
JULIA SETS AND WILD CANTOR SETS

ALASTAIR FLETCHER AND JANG-MEI WU

Abstract. There exist uniformly quasiregular maps f : R3 → R3 whose Julia sets are wild
Cantor sets.

1. Introduction

The most direct generalization of the iteration of holomorphic functions in the plane to
higher real dimensions is the iteration of uniformly quasiregular mappings in Rn. Informally
speaking, quasiregular mappings allow a bounded amount of distortion. Uniformly quasireg-
ular mappings, abbreviated to uqr mappings, have a uniform bound for the distortion of all
the iterates. These were introduced by Iwaniec and Martin [12] who showed that there are
direct analogues of the Julia set and Fatou set for uqr mappings and that Rn = J(f)∪F (f).
It is known that certain structures can arise as Julia sets of uqr mappings:

• all of Rn, arising from Lattès type examples [15],
• the unit sphere Sn−1 ⊂ Rn arising from uqr versions of power mappings [15],
• an (n− 1)-ball Bn−1×{0} in Rn arising from uqr versions of Chebyshev polynomials
[15],
• tame Cantor sets arising from conformal trap methods [12, 14].

Here, a tame Cantor set E ⊂ Rn is one for which there exists a homeomorphism ψ : Rn → Rn

such that ψ(E) is a usual ternary Cantor set contained in a line. A Cantor set which is not
tame is called wild. The first example of a wild Cantor set was Antoine’s necklace [1], the
construction of which we recall below. In the context of quasiregular mappings, Heinonen
and Rickman [8] constructed quasiregular mappings in R3 that branch on a wild Cantor set.
In this paper, we prove the following theorem.

Theorem 1.1. Let m ∈ N be the square of a sufficiently large even integer. Then there
exist an Antoine’s necklace X ⊂ R3 of multiplicity m and a uniformly quasiregular map
f : R3 → R3 whose Julia set J(f) is X. Further, J(f) is the closure of the repelling periodic
points of f .

Antoine’s necklace is constructed by an iterative procedure involving a link of m solid tori
contained in a solid torus. This even integer m is called the multiplicity of the necklace. If
m is sufficiently large, then the necklace can be taken to be geometrically self-similar. The
idea in the proof of this theorem is to interpolate between conformal similarities arising from
the necklace construction and the uqr power mapping of Mayer [15] by first constructing an
explicit branched cover, then applying an extension theorem of Berstein and Edmonds [4].
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The construction here cannot happen in the plane since there are no wild Cantor sets in
R2. Blankinship [5] extended Antoine’s construction to produce wild Cantor sets in higher
dimensions. It is unknown whether a basic branched cover analogous to that in Section 4
exists in higher dimensions and whether Berstein and Edmonds’ theorem can be generalized
to dimension four or higher. For these reasons, we restrict to dimension three in this paper.

It is known that the Julia set of a uqr mapping is the closure of the periodic points [20],
but it is still an open question whether it is the closure of the repelling periodic points, as it
is in the holomorphic setting. In [6], it is shown that this question has an affirmative answer
when J(f) is a tame Cantor set, and the final assertion of Theorem 1.1 shows that there is
an affirmative answer for at least some wild Cantor sets.

Tame Cantor sets arising as Julia sets of uqr mappings were used in [6] to construct
quasiregular versions of Poincaré linearizers where the fast escaping set forms a structure
called a spider’s web. The natural question of whether there exist uqr mappings with wild
Cantor sets arose from this work.

The paper is organized as follows. In section 2 we recall the definition of quasiregular
mappings and state results we will need for our construction. In section 3, the construction
of Antoine’s necklace is recalled and, in particular, a geometrically self-similar version. The
construction and verification of the properties of the uqr map constructed for the proof of
Theorem 1.1 is contained in sections 4 and 5.

Acknowledgements. The authors would like to thank Pekka Pankka and Kai Rajala for
their helpful remarks on the manuscript, and Julie Kaufman for drafting the figures.

2. Preliminaries

We denote by B(x, r) the Euclidean ball centered at x ∈ Rn of radius r > 0 and by S(x, r)
the boundary of B(x, r).

2.1. Quasiregular maps. A mapping f : E → Rn defined on a domain E ⊆ Rn is called
quasiregular if f belongs to the Sobolev space W 1

n,loc(E) and there exists K ∈ [1,∞) such
that

(2.1) |f ′(x)|n ≤ KJf (x)

almost everywhere in E. Here Jf (x) denotes the Jacobian determinant of f at x ∈ E.
Informally, a quasiregular mapping sends infinitesimal spheres to infinitesimal ellipsoids with
bounded eccentricity. We refer to Rickman’s monograph [18] for more details on quasiregular
mappings.

A mapping f : E → Rn defined on a domain E ⊆ Rn is said to be of bounded length
distortion (BLD) if f is sense-preserving, discrete, open and satisfies

`(γ)/L ≤ `(f ◦ γ) ≤ L `(γ)

for some L ≥ 1 and all paths γ in E, where `(·) denotes the length of a path. BLD maps
were introduced by Martio and Väisälä [13]; see also [9]. They form a strict subclass of
quasiregular maps.
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2.2. Uqr mappings. The composition of two quasiregular mappings is again a quasiregular
mapping, but the dilatation typically increases. A quasiregular mapping f is called uniformly
quasiregular, or uqr, if (2.1) holds uniformly in K over all iterates of f . If f : Rn → Rn is
uqr, then the Fatou set is

F (f) = {x ∈ Rn : there is a neighborhood U 3 x such that (fm|U)∞m=1 forms a normal family},
and the Julia set J(f) = Rn \ F (f), see [12]. The escaping set of a quasiregular mapping is

I(f) = {x ∈ Rn : |fn(x)| → ∞}.
The following result is contained in [7], and characterizes the Julia set of uqr mappings in
terms of the escaping set:

Theorem 2.1 (Lemma 5.2, [7]). Let f : Rn → Rn be uqr. Then J(f) = ∂I(f).

2.3. Uqr power mappings. There are higher dimensional uniformly quasiregular counter-
parts to power mappings, constructed by Mayer [15].

Theorem 2.2 (Theorem 2, [15]). For every d ∈ N with d > 1, there is a uqr map g : R3 → R3

of degree d2, with Julia set J(g) = S(0, 1) and whose Fatou set consists of B(0, 1) and
R3 \B(0, 1).

In particular, for any r > 0,

(2.2) g(B(0, r)) = B(0, rd).

2.4. Extending branched coverings from the boundary of 3-manifolds. We will need
the following result of Berstein and Edmonds [4] on extending branched coverings over PL
cobordisms.

Theorem 2.3 (Theorem 6.2, [4]). Let W be a connected, compact, oriented PL 3-manifold
in some Rm whose boundary ∂W consists of two components M0 and M1 with the induced
orientation. Let W ′ = N \ (intB0 ∪ intB1) be an oriented PL 3-sphere N in R4 with two
disjoint closed polyhedral 3-balls removed, and have the induced orientation on its boundary.
Suppose that ϕi :M

2
i → ∂Bi is a sense-preserving oriented branched covering of degree n ≥ 3,

for each i = 0, 1. Then there exists a sense-preserving PL branched cover ϕ : W → W ′ of
degree n that extends ϕ0 and ϕ1.

This theorem of Berstein and Edmonds has been generalized to branched covers ∂W →
∂W ′ between boundaries of connected, compact, oriented 3-manifolds W and W ′, when ∂W
has p ≥ 2 connected components and W ′ is a PL 3-sphere with the interiors of p disjoint
closed 3-balls removed. This generalization was proved first by Heinonen and Rickman [9]
for mappings whose degrees are large multiples of 3, and later in [17] for all degrees ≥ 3.
This theorem is false when the degree is 2 by an example of Fox, see [3].

When the components of ∂W ′ of the target manifold W ′ have varying topological types,
there seems to be no general procedure for extending branched covers from the boundary to
the inside.

3. Wild Cantor sets

We briefly recall the construction of the wild Cantor set in R3 constructed by Antoine in
1921 [1]; see the book of Rolfsen ([19], p. 73) for an illustrated description.

3



3.1. Antoine’s necklace. Let X0 ⊂ R3 be a solid torus and let m ≥ 4 be a positive even
integer. Choose mutually disjoint solid tori X1,1, . . . , X1,m contained in the interior of X0 so
that X1,i and X1,j are linked if and only if |i− j| ≡ 1(modm) and, when linked, they form
a Hopf link. Fix homeomorphisms ϕj : X0 → X1,j for j = 1, . . . ,m, and define

X1 =
m⋃
j=1

X1,j =
m⋃
j=1

ϕi(X0).

We then inductively define

Xk+1 =
m⋃
j=1

ϕj(Xk),

for k ≥ 1. At the k’th stage Xk will consist of mk tori Xk,1, . . . , Xk,mk . Clearly, Xk+1 ⊂ Xk.
An Antoine’s necklace of multiplicity m is defined as

X =
∞⋂
k=1

Xk.

If ck is the maximum diameter of any torus in Xk, then we require that ck → 0 as k → ∞
in order to obtain that X is a Cantor set. The set X is topological self-similar. However,
for our purposes we need a geometrically self-similar necklace.

3.2. A geometrically self-similar necklace. Let m be a large even integer, p1, . . . , pm be
m equally spaced points on the unit circle τ0 = {(x1, x2, 0) : x21 + x22 = 1}, and T0 be the
solid torus {x ∈ R3 : dist(x, τ0) ≤ 8/m} with core τ0. When m is sufficiently large, circles
τj, j = 1, . . . ,m, in R3 with centers pj and radius 4/m may be fixed so that

• τi and τj are linked in R3 if and only if |i− j| ≡ 1(modm);
• ρ(τj) = τj+2 for j = 1, . . . ,m − 2, ρ(τm−1) = τ1, and ρ(τm) = τ2, where ρ is the
rotation about the x3-axis by an angle 4π/m,

ρ : (r, θ, x3) 7→ (r, θ +
4π

m
, x3);

• τ1 and τm are linked with the x1 axis as shown in Figure 1, and a rotation through
angle π about the x1 axis sends τ1 onto τm and vice versa.

Fix m sense preserving similarities ϕj, j = 1, . . . ,m, of R3 with ϕj(τ0) = τj and set
Tj = ϕj(T0). Then Tj, for j = 1, . . . ,m, are mutually disjoint tori in the interior of T0. A
geometric self-similar necklace X may be obtained by setting X0 = T0 and X1,j = Tj for
j = 1, . . . ,m in the above construction.

4. A basic covering map

Towards the proof of Theorem 1.1, we construct a BLD degree m branched covering map

F : T0 \ int

(
m⋃
j=1

Tj

)
−→ B(0, 2) \ int(T0)

satisfying F |∂Tj : ∂Tj → ∂T0 = ϕ−1j for the tori T0, T1, . . . , Tm fixed in Section 3.2.
Let ω : R3 → R3 be the degree m/2 winding map

ω : (r, θ, x3) 7→ (r, θm/2, x3).
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Figure 1

Figure 2

Then ω : T0 → T0 is an unbranched cover that maps all Tj with odd indices to ω(T1) and all
Tj with even indices to ω(T2). Moreover ω(T1) and ω(T2) are linked inside T0 as in Figure 2
and by construction are symmetric under the involution ι that corresponds to the rotation
about the x1-axis by an angle π

ι : (x1, x2, x3) 7→ (x1,−x2,−x3).

That is, we have ι(ω(T1)) = ω(T2) and ι(ω(T2)) = ω(T1).
The quotient q : T0 → T0/〈ι〉 is a degree 2 sense preserving map, under which q(ω(T1)) =

q(ω(T2)) is a torus unknotted in the 3-cell q(T0); see for example [19, p. 294]. To obtain a
BLD branched cover from T0 onto B(0, 2) which unlinks the tori ω(T1)∪ ω(T2), we consider
a PL version of q. Give T0 a C1-triangulation g : |U | → T0 in the sense of [16, p. 81] by a
simplicial complex U in R3, that respects the involution ι|T0 and of which g−1(ω(T1)∪ω(T2))
is a subcomplex. Identify q(T0) with a simplicial complex V in R3 of which q(ω(T1)) is a
subcomplex and that the quotient q ◦g : U → q(T0) is simplicial. Under these identifications,
q is a BLD map.

We may assume, after a simplicial subdivision of V , that B(0, 2) has a C1-triangulation
h : |V | → B(0, 2) under which h−1(T0) is a subcomplex and the map q◦ω◦ϕ1◦h|h−1(T0) : h−1(T0)→
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q(ω(T1)) is simplicial. Since q ◦ ω ◦ ϕ1|T0 and h−1|T0 are ambient isotopic in V , there exists
a homeomorphism ζ : B(0, 2)→ V such that ζ|T0 = q ◦ ω ◦ϕ1 and ζ = h−1 on ∂B(0, 2), and
that ζ−1 ◦ h : V → V is PL by an isotopy extension theorem [11, p. 136].

It follows that ζ ◦ q ◦ ω|Tj = ϕ−1j , j = 1, . . . ,m, are similarities. Then F = ζ ◦ q ◦ ω is the
BLD degree m branched covering map in the claim.

5. Proof of Theorem 1.1

To construct the uqr map f for Theorem 1.1, we require m = d2 to be the square of an
even integer sufficiently large so that the construction of Antoine’s necklace allows conformal
similarities ϕ1, . . . , ϕm. Let X0 = T0, X1,j = Tj for j = 1, . . . ,m and X the geometrically
self-similar necklace of multiplicity m from Section 3.2.

Set B0 = B(0, 2), B−1 = B(0, 2d) and write R3 as disjoint unions, one for the domain and
one for the target, as follows:

R3 = X1 ∪ (X0 \X1) ∪ (B0 \X0) ∪ (R3 \B0)

and
R3 = X0 ∪ (B0 \X0) ∪ (B−1 \B0) ∪ (R3 \B−1).

The uqr map f will be defined in four matching parts.
(i) Set f : X0 \X1 → B0 \X0 to be the degree m basic branched covering map F from

Section 4.
(ii) Extend F to X1 by defining f |X1 to be ϕ−1j : X1,j → X0 for every j = 1, . . . ,m.
(iii) Define f : R3 \ int(B0) → R3 \ int(B−1) to be the restriction of g to R3 \ int(B0),

recalling the uqr power mapping g of degree m from Theorem 2.2. By (2.2), S(0, 2) is
mapped onto S(0, 2d) by g. We remark also that g|S(0,2) is orientation preserving by
[15, Proposition 5.2].

(iv) Since f |∂B0 : ∂B0 → ∂B−1 is a BLD degree m branched cover and f |∂X0 : ∂X0 → ∂B0

is an m-fold cover by similarities, we may extend the boundary map to a BLD degree
m branched cover f : B0 \ intX0 → B−1 \ intB0 by Theorem 2.3, the extension theorem
of Berstein and Edmonds. It is understood here that C1-triangulation has been carried
out on B0 \ intX0 and B−1 \ intB0 before applying Theorem 2.3.

This completes the construction of a quasiregular map f : R3 → R3. To finish the proof
of Theorem 1.1, we show that f has the required properties in the following lemmas.

Lemma 5.1. The map f is a uniformly quasiregular mapping of polynomial type.

Proof. Let x ∈ R3. If the orbit of x always remains in X1, then since f |X1 is conformal the
dilatation of fk at x will always be 1.

Otherwise, after finitely many iterations through at worst conformal maps and two quasireg-
ular maps, fk0(x) ∈ Rn \ B(0, 2d). From this point on, f agrees with the uqr power map of
degree m and hence the dilatation will remain bounded. In short, along the orbit of a point
which starts in X0 but eventually leaves X0, f consists of finitely many conformal maps,
two quasiregular mappings and then a uqr mapping. Hence the dilatation of fk remains
uniformly bounded on R3 as k →∞.

Since f has finite degree m, it is of polynomial type. �

Lemma 5.2. The Julia set of f is equal to X.
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Proof. By the construction of f , if the orbit of any point leaves X0, then it is contained in the
escaping set I(f) of f . Also by construction, the set of points which do not leave X0 under
iteration of f are exactly the points inX. If x ∈ X, then any sufficiently small neighbourhood
of x will intersect the boundary of Xk for some k. Since by construction ∂Xk ⊂ I(f), we
obtain X = ∂I(f). By Theorem 2.1, ∂I(f) = J(f) and hence J(f) = X. �

Lemma 5.3. The Julia set J(f) is the closure of the repelling periodic points.

Proof. By a result in Siebert’s thesis [20], see also [2, Theorem 4.1] and the discussion
preceding it, the periodic points are dense in J(f). Let x0 be a periodic point in J(f) of
period p. Then, recalling the construction of the Antoine’s necklace X, there exist integers
j, k such that

x0 ∈ int(X1,j) ⊂ X1 and x0 ∈ int(Xp+1,k) ⊂ Xp+1 ∩X1,j.

In particular, Xp+1,k ⊂ int(X1,j). By the construction of f , fp : Xp+1,k → X1,j is injective.
Hence by the topological definition of fixed points, see [10, p.90], x0 is a repelling fixed point
of fp. Finally, by [10, Proposition 4.6], x0 is a repelling periodic point of f . �

This completes the proof of Theorem 1.1.
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