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Fractal fluctuations in quantum integrable scattering
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We theoretically and numerically demonstrate that completely integrable scattering processes may exhibit
fractal transmission fluctuations, due to typical spectral properties of integrable systems. Similar properties also
occur with scattering processes in the presence of strong dynamical localization, thus explaining recent nu-
merical observations of fractality in the latter class of systems.
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Scattering processes dominated by a statistically la
number of metastable states display reaction rates that
pend on energy or other control parameters in complica
ways. Reaction curves~i.e., curves obtained by plotting cros
sections versus the relevant parameters! demand statistica
description. This approach, originated in nuclear physics,
given rise to the theory of quantum chaotic scattering@1#.
Classical chaotic dynamics plays an important role ther
@2#, with applications in many fields, including the study
mesoscopic conductance fluctuations@3#.

In the presence of complicated reaction curves, a nat
question is about their fractality. The latter is not meant
the strict mathematical sense, but rather as a property t
possibly observed on a wide range of resolution scales.
action curves probe the location of resonance poles in
complex energy plane, so their fluctuation properties
including fractality—are encoded in the distribution of su
poles. In particular, the lack of smoothness required by fr
tality can only be produced by resonance poles clusterin
the vicinity of the real energy axis. This excludes frac
reaction curves in quasiclassical cases when the underl
classical dynamics is completely chaotic~i.e., uniformly hy-
perbolic!, because the quantum resonances are then con
trated away from the real axis. This reflects the exponen
decay in time exhibited by such systems over long ti
scales. A dynamical signature of poles clustering near
real axis is instead slow algebraic decay of the survival pr
ability inside the interaction region. On the classical lev
such slow decay is, in particular, exhibited by systems wit
mixed phase space, endowed with a hierarchical structur
stable islands@4#. On such grounds, fractal fluctuations we
predicted by Ketzmerick for the quasiclassical transmiss
of electrons through mesoscopic cavities@5#. This prediction
has received numerical@6# and experimental@7# support.
However, fractal fluctuations have been numerically o
served also in two-dimensional tight-binding models
quantum dots, where the relation to classical dynamic
unclear@8#, and even in models where this relation is irre
evant @9#, due to strong quantum localization on one ha
and to the absence of significant classical critical structu
on the other. It therefore appears that fractality of react
curves is not strictly associated with critical structures in
classical phase space.
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The issue of fractality in the remaining major class
dynamical systems, namely, the integrable ones, has no
been investigated@10#. This is the main purpose of this pa
per. We first identify special statistical properties of res
nance poles, which afford fractal reaction curves. This we
in absolute generality, without assuming integrability
other special properties of the quantum system. We then
gue that such properties are optimally exhibited by suitab
completely integrable processes, thanks to a well-known
neric property of integrable systems, that their energy lev
share some of the properties of a random sequence@11#. We
use a textbook scattering problem to confirm our theory w
numerical data. Finally, we note that the same properties
also typical of fully chaotic, yet strongly localized system
and thus we explain the results of Ref.@9#.

We consider a weakly open quantum system, with scat
ing resonances atEj2 iG j /2 and the real energiesEj ar-
ranged in increasing order. The energy dependence of a
cal cross sectionT(E) consists of a smooth background plu
a resonant part, which we write in the form

Tr~E!5(
j

cj

G j
2

~Ej2E!21G j
2

, ~1!

with cj slowly varying with j. We restrict within an energy
interval (E02W,E01W), and we assumee!W!E0, where
e is the mean level spacing.To perform fractal analysis of
graph of Tr(E) vs E, we divide the interval (E02W,E0
1W) into subintervalsDk , (k51,2, . . . ,M ) of equal size
d}1/M . Upon each subinterval, we pile up squares of sided,
and denote byN(d) the total number of squares met by th
graph of Tr(E) . Algebraic scalingN(d)}d2 f with f .1
between scalesdmin!dmax signals that in between suc
scales, the graph exhibits a fractal~box-counting! dimension
f. In order to determinef, we compute

log10@N~d!#

log10~d21!
'21

log10FM 21(
k

sk~Tr !G
log10~M !

'22
log10̂ s~Tr !&

log10~d!
,
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wheresk(Tr)>0 is the maximal excursion ofTr(E) within
the kth interval. We next assume the following. First, in th
given energy interval, the frequencyP(G) of widths less
than G scales likeP(G);aG12a at e,G,Ḡ, with Ḡ the
mean resonance width, and 0,a,1. Second, bothG j and
Ej form uncorrelated sequences. Finally, resonances
strongly overlapped, in the sense thate!Ḡ!W. Then, ate
!d!Ḡ, the fluctuation ofTr in an intervalDk is mostly due
to many tiny resonant peaks that are centered inside the
terval and are narrower thand. Every such peak contribute
a Lorentzian term in Eq.~1!, and the mean square oscillatio
of this term asE ranges inDk is ;d21P(d)21*0

ddP(G)G
;1. There aren(d);e21dP(d) such peaks; as they contrib
ute uncorrelated oscillations, we estimate^s(Tr)&;An(d)
;e21/2d12a/2. Therefore, f 511a/2 in a rangedmin,d
,dmax, with dmax;Ḡ, and dmin roughly estimated by
n(dmin);1, that is,dmin;(e/a)1/(22a).

Fluctuating cross sections may also be generated at fi
energy, by varying other parameters, as in the case of m
netoresistance fluctuations in mesoscopic physics. The a
analysis carries over to such fluctuations on replacing ene
by the relevant parameter, provided that the above assu
tions remain satisfied.

The above-described conditions are met in some ph
cally relevant situations. Uncorrelated sequences of en
levels are a distinctive feature of generic integrable syste
@11#. We then surmise fractal reaction curves for complet
integrable scattering processes, provided they display a s
decay, leading to an inverse power-law distribution ofG ’s.
We shall presently describe an explicit example of suc
process.

We consider the quantum dynamics of a particle of a u
mass moving inside the infinite strip 0<x<Lx in the (x,y)
plane, with tunneling barriers aty56Ly/2. The Hamiltonian
is

H52
\2

2
D1\sd~y2Ly/2!1\sd~y1Ly/2!.

We use periodic boundary conditions atx50, x5Lx . The
Dirac delta functions enforce additional boundary con
tions: ]yc(x,y1)2]yc(x,y2)52s\21c(x,y) at y5
6Ly/2. The physical model is a rectangular billiard, when
the particle may escape into semi-infinite leads, by tunne
through the two horizontal sides. Foruyu.Ly/2 eigenfunc-
tions areuE,m

6 (x,y)5fm(x)uk
6(y), fm(x)5exp(2pimx/Lx),

uk
6(y)5A6(k)exp(ikuyu)1B6(k)exp(2ikuyu), and 2E/\25k2

14p2m2/Lx
2 , with 6 denoting the upper (y.Ly/2) and the

lower (y,2Ly/2) lead, respectively. For givenE.0, there
are a finite number of open scattering channels labeled by
integerm, umu<Int(Lx(p\)21AE/2), and by the lead labe
6. The coefficientsA6(k) are related toB6(k) by the scat-
tering matrix. Scattering resonances are located at com
values of energy zn,m5En,m2 iGn/252p2m2\2/Lx

2

1kn
2\2/2, (n51,2, . . . ,),wherekn are the complex roots o

the equations

eikLy617 ik\s2150. ~2!
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The following asymptotic formulas can be computed by u
ing Lagrange’s theorem on the inversion of analytic fun
tions:

En,m5En,m
0 2

\vn
2

Lys
H s

vn
arctanS vn

s D1OS \

sLy
D J ,

Gn5
\vn

3

Lys
2 H s2

vn
2

log10S 11
vn

2

s2D 1OS \

sLy
D J , ~3!

wherevn5np\/Ly is the velocity in thenth vertical mode
of the closed rectangle, andEn,m

(0) 52\2p2m2/Lx
21vn

2/2 are
the eigenvalues of the closed (s5`) billiard. The first term
on the right-hand side~rhs! of the second Eq.~3! is the decay
rate of a classical billiard ball inside the closed rectang
with velocity vn in the y direction, and absorption probabi
ity at y56Ly/2 equal to the transmission coefficient for
plane wave through on ad barrier, given byvn

2(s21vn
2)21.

We assume\!sLy and thereby neglectO(\/sLy) correc-
tions in Eq.~3!. The statistics of real parts of resonances
then similar to the energy-level statistics of an integra
system, with a mean level spacing only different by corre
tions of order (\/sLy)

3 from that of the closed billiard:e
52p\2(LxLy)

21. The correction to the closed billiard leve
in Eq. ~3! lifts possible degeneracies due to commensur
geometry.

In an energy interval (E02W,E01W), e!W!E0, the
smooth~Thomas-Fermi! part of the integratedP(G) distri-
bution is computed from a microcanonical distribution
classical billiard trajectories at energyE0, each with a decay
rate G ~3!. This quasiclassical distribution has a meanḠE0

.\s22Ly
21E0

3/2, and behaves likeaG1/3 at smallG, with a
5(p2E0/2)21/2(Lys

2/\)1/3. The same behavior may be a
sumed for the quantal distribution, provided thatE0<s2,
and thate!ḠE0

. The former condition ensuresG1/3 behavior

of the quasiclassical distribution in a range ofGvalues com-
parable toḠE . Together with the latter condition, it ensure
that the quasiclassical behavior is observed over a sta
cally significant number of resonances. Reflecting gene
properties of energy spectra of integrable systems, the
parts of resonances, arranged in increasing order, form
essentially uncorrelated sequence. At fixed quantum num
m, they form an ordered ladder, but the superposition o
large number of different, uncorrelated ladders results i
Poisson-like statistic. On the same grounds we assume
correlated resonance widthsG, too.

The transmission amplitude at energyE from the lowerm
channel to the upperl channel is

Sm2,l 1~E!5
k2~E,m!\2

s2e2ik(E,m)Ly1@k~E,m!\1 is#2
dml , ~4!

where k(E,m)5A2E\2224p2m2Lx
22. A computation

shows that the residue of Eq.~4! at a resonance pole is;
2 iG/2 at smallG. Hence, the resonant part of the total tran
mission coefficient
3-2
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FIG. 1. Total transmission vs fluxf at fixed
energyE5531010 ~upper plot!, and vs energyE
at fixed fluxf50 ~lower plot!, for s53.53105

and s5104, respectively. In both cases\51,
Lx52, and Ly50.4. The energy range in th
lower plot is (E0 ,E01W), with E0553107 and
W52.53105. Units are arbitrary.
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T~E!5(
m

uSm2,m1~E!u2, ~5!

~the sum being over all open channels at energyE) has the
form ~1! apart from a slowly varying factor. The smooth pa
is }E5/2/s4. Collecting various estimates, we see that
\/(sLy)!1, \2/Ly

2!W!E0,s2, E0
3/2Lx\

21s22@1, the
assumptions of our general argument are satisfied, hence
graph ofT(E) vs E in (E02W,E,E01W) should be frac-
tal with dimensionf 54/3, over scales intermediate betwe
dmin;1.8e3/4ḠE0

1/4 anddmax;ḠE0
.

A numerically computed graph ofT(E) is shown in Fig. 1
~lower!. The corresponding fractal analysis is shown in F
2 and fully confirms the theory. In that case, the above e
mates fordmin , dmax give 101.9, and 103.9 respectively.

FIG. 2. Fractal analysis of the graph ofT(E) vs E shown in the
lower Fig. 1. The meaning ofd,N(d) is explained in the text. The
straight line corresponds to fractal dimensionf 54/3. The inset
shows the autocorrelation 12C(d)/C(0) vsd. The straight line has
slope 4/3.
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A generalization of the above model allows for the inve
tigation of parametric fluctuations. It is obtained by usi
boundary conditionsc(0,y)5eifc(Lx ,y). This is equiva-
lent to a particle moving on a cylinder, with the axis in they
direction, enclosing a magnetic fluxf. This problem is still
completely integrable. Replacingm by m2f/(2p) through-
out the equations derived atf50 yields the corresponding
theory. At fixed energyE, the total transmission fluctuates a
f is varied, in the manner illustrated in Fig. 1~upper!. The
theory of such fluctuations is completely parallel to the o
we have described for fluctuations vs energy at fixedf50.
Resonances depend onf, zn,m5zn,m(f), and the complex
values off solving the equationszn,m(f)5E define reso-
nance poles in the complexf plane. Omitting computationa
details, the real parts of such poles are distributed in@0,2p#
with a mean spacingef;p2\A2/E/Lx . The distribution of
their widthsGf behaves similar toGf

1/3 at smallGf , with a

mean ;Lx
2ḠEef /(8p2\2). Our general discussion is thu

valid for parametric fluctuations, too. In fact, numerical da
shown in Fig. 3 demonstrate the predicted fractal dimens
4/3.

Both for energy dependent and for parametric fluctuatio
we have computed autocorrelations of the fluctuation grap
For the case of fluctuations vs energy, such correlations
defined by

C~d!5^T( f l )~E!T( f l )~E1d!&E ,

where T( f l ) is obtained fromT by subtracting a smooth
slowly varying part, and the average is taken over
scanned interval of energies. TreatingT( f l )(E) as a stationary
stochastic process, one easily finds that such correlations
have at smalld like C(0)2const.3d2g, whereg is the scal-
ing exponent of the rms increment ofT(E) over intervals of
length d: ^uT(E1d)2T(E)u2&E}d2g ~note that subtracting
the smooth part does not alter fractional scaling!. Generally
speaking, the rmsincrementis a quite different quantity from
the averageexcursionthat enters the definition of the fracta
dimension. With the present strong statistical prop
3-3
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ties, the two quantities scale in the same way at smald:
2g522a, so C(d);C(0)2const.3d4/3, as confirmed by
the numerical data. However, fractional scaling of corre
tions is not, in general, a sufficient condition for fractali
For instance, correlations in Figs. 2 and in 3 exhibit a
scaling down to smalld scales below the fractal range. Th
is because they are still determined by the statistics of
row, nonoverlapped individual peaks, which do not produ
fractality any more. On the other hand, on increasingd cor-
relation functions depart from the predicted fractional beh
ior already at values well within the fractal range, becaus
larger statistic is needed forincrementsrecorded over a finite
d grid to sample the distribution ofexcursionsover the same
grid.

FIG. 3. Fractal analysis of the flux-dependent fluctuatio
shown in the upper Fig. 1. The straight line corresponds tof 54/3.
The inset shows the correlation scaling exponent 2g54/3.
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The work reported in this paper hinges on the fully ge
eral fact, that fractality of scattering fluctuations is, first a
foremost, a matter of complex level statistics. As in the c
of real level statistics~closed systems!, integrable systems
have special properties in this respect, and we have in
demonstrated fractal reaction curves for a completely in
grable process. A few remarks are in order about the
evance of this finding:

~1! In completely integrable scattering processes, ther
no mixing of flux between different channels. Similar
pseudorandomness of energy levels, fractality comes of
perimposing nonfractal fluctuation patterns from differe
uncorrelated channels. Therefore, the nature of the reac
curves depends on the relative weight assigned to diffe
channels.

~2! The present result may also be relevant to quasiin
grable systems, which possess large stable componen
their phase space. Such components may contribute a sig
cant set of resonances, produced by tunneling through inv
ant manifolds, with the statistical properties considered
this paper. Their interplay with critical structures at the b
der of the stable regions demands careful analysis.

~3! Uncorrelated energy spectra also occur with fully ch
otic systems in the regime of strong quantum localization
prototype system in this class is the kicked rotor, the quas
ergy spectrum of which has a Poisson-like statistic in cas
strong localization@12#. For this class of systems, theG ~dif-
ferential! distribution behaves similar to 1/G down to very
small scales@13,14#. This explains recent findings@9# of
parametricfractal fluctuations with dimension 3/2, detecte
in the survival probabilityat fixed time, on varying a mag
netic flux f.

Support from MURST Research Project ‘‘Chaos and L
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