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Abstract 

Bessis, D. and G. Mantica, Orthogonal polynomials associated to almost periodic Schrijdinger operators. 
A trend towards random orthogonal polynomials, Journal of Computational and Applied Mathematics 
48 (1993) 17-32. 

We introduce a special class of Schr6dinger type H-operators in 1* as (4, Hyl) = C,“=, 4; [ &y,,+~ + 
fit,u,,_, 1, R, being a nonnegative real number. H satisfies the renormalization equation HD = 
D(H* - A), with A real, ;1 2 2. D is the decimation operator defined by (9, Dy) = c,“==, 44~2,. 
A consequence of the renormalization equation is that the R, fulfil the recursion relation Ro = 0, 
Rz,,R2,,_, = R,, Rz,, + R2,,+, = I. From the above relations, it can be shown that the R, are quasi- 
periodic functions of their index n. 

The components of the eigenfunctions of H corresponding to the eigenvalue x are the orthonormalized 
polynomials Pn (x ) satisfying KP n+l n+I(~)+aP,+I(x) = xP,(x).ThespectrumofHisthesupport 
of the measure associated to the polynomials. In the present case it is a compact perfect set of Lebesgue 
measure zero (Cantor set). It is therefore purely singular continuous. 

We are led to study classes of orthogonal polynomials whose three-terms recursive relations are quasi 
periodic functions of their index. We will present several results, conjectures and open questions which 
may have relevant physical applications. We study the randomness of the eigenfunctions, and we discuss 
their algorithmic complexity. 

Keywords: Orthogonal polynomials; Schradinger equation; singular spectrum; quasi periodicity; algorith- 
mic complexity; chaotic motion. 

1. Introduction 

The spectral theory of Schrbdinger operators is a crucial tool to understand important physical 
properties of various materials, ranging from crystalline lattices (with their electronic and vibrational 
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motions), to amorphous materials (showing Anderson localization [ 2 ] ), and to quasi periodic arrays 
(characterized by singular continuous spectra [ 161). Exact results are nevertheless rare in this field, 
and can be obtained only at the price of sophisticated mathematics, such as functional analysis. 
To obviate this fact, we present in this paper a more modest point of view, introducing a class of 
Hamiltonian models which can be exactly solved, and offer highly nontrivial dynamical behaviours, 
to be related to those of quasi periodic media. 

The systems we will study have also relevance from a different viewpoint. It is known that 
many physical properties can be described by entering a random element into the definition of a 
quantum Hamiltonian, for instance, considering Schrodinger operators with random potentials. The 
randomness of the potentials originates here the phenomenon of Anderson localization [2]. On 
the other hand, the quantization of classically chaotic systems (e.g., systems displaying a chaotic 
diffusion in phase space) usually leads to the so-called suppression of classical chaos, that is, 
to a quantum motion which is more stable than the classical analogue [ 10,12,14]. The class of 
systems that we will explicitly solve lies in-between these extremal cases, and hence can shed some 
light on the “chaoticity” of quantum evolution. For our models, we will explicitly determine the 
“randomness” of these objects (quantum spectral properties) showing that, although nontrivial, it 
is not sufficient to yield “quantum chaos”. Although this absence of chaos might be regarded as a 
negative result, we believe that it is particularly instructive, and might point the direction towards 
more complex generalizations of this procedure. 

The key feature of the models we consider here is their renormalizability: our class of Hamiltonians 
will be defined as satisfying an exact renormalization equation. 

Without loss of generality, we will work in 1 2, the space of square summable sequences. Basis 
vectors in this space will be labelled by e,, n = 0, 1, . . ., where- as usual-e, has a unity in the 
nth component, and zeros otherwise: e,, = (0,. . . , 0 ,  l,O, . . .). Given any element ly in 12, its nth 
component will be simply defined as v,, = (e,, t,u ). Thanks to this notation, we can introduce the 
decimation operator D: 

(Dw)n = v2n. (1) 

The meaning of the decimation operator is transparent: any vector in Hilbert space is deprived 
of its odd components. If we want to think of these components as physical frequencies-for 
instance -the decimation operator produces a halving of all even frequencies, and a deletion of 
the odd. 

The basic renormalization equation for the Hamiltonian H reads 

HD = DT(H), (2) 

where as a first approximation we will let T be a polynomial in the Hamiltonian H. In the next 
section, we investigate the consequences of the renormalization condition (2). We will show that 
they lead to a Hamiltonian which is quasi periodic. We then proceed to determine the spectral 
properties of H, and its eigenfunctions, which are further discussed in Sections 3 and 4. 

2. Schriidinger-Jacobi Hamiltonians 

In this section, we specialize (2) to a quadratic polynomial T(H) = H2 - A. We remark that 
most results will extend to general polynomials [3], and the present choice is dictated by simplicity 
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of exposition. The presentation will follow without substantial modifications the original references 
[3&l. 

A particular class of Hamiltonians satisfying the renormalization condition is given by Schrodinger- 
like discrete operators of the form 

(Hw)n = Gy/,.i + &~v,-i, (3) 

where R, are constants to be determined, in order to satisfy (2). This form of the Hamiltonian 
is a generalization of the discrete form of the Laplace operator (R, = constant), and allows for 
important “quasi periodicity” properties of the sequence Rn, as we shall see. 

In matrix form, we see that (3) corresponds to a tridiagonal Jacobi matrix 

[ ~~~+$$ (4) 

To satisfy renormalizability, we use (1) and (3) to compute the matrix elements of HD and 
D(H2 -A): 

(HD)i,j = &b+z,j + &&-2,j (5) 

and 

(DH2)i,j = JGdF8 21+2 2r+2,j + (R2i+l + R2i)$i,j + ~GdZbi-2,j. (6) 

Using these expressions into (2), and identifying the matrix coefficients, one obtains a set of 
recursion relations to be satisfied by the sequence R,: 

R0 = 0, R2n + R2,+1 = A R2nR2,,-1 = Rn. (7) 

In all this, ), is a real parameter, which can take any value larger than or equal to two. When 
k = 2, the solution of the recursion equations (7) is R = (0,2,1,1,. . .), which corresponds exactly 
to a discrete Laplace operator with a given boundary condition at the origin. It is 
expected that the spectrum possesses in this case an absolutely continuous component. 

Let us now examine more closely the recursion relation (7). The first terms read 

R1 =A, R2 = 1, R3 =A- 1, 
1 R =P-A-1 

R4==> 5 1-l ’ 

then to be 

(8) 

showing that R, are rational functions of A. Self-adjointness of the Hamiltonian (3) is insured when 
these coefficients are positive. It is therefore crucial to determine for which values of the parameter 
,? this fact occurs. This is established by the following lemma. 

Lemma 1. If A 2 2, we have for all integer n, 

(i) R2n G Rn, 

(ii) R2n G 1, 

(iii) 0 G Ro,Rl,..., Rz,,. 
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Proof. We prove the lemma by induction. Let us suppose that the relations (i)- (iii) hold for 
n=O , . . . ,p - 1. Then, we have 

RP R2p = h _ R2p_2 ’ (9) 

where we have used the recursion relations and the induction hypothesis (ii). This proves induction 
on (i). 

For (ii), we consider two cases: p even and p odd. If p = 2s, 

R2p < Rp < 1, (10) 

where the first inequality follows from (9), and the second from the induction hypothesis (ii). If 
p = 2s + 1, 

A-R23 R2p = - A-R4s 

A - R4s 
GA-13 (11) 

where the inequality is obtained by (i). Finally, we prove positivity. To verify induction, we must 
prove that Rzp-i, Rzp 2 0: 

R2p-1 = A-R2p_2 2 A- 1 (12) 

proves the first part, and 

R2p = - / Rp >(I 
R,-1 

(13) 

proves the second, since both Rp and Rzp-r are positive. 0 

From the above lemma it follows 

A- 1 < R2,,+r < A. 

Together with Lemma 1, this shows 

easily that 

(14) 

that the respective ranges of variation of even and odd R, are 
separated, if A > 2, From (8) we see that the extrema are also realized: 

O=Ro<R2,,<R2= 1, A- 1 = R3 < R2n+l < RI = A. (15) 

Equation ( 15) seems to imply a hierarchical, number-theoretical splitting of the ranges of variation 
of the coefficient R,. Such a hierarchical structure can be conjectured to have the following form: 

(-1) u(m)Rm < (-l)“(m)Rm+k2, < (-l)“(m)Rm+2,, (16) 

where r = 1,2 ,..., m = O,l,..., 2’ - 1, and k takes all integer values k = 1,2,. . . . The integer 
0 (m ) is defined as the sum of the digits in the binary expansion of m (e.g., 5 = 10 1, Q (5) = 2). 
Equation ( 15) is a special case of ( 16), for r = 1. The case r = 2 has been proven [ 15 ] by explicit 
calculation. 

It is known that conjecture ( 16) is false for values of r higher than two if A is close to the critical 
value A = 2 [ 131. On the other hand, one might expect that for increasing A the inequalities ( 16) 
are verified for larger values of r. It might also happen that there exists a critical value of A after 
which all of the above inequalities are verified. No proof of this fact is known at the moment. 
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The structure of the set of possible values of R, might therefore have a fractal structure, in the 
light of the above conjecture. An additional piece of information is given by the following lemma. 

Lemma 2. For all integer k = 1,2,. . ., we have 

lim R m+k2’ - - Rn, 
r-00 

m, r being also integers. 

Proof. We first prove the 
Lemma 1 then implies 

& - > R2n 3 A-1 

lemma for m = 0. We have that, for all n, Rz,, = R,/(A - R2,,-2), and 

R, -. A 

Iterating this relation , we obtain 

R, R, 
(A - 1)’ >/ Rp,, 2 -, A’ 

which proves the lemma, if A > 2. The other values of m can be obtained by simple induction. •I 

We notice that this lemma implies that the set of possible values of R, is a perfect set. In fact, 
it is compact (because of Lemma 2), and each point is an accumulation point. For the values of 2 
satisfying the conjecture, this set is also a Cantor set. 

A more sophisticated result linking the values of R, can be found. 

Lemma 3. IfA > 2, 

iRp2k+s -&I < BO,k), 

where B (A, k) is a function independent of both p and s. One can choose 

Proof. For s = 0 we have 

&,2k - Rol = Rp2k < 4 A 
(A- l)k G (A - 1)k’ 

(17) 

(18) 

where the first inequality has been previously derived. Therefore, for s = 0 a suitable B (A, k) exists. 
Let us now consider an even value of s. We have that 

IRp2k+S+ 1 - J&+11 = &zk+s -&I, (19) 

and hence if the bound (3) is verified up to s even, it is also verified for s + 1. The case s odd is 
more complicated. Since s + 1 is even, we can write 

l+k+s+ 1 -R,+,I = $2 , 
I I 

(20) 
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where a = p2k-1 + f (s + I), b = ~2~ + s, c = 1 (s + 1) and d = s. Now, we use the following 
inequality, valid for all positive R: 

Ra Rc I I --_ 
Rb Rd 

< IRa - RcI + R, I& -&I 
Rb Rd Rb * 

Because of the induction hypothesis, 

IR, - R,I < B&k - 1) and (Rb - Rd] < B&k). 

Moreover, since b is odd, we have Rb > 3, - 1. Finally, we remember that 

Rc R -= 
& 

s+l G 1, 

because s is odd. Using these inequalities in (2 1 ), we obtain 

& & 

I I 
--- 
& & 

~ BG,k-- 1) + B&k) 
1-l V’ 

We have therefore that B(A, k) must satisfy the relation 

B&k - 1) + B&k) 
A-1 V < B(&k), 

that is, 

B&k) 2 
B(A,k - 1) 

A-2 ’ 

(21) 

(22) 

(23) 

(24) 

and a possible choice of this bound is therefore 

A 
B&k) = (n_z)k’ 0 

It must be remarked that this bound tends to zero only when A > 3. In this case, the sequence 
R, is an almost periodic function of the index yt. In fact, by definition, f (X ) is almost periodic iff 
[9] for all E, and for all Te > 0, there exists a T > To such that 

If(x + T) -f(x)1 6 s, 

uniformly in x. This is clearly the case for the sequence R,. For the reader’s convenience, we note 
that an almost periodic function has Fourier coefficients 

L 

f(w) = jili 
s 

emiwxf(x)dx, 

-L 

which are identically null except for a countable set {on} of frequencies. This is also an equivalent 
definition of almost periodic function [ 91. We can then formally write 

f(x) = & 5 f(om)eiwmx. (25) 
i?l=-CC 

There may be cases where this series does not converge in the usual sense. 
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A common subclass of almost periodic functions is that of quasi periodic fucntions, which are 
defined by a property of the sequence of frequencies {a,}. Precisely, any element of the algebra 
generated by f (x) has a set of periods of the form 

where ni are integers, and k is finite. 
We are interested in still another class, that of limit periodic functions. 

requiring that any finite truncation of the series (25) is a periodic function. 

Lemma 4. The sequence of R, is limit periodic. 

Proof. We write 

R, = RI;! + en, 

where RQ is a periodic sequence of period 2Q, and can be expressed as 

Q 2Q-1 
R$! = c c fp,4 e2inn(2P+1)/2'. 

q=o p=o 

These are defined by 

(26) 

Because of the estimate ( 17), the remainder E,, goes uniformly to zero, when Q tends to infinity. 
Hence R, has a Fourier series of the form (26), which is limit periodic. 0 

To end this section, we briefly comment on the properties of the set of poles and zeros of the 
rational fractions R, (A). It is possible to prove that these sets are identical, but very little more is 
known about. The closure of this set could be related to the Mandelbrot set, but no rigorous result 
is available. Only outside such set the coefficients R, can be quasi periodic functions [3]. 

3. The spectral problem associated to H 

We can now solve the spectral problem of H, which we denote by 

(Hw)~ = XWn = JGy/,+l + &~n-1, (27) 

with the boundary conditions w-1 = 0, ~0 = 1. Notice that we are employing the letter x to denote 
the quantum eigenvalue, not to be confused with A, which is an external parameter. 

In general, we will say that x belongs to the spectrum of H if and only if the associated 
eigenfunction ry, has at most polynomial growth: 1 v/n1 < np, for n large. 

Because H is a tridiagonal operator, we will employ the similarity of the spectral equation (27) 
with the three-terms recursion relation typical of orthogonal polynomials. In fact, (27) is also the 
definition of the orthonormalized polynomials associated to the invariant measure of the Julia set 
of T (z ) [ 81. This fact will have a crucial role in the following. From now on, we will use the 
notation v/(x) to denote the solution of the spectral equation (29) with eigenvalue x. By posing 

(28) 
j=l 
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we obtain the set of manic orthogonal polynomials, which obey the recursion relation 

Pn+l(X) = xf’n (x) - &P,-1 (~1. (29) 

Thanks to the renormalizability of the Hamiltonian, eigenfunctions corresponding to different 
eigenvalues can be simply related, as in the following lemma. 

Lemma 5. 

V/2n(X) = Wn(X2-4, Pzn(X) = P,(x24). 

Proof. Using the renormalization equation (2) on Hy/ (x) = x y/ (x ), and taking the nth component, 
(D(H2 -L)w), = (HDv/)~, one obtains 

(x2 -n)(yzn(x) = 4Glv2n+2w + &G2n-2w. (30) 

At the same time, the eigenvalue equation (27) written for v/(x2 - /I), solution with eigenvalue 
x2 - 2, reads 

(x2 -411/n(X2-4 = ~KZ41+1(x2--) + ~y/,4(x2-I). (31) 

Since these two relations have identical coefficients, and are identically initialized, we get the 
relation 

%(X2 -A) = V/2n(X). (32) 

We remark that this proof does not require that x belong to the spectrum of H. The second part 
of the lemma follows easily from the last equation (7) for the coefftcients Rj: 

M 2m 

j=l j=l 

Lemma 6. The solutions t+~ (x) of the eigenproblem (29) have the property: 

wl(-x) = (-1 )“wI(x). 

Proof. Since v/o = 1, y1 = R, -1’2x, the property is verified for n = 0,l. By induction, supposing 
the lemma is verified for n = 0 , . . . ,p, and using (29), one obtains 

JRa+lVp+l (-x) = XV/p(-x) - &&-1(-x) = 6WIvp+l(X). ! 

Thanks to this technical lemma, we can prove the following lemma. 

Lemma 7. The spectrum is symmetric: x E r~ (H) implies -x E c (H). 

Proof. Suppose that I,U (x) is an eigenfunction, that is, it satisfies (29) and it is polynomially 
bounded. Then, v/ (x ) obtained in Lemma 6 is also polynomially bounded, and hence -x belongs 
to the spectrum. 0 
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In the next section, we will derive crucial properties of the spectral measure. 

4. The spectral measure associated to H 

We are now able to prove an important result regarding the measure d,u with respect to which 
the polynomials t//n (x) are orthogonal. 

Lemma 8. The components ly, (x ) of the solutions of the spectral equation (27) are normalized 
orthogonal polynomials associated with the balanced measure on the Julia set dp, defined by 

I dp(x) f(x) = s ~~tx)ftx2--;1), 

for any continuous function f .  

Proof. To prove this lemma, we must show the spectral formula 

I n,t?l = 

J 
vn tx)V/m(x) dp(x) = 6,,,. 

Firstly, we consider the case In,e. It is immediate that n must be even, because of 
(33) with f(x) = v”(x), one obtains 

I n,O = In/2,0. 

If in is odd, the integral is null. Otherwise, the procedure is repeated, showing that 

L,o = &,o. 

One can now proceed by induction, supposing that (34) is verified for all n, and for 
and proving it for m = p + 1. 

(33) 

(34) 

parity. Using 

m = O,...,p, 

If p + 1 is even, n odd, parity assures the result. If n is even, it follows very easily that 

Z n,p+l = 4l/2,(P+1)/29 

allowing use of the induction hypothesis. 
If p + 1 is odd, n even, parity assures the result. If n is odd, one must twice make use of the 

eigenvalue equation, to reduce the degree of the orthogonal polynomials, and apply the induction 
hypothesis. We skip this rather tedious calculation. 0 

We will now derive other important properties of the spectrum. 

Lemma 9. The spectrum has nonlinear scaling properties: x E u(H) implies x2 - 1 E c(H), 
N~E a(H). 

Proof. The first assertion is immediate to prove, since, if w(x) is a polynomially bounded solution 
of the spectral problem, then D y/ (x ) is also polynomially bounded, and verifies HD y/ (x ) = 
(x2 - A)Dly(x). 
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The second assertion is also easy to prove. Let Hy/ (y ) = y y/ (y ), and take y = &vz. 
Applying the previous result, we know that HDy/(y) = (y2 - I.)Dw(y) = xDv(y), that is, 
D t,u (y ) = v/ (x ) . If x E o (H), then v/ (x ) is polynomially bounded, and hence the subsequence 
V/Z,, (y  ) = vn (x ) is also polynomially bounded. Because of the eigenvalue equation, we can prove 
that the odd subsequence t,~,,+ t (y  ) is also polynomially bounded. 

This last result can be also used to construct the eigenfunction v (&JxT) if v(x), x E a(H), 
is known: 

V/2tA*dx + A) = V/n(X), 

V2n+l <*m, = (*~r1[~p+2Yp+l(x) + &Tlv/PWl. 
(35) 

0 

Lemma 10. The spectrum is bounded: a(H) c [-a@),~@)]. 

Proof. Because of symmetry, it is enough to consider the positive part of the spectrum. Let 
x E a(H). Firstly, we notice that 1x1 < I; otherwise vm would be a complex number, which 
is prevented because the spectrum must be real. This first bound ensures that there surely exists 
a quantity a(n) < a which bounds the spectrum. Lemma 9 imposes the inequality a2 - A G a, 
whence 

a < ;(I + JGz) = u(n), 

where we have defined the bound a (A). To see that this 
and consider the sequences xn of values in the spectrum 

(36) 

bound is optimal, we take any x E o(H), 
defined by 

x,+1 = d/x, +a, x0 =x. 

This sequence is bounded, monotonically nondecreasing, x,+1 2 x,, and hence admits a limit 
which is easily computed as the fixed point of the recursion relation, and is a (A): x,, + a (A). 0 

Lemma 11. The spectrum is the Julia set of the polynomial T(x) = x2 - A. 

Proof. This lemma follows from the previous Lemmas 9 and 10. We notice that this Julia set can be 
obtained as the Iterated Functions System associated to the two nonlinear maps wk (x) = &/m, 
which allow a rapid construction of the associated invariant measure. The Iterated Functions System 
construction [4] also allows to prove that this set is perfect. 0 

In particular, we can label the spectrum by the infinite sequence {al}, i = 0 ,  1, . . ., q = f 1. In 
this way, any point x E ~7 (H), labelled x (cr), is the limit of the sequence 

&I = co& + ~iJT...M/G + r)...) = (W,,~Wb~~~~~~W~“)(fl), (37) 

which converges to the same limit x(a) for any q E [-&A]. 
The action of the polynomial T on the spectrum corresponds to the shift operator S on the 

sequence 0: (SC), = on+r. This follows immediately from the definition (37): 

T(x(a)) = x(&), (38) 
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moreover, 

%(X(d) = x(hl,a)), (39) 

where ( f 1, CT) is a shorthand notation for the sequence 6’ defined by I$ = f 1, ui+ I = on. 
It is now important to introduce the spectral measure db, relative to the mean value of the 

resolvent in the state ee, defined by 

(eo, (1 - zH)-‘eo) = 
I 

(1 - zx)-’ db(x). (40) 

It turns out that this measure is identical to the previous measure dp (with respect to which v,, 
are orthogonal). 

Lemma 12. The spectral measure dji is identical to the balanced measure of the Julia set of the 
polynomial T(x) = x2 - A. 

The measure dfi is invariant under T and w* : 
I diXx) f(x) = J dh(x)f(x2-A) = $ 

J dfi(x) U-(w+(x)) + f(w-b))l, 

for any continuous function f. 

Proof. Since kPv(x) = x”w(x), we can write 

(eO,Hmv) = xm(eO, w) = x”y/o(x) = xm. (41) 

Let us consider the moments pm of the invariant measure of the Julia set dp: 

Pm = I dfi(x) x”. 

The left-hand side of (4 1) can be differently computed: 

(eO,Hmly) = ~te0,H”ek)tek,v) = e(eO,Hmek)rk(x), 
kc0 kc0 

(42) 

where the summation over k has been restricted to 0,. . . , m because Hm is a banded matrix with 
band size 2m + 1. We now integrate (41) and (42) with respect to dp, remembering that cy, (x) 
are orthonormalized polynomials with respect to this measure (Lemma 8). Because of this, only 
one term at the right-hand side of (42) survives, and we obtain 

pm = (eo,Hmeo). (43) 

The moments pm can be seen as the expectation values of the operator Hm over the state es. It is 
now immediate to show that the moment generating function G(z), defined via 

G(z) = Fpkzk, (44) 
kc0 
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can be rewritten, thanks to (43) as 

cc 

G(z) = x(eo,Hkeo)zk = (eo, (1 - zH)-‘ec). (45) 
k=O 

This proves that the Stieltjes transforms of dp and ds are identical. It then follows that db has the 
same balanced properties of dp, which is the thesis. 0 

A corollary of this lemma is the functional equation for the resolvent function: 

G(z) = &G & . ( > (46) 

Inserting the moment representation (44) into the functional equation (46), we derive the 
equality 

(1 -lz2)&zk = cjd,Z2’(l -AZ’)-‘_ (47) 

Making use of the binomial series expansion for (1 - x)-l and identifying terms with equal powers 
of z, we obtain a recursion relation in the moments: 

pk - hk-2 = c p,q+;-I), 
Z(j+l)=k 

(48) 

where the sum is extended to all positive or null integers j, I whose sum is k. The above relation 
is initialized with ~0 = 1, ~1 = 0, and produces recursively all moments of the measure dp. In 
particular, all odd moments turn out to be null, as they should. 

It must be observed that the moments ,D are polynomial in 3, with integer coefficients. When 1 is 
also an integer, we are therefore considering a diophantine moment problem [ 71. 

To end this section, we detail the calculations for the case 3, = 2. In this case, the sequence of 
coefficients R, is Ro = 0, RI = 2, R, = 1, m > 2, as is easily shown by induction. Consequently, 
the spectral equation (29) becomes PI (x ) = x, P2 (x ) = xP1 (x ) - 2 and 

XP”(X) = Pn+l (xl + Pn-1 (xl, n a 2. (49) 

This set of equations is easily recognized to be associated to the Chebyshev polynomials Tn (x): 

Pn(x) = 2T,(ax), n 2 1. (50) 

The invariant measure of the Julia set generated by the polynomial map T (z ) = z2 - 2 is the 
absolutely continuous measure with density a(x) given by 

(51) 
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5. Complexity of the eigenfunctions 

The important spectral properties derived in the previous section allow us to discuss the amount 
of “randomness” of the eigenfunctions. We remark that, for the eigenfunctions to be random, it is 
not necessary that the Hamiltonian matrix elements be random variables. 

To do this, for any x E 0 (H) we consider the sequence of real numbers v/n (x) = ( cy (x), e, ), 
the components of the related eigenfunction on the canonical basis. Following the approach of 
algorithmic complexity [ 111, we will translate such a sequence into a binary digits string, by fixing 
an arbitrary precision 6 = 2-P for each of the v/n components. The symbolic sequence obtained 
in this fashion will be simply denoted by [ tyn]d. We will also consider all finite truncations 
n = o,... , N of such digit strings. The complexity of such truncations is then defined as the length 
(in binary symbols) of the shortest program, which, coded on a universal computer, is capable of 
outputting such a sequence. 

The complexity of a sequence is by logical consequence [ 111 uncomputable, but we can never- 
theless put bounds on its value, producing particular codings of given length. We will call random 
(or chaotic, or complex) all sequences whose complexity is of the order of the truncation length N 
111. 

In the study of iterative systems (like the one we are now considering), estimating the complexity 
amounts to determining the sensitivity of the sequence v/n to the initial condition, and to the 
eigenvalue x. In fact, a simple code of the truncated sequence [v/n (x)]~, n = 0,. . . , N, consists of 
the recursion relation and initial conditions (27), which can be translated into a finite, constant- 
length code, and of the specification of N and x. 

While N is easily coded by log, N bits, one needs to determine how many bits of x are needed 
to code [ v/~]J exactly, for n as large as N. sequence As the simplest example, let us consider the 
sequence & (x ) = 24,_ 1 (x ) mod 1, $0 (x ) = x. This is a random sequence, because taking the 
truncation at precision 6 = 2-l, we see that [&Id is the nth binary digit of x. Hence, to code the 
sequence up to n = N we need N bits of information. 

The motion on the Julia set of the polynomial T(x) = x2 - II, for 2 > 2, gives another example 
of random sequence. In fact, because of Lemmas 5 and 11, this set is labelled by the binary string 
a, and x + T(x) is equivalent to the shift on such a sequence. This is crucial to prove the folowing 
lemma. 

Lemma 13. The subsequences 

vn = v/~w(x) = ~/rn(T(‘%)) > 

x E r~ (H), m integer, are random. 

Proof. To compute qo,. . . , ~,IN requires GO(X), . . . ,cN(x). 0 

On the other hand, this does not imply that the full sequence I,v,, (x), that is, the eigenfunction, is 
random. In fact, this does not prevent the fact that the values [ vj], 2” < j < 2”+l, can be derived 
from the digit string corresponding to T” (x), that is, Pa(x). 

It is particularly easy to show this fact in the limiting case A = 2. Here, v/n (x ) is proportional to 
arccos (n cos ( ix) ). The constant of proportionality, via (28), is trivially computed, and does not 
depend on n. Now, an algorithm to compute the Chebyshev polynomial is easily coded with a finite 
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binary length program. The computation of v/n (x) is therefore related to the computation of the 
argument $nx mod 2~. This leads to another well-known dynamical system, the ergodic rotation 
on the circle: 8,+ 1 = On + w. Any truncation of this sequence has a complexity which scales as 
log, N, and hence it is nonchaotic. 

6. Time evolution generated by H 

The Schrodinger-Jacobi Hamiltonian H generates a time evolution in the space l2 via the 
Schrodinger equation 

-i&4(t) = H4UA (52) 

with 4(O) = &, E I2 as initial condition. Since H is time-independent, the solution of (52) is 

4(t) = eiHt&. (53) 

To evaluate this expression, we project on the states u/(x), use the closure relation (34), and get 

$(t) = eiY’(w(x),~O)V/(x)d~(x). 

We then project on the basis state e,, as follows: 

(54) 

dn(t) = (e,,4(t)) = 
J 

eiY’(y/(x),~o)V/n(x)d~(x). (55) 

To obtain an expression in terms only of components on the canonical basis, we develop the scalar 
product ( v/ (x I,&, ) , and we get 

k=O 
(56) 

which can be rewritten as 

&(t) = 5 (bkCn,k(t), 
k=O 

(57) 

where we have defined the time-dependent coefficient Cn,k (t): 

Cn,k(t) = etit Wk(X)Wn(X)dh(X). I (58) 

Knowledge of these coefficients enables us to solve the full time-dependent problem. The coefficient 
C’s,0 gives the autocorrelation function of the time evolution of ec. For reasons of simplicity, we 
only develop the analysis of this case. The analysis extends without significant modifications to the 
general case. 

When n = 0, k = 0, we recognize in (58) the Fourier transform of the measure dp: 

b(t) = J eiXt dp(x). (59) 
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The study of the long-time behaviour of the motion generated by H is therefore equivalent to the 
fine structure analysis of the measure dp. Physically, this is equivalent to the structure of the X-ray 
analysis of a fractal measure. 

The balanced properties of dp enable us to prove the following lemma. 

Lemma 14. The Fourier transform of the spectral measure d,u, F(t), satisfies the integral equation 

00 

b(t) = -!- 
2&S J 

e-i[x2/4t+lt-n/41 b tX) be (60) 

-cc 

Proof. We insert in (60) the explicit definition of fi (x), and we change the order of integration: 

b(t) = _& / dp(y) 7 e-iLx2/4t+lt-n/41+i b. 
--oo 

Then, we explicitly calculate the Gaussian integral; this leads to 

b(t) = 
s 

dp (JJ) e-i[lt-Y2tl . 

We finally use the balanced property (33 ), and we obtain the thesis 

J &Cl(y) e- i[At-y2t] _ - J d,u(y) emiY’ = Q(t). IJ 

This lemma is the corner-stone of the analytical treatment of this problem. We notice here only 
some of its main consequences. Separating real and imaginary part in (60)) and making use of the 
symmetry of dp, we obtain 

co 

G(t) = - v&t cos J ( g +It- $T ji(x)dx 
> 

0 

and 
cc 

0 = & o sin J ( g +Lt-)K ji(x)dx. > 
We can give a different form to b (t ), by defining the integrals 

ZlO) = &OS (~)fiw.x, 
0 

(61) 

(62) 

(63) 

12(t) = -+Jmsin($)Ir(x)dx. 
0  

(64) 
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This leads to 

F(t) = cos(At - $7r)Zl - sin(lt - $a)Zz, 
0 = sin(It - $7t)Zi + cos(lt - $r)Zz, 

and finally to 

(65) 

In the special case A = 2, the Fourier transform of dp is the entire function ji (t) = JO (2t). 
Inserting this function into (66) leads to a well-known identity [5, p.110, eq. 271. Equation 
(66) may lead to an iterative solution scheme. The full details of this study are presently under 
investigation. 
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