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The Diophantine moment problem and the analytic 
structure in the activity of the ferromagnetic Ising model 

M. Barnsley, D. Bessis, and P. Moussa 

Cen Saclay, BP n° 2, 91190 Gif-Sur- Yvette, France 
(Received 18 July 1978) 

We show that the intensity of magnetization I(z,x) where z = e -'PH and x = e -2PJ, for the 
ferromagnetic Ising model in arbitrary dimension, reduces, for rational values of x, to a Diophantine 
moment problem 

I(z) = 'iO'nkzk, 
where 
nk = f~o"(A)AkdA, 

O"(A) is a positive measure, no = 1/2, and nk is integer for k*O. The fact that the nk are positive integers 
puts very stringent constraints on the measure O"(A). One of the simplest results we obtain is that for 
A <4, O"(A) is necessarily a finite sum of Dirac 8 functions whose support is of the form 4COs2(p7T/m), 
p = 0,1,2, ... , m ~ I, with m a finite integer. For A = 4, which correspond to the one-dimensional Ising 
model, we have the result that either I (z) is a rational fraction belonging to the previous class A < 4, or 
I (z) = (1/2)(1 ~ 4z )-' '2 which corresponds precisely to the exact answer for dimension I. For A> 4, which 
is associated with Ising models in dimension d 2: 2 we show that all cases are reducible to A = 6, by a 
quadratic transformation which transforms integers into integers and positive measures into positive 
measures. The fixed point of this type of transformation is analyzed in great detail and is shown to 
provide a devil's staircase measure. Various other results are also discussed as well as conjectures. 

INTRODUCTION 

While the ferromagnetic Ising model in two dimen
sions and zero field is well understood, 1 comparatively 
little is known in the presence of a magnetic field. The 
Lee- Yang representation2 although very interesting 
has been little exploited. In particular the analytic na
ture of the singularities in the complex activity plane on 
the circle [z [ = 1 is not known, and the possibility that 
below the critical temperature Tc when the circle is 
closed there exists a natural frontier has not been ex
cluded. It thus seems important to know how to charac
terize the class of analytic functions to which the 
thermodynamic quantities belong when considered as 
functions over the complex activity plane. 

An associated question is that of the critical indices 
which appear, at least for those which are exactly com
putable in two dimensions, to be rational numbers. Is 
this a general feature of the Ising model, and via the 
universality principle a characteristic of classes of 
physical processes? If it is the case, then it would be 
interesting to be able to classify these processes and 
to understand how such rational indices are generated. 

In this paper we shall only be concerned with the ordi
nary ferromagnetic Ising model on a lattice of dimen
sion d with c nearest neighbors, with interaction limited 
to the nearest neighbors. 

In this case, the perturbative expansion of thermo
dynamical quantities are of the form 

T(Z,X)=I: Ilr(x)zr, 
o 

where x is the usual temperature variable x = exp(- 2{3J) 
and z is the activity variable, z = exp(- 2{3H). 

The Mayer- Yvon coefficients which arise in the z 

expansion of the free energy are polynomials in x with 
integer coefficients. Furthermore, from the Lee- Yang 
theorem, we know that these coefficients are moments 
of a positive measure according to 

Ilr(x)=fo'g(e,x)coszede, g(e,x»O. 

Weare thus led to the consideration of a trigonometri
cal moment problem on the ring of polynomials with 
integer coefficients. 

Such a problem defines a specific class of analytic 
functions. It is the aim of this paper to set in motion 
an investigation of the content of such a class. Unex
pectedly, the fact that the moments must belong to a 
ring introduces in many cases stringent constraints on 
the measure g(e,x), as will be seen in the sequel. 

In Sec. I we show how the Ising model is associated 
with a moment problem on a ring and how in the case of 
rational values of x this reduces to the following ordi
nary moment problem on the ring of integers: Find a 
positil)e measllre a(A) stich that 

nk = J/a(A) AkdA, k=O, 1, 2,"', 

u'here each nk is an intel{er. The nature of a(A) depends 
crucially on 1\.. The problem is explicitly solved in 
Sec. II for the case 0 ~ 1\. ~ 4, and over this range the 
measures a A (A) are found to be quantized. 

In Sec. III we consider the case 1\.:> 4 and show that it 
can always be reduced to the situation when 1\. = 6. Asso
ciated with 1\. = 6 is an interesting transformation-its 
fixed point belongs to a measure whose support is con
tained in and naturally associated with a Cantor set. 3 

The analogous transformation in the case 1\. = 4 is asso
ciated with the solution of the one-dimensional Ising 
model. 

535 J. Math. Phys. 20(4), April 1979 0022·2488179/040535-12$01.00 © 1979 American Institute of Physics 535 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

132.68.73.239 On: Wed, 04 Feb 2015 09:23:01



In Sec. IV we discuss various examples which cast 
light on the unsolved part of the problem (4 < A ~ 6), 
and in conclusion we examine several conjectures. 

1. THE ISING MODEL VIEWED AS A MOMENT 
PROBLEM IN A RING 

The ferromagnetic ISing model on a lattice of dimen
sion d with c nearest neighbors is described by the 
Hamiltonian 

(1. 1) 

the first sum being performed over nearest neighbor 
pairs and the second over all sites of the lattice. We 
introduce the notations 

x == exp(- 2f3J), 0'" x ~ 1, and z == exp(- 2f3H), (1. 2) 

where H is the magnetic field. Then, following Lee and 
Yang,2 the intensity of magnetization per site is found 
to be 

( ) ( 2)f' g(e, x) 
1 z, x = 2 1 - z 1 2 e + 2 de, " - z cos Z 

°o(x) 

(1. 3) 

where eo(x) is the Lee- Yang angle which vanishes for 
x < Xc where Xc corresponds to the critical temperature, 
see Fig. 1. g(e, x) is a positive measure, being the den
sity of zeros of the grand partition function on the circle 
Iz 1 = 1 in the complex activity plane in the thermo
dynamic limit. The representation (1. 3) is also valid 
when the lattice has only finitely many sites, in which 
case the measure simply consists of a finite sum of 
delta functions with positive weights. 

The measure g is normalized according to 

and I(z, x) has the property that 

I(z, x) = - l(l/z, x) 

(1. 4) 

(1. 5) 

which refers to the symmetry of the system under 
reversal of the magnetic field. In Figo 2 we represent 
the domain of analyticity of I(z, x) in z. 

Developing I(z, x) around z = 0 we obtain the Mayer
Yvon expansion 

l(z,x)=1-2 L IM1(x)zl, 
1,,1 

(1. 6) 

FIG. 1. The Lee-Yang angle 90(x) as a function of x. It van
ishes when x < xc' 
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.... .... 
"-

Complex Z - plone 

.... .... 

FIG. 2. When 8 0(x) > 0, I(z, x) is regular both inside and out
side the unit circle, and also for Iz 1= 1 when 1 argz 1 < 80(x). 
When 8 0(x)=0 its singularities may be dense on the unit circle. 

with 

IM1(x) = - 2 .!e:(x) g(e, x) cos(ze) de, I = 1,2,3,00 •. 

This defines the trigonometrical moment problem, 
whose moments have the following properties: 

(i) M 1(x) =xc where c is the number of nearest 
neighbors. 

(1. 7) 

(ii) IM1(x) is a polynomial of degree Ic in x whose 
parity is that of the highest degree term. 

(iii) All coefficients of ZM1(x) are integers. 4 

The proper moment problem associated with (1. 7) is 

IJz(x) = fe:(X) g(e,x)[cos2(e/2)]1 de, (1. 8) 

and, for 1=0, 

IJo=Mo=~· 

(1. 9) 

(1. 10) 

(1. 11) 

A consequence of (i), (ii), and (iii) is that 4zIJI(x) is a 
polynomial with integer coefficients o A deeper result, 
proved in Ref. 5, is that in fact this polynomial is 
exactly divisible by (1- X)I and we have 

(1. 12) 

where P1(x) is of degree Z(C - 1) and has integer coef
ficients. When c is even the IJI(X)'S are even polynomi
als so that setting U =x2 we have 

(1. 13) 

where Pz(u) is of degree Z(c/2 -1). For instance, for 
both the square and diamond lattices c =4, the degree 
of PI is exactly I. Thus from now onwards we will rc
strict attention to the case where c is even. 

We introduce the variable 

(1. 14) 

Then the generating function for the Il l (x)'s is given by 
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the intensity of magnetization6 in the new variable, 
namely .. 
I(v,x)=2~L v'J1.I(x)=2.rr=v ,.0 

I ' g(e,x) de 
x I-vcos2(e!2)' 

90(%) 

Setting 

(1. 15) 

w=(1-u)v/4=z(1-u)/(1+z)2 and ~=_4_ 'cos2(e/2) 
1-u ' 

(1. 16) 

we obtain 

I(w,u) f, WIP1(U)=jL g(~,u)d~ 
2{1- 4w/(1-u»1!2 = h~ 1- ~w (1.17) 

o 

where 

and 

_( ) g(2Arccos(~v'~(1-u»,u) 
g ~,u = _ 

vi ~(4/(1- u) - 0 

4 
L = -1- cos2 (eo/2). 

-u 

(1. 18) 

This shows that the PI (u) are moments of the positive 
measure i(~, u) over its support ° "" ~ "" L, that is 

p,(u) = foL g(~, u) e d~, 1 = 1, 2, 3, •... (1. 19) 

When u < U c (where U c is the value of u corresponding to 
the critical temperature), eo is zero. When u -1, 
eo -11, but we have the \lsymptotic boundY 

(1. 20) 

so that L remains finite for all 0 "" u "" 1. On the other 
hand, explicit calculations up to the highest available 
order have indicated that all of the coefficients of PI(u) 
are positive. 5 If this is true for all orders, then it 
follows that L =lim[PI (u)j1/ I is a monotone increasing 
function of u> 0, as is illustrated in Fig. 3 for the case 
c=4. Note that for c=2, P,(u) is simply a positive 
constant so that L is independent of u and equal to 4 as 
seen from (1. 20). 

L 

16 

12 

8 

4 

o 

I 
I 

4 I __ I 

(1-u)/ 

"" 
/ 

I 
I 

/ 

';. 2 u 

FIG. 3. L as a function of u for c=4. The dotted curve is 
4/(1 - u) which equals L just up to U c . 
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We come now to the problem we are interested in. 
Consider a positive measure g(~, u) for which the 
moments 

(1. 21) 

are known to belong to a ring, for example the ring of 
polynomials with integer coefficients. Then is it possi
ble to characterize, or define in a precise way, the 
analytic structure of the generating function 

.. 
G(w) =!) WIPI(U). (1. 22) 

,=0 

One can envisage eventually imposing the additional 
constraint that the coefficient of the PI(u)'s are positive. 

For simplicity in this first attempt we shall consider 
the reduced problem obtained by choosing u to be a 
rational number, 

u =p/r, where p and r are positive integers, with p "" r. 

(1. 23) 

Then P,(p/r) takes the form of an integer n l divided 
by r l (c/2-1), so that 

n, =r1(c/2-1) foL g(~,p/r) ~I d~ 

(1. 24) 

where we have set X == ~r/2-1. We are thus led to con
sider the Diophantine moment problem 

A 
n l = 10 a(X)X'dX, 1 == 0, 1, 2, ... , (1. 25) 

where no=~, n l is a positive integer for 1>--1, a(X) is 
a positive measure with support ° "" X ~ A, and where A 
can be chosen to be a positive integer, without loss of 
generality. Notice that by the trivial modification 
a(X) - a(X) + ~/j(X) we can if we like take no = 1. Our new 
moment problem is still posed over a ring-this time 
it's the ring of integers. 

The generating function associated with (1. 25) is 

G(w) =in,w1 ==fA a(X)dX • (1. 26) 
,=0 0 1- wX 

This is in fact a Stieltjes function, see Ref. 8, and is 
holomorphic in the w plane cut from 1/ A to + 00, as 
shown in Fig. 4. The important pOint which we will 
demonstrate and explore in the rest of this paper is that 
the positivity of the measure in (1. 26) combined with the 
fact that the nz's are integers imposes stringent 
constraints on the nature of a(x) and hence on the analytic 
character of G(w). 

We mention two practical situations where results 
along the above lines would be directly applicable. 

Complex W -plane 

1/ 
A 

FIG. 4. The location of the 
cut for the Stieltjes function 
G{w); elsewhere this function 
is ho[ornorphic. 
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First, for the triangular planar lattice which has d = 2 
and c = 6, the value of U c is t. 4 Therefore, on the 
critical isotherm we have a Diophantine moment 
problem (D. M. P.) with L =6, and r=3 so that A =54. 
Second, for u = 1 the generating function G(w, u) reduces 
to the Monomer-Dimer partition function9,10 which 
appears as the solution of a D.M, P. with A=c2

, 

2. THE DIOPHANTINE MOMENT PROBLEM 
WITH FINITE SUPPORT 
A. The problem 

Given that a(A) is a positive measure defined on ° ,,; A"; A < 00, such that all of the moments 

17 -lAAka(A)dA k=O 1 2 ... (2.1) 
k - 0 " , , 

are finite integers (with the occasional exception that 
no is half-integer) we ask what can be said about the 
generating function 

G(lt» = (A a(A)dA , U' EO <r. 
)0 1- AU' 

(2.2) 

In all that follows the support is taken to be the closed 
interval [0, A] so that if a(A) has delta function contri
butions at either end point then these must be included 
in the evaluation of such integrals as (2.1) and (2.2). 

The nature of G(w) depends critically on A, as we 
shall see, and we begin by examining the simplest cases. 

B. The problem when A :0 1 

The fact that {Ak};=o forms a monotone nonincreasing 
sequence of functions defined on [0,1], together with the 
positivity of a(A) implies in this case the inequalities 

It follows that the sequence {nkh:o converges after 
finitely many steps to a limiting value nko such that 

Hence 
1 

nk - nk +1 = ( AkO(l - A)o-(A)dA = 0, o 0 Jo 

(2.3) 

(2.5) 

and since AkO(l - A) is strictly positive when A EO (0, 1) we 
discover that 

(2.6) 

where ao and a1 are both nonnegative. Using (2.1) we 
now find 

(2.7) 

and 

(2.8) 

We conclude that the Diophantine moment problem on 
[0,1] has a solution if and only if no'" 171 =n2 = 173 = ... '" ° 
and in this case G(w) is a [1/1] rational fraction which 
is uniquely specified by the first two terms in its expan
sion about zero. Note that if 0< A < 1 then the problem 
has a solution if and only if no '" 171 = 172 = ... = ° and in 
this case G(m) is a constant. 
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C. The problem when A :0 2 

Noting that {Ak(2 - A)k};=O forms a monotone nonincreas
ing sequence of functions defined on [0,2], the sequence 
of integers 

mk=fo2Ak(2-A)ka(A)dA, k=O, 1, 2,'" (2.9) 

must be nonincreasing. Thus we again find that there 
exists an integer ko such that 

(2.10) 

so that 
(2 k k 

Ink -mk +1=Jo 71. 0(2_71.) 0(1-A)2 a(A)dA=0, 
o 0 0 

(2.11) 

and hence 

(2.12) 

where the c;'s are nonnegative. Identification with the 
first three moments now provides 

(2.13) 

and 

(2.14) 

We conclude that the Diophantine moment problem on 
[0,2] has a solution if and only if 2nl? 172? Max{n1 , 3n1 

- 2no}, no? 0, and 17k = (2n1 - n2) + (n2 - 171)2k_1 for k? 2; 
and in this case G(1(') is a [2/2] rational fraction which is 
uniquely specified by the first three terms in its 
expansion about zero. 

D. The problem when A < 4 

On setting 71.=4 cos2 (9/2) and defining A = 4 cos2 (90/2) 
we obtain 

where 

g(9) = 8 cos (9/2) sin(e /2) a(4 cos2 (8/2) , 

a(A) = 2[71.(4 - 71.)]-1/2 g(2Arc cos (v' 71./2). 

(2.15) 

(2.16) 

The positivity of the measure a(A) implies that ;;(e) is 
also nonnegative over its support. If we now introduce 
the trigonometrical moments 

('k = leU g(e) cos!?9 de, k = 0,1,2, "', 
o 

and use the for mulas 

cos kG = Ta(cos(e/2) = Tk(cos2 (e/2), 

(2.17) 

(2.18) 

where 1'2k (x) is the (even) Tchebycheff polynomial of 
order 21< so that 

k 

1\ (cos2 (e/2) ="0 T!(cos2 (e/2)P) 
p=O 

with 

T~=(_1)k and T!=(_1)k-P(";~;1);; 

when p '* 0, 

Barnsley, Bessis, and Moussa 
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then we obtain 

-T p ~ = (_ 1)k 2 + ~ (_ 1 )k-P !!. (k + P - 1) 
k 4P no p~ p k _ P np, 

k=O, 1, 2,···. (2.21) 

We now note that 

!!. (k + P - 1) = 2 (k + P) _ (k + P - 1) 
P k-P k-p k-P 

(2.22) 

is an integer for all p = 1, 2, •.• ,k, and so all of the 
ck's are themselves integers even in the physical case 
which corresponds to no = i and for which Co = 1. Ob
serve that the inverse of the formulas (2.20) is 

(2.23) 

The generating function G(w) for the nk's is 

® k fA a(X)dX 
G(w) = 0 nkw = (1 _ Xw) 

k.O 0 

2 
_f4 coo (90/2) i g(2Arc cos (A/2» dX 
- (1 - Xw}y' X(4 - X) 

o 
(2.24) 

while the generating function for the ck's is 

I(z) ="t CkZk ="t izkj' (exp(ikll) + exp(- ikll»g(lI)dll 
k.O k.O 90 

_jF (1-zcosll)g(lI)dll 
- 1 - 2z cos II + z2 

90 

= £Q + (1- z2) 
2 2 

f ' g(lI)dll 
x 1 _ 2z cosll + z2 • 

90 

(2.25) 

The two generating functions G(w) and I(z) are con
nected by de la Vallee Poussin's transformation 

w=z!(1 +d (2.26) 

according to 

() £Q 1-z ( z ) 
I z = 4 + 1 + z G (1 + z )2 

or (2.27) 

G(w) = 1 [I (1- v'1-4W) - ! I(O)J 
v'1-4w 1+v'1-4w 2 

When A < 4, I(z) is holomorphic in the z plane less an 
arc of the circle of radius 1, just as in the case of the 
function I(z, x) shown in Fig. 2. The relationship be
tween its values when I z 1< 1 and its values when 
Iz I> 1 is 

I(l/z) +I(z) =co, (2.28) 

which can be verified with the aid of (2.27). In particu
lar, in this situation where I(z) can be analytically con
tinued from inside the unit circle to outside it, we must 
have 

I(co) =0 when A < 4. (2.29) 

We will next make key use of Szego's Theorem l1 : If 

539 J. Math. Phys., Vol. 20, No.4, April 1979 

among the coefficients c k of a Taylor series I(z) 
= 2: ;.0 CkZk there appear only a finite number of different 
values, then either I(z) =P(z)/(I- zm), where p(z) is 
a polynomial of finite degree and m is a nonnegative 
integer, or else I(z) cannot be analytically continued 
beyond the unit circle. 

Now from (2.17) it follows that 

(2.30) 

and since the ck's are all integers, there appear only 
finitely many different coefficients in the expansion 
of I(z). Furthermore when A < 4, I(z) can certainly be 
continued beyond the unit circle and so Szego's theorem 
provides 

I(z) - P(z) - P(z) + zm P(z) + z2 m P(z) + ... 
- (1- zm) - , (2.31) 

where in view of (2.29) we must have 

p(z) = Co + c1z + ••• + cm_1 zm-1 when A < 4. (2.32) 

Thus we have deduced that when A< 4, I(z) is a 
rational fraction whose only singularities are poles 
located at various roots of unity. 

Notice that the polynomial P(z) in (2.32) necessarily 
possesses the factor (1 - z) because A < 4 corresponds 
to 110> 0 in (2.25) which means I(z) cannot have a pole 
at z = 1. More generally, there can occur many can
cellations between the numerator and denominator in 
(2.31) as can be seen by forming a superposition of 
two such generating functions-the result is a new gen
erating function corresponding to a D. M. P. for which 
there will in general be many cancellations when ex
pressed in the form (2.31). This means that there is no 
straightforward way of expressing m as a function of 11 0• 

In general, when A ~ 4, we observe that in view of 
(2.30) the set of numbers 

(2.33) 

are all positive integers bounded above by Co and hence 
the number 

(2.34) 

considered as a representation in the base co, is either 
rational or irrational, and we have the following 
proposition. 

Proposition: The generating function I(z) is a rational 
function if and only if the number C is rational. 

Proof: Suppose C is rational. Then the sequence {ck} 
must ultimately be periodic so that there exists integers 
m and n with ck = ck +m for all k whenever k> n. But 
this implies 

I(z)=c +c z+·"+c zn+ z n+1 (Cn+1+Cn+2Z+···+Cn+mzm-1) 
o 1 n (l_zm) 

(2.35) 

which is rational. 

Conversely, suppose I(z) =P(z)/Q(z) where P(z) and 
Q(z) are polynomials of finite degree with, say, 

(2. 36a) 
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Then for all k greater than some ko we must have 

qock+m + qlck+m_l + 0 0 • + qmck = 0. (2. 36b) 

Now consider the set of vectors 

vk = (Ck , ck+l,"" Ck• m_l), where k=O, 1,2,···. 

(2.37) 

Since only finitely many such vectors can be construct
ed out of the co's there must exist at least one such 
vector which reappears infinitely many times as k 

varies. It now follows that C is rational, for if vk1 = vk2 ' 

then using (2. 36b) we have ck1 +m = C
k2

+m and so on, ... , 
which completes the proof of the proposition. 

In the case where A <- 4 we have already seen that 
fez) is necessarily rational, and in fact takes the 
special form (2.31) and (2.32). However in the case 
A = 4 the number C may be either rational or irrational. 
If it is rational, then the proposition provides that 
fez) is itself rational and can be expressed in the form 
(2.35), but where we no longer have any assurance 
that f(z) tends to zero at infinity. That is, I(z) is the 
sum of a polynomial and a component of the form (2.31) 
and (2.32). If, on the other hand C is irrational, then 
fez) cannot be a rational function and Szego's theorem 
provides that it possesses a natural frontier on the 
unit circle I z I = 1. 

Up to now the only use we have made of the positivity 
of gee) is embodied in (2.30). The full positivity con
straint is most conveniently expressed in terms of the 
Toeplitz determinants12 

(2.38) 

Ck ck-l' ••• Co 

A necessary and sufficient condition that lIce) is non
negative for 0'; fJ .; 1T is that 

(2. 39) 

while gee) is nonnegative for eo'; e '" 1T and vanishes 
on 0.; e .; eo if and only if we have both (2.39) and 

Tk(do, db' .. ,dk) ?o ° for all k = 0,1,2,00' , 

where for each k 

dk =2ck coseo- clk+ll - clk-ll' 

(2.40) 

(2.41) 

Furthermore, if Tko (co, cl, ••• , c'o) = 0, then 
Tk(co, ct, ••• ,ck) = ° for all k?o flO and this is the case 
if and only if fez) takes the form (2.31) and (2.32) for 
some 111 "'·l~o. 

We believe, but have so far been unable to prove in 
general, that the positivity constraints (1. 39) are in 
fact such as to ensure that the number C is rational 
and hence that there cannot exist a natural frontier on 
the unit circle in the case A = 4. This belief is support
ed by the fact that it is certainly true in the physical 
case mentioned in Sec. 1 where no = 1 so that Co = 1. In 
this situation, either 

(2.42) 
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in which case fez) =co = 1, or else there is some first 
CkO such that I CkO I = 1. If the latter is true, then TkO = ° 
from which it follows that fez) is a rational function of 
the special form (2.31) and (2.32). 

We now return to the 11.' plane and convert our results 
concerning fez) into statements about the generating 
function G(m). When A < 4 we see from (2.31) together 
with (2.27) that G(m) is a rational fraction with its 
poles located at various points w = wk , 

kE {l, 2, ... , m - I}, where 
1 

wk = -;-4-co-s.....,2"occ-~1T-lrn-;1 r (2.43) 

When A = 4 and no = ~, we either have 

G(w) = 1 {[l±(l-~)mJ_l _.!.} 
.f 1 - 4w 1 + ,/1 - 4w 2 

for some 11/, 

(2.44) 

which must always reduce to a rational fraction with its 
poles at all of the points 7I'k' For example, when III 0= 7 

G(lr) - 1 - 7w + 14w
2 

- 7w
3 

(2 4 ) 
- 2(1- 411')(1- 5u' + 6w2 _ w3) , • 5 

or else corresponding to (2.42) we have 

'() 1 1 (, U' = - . -===-
4 2 )1-4w 

(2.46) 

It is interesting to note that G4 (w) here is precisely 
the function obtained for the one-dimensional Ising 
model in the thermodynamic limit. Rational fractions 
are obtained in the case of a finite Ising chain with 
periodic boundary conditions. 

3. THE PROBLEM WHEN i\ > 4 

This situation is the interesting one for physical 
problems with the exception of the one-dimensional 
ISing model which corresponds to A =4. 

P1'oposition: Any Diophantine moment problem corre
sponding to A> 4 can be reduced to one with A = 6 by 
repeated application of the transformation 

G (w) = 1 G ( 11,2 
UA 1 - U'vA A (1 _ U· VA)2 ' 

(3.1) 

where G A (11') denotes a Diophantine moment generating 
function associated with the support [0, Aland vA is 
integer. 

To prove this result we need to use various trans
formations which take D. M. P. 's into D. M. P. 'so These 
are of considerable importance and we begin by dis
cussing the simplest ones. 

Starting with 

Ilk = lb >.,ka("A)d"A, I~=O, 1, 2,"', (3.2) 
a 

where a and b are real numbers, a is nonnegative, 
and the no's are integers, let us make a translation 

"A = x - q, where q is an integer greater than - (/. 

(3.3) 

Then we obtain 

l
b+q 

n. = (x - q)k a(x - q) dx, 
a+q 

(3.4) 
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and putting a(x) = a{x - q), which is also nonnegative, 
we define a new set of moments by 

These new moments associated with the translated 
measure a(x) are also integers because 

~ = fb (X +q)k a(X) dX = t ('?) qk_P np , 
P=O p 

a 

and the two generating functions 

~ ~ 

G(w) = '0 nkwk and G(ql(no) = '0 nkwk 
hll hO 

are connected by the relation 

G () 1 G( U' ) (ql lI' = 1 _ qw (1 - qw) 

The second simple transfor mation is nonlinear. 
Setting 

X=y2 

in (3.2) and supposing 0< a < b, we get 

and 

~ f b a(X)dX 
G(u') =); n w k = k';;-6 k 1- Xw 

a 

=f.f
b 

a(l)y( 1..f: + 1 ) dy 
1 - y w 1 + ylw 

.fa 

-f+"l> iyia(i) d' 
- 1- y{il' }, -.fb 

a(i) being zero on [-la, + Jil]. 

If we now introduce the moments 

mk=J~v'b Iyla(i)ldy, k=0,1,2,"o, 

then we see that the generating function 

~ 

G,(w) = 0 n1kllf 
k:O 

is even and 

I/7Zk=nk, n12k+l=0, k=0,1,2,···. 

The two generating functions are related by 

G'l(w) =G(w2). 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3. 13) 

(3.14) 

(3.15) 

Next we combine the two transformations (3.8) and 
(3.15). Starting with 

(3.16) 

and applying the quadratic transformation followed by 
a translation, we arrive at 

1 (U') G[1[oJ(w) = -1-- G" (-1--) 
- qw - qw 

1 (u}) 
= 1 - qw G (1- qw)2 

(3. 17) 
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where the support of G [l(o] (w) is l- IA + q, JA + q 1 and 
its moments are 

(k/21 (k) - k_2p, • •• 
n1 k = '0 2 q np, k=0,1,2, , 

p=O P 
(3.18) 

[k/2] denoting the integer part of Id2. If we insist that 
IA is an integer, which we can always do by enlarging 
the support in (3.16), then we arrive at the D. M. P. 
preserving transformation (3.1), and we see that the 
original problem with support [0, A 1 is transformed into 
a problem whose support is [0,2 I A J. 

The proposition is now proved by repeated applica
tion of this transformation as follows. Begin with any 
value of A> 4. Increase A until it becomes a perfect 
integer square. Apply the transformation. Repeat the 
process. It is readily seen that in this way we can al
ways arrive at a problem whose support is [0,61. For 
example, for A = 54, which corresponds to the critical 
isotherm of the planar triangular ISing model, we have 
the sequence 

A = 54 enla!:!led to 82 = 64 tr~!,.'!n 16 

= 42 tr~sn 8 enlar~d to 32 = 9 h~sn 6. 

We have not been able to classify rigorously the 
classes of solutions that are admitted when A = 6, al
though we have a fair idea of the types of things to be 
expected as will be seen from the examples given in 
the next section. The situation to date is summarized 
in Table 1. 

4. EXAMPLES 
A. A class of algebraic generating functions 

We consider the solutions Gi(w), i=1,2, ... ,N, of 
the algebraic equation 

+ p- G{w) +wG(W)N =0, (4.1) 

where p and N are positive integers. 

Proposition: The solution of (4. 1) which is regular 
at w = 0 is the generating function for a D. M. P. 
with 

N -1 [PN ] N 
A= -p- N- 1 when N> 1, and A = 1 when N= 1. 

PrOOf: Note that the only possible singular points for 
any Gi{w) are u'=oo, w=O, and 

The solution with no singularity at zero, Gj(z), has the 
expansion 

(4.2) 

wherein all the coefficients are integer. Observing 
directly from (4.1) that the imaginary part of any G/(w) 
cannot vanish when Imw * 0, we deduce from (4.2) 
that 

ImGj (w) < ° when Imw> 0. (4.3) 

Since the only singularities of Gj (w) are at w.1ng and 
infinity, we have by Cauchy's theorem 
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TABLE I. Summary of what is known about G(w) as a function of the length of its support. 

Support 

A=l 

A=2 

Nature of G(w) Remarks 

[1/1] rational fraction 

[2/2] rational fraction 
Only rational fractions are allowed. 

A<4 

A=4 

4<A<6 

rational fraction whose poles have various locations w = wk 
kE"{1.2 •.•.• m-1}. some m. where wk=1/4cos 2(k7r/m). 

If no= ~ while other moments are integer. then either G(w) is a 
rational fraction with poles at all of the points w = Wk' 

k=1.2 •...• m-1. where wk=1/4cos2(k7r/m). some m; or 
G(w)=V~4w. 

In general, G(w) may be a superposition of a rational fraction. 
an analytic function with branch points of order two at w = ! 
and w = 00. and a Stieltjes function with a natural frontier on 
!:::::w<oo. 

Very little known 

Algebraic functions with branch 
points of order two are admitted. 

Is the possibility of a natural 
frontier excluded by the positivity 
constraints? 

No-man's land 

A=6 Examples show that G(w) can have a natural frontier on its 
second sheet, and that certain hyper geometric functions 
possessing logarithmic singularities occur. G(w) can also be 
an algebraic function with high order branch points. 

Algebraic functions with high order 
branch points admitted. 

Functions with logarithmic 
singularities admitted. 

A>6 G A (w) is related to G 6(w) by a sequence of purely algebraic 
transformations. 

Gl{W)=~ f G1Wd~ 
21Tt (~-w) 

(4.4) 

for any W in the complex plane cut from we to ro, and 
C is any contour in this cut plane which encloses w. 
Choosing C as in Fig. 5, and letting the circular part 
tend to infinity it is readily found that the only contribu
tion to (4.4) comes from the integration back and forth 
along the cut. Since Gl (w) is real on the real axis for 
W < wsiDll , the discontinuity along the cut is 

2limG{x+i€)=-21Ti8(x), X:;'W'iDll' (4.5) 
E - 0+ 

where 8{x) is positive because of (4.3). Thus we have 

( ) f~ e(x) dx. Gl W = x-w 
wsing 

Defining a{X) = 8 (1/X)/X on 0.:;:; X.:;:; l/wsiu we finally 

-------
/...... ........, 

/ , 
// '\ 

/ \ 
I \ 

I \ 
I \ 

I \ 
I I 
I I 

r---------W-+=-0----~r;~5~5~5;~75~r-~55755~5ryS~0~~ry7~77n77S7~Sn777 
I ;-----, 

\ Ws ! 
\ I 
\ I 
\ I 
\ I 

'\ / , / , / 

.... ,// 

........ _----- --
FIG. 5. The contour C used in (4.4) to reduce G1 (w) to the 
form (4.6). The discontinuity on the cut is positive. 
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(4.6) 

a(X)dX 
1 _ Xw' for all W in the cut plane, 

(4.7) 

which completes the proof of the proposition. 

Notice that for p = 1 and N large, A - eN. In this 
example we have a sequence of algebraic functions 
which are solutions of D. M. P. 's and whose order in
creases with increasing A. 

B. A generating function with logarithmic singularities 

Suppose we have two generating functions 
~ ~ 

GA(w) = 0 nkwk and GA, (w) = 0 n~wk (4.8) 
k.O k.O 

belonging to supports [0, A] and [0, AI], respectively. 
Then the Hadamard product is defined by 

(4.9) 

Gu ' (w) is aD. M. P. generating function with support 
[0, AA'] because 

AA' 

f 
dX =f tk dt al(t/X) a{X) T . (4.10) 

o 
Choosing 

(4.11) 

we find 

Gl6 (W) = (G4 * G4)(w) = t (2n) 2 wn =F(~,~, 1; 16w) 
k=O n 

(4. 12) 
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which is the Gauss hypergeometric functiono This has 
a logarithmic singularity at w = *. 

Other hypergeometrics involving rational indices and 
the variable scaled by a suitable integer also give rise 
to D. M. P. generating functions. 13 

C. A generating function with a natural boundary on 
the second sheet 14 

Consider the case A = 8 so that 

nk = fo8 ~h7(A) dA, k = 0,1,2, •• '. 

Then defining i'f(A) = 2a(2A) on 0"" A"" 4 we find 

nk = t Ak dU(A) =nk /2\ k =0,1,2,···. 
° 

(4.13) 

(4.14) 

If we now convert this into a trigonometrical moment 
problem by applying the transformation (2.26) and 
(2.27), we find that the trigonometrical moments are 
of the form 

(4.15) 

where c/s are integero Now suppose that the ck's are 
such that the associated generating function 

1(z) = to ~ Zk is holomorphic for 1 z 1 < 2 (4.16) 

and moreover 

Re1(z)~co/2 when Izl<1, (4.17) 

so that the associated trigonometrical measure gee) is 
nonnegativeo Then on inverting the transformation 
(2.26) and (2.27) we are led to a solution of the D. Mo P. 
(4013)0 

Now choose 

Co = 2, ck = 1 if k is prime, and ck = 0, otherwise. 

Then (40 16) is satisfied, and moreover 

ReI(exp(ie» = 2 + ~ (coske)/2 k 

k prime 

? 2 - t 1/2k~ 1 =co/2 
k:l 

(4.18) 

(4.19) 

which is condition (4.17). Thus (4.18) corresponds to 
a solution of the D. M. P. (4. 13), where A = 8. More
over, 1(z) clearly has a natural frontier on I z I = 2 so 
the solution of the D. M. P. has a natural frontier on 
its second sheet. 

D. A generating function associated with a Cantor set 

We consider the effect of repeated application of the 
D. M. P. preserving transformation (3.1), starting with 
A = 6 and any CJo, (w) whose support is the whole inter
val [0,6]. On increasing A to 9 and applying the trans
formation we obtain CJI, (w) whose support is contained 
in [3-v'6, 3+v'6]. Again increasing A=3+v'6 to 9, and 
again applying the transformation, we now obtain a 
D. M. P. generating function CJ2 ,(w) whose support is 
contained in [3 - (3 + v'6)1/2, 3- (3 _ v'6)1/2] 
U [3 + (3 - v'6)1/2, 3 + (3 + v'fI)I/21. At the nth iteration 
we obtain a D. M. P. generating function CJn,(w) whose 
support is contained in the union of the set of intervals 
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I(n, [(n, (n,} . 1 2 2n- 1 
J = a2J_1> a2i , J = , , ... , . (4.20) 

Here the set {a~n'}~:l consists of all the numbers which 
are expressible in the form 

3 ± (3 ± (3 ± ••• (3 ± v'6)1/2 ••• )1/2)1/2, (4.21) 

where the number of square roots involved is n. These 
numbers are ordered so that 

(4.22) 

and the only difference between a~n/_l and a~f is the sign 
of the VB term in their representations in the form 
(4.21). The following points, which we state here with
out proof, can now be established. Firstly 

2n_l 2" 

U Ij"'=> U Ij"+I, for n=1,2,3,"', 
J=1 J=1 

(4.23) 

so that each set of intervals forms a covering to all of 
its successors. Secondly, 

2n-1 2n 

lim meas U IJ"' = lim 0 1 a2J - a2J_I 1 = 0. 
"_DO j=1 n_co J=1 

(4.24) 

Thus the limiting support, as n tends to infinity, is the 
set 5 of all pOints expressible in the form 

3 ±v'(3 ± v'(3 ± ••• ad infinurn): (4025) 

5 is uncountable and of measure zero, and is therefore 
a Cantor set. 

The above consideration leads us to seek the answers 
to the following questions. Does the sequence 
{CJ"'(W)};=I converge to a well defined limiting function 
Cf'(w)? Is ct'(w) a genuine D. M. P. generating func
tion? What is the nature of the measure of ct '(u'), 
this being associated with the Cantor set S? 

Proposition: Let CJo,(w) be any given D. M. P. gen
erating function with support on [0,6]. Then the sequence 
{CJn,(u-)}'i' converges to a function ct'(w), the con
vergence being uniform for U' EO~, where ~ is any closed 
bounded region interior to the complex plane cut from 
w=i to w="". 

Furthermore, ct'(w) is a fixed point of the trans
formation (3.1) corresponding to A = 90 It is a bona fide 
D. M. Po generating function with support [0,6] and is 
unique up to multiplication by a positive integer no, its 
Taylor series expansion about the origin being 

00 

ct'(w) =no '0 gkul , (4.26) 
k=O 

where the gk'S are integers given recursively by the 
relations 

(4.27) 

and 

2s+2 (2S + 2) = (_ 3)-2 (s+I, 6 gp(- 3)"P P gs+l, 
s = 0,1,2, . 0 •• 

p=O 

The series (4.26) converges for Iw I< i. 
PrOOf: First we note that if (3. 1) has a fixed point 
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Gt)(w) which is regular in some neighborhood of w=O, 
then its Taylor series expansion about w = ° would have 
to be (4.26) where the gn's are given by (4.27). This can 
be seen by substituting (4.26) into both sides of (3.1) 
wherein A = 9, and equating coefficients. Furthermore, 
it is easy to see that the g/s defined by (4.27) are all 
integers. 

Now let us start with any D. M. P. generating function 
G4°)(w) with GJo)(O) = no and A = 6, and let us apply (3.1) 
n times to obtain a new D. Mo P. generating function 
G6(n)(n.oj belonging to A = 6. Set 

~ 

Gt)(w) = '0 g:")w". 
k=O 

Then a little algebra provides that 

g~n)=nogk for k=0,1, ... ,(2n-1), 

(4.28) 

(4.29) 

where the gk'S are those defined by (4.27). Moreover, 
we know from the previous proposition that GJn)(w) is a 
D. M. P. generating function with support [0, 6J, and 
hence 

(4.30) 

where a(n)(x.) is a nonnegative measure on [0, 6J. In 
addition, from (4.29) it follows that 

gJn) =no and gt) =3no for n ~ 1. 

Applying the theory of upper and lower principal 
representations16 to (4.30) and (4.31) we obtain 

3kno ~g:") ~ t 0 6kno for all k> ° and n ~ 1. 

Combining this with (4.29) we now have 

(4.31) 

(4.32) 

3k ~ gk ~ ~. 6k, for all k> 0, (4.33) 

which says in particular that the series (4.26) is abso
lutely convergent for [w [< t. Let us denote the function 
thus defined by Gt)(w). 

Finally we prove that 

G(~)( .) =/ 6 a(X) dX. 
6 U. 1- Xw for some nonnegative a(X), 

o 
(4.34) 

and that {GJ")(w)};=o converges uniformly to Gt)(w) for 
all WE n, where n is any closed bounded region in
terior to the complex plane cut from w = t to 00. 

To prove (4.34), we recall that 

f
~ B(X)dX. . 

F(w) == (1 _ wX) for some nonnegative B(X) 
o 

if and only if17 Do k(Fo,Fj, ••. ,F2k)~0 and 
D 1,k(Fj, F 2, .•. , F;k+l) ~ ° for all k where 

DI,k(F
" 

F ,+!> •• ' ,F2k+l) 

F 1+1 FI+2 
=Det for [=0 and 1, 
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(4.35) 

(4.36) 

(4.37) 

But D"k(nog
" 

nog'+1> ••• , nogl+k) =D
"

k(g:2k+l), gi!~+I) , 
••• , g:!~+I» ~ ° for l = ° and 1 because GJ2k+l) (w) is 

certainly of the form (4.35), and we have (4.29). It 
now follows that Gt lew) is expressible in the form 
(4.35). In addition (4.33) implies that the measure is 
zero for w> 6, and thus we have (4.34). In particular, 
the Stieltjes moment problem associated with the set 
of moments {nogk}Z.o is determinate: Thus18 the set of 
moments {nogk};.o defines a lense-shaped region 
wN(nogo, ••• , nogN ;w) in the complex plane, for each 
WE n, such that for any function of the form (4.35) 
whose first (N + 1) moments are precisely 
nogo, nogj, ••• , nogN, we have 

F(w) E wN(nogo,"" nogN; w) for all WE n, 

where 

SizewN(nogo, ••• ,nogN;w)-O as N-OO, 

uniformly for WEn. 

The size of a set 5 in the complex plane is simply 

(4.38) 

(4.39) 

Max{ [Wi - W, [: WI E 5, w2 E 5}. Let E> ° be giveno Choose 
N so large that SizewN(nogo, ••. , nogN ;w) < E for all 
WE n. Then we clearly have 

1 Gt)(w) - GJn)(w) 1< E for all WE n 

for all n> N, which completes the proof. 

(4.40) 

We are now in a position to specify the measure 
at)(x.) of Gt)(w), and to show how this is defined over 
the Cantor set 5. Let the measure associated with 
GJn)(w) be aJ")(x.), and define 

BJn)(x) = loA ar)(x) dx for all n = 0,1,2, .•• , (4.41) 

so that 

f 6 dBt)(x) 
G4n )(w) = 

(1- wX) 
o 

(4.42) 

Then using the uniform convergence of the sequence 
{G4n ) (w)}, we have from the theory of moments that 

limB4n)(:\)=Bt)(X), uniformly for X.E [0,6J. (4.43) 
n ~ 00 

Moreover, from the proposition, the result must be in
dependent of the choice of starting function GJO)(w), 
subject to the normalization condition 

(4.44) 

NOW, the relation between the successive aJn)(x.)'s is 

ar1) (X) = IX-3Ia4")«X.-3)2), n=0,1,2,···. (4.45) 

ChOOSing for Simplicity 

aJo)(X) = 15 (X - 6) (4.46) 

we find 

(41 )(x.)=t[15(X- (3-16»+15(:\- (3+Y6)J. 

Iterating, we thus have 

1 2n 
0'4n)(X) = 2" '6 15(X - a~n», 

k=1 
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FIG. 6. The devil' s staircase. This represents the integrated 
measure fX at)(;>.J d"A associated with the D. M. P. generating 
function G~(~)(w). Each "vertical" segment has the detailed 
structure shown in the inset. 

where the a~nl's are defined in (4.21). Hence 

BJn)(\) = 21n x {The number of a~n)'s less than or equal 

to \}. (4.49) 

Taking the limit as n - 00, we obtain et )(A) which is an 
example of the infamous devil's staircase, illustrated 
in Fig. 6. It is a continuous bounded monotone nonde
creasing function whose derivative exists and is zero at 
every point except on the Cantor set S. 

More generally we can consider the fixed point, 
G.J;) (w), of the transformation (3.1) corresponding to 
an initial D. M. P. generating function Gi~)(w) with 
support on (0, 2q J, where q is an integer ~ 2. Starting 
with A = 2q, one increases A to q2 and applies (3.1) 
to obtain a new D. M. P. generating function Gi~)(w) with 
A = 2q, 000, and so on. The analysis proceeds just as 
before except that the role of 3 is played by q through
out. Gi;)(w) is aD. M. P. generating function which has 
for support the set of all numbers of the form 

q ± ffq ± f(q ± f(q ± ••• ad in/inum) o •• ))). (4.50) 

This ensemble appears to be a Cantor set of measure 
zero for all q> 2. When q = 2 the ensemble is dense in 
(0, 4J and we find 

Gr)(w)=~, 
1-4w 

(4.51) 

where no is a positive integer, and the corresponding 
measure is 

(4.52) 

What happens in this limiting case is that all of the gaps 
in the support of the measure become filled up and the 
resulting measure is very smooth. 

We note that the support of G1; )(w) is in fact contained 
in (q - fAo, AoJ, where 
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Ao = (2q +f(4q + I)J /2. (4.53) 

In particular, on supposing that near Aii l 

Gi; )(Aijl - E) - EO< + higher order in E, (4.54) 

and substituting into the fixed point equation 

G(~)(w) - __ 1_ G ( UJ2 ) 
2. - 1- qw 2. (1 _ qW)2 (4.55) 

we obtain after some calculation the consistent con
clusion that 

(4.56) 

Choosing n, not necessarily an integer, so that Ao =4n, 

and the integer q = 4n 
- 2n

, we find the index 

(l' =- n/(n + 1), (4.57) 

which agrees with (4.51) where n = 1. 

These functions have many interesting properties
analyticity in a cut plane, positive discontinuity, ex
pansion with integer coefficients, and behavior like 
(ws - w)'" near the first singular point Ws = Aii l

. The 
occurrence of such functions in our problem was un
expected and a physical interpretation of them can only 
be for the moment hypothetical. However, functions of 
this type occur elsewhere in a physical context-in 
particular, reference are made to such functions in 
recent studies of crystallographic structures. 19,20 

5. CONCLUSION AND OUTLOOK 

An interesting result of our analysis is the quantifica
tion of the D. M. P. when the length of the support is 
less than four. The fact that all supports greater than 
four can be reduced to a length six is a mathematical 
equivalence which may correspond to some phYSical 
property such as universality. We have not been able 
to classify the families of solutions which appear when 
4 < A"" 6, and suspect that such a classification must 
depend not only on A but on other parameters as well, 
in distinction from the case A"" 4. 

The nature of families of solutions admitted when 
A> 4 might be classifiable in terms of the smoothness 
of the measure 0'(\). Various solutions of the D. M. P. 
with continuous 0'(\) are provided by the hypergeometric 
functions F(a, b, c ; Tz) with a and b rational but not 
both integers, c integer, and T an integer which depends 
upon a, b, and c. Similarly, solutions are also provided 
by functions which are algebraic over hypergeometrics, 
F(at. a2, •.• , a" ; zT). 13 

An insight into the arithmetical nature of the critical 
indices and an arithmetical interpretation of their uni
versality will only be revealed when the D. M. P. has 
been completely classified. However, we anticipate 
that the class of transformations introduced in Sec. 3 
may have surprising consequences for the physical 
Ising model considered at the outset. These transforma
tions admit fixed points, the simplest of which corre
sponds exactly to the known solution for the one-dimen
sional ISing chain. For the moment we can only guess 
that this transformation may be interpreted as a scale 
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transformation in both the magnetic field and tempera
ture variables. In general we ask if the strange devil's 
staircase type functions playa role related to the be
havior of the thermodynamical functions in a purely 
imaginary field. The latter has received attention only 
very recently, 10 being treated from the renormalization 
point of view. For us, this provides a motivation, over 
and above mathematical interest, to extend the investi
gation to the case of polynomial moments and to see if 
similar transformations prevail. 

More generally, the study of the moment problem 
when the moments belong to special classes, such as 
integers, rings, discrete sets, etc" may provide a 
complete new insight into statistical mechanics models 
as well as quantum systems such as field theory, bear
ing in mind that most of the physical problems of this 
sort can be formulated as moment problems on abstract 
fields, 
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