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Abstract. The results of numerical work on the Anderson model of disordered systems are 
presented. The sensitivity of the eigenvalues to the choice of periodic or antiperiodic boundary 
conditions is used as a criterion for localization, and the theory of this criterion is discussed. 
For the two dimensional square lattice this criterion gives a reasonably sharp result for the 
onset of localization which is not in conflict with other criteria of localization, and it is 
found that localization occurs far more easily than Anderson’s theory suggests. For the 
diamond lattice the onset of localization is less sharply defined, and localization occurs less 
easily than for the square lattice, but more easily than in Anderson’s theory. 

1. Introduction 

Recently, intensive interest has been shown, by physicists working in the field of amorphous 
semiconductors and other random systems, in the model introduced by Anderson (1958). 
This model was the first serious attempt at describing quantum mechanical, as opposed 
to thermal, diffusion of electrons through a random medium. 

The Anderson model uses a form of the tight binding approximation in which the 
wavefunction for an electron moving through a periodic array of sites is taken to be a 
linear combination of site orbitals with only one orbital considered for each site. The 
equation for the amplitudes for an eigenstate of energy E is 

where E is a displacement vector ranging over the Z nearest neighbours of site i, the 
coupling is taken to be some constant between neighbouring sites and zero otherwise, 
a, is the amplitude associated with the ith site, and E ,  is the energy of the orbital localized 
on site i. It is assumed that each E, belongs to a uniform distribution of width fl and is 
statistically independent of every other site energy. If, for example, the E, are distributed 
uniformly in the interval ( -4 f l  $W) then it is easy to show that the energy band is 
defined by 

-3W - Z V  < E < 3 W + ZV (1.2) 

Anderson’s criterion for the localization of a state is that the imaginary part of the 
self energy associated with an arbitrary site should be zero with probability unity. For a 
particular value of the energy E this should occur when the value of W/V exceeds some 
critical value. The determination of this critical value of W/V involves a complicated 
statistical argument, and Anderson’s (1958) work contains some approximations which 
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may not be valid (Thouless 1970). There is considerable theoretical haziness concerning 
the critical value of WIT/: and this is one of the reasons for undertaking numerical work. 
Another reason is that very little is known about the precise nature of the transition. 

The numerical work of Khor and Smith (1571) on two dimensional systems suggests 
that localization, at least in the tail of the band, occurs more readily than Anderson 
suggests. There is also work by Visscher (1971) that has some bearing on this question. 
We have studied finite systems in two and three dimensions paying particular attention 
to the localization condition for the centre of the band. We have also looked for features 
of the numerical solution which would give some guidance as to the nature of the transi- 
tion. Two methods of approach are utilized; the first involves a direct study of calculated 
eigenvectors, and the second depends upon the sensitivity of states to the imposed bound- 
ary conditions. This approach has the advantage that only the spectra corresponding to the 
various boundary conditions used need be calculated; it may also provide a more sensitive 
test of localization. 

2. Criteria for localization 

For a sufficiently large system there should be no difficulty in distinguishing between a 
localized wavefunction, whose amplitude falls off exponentially away from the centre of 
localization, and a nonlocalized wavefunction extended over the whole system. In 
practice a numerical study can only be undertaken for a rather small system, and it is 
important to be able to recognize the occurrence of localization in such a small system. 

One measure of localization that has been used in earlier numerical work is the partici- 
pation ratio (Dean and Bell 1970), or a closely related quantity 

N N 

where the ai are amplitudes for some particular eigenstate; the participation ratio is 
essentially (NE) - ' .  This parameter a has its minimum value N-' for a Bloch wave (the 
participation ratio is unity when all sites participate equally), and has its maximum value, 
unity, when the wavefunction is completely localized on one site. If the localization 
is not complete, E-' is of the order of the number of sites over which the peak of the wave- 
function is spread. One possible way of studying whether or not states in a particular 
energy range are localized is to calculate a for different sizes of system. If a tends to a 
constant value as the size of the system is increased, the states are localized, but if CI 

appears to tend to zero, the states are probably not localized. One difficulty with this 
procedure, which is a difficulty with all the procedures that we have used, is that random 
variations of E, from one system to another, obscure systematic dependence of a on the 
size of the system. 

It is only for the lowest state and the highest state in the energy band that CI has its 
minimum value N-'  even for a perfect lattice. Other eigenstates are degenerate for the 
perfect lattice, and numerical evaluation of the eigenfunctions gives real standing waves 
which are superpositions of Bloch waves. Such standing waves give different values of M 
according to how they are made up; M could be3N- l  for a wave with a single set of parallel 
nodes, or 9/4N for a wave with two intersecting sets of nodes, or even 27/8N for a wave 
in three dimensions with three sets of nodal planes. It is reasonable to suppose that for a 
large system with a small degree of disorder the eigenstates can be regarded as the result 
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of multiple scattering of Bloch waves, so that the amplitude at a site is due to many 
waves coming from different scattering centres, and so it should be a random variable 
with a normal distribution. In that case c( should have the value 3 N - l .  

We have concentrated on a different criterion for localization. It is clear that the energy 
of a localized state in a large system should be insensitive to the boundary conditions, 
provided that the centre of localization is not close to the boundary, since the wavefunc- 
tion is exponentially small at the distant boundary. Periodic boundary conditions have 
the advantage that the position of the boundary has no effect, and all sites can be regarded 
as equally far from the boundary. The procedure we have used is to calculate the energy 
levels for a particular system using periodic boundary conditions, to repeat the calculation 
using antiperiodic boundary conditions across one of the boundaries, and then to 
calculate the difference in energy between corresponding levels when the levels are 
arranged in order of energy. For strongly localized states the corresponding wavefunctions 
should be very similar, and the difference in energy should be exponentially small, 
while for states in an ordered two or three dimensional system there should be little 
correspondence between the wavefunctions and the energy differences should be com- 
parable with the spacing between levels ; for the ordered system the change in boundary 
ccnditions produces a change in wavenumber of n/L, where L is the distance across 
the system, and this produces a change in energy much larger than the spacing 
between energy levels. The ratio of the energy shift (this difference between corresponding 
energy levels with the two boundary conditions) to the energy spacing has been used as a 
measure of the degree of localization. If this ratio decreases as the size of the system is 
increased the states are localized, but if it does not decrease the states are not localized. 
It was hoped that this would provide a sharper criterion than the value of a. 

There is a rough argument to show what value of this energy shift AE to the spacing 
between energy levels, roughly W I N ,  gives the condition for localization in a system of 
N sites. If we take a particular system of N sites and continue it periodically to form an 
infinite periodic system with the original system of N sites as a unit cell the continued 
system will have energy levels in N energy bands ofwidth dAE, where d is the dimensionality 
of the system. The quantity 4AE can therefore be regarded as the strength of the coupling 
between states on neighbouring cells. The problem we would like to be able to solve is the 
problem in which these large unit cells are not identical, but are randomly chosen from 
the same population. The coupling between these cells has a strength of order $AE, 
variation in energy of states of similar character from one cell to another is of order W I N ,  
and so our new problem is like the old problem with V / W  replaced by $NAE/W If this 
parameter is less than the original one, it should become even less if we could repeat the 
argument one stage further, making cells of cells, and so on. Our tentative criterion for 
localization is therefore 

V NAE 
w 2 w  
->- 

or 

NAE < 2V (2.2) 
The numerical constant should not be taken seriously. 

In the Appendix perturbation theory is used to derive a relation between the ratio 
of the shift AE to the spacing q between energy levels and the mean free path A in the case 
of a relatively small degree of disorder. This derivation makes use of an assumption that 
the matrix elements of the momentum operator between two states do not depend 
strongly on the difference in energy between the two states, and this assumption may not 
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be correct. The results are that 

AE Ak 
- N _  - 

v l x  

in two dimensions, and 
AE 2;1Lk2 
-e!- 
q 3x2 

in three dimensions, where k is the wavenumber and L is the length of the system. In 
both cases the shift is proportional to the mean free path, but in two dimensions the 
ratio is independent of the size of the system, while in three dimensions it increases with 
the size of the system. These results can be taken as an indication of conditions in which 
the shift is comparable with the spacing. The use of perturbation theory is invalid when 
this ratio is of the order of unity-the actual shifts can never be appreciably larger than 
the spacing. Perturbation theory diverges when levels attempt to cross, and we could 
not detect any crossing, since levels are identified only by the order in which they occur. 

3. Methods of calculation 

Particular systems described by an equation of the form of equation 1.1 were set up 
and the eigenvalues found numerically. The lattices studied were the two dimensional 
square lattice, and the three dimensional diamond lattice. There were two reasons for 
choosing the diamond lattice. One reason is that the coordination number is the same as 
that of the square lattice, and so differences between them are likely to be due to dimen- 
sionality rather than to different connectivity; it is the connectivity which is important 
in Anderson’s (1958) work. A second reason for choosing the diamond lattice is that for a 
given number of sites the boundary conditions appear to be less important for a diamond 
lattice than for other lattices. One measure of the effect of periodic or antiperiodic 
boundary conditions is the least number of steps which a path starting from a given point 
and ending at the same point can have if the path crosses the boundary once; this 
determines the lowest moment of the hamiltonian whose trace is affected by the boundary 
condition. For a diamond lattice of 216 sites the shortest path of this sort has 12 steps, 
while for the same size of simple cubic lattice the shortest path would have 6 steps. 

For each lattice various sizes were studied. For the square lattice the number of sites 
varied from 9 to 100, while for the diamond lattice 8, 64 and 216 sites were used. For 
a given kind and size N of lattice, site energies ci were determined by assigning the integers 
from 1 to N to the N sites in a random manner. If the number assigned to the site i was 
n ,  the site energy was taken to be -niW/(N - 1). The eigenvalues were calculated for 
the different values of W using the same numbers ni, so that the calculated dependence 
of various quantities on W is subject to less statistical error than the dependence on N is 
subject to. 

For all the systems studied the complete set of eigenvalues was found using a subroutine 
based on the Householder method, written for the KDF 9 computer by Dr R E Borland 
of the National Physical Laboratory; this method gives very precise values for the eigen- 
values. The eigenvalues were calculated both for periodic boundary conditions and for 
boundary conditions which were antiperiodic across one boundary-it might have been 
better to use antiperiodic boundary conditions on all boundaries instead of on only 
one boundary. In some cases some or all of the eigenvectors were calculated. With the 
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routine used it was quicker to calculate the eigenvalues for both boundary conditions 
than the eigenvectors for a single boundary condition. 

The value of V was taken to be unity, and W varied between 0 and 25. 
The eigenvalues were arranged in ascending order, and the differences AE between 

corresponding eigenvalues for the two boundary conditions were calculated. Since these 
differences varied by many orders of magnitude for each system, as can be seen from 
figure 2, the geometric mean m of the N differences was calculated as a measure of the 
typical magnitude. This geometric mean is indeed a typical value of the energy shift, 
as it comes close to the peak of the probability distributions seen on this and similar 
figures. By using D for the whole band we lose the possibility of distinguishing regions 
of localized and nonlocalized states within the band, and of finding a mobility edge 
between the two regions. If the density of states had varied more through the band it 
might have been possible to find the mobility edge by studying the systematic variation 
in AE through the band, but in fact the random variation of AE masks any systematic 
effects in the cases we have studied. 

The quantity CI defined by equation 2.1 was calculated in some cases so that its 
behaviour could be studied. This is the quantity which has been used in the work of 
Visscher (1971). 

4. Results 

4.1.  Two dimensional square lattice 

Figures la and lb  are coarse histograms of the densities of states for the N = 100, W = 5, 
square lattice, and N = 216, W = 15, diamond lattice problems respectively. The W 
values in each case correspond to the regions in which we find that the transition from 
localized to nonlocalized states occurs. It appears that the singularities associated with 
the densities of states in the W = 0 case have been smoothed out in both cases. 

As can be seen from the histograms shown in figure 2, the energy shifts calculated for 
given values of N and W are spread over many orders of magnitude. There is a slight 
tendency for states at the extreme ends of the band to have lower values of AE than the 
other states, and those states which are unusually close to one another in energy have 
unusually large values of AE, but otherwise the variation of bE through the band appears 
to be random rather than systematic. Other measures of the degree of localization also 
vary in an irregular manner from one level to another. For this reason we have concen- 
trated attention on the geometric mean dE of all the energy shifts, rather than on the 
behaviour in any particular part of the energy band. 

In figure 3 N a  is plotted as a function of W for various values of N ,  while in figure 4 
the same quantity is shown as a function of N for various values of W The most striking 
result is that Anderson’s (1958) estimate for the critical value of W/Vfor the square lattice 
is much too high. If we take the value 2.64 which Shante and Kirkpatrick (1971) quote 
for the connective constant K of the square lattice, Anderson’s critical value of W/V is 
about 30. Even for W/V = 20 the mean shift is very small and decreasing rapidly as the 
size of the system increases; by any other criterion all the states are strongly localized 
for this value of the ratio. 

For the larger values of N the behaviour of N T E  as a function of N and Wis suficiently 
smooth that little advantage seemed likely to be gained by studying slightly larger systems, 
although a value of N as high as 225 could have been handled without any change in the 
procedure. 
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Figure 1. Histograms of the density of states for (a) the N = 100, W = 5, square lattice 
problem, and (b) the N = 216, W = 15, diamond lattice problem. 
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Figure 2. Energy difference histograms in the N = 100, square lattice problem for (a) W = 5, 
(b) W = 10, (c) W = 15, (d) W = 20. In each case the vertical line refers to the position of the 
geometric mean KE. 
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Figure 3. N A x  against Wplots for square Anderson systems of various sizes for the following 
values of N :  0 25,V36, A49, 364, t 81, C100. 

For the lowest values of W shown here, which are 3,4 and 5, the quantity NXE seems 
to vary with N in an unsystematic manner, but seems to have a larger value for the lower 
value of W This is in rough agreement with equation 2.3 if the mean free path A is taken 
to be of the order of the interatomic spacing. For W equal to 8 or more Nm goes down 
steadily and rapidly as the size of the system is increased. For slightly smaller values of W 
the decrease does not become apparent until N exceeds 64, presumably because the 
localization distance is large in these cases. 

From these two figures it looks as if the critical ratio of W/Vis between 5 and 6. This 
may be an overestimate, since it may be that a larger system would show a region of W 
in which localization occurs with a localization distance larger than the systems studied 
here. This result is in agreement with the work of Khor and Smith (1971) who have shown 
clear evidence of localization for W/V equal to 6.4. If our estimate is correct, the lowest 
value of Nm for nonlocalized states is somewhat less than 2, in good agreement with 
equation 2.2. 

In figure 5 the behaviour of the parameter CI, defined by equation 2.1, is shown as a 
function of Wfor various energy levels close to the bottom of the band, in the case N = 100, 
with antiperiodic boundary conditions. For W greater than 3 the eigenstates associated 
with corresponding energy levels for the two kinds of boundary conditions closely 
resemble each other, in the cases we have examined in detail. One thing that should be 
noticed is that CI increases earlier for the ground state than for other states, although its 
value for W = 0 is less than that of the other states. Beyond W = 8 or so, the value of CL 
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N 

Figure 4. N D  against N plots for values of W ranging from 3 to 20 for the square lattice 
problem. 

Figure 5. c( against Wplots for states 0 1, 0 2, B3, A5, 0 6 ,  0 10 of N = 100 square lattice 
spectrum, with antiperiodic boundary conditions. 
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Figure 6. Amplitude contour plots for the N = 100 square lattice problem for (a) W = 4, 
(b) W = 5 ,  and (c) W = 6. The tw6 kinds of shading refer to the sign of the amplitude, and 
the dot gives the position of the amplitude whose magnitude is greatest. Periodic boundary 
conditions were used across both boundaries. 
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is, to a very good approximation, a linear function of W For the other states tl retains a 
small value, gently increasing with w and then increases by a factor of five or so in the 
range of W from 5 to 8. Different states vary quite a lot from one another. There are some 
sudden changes of a than can be seen, for example, in the sixth and tenth modes in this 
figure. These are due to two modes coming close to one another in energy, so that the 
eigenstates cease to be localized in a single region, but are superpositions of states localized 
in two different regions. This results in a value of CI which may be reduced by a factor of 2, 
and also results in much larger values of AE.  

For small values of $4( of the order of 2 or 3, the value of CI for states other than the 
ground state does not differ much from the theoretical value of 3 N - l ,  which is 0.03. 
For example, for W = 3 the lowest five states give values of a equal to 0.038,0.031,0.036, 
0*025,0.025; the first figure referring to the ground state. 

The results shown here seem to be compatible with localization setting in for most 
states in a range of W from 5 to 6. 

Figure 6 shows a series of crude contour plots for the system with N = 100 in this 
range of W The shaded squares correspond to sites where the amplitude is greater than 
its root mean square value of 0.1. The different sorts of shading are to show the sign 
of the amplitude, and a dot is drawn to show the site with the largest amplitude. The 
boundary conditions are periodic in both directions, and so the position of the boundary 
shown in the figure is of no significance. 

For the lowest state the sites where the amplitude is large are already concentrated 
in one region for W = 4, while the other states have sites of large amplitude scattered 
over the system. For W = 5 a slight tendency of the large-amplitude sites to be clustered 
in a portion of the system is detectable for the fifth and seventh modes, which is clear for 
W = 6. The tenth mode shows only slight signs of a tendency to localize for W = 6. 

It should be emphasized that regions in which the amplitude is large are not regions 
in which the site energy is particularly close to the energy of the state, although the site 
at which the maximum amplitude occurs generally is a site wh?se energy is close to the 
energy of the state. States close together in energy will be localized in different regions of 
the system. 

4.2. Diamond lattice 

Some numerical calculations were made also for the diamond lattice. The connective 
constant for this lattice is 2.88 (Shante and Kirkpatrick 1571), and so, according to Ander- 
son’s (1958) theory the critical value of W/V should be only a little greater than that for 
the square lattice. 

Calculations of the energy shifts due to the change from periodic boundary conditions 
to conditions antiperiodic across one boundary were made for the cases N = 8, N = 64 
and N = 216, with varying values of W The method used was the same as for the case 
of the square lattice. The results are shown in figure 7. 

The following features can be seen in this diagram. 
(i) For W less than about 5 the values of NAE are rapidly decreasing functions of 

and they are much larger than the corresponding values for the square lattice. In accord- 
ance with equation 2.5, the value of N a  js larger for larger values of N .  

(ii) There is a range of Wfrom about 5 to 12 or more in which the value of N b E  declines 
slowly from about 5 to about 2 or 1 and is more or less independent of N .  

(iii) For values of W larger than 15 the value of N b E  falls fairly rapidly for large N ,  
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Figure 7. N&E against W plots for the diamond lattice problem. The systems considered 
consisted of 2 8 ,  064 and A216 sites. 

less rapidly for smaller N. It does not fall so rapidly as it does for the two dimensional 
case. 

The first of these regions is clearly a region in which nonlocalized states exist, and 
the apparent correctness of equation 2.4 suggests that the model of plane wave states 
coupled by the random scattering is applicable. 

In the third region there is clearly localization, since Nm is a decreasing function 
of N. 

We have no theory to explain the behaviour of N D  in the second region, if it is 
real and not just a chance result of our small system. It is tempting to identify this with 
Cohen's (1970) region of electronic Brownian motion, but we have no information on 
this beyond what has been presented here, since we have not calculated eigenstates for 
the diamond lattice. The value of Nm at the end of this region is of the order of magnitude 
predicted by equation 2.2. 

5. Conclusions 

The calculations of the effect of boundary conditions on the energy levels provide clear 
evidence for a transition from extended to localized states in the square lattice at a value 
of WjV of the order of 5 or 6, which is less than that predicted by Anderson (1958) by a 
factor of five. This method provides a sensitive test of localization, but does not disagree 
with other tests of localization. 

The three dimensional results suggest a critical value of W/V larger by a factor of two 
or more, but the transition is less clear than in the two dimensional case. There may exist 
an intermediate region in which the states are not localized, but not adequately described 
in terms of weakly 'coupled plane waves. 

It is interesting to note that these numerical results agree better with the simpler, 
but probably incorrect, versions of Anderson's argument (Ziman 1969, Thouless 1970, 
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Herbert and Jones 1971, Economou and Cohen 1971) that have been published recently 
than with the more complicated original version. The difference between two and three 
dimensional results is not, however, a consequence of any of these arguments. 
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Appendix 

We derive here an expression for the effect of a change in boundary conditions from 
periodic for a system with period L to the more general form in which the amplitude 
changes by a factor exp(iKL) when the coordinate x is increased by the period L. 
If K is a multiple of 27c/L, periodic boundary conditions are recovered, and if K is an 
odd multiple of n/L, antiperiodic boundary conditions are obtained. 

This change in boundary conditions is equivalent to a transformation to a moving 
frame of reference, or to a gauge transformation, and a solution of the Schrodinger 
equation can be written in the form 

(A.1) $(r) = 4 ( r )  exp (iKx) 
where 4 satisfies periodic boundary conditions and satisfies the Schrodinger equation 
with additional terms 

(:)A + (F) 
in the hamiltonian. For the lattice problem the momentum operator must be replaced 
by the corresponding difference operator, the mass m must be replaced by V12/h2 where 1 
is the lattice spacing (for a square or simple cubic lattice), and the term h2K2/2m is 
replaced by an operator with matrix elements equal to 3VK2l2 .  

The operator p, has no diagonal matrix elements between the real eigenstates of the 
original problem with periodic boundary conditions (K = 0). The energy shift is therefore 
given to second order in K as 

h2K2 I @ , ) i j l z  I h2K2 
m2 F E i - E j  2m 

A E i = -  - 

It can be shown that this expression differs from zero only because of fluctuations in the 
value of the sum, and these fluctuations are dominated by small values of ] E i  - E j / .  
From the Kubo formula it can be shown that the sum is proportional to the contribution 
of the level i to the integral of the conductivity, and this cancels with the second term 
on the right, in so far as the Thomas-Reiche-Kuhn sum rule is satisfied. 

is proportional to Aij(Ei - E j )  and the expression on the 
right of equation A.3 is identically zero, apart from some exponentially small terms which 

For localized states 
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arise from the fact that the operator R is not properly defined with periodic boundary 
conditions. 

In the case of nonlocalized states we can compare this expression with the Kubo- 
Greenwood formula for the electrical conductivity of a cube of side L, which is 

in the form given by Mott (1970), where N ( E )  is the density of states per unit volume at the 
Fermi surface. In order to get an expression which can be compared with the result of the 
Boltzmann equation it is necessary, as Mott has emphasized, to assume that the mean 
square value of the matrix element [SXlij evaluated between eigenstates of the system, 
does not depend strongly on the energy difference Ei  - E j  between the eigenstates. 

If this assumption of the independence of the matrix element of SX from Ei - E j  is 
correct even for spacings as small as typical spacings between energy levels of the entire 
system-and it should be emphasized that the finite value of the conductivity given by the 
Kubo-Greenwood formula in the DC limit depends only on this assumption being true 
for Ei - E j  of order ho, where o is a small AC frequency-then the magnitude of the 
square matrix element in equation A.3 can be taken from equation A.4. The sum over 
states, which is a sum over positive and negative terms, is likely to be dominated by the 
largest term, which is of the order of one over the spacing between energy levels, or 
L3N(E). A more precise value can be obtained if it is assumed that the energy levels are 
uncorrelated, in which case the value of the sum has a Cauchy distribution whose width 
is n times this quantity. The geometric mean of the energy shift is therefore given by 

- nh2KZL3N(E) ohKZLj 
AEi = m2 I [ S x I i j R  = vl 

where y is the level spacing. 
Finally we can express the conductivity in terms of the mean free path ;1 as 

e2k2A 
3n2h 

o=- 

so that we have 

Bi kZK2L3A 
- 

6n2 

For antiperiodic boundary conditions K L  is equal to n, but the 
of K L  with period 277, so substitution of K L  equal to n in 
overestimates the shift; it may be better to put K L  equal to 2. 
get mi 2k2LA 

- E -  
y 3n2 

A similar calculation in the two dimensional case gives 

k i K 2 L 2  kA 
- - - N -  - - 

Y 471 n 

shift is a periodic function 
this expression probably 
With this substitution we 

It is interesting to note that in the two dimensional case the numerical results show that 
A E i / q  is of order i, where the transition to localized states occurs, and so k?, N I ;  the 
mean free path is therefore of the order of the interatomic spacing at the mobility edge. 

- 
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