemma 2 For any n, the coefficient rn can be determined from the coefficients in the ex-
pansions (23) of order n − 1, and (24) of order n, from the map parameters δi, βi, πi, for
i = 1, . . . , M , and from the Jacobi matrix entries Aj, rj, for j = 0, 1, . . . , n− 1.

Proof. From eq. (22) we can write

r2
n =

∫
p̃n(x)xpn−1(x) dµ. (25)

Hence, using the balance eq. (5) and Lemma (1) this becomes (when not specified, integrals are
taken w.r.t. dµ)

r2
n =

M∑

i=1

πi

∫
(δix + βi)[

n−1∑
m=0

n−1∑

l=0

Γ̃n
i,mΓn−1

i,l pm(x)pl(x) +
n−1∑

l=0

Γ̃n
i,nΓn−1

i,l p̃n(x)pl(x)]. (26)

9



We use the recurrence relations (10), to get

r2
n =

M∑

i=1

πi (Bi + Ci + Di), (27)

where we have put:

Bi =
n−1∑

l=0

(βi + δiAl)Γ̃n
i,lΓ

n−1
i,l , (28)

Ci = δi

n−2∑

l=0

rl+1(Γ̃n
i,lΓ

n−1
i,l+1 + Γ̃n

i,l+1Γ
n−1
i,l ), (29)

and
Di = δiΓ̃n

i,nΓn−1
i,n−1r

2
n. (30)

Because of contractivity of the maps, |Di|r−2
n < 1, and r2

n (and hence rn > 0) can be determined
from eqs. (25-30) as promised.

A similar Lemma holds for the diagonal entries An:

Lemma 3 For any n, the coefficient An can be determined from the coefficients in the expansion
(23) of order n fixed, from the map parameters δi, βi, πi, for i = 1, . . . ,M , and from the Jacobi
matrix entries Aj, for j = 0, 1, . . . , n− 1, and rm, for m = 0, 1, . . . , n.

Proof. We use eq. (22) and the balance relation (5):

An =
∫

xp2
n(x) =

M∑

i=1

πi

∫
(δix+βi)p2

n(δix+βi) =
M∑

i=1

πi

∫
(δix+βi)

n∑

m,l=0

Γn
i,lΓ

n
i,mpl(x)pm(x).

(31)
Using the orthonormality properties of the sequence pl, and the recurrence relation, we get

An =
M∑

i=1

πi[
n∑

m=0

(Γn
i,m)2 (βi + δiAm) +

n−1∑
m=0

Γn
i,mΓn

i,m+1δi(rm + rm+1)], (32)

whence An can be determined, being
∑M

i=1 πiδi(Γn
i,n)2 < 1.

These Lemmas enable us to prove our main result:

Theorem 1 The Jacobi matrix associated with a balanced I.F.S. measure can be computed
recursively, from the sole knowledge of the map parameters δi, βi, and πi, for i = 1, 2, . . . , M ,
where M is the number of maps.

Proof. The recursive algorithm is structured as follows:

A Initialization. At the first step, we have A0 = µ1, r0 = 0, Γ0
i,0 = 1.
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B Iteration. Suppose that we know Al, rl, and Γl for l = 0, 1, . . . , n − 1. Then, we act as
follows:

i Computation of Γ̃n. We use the observation following Lemma 1.
ii Computation of rn. We use Lemma 2.
iii Computation of Γn. Once rn is known, Γn is determined easily from Γ̃n.
iv Computation of An. We use Lemma 3. Then, we loop back to i.

It is convenient to visualize the quantities which are produced step by step in this iterative
procedure:

(
Γn−1,

r0, . . . , rn−1

A0, . . . , An−1

)
⇒ Γ̃n ⇒ rn ⇒ Γn ⇒ An ⇒

(
Γn,

r0, . . . , rn

A0, . . . , An

)
(33)

In the forecoming sections we shall analyze the numerical stability of the recursive algo-
rithm versus the classical procedures. Before doing that, though, we can appreciate the beauty
of the set of orthogonal polynomials which can be generated by this algorithm. In Fig. 6 we draw
the eigth orthogonal polynomial of the singular measure introduced in the preceding section.
Horizontally, a a finite-resolution rendering of its fractal support is plotted. Also illustrated is
the beginning of the sequence rn, with its typical almost-periodic oscillations.

6 Stability Analysis of the Stieltjes Algorithm

We shall now prove the numerical stability of the algorithm just presented. The proof is based on
the equivalence of our technique with the well-known Lanczos’ method for finding a tridiagonal
form of a given operator [23], and on a technical paper by Paige [24] which discusses the
numerical stability of different implementations of the latter. The proof will be divided in
two steps. In the first, we show that the general structure of our technique coincides with the
(stable) A(1, 7) version discussed by Paige. In the second, we render the correspondence explicit,
reporting the matrix algebra which underlies our computations and establishing its stability,
on the basis of Paige’s results.

Equivalence of Lanczos’ algorithm and the recursive construction of orthogonal polynomi-
als can be seen as follows. Let X be the multiplication operator by x in the space L2([0, 1], dµ(x))
of square summable functions on [0, 1] w.r.t. the measure µ. Lanczos’ technique is basically an
orthogonalization of the repeated applications of X on the so-called Lanczos’ vectors vj , the
first of which can be chosen as wished. We let v0 be the polynomial p0. Then let us follow the
sequence of steps of Paige’s A(1, 7). Eq. (P1) in Paige’s paper is

Aj = (vj , Xvj), (P1)

where brackets indicate the scalar product, and we have slightly adapted the notation. Clearly,
if vj is the j-th orthogonal polynomial, eq. (P1) is eq. (31), computed in Lemma 3. This is indeed
the case, because of Paige’s equations (P3) and (P8), which can be combined (see Paige’s eq.
(P9)) to give

rj+1vj+1 = Xvj −Ajvj − rjvj−1. (P9)
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The product rj+1vj+1 is the vector wj+1 in Paige’s notation, and the polynomial rj+1pj+1 in
our algorithm: see eq. (10). Paige’s eq. (P4)

rj+1 =
√

(wj+1, wj+1), (P4)

is the same as eq. (25), computed in Lemma 2. En suite, eq. (P5),

vj+1 = wj+1/rj+1, (P5)

is nothing else than the normalization of the polynomial pn+1. Finally, we have employed in the
above Paige’s eq. (P7), a crucial equality between two different coefficients in the recursions.

The attentive reader has surely noticed that our algorithm follows step by step the sequence
of operations just proposed. Paige calls this the A(1, 7) version of Lanczos’ algorithm, and shows
its stability. Perhaps the most crucial remark in his error analysis is the fact that, regardless of
cancellations which may occur in eq. (P9), orthogonality between vj and vj+1 is well preserved:

rj+1(vj+1, vj) = −rj(vj−1, vj) + O(ε), (P10)

so that rj+1|(vj+1, vj)| ≤ 2(j + 4)ε, ε being the arithmetical error [24].
In particular, Paige’s analysis considers the case when the scalar products occurring in

the previous equations are computed as ordinary scalar products of finite-dimensional vectors.
This is also the case of our algorithm, as can be seen exposing its full equivalence, not only
structural, but also computational, to Paige’s A(1, 7).

To do this, let us define the space L = l2⊕ l2⊕ · · · ⊕ l2, where the number of terms in the
direct sum is M (the same as the number of I.F.S. maps). Vectors in this space will be denoted
like w = (w1, w2, . . . , wM ), wi ∈ l2. Define a scalar product 〈·, ·〉 in L as:

〈w,w′〉 =
M∑

i=1

πi(wi, w
′
i)2, (34)

where (·, ·)2 denotes the usual scalar product in l2, and πi are the I.F.S. maps weights. Finally,
let Γn

i and Γ̃n
i be the l2 vectors whose components are Γn

i,l and Γ̃n
i,l for l = 0, . . . , n and null

otherwhise. The letter Γn without lower indices will be used to denote the L vector Γn =
(Γn

1 ,Γn
2 , . . . , Γn

M ), and likewise Γ̃n.
First of all, notice that the normalization relation

1 =
M∑

i=1

πi (Γn
i ,Γn

i )2, (35)

following from the balance relation applied to 1 =
∫

p2
n(x)dµ(x), can be written as

1 = 〈Γn,Γn〉. (36)

Next, notice that the computation of An in eq. (31,32) becomes, in matrix form,

An =
M∑

i=1

πi (Γn
i , [δiJ + βi]Γn

i )2 = 〈Γn,JΓn〉, (37)
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where J is the operator which acts as δiJ + βi in the i-th subspace. Eq. (37) is identical to
eq. (P1). In fact, Γn becomes here the Lanczos’ vector vn, and obviously An are the diagonal
matrix elements of the Lanczos’ tridiagonalization of J .

The next step in A(1, 7) is eq. (P9); for us, this is the updating relation of the coefficients
Γ, which (Lemma 1) can be written as

Γ̃n+1 = JΓn −AnΓn − rnΓn−1. (38)

Further on, note that we have obtained r2
n+1 via eqs. (25, 26) in Lemma 2:

r2
n+1 =

M∑

i=1

πi (Γ̃n+1
i , [δiJ + βi]Γn

i )2 : 〈Γ̃n+1,JΓn〉 = 〈Γ̃n+1, Γ̃n+1〉. (39)

This is precisely Paige’s eq. (P4)
Finally, eq. (P5) is the simple rescaling which leads from Γ̃n+1 to Γn+1, and eq. (P7) is

implicit, as above, in our formalism. We can therefore conclude that our algorithm is an exact
version of Paige’s A(1, 7), which is proven to be numerically stable.

7 Experimental Stability Analysis of Different Algorithms

In this section, we shall verify the predictions of sections IV and VI by applying directly the
different solution algorithms to the determination of the Jacobi matrix in suitable test cases.
We consider three different algorithms, based on:

O: The use of ordinary moments with a Cholewsky decomposition of the associated Gram
matrix.

C: The use of Chebyshev moments (that is, sampling with the measure dσ = 1
π
√

1−x2 dx)
with a Cholewsky decomposition of the associated Gram matrix.

S: The direct Stieltjes algorithm proposed in section V.

As first test case, we choose the uniform measure on [−1, 1] associated with Legendre
polynomials, for which classical theory gives An = 0, and rn = n√

(2n+1)(2n−1)
. This measure

is also the balanced measure (dilated and translated) of the I.F.S. with M = 2, δ1 = δ2 = 1
2 ,

β1 = 0, β2 = 1
2 , and π1 = π2 = 1

2 . Therefore, one can test algorithm S by comparing theory
and numerical results. We ran these calculations in double precision on an IBM RS 6000/320.
In Fig. 7 we plot the absolute errors in the determination of An and rn, as a function of n.
The algorithm is found to be stable. Classical polynomial sampling is also known to be stable
in this case.

As a second bench-mark, we choose the now familiar I.F.S. measure induced by the maps
δ1 = δ2 = 2

5 , β1 = 0, β2 = 3
5 , and π1 = π2 = 1

2 . Because of symmetry, we know that An = 1
2 ,

for all n, while the almost-periodic sequence rn is responsible for the singular character of the
measure. In Fig. 8 we draw the errors in the determination of An in double precision, and
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the absolute differences between double and quadruple precision results for rn obtained by
algorithm S. The error propagation observed is consistent with a polynomial law with exponent
close to four.

We can also employ algorithms O and C, and compare the computed rn with the stable
results obtained by algorithm S. The relative differences are plotted in Fig. 9: one can see
that both techniques are ill-conditioned, and that the relative advantage offered by Chebyshev
moments is limited to a smaller slope in the exponential growth of the error.

We can therefore conclude that the recursive algorithm presented in this paper effectively
solves the problem of computing the Jacobi matrix associated with a balanced I.F.S. measure.
Up to now, the sole technique which could cope with a reasonable polynomial order was a Padé
procedure programmed in MAPLE by Vrscay [25]. Yet, it was limited by memory and time
requirements to much smaller orders than those reachable by our numerical algorithm. Let us
now turn to a first, immediate application of this technique.

8 Integrating Fractal Measures

The direct method for the determination of the Jacobi matrix proposed above can be used to
solve the problem of integrating smooth functions with respect to an I.F.S. balanced measure:
I :=

∫
f(x) dµ. Up to now, the method of election to compute such integrals has been a form

of ergodic theorem: If we take a realization of the random process xk → φσ(xk) := xk+1, σ
being a random variable taking the integer values i = 1, . . . ,M with probabilities πi, then the
measure η(x) = 1

N

∑N
k=1 δ(x−xk) converges to µ in the weak* topology. That is to say, the sum

IN := 1
N

∑N
k=1 f(xk) converges to the integral I for any continuous function f . The method

allows large N computations but its convergence is obviously slow.
A different method requires the diagonalization of the Jacobi matrix, and the use of Gauss

formula (13). This method has not been profitable so far, because of the difficulty in computing
high-order Jacobi matrices. A partial remedy was presented in the case of homogeneous I.F.S.,
for which an error formula, and a Richardson extrapolation procedure exist [26]. Our direct
procedure permits to obtain the required integrals with the precision wanted.

To show this, let us consider the case of the homogeneous I.F.S. measure introduced
by Bessis and Demko [21] to approximate the vibrational spectrum of a cubic, face-centered
harmonic solid, and to the computation of the integral [27]

I =
1
2

∫ 1

0

√
x dµ(x), (40)

where dµ(x) is an I.F.S. approximation to G(x) dx, the fraction of normal modes in [x, x+ dx].
In [10] we showed that any measure on a compact set can be arbitrarily well approximated by
I.F.S. measures; Bessis and Demko showed that this approximation can be very profitable in
the particular case of eq. (40). We employ their four-map approximation [21] to compute the
Jacobi matrix first, hence Gaussian points, and finally I. In Fig. 10 we plot In, the approximate
integral with n Gaussian points as a function of n. The rapid convergence of this technique is
also seen computing the remainder ∆n := In − I, as plotted in Fig. 11. This example shows
that we are able to obtain extremely precise integrals at a polynomial computation price.
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9 Conclusions

We have presented a stable algorithm to compute Jacobi matrices associated to I.F.S. balanced
measures. This algorithm consists of a recursive determination of Jacobi entries, in the frame-
work of a Stieltjes approach. We have shown that this approach is demanded by the typical
multi-fractal structure of these measures, which renders classical polynomial sampling ineffec-
tive. Thanks to the equivalence of our technique to the classical Lanczos procedure we have
obtained a stability proof.

We can foresee various applications of our results, like e.g. to the integration of smooth
functions, briefly discussed here, but also to the study of the asymptotic properties of the set of
associated orthogonal polynomials, an important and challenging problem of analysis. In fact, a
variety of results is known in the case of absolutely continuous measures (w.r.t. Lebesgue) [28],
but little is known in the case of singular measures. Our results permit to attack this question
in the class of I.F.S. measures.

Another question of particular relevance which can be studied in detail in this family
belongs to the theory of Schrödinger operators: One might wonder what are the relations oc-
curring between the character of the sequence of An and rn coefficients (almost-periodicity of
some kind to be precised) and the “fractality” of the related measure. These aspects will be
touched in forecoming publications.

Finally, in a quantum mechanical context, the Jacobi matrices studied here can be em-
ployed as models of almost-periodic systems [29]: The dynamical properties of these systems
can be studied in their essence, having extracted the essential information on the related spec-
tral measures. The tools of analysis can then be applied to rephrase some physically significant
problems, such as electron transport and delocalization of the quantum motion. In this latter
problem, the techniques presented in this paper have lead us to significant results [30] which
unveil the rôle of generalized dimensions in quantum mechanics.
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Figure 1: Euclidean norms ‖Λ−1‖2 of the matrices defined in eq. (17), versus dimension, n.
Three cases are reported: Chebyshev measure on [−1, 1], triangles; uniform measure on [−1, 1],
filled squares, with interpolating power-law nη, η = 1.87; singular measure induced by the I.F.S.
with maps (δi, βi, πi) = ( 2

5 , 0, 1
2 ), ( 2

5 , 3
5 , 1

2 ) rescaled to [−1, 1], circles.
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Figure 2: Interpolating polynomials gl(x) for the Chebyshev measure. The cases l = 3 and
l = 20 are reported. The location of Gaussian points can be identified by tangencies to the
horizontal line at unit height.
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Figure 3: Interpolating polynomials gl(x) of the I.F.S. measure described in the text, for l = 10
(α), l = 20 (β), and l = 40 (γ). The vertical scale is here logarithmic, showing the rapid increase
of polynomial values in the “gaps” of the support.
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Figure 4: Sampling of classical measures: Frobenius norms νn of the n-dimensional matrix
Ξ−1, computed from the integral (19), versus n. The combinations sampler-sampled are:
Chebyshev-Legendre (filled squares); I.F.S.-Legendre (filled circles); Legendre-Chebyshev (dia-
monds); I.F.S.-Chebyshev (triangles). See text for the other parameters.
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Figure 5: Sampling of a singular measure: as in Fig. 4. The combinations sampler-sampled are:
Chebyshev-I.F.S. (filled triangles); Legendre-I.F.S. (circles); for comparison, we plot again the
case I.F.S.-Chebyshev (diamonds) of Fig. 4. See text for the other parameters.
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2 ), with a finite-resolution representation of the support of the measure obtained by

plotting a large number of points on the attractor. Because of the finite size of points, this
latter appears as a sequence of dashes. In the frame, the sequence of rn. The vertical scale
ranges from zero to 1
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Figure 7: Absolute errors ε in the determination of An (dashed curve) and rn (continuous), as
a function of n, for the classical uniform measure.
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Figure 8: Absolute errors ε in the determination of An (dark curve) obtained running algorithm
S in double precision, and absolute differences in rn (light curve) between the results of S
obtained in double and quadruple precision, versus n. See text for the other parameters.
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Figure 9: Absolute errors ε in the determination of rn effected by classical algorithms based on
ordinary (α) and Chebyshev (β) moments, for the I.F.S. measure described in the text. The
slopes of the fitting lines are 1.75 and .426, respectively.
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Figure 10: Results of the Gaussian integration of I in eq. (40) versus the number of Gaussian
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