
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 132.68.73.239

This content was downloaded on 17/06/2015 at 12:39

Please note that terms and conditions apply.

Spectral Properties of Quantum Diffusion on Discrete Lattices

View the table of contents for this issue, or go to the journal homepage for more

1989 Europhys. Lett. 10 95

(http://iopscience.iop.org/0295-5075/10/2/001)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0295-5075/10/2
http://iopscience.iop.org/0295-5075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


EUROPHYSICS LETTERS 
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Spectral Properties of Quantum Diffusion 
on Discrete Lattices (*). 
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Dipartimento d i  Fis ica  Nucleare e Teorica, Universita d i  Pavia 
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PACS. 03.65D - Functional analytical methods. 
PACS. 05.45 - Theory and models of chaotic systems. 
PACS. 72.15R - Quantum localization. 

Abstract. - The possibility of quantum diffusion over discrete lattices is discussed on the ground 
of general spectral theory, in connection with the problem of quantal suppression of classical 
chaos. Given the Hausdorff dimension of the spectrum, an asymptotic lower bound for the 
spreading of wave packet can be established. This bound shows that diffusive spread over one- 
and quasi one-dimensional lattices can take place only if the spectrum is singular continuous. 

Many problems in quantum physics lead quite naturally to investigate the asymptotic 
properties in time of the propagation of wave packets on discrete lattices. Examples of 
specific interest to the present paper are the tight-binding models (with random potentials) 
of solid-state physics and the kicked-rotator (KR) model, which has attracted much 
attention in connection with studies on quantum chaos[1,21. While the lattice in tight- 
binding models is directly related to  a periodic structure in physical space, in the KR model 
lattice sites correspond to the angular-momentum eigenstates of a rotator, and hopping 
between them is induced by &like <<kicks. occurring periodically in time. In both cases, 
classical analogy would suggest that under certain conditions the quantum motion is 
diffusive, in the sense that the average distance travelled by the <<particle. on the lattice is 
asymptotically proportional to the square root of time. The existence of quantum diffusion is 
a physically important question, because in tight-binding models diffusion is closely related 
to conductivity [31 and in the KR model to  the role of classical chaos in quantum mechanics. 

In spite of classically grounded expectations, diffusion turns out to be absent in both 
models, at least in the case of one-dimensional lattices. Far from being accidental, this 
analogy between so different models could be traced back to  a nontrivial similarity of their 

(*) Work supported in part by NSF Grant No. PHY82-17853, supplemented by funds from NASA. 
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mathematical formalism [4,5], and the quantum effect which is responsible for the absence 
of diffusion is now called localization in both cases (Anderson localization in the former, 
<<dynamical,> localization in the latter). 

Whereas Anderson localization could be rigorously proved, this is not yet the case for 
dynamical localization, which was nevertheless demonstrated by a huge amount of 
numerical results and by the above hinted formal analogy with the Anderson model. 
Anyway, as soon as it became clear that the quantum KR would never reproduce the 
classical unbounded diffusion, Chirikov, Izrailev and Shepelyansky put forward a heuristic 
argument (henceforth referred to as the Siberian argument) which yielded a remarkable 
estimate of the localization length in the KR [6], very well confirmed by numerical 
experiments [7,8]. 

Even though this estimate is now generally accepted, it is not so commonly realized that 
the argument behind it has actually a wider scope. As a matter of fact, it is a spectral 
argument for the absence of diffusion in dynamical models, and actually a very general one. 
The present paper is aimed at mathematically substantiating this point by means of a simple 
result of spectral analysis. 

It is well known that wave packets have no chance to diffuse in the absence of a 
continuous spectrum, and that, conversely, a continuous spectral component enforces 
unbounded propagation [9]. In the one-dimensional case, the asymptotic nature of the 
propagation will range between two extreme cases, according to the nature of the spectrum. 
The first is just localization, and corresponds to a pure-point spectrum. The second is 
<<ballistic. motion, with the distance growing proportional to time, and corresponds to an 
absolutely continuous spectrum (in the KR model this is known as quantum resonance). 

The point of the present paper is that intermediate asymptotic regimes, in which the 
wave packet spreads more slowly, are connected with spectra of a peculiar nature. I t  will be 
shown, first heuristically in the spirit of the Siberian argument, and then rigorously, that 
quantum diffusion on a one-dimensional lattice is possible only if the spectrum has a singular 
component, i . e . ,  one of zero (Lebesgue) measure. 

Were <<singular. the same as <<pure point., one would be forced to conclude that diffusion 
is utterly impossible. Therefore the Siberian argument falls short of providing a complete, 
though heuristic, proof of the absence of diffusion on one-dimensional lattices only because it 
cannot exclude the occurrence of a singular continuous spectrum (I) .  This kind of a spectrum 
has become of interest in solid-state physics in connection with investigations on incom- 
mensurate structures [ll]. Though its mathematical aspects have been analyzed in 
detail [E] ,  its physical relevance is not yet completely clear. Singular continuous spectra are 
a quite common occurrence for Hamiltonians on quasi-periodic lattices (see ref. [13-151 for 
recent results in this vein); on the other hand, it has been argued that singular continuous 
spectra may be scarcely relevant to the problem of localization in tight-binding models of the 
Anderson type, on account of their unstable nature [lo]. The possibility of using the results 
of the present paper as an argument for the absence of diffusion in dynamical models 
depends on whether a likewise negative attitude is taken towards singular continuous 
spectra in the context of dynamical localization. Anyway, it must be emphasized that these 
results are of a very general nature and can be applied to any problem in which the 
propagation of wave packets on a lattice can be described by a unitary group in discrete time 
(e.g., tight-binding models and systems subjected to external perturbations periodic in 
time). Moreover, they have a straightforward generalization to quasi-one-dimensional 

(l) As discussed in ref. [lo], a similar shortcoming occurred with a well-known and far-reaching 
approach to one-dimensional Anderson localization. 
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lattices, i.e. to lattices that can be obtained by associating a fixed number of sites to each 
place in a one-dimensional array. 

Let the evolution of a quantum system with states in some separable Hilbert space X b e  
defined by a discrete unitary group {i?} where t is an integer-valued time variable and 
the unitary operator $ describes the evolution over a fixed interval of real time (e.g., a 
period of some time-periodic external perturbation). Let a complete orthonormal basis 
{e,}(- < n< + m) be given in ,547'. Then the evolution of any state vector $ E S c a n  be 
identified with the propagation of a wave packet on the integer lattice by putting 
$,(t) = (e, lSt$).  I t  will be assumed that, if 

at  some time t ,  then d2(t)  < + m a t  any other time t. 
The heuristic part of the argument runs as follows. Let the wave packet at t = 0 be 

concentrated at the site 0, i.e. $ = eo, and suppose that it will asymptotically diffuse, i.e. that 
d2(t) - const. t for t -  w.  Since the spectral measure of $ is the Fourier transform of the 
correlation function R(t )  = (S t  $ 1  $), by performing a finite Fourier transform of R(t) 
(0 < t < T ) ,  one will be able to resolve the spectrum of 9 down t o  a scale - T-'. The number 
of points thus determined in the spectrum will have the meaning of an effective number of 
frequencies appearing in the motion up to time T ,  and can be identified, in order of 
magnitude at least, with d(T) ,  which measures the spread of the wave packet at the same 
time T. Therefore, asymptotically as T+ the spectrum is resolved, on a scale T-', by a 
number of points - const. which implies that the measure of the spectrum is zero and 
that its fractal dimension is 1/2. 

A similar conclusion can be obtained rigorously as follows. Consider an observable of the 
form 

where $(n) is a positive nondecreasing function, and suppose that the domain of 0 is 
invariant under the action of 9. For x 3 0  denote by v(x)  the number of sites n such that 
#(lnl> < x. Finally, let the spectral projections of S be E), (0 < A < 2x), so that the spectral 
measure of $ is d,u(A) = d//,??h$112. It will be assumed that ,U is a continuous measure, because 
the point of interest here is unbounded propagation, in which a point spectrum cannot 
contribute. A result on the asymptotics for large T of 

t = a  

will now be proved: 

PROPOSITION. - Let q(6) be a continuous nondecreasing function in [O, Sol, with 
0 < So < 2rc and q(0) = 0 such that p ( A )  < a(&) for all intervals A c [0, 2x1 of length 6< So. 
Then, for sufficiently large T and Vx>O, 

( ( O ) ) T > X [ ~  -clv(x)q(2xT-l)  lnT] (2) 

with c1 a suitable constant. 
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The proof consists in estimating the decay of time averages of the coeffincients +,(t). Let 
be the closed subspace of 557 spanned by St$, - 33 e t  e + 00 and P the associated 

projector. Let +o be a generating vector for S in a C$ itself is one such vector, but later we 
shall need some freedom in the choice of $J~). Then, Vk one has[16] 

2: 

p e k  = j f k ~ )  &A $0 
0 

with fk(A) such that 

Then 

and, denoting time averages up to time T by 

Let I], be the inner integral in (4). In order to estimate it, we introduce a variable x = A' - A 
(- x d x d x )  and use 1 sin (x/2) 1 3 1 x 1 x-l for the denominator in the integrand. There are 
2vT + 1 d 2 + T zeros of sin (x(T + 1)/2) in [- x ,  + x]  and these zeros define a partition of 
[- x ,  + x]  in subintervals of length < 2xT-'. If T is large enough, the measure ,U of any such 
interval will be d p ( 2 ~ T - ~ ) .  Upon writing IA as a sum of integrals over all such intervals one 
gets the following straighforward estimate: 

IA d 2?c(l + T- l )  q ( 2 ~ T - l )  [ 1 + $&] d c1 7(2xT- ' )  In T 

with a suitable constant cl.  Substituting this into (4) one gets 

From (1) and the last estimate it follows that, Vx>O 

~ @ T a X C ( l + : o T  
(2) 

the sum being understood over all n's such that +( Ini) a x. Therefore, recalling (5 )  and the 
definition of v(x), one gets the announced estimate. 

The above proposition can be used to  get an asymptotic lower bound for the time average 
of the expectation of the square d2 of the distance travelled by a .particle. on a lattice of 
given dimension. For that, one must first reorder the lattice sites in a one-dimensional array 
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according to nondecreasing values of their distance from the starting site. One can then 
define #(n) as the squared distance of the n-th site from the starting point (in the original 
lattice). All relevant information about the geometry of the original lattice will then be 
embodied in the function v ( x ) ;  for example, 

for a one- (or quasi-one-) dimensional lattice, and 

v ( x )  - a2 x 

for a two-dimensional lattice. In order to obtain an explicit form for the function ~ ( c ? ) ,  let us 
suppose that the spectrum has Hausdorff dimension a S 1 in the following precise sense: the 
measure ,U is supported by a set Q c [ 0 , 2 ~ ]  of Hausdorff dimension a, and p ( A )  = 0 for any 
subset A of Q of dimension <a. Then p will be absolutely continuous with respect to the 
Hausdorff measure h, on Q of dimension a, and one can take 

$6') = const 6" 

as soon as the density w of ,U relative to h, is (essentially) bounded. On the other hand, the 
latter condition can always be satisfied by a suitable choice of the generating vector (g.v.) +,I. 
Indeed, if w is unbounded, one can define a new bounded density by w' = cw for w S 1 and 
W' = c for w > 1, with c a normalizing factor. The measures p, p' with densities w, w' are 
mutually absolutely continuous; therefore, a g.v. can be found [16], whose spectral measure 
is ,U'. 

After fulfilling such preliminary constructions (Z), yields for the one- or quasi- 
ondimensional case: 

( d2)T 3 x(1- cz xln T-" In T )  

for Vx > 0; hence, 

T2" 
( d Z ) T 3 C 3 - -  

ln2 T 

(with cz, c3 appropriate constants). It is then seen that diffusion is possible only if a G 1/2, for 
otherwise the packet would spread too fast. In particular, in the case of an absolutely 
continuous spectrum (a = 1) the last estimate says that (d2)T will grow faster than T2-' for 
any E ,  and this is consistent with known results for the .resonant. KR [171. 

The natural question, whether the necessary condition a G 1/2 just established can be 
turned into a sufficient one, will not be entered here. I just wish to mention that useful hints 
in this connection are provided by some classical results in Fourier analysis, because the 
coefficients $k(t), whose decay in time determines the asymptotic nature of the motion, are 
the Fourier-Stieltjes coefficients of the measurefk(h)d,u(A). I t  is a known result [181 that it is 
always possible to find a measure supported by a Cantor set of dimension a < 1 such that its 
Fourier-Stieltjes coefficients are of order t-(a'2-E) for any E > 0; this yields an indication that 
a = 1/2 may also be a sufficient condition for diffusion. 

In the case of a 2-dimensional lattice, by inserting in (2) the appropriate v(x) one gets 

1 -  
( d Z ) T 3 C 4 - -  In T 
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which does not any more exclude asymptotic diffusion in the presence of an absolutely 
continuous spectrum. It appears therefore that the simple spectral argument discussed 
above does not give so effective indications in the higher-dimensional case, as it did in the 
one-dimensional one. 
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