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Abstract .  Let J be the Jacobi matrix associated with polynomial T(z) of degree 
N > 2. The spectrum of J is the Julia set associated with T(z) which in many 
cases is a Cantor set. Let j o )  denote the result of omitting the first row and 
column of J. Then it is shown that the spectrum of j~l)  may be purely discrete. 

It is also shown that for T(z)= c~NCN(z/cO for e > x / ~ '  where CN is a 
Chebychev polynomial the coefficients of J and J ~ )  are limit periodic extending 
the work of Bellissard, Bessis, and Moussa (Phys. Rev. Lett. 49, 701-704 (1982)). 

I. Introduction 

Let C be the complex plane and let T : C - ~ C  be a polynomial; T ( z ) = z N +  
klz ~-  ~ + "'" + kN, where N > 2 and k,6C. Define the iterates of T by T°(z) = z 
and T"(z)=ToT"-I(z)  for n 6 N = { 1 , 2 , 3  . . . .  }. Let J be the Julia set for T, 
[1, 2, 3]: J can be defined as the closure of the set of repulsive cycles of T. When 
J is a subset of the real line N, which is the case in this paper, then J is either a 
generalized Cantor set with Lebesgue measure zero or it is an interval. Let kt be 
the balanced T-invariant probability measure [4] on J. (If {Ti-l(z)}~=l is a 
complete assignment of branches of the inverse of T, then p(TT~(E))= lt(E)/N 
whenever E is a Borel subset of C. Equivalently, for all fEL~(#, C), we have 

1 N 
f(z) dl, t (z) = ~ ~ ~=a T(T[ ~(z)) dp (z).) (I. 1) 

Let {P,(z)}.~=o be the monic polynomials orthogonal with respect to #; that is 
P,(z) is of degree n, with unit leading coefficient, and 

e (z) e,.(z) d (z) = 0 (I.2) 
J 

when l (~ m. The bar means the complex conjugate. The relationship between the 

1 Supported in part by N.S.F, grant DMS-8401609 
2 Supported in part by N.S.F. grant MCS-8203325 
3 Present address: Dept. of Mathematical Sciences, Loyola University, Chicago, IL 60627, USA 



304 M.F. Barnsley, J. S. Geronimo, and A. N. Harrington 

orthogonal polynomials and the iterates of T is now welt-understood [4, 5, 6] and 
can be summarized as follows: 

el(z)  = z + kf fN,  (I.3) 

PiN(z) = P~(T(z)), leNo = {0, 1, 2 . . . . .  }. (I.4) 

Formally one can associate with/~ a semi-infinite tridiagonal matrix operator J 

Fb(O) 

where we define, when J c IR, 

(x/y ) 
b(/)= ( p  z ) ,  (leNo); 

with 

c(1) 0 ] 
b(1) c(2)... 
c(2) b(2)...| (~.5) 

a(m) = c(m) 2 ( p2 ) = 2 ) ,  (m~N); (I.6) 
<P,,- 1 

( f )  = ~ f ( x )  d#(x). 
Y 

We define a(n) = 0 and b(n - 1) = 0 whenever n < 0. When J ¢ N, the coefficients 
of J are defined by analytic continuation in parameter space, starting from a 
polynomial transformation T whose Julia set is real. 

When J c N it is known from general principles that f e~( l~ - )  (bounded 
linear operators on l~-, where 

~b~l~ ,~ ~ I~,(n)[ z < (oe), 
t / = O  

and that J is self-adjoint with spectrum J and spectral density # [7]. 
One would like to know how the spectrum changes if o¢ changes. To this end 

we consider j(1) which is derived from J by omitting the first row and column. 
We find that the spectrum changes dramatically from a singular continuous 
spectrum to a spectrum which may be purely discrete. 

Another thing one would like to answer is how the properties of J are reflected 
in the properties of J .  It is known [5, 8] that there are special recurrence relations 
among the coefficients in J ;  in an interesting recent paper, Bellissard et al. [9] 
have demonstrated that when T is a quadratic polynomial these relations imply 
that the coefficients in J form a limit periodic sequence, under appropriate 
conditions. We believe that this almost periodic behavior is generic, and in support 
of this we report almost periodicity results in connection with the family 
T(z) = ~NCN(z/~ ), where ~ > 1 and C N is the monic Chebychev polynomial of degree 
N > 2, orthogonal on [ - 2 ,  2]. We comment briefly on the families T(z)= 
• 4C4(z/ct ) + fl and T(z) = o~3C3(z/o~) -~ fl, t~, f l ~ ,  

Recently, the general problem of determining the spectrum of doubly-infinite 
Jacobi matrices has received a great deal of attention [10-16] because of its 
connection with certain quantum mechanical problems. In these problems one 
begins with the coefficients in the matrix and tries to deduce the nature of the 
spectrum. Here we are in fact considering the inverse problem: given the Spectrum 
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(the Julia set) deduce the properties of the coefficients. The examples considered 
in this paper are of special interest because much is known about the spectral 
measure kt and the asymptotics of the wave function [17-19]. 

We proceed as follows: in Sect. II we demonstrate the fact that under certain 
conditions the spectrum of j < n  is purely discrete. Then in Sect. III we derive results 
concerning the almost periodic nature of the coefficients in the Jacobi matrix 
associated with the polynomial transformations discussed above. Finally (Sect. IV) 
we discuss some physical consequences of these results. 

II. The Spec trum of  jr1) 

Let C be the complex plane and ~ = C u { ~ } .  Let T(z)=zN+klz N - I + ' ' . ,  
N > 2, and/~ be the balanced measure associated with T, then the Stieltjes transform, 
G(z), of #, 

du 
= - - ,  (II.1) C z) f z _  x 

is an analytic function of z for zCJ. Furthermore from (I.1) it follows that G(z) 
obeys the following functional relation, 

7'1Ov Z 
G(z) = - N  ~ G( Tz). (II.2) 

We now assume that J c I = [b,a], where I is the smallest real interval 
containing J. Then J as given in (I.5) is self-adjoint with # as its spectral measure. 
Let J(x) be derived from J by omitting the first row and column and let #") be 
the spectral measure associated with ~ n .  

Theorem 1. Let G<n(z) be the StieItjes transform associated with the spectral measure 
i a(1), then Gtn(z) is a meromorphic function in C/J with the representation 

G~n(z) = ~ R(T'(z)) [I 1/Q(Ti(z)) • (II.3) 
i=0 j=O 

Here 

T'(z) (z - b(O) )Q(z) - ( T z  - b(0)) 
Q(z)- and R(z)= (II.4) 

N a(1) 

Proof. Since the Julia set J is bounded, J and afortiori j<n are bounded operators. 
Consequently, G~l)(z) is analytic outside some interval r containing J and 
zG~l)(z) = O(1). Comparing the continued fraction expansion of G(1)(z) with that 
of G(z) and using (II.2) it follows that 

G~n(z) = U(z) G~n (Tz) -~ R(Z)Q(z). (II.5) 

Iterating the above equation one finds that for z large enough 

i=o i = o  j=o  
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½1zlN- i < IQ(z)l < 2tzt N- 1, and 

2-(N,- t/N- . i z l  ~, 

tR(Ti(z))I < 2 ~N'- 

and 

Since T(z), Q(z), and R(z) are monic  polynomials  of  degree N, N - 1, and N - 2 
respectively, there exists a k > 4  such that  for lz l>k,  ½1zlN<lTzl<2tzl N, 

l 1 2 q N - 2  < IR(z)l < 2lzl N-2. Consequent ly  

< ]Ti(z)l < 2N, - 1/N- IIzlN, ' (11.7) 

1/N - I)(N- 2) + 1 IZ [ NI+I  -- 2Ni ,  (11.8) 

i 
[ I  IQ(TJ(z))t > 2-(N . . . .  1/N-1)IzlN . . . .  1> 22N ..... 3N ..... 2N+3/N 1, (II.9) 

j = 0  

f rom which it follows that  

i" (T ' tzL , ~  ' ~  < 22N, Iz I - 2N'+ 1 (II.10) 

Thus  for Izl > k one can pass to the limit n ~ oo in (I1.6) giving (I1.3). Now using 
(II.3) as an analytic representat ion of GU)(z), one finds, since tT=(z)l > k  for m 
large enough and z¢J,  that  G°)(z) is analytic for z ¢ J  except at the zeros of 
Q(T~(z)), i = 0, 1, 2 . . . . .  that  do not  lie in J. Since Gin(z) is a Stieltjes function all its 
isolated singularities are simple poles and the theorem now follows because each 
zero of Q(Ti(z)) tha t  is not  in J is not  an accumula t ion  point  of  other  zeros of  
Q(Tiz),j = 0, 1, 2 , . . . ,  and is therefore isolated. 

Remark. I. Denot ing  p, ,p( t )  and P(n 2) as  the m o n i c  or thogona l  polynomials  of  
degree n associated with f ,  f (1)  and j (2 )  (omit first two rows and columns of f )  
respectively one finds that  

n--1 
t ~ _ :  = R(z). ( IU l) PN, = T"(z) -- b(O), *N.°(a)- 1 = I ]  Q(T"z) and 2) 

i = 1  

Labelling the zeros of  Q(z) by z l , z z , . . . , z u - 1 ,  it follows that  the zeros of  
Q(Ti(z)) are ~k,,,~U) = T~(zm) with m = 1 , 2 , . . . , N -  1 and k = 1,2 . . . .  , N  j. Here 
{ T ~ - i , k = l , 2  . . . .  , N  j} denotes a complete  assignment of  branches of T -j. 
Supposing that  z u) a r  k , , . , : "  one finds that  the residue of Gin(z) at that  point  is 

r u )  ~ wk,,. .  (11.12) a k ,  m ~ l 

l=J ~qTJ"O) ~ I~ 'qlTiz(J) ~ ~ ,  ~ Z'k,m/ ~ ,  k,m] 
i = 0  
i ~ j  

Using the fact that  ~(J) is one of the j th inverse iterates of z~, and using (II.4) Z,k,m 

and ( ILl  l) yields 

- PN(Zm)Fm 
F ~ =  1 (1) u) ' (II.13) 

a( )PN . . . .  l(Zk.m) 

where 

, p  ~ R(Tlzm) r . =  1-a  Y;(z.-5  H=I 1/°Jrszm)" (II.14) 
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L ~ m m a  

Let z~ be such that Q(zm) = 0 and z,.¢J, then 

Q(riam ~ IQ(r2z,.)l t-2, 
i=2 

and 

1. Let I be the smallest real interval containing J and suppose I = [ -  a, a]. 

R(TtZm) < R(TZzm) 
Q(Ttz,.) = Q(TZz,,), l = 2, 3 . . . . .  (11.16) 

Proof. Since I is the smallest interval containing the Julia set, one has that Tz 
is expanding for Izl > a. Furthermore for z real ¢I, TZz, I>= 1 is of fixed sign. 
Since the zeros of Q(z) lie at the finite maxima and minima of Tz, the assumptions 
that J is real and that z.,¢J imply that ]Tz,,I > a. The fact that the zeros of 
Q(z) interlace those of T(z) imply that Q(z) is monotonically increasing for z > a 
and IO(z)[ is monotonically decreasing for z < - a .  Consequently IQ(TZz~)[ 
IQ(T2zm)t, for I > 2 which yields (II.15). (II.16) follows from the above arguments 
and the fact that R(z)/Q(z) is an [ N - 2 / N - 1 ]  Pad6 approximant (see (II.11)) 
with positive residues, and with all its zeros and poles strictly inside I. 

Lemma 2. Let I, J and z,, be as in Lemma 1. I f  Tzm > 0 then 

IQ(T2zm)l > IQ(Tz,,)I, (II.17) 

R(T2z,,) R(Tzm) R(a) (II.18) 

and 

IPN(zm)l = [Tzm- b(0)l > [ a -  b(0)[. (11.19) 

I f  Tz,, < O, and Ta = a and T ( -  a) = - a, then (11.17) remains unchanged, and (I1.18) 
and (II.19) remain valid with a ~  - a .  

Proof Inequalities (II.17) and (I1.18) follow from the same argument given in 
Lemma 1 and the fact that TEzm has the same sign as Tzm. Equation (11.19) follows 
from the expanding nature of T on I c and the fact that - a < b(0) = ~ xdu < a. 

s 

Theorem 2. Let J be real and z,,f~J, then F,, > O. 

Proof. Let ! be the smallest real interval containing J. It is without loss of generality 
that ! = [ -  a, a]. If this is not the case, by using a mobius transform of the form 
Lz = z + c, c real we can symmetrize J without changing either the monic character 
of T, or the nature of the fixed points of T, or the fact that z,,~J. Since I is 
the smallest interval containing J, one has that Ta = a and either T ( - a ) =  a or 
T ( -  a) = - a depending upon whether the degree of T is even or odd. The proof 
now breaks up into two cases; Case I, Tz,, > 0 or Tz,, < 0 and T ( -  a) = - a, and 
Case 2, Tz~ < 0 and T ( -  a) = a. To prove Case 1 we note that a consequence of 
(II.15) and (I1.16) of Lemma 1 and, (I1.17) and (I1.18) of Lemma 2 in (11.14) is 

, , ,  R(± a) ~ t 
F,, > 1 - a~J)pN( + a)O( +_ - a) , = 2 - " o ~ ' "  (11.20) 

l = 3, 4 , . . . ,  (I1.15) 
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Here one chooses a if Tzm > 0 and - a if Tzm < 0. From the expanding nature of 
the T on I c, the monotonicity properties of Q on F, and (II.4) one finds that 

a)l = t -{ R(+ a)a(1) IQ(Tz,,)l > IQ(T+_- ( ~ _ a ~ ( ~ )  > 1. 

The last inequality follows from the fact that R(+_a)=(+_-a-b(O)/a(1)). Since 
R(+ a)/4- a - b(O) and Q(_+ a) are positive it is a consequence of the above equation 
and (II.4) that 

1 -  1/O(+_a) > 0  
Fm > 1 1 1/Q(Tz,,) ' 

where again a is chosen if Tz,, > 0 and - a is chosen if Tz m < O. 
To prove Case 2 we note that in this case Q(Tiz,,) > O, i ~ 2, R(Tiz,,) > O, i ~_ 2, 

Q(Tzm) < 0 and PN(zm)< 0. Therefore (II.14) becomes using Lemma 1, 

a(1)R( Tz,,) a(1)R( T zz,.) 
Fm>l 

PN(z,,)Q(Tzr,) Px(zm)Q(Tz,,)(Q(T2zm)- 1)" 

Here we have used the fact that Q(T2z,,) > 1. Now using (II.4) yields 

which yields 

P(TZz,.)- P(Tz.,) 
F,. > pN(z,,)Q(Tz,.)(Q(TZzm) __ I) > O. 

The above result has the following immediate consequences. 

Corollary 1. Let J be real and suppose at least one zero of  Q(z) ties outside J, then 
j (1)  has an infinite number of eigenvalues. 

Proof. From Theorem 2 we have that F,, > 0. The result now follows from (II,13) 
and the fact that the zeros of PN(z) and P~}+, _ 1 (z) are simple. 

The following corollary is a consequence of Theorem 2 and the fact that 

Z /-,(j) 
a k , m  < 1. 

j=Ok=l  

Corollary 2. For every e > 0 there exists a ? and w such that 

NJ 1 

Y, p m -  ~u~ v <e '  (I1.21) 
j=Tk=l  NJ+ -l'~Z.k,m] ] 

~ R(Ttzm) l 1 
Vl < (II.22) 

We now show how dramatically the spectrum may change in going from J to j u ) .  

Theorem 3. Let J be real and let all the zeros of Q(z) lie outside J, then the spectrum 
of j m  is purely discrete. 
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Proof. Since ~ du (1) = 1 we will prove the result by showing that the sum of all 
--QO 

the residues of G(*)(z) is equal to 1. From (ILl 1) one sees that the first term in 
(II.3) is just the IN - 2IN - 1] Pad6 approximant to Gin(z). 

Now consider the sum of the first two terms in (II.3) 

R(Tz)  R(z) 1 [ P N ( z ) Q ( T z ) -  P~(Tz) (z - b(O))Q(z)-  PN(z)]  

O(z)O(Tz) ~ O(z) - a-(l) L ~ ~  ~ O.(z) _j 
_ 1 [(z  -- b(O))Q(z)Q(Tz) - Pu (Tz ) ]  

a(]l ) z [_ Q(z)Q( Tz)  l 
_ Pk 2)- 2 (z) 

P~)_ , (z)' 

which is just the [N 2 - 2 I N  2 -  1] Pad6 approximant to G(1)(z). Proceeding by 
induction it is not hard to see that the sum of the first in terms in (II.3) give the 
IN" - 2IN" - 1] Pad6 approximant to Gin(z). Labelling the residues of [(N" - 2)/ 
Nn - 1 ]  by ,r(~) where j, k and m have the same meanings as in (II.12), one finds --k,m~ 

that 

n - 1  NJ N - 1  

Z E Z "F~J,)~ = 1. (II.23) 
j = O k = l m = l  

Subtracting " F ~  from F(~)~ and using (11.14) yields, 

( r ( J )  j >__ n 
F~J?'n--nF~{)'n=~l--k" ~ ' 1 

I ~i i i~ t,,(J) v R(Ttzm) 1-[ Q(T~z,.), j <n. (11.24) 
k.--NJ -l~,Z,k,m! l = n - j  s = l  

Set M = max (A, B), where A = max IPN(z,,)Fml and 
?n 

oo t 1 I 
B = max E R(T'z,,,) H ~ l ,  

m '='1 I = I Q ( T z ' ) I  

then Corollary 2 implies that there exists a 7 such that 

N - 1  

M ~ L.H.S. (II.21) < ~/2. (11.25) 
m = l  

From the definition of P~)+ ~_ ~(z), (II. l I), we see that 
p(~)+ (J) ,_ j , ,_ ,(z,,,,) - N Q (Zn,)Px - l(z~,,,) 2- 

Setting 

i L M 1 = max , - j 2 
j <= ~,k <_ N J . , .  I q. (z,.)P N~-l(z~..3 ' 

it is a consequence of Corollary 2 that there exists an w large enough such that 

N - 1  

M f f  E L.H.S. (II.22) < e/2. (II.26) 
m = l  
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Now choosing n large enough in (II.24) so that n - 7 > w, we have from the above 
arguments that 

~" tr(J) _ nff,(j) ~,a k,m k,m) 
m= l j=O k=O 

= 2 F'(J) 1 ~ k,m -- 
}m=l j=Ok=l 

N--1 ~ N.~ pN)+~ll(Zk,m ) < M Z Z - (j) 
m=lj=Tk=l (a 

+ M 1 Z  2 ~ R ( r t z  " 1 H ~ 1  

thus yielding the result. 

IlL Limit Periodic Behavior 

In Sect. II we make frequent reference to the following result, which is proved in 
[17] (Theorem 3 there). 

Orthogonality Theorem. I f  f e L l ( J ,  p), then 

S Pl(z) f(r"(z))d#(z) =0, l, rn~No, 
J 

whenever N" does not divide I. 
We also make use of [4, Theorem 2]. 

Reduction Theorem. I f  f ~ L l(J, #), then 

!zJf(T(z)) d#(z) = ~ S  f(z) dp(z), j = 1, 2 . . . . .  N - 1, 

where the sj's are given recursively by 

m--1 
s,,= - m k m -  ~ kls,,-~, m=1,2 ,3  . . . . .  

I=1  

Throughout we suppose that J c ~ and that T(z) is a polynomial of degree 
N ~ 2. Then it is well known that the monic orthogonal polynomials associated 
with/~ satisfy the recurrence formula 

P,+ l(x) + b(n)P,(x) + a(n)P,_a(x) = xP,(x), neNo, P_l(x) = O, Po(x) = 1, 
(IH.1) 

where the a(n)'s and b(n)'s are defined in (I.5) and (I.6). We will always understand 
that b ( n -  1)= a(n)= 0 and P , - l (X)=  0 whenever n =< 0. Also throughout we use 
the notation N ={1,2 ,3  . . . .  } and N o =  Nw{0}; and the value of a summation 
where the lower index exceeds the upper index is zero. T(z) has definite parity 
when T(z) =- T ( -  z) or T(z) -- - T ( -  z), 

Lemma 3. Let T(z)=zN+ k2z N-2 +. . .  +kN be of definite parity, then the 
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followin9 relations hold for all neNo: 

a(nN)a(nN -- 1)...a(nN - N + 1) = a(n), 

a(nN) + a(nN + 1) = - 2k2/N, 

~ n )  = O, 
and 

(III.2) 

(III.3) 

(III.4) 

( Pm+ IPnN+m-IPnN> 
a(nN + m) - 2 

<PnN+m-I> 

+ ~ (a(I)-- a(nN + m--  l)), m e n  (III.5) 
/=1  

Proof. Equation (III.2) was derived in 1-8]. To prove (III.3) we begin with 
2 <P.N+I> <x2e~N> 

a(nN+ 1 ) -  <P~N> = <p2 > a(nN), for neNo, 

where (IliA) has been twice. The result now follows upon employing the Reduction 
Theorem. 

Equation (1II.4) follows from the fact that if T(z) is of definite parity then J is 
symmetric with respect to the origin and /~ is invariant under change of sign. 
Consequently, all of the P,(x)'s have definite parity and (I.6) shows that b(n) = 0. 

To show (III.5) we begin with 

2 
(P,N+,.> for neNo, meN. a(nN + m) = 2 >, 

< PnN +m-1 

Using the recurrence formula twice yields 

2 2 <x P.N+m-, ) 
a(nN + m) = z - a(nN + m - 1). 

<PnN+m-l> 
which can be written 

2 ( P2P,N +,.-, ) 
a(nN + m) = 2 + a(1) - a(nN + m - 1). 

(P,N~,,-1 > 

Now eliminate one of the P,N+z-I"s using (III.1) and then eliminate xP2 using 
(III.1) to obtain 

a(nN + m) = (P3P"s+m-1PnN+m-2> 2 
- -  2 + Z (a( j )  - a ( n N  + m - - j ) ) .  

(P,N+,,-1 > j=t 

Continuing this procedure yields (III.5). 

Corollary 3. I f  T(z) is of definite parity then for h e n  o, 
N-1 

a(nN + N - 1) = ~ (a(j) - a(nN + N - j  -- 1)). (III.6) 
j = l  

That is, a(O + nN) + a(l + nN) + . . .  + a(n - 1 + nN) is independent of neNo. 

Proof. This follows from (III.5) and the Orthogonality Theorem. []  
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L e m m a  4. Suppose T(z) is o f  definite parity and that a(jN + i) = o£2 f o r  i = 2, 3 . . . . .  
N -- 1 and j = O, 1 . . . . .  (n - 1), for  some n~N,  then 

<P,.PjN+kPjN>=O for ]k]=O, 1 . . . . .  N - 1  with ] k l # m ,  

m = 0 ,  1 . . . . .  N, (*) 

j = 0 , 1  . . . . .  n. 

Proof .  We note that  (*) is immediately  true in the following cases: whenever  
m<lkl, by or thogonal i ty  of the P~'s; whenever j = 0 ;  whenever m = N  and 
IkI # 0 by  the Or thogona l i ty  Theorem;  and whenever m = N and k = 0, by par i ty  
(which implies all of the b's vanish). Thus, let us assume (*) is true whenever 
j = 0, 1 . . . . .  (n - 1); then we will show that  it is true when j = n. Here we assume 
m < N since the case m = N has already been taken care of. Choosing k = - t, we 
use the recurrence formula  (IliA) to obtain,  for m < N, 

< PmPnN_  1PnN)  = < xP. ,_  1P.N_ 1PnN ) - -  a(m -- 1)<Pro-2P,~2v- 1Pn.v)  

2 = (Pro-  1P.N> + a(nN -- 1)(P , ._  IP.N_2P,,N) 

- a(m - 1)<P, ._2P.N_,P,N >. 

The first term is equal to zero by the Or thogona l i ty  Theorem.  If m = 2 the remaining 
two terms are equal to zero by orthogonali ty.  If  m is greater  than 2 then one 
eliminates P ,N-  1, and then xP,,  ~ 2 in the last equation,  with the aid of (III. 1), which 
yields 

( PmP,N-~P,N)  = ( a ( n N -  1 ) - - a ( m -  1))( P m - I P ,  N - z P ,  N) 

+ a(m - 1) [a(nN - 2) (Pm -- 2P,N- 3P,N > 

-- a(m--  2) (P , .  3P,N_2P,N>]. 

The  first term here vanishes by the supposi t ion in the s ta tement  of  the lemma. 
The coefficient of a(m - 1) is zero when m < 5 by orthogonali ty.  If m > 5 we repeat  
the procedure  until a p roof  which works  for m < N is arrived at. 

Next  we carry out  an induction through negative values ofk. We use the identity 

1 
(P~P'N- tP"N> = a(nN -- l + 1)[ (Pm+ 1P,N-t+ IP,,N ) 

+ a(m)<Pm_ 1P,N_z+ 1P,N > -- (PmP~N_t+2PnN>]. 

(*) nOW follows for k < 0 by induction and the fact that  it is true for rn = N. 
To  obta in  (*) with j = n when k > 0 observe the identity 

( P,,P,N + kP,N > = ( xP~PnN + k-  1P,N > - a(nN + k - 1) ( P,,P,N + k-  2P,N > 

= <P,,,+ 1P,N+k- 1PnN> --  a(rn)<P,,_lp,N+k_ IP,N> 

-- a(nN + k - 1 )<P, ,P .~+k_2P,u) ,  

which allows us to carry out  an induction through positive values of  k, upon 
recalling the observat ions  at the beginning of the proof. 

We are now in a posit ion to consider the coefficients associated with the scaled 
Chebychev polynomials .  
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Theorem 4. I f  T(z) = ctNCN(z/o~) with N > 2 and ~ ~ O, where Cu(z) is the degree N 
monic Chebychev polynomial of the first kind, orthogonal on [ - 2 ,  2], then the 
following relations hold for all n~ No, 

a(nN)a(nN - 1).. .  a(nN - N + 1) = a(n), (111.7) 

a(nN + 1) + a(nN) = 2g 2, (111.8) 

a(nN + 1) = g2, for j = 2, 3 . . . . .  N - 1. (III.9) 

Proof. Equat ions  (111.7) and  (111.8) follow at  once f rom Theo rem 1. To  p rove  (111.9) 
begin by not ing that  TN(z ) is the monic  Chebychev  polynomia l  of  order  N on the 
interval [ - 2 ~ ,  2~]. As such one has by m o m e n t  analysis [17, 20] that  the first N 
monic  or thogona l  polynomials  N- 1 {P,,},~=o associated with the invar iant  
measure  for T(z) on the Julia set are the same as the first N scaled Chebychev  
polynomials;  namely  Pm(Z)= ctmCm(z/ct) for m = 0, 1, 2 . . . . .  N -  1. Therefore  f rom 
the s tandard  formulas  for Chebychev polynomials  [20] one has a ( / )=  0e 2 for 
l = 2, 3 . . . .  , N - 1. The  result now follows f rom induction using L e m m a  4 and  (111.5) 

[ ]  

Remark 2. I t  is interesting to note  tha t  in these cases for large N the Jacobi  
matrices have a large p ropor t ion  of constant  terms. However ,  the spect rum for 
all finite N and ~ > 1 is a Can to r  set. 

Definition t [20]. A bounded  sequence {b(n)} ~= _~  is called limit periodic if it 
is the uniform limit of  bounded  periodic sequences; that  is, there exist periodic 
sequences {btm)(n)},~=-~o such that  

lim (suplb(n) - b(')(n)1)) = O. 
m---~ oo n 

(A sequence {bt")(n)}~o~ is called periodic when and only when there exists a 
positive integer L m such that  

b~m)(n + Lm) = b(m)(n) for all n = 0, _+ 1, +_ 2 . . . .  

Theorem 5. Let T(z) = ~NCN(z/~) where N ~ 2 and ~ > 1. Then 

L ima(mN"+s)=a(s )  foral l  S ~ o ,  m e m o .  
n ~ o o  

Moreover 

la(mN" + s ) -  a(s)l < 2~2~" for all sE~o, n ~ , m ~ N ,  where 7 = 1/{( 2~z -2)'~2~N -2)} • 
In particular {a(n)}~= _~ can be redefined for n < 0 so that it form a limit periodic 

sequence whenever (2~ 2 - 2)-~ 2(N-2) > 1 (which is always true when ~ > ( ~ ) ) .  

Proof. The a rguments  used for proving  the first assert ion are basically the same as 
those given in [22] and [9], and will only be sketched here. Both results are 
immediate  if s = k m o d  N, k = 2, 3 . . . .  , N - 1, since all of the corresponding a's are 
equal to a 2. Fo r  s = 0 m o d  N we observe f rom Theo rem 2 that  

a(mN) = ~-  2~u- 2).__ a(m) _ _  
2~ 2 - a((m - 1)N)" 

Using this it follows by induction that  for ~ > 1 we have 0 < a(nN) < a(n). Therefore  
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- 2 ( N -  2) .  a ( m )  2 ~ -  2 ( ( N -  2 ) . -  ~) 
a(mN") < < 

(2~ 2 - 1)" (2~ 2 - 1)" 

for n ~ ,  where we have used a(n)< 2a z. Thus 

Lim a(mN") = 0 = a(O). 

The rest of the asser t ions in the first pa r t  of the theorem now follow by repea ted  
app l ica t ion  of Theorem 4. 

To  prove  the second pa r t  of  the theorem,  we first note  tha t  from the above  
inequal i ty  it is true for s = 0, and  s = k m o d  N, for k = 2, 3 . . . .  , N - 1. The  case s = 
l m o d N  can be reduced to the case s = 0 m o d N  using [ a ( m N " + l ) - a ( 1 ) l =  
a(mN"). Therefore  we consider  

a ( m N " -  1 + s)--  a(s) + a(s) - a(Ns)fla(mN" + N s  - N + 1) 
a(mN" + Ns)  - a(Ns) = - -  

f la(mN" + N s  - N + 1) 

where fl = a 2(N- 2) and  we have used (III. 7). Us ing  (III. 8) this can be rewri t ten 

a(mN" + Ns)  a ( m N " -  I + s) - a(s) 
- -  a(Ns) = fl(2a 2 _ a(mN" + N s  - N)  ) 

a(Ns)(a(Ns - N + 1) - a(mN" + N s  - N + 1)) 

2a 2 - a(mN" + N s  - N)  

Therefore,  assuming ]a(mN" + j ) -  a(j)[ < 2~2y" whenever  j < N s ,  we have 

]a(mN" + Ns)  - a(Ns)[ <_ 2az '(2a2 --  2) -"  + 1 
fln'(2~2 --  1) 

2~2"(2a 2 - 2) -"  
q = 2a2~ ", 

/~"-(2~ ~ -  1) 

as desired, where the fact that  a(Ns) < 1 and la(/) - a(j}l < 2 ~  2 for all i a n d j  has been 
used. 

W e  now prove  the l imit  p e r i o d i d t y  assert ion.  We assume 7 < I and  redefine a(s) 
for s < 0 by  

a(s) = Lim a(mN k + s). 
k ~ o o  

The l imit  exists for each m because a(mN k + s) is a Cauchy  sequence in k, as the 
fol lowing c o m p u t a t i o n  shows. We have for ~ > k and  m N  k + s > O, 

la(mN 7'+~ + s) - a (mN k + s)l = [a(mN r ' -  m N  k + raNk + s) -- a (mN k + s)] 

= la( (mN 7'-k - 1)N k + m N  k + s) - a ( m N  k + s)J 

< 2a2g k. 

The l imit  is independen t  of  m because 

]a(mN k + s) -- a(fflN k + s)] = [a((m - fft)N t~ + rfiN k + s) - a(fflN k + s)[ < 2~27 k 
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whenever k is sufficiently large. Furthermore,  we now have 

ta(mN k + s) - a(s)[ = Lim [a(mN k + mN ~ + s) - a(mN~ + s)l < 2~27 k. 

We have shown that  when 7 < 1 we can redefine a(n) for n < 0 so that  

[a(mN" + s ) -  a(s)l < 2e27" for all seZ, neN,  meN.  

We now define sequences { a{N')(n)}.°°_- _ ~ for k = 1, 2, 3 . . . .  by a(N')(n) = a(n rood Nk), 
from which it follows at once that  

supI ~N~) a (n) - a(n)I < 2~2"y k 
n 

and 

Lim sup la~N')(n ) _ a(n)[ = 0. [ ]  
k ~  n 

The following result is immediate. 

Corollary 4. when ~ < 1 the frequency module of a = {a(n)} is contained in the set of 
all numbers for the form 2rc(Np + k)/N" where n > 1, 0 < p ~ N"-  1, 1 <- k < N - 1. 
That is, we have Fourier representations of the form 

oo Nn 1 N - 1  

a(n)= Fo,o,o, + ~ ~ Y', F.,p,kexp{2~zi(Np+k)/N"}. 
n = l  p = O  k = l  

We define 

0 c(n + 1) 0 ) 
j~.~ = c(n + 1) 0 c(n + 2)... 

0 c(n + 2) 0 .  

0 0 "'. 

for n e N o ,  

where we recall c(n) 2 = a(n) and c(n) > 0 when J a R. Then Jr"), being bounded,  can 
be considered as a self-adjoint opera tor  on l~-, and Theorem 5 provides the 
following result. 

Corollary 5. I f  7 > 1 then c~(mNP+s)"~c~(s) a s  p-~ ~ for fixed sEN o, m e n  o, the 
convergence taking place in the strong operator topology on B(l~). I f  ? < l, which is 

always true when c~ > (x/~2), then the convergence is in the norm topology on B(l~ ). 
(The topologies here are defined by Reed and Simon [23].) 

Remark 3. If  ~ = 1, then a(1) = 2 and a(n) = 1 for n > 2, whence the above result 
holds for s e n  but  not  for s = 0. 

Remark 4. Using the a(n)'s redefined for negative n as in Theorem 5, and cor- 
respondingly defining g =  {c(n)}~°=_~o and g,. = {c(n + m)}~= _~ for meT/, define 
a t ransformation 7". by  T.~,. = g,. = ~,. +.. Extending j("~ to a doubly  infinite matrix 
j(~.)eB(lz), we see that T. has a realization in B(12) [13] of the form T.J(~m) = 
J(T.g,.) = S-"J(d,.)S", where S is the unitary matrix which obeys (S¢)(n) = O(n - 1), 
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and S " = S . S " - I .  Theorem 3 says that for 7 < 1, T can be viewed as a con- 
tinuous limit periodic flow [24] on the hull of f(6) .  

Remark 5. We have also considered the transformations Tz = c~3C3(z/ct)+ B and 
Tz = 74C4(z/T) q- A and found that for c~ > 5 and Inl < 5, and ? > 2 and IAI < 22 
the coefficients in the Jacobi matrices associated with the above two transformations 
are limit periodic [25]. 

IV. Physical Consequences 

The above results have a number of physical consequences. Here we shall for 
simplicity consider the transformation Tz  = z 2 - 2~. Writing 

G(E) = (0I(E - J ) -  110) = (E - a(1)Gm(E)) - 1, 

where in the language of solid state physics [26-29] G(E) is the (01, [0) matrix 
element of the Green's function and G m (E) is the "self-energy", one sometimes 
determines numerically whether G(E) has extended states by determining whether or 
not G ~1) (E) has a branch cut. In the above model with e = 1 one finds that the branch 
cuts of G(E) and G m (E) coincide on - 2 _< E <2  and both j and j(1)  have only 
extended states. In this case (°2) ) 2 0 1 1 

J =  1 0 1 and j m =  0 1 
1 0 1 1 0 1... 

and gives rise to the Chebychev polynomials of the first and second kind 
respectively. For  c~ > 1 we see from above that j m  has only localized states and 

G(1)(E) = j=O k= 1 Z = Z(k j) '  (IV. 1) 

since Q(z)= z. Equation (IV.l) implies that G (1) (E) does not have a branch cut. 
However, since du is the equilibrium measure associated with the Julia set (a Cantor 
set in this case), it is known that J has only extended states. 

It has also been pointed out to us (Bellissard, private comm.) that the eigenstates 
of ~(1) may be considered as surface states [30]. 
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