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In this Supplementary Material, we present additional experimental data supporting our claim

about fractal properties of the Fibonacci spectrum and in particular the invariance of the IDOS in

the gaps in accordance with the gap labeling theorem (7) discussed in the Letter. We then present a

brief but explicit derivation of the 1D Schrödinger equation with the effective potential V (x) given
by equation (4) of the Letter. We stress the importance of the second, often omitted, term in V (x)
and then compare the results obtained within this effective 1D approach to those obtained using a

full fledged numerical calculation of the 2D polariton spectrum.

EXPERIMENTAL ILLUSTRATION OF THE
TOPOLOGICAL INVARIANCE OF THE IDOS

In order to illustrate the topological invariance of the
integrated density of states (IDOS) measured on a po-
lariton gas laterally confined by a Fibonacci potential,
we describe here additional data obtained for different
system sizes and realizations of the potential. The re-
sults are presented in a similar way as in the paper so
that they can be directly compared to Figs. 3 and 4.
These new data confirm that the wave vector values at
which the mini-gaps open in the Fibonacci spectrum, as
well as the corresponding values of the IDOS, are invari-
ant quantities of topological nature, i.e. that they do not
depend on the specific shape of the quasi-periodic poten-
tial felt by the polaritons nor on the size of the letters.

We study two additional samples (hereafter called sam-
ples 2 and 3 by contrast to sample 1 which corresponds
to the one presented in the Letter). These samples have
a different length a of the letters than sample 1 (which
had a = 0.8 µm). Sample 2 has longer letters (a = 1.35
µm), while sample 3 has shorter ones (a = 0.5 µm). Fur-
thermore, while sample 3 has letter widths identical to
those of sample 1 (wA = 3.5 µm and wB = 1.86 µm),
sample 2 has a different wB = 2.04 µm, which results
in a smaller potential contrast between the two types of
letters. Moreover samples 2 and 3 also differ from sample
1 by their total number of letters, and thus correspond
to different orders of the Fibonacci sequence: S12 (144
letters) for sample 2, S14 (377 letters) for sample 3, as
compared to S13 (233 letters) for sample 1.
Figures 1 and 2 display the spectrally resolved far field

emission, the density of states (DOS) and the IDOS mea-
sured on samples 2 and 3, together with corresponding
calculations.
Let us first discuss the far field emission shown in the

top panels of the two figures. As in Fig. 3 of the Letter,
mini-gaps open, whose positions in momentum space can
be accurately labeled (see arrows) by means of two inte-

gers [p, q] such that k = π
a (p+ qσ−1), in accordance with

the gap labeling theorem (7). Comparing these spectra
with sample 1 allows to understand their scaling proper-
ties. Since the momentum k-positions of the gaps scale
as π

a , the spectrum of sample 2 appears ”compressed”
in energy with respect to that of sample 1: for instance,
the gap [−1, 2] appears much closer to the bottom of the
parabola. Thus, due to the finite polariton linewidth,
only one mode is visible below this gap (instead of three
for sample 1 in the Letter). For sample 3 instead, the
spectrum appears ”stretched” with respect to sample 1,
and more modes and mini-gaps can be experimentally
identified below this [−1, 2] gap than in the Letter.
The values of the IDOS in the mini-gaps are also in-

variant topological quantities. This is illustrated in Figs.
1(d) and 2(d) where the theoretical values N (EQp,q/2) =
p + qσ−1 for the IDOS inside the gaps (see Eq. (7) of
the Letter), predicted by the gap labeling theorem, are
indicated with red horizontal arrows. Both numerical
and experimental results reproduce well the values of the
heights of the plateaus.
To conclude, the overall data presented in our work

provides a solid illustration of the scaling properties
of the gaps positions and topological invariance of the
IDOS, as ensured by the gap labeling theorem (7).

DERIVATION OF THE EXPRESSION OF THE
EFFECTIVE POTENTIAL GIVEN BY

EQUATION (4)

We now turn to the derivation and discussion of the
validity of the 1D Schrödinger equation with the effective
potential V (x),

V (x) =
π2

w2 (x)
+

π2 + 3

12

�
w� (x)

w (x)

�2

(1)

given by Eq. (4) in the Letter. To that aim, we need
to map the original 3D setup onto an effective 1D prob-
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FIG. 1: (Color online) (a) Spectrally resolved far field emis-

sion measured on sample 2 (parameters given in the text)

and (b) corresponding numerical results obtained with the

effective 1D model described in the Letter and in the next

section. The positions of the gaps are labeled with two inte-

gers [p, q] and indicated with red arrows. (c) Measured total

(angular-averaged) emission spectrum I(ε) and (d) normal-

ized integrated emission intensity
� ε

E0
I(ε�)dε� (with E0 the

lower energy state). (e) Calculated DOS smoothed for the

comparison with I(ε) in (c). (f) Normalized calculated IDOS.

lem. As described in more detail in the Letter, polari-
tonic wires are fabricated by processing a planar λ/2
cavity. We denote n its effective refractive index. The
electromagnetic field is confined along the (vertical) z-
direction using two Bragg mirrors. This confinement is
much tighter than that in the perpendicular xy-plane.
For the latter, we impose zero boundary conditions, an
approximation justified by the high contrast in refrac-
tive index between dielectric and air (see, e.g., Ref. [1]).
Under the above assumptions, the corresponding electro-
magnetic field eigenmodes can be chosen to have either
TE or TM polarizations. The polarization splitting is
large in an etched wire cavity, probably because of strain
relaxation. Since in the experiment we detect only one
polarization, we do not include the polarization degree of
freedom in the simulation and we consider a scalar wave
approximation. Then, looking for separable solutions be-
tween vertical and lateral coordinates, leads to the follow-
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FIG. 2: (Color online) Same as Fig. 1 for sample 3 (parame-

ters in the text).

ing two-dimensional (2D) stationary wave equation

Eψ (x, y) = − �2
2mph

�⊥ψ (x, y) , (2)

where mph ≡ n2Ec/c2 is the effective photon mass, Ec ≡
�c
n kz is the energy associated with the fundamental mode
of the λ/2 cavity, and �⊥ ≡ ∂2

x + ∂2
y is the transverse

Laplacian. Since E � Ec, the total photon energy can
be expanded in E so that,

�ω ≈ Ec + E . (3)

As a result of our assumed zero boundary conditions in
the xy-plane, the electromagnetic field ψ (x, y) vanishes
on the boundary.
Note that Eq.(2), with the same boundary conditions,

also holds to describe the center-of-mass motion of the
excitons confined to the xy-plane by the quantum wells.
Therefore, within the same approximations, the electro-
magnetic field and the excitons have similar eigenmodes
and energy spectrum (up to the difference in their effec-
tive mass), so that the photon-exciton coupling is diago-
nal in the eigenmode index. A flat exciton dispersion is
used because of their relatively large mass. The finding of
the eigenmodes of the 2D problem (2) on a strip can eas-
ily be done numerically. Nevertheless, it is useful to have
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a well controlled 1D effective model providing intuition
and insight of the essential features of the problem at
hand. This is particularly relevant for the quasi-periodic
potential we study and its fractal polariton spectrum,
since a broad range of analytical and numerical tools are
specifically available for the 1D problem, such as the gap
labeling theorem used in the Letter.

To proceed further and establish the expression of the
1D effective potential Eq.(1), we look for solutions of
the wave equation Eq. (2) on a symmetric strip de-
fined by its longitudinal coordinate x ∈ [0, L], where L
is the length of the wire, and its transverse coordinate
−w(x)

2 ≤ y ≤ w(x)
2 . The function w (x) > 0, which de-

fines the x-dependent width of the wire, is assumed to
be differentiable. The sought solution can generally be
written in the form of a Fourier series over the transverse
quasi-modes,

ψ (x, y) =
∞�

n=0

ψn (x)

�
2

w (x)
cos (ky,n (x) y) , (4)

where both the transverse wave vector, ky,n (x) = π 2n+1
w(x) ,

and the expansion coefficients ψn (x), are x-dependent.
This solution is symmetric with respect to the middle
line y = 0, and it is not coupled to the similar anti-
symmetric one (note that for a non-symmetric strip, both
solutions would participate to the expansion (4)). We
need to consider only symmetric solutions, since they in-
clude the lowest frequency branch, corresponding to the
lowest transverse quasi-mode, ky,0 (x) = π

w(x) . An infi-

nite hierarchy of coupled differential equations for ψm (x)
is obtained by substituting the expansion (4) into the
wave equation (2) and subsequently integrating over y

with the weight
�

2
w(x) cos (ky,m (x) y). Neglecting the

coupling to the higher quasi-modes, leads to the follow-
ing approximate equation for the lowest quasi-mode:

Eψ0 (x) =
�2

2mph

�
− d2

dx2
+ V (x)

�
ψ0 (x) , (5)

where V (x) given in Eq.(1), defines the effective 1D po-
tential along the strip for the lowest transverse mode.
Similar results have been obtained for the study of cold
atoms in optical trap waveguides [2]. The coupling of
ψ0 (x) to the higher quasi-modes leads to the appearance
of additional terms in Eq.(5), involving various deriva-
tives of w (x). For a coupling strength between quasi-
modes small compared to the energy separation to the
next mode, we can neglect those additional terms. The
detailed analysis of this conditions is, however, beyond
the scope of this supplement. Instead, we justify this ap-
proximation comparing our results to the full fledged 2D
numerics.

The first term in the potential V (x) given in Eq.(1)
is the usual adiabatic approximation, proportional to

k2y,0 (x), which accounts for the distribution of the ”ki-
netic” energy between the transversal and the longitudi-
nal degrees of freedom. For a constant w (x), the prob-
lem is separable. It leads to uncoupled transverse modes
ψm (x) and the adiabatic kinetic term is the only remain-
ing contribution to V (x). For a varying profile w (x) such
as the one we consider, the problem is not separable any-
more, and the second term in Eq.(1) becomes relevant.
This term is sensitive to the stiffness of the boundary
variation [2]. For a smoothly varying width, w� (x) is
small and the second term is negligible compared to the
kinetic term. For a sharper step structure, like the one
we consider (see Fig. 1(b)-(c) of the Letter), the two
terms in the effective potential become comparable. In
the limit in of sharp steps for V (x), the second term in
Eq.(1) becomes singular, namely a repulsive δ-function
squared. In that case, higher transversal quasi-modes
must be included.

COMPARISON BETWEEN THE EXACT 2D
CALCULATION AND THE EFFECTIVE 1D

POTENTIAL

We wish now to show that the effective 1D model
provides a quantitatively good description of the mea-
sured polariton spectrum provided we include the sec-
ond term in the potential (1) which account for the
sharp boundary modulation. To that purpose, we com-
pare the low energy eigenmode spectra obtained from
the exact two-dimensional (2D) and the effective one-
dimensional calculations. The 2D calculation is done us-
ing, instead of (4), a complete two-dimensional Fourier
expansion, and then diagonalizing the Hamiltonian in
this two-dimensional basis. In addition, a scale is in-
troduced over which we smoothen the width profile by
means of a convolution of the binary width profile with
the Gaussian kernel,

g (x) ∝ e−(x/ηa)2 , (6)

where a is the letter length and the relative dimensionless
smoothness scale η is used as a fitting parameter (to the
experimental data). This is justified looking at the micro-
graph of the wire in Fig. 1(b) of the Letter. Obviously,
there is some smoothness in the wire width variation,
introduced by the etching process. Its scale, however,
is hard to quantify from the direct measurement, and
should be considered as a phenomenological parameter.
In order to compare the effective 1D description to the
full 2D calculation, we consider sample 2 described above
(a = 1.35 µm), and plot in Fig. 3 the integrated density
of states (IDOS) for different values of the fitting param-
eter η. We note that the position and the width of the
gaps of the 2D spectrum are significantly less sensitive
to the parameter η than the effective 1D spectrum. Note
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FIG. 3: (Color online) Comparison, for sample 2, between the

results obtained for the IDOS based on the full 2D and the

1D calculations using the effective potential V (x) given by

Eq. (1). The values of smoothing parameter η are indicated

in the inset.

however, that the value of the IDOS in the gaps is in-
dependent of η in both cases, since it is a topologically
stable quantity. These different sensitivities to the pa-
rameter η can be rather exactly compensated by increas-
ing the smoothness scale in the 1D calculation relatively
to the corresponding 2D case. This is demonstrated in

Fig. 3 by superimposing the two results for different sets
of choices of η. On the other hand, the 1D calculation
using only the first (kinetic) term in V (x) does not show
any specific dependence on η even for rather large values
of the smoothing. It is thus not possible to use this ap-
proximation to reproduce the 2D calculation. Moreover,
the 1D potential based on the first kinetic term only in
Eq.(1), is unable to reproduce the gap structure of the
spectrum, even qualitatively. To show this, we have plot-
ted in the left panel of Fig. 4, the spectral function of
the 2D calculation. It is compared (right panel) to the
1D spectral function obtained using the first term only
in Eq. (1). We note the discrepancy in the position of
the gaps which cannot be handled by a proper choice of
η. More important, the higher energy gaps (e.g. the one
labeled [1, 0]) in Fig. 3 of the Letter are missing. In
contrast, the full 1D effective model with a proper value
of η reproduces faithfully both the 2D and the measured
spectra.
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FIG. 4: (Color online) Comparison, for sample 2, between the

spectral function obtained from the full 2D calculation (left)

versus the 1D calculation using the effective potential V (x)
given by Eq.(1) where only the first kinetic term has been

considered (right).


