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Oscillations in the high-order moments of turbulent velocity fields are inherent to the fractal character of intermittent 
turbulence. Such oscillations are a feature of the lacunarity of fractal sets. 

In troduct ion .  The fine structure of intermittent,  
turbulent flows may be probed by high moments of 
the velocity field. They have been studied experimen- 
tally by Anselmet et al. [1 ] who report that "oscilla- 
tions, which are only weakly manifested for n = 10 
and 12, are rapidly amplified at larger n," where n is 
the order of the moment.  We suggest that such oscil- 
lations are to be expected in consequence of the frac- 
tal structure of developed turbulence [2,3]. They are 
related to oscillations arising in the statistics of fractal 
sets. 

We shall discuss the connection between oscillations 
in fractals and in the turbulent  velocity correlations 
using phenomenological arguments like those of the 3 
model of intermittent turbulence [4]. But first, we 
briefly describe the oscillations in simple Cantor sets 
by way of illustration. We shall elaborate on the theo- 
ry of the oscillatory structure of fractal sets elsewhere; 
here, our main concern is the application to turbulence. 

Lacunari ty .  Consider a statistical moment,  C, on a 
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fractal set that depends on a separation scale l. A self- 
similar fractal set may be expected to obey the scaling 
law 

c ( o  = o - l C ( o t )  , (1) 

where p and a are numbers. The usual power law 

CO( 0 = A t a , (2) 

is a particular solution of (1), where A is a constant 
and 

d = In o/In p .  (3) 

The general solution is 

C(1) = laX(In l / P ) ,  P = In p ,  (4) 

where × is a periodic function of period 1. The general 
solution predicts oscillations that are observed in nu- 
merical experiments. If we identify l ip  with the sim- 
ilarity ratio of the sets, we find agreement with the 
observed periodicities in simple sets. 

To illustrate these oscillations, we construct some 
numerical approximations to Cantor sets with the 
usual recipe: (1) Divide the unit interval in Iq 1 into r 
equal subintervals. (2) Delete all but  s of the subinter- 
vals. (3) Repeat the process on each of the remaining 
r - s subintervals. (4) Repeat again on the remaining 
intervals. And so on. Each set constructed in this way 
can be designated by an r-digit binary number with s 
ones and r - s zeroes. The fractal dimension of the 
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corresponding Cantor set is D = In s/ln r and its similar- 
ity ratio is 1/r. 

Consider three such sets: Set I is 101 (the most 
familiar Cantor set), set II is 101010001 and set III is 
101001001. All three sets have the fractal dimension 
D = In 2/ln 3. To calculate D numerically, we follow 
Grassberger and Procaccia [5] and define the correla- 
tion integral 

N 

C(I) = lim N -2  ~ 0 ( l - r i / ) ,  (5) 
N~oo i,]=l 

where N is the number of  points in the set, rii is the 
distance between the ith and/ ' th  points, and 0 is the 
Heaviside function. As our notation indicates, the cor- 
relation integral is typical of  the quantities we have in 
mind. For fractal sets, C(I) ~-- l v, for small l, where u 
is called the correlation exponent and u ~<D [5]. 

In fig. 1, we plot In C versus In 1 for set I. This plot, 
as well as those for sets II and III,  is well approximated 
by a straight line of  slope v = In 2/ln 3. For sets con- 
structed by the removal algorithm just described, we 
find u = D, which indicates that the construction pro- 
cedure gives equal weights to all regions of  the set. 

In each case, there are regular oscillations in In C(1) 
about the line In C = u In l. These oscillations are seen 
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Fig. 1. The  correlation integral o f  (5) as a func t ion  o f  the  
separation. The  original interval is the  uni t  of  length. The 
logari thms are base 2. 
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over the full range of  In I and have constant amplitude 
and form. In fig. 2, we plot ln[l-VC(l)] versus In I for 
the three sets. The oscillatory residuals are very differ- 
ent for the three sets, though the periods of  sets II and 
III are both close to In 9. 

We interpret the observed oscillations as first correc 
tions to the d In l term in the expansion for In C(/); 
that is, as l approaches zero, we have 

In C(l) -- d In l + ~O(P -1 In l) + .... (6) 

where ~ is a periodic function of  period 1. Here, the 
units of  l have been chosen so that ~O has zero mean. 
In the numerical studies of  oscillations that we have 
so far performed, the amplitudes of  oscillation of  
are O(1). For example, in set I, 101, ~ is periodic to 
within the accuracy of  the numerical procedures with 
an amplitude o f  about 0.1. 

We suggest that the function ~ characterizes the 
textural property of  fractal objects that Mandelbrot 
has called lacunarity [3]. It is difficult to capture the 
qualitative character implied by this term with a single 
parameter, and Mandelbrot considers several in his 
book. If  we were to seek to identify a single parametei 
to measure this property, we would choose a function. 
al of  qJ. 

Oscillations are inherent to lacunar fractals. Bessis 
et al. [6] proved their existence for certain fractal 
Julia sets (asymptotically, near the boundary of  the 
support of  the measure). Badii and Politi [7] found 
them in their analysis of  the Zaslavsky attractor [8] 
using a method based on mean nearest-neighbor dis- 
tances. We have observed them in many sets including 
Koch islands [3], the H6non attractor [9], the 
Zaslavsky attractor [8 ], the Feigenbaum attractor 
[10], and Cantor dusts [3] in two and three dimen- 
sions, using diverse algorithms including both point- 
counting and pair-counting as in (5). Apart from their 
intrinsic interest, the oscillations can produce the fluc- 
tuations in the measurements of  dimension that 
Guckenheimer [11 ] has noted. Such bias in a mea- 
surement of  dimension may be especially significant 
when the oscillations have a large amplitude or a long 
period compared to the range of  scales covered by the 
data. 

In self-similar sets, the oscillations persist at con- 
stant amplitude to small 1. For some sets, with non- 
uniform lacunarity, amplitude drops off as l decreases, 
as for example, in the H6non attractor. But at fixed l, 
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the oscillations are amplified when we go to higher 
moments.  This is important for our proposed applica- 
tion to turbulence. 

For the purpose of  applying these ideas to inter- 
mittent turbulence, we neglect the terms indicated by 
the ellipsis, and write 

C(I) = AI 6 , 6(1) = d + i f (p-1  In/) /In l .  (7) 

Here, we are once again regarding C in its general 
sense of  being any statistical moment  on the fractal. 

Turbulence. It seems likely that the intermittency 
of developed turbulence comes about because turbu- 

lence is active on a fractal set [3].  Consequent devia- 
tions from Kolmogorov's [12] scaling have been qual- 
itatively derived in a phenomenological discussion of  
the cascade process [4],  called the/3 model. The/3 
model  underscores the qualitative feature that the ef- 
fects of  fractal geometry are emphasized by the struc- 
ture functions of  large order, n. These functions are 

Sn(1 ) = ([ ,'Xo(l) ln) / ( I /Xo( l )  12) n/2 , ( 8 )  

where Au is a velocity difference across a separation 1 
and the angular brackets denote volume averages. 
From the/3 model  comes the estimate that 
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s . q )  = D .  , (9) 

where superscript (0) refers to values obtained by 
averaging over only the active region. The correction 
allows for intermittency, through a presumed depen- 
dence on the eddy sizes l (loosely identified with I/i). 
The assumption of  a geometrical cascade leads, by 
phenomenological arguments, to 

D n = (D - 3)(2 - n ) / 2 ,  (10) 

where D is the fractal dimension of  the region of  active 
turbulence and l 0 is the length scale at which energy 
is fed into the fluid. The model is named for t3 = 
(1]lo)D - 3  

The discussion of  the previous section implies that 
it is possible to extend (9) and (10) in the same way 
that (4) generalizes (2). Using (7) in this more general 
context, and applying the arguments of  Frisch, Sulem 
and Nelkin [4], we get 

S n (1) = S n(tO) X n (In t/P) (Ill O)(3-D) ( 2-n)] 2 , 

Xn(ln l/P) = e x p { ~ ( n - 2 ) [ ~ ( l n  l/P) - ~( ln  Io/P)] ) . 

(11) 

In the 13 model, the D n are expressed in terms of  
only one fractal dimension. Likewise we have only 
one periodic function, ~. To the extent that such ar- 
guments are qualitatively adequate, we conclude from 
(11) that the oscillations should be more apparent for 
larger n, as observed by Anselmet et al. [1 ]. Moreover, 
we judge from their fig. 13 that the period of  the os- 

cillations is not dependent on n, as our discussion in- 
dicates. The occurrence of  this period introduces 
lengths other than l 0 that are relevant for the inertial 
range and this gives significance to the observed oscil- 
lations if they are indeed inherent to turbulence and 
are due to its fractal nature. Even if the observed oscil 
lations are of  another origin, it remains true that oscil. 
lations may be expected if the intermittency of  turbu. 
lence originates in its fractal structure. 

We have enjoyed a discussion of  fractal matters 
with D. Bessis and of  oscillations with R. Badii and 
P. Pfeifer. 
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