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Abstract. Simulation of quantum dynamics is a grand challenge of computational physics. In this work

we investigate methods for reducing the demands of such simulation by identifying reduced-order models
for dynamics generated by parameterized quantum Hamiltonians. In particular, we first formulate an al-

gebraic condition that certifies the existence of invariant subspaces for a model defined by a parameterized

Hamiltonian and an initial state. Following this we develop and analyze two methods to explicitly construct
a reduced-order model, if one exists. In addition to general results characterizing invariant subspaces of ar-

bitrary finite dimensional Hamiltonians, by exploiting properties of the generalized Pauli group we develop
practical tools to speed up simulation of dynamics generated by certain spin Hamiltonians. To illustrate the

methods developed we apply them to several paradigmatic spin models.

1. Introduction

Exact simulation of quantum dynamics is notoriously difficult because of the exponential growth of a
quantum system’s state space with the number of independent degrees of freedom it possesses. At the same
time, recent results [1] suggest that an exponentially small subset of this formal state space is accessed
through realistic dynamics. Realistic dynamics are defined as dynamics generated by Hamiltonians with
locality and energy constraints evolving for a sub-exponential (in system size) time from a small set of initial
states. In light of these results, we consider the task of identifying this physically relevant subset of states
in Hilbert space. This is an instance of model reduction in systems theory [2, 3]. The strongest form of
model reduction is when the initial state of the system is evolved within a non-trivial invariant subspace of
the exponentially large formal Hilbert space. In this case, there is no approximation error in restricting the
dynamical model to this invariant subspace by projection. Dynamics according to this reduced order model
can be significantly more efficient1 to simulate if the dimension of the invariant subspace is much smaller
than the dimension of the full Hilbert space for the system. We note that projection-based model reduction
generally considers a wider class of linear projections, where the subspace projected onto is not necessarily
an invariant subspace of the dynamics [2, 3], and in such cases the reduced order model is an approximation
of the full order model. However, in this work we only consider the strongest form of model reduction that
projects onto an invariant subspace (containing the initial state) and thus incurs no error.

In the following we develop a formal characterization of the invariant subspace spanned by a given initial
state and parameterized quantum Hamiltonian model. After establishing notation and definitions in §2, we
formulate an algebraic characterization of the existence of invariant subspaces for general parametric finite
dimensional Hamiltonians in §3 by applying classical results from the theory of representations of groups and
semigroups [4]. This characterization essentially provides a condition that certifies whether a parameterized
Hamiltonian model yields an invariant subspace when acting on a given initial state. Then in §4 we present
two techniques to explicitly construct the invariant subspace if one exists.

E-mail address: akskuma@sandia.gov, mnsarov@sandia.gov.
1 Throughout this work we reserve the term “efficient” to refer to methods that require fewer resources than a full order

simulation of a quantum system. The term should not be interpreted in the formal complexity theoretic sense (as polynomial
complexity in number of degrees of freedom). When such formal notions are necessary, we will explicitly specify the asymptotic

scaling behavior.
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In the second part of the paper, beginning with §5, we specialize to models of many-body spin dynamics
and exploit properties of the generalized Pauli group to formulate stronger results that characterize invariant
subspaces in this setting. We also develop specialized tools to explicitly construct the physically relevant
invariant subspace for Pauli Hamiltonians in an efficient manner. These tools are then applied in §6 to
several paradigmatic spin models.

From a physics perspective, the methods we develop can be viewed as allowing one to exploit (unitarily
representable) symmetries in a many-body system without having to know these symmetries a priori. That
is, reduced subspaces are associated to model symmetries, and the methods directly compute the projected
dynamics in these reduced subspaces.

In terms of previous work on model reduction for quantum systems, Mabuchi et al. have developed
projection-based model reduction methods for dissipative, measured quantum systems that allow efficient
estimates of quantum states based on continuous measurement outcomes [5, 6, 7, 8]. Also, Nurdin has
explored balanced truncation for linear quantum stochastic models [9] with the focus of generating reduced
order models that have a physical realization. In contrast to these works, our approach is specifically aimed
at generating reduced order models for many-body systems that are governed by Hamiltonian dynamics
(closed systems). In addition, while these previous works have developed methods for formulating reduced
order models that reproduce input-output relationships, our focus will be on reproducing the quantum state
vector generated by the dynamics. Our approach has similar aims as the recently developed time-dependent
density matrix renormalization group (t-DMRG) method for many-body simulation [10, 11]. However, unlike
t-DMRG, we do not begin with an ansatz for the physically relevant set of states and simulate their dynamics.
Instead, we aim to identify this set of states from the dynamical model and reduce the model by projecting
onto them. Finally, in contrast to all of the methods above our approach does not result in approximative
reduced order models but exact ones since it relies on identifying invariant subspaces that host the dynamics.

2. Setup and notation

We use Hd to denote a d-dimensional Hilbert space, and given any vector space V we denote by L(V ) the
space of linear operators T : V → V . Md(C) denotes the space of all complex d × d matrices and GLd(C)
the subspace of all invertible d× d matrices.

Let the quantum system of interest be d-dimensional, meaning that a state of the system, |ψ〉, is a
normalized vector in Hd

∼= Cd. Then, we consider the following general class of Hamiltonian models that
generate system dynamics on Hd:

Definition 2.1. A time-independent Hamiltonian model with M free linear parameters (or an M -parameter
Hamiltonian model for short) is a self-adjoint operator valued function H :RM →Md(C) of the form:

(1) H(λ) = H0 +

M∑
k=1

λkHk (M > 0)

where the {Hk}Mk=0 are fixed finite-dimensional self-adjoint operators on Hd.

The operator H0 is often called the free Hamiltonian and the parameters λ = {λk}Mk=1 are real tuning
parameters (collectively, we also refer to λ as the tuning parameter). In the many-body physics context,
these tuning parameters often determine the phase of the physical system. We restrict to time-independent
parameters λk in this work for simplicity; but all of the results can be generalized to the time-dependent case
(that is particularly relevant to quantum control). We will often abuse notation and denote a Hamiltonian
as well as the induced model by the same symbol, H. Given a state, |ψ0〉, of the system at time t0, the state
of the system at time t is given by2

(2) |ψλ(t)〉 = Uλ(t, t0) |ψ0〉 = exp {−iH(λ)(t− t0)} |ψ0〉 .
Without loss of generality, we can take H to be traceless since any traceful component would simply

generate a global phase factor that is physically irrelevant. Moreover, since λk take arbitrary real values,
including zero, tr(Hk) = 0 for all 0 ≤ k ≤M .

2 Throughout this paper we use units where ~ = 1.
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We are concerned with finding an invariant subspace for the dynamics generated by this Hamiltonian
that contains the initial state |ψ0〉. Importantly, the invariant subspace should be independent of the tuning
parameters λ since we do not wish to construct such a subspace for every possible combination of parameters.
We collect these objectives in the following definition.

Definition 2.2. Let H be a time-independent Hamiltonian model on Hd, with M free parameters. If |ψ0〉
is the initial state for the dynamical evolution governed by H, then we combinedly denote this model by
the notation, H|ψ0〉. Further, we call a non-trivial proper subspace V ⊂ Hd that is invariant for all of

the operators in the full space H(RM ) (i.e., for all parameter values), and contains the initial state |ψ0〉, a
reduced subspace for H|ψ0〉.

In the second part of this work we focus attention on many-body spin- 1
2 (qubit) models. In this context,

let P1 := {σk}3k=0 be the set of Pauli matrices with σ0 = I2. It is clear that this set forms an orthogonal
basis for the Hilbert space of all two-dimensional linear operators (viz., the operators on the space for one
qubit) under the Hilbert-Schmidt inner product. Thus, the set of permutations of n-fold tensor products,

Pn := {σj1 ⊗ · · · ⊗ σjn | 0 ≤ j1, . . . , jn ≤ 3 and σjk ∈ P1}
forms an orthogonal basis for the space of operators acting on the space of n-spins, H2n

∼= (C2)⊗n. We
denote the canonical generators of the Pauli group on n spins by P∗n := Pn\{I2n}.

3. Preliminaries

As a consistency check, we begin by showing that our definition of a reduced subspace for a given model
H|ψ0〉 actually preserves the dynamics generated by H at every value of the tuning parameters λ ∈ RM , with
initial state |ψ0〉. To this end, we define a necessary piece of notation:

Definition 3.1. If T ∈ L(Hd), then the T -cyclic subspace generated by |φ〉 ∈ Hd is the subspace of Hd

given by Z(T, |φ〉) := span{T k |φ〉 | k ≥ 0}.

Since the dynamics of H are governed by the evolution equation Eq. (2), we see by the convergent
expansion,

Uλ(t, t0) =

∞∑
k=0

(−i)k

k!
(t− t0)kH(λ)k,

that for each fixed λ ∈ RM and every t ∈ R, |ψλ(t)〉 ∈ Z(H(λ), |ψ0〉). Now, if V is a reduced subspace for
H|ψ0〉, then we have by definition that H(λ)V ⊆ V and |ψ0〉 ∈ V , for every λ ∈ RM . Thus clearly, given

any λ ∈ RM , H(λ)k |ψ0〉 ∈ V for every k ≥ 0, whence Z(H(λ), |ψ0〉) ⊆ V . This completes the proof of the
following:

Lemma 3.2. Given a Hamiltonian model H|ψ0〉, every reduced subspace encompasses every state Uλ(t, t0) |ψ0〉,
for all t, t0 ∈ R, and all λ ∈ RM .

With the above definitions in place we can be more specific about how to construct reduced order dy-
namical equations for quantum Hamiltonian models possessing a reduced subspace. Let the columns of a
d × r matrix Φ be a basis for an r-dimensional reduced subspace for H|ψ0〉, with Φ†Φ = Ir. The dynamics
generated by the Schrödinger equation for the original model,

d

dt
|ψλ(t)〉 = −iH(λ) |ψλ(t)〉 , |ψλ(t0)〉 = |ψ0〉 ,

is equivalent to the dynamics generated by the projected model

(3)
d

dt
|υλ(t)〉 = −iĤ(λ) |υλ(t)〉 , |υλ(t0)〉 = Φ† |ψ0〉 ,

where the projected, reduced-order Hamiltonian is the r × r matrix

(4) Ĥ(λ) = Φ†H(λ)Φ,

for all λ. The r × 1 vector, |υλ(t)〉, is a compressed, faithful representation of the quantum state; the full
representation of the state can be recovered at any time since |ψλ(t)〉 = Φ |υλ(t)〉.
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3.1. Reduction to Common Invariant Subspaces for Finitely Many Operators

We now show that we can readily reduce the problem of finding reduced order models for the dynamics
generated by H|ψ0〉 to finding an invariant subspace (containing |ψ0〉) common to a finite collection of related
operators, which we denote by Coeff(H). By basic properties of invariant subspaces, the problem is then
cast as that of understanding the algebra of operators generated by Coeff(H). In this way, we convert the
problem into an algebraic one, which will be addressed in later sections.

By considering H(λ = βk), for each canonical basis vector βk for RM , along with H(0), and taking their
linear combinations, we see that a subspace is invariant for H if and only if it is invariant for the collection
{H0 + Hk}Mk=1 ∪ {H0} (which is one possible choice for Coeff(H)). In fact, by exploiting that H, as given
by Eq. (1), is an affine map RM → L(Hd) as a function of the tuning parameter λ, we can strengthen this
consideration to point out that we can choose any M+1 affinely independent points in RM and the existence
of an invariance for the full model is equivalent to the existence of a common invariant subspace for H at
these points 3. A small generalization of this is the content of the following:

Lemma 3.3. Let A : CM → L(Hd) be an affine map with full affine rank, for any M ∈ N and denote by
AL its linear part. Then, for V ⊂Hd a non-trivial proper subspace, the following are equivalent:

(i) If β is an affine basis for CM and β∗ ⊂ β is a linear basis, V is invariant for the set AL(β∗)∪A(β\β∗)
(and thus also for A(β));

(ii) There exists an affine basis β for CM such that V is invariant for the set A(β);
(iii) V is invariant for the affine space im(A) := {A(γ) | γ ∈ CM}.

Proof. These results follow trivially from the affineness of A and the preservation of the invariance of a
subspace under linear combinations of maps for which that subspace is invariant. Note also that whenever
β ⊂ CM , the affine hull Aff(β) has dimension at most the linear hull of β. Therefore, if β is an affine basis,
then it must contain a linear basis β∗ and β\β∗ = {γ}. Then, choosing β to be the canonical orthonormal
basis for CM along with the zero vector, we immediately get (i) =⇒ (ii).

For (ii) =⇒ (iii), note that since β is an affine basis for CM , Aff(A(β)) = im(A). And since affine
combinations are just linear combinations with a restriction on the coefficients, we have by linearity that V
is invariant for im(A).

Now we need only to see that (iii) =⇒ (i). Let β := β∗ ∪ {γ} be an affine basis for CM with β∗ a linear
basis. By the assumption, V must be invariant for A(β) = A(β∗) ∪ {A(γ)}. Thus, by linearity, it must also
be invariant for AL(β∗) = A(β∗)−A(γ). �
Remarks. 1. This is just an elaboration on the observation that invariant subspaces for a collection of
operators are preserved under affine transformations of the scalar coefficient variables describing the affine
combinations among the operators.

2. In the sense of inhomogeneous systems, it is really the classical Rouché-Capelli theorem that is at
work here, allowing us to rewrite the constituent operators of A as linear combinations of A(γ) evaluated
at M + 1 affinely independent points. The trend continues: if we take A to be linear, then it is clear that
invariance for A by anything less than a basis for CM immediately implies a linear dependence among its
constituent operators (and conversely). A much stronger version of this is the content of a theorem proven
by Burnside, which will be the topic of discussion in §3.2.

We record the application of Lemma 3.3 to reducing our original problem, in the following:

Proposition 3.4. An M -parameter Hamiltonian model acting on Hd,

H(λ) = H0 +

M∑
k=1

λkHk

has a non-trivial proper invariant subspace V ⊂ Hd (independent of λ ∈ RM ) if and only if V is invariant
for a set of operators Coeff(H) given by the image of an affine basis β of RM under H, or equivalently,
H(β∗) ∪H(β\β∗), for β∗ a linear basis in β. �

3 For definitions of affine spaces and associated concepts (affine independence, affine basis, affine rank) see Ref. [12, Ch. 2].
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Remark. Letting β := {βk}Mk=1 be the canonical orthonormal basis for RM and HL the linear part of H, we
see that HL(β) ∪H(0) = {Hk}Mk=0. Thus, by the above, we can take Coeff(H) to be this set of operators,
which is a rather natural choice. However, in the sequel, we keep to the understanding that Coeff(H) is any
collection of operators governed by Proposition 3.4.

Since the invariance of subspaces is preserved not only under taking linear combinations, but also under
compositions of operators, the question of finding reduced subspaces for a model H|ψ0〉 really involves the full
algebraic structure of the associated operator algebra. This is convenient since characterizing substructures
of the operator algebra L(Hd) is easier than characterizing subspaces of the Hilbert space Hd. This is the
topic of the next subsection, but first we list some definitions that will be useful in what follows.

Definition 3.5. Let S = {A1, A2, ..., AK} be a set of operators with each Ai ∈ L(Hd). The operator algebra
A(S), which is a subalgebra of L(Hd), is defined as

A(S) = {p(A1, A2, ..., AK)| p is a polynomial in K non-commuting variables}

For a Hamiltonian model H acting on Hd, we will slightly abuse notation for simplicity and denote A(H)
as the algebra generated by Coeff(H), since A(H) = A(Coeff(H)). A(H) will play a central role in algebraic
certificates for the presence of a reduced subspace for H|ψ0〉.

Next, it will be useful (mostly for notational convenience) to define the notion of a lattice of subspaces of
a given vector space (see [13, § 1.8]).

Definition 3.6. Given a vector space V , a set L of subspaces of V is called a lattice if {0} and V belong
to L and it is closed under taking intersections and direct sums. Clearly the elements of L are (partially)
ordered by the subspace inclusion relation, which we will denote by ≤; collectively, we denote a lattice along
with its order relation as the tuple, (L,≤).

As an example, given any vector space V , the family of all subspaces of V trivially forms a lattice, (Lat(V ),≤).
Thus, whenever a subspace W of V contains another subspace W ′, we can express this fact by the notation,
W ′ ≤ W and we attain a chain of inclusions: {0} ≤ W ′ ≤ W ≤ V . We also define the following notation
that allows us to consider just the non-trivial elements of a subspace lattice:

Definition 3.7. If V is a finite-dimensional vector space and L is a lattice on V , then we denote by L◦ its
subset of all but the extremal (minimal and maximal) elements, {0} and V .

For a set S of d-dimensional operators, we will collect its family of invariant subspaces in Inv(S) := {V ∈
Lat(Hd) | ∀A ∈ S,AV ⊆ V }, which is obviously closed under taking direct sums and intersections and thus
forms a lattice (Inv(S),≤); clearly this is contained in Lat(Hd).

Finally, following the language of representation theory, we make the definitions:

Definition 3.8. A collection of operators S is irreducible if Inv(S)◦ = ∅. Similarly, a subalgebra A is
irreducible if Inv(A)◦ = ∅.

Irreducibility means that the only invariant subspaces common to all operators in S (or the algebra A) are
the trivial subspaces, {0} and Hd.

3.2. A certificate for the existence of invariant subspaces

A classical result in the theory of matrix algebras, stemming from the representation theory of groups,
shows that we can determine the existence of an invariant subspace for the Hamiltonian model H by ex-
amining the dimension of A(H) as a linear subspace of L(Hd). Indeed, the general theorem we use is the
following:

Theorem 3.9 ([14], [15]). A subalgebra A ≤Md(C) is irreducible if and only if A = Md(C).

Remark. See Appendix A for a derivation of this theorem from the more classical version that was proved
originally by Burnside and belongs to group representation theory.

This immediately results in the following certificate for the existence of a non-trivial proper invariant
subspace for a Hamiltonian model:
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Proposition 3.10. A Hamiltonian model H(λ) acting on Hd keeps invariant a non-trivial proper subspace
of Hd if and only if the subalgebra A(H) generated by Coeff(H) is a proper subalgebra of L(Hd) – viz.,
dim(A(H)) < dim(L(Hd)). �

Application of this certificate requires determining dim(A(H)). There are various methods to calculate
this quantity given Coeff(H), and we take the approach of constructing a basis for A(H), which we call the
Burnside basis, and denote by B(H). This basis is a maximal linearly independent subset (over C) of all
monomials in A(H) generated by taking products of the operators in Coeff(H). An explicit algorithm for
generating B(H) is detailed in Appendix B; it proceeds by multiplying elements of Coeff(H) together, and
then the resulting matrices with elements of Coeff(H) again, and so on. Subsets of these matrix products
are added to B(H) according to some decision procedure to determine linear independence. The algorithm
terminates after a finite number of steps since the algebra is finite-dimensional, and dim(A(H)) = |B(H)|.

This certificate for the existence of a non-trivial proper invariant subspace is computationally straight-
forward and has the benefit that it yields information (the Burnside basis) that enables construction of a
reduced subspace for H|ψ0〉, a task that is addressed in §4.1. We postpone a discussion of other possible
certificates to §7.

3.3. Structure of A(H)

The study of invariant subspaces for a Hamiltonian model H(λ) inevitably requires consideration of the full
operator algebra A(H) = A(Coeff(H)). Since all operators in Coeff(H) are self-adjoint, the algebra A(H) is
also self-adjoint, that is, A† ∈ A(H) whenever A ∈ A(H). Moreover, for any operator T ∈ L(Hd), the spaces
Inv(T ) and Inv(T †) are in one-to-one correspondence by taking orthogonal complements, which means that
Inv(A(H)) is closed under orthogonal complementation. Thus, for any chain {0} = V0 < · · · < VK = Hd in
Inv(A(H)), we have the orthogonal decomposition [13, § 11.2]:

(5) Hd =

K⊕
k=1

Ek,

where Ek ∈ Inv(A(H)) is the orthogonal complement of Vk−1 in Vk, for each 1 ≤ k ≤ K. Therefore, A(H)
can be simultaneously transformed to a block-diagonal form

(6) UAU† =

 A1 0
. . .

0 AK

 ,

for each A ∈ A(H), with U the unitary change of basis transformation from the canonical orthonormal basis
for Hd to an orthonormal basis for the decomposition in Eq. (5). It is well-known (see [15, Chap. 4]) that
the converse of this discussion also holds, due to which we are led to the following simple characterization:

Proposition 3.11. Let H(λ) be a Hamiltonian model acting on Hd. Then, Inv(A(H))◦ 6= ∅ if and only if
Coeff(H) is non-trivially simultaneously block-diagonalizable by a unitary transformation U ∈ L(Hd).

Remark. In fact, one need not necessarily find a unitary block-diagonalizing matrix: a result of Laffey [16,
Lemma 1] shows that the Coeff(H) is non-trivially simultaneously block-diagonalizable by a unitary if and
only if Coeff(H) can be non-trivially simultaneously block-diagonalized by some non-singular matrix. See
[17, § 2] for more discussion.

If we denote by Ak(H) the projection of A(H) onto Ek (1 ≤ k ≤ K), then each Ak(H) (1 ≤ k ≤ K)
forms an algebra consisting of the Ak that appear in the block-diagonalization above, corresponding to each
A ∈ A(H). Since it may happen that for every A ∈ A(H), there is some 1 ≤ k ≤ K such that Ak in Eq. (6)
is repeated j times, we can collect all repetitions consecutively and denote this by the following notation:

Ak(H)⊗ 1j := {Ak ⊕ · · · ⊕Ak´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
j times

|Ak ∈ Ak(H)}.
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This allows us to write a decomposition analogous to Eq. (5) for the operator algebra:

UA(H)U† = {A1 ⊕ · · · ⊕AK |Ak ∈ Ak(H), 1 ≤ k ≤ K} =

K′⊕
k=1

Ak(H)⊗ 1jk .

If we further continue the decomposition in Eq. (5) by taking the corresponding chain in Inv(A(H)) to be
maximal, meaning that the Ek do not contain any invariant subspaces, then each Ak(H) must be irreducible
and so by Theorem 3.9, Ak(H) = Mqk(C), with qk = dim(Ek). Accordingly, it is well-known (see [18, § 5.1])
that there is a unitary U such that the full decomposition of the algebra is

(7) UA(H)U† =

m⊕
k=1

Mqk ⊗ 1jk ,

where m is the dimension of the centre of A(H).

Remarks. 1. In terms of Proposition 3.11, the existence of the invariant subspaces that we will exploit
below is equivalent to the existence of a unitary transformation that block diagonalizes the Hamiltonian
model H(λ) for any value of λ. Then by Wigner’s theorem [19] what we are are exploiting from a physics
perspective are unitary symmetries of the system.

2. Recent methods for performing simultaneous block diagonalization of matrix algebras [20] could be
used to construct reduced subspaces of Hamiltonian models based on Proposition 3.11. These methods rely
on eigenspace computations and therefore will generally be sensitive to numerical uncertainty. In contrast,
the algebraic method we develop in the following involves only rational computations, aside from the inherent
approximations that may be necessary for the a priori specification of the system (e.g., specification of the
initial state).

4. Constructing reduced subspaces for a Hamiltonian model

In §3.2 we derived an algebraic condition for the existence of a non-trivial invariant subspace for the
Hamiltonian model H(λ). Evaluating this algebraic condition (which is essentially a comparison between
the dimension of the subalgebra generated by Coeff(H) and the dimension of the space of all operators on
the state space) provides a certificate for whether a non-trivial invariant subspace will exist for the model.
In this section we extend this result to explicitly construct a reduced subspace for the Hamiltonian model
when it evolves a particular initial state. This will allow us to exploit the reduced subspace to construct a
reduced-order model for the dynamics, as in Eq. (3). In the following we present two different techniques to
explicitly construct the reduced subspace of interest.

Remark. We note for completeness that after the construction of A(H) one may wish to check if |ψ0〉 〈ψ0| ∈
A(H). If so, every invariant subspace of the subalgebra is also a reduced subspace or the orthogonal
complement of a reduced subspace. In this case, techniques to find invariant subspaces of the subalgebra
A(H) can be utilized to identify the minimal reduced subspace. In the following we do not make this
assumption, but rather formulate general methods for finding reduced subspaces.

Before describing the methods, it will be useful to define the orbit of a state under a subalgebra:

Definition 4.1. Given a state |φ〉 ∈Hd and a subalgebra A ≤ L(Hd), the orbit of |φ〉 under A is denoted
and defined as A · |φ〉 = {A |φ〉 |A ∈ A}.

Note that A·|φ〉 is a subspace of every invariant subspace for A that contains |φ〉. In terms of our Hamiltonian
model H|ψ0〉, this means that the orbit of the state |ψ0〉 under A(H) is the minimal reduced subspace for
the model. Hence, a reduction for H exists if and only if dim(A(H) · |ψ0〉) < dim(Hd) = d.

4.1. Construction via the Burnside basis

Any linear basis, B, for A(H) can be used to generate a spanning set for the minimal reduced subspace
A(H) · |ψ0〉. Therefore we can use the Burnside basis, B = B(H), to construct a basis for A(H) · |ψ0〉
by taking a maximal linearly independent subset of {|βj〉 = Bj |ψ0〉 | Bj ∈ B(H)} and orthonormalizing
it. The resulting vectors form the columns of the model reduction matrix, Φ. Note that Id ∈ B(H) by
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construction, and therefore the initial state is guaranteed to be in the reduced subspace. Also, rank(Φ) ≤
|B(H)| since although the elements of B(H) are all linearly independent, the |βj〉 are not necessarily all
mutually orthogonal.

Remarks. 1. Note that |ψ0〉 ∈ V < Hd if and only if V ∈ Inv(|ψ0〉 〈ψ0|)◦. Thus, any procedure for
certifying the existence of invariant subspaces for H by operating on Coeff(H) can be modified to certify
the existence of reduced subspaces for H|ψ0〉. Explicitly, a reduced subspace for H|ψ0〉 exists if and only if
the dimension of the subalgebra A(Coeff(H) ∪ {|ψ0〉 〈ψ0|}) is less than the dimension of L(Hd). Further, a
basis for A(Coeff(H)∪{|ψ0〉 〈ψ0|}) gives the relevant reduced subspace. However, it is often computationally
more efficient to generate the orbit of |ψ0〉 under A(H) since a simple algebraic characterization of the state
|ψ0〉 may not exist. We shall see an example of this when we consider Pauli Hamiltonians in §5.

2. We note that the certificate provided by Proposition 3.10 bears some resemblance to the Lie algebraic
controllability condition derived in the context of unitary quantum control [21]; however, the physical context
for the two conditions are different. Although it is true that for the Lie algebra Lie(H) generated by Coeff(H),
Inv(Lie(H)) = Inv(A(H)), the Lie algebra is generally not able to generate invariant subspaces by taking
orbits of vectors. This is simply due to the fact that Lie(H) is a vector subspace of A(H).4 Since A(H) · |ψ0〉
gives the minimal reduced subspace for H|ψ0〉, a strict inequality in the containment Lie(H)·|ψ0〉 ≤ A(H)·|ψ0〉
would imply that the Lie algebra does not generate a reduced subspace at all. An explicit example of this
is provided by the following 4-spin Hamiltonian model

H(λ) =

4∑
j=1

σ(j)
z + λx

4∑
j=1

σ(j)
x + λy

4∑
j=1

σ(j)
y ,

where j denotes the spin on which the Pauli matrix acts non-trivially; i.e., σ
(1)
α := σα ⊗ I2 ⊗ I2 ⊗ I2, and so

on. Also, assume the initial state is an eigenstate of
∑4
j=1 σ

(j)
z . Then dim(Lie(H)) = 3 since the permutation

symmetry of H makes the action isomorphic to that of su(2). Furthermore, the subspace Lie(H) · |ψ0〉 is
2-dimensional. In contrast, dim(A(H)) = 35 and the minimal reduced subspace, A(H)·|ψ0〉, is 5-dimensional.

4.2. Construction by sampled time evolution

In this subsection we explore an alternative method for constructing the physically relevant reduced
subspace by using samples of the quantum evolution, |ψλ(t)〉 := e−itH(λ) |ψ0〉, at some points in time,
t1, . . . , tm (m ≥ 1) and for some fixed value(s) of the tuning parameter λ. The subspace spanned by
the states (or snapshots) {|ψλ(t1)〉 , . . . , |ψλ(tm)〉} readily contains some of the dynamics governed by the
Hamiltonian H(λ). In this section, we will improve upon this observation by showing conditions under which
it is possible for the finite collection of snapshots to span the minimal reduced subspace, A(H) · |ψ0〉, for
the full model H|ψ0〉. We will furthermore see that when these conditions are met, taking enough (≤ d)
samples at random from any time interval, according to any continuous distribution on the interval, will
almost always yield a spanning set for A(H) · |ψ0〉. In this case the columns of the model reduction matrix
Φ are formed from a maximal linearly independent subset of {|ψλ(t1)〉 , . . . , |ψλ(tm)〉}.

The motivation for considering this approach to constructing the reduced subspace is that in some contexts
it may be practical to directly simulate the full order model for a short time at a few values of the tuning
parameter. The question is whether the results of such large scale simulations can be used to identify the
reduced subspace for H|ψ0〉 and thereby construct a reduced order model.

We shall keep fixed the value of the tuning parameters at λ ∈ RM for the model H|ψ0〉. Let Ψλ(I) :=
span{|ψλ(t)〉 | t ∈ I}, for I ⊆ R any interval. The span of our samples {|ψλ(t1)〉 , . . . , |ψλ(tm)〉} for ti ∈ I
will be a subspace of Ψλ(I), and we will address below how the dimensions of span{|ψλ(t1)〉 , . . . , |ψλ(tm)〉}
and Ψλ(I) compare. But first, working with the idealized subspace Ψλ(I) we can establish the following
inequality chain by Lemma 3.2:

(8) Ψλ(I) ≤ Z(H(λ), |ψ0〉) ≤ A(H) · |ψ0〉 .

4 A(S) is sometimes referred to as the interaction algebra in the literature surrounding decoherence-free subspaces, where S is
a set operators defined by the interaction Hamiltonian between system and environment. In particular, the authors of [22]

note that the Lie algebra over S is not equal to the interaction algebra in general.
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By the first inequality we see at the outset that our collection of evolution snapshots can at best capture the
H(λ)-cyclic subspace generated by |ψ0〉. The ideal scenario is where both of these inequalities are saturated
and we now examine under what conditions this is true. First consider the second inequality. Its saturation
is purely a property of the Hamiltonian H(λ) and the initial state, |ψ0〉, as shown by the following lemmas.

Lemma 4.2. The dimension of Z(H(λ), |ψ0〉) equals the number of distinct eigenvalues of H(λ) with
eigenspaces that are not orthogonal to |ψ0〉.

Remark. For brevity in the sequel, let specλ be the set of distinct eigenvalues for the Hamiltonian H(λ) and
eig(µ) be the eigenspace corresponding to µ ∈ specλ. Then, the lemma takes the following symbolic form:

dimZ(H(λ), |ψ0〉) = #{µ ∈ specλ | eig(µ) 6⊥ |ψ0〉}.

Proof of Lemma 4.2. Let Dλ := diag(µ1, . . . , µd) be the diagonal matrix of eigenvalues (counting multiplic-
ity) of H(λ). Then, by the self-adjointness of H, we have that

(9) H(λ)k = UλD
k
λ U

†
λ,

for all k ≥ 0, wherein Uλ is a unitary matrix corresponding to the eigenbasis Eλ := {|ξ1〉 , . . . , |ξd〉} for H(λ).
Clearly, the dimension of Z(H(λ), |ψ0〉) is given by the size of the maximal linearly independent subsets
(which we will also call the rank) of the set of vectors,

U†λ Z(H(λ), |ψ0〉) = {U†λ H(λ)k |ψ0〉 | 0 ≤ k ≤ d− 1}

= {
[
µk1 〈ξ1|ψ0〉, . . . , µkd 〈ξd|ψ0〉

]T | 0 ≤ k ≤ d− 1}.

It is immediately seen that rank(U†λ Z(H(λ), |ψ0〉)) ≤ #{µ ∈ specλ | eig(µ) 6⊥ |ψ0〉} since a completely
orthogonal eigenspace will yield a zero vector.

To show the reverse inequality, let r = #{µ ∈ specλ | eig(µ) 6⊥ |ψ0〉} and consider the matrix Srλ whose
(k + 1)st column, for 0 ≤ k ≤ r − 1, is the vector

[
µki1 〈ξ1|ψ0〉, . . . , µkir 〈ξr|ψ0〉

]
∈ Cr, wherein 1 ≤ j ≤ r, the

µij are distinct and |ξj〉 ∈ eig(µij )∩Eλ such that 〈ξj |ψ0〉 6= 0. Then, a quick application of the Vandermonde
determinant formula shows that

detSrλ =

d∏
k=1

〈ξk|ψ0〉
∏

1≤s<t≤d

(µit − µis).

Since all of the µij are distinct and 〈ξj |ψ0〉 6= 0, we see that this determinant is non-zero. Moreover, Srλ
is clearly a sub-matrix of the d × d matrix similarly formed by taking the (k + 1)st column vector to be

U†λ H(λ)k |ψ0〉. Altogether, this means that

rank(U†λ Z(H(λ), |ψ0〉)) ≥ r = #{µ ∈ specλ | eig(µ) 6⊥ |ψ0〉}
and by the reverse inequality above, we have that in fact the equality in the statement of the theorem
holds. �

This Lemma and the second inclusion in Eq. (8) together show that #{µ ∈ specλ | eig(µ) 6⊥ |ψ0〉} ≤
dimA(H)·|ψ0〉 and that this being an equality is both, necessary and sufficient in order that Z(H(λ), |ψ0〉) =
A(H) · |ψ0〉.

This characterization and the method of proof in the Lemma become important ingredients in the following
strengthening of Eq. (8).

Lemma 4.3. For every interval I ⊆ R, Ψλ(I) = Z(H(λ), |ψ0〉).

Proof. In the following we view the state vector as a curve in d-dimensional space parameterized by t. That
is, we consider the dynamics over the time interval I, |ψλ(t)〉 : R ⊇ I →Hd

∼= Cd, in componentialized form
as,

|ψλ(t)〉 =
[
ψ1
λ(t), . . . , ψdλ(t)

]T
.

Then, the dimension of the smallest linear subspace containing |ψλ(I)〉 is just the size of maximal linearly

independent subsets over I of the component functions {ψjλ : I → C | 1 ≤ j ≤ d}. Since the dimension is
preserved under unitary actions, we begin as in the proof of Lemma 4.2, by taking the unitary diagonalization
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of |ψλ(t)〉 (i.e., replacing Dk
λ in Eq. (9) by exp(−itDλ)), according to the orthonormal eigenbasis Eλ :=

{|ξ1〉 , . . . , |ξd〉} for H(λ), so that we now have the curve,

(10) U†λ |ψλ(t)〉 =
[
e−itµ1 〈ξ1|ψ0〉, . . . , e−itµd 〈ξd|ψ0〉

]T
.

Thus, analogous to the proof of Lemma 4.2, we now consider the question of the size of the maximal linearly
independent subsets (again, the rank) of the set of functions

Γλ(I) := {〈ξj |ψ0〉 e−itµj : I → C | 1 ≤ j ≤ d}.

Again, it is easy to see in the one direction that rank(Γλ(I)) ≤ dim(Z(H(λ), |ψ0〉)).
Now, letting r = dim(Z(H(λ), |ψ0〉)), take once more the subset Γrλ of Γλ, which contains the functions

γj(t) := 〈ξj |ψ0〉 e−itµij , for each 1 ≤ j ≤ r, wherein the µij are distinct and |ξj〉 ∈ eig(µij ) ∩ Eλ such that

〈ξj |ψ0〉 6= 0. Let γ = (γ1, . . . , γr) : I → Cd and form the Wronskian W (t) := det[γ(t), γ(1)(t), . . . , γ(r−1)(t)].
Note that

γ
(k−1)
j = (−iµij )k−1 〈ξj |ψ0〉 exp(−itµij ) (1 ≤ j, k ≤ r)

so that

(11) W (t) = exp

(
− it

r∑
j=1

µij

) ( r∏
j=1

〈ξj |ψ0〉
)

det Ṽ (−iµi1 , . . . ,−iµir ),

where Ṽ is the r × r Vandermonde matrix. Since

det Ṽ (−iµi1 , . . . ,−iµir ) =
∏

1≤j<k≤r

(−i)(µik − µij ),

and by assumption, 〈ξj |ψ0〉 6= 0 and the µij are distinct, for all 1 ≤ j ≤ r, we see that W (t) 6= 0 for all t ∈ I.
Thus, Γrλ is a linearly independent set of functions, which means also that rank(Γλ(I)) ≥ dim(Z(H(λ), |ψ0〉)),
and by the reverse inequality above, we see that this degenerates to an equality. Hence, the dimension of the
minimal linear subspace containing the curve |ψλ(I)〉 is the same as that of Z(H(λ), |ψ0〉), which through
the first inequality of Eq. (8) concludes the proof. �

Remark. The two lemmas above aid in identifying a strategy for increasing the effectiveness of time sampling
for generating the reduced subspace. Saturation of the first inequality in Eq. (8) implies that one should try to
maximize the dimension of Z(H(λ), |ψ0〉). One strategy for doing this is to sample the evolution at multiple
parameter values. That is, dim(Z(H(λ1), |ψ0〉) + Z(H(λ2), |ψ0〉)) ≥ dim(Z(H(λ1), |ψ0〉)). Hence, sampling
the evolution at multiple parameter values will increase the likelihood that the time samples generate the
orbit A(H) · |ψ0〉. An interesting and open question is whether it is possible to constructively determine the
minimum number of distinct parameter values necessary before the sum of cyclic subspaces equals the orbit
A(H) · |ψ0〉. In fact, this is a question that is relevant to any empirical model reduction technique [2, 3] that
attempts to construct reduced order models from snapshots of the state, and is the subject of ongoing work.

Having established the conditions under which the inequalities in Eq. (8) are saturated, we return to
the question about when the subspace spanned by the time samples {|ψλ(t1)〉 , ..., |ψλ(tm)〉} with ti ∈ I is
identical to Ψλ(I), or equivalently (by Lemma 4.3), to Z(H(λ), |ψ0〉). In fact, Lemma 4.3 gives us enough
data about the dimension of the dynamical curve |ψλ(I)〉, locally with respect to time, that we can now
show the probabilistic abundance of good time samples – that is, snapshots of the dynamics that span
Z(H(λ), |ψ0〉).

Theorem 4.4. Let r = dimZ(H(λ), |ψ0〉). Then, given a vector ~t ∈ Rk of r ≤ k ≤ d points in time, collect
the corresponding state snapshots in S(~t) := [|ψλ(t1)〉 , . . . , |ψλ(tk)〉]. This collection S(~t) spans Z(H(λ), |ψ0〉)
almost everywhere and on a dense and open subset of Rk.

Proof. First we prove the openness property. Let Dk be the collection of functions Rr → C given by the
r × r minors of S(~t). For each ~t ∈ Rk, every ` ∈ Dk removes some k − r components corresponding to the
deletion of k − r columns from S(~t). Thus, each ` ∈ Dk defines a projection p` : Rk → Rr that sends each
~t ∈ Rk to the corresponding Rr vector. Since span(S(~t)) ≤ Z(H(λ), |ψ0〉), S(~t) spans the r-dimensional cyclic
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subspace only if there exists an r × r minor that is non-zero. Hence the subset T ⊂ Rk of ~t ∈ Rk for which
span(S(~t)) = Z(H(λ), |ψ0〉) is given by

T =
⋃
`∈Dk

(` ◦ p`)−1(C\0).

Now, C\0 is an open set and for each ` ∈ Dk, ` ◦ p` is continuous. Therefore, the collection T of k time
samples that span the cyclic subspace is an open set.

All that remains is to show is that the complement of T has Lebesgue measure zero, since in this case
the density of good snapshots (ones that span the cyclic subspace) is guaranteed. For any k > r tuple
of times ~t ∈ Rk, the snapshots S(~t) have a span of dimension less than r if and only if the set of vectors
corresponding to every r-subtuple of ~t is linearly dependent. We now show that the set of r-tuples of times
that give linearly dependent state snapshots has Lebesgue measure zero, whence the k-tuples of times that
give linearly dependent S(~t) must also have Lebesgue measure zero.

Given any tuple of times ~t ∈ Rr, the linear independence of the snapshots {|ψλ(t1)〉 , . . . , |ψλ(tr)〉} is equiv-
alent to the process of inductively checking that for each 1 < j ≤ r, |ψλ(tj)〉 6∈ span{|ψλ(t1)〉 , . . . , |ψλ(tj−1)〉}.
So suppose that we have ~t ∈ Rj for r > j ≥ 1 such that the corresponding state snapshots are linearly in-
dependent, and consider adding a new state snapshot |ψλ(t)〉 to this list. Now, since each (j + 1)× (j + 1)
minor of the matrix

[|ψλ(t1)〉 · · · |ψλ(tj)〉 |ψλ(t)〉]
is a polynomial in j+ 1 analytic functions ψiλ(t) (elements of |ψλ(t)〉), it defines an analytic curve in t. Thus
it has only countably many roots or is identically zero [23, § 3.1]. By Lemma 4.3, the latter case cannot be
achieved. Therefore there are only a countably number of time points t such that the (j+1)× (j+1) minors
are zero, and hence for almost all t, |ψλ(t)〉 6∈ span{|ψλ(t1)〉 , . . . , |ψλ(tj)〉}. Whence by induction, we further

have that for almost all ~t ∈ Rr, the snapshots {|ψλ(t1)〉 , . . . , |ψλ(tr)〉} will be linearly independent. �

The probabilistic abundance of time samples that span the cyclic subspace provides strong support for
empirical model reduction techniques that construct the reduced order model from sampling the solution of
the full order model. However, in practice the time evolution is often not randomly sampled, but rather state
snapshots are taken at regularly spaced time intervals, ∆t. The following Proposition specifies conditions
under which this strategy provides good state samples.

Proposition 4.5. Fix a sampling time ∆t ∈ R and let r = dim(Z(H(λ), |ψ0〉)). Then, for any m ∈ Z, the
state samples corresponding to the sequence of time-steps,

~t = (m∆t, (m+ 1)∆t, . . . , (m+ r − 1)∆t),

span Z(H(λ), |ψ0〉) if and only if for each 1 ≤ j < k ≤ r, whenever µk 6= µj,

∆t 6≡ 0

(
mod

2π

µk − µj

)
.

Proof. Consider the matrix formed by applying each element of ~t to Eq. (10) and let Vm be the r × r
sub-matrix given by removing any zero or duplicate rows (identically in ∆t). This matrix then takes the
form,

Vm(z1, . . . , zr) :=

w1z
m
1 · · · w1z

m+r−1
1

...
. . .

...
wrz

m
r · · · wrz

m+r−1
r

 ,

with zk = e−i∆tµk and wk = 〈ξk|ψ0〉. Analogous to the Wronskian calculation in Eq. (11), we get

detVm(z1, . . . , zr) =

r∏
j=1

wjz
m
j

∏
1≤j<k≤r

(zk − zj).

Since the removal of zero columns ensures wj 6= 0 and the removal of duplicate rows guarantees that the µj
are distinct, det(Vm) is clearly non-zero if and only if ∆t ≡ 0 (mod 2π/µk − µj) for all 1 ≤ j < k ≤ r. �
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Remark. The physical interpretation of this condition is that the sampling period should not overlap with
any intrinsic periods of the system, where the latter are defined as the inverse of the Bohr frequencies of the
Hamiltonian.

4.3. Computational feasibility

Construction of the reduced subspace of H(λ)|ψ0〉 is an “offline” computation that only needs to be done
once. It then allows for more efficient simulation of the model for all values of the parameters λ. However,
it is instructive to examine the computational complexity of the procedures we have outlined above for
constructing the model reduction matrix Φ.

First consider the construction via the Burnside basis as detailed in §3.2 and Appendix B. Implemen-
tations of Algorithm 1 for constructing the Burnside basis will involve multiplication of matrices and rank
computations. Subsequently, a basis for the reduced subspace is constructed by matrix-vector multiplication.
All of these are polynomial complexity operations in the size of the matrices and vectors, d. However, in the
quantum context, d grows exponentially in the number of degrees of freedom and therefore this algorithm
is in general going to be computationally infeasible for large quantum systems. Despite this, in certain
cases the structure of the underlying matrices can be exploited to formulate more efficiently implementable
versions of the Burnside algorithm, as we shall see in §5.

Next, consider the method for constructing the reduced subspace by sampling the time evolution of the
system. The results in §4.2 specify the conditions required for such time samples to span the reduced
subspace. Obtaining the time samples requires solution of the full order model, and then a determination
of a basis for the space spanned by the samples. Both tasks have complexity that scales exponentially in
the number of degrees of freedom due to the exponential scaling of the vector dimension d. However, this
procedure can be useful if a small number of snapshots can be generated by large-scale simulations at a
single, or few, parameter values λ. Then the model reduction can be performed to more efficiently explore
the parametric dependence of the model.

4.4. Robustness of dimensional reductions

The structural aspects of A(H) as discussed in § 3.3 allow us now to study how much model reduction
is available – that is, how large is the minimal number of dimensions required to contain the dynamics –
for either perturbations of the initial state |ψ0〉 or generically, that is, when the initial state is chosen at
random. Note firstly that the decomposition Eq. (7) has also the associated decomposition of the dimension
of the system space:

(12) d = j1q1 + · · ·+ jmqm.

Using the unitary U that gives the decomposition Eq. (7), we begin by partitioning the new basis represen-
tation |ν〉 := U |ψ0〉 of the initial state into j1 + · · ·+ jm vector components: define the sequence J0 = 0 and
Jk = j1 + · · ·+ jk (for 1 ≤ k ≤ m) and take the partition

(13) |ν〉 = [|ν1〉 , . . . , |νJ1〉 , |νJ1+1〉 , . . . , |νJ2〉 , . . . , |νJm〉]
T

such that for each α ∈ {Jk−1 + 1, . . . , Jk}, |να〉 ∈ Cqk . For purposes of exposition, we denote by q(α) the
dimension qk of |να〉 and by j(α) the corresponding factor jk in Eq. (12); see Figure 1 for an example that
illustrates this notation and partitioning of |ν〉. Now, since dim(Mq(α)(C) · |να〉) = q(α) or 0 according to
whether or not |να〉 6= 0, respectively, we see immediately that a sufficiency condition for A(H) · |ψ0〉 =
U∗(A(H) · |ν〉) <Hd is that some |να〉 = 0. This is not a necessary condition as we will see below.
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q1=2

q2=3

q2=3

q2=3

q3=4

q3=4

⌫1

⌫2

⌫3

⌫4

⌫5

⌫6

j1=1

j2=3

j3=2

Figure 1. An example of the block decomposition of elements of A(H), as prescribed by Eq. (7)
and a d-dimensional vector written in the basis that achieves this block-diagonal form. The only
non-zero elements are in the dark gray sub matrices. In this case, d = 19,m = 3, and the Jk as
defined in the main text are: J1 = 1, J2 = 4, J3 = 6.

We can actually describe exactly the dimension of the reduced subspace in terms of the new representation
of the initial state. To this end, the following lemma describes first the case for an individual component
Mq(C)⊗ 1j in Eq. (7).

Lemma 4.6. Let |ν〉 ∈ Cjq for some q, j ≥ 1 and partition it into j sub-vectors, each of length q. Further,
denote by M the q × j matricial form of this partition of |ν〉. Then,

dim (Mq(C)⊗ 1j) · |ν〉 = q rank(M).

Proof. Clearly, (Mq(C)⊗ 1j) · |ν〉 ∼= Mq(C) ·M , by vectorization of elements in the space on the right-hand
side. Now, let β := {ek,l}1≤k,l≤q be the canonical basis for Mq(C) such that the (k, l) entry of ek,l is 1 (and
the matrix is zero everywhere else) and note that Mq(C) ·M = span{eM | e ∈ β}. We see further that the
lth row of ek,lM is the kth row of M and the matrix is zero everywhere else. Thus, for each fixed l, there are
exactly rank(M) linearly independent matrices ek,lM for 1 ≤ k ≤ q, since this is just the number of linearly
independent rows of M . By the q many choices for l (due to the number of rows in M), we have the desired
dimensionality computation in the statement of the lemma. �

This lemma along with the decomposition Eq. (7) give immediately the following form for the dimension
of orbit of the initial state under A(H):

Theorem 4.7. Let |ν〉 be as in (13) and define the matrix Mk =
[∣∣νJk−1+1

〉
· · · |νJk〉

]
∈Mqk×jk(C). Then,

(14) dim(A(H) · |ψ0〉) =

m∑
k=1

qk rank(Mk).

Now we are in a position to assess how perturbations to the initial state affect the dimension of the
reduced order model. Consider a Hamiltonian model H|ψ0〉 that admits a reduced subspace of dimension
r < d – i.e., the model reduction matrix Φ ∈ Md×r(C). Writing |ν〉 = U |ψ0〉, we have by the assumption
r < d and Eq. (14) that for some 1 ≤ k ≤ m, rank(Mk) < min(jk, qk). The theorem further shows us how
the dimension of the reduced order model will change under a perturbation of the initial state to |ψ′0〉 ∈Hd.

Indeed, write |ν′〉 = U |ψ′0〉 and let Mk =
[∣∣νJk−1+1

〉
· · · |νJk〉

]
and M ′k =

[∣∣∣ν′Jk−1+1

〉
· · ·

∣∣ν′Jk〉]. Then,

rank(M ′k) can be less or greater than rank(Mk) for 1 ≤ k ≤ m and Theorem 4.7 states that these ranks of the
perturbed initial state dictate the change in the dimension of the reduced order model. The most obvious
form of instability in the reduced order model dimension under a perturbation of the initial state occurs when
Mk = 0 for some k, so that any perturbation in only that component of the vector (i.e., so that rank(M ′k) > 0
and rank(Ml) = rank(M ′l ) ∀l 6= k) increases the dimension of the reduction by qk rank(M ′k). Interestingly,
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Theorem 4.7 points out that there exist certain perturbations that have minimal change to the model
reduction dimension. These are ones that possess symmetry that leads to significant linear dependencies
between

∣∣νJk−1+1

〉
, . . . , |νJk〉 for some k, and therefore rank(M ′k) remains small. However, if the perturbation

to the initial state is a randomly drawn pure state (i.e., random according to the pushforward measure onto
Hd of the Haar measure on the group U(d) of unitaries), then one expects that with overwhelming probability
the dimension of the reduced subspace will increase, making the reduced order model dimensionally not
robust to such perturbations in the initial vector. Therefore such robustness to perturbations in the initial
state depend strongly on the form of the perturbing state, but regardless of the form, the representation of
the perturbation in the basis that block diagonalizes the algebra and Theorem 4.7 allow one to assess the
robustness.

5. Pauli Hamiltonians

Until now the Hamiltonian model and state-space that it acts on have been completely general (apart
from the assumption of finite dimension). In the following we will specialize to interacting spin- 1

2 (or qubit)
models. In this setting we can exploit properties of the generalized Pauli algebra to strengthen our results.
This subset of models is also of considerable interest to the condensed matter and quantum information
communities. Explicitly, the setting in this section is: Hd

∼= (C2)⊗n with d = 2n, where n is the number of
spins in the system.

5.1. Preliminaries

Let H(λ) =
∑M
k=1 λkHk be an n-spin Hamiltonian model, meaning that each Hk is a linear combination

of elements of P∗n. Writing each Hk out explicitly in the basis of Pauli operators, P∗n, we get

(15) H(λ) =

M∑
k=1

λk

 K∑
j=1

αk,j σ
k
j

 ,

where each σkj ∈ P∗n, and the αi,j are scalar coefficients appearing in the linear expansion of the component
Hamiltonian Hk. Note that the number of parameters, M , defining the model, does not have to equal the
number of Pauli operators in this expansion – one parameter could control multiple Paulis. We collect the
set of Pauli operators appearing in the description of the model H, in the following:

Definition 5.1. Sλ(H) := {σ ∈ P∗n | tr(σ†H(λ)) 6= 0} is the set containing the Pauli matrices from P∗n whose
coefficients, αk,j , in the decomposition Eq. (15) of H(λ) are non-zero.

When each parameter of the Hamiltonian model controls exactly one Pauli operator, we are in a special
case, where many calculations considered can be greatly simplified. We single out this case as:

Definition 5.2. Pure Pauli Hamiltonians are spin Hamiltonians where |Sλ(H)| = M . That is, each Pauli
operator is multiplied by an independent free parameter in the model:

(16) H∗(λ) =

M∑
k=1

λkσk,

where again, σk ∈ P∗n.

In fact, in some cases it may be beneficial to over-parametrize a Hamiltonian of the form Eq. (15) by a
pure Pauli Hamiltonian by considering each coefficient as being an independent parameter for the model.
When this is done, we will refer to it as over-parameterizing a model. For example, consider an n-spin 1D
transverse field Ising model with periodic boundary conditions, which has the Hamiltonian

H(λ = (B, J)) = −B
n∑
j=1

σ(j)
x − J

n−1∑
j=1

σ(j)
z ⊗ σ(j+1)

z + σ(n)
z ⊗ σ(1)

z

 ,
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where we have suppressed identities in writing n-spin Pauli operators, e.g., σ
(j)
x := I2 ⊗ ... ⊗ σx ⊗ ... ⊗ I2,

where the σx is in the jth position. The over-parameterized Hamiltonian corresponding to this model is:

H∗(Λ) =

n∑
j=1

Λjσ
(j)
x +

n−1∑
j=1

Λ̄jσ
(j)
z ⊗ σ(j+1)

z + Λ̄nσ
(n)
z ⊗ σ(1)

z

That is, each Pauli term in the original Hamiltonian is multiplied by an independent parameter. The
reduced subspaces for H∗(Λ)|ψ0〉 contain the minimal reduced subspace for H(λ)|ψ0〉, and consequently
dimA(H∗)|ψ0〉 ≥ dimA(H)|ψ0〉. However, we shall see below that computing the minimal such over-
approximation involves a much more efficient procedure than computing the minimal reduced subspace
for H.

The major computational simplification in the case of pure Pauli Hamiltonians, which we shall exploit in
the following, is provided by an isomorphism between the elements of P∗n and binary vectors of length 2n:

Theorem 5.3. Let B = {±iId,±Id}, and Gn := 〈P∗n〉 be the n-spin Pauli group. Then, there is a bijection
Gn/B ↔ Pn that naturally induces a group structure on Pn (so that Gn/B ∼= Pn). Furthermore, under this

group structure, there exists an isomorphism ϕ : Pn
∼−→ (Z2)2n.

Proof. Since Gn = {±iσ,±σ |σ ∈ Pn} and given σ ∈ Pn, σB = {±iσ,±σ}, we have that the mapping
Pn 3 σ 7→ σB ∈ Gn/B is clearly a bijection. By defining multiplication in Pn to be matrix multiplication
modulo B, we furthermore have a group structure on Pn.

Under this group structure, Pn is abelian and each element is of order two, making this is an elementary
abelian group, which by the classification theorem for finitely generated abelian groups [24, Theorem 4.5.1]

and the fact that |Pn| = 22n, gives us the existence of an isomorphism ϕ : Pn
∼−→ (Z2)2n. �

Remark. The identification Pn ∼= (Z2)2n is commonly made in quantum error correction literature (see [25,
§ 10.2] and [26]) in a more constructive manner, by extending ϕ tensorially from the n = 1 case, wherein
σx 7→ (0, 1), σy 7→ (1, 1) and σz 7→ (1, 0).

The isomorphism ϕ induces what is referred to as a binary vector representation of the Pauli group
generators [26, § 2]. This enables us to represent each element of Pn as a binary vector of length 2n (linear
in the number of spins), and the multiplication operation among matrices is mapped to the XOR operation
among binary vectors.

5.2. Certificate for invariant subspaces of Pauli Hamiltonians

The algebraic certificate presented in §3.2 for the existence of invariant subspaces for a Hamiltonian
model H requires computing a basis for the subalgebra generated by Coeff(H). The bottlenecks in this
computation (detailed in Appendix B) are (1) the multiplication of elements in Coeff(H), and (2) span
checks to assess linear dependence of elements. For general Pauli Hamiltonians of the form Eq. (15) neither
of these bottlenecks are completely removed (although, since the Pauli matrices have significant structure
the multiplications should be performed symbolically as opposed to explicitly forming the d × d matrices).
In contrast, considerable simplification is possible for pure Pauli Hamiltonians of the form Eq. (16) and both
bottlenecks can be overcome. In this case each element of the natural Coeff(H) is a member of Pn and has a
representation as a vector in (Z2)2n. Further, multiplication of two elements in Pn results in another element
in Pn (along with a multiplicative constant that we do not need to track), and thus all multiplications in
Algorithm 1 in Appendix B can be implemented as binary addition of vectors of length 2n (as opposed to
multiplication of matrices of size 2n×2n). As for bottleneck (2), the fact that all elements of Pn are linearly
independent, implies that any linear dependence or span based checks in the algorithm become unnecessary.
Instead, we need only check for duplicates in the collection of multiplicatively generated elements (since
computational storage objects such as arrays are forms of multisets and not the usual mathematical sets),
the removal of which gives our Burnside basis (the test for membership can be efficiently implemented by the
AND operation on binary vectors). A straightforward modification of the algorithm to generate the Burnside
basis that exploits these simplifications to simplify computations is specified as Algorithm 2 in Appendix
B. It is also possible to construct a completely different procedure that utilizes all the structure in Pn and
its binary vector representation, and this is presented as Algorithm 3 in Appendix B. It greatly improves
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the efficiency of the Burnside basis calculation by utilizing the key structural properties of Pn: that it is an
elementary abelian 2-group and all of its operators are linearly independent as vectors of Md(C). This is done
by quickly enumerating all possible binary vector additions through a Gray codes table, a method employed
in the Method of Four Russians algorithm for quickly generating subspaces of (Z2)k (see [27, § 9.2] and [28,
§ 2]). All required operations in Algorithms 2 and 3 are clearly polynomial complexity in n, the number of
spins. However, it must be noted that the size of the Burnside basis, |B(H)|, can still be exponential in n.

As alluded to above, this simplification for pure Pauli Hamiltonians motivates the over-parametrization
of spin Hamiltonians; even if the true Hamiltonian takes the form in Eq. (15) one may want to over-
parametrize it to obtain the form Eq. (16) because computing the algebraic certificate for the existence of
invariant subspaces for H∗ is more efficient. However, one must be mindful that invariant subspaces for the
model H may exist even when none exist for H∗.

In addition to simplifying the calculation of the Burnside basis (whose size provides a necessary and
sufficient condition for model reduction by Proposition 3.10), the Pn ∼= (Z2)2n isomorphism allows us to
derive a strong sufficiency criteria for Pauli Hamiltonians:

Theorem 5.4. Any n-spin Hamiltonian H(λ) with |Sλ(H)| < 2n has a non-trivial proper invariant subspace.

Proof. We begin by noting A(H) ⊆ A(Sλ(H)). Then note that A(Sλ(H)) is just the linear span of 〈Sλ(H)〉B ,
where 〈X〉B denotes the group generated by X, modulo B. Therefore we have by Theorem 3.9 that if
span(〈Sλ(H)〉B) is a proper subspace of L(Hd) (recall that Hd = (C2)⊗n), then A(Sλ(H)) is reducible.
These facts together with Proposition 3.10 imply that if span(〈Sλ(H)〉B) < L(Hd), then the model H has a
non-trivial proper invariant subspace.

We know that L(Hd) is spanned by the linearly independent elements of Pn, and so span(〈Sλ(H)〉B) <
L(Hd) is equivalent to 〈Sλ(H)〉B < Pn, i.e., the group generated by Sλ(H) is a proper subgroup of the
generators of the Pauli group. To show that this is true when |Sλ(H)| < 2n, we turn to the binary vector
representation of Pn: (Z2)2n is a 2n-dimensional linear space over Z2 with scalar multiplication given in the
natural way: for any ν ∈ (Z2)2n, 0ν = 0 and 1ν = ν. As a result, constructing the linear span of elements in
(Z2)2n is equivalent to constructing the group generated by the corresponding elements in Pn. Moreover, since
the 2n-dimensional linear space (Z2)2n is spanned by 2n binary vectors, we can conclude that the minimal
generating set of the group Pn is of size 2n; i.e., rank(Pn) = 2n. This is sufficient to prove the result, since
by assumption |ϕ(Sλ(H))| = |Sλ(H)| < 2n, and therefore span(ϕ(Sλ(H))) = ϕ(〈Sλ(H)〉B) < (Z2)2n, whence
〈Sλ(H)〉B < Pn. �

Remark. If |Sλ(H)| = 2n −m for 0 < m ≤ 2n, then a straightforward bound on the size of the Burnside

basis is given by |B(H)| ≤ 4n

2m .

A generalization of the above result to the complementary case where |Sλ(H)| ≥ 2n is possible by again

utilizing the isomorphism ϕ : Pn
∼−→ (Z2)2n that allows us to associate a collection of Pauli operators with a

binary matrix. But in this case a counting argument is insufficient and one needs to perform a computation:

Theorem 5.5. An n-spin Hamiltonian model H has a non-trivial proper invariant subspace whenever
rankϕ(Sλ(H)) < 2n.

Proof. Clearly, the binary matrix corresponding to the collection of vectors ϕ(Sλ(H)) ⊆ (Z2)2n has rank
less than 2n if and only if im(ϕ|〈Sλ(H)〉) < (Z2)2n. By the proof of Theorem 5.4, this implies that H has a
non-trivial proper invariant subspace. �

Remarks. 1. The rank computation required in this theorem is performed over the field Z2 and thus has
some efficient implementations based on the Method of Four Russians [29].

2. For pure Pauli Hamiltonians, this condition becomes both necessary and sufficient for the existence of a
proper non-trivial invariant subspace for the model. If a basis for the reduced subspace must be constructed,
then the Burnside basis must be explicitly calculated, which is nothing more than the group generated by
Sλ(H) (see Algorithms 2 and 3 in Appendix B).

Theorems 5.4 and 5.5 are useful sufficient conditions for Pauli Hamiltonians: by simply counting the
number of terms in the Pauli decomposition of a spin Hamiltonian (or by computing the rank of a binary
matrix in the case of Theorem 5.5) they allow one to check for the existence of invariant subspaces for
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the model. However, it should be noted that these sufficient conditions can be very conservative if M <
|Sλ(H)|. In this case, the number of free parameters is smaller than the number of Pauli “directions” in the
Hamiltonian and an invariant subspace can exist even if the sufficient conditions in Theorems 5.4 and 5.5
are not met.

5.3. Constructing reduced subspaces for Pauli Hamiltonians

Once the Burnside basis has been computed, the remaining step is to apply its elements to |ψ0〉 and
collect the maximal linearly independent members of the resulting vectors into the model reduction matrix
Φ. For general Pauli Hamiltonians this is just as computationally demanding as for general Hamiltonians.
Even for pure Pauli Hamiltonians, where each element of the Burnside basis Bj ∈ Pn, this step is normally
computationally demanding since |βj〉 = Bj |ψ0〉 cannot be computed using the binary vector representation
of Bj in general.

Nonetheless, in the following we sketch an efficient approach to computing the reduced order model in
the special case where expectation values of Pauli operators under the initial state are easily computable;
explicitly, 〈σ〉 := 〈ψ0|σ |ψ0〉 is assumed to be known or efficiently computable for all σ ∈ Pn. This assump-
tion is valid for many physically relevant scenarios where the initial state has particularly simple structure,
e.g., |ψ0〉 is a separable state or a matrix product state [30]. Given this assumption and the fact that Bj ∈ Pn
for pure Pauli Hamiltonians, a maximal linearly independent subset of {|βj〉}|B(H)|

j=1 can be efficiently found
by the following procedure:

(1) Initialize the linearly independent subset as L = {|β1〉}.
(2) Take a vector |βj〉 , 1 < j ≤ |B(H)|, and compute the Gramian matrix for |βj〉 ∪L. This is efficient

by assumption since the entries of the Gramian matrix are all of the form 〈ψ0|B†kBl |ψ0〉 = 〈σ〉 for
some σ ∈ Pn.

(3) If the resulting Gramian matrix has nonzero determinant, include |βj〉 in L.
(4) Repeat steps 2-3 for all 1 < j ≤ |B(H)|.

At the conclusion of this procedure the columns of the model reduction matrix Φ are the elements of L (after
suitable ortho-normalization).

As with the computation of the Burnside basis, the above procedure is not guaranteed to be polynomial
complexity in the number of spins, n, since |B(H)| could be exponential in n. However, for models where
significant model reduction is possible the dimension of the Gramian matrix whose determinant needs to
be computed will not grow quickly since although |B(H)| can be large, the number of linearly independent

vectors in the set {|βj〉}|B(H)|
j=1 will be small.

The assumption of easily computable Pauli expectation values under the initial state also enables efficient
formation of the reduced order Hamiltonian in Eq. (4). Forming this Hamiltonian by brute-force requires
the projection of a d× d matrix, but writing out this projection in the Pauli case yields,

Ĥ(λ) = Φ†H(λ)Φ =

M∑
i=1

λi


〈ψ0|Bj1
〈ψ0|Bj2

...
〈ψ0|Bjr

σi [Bj1 |ψ0〉 , Bj2 |ψ0〉 , ..., Bjr |ψ0〉] ,

where the columns of Φ are formed from the r maximal linearly independent set of vectors out of {Bj |ψ0〉}|B(H)|
j=1 .

Recalling that Bj ∈ Pn, it is clear that each element of the matrix Ĥ(λ) takes the form 〈ψ0|BkσiBj |ψ0〉 =
〈σ〉 for some σ ∈ Pn that can be determined efficiently since the product BkσiBj can be calculated using
the binary vector representation.

6. Examples

In this section we apply the methods developed thus far to three paradigmatic spin models. In all the
examples, we notate spin states using the σz eigenbasis {|0〉 , |1〉}, with σz |b〉 = (−1)b |b〉.
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n 1 2 3 4 5 6

|B(H)| 4 10 20 35 56 84

r (|ψ0〉 = |0〉⊗n) 2 3 4 5 6 7

r (|ψ0〉 = |1〉 |0〉⊗n−1
) 2 4 6 8 10 12

Table 1. Degree of model reduction possible for the collective rotation Hamiltonian model,
Eq. (17) as a function of number of spins. |B(H)| is the size of the Burnside basis and r is
the dimension of the reduced subspace under the specified initial state.

Example 6.1 (Collective rotation Hamiltonian). A spin model with significant symmetry commonly used
to describe nuclear magnetic resonance systems is the collective rotation Hamiltonian

(17) Hn-spin(λ) = λz

n∑
j=1

σ(j)
z + λx

n∑
j=1

σ(j)
x + λy

n∑
j=1

σ(j)
y ,

where j denotes the spin on which the Pauli matrix acts non-trivially, and the three model parameters are
λ = (λx, λy, λz). This dynamical model possess complete permutation symmetry and therefore we would
expect a simple description of the dynamics if the initial state is also permutation symmetric, regardless of

the values of λx,y,z. Table 1 lists the size of the Burnside basis, |B(H)|, and r = dim span {Bj |ψ0〉}|B(H)|
j=1 ,

as a function of number of spins for both a permutationally symmetric and asymmetric initial state.
For any number of spins, except for n = 1, a non-trivial invariant subspace exists since |B(H)| < 4n.

Furthermore, the reduced subspace dimension appears to scale linearly for the permutionally invariant initial
state. Even in the case of an initial state that is not completely permutation symmetric, |ψ0〉 = |1〉 |0〉⊗n−1

,
the scaling of r appears to be linear.

Example 6.2 (Transverse-field Ising model). A paradigmatic spin chain model exhibiting many important
many-body phenomena is the transverse field Ising Hamiltonian [31]:

(18) HIsing(λ) = −B
n∑
j=1

σ(j)
x − J

n−1∑
j=1

σ(j)
z σ(j+1)

z + σ(n)
z σ(1)

z

 ,

where the two model parameters are λ = (B, J), and we assume periodic boundary conditions so that the
spins at the ends of the chain are coupled.

In this case, we numerically calculated the reduced subspace under two possible initial conditions, and the
results are shown in table 2. The first initial state is the completely polarized state (all spins aligned in the

direction of the transverse field) |ψ0〉 = |+〉⊗n, where |+〉 = 1√
2
(|0〉+ |1〉), and the second is the ground state

of Eq. (18) for B = 0.05, J = 1, notated by |gs(0.05, 1)〉. The second initial state is motivated by quench
dynamics experiments, where a many-body system is prepared in the ground state of a model at some
parameter values λ0, and then the model parameters are quickly changed (quenched) to some other values
λ1. The resulting dynamics can be interesting and in many cases informative about the equilibrium phase
diagram of the model, e.g., [32, 33]. Physically implementing quenched dynamics is becoming increasingly
feasible, e.g., [34], and therefore predictive simulations of such dynamics are extremely valuable. Although
the particular model in Eq. (18) is exactly solvable, it serves to illustrate the compressibility of such many-
body models, and the dimensions in table 2 indicate how much model reduction is feasible for such dynamical
simulations.

To explicitly demonstrate model reduction for this model, in Fig. 2 we show the net transverse mag-
netization for an 8-spin transverse field Ising chain with |ψ0〉 = |gs(0.05, 1)〉 quenched to various various
parameter values, simulated using the full order model (d = 28) and its reduced order version generated by
projecting onto the reduced subspace for the model (r = 24). The reduced subspace was constructed via
the Burnside basis method of §4.1 and Algorithm 1. The reduced order dynamical model is given by the
projected dynamics in Eq. (3), and the reduced-order observable is generated by projection: Ô = Φ†OΦ. We
see complete agreement between the two simulations for any value of λ, with errors on the order of numerical
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n 2 3 4 5 6 7 8

|B(H)| 6 10 27 50 126 250 536

r (|ψ0〉 = |+〉⊗n) 2 2 4 4 8 8 16

r (|ψ0〉 = |gs(0.05, 1)〉) 3 4 6 8 12 16 24

Table 2. Degree of model reduction possible for the transverse field Ising model, Eq. (18),
as a function of number of spins. |B(H)| is the size of the Burnside basis and r is the
dimension of the reduced subspace under the specified initial state.

precision. To confirm that this agreement is not due to this particular observable being robust to Hilbert
space truncation, we also show in Fig. 2 that if the invariant subspace is truncated by removing just one
basis vector, the reduced order model can disagree with the full order model.
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(a) Dynamics projected onto full reduced subspace,
r = 24.
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(b) Dynamics projected onto truncated reduced sub-
space, r = 23.

Figure 2. Net transverse magnetization (the observable 〈
∑8

j=1 σ
(j)
x 〉) for an 8-spin transverse-

field Ising chain under quenched dynamics. The colors represent dynamics resulting from different
quenching parameters (J = 1 and B specified in the legend), all starting from the initial state
|ψ0〉 = |gs(0.05, 1)〉. The curves correspond to dynamics generated by the reduced order model
whereas the circles represent dynamics generated by the full order model. (a) shows complete
agreement between the full order model and the reduced order model defined by the invariant
subspace, while (b) shows disagreement when the dynamics are projected onto a subspace of the
reduced order model, of codimension 1.

Example 6.3 (Random transverse-field Ising model). A more complex spin chain Hamiltonian is the random
transverse-field Ising model [35]:

Hrandom Ising(λ) =

n∑
j=1

Bjσ
(j)
x +

n−1∑
j=1

Jjσ
(j)
z σ(j+1)

z ,

where the 2n− 1 model parameters are λ = ({Bj}nj=1, {Jj}
n−1
j=1 ), and we assume open boundary conditions

(i.e., the spins on the ends of the chain are only coupled to one neighbor). This is a pure Pauli Hamiltonian
with |Sλ(H)| < 2n and therefore by Theorem 5.4 we know it possesses a non-trivial invariant subspace.

In computing the reduced subspace for this model we can exploit the simplifications enabled by the binary
vector representation of Pn as detailed in §5. Computing the Burnside basis using this representation and
Algorithm 3 in Appendix B, we find that |B(H)| = 4n

2 . Now, consider an initial state where all spins are
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aligned in the direction of the transverse field: |ψ0〉 = |+〉⊗n. In this case, the inner product 〈σ〉 for σ ∈ Pn
specified in the binary vector representation is easily computable since the initial state is a tensor product
of σx eigenstates. Using this fact, we can readily compute the maximal linearly independent set of vectors

in {Bj |ψ0〉}|B(H)|
j=1 using the Gramian matrix method detailed in §5.3, and we find that the reduced order

model dimension is r = 2n−1, half of the formal Hilbert space dimension.

7. Discussion

In this work we have initiated the study of model reduction for many-body quantum systems via identifica-
tion and exploitation of invariant subspaces that host all dynamics generated by a parameterized Hamiltonian
from a given initial state. The methods developed here can be applied to simplify simulations of quantum
many-body systems for many applications, including quenched quantum dynamics, adiabatic quantum evo-
lution, and quantum control. The degree of efficiency improvement afforded by the model reduction methods
developed here are dependent on the exact model being considered. In the worst case, where no invariant
subspace exists for the dynamics, no improvement is possible. However, as the examples presented above
demonstrate, in many cases significant efficiency improvements are possible.

The methods developed in this work motivate several possible directions for future research, including:
(1) constructing more efficient certificates for determining the (im)possibility of a model reduction than the
direct computation of a basis for A(H); (2) developing time and space saving techniques for attaining a
maximal linearly independent subset of a given set of vectors, or for computing its size, in application to
constructing a basis for A(H) or determining dim(A(H)), respectively; and (3) extending the time sampling
methods to more general classes of dynamical evolutions and providing sampling strategies in terms of the
parameters λ in order to exhaust the full subspace A(H) · |ψ0〉. We elaborate upon each of these directions
in the following.

Firstly, concerning the results of §3.2, the key benefit to the current certificate for the existence of non-
trivial proper invariant subspaces is that computing the Burnside basis is also essential for generating the
reduced subspace for the model: A(H)·|ψ0〉. Therefore any method to increase the efficiency of implementing
Algorithm 1 in Appendix B would be extremely beneficial. On the other hand, if only a sufficient condition for
the possibility of a model reduction is required, it is possible that other methods for computing dim(A(H))
or deriving bounds on it may be more efficient. Conversely, there also exist certificates for determining
impossibility of a model reduction, for example, following Laffey [36, § 5], the model H has no reduced
subspace if the characteristic polynomial det(x0H0 + · · · + xMHM + xM+1(|ψ0〉 〈ψ0|) − xId) in the M + 3
complex variables x, xj , with {Hj}Mj=0 = Coeff(H), does not split into linear factors. This can practically be
computed by absolute factorization methods or through comparing the homogenization of the polynomial
against the corresponding Chow variety [37, Ch. 4]. Efficient implementations and more certificates in these
directions require further attention.

Another crucial computational element in forming a reduced order model, via the Burnside basis or time
sampling, is finding a maximal linearly independent set from a collection of vectors; e.g., the collection

{Bj |ψ0〉}|B(H)|
j=1 in the construction via the Burnside basis. These vectors are of length d and therefore grow

exponentially with the number of elementary degrees of freedom. This makes explicit computation of the
maximal linearly independent set infeasible for large models. In §5 we exploited Pauli group structure and
assumptions on the initial state to perform this computation using a Gramian matrix which avoids explicitly
working with the d-dimensional vectors. Other techniques to extract the linearly independent set efficiently
will be useful in reducing the burden of computing the reduced order model.

On a related note, the only special class of Hamiltonians that we have examined in this work are the
Pauli Hamiltonians for many-body spin-1/2 models. It might be fruitful to study if other special cases,
e.g., commuting Hamiltonians where invariant subspaces are equivalent to common eigenspaces for all terms
in the Hamiltonian, possess structure that makes identification and construction of reduced order models
particularly easy.

The results established in §4.2 quantifying the effectiveness of forming the model reduction matrix Φ by
sampling the time evolution of the full order model provide another avenue for future work. The techniques
used to develop these results are very general and amenable to extension beyond quantum dynamics generated
by unitary evolution. Using these techniques, it should be possible to establish conditions that specify when
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time sampling captures all dynamical modes for dynamics generated by any map analytic in t and λ. Such
a result, which would formulate conditions for the probabilistic abundance of good time samples for any
analytic map, is relevant to many empirical model reduction techniques that rely on sampling to construct
reduced order models [2, 3].

Although we have established conditions under which time sampling is effective for constructing the
model reduction matrix Φ, it remains an open question as to how to best perform the sampling in time
and parameters λ. It was remarked in §4.2 that by collecting snapshots of states generated by dynamics
at multiple values of the parameters, λ1, λ2, ..., one increases the probability of generating all of reduced
subspace A(H) · |ψ0〉. A promising direction for future work is constructing strategies for performing this
sampling in a systematic manner.

Finally, an important practical issue reserved for future study is the numerical stability of the algorithms
developed in this work. For example, there are several points in implementing Algorithm 1 in Appendix B
or determining a linearly independent set from a collection of vectors where determinants or ranks must be
computed, and it would be interesting to study how the numerical stability of these computations affects
the reduced order models that are constructed.

Progress on any of the fronts outlined above will contribute to the further development of reduced or-
der modeling techniques for quantum mechanical systems, and hence reduce the computational burden of
simulating such systems.
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Appendix A. Burnside’s Theorem on Matrix Algebras

We begin with the following classical theorem of Burnside, which has become a core part of the theory of
group representations:

Theorem A.1 (Burnside [38]). Let G be a group and π : G → GLd(C) a representation. Then, π is
irreducible if and only if im(π) spans Md(C). �

From this familiar version of Burnside’s theorem, we can derive Theorem 3.9, which is a version applicable
to matrix subalgebras that we have used throughout this work. Although many proofs of Theorem 3.9 exist
in literature, nearly all of them are independent of Burnside’s original result and the connection has become
somewhat a part of folklore. In order to make the connection apparent, we produce a proof below that uses
directly the above theorem of Burnside on group representations, making the theorem for matrix subalgebras
simply a:

Corollary (of Burnside’s theorem). A subalgebra A ≤Md(C) is irreducible if and only if A = Md(C).

Proof. Given any subalgebra A ≤ Md(C), let G := 〈A ∩ GLd(C)〉 be the subgroup of GLd(C) generated by
the invertible matrices in A. The strategy for the proof will be to show G ⊆ A and that subspace invariance
under G is equivalent to subspace invariance under A: Inv(G) = Inv(A). Then, an application of Theorem
A.1, by letting the representation π : G ↪→ GLd(C) be the canonical inclusion map, will show the desired
result.

To show that G is a subset of A, note that A contains the inverses of its invertible elements. This
is easy to see by writing the inverse of A ∈ A as a polynomial in A per the Cayley-Hamilton theorem:

A−1 = (−1)d−1

det(A) (Ad−1 + cd−1A
d−2 + ...+ c1Id), for scalars ck. Then by the closure of A under products and

linear combination we have that G ⊆ A.
Next, we show that Inv(G) = Inv(A). First, the direction Inv(A) ⊆ Inv(G) is easily seen from G ⊆ A.

The reverse direction is less trivial since A has singular operators (viz., A properly contains G), but we will
overcome this difficulty by a limiting argument. Consider the polynomial pτ (x) = (1− τ)x+ τ and note that
for any singular A ∈ A, the polynomial det(pτ (A)) is not identically zero (as a function of τ) and has a root
at τ = 0. So it must be non-zero in a punctured neighborhood about τ = 0, and hence there is a punctured
neighborhood NA ⊆ GLd(C) about A. We collect these neighborhoods in N := ∪A∈A\GLd(C)NA and note
that N ⊂ A∩GLd(C). Now, since vector subspaces are topologically closed [39, § 11.294] , the invariance of
subspaces is preserved under taking pointwise limits from N converging to singular matrices in A; in other
words, if G is the topological closure [40, § 17] of G and V ∈ Inv(G), then A = G and V ∈ Inv(G) = Inv(A),
whence we see that Inv(G) ⊆ Inv(A).

Having shown Inv(G) = Inv(A), we can proceed with proving the corollary. First, if A = Md(C), then
G = GLd(C) by definition and span(G) = Md(C). Then by Theorem A.1 G has no proper invariant subspaces,
and Inv(G) = Inv(A) implies the same for A, meaning that A is irreducible. To go the other way, assume
that A is irreducible, then by Inv(G) = Inv(A) so is G. By Theorem A.1 this means that span(G) = Md(C),
but because G ⊆ A, if span(G) = Md(C), then A = Md(C). �

Remark. See [4] for more of a historical discussion on the development of this theorem and the connection
with Frobenius and Schur.

Appendix B. Explicit algorithms for calculating the algebraic Burnside basis

Algorithm 1 details the procedure to generate the Burnside basis for a general Hamiltonian H, which is a
maximal linearly independent subset (over C) of the monoid generated by taking products of the operators
in Coeff(H). In terms of Definition 3.5, A(H) is the linear span of monomials in Coeff(H). The crux of the
algorithm resides in the fact that if Lk is the collection (called a layer) of all monomials of degree at most
k, then we have a chain of inclusions,

spanL1 ⊆ spanL2 ⊆ · · · ⊆ spanLk ⊆ · · · ,
where if at some point k in the chain of inclusions equality holds, so that spanLk = spanLk+1, then it must
be that for all m ≥ k, spanLm = spanLk and moreover, spanLk = A(H) (see [36, § 4]). One method of
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achieving this (step 2.(1)) is by adding only linearly independent monomials of degree k to Lk−1, at the
k-th iteration. Then, the above inclusion chain also holds for this collection of linearly independent layers,
the stopping criterion simply becomes that Lk = Lk+1 and clearly Lk = B(H). We detail a second possible
implementation that may be useful for scaling upwards, by off-loading the linear independency check at each
step of the iteration to a post-processing step.

Algorithm 2 is a straightforward modification of Algorithm 1 that exploits additional structure in pure
Pauli Hamiltonians of the form:

(19) H(λ) =

M∑
k=1

λkσk

where each σk is an n-spin generalized Pauli operator. In this case, Coeff(H) = {σk}Mk=1, and properties
of the elements of Pn described in the main text simplify operations within the Burnside basis algorithm.
Recall that ϕ[X] is the binary vector representation of X ∈ Pn.

Finally, Algorithm 3 is a different method of generating the Burnside basis for a pure Pauli Hamiltonian
that exploits all the structure of Pn and its binary vector representation. It is considerably more efficient
than Algorithm 2 because it exploits the fact that Pn is abelian to reduce the number of binary additions
(equivalent to multiplications of elements of Pn) required. To do so, we use the concept of a Gray code
to cycle through the binary additions necessary to generate the basis while avoiding repetitions that would
result if we ignored the abelian nature of Pn. This is a method for quickly generating subspaces of the binary
vector space as used in the Method of Four Russians; the correctness of the algorithm is argued for in [27,
§ 9.2].

Note that the return value for the general Algorithm 1 is a set of operators while the return value for the
two modified algorithms (for pure Hamiltonians) is a set of binary vectors, each of which corresponds to an
element of Pn.

In the following XOR (entry-wise addition modulo 2) is denoted by ⊕.
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Procedure incMonomials: Takes a set of monomials and constructs all monomials of degree one
greater, from the generating operators Coeff(H).

input : Monomials
output: NewMonomials
1 NewMonomials← ∅
2 for W ∈ Monomials, X ∈ Coeff(H) do
3 NewMonomials← NewMonomials ∪ {W ·X}
4 end

Algorithm 1: Generating the Burnside basis for a general Hamiltonian H.

input : Coeff(H)
output: B(H)
1 Layer← ∅, Monomials← {Id}
2 Iteratively run Monomials← incMonomials(Monomials) and Layer← Layer ∪Monomials until the

stopping criterion is met that span(Layer) is unchanged for two consecutive iterations. This check
can be implemented in a variety of ways; two of the possible implementations are:

(1) Modify the loop of incMonomials() to check that each new monomial is not in
span(Layer ∪Monomials ∪ NewMonomials) before adding it to NewMonomials. This check can be
implemented in a variety of ways, one of which would be to generate a new matrix from the
vectorizations of all of the matrices in question and compare ranks. The stopping criterion is then
simply that the new collection of monomials is not empty. In this regime, after the halt, clearly
Layer = B(H).

(2) Näıvely, one only needs at most d2 iterations before the stopping criterion must be met. This

upper bound can be improved due to a result of Paz [41] to k := dd
2+2
3 e. Thus, one can avoid the

check of spans at each step and simply form all k layers, then post-process Layer to find a maximal
linearly independent subset to serve as the Burnside Basis B(H). See [36, § 4] for more discussion
(including that of a conjecture of Paz that k = 2d− 2, which is shown there to be a lower bound in
general).
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Procedure incVectors: Version of incMonomials() for Pauli Hamiltonians.
input : Vectors
output: NewVectors
1 NewVectors← ∅
2 for W ∈ Vectors, X ∈ Coeff(H) do
3 NewVectors← NewVectors ∪ {W ⊕ ϕ(X)}
4 end

Algorithm 2: Näıve speed-up of Algorithm 1 for generating the Burnside basis for a pure Pauli
Hamiltonian of the form Eq. (19).

input : Coeff(H) = Sλ(H)
output: ϕ[B(H)]

1 Layer← ∅, Vectors← {~0}
2 Iteratively run Vectors← incVectors(Vectors) and Layer← Layer ∪ Vectors until the stopping

criterion is met that Layer is unchanged for two consecutive iterations. This check can be
implemented in a variety of ways; two of the possible implementations are:

(1) Modify the loop of incVectors() to check that each new binary vector A is not in
L := Layer ∪ Vectors ∪ NewVectors before adding it to NewVectors. One possible implementation of
this check is through binary AND operations; i.e., A ∈ L iff (∃)C ∈ L such that A AND C = 0. The
stopping criterion then becomes that the new collection of binary vectors is not empty and finally,
Layer = ϕ[B(H)].

(2) The alternate method of step 2.(2) of Algorithm 1 can again be applied here, except that the
post-processing step need only eliminate any duplicate binary vector entries.

Algorithm 3: Efficient algorithm for generating the Burnside basis for a pure Pauli Hamiltonian
of the form Eq. (19). The idea is to generate all linear combinations of ϕ(Coeff(H)) according to a
Gray codes table, which avoids the layering method needed for less structured sets of operators. The
purpose of line 7 is to calculate the bit that is flipped between two neighboring elements of the Gray
code.

input : Coeff(H) = Sλ(H)
output: V = ϕ(B(H))

1 begin
2 V ← ∅
3 `← |Coeff(H) | ; // Order elements of Coeff(H) from 1 . . . `.

4 Gray ← Gray code for ` bits

5 A← 0

6 for j ← 2 to 2` do
7 flip← log2(Gray[j − 1]⊕ Gray[j])

8 X ← Xflip+1 ∈ Coeff(H)

9 A← A⊕ ϕ(X)

10 if A 6∈ V then
11 Append A to V
12 end

13 end

14 end
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