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The averaged moments of the eigenfunctions (including the inverse participation ratio) of 
a particle in a random potential are considered near the mobility edge. The exponents of 
the power laws are given in an e-expansion in one-loop order for a d--2 + e dimensional 
system. The calculation is based on a recent formulation of the mobility edge problem 
which maps it onto a model of interacting matrices. 

1. Introduction and Results  

Several criteria have been given (see for example [1]) 
to distinguish the energy regions of extended and 
localized states of a quantum mechanic particle in a 
random potential. One criterion is the d.c. conduc- 
tivity which vanishes in the region of the localized 
states but is positive for the energies of the extended 
states. Another criterion is the inverse participation 
ratio which averages the fourth power of the wave- 
function. It is positive for localized states and vanishes 
for extended states in the thermodynamic limit. 
Here the critical behaviour of the averaged powers of 
the following quantities are considered as a function 
of energy E near the mobility edge Ec: 
(i) of the wavefunction in the region of the localized 
states 

PCk)(E) = ~ I@i(r)[ 2k 6 ( E - e i ) / p ( E ) ~ ( E c - E Y  k (1.1) 
i 

and 
(ii) of the average of the squared wavefunction within 
an energy width t / in the region of the extended states 

1/p(k)(E) = lim [ ~  10i(r)l 2 (5.(E - e~)3k/pk(E) 
t / ~ 0  i 

(1.2) 
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with the Lorentzian 

t//~ 1 ( 1 1 ) (1.3) 
6, (x) - - t12+x2--2n  i x - - i t  1 x + i t  1 " 

Here 6i(r) is the amplitude of the eigenfunction li) 
with energy e i at site r of the particle in a tight- 
binding model, p(E) is the density of states per site 
and energy, p(2) is the inverse participation ratio. For 
k>  1 the quantity p(k) vanishes in the region of the 
extended states and p(k) vanishes for localized states. 
For a tight-binding model with real matrix elements 
an e expansion for a d = 2 + e  dimensional system 
predicts 

#k = k ( k -  1) + O(0, (1.4) 

~k = ( k -  1)(2e-* + 1 - k )+O(e ) .  (1.5) 

The exponents & and r~ k are related by 

;Zk=(k-- l )dv- -#k  (1.6) 

where v is the exponent for the localization length. 
The calculation is based on a recent formulation [-2] 
of the mobility edge problem which expresses the 
averaged Green's functions as correlations of com- 
ponents of interacting matrices Q. Their critical be- 
haviour is examined by means of renormalization 
group techniques. 
In Sect. 2 the participation ratio and related quan- 
tities are discussed and connected to the averaged 
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Green's functions. The scaling behaviour of these 
functions is derived in Sect. 3. The derivation of the 
exponents x = - # I v  is explained in Sect. 4. 

If the average 

10,(r)[ ~ a ( E -  e,) 
i 

2. Inverse Participation Ratio and Related Quantities 

Bell and Dean [3] (compare [4]) have introduced the 
concept of a partition ratio i6~ for an eigenstate li} of 
a disordered system. If the wavefunction Oi(r) at sites 
r of a tight-binding model is normalized then /~ is 
given by 

~ = 1/(N~ I~i(r)l 4) (2.1) 
r 

does not depend on r then P can be written 

P(2)(E) p(E)= 2 ItP,(r){ 4 a ( E -  e,). (2.6) 
i 

In order to determine P we use that the two-particle 
spectral function 

$2(E1, E2)= (rl a(E~ -H)] r )<r [  a(E 2 -  H)Ir) 

contains a a-function contribution 

(2,7) 

where N is the number of lattice sites. Besides /~i the 
"inverse participation ratio" P~ has been defined as 
(compare [1]) 

P/= ~, I@i(r)] 4. (2.2) 
r 

(Note that P/ is not the inverse of/~i but/aiP~= 1/N). 
The meaning of these quantities becomes apparent by 
a simple example. Suppose the wavefunction spreads 
over I lattice sites with equal amplitude IOn(r)[2= 1/l 
and vanishes elsewhere. Then one has 

!3~ = l/N, P~ = 1/l. (2.3) 

Thus/3~ describes the proportion of the total number 
of atoms in a system which contribute effectively to 
an eigenstate, whereas P~ is the inverse number of 
orbitals contributing effectively to this state. For lo- 
calized (normalizable states) P/ is larger than zero 
whereas /3~ vanishes in the thermodynamic limit 
N--+ oo. If the eigenstate is concentrated in one orbital 
then P~ attains its maximum value unity. For a plane 

wave, Oi(r)= eiqi~/¢N, Pi assumes its maximum value 
/3~ = 1 whereas P~ vanishes in the thermodynamic 
limit N + oo. Quite generally P~ vanishes for extended 
states. Probably/3~ is positive for these states. Howev- 
er, this is not proven. (Compare a discussion of 
various possibilities by Last and Thouless [5].) 
Instead considering P~ for individual eigenstates of 
individual systems one introduces the ensemble aver- 
aged quantity 

P(2)(E)  = £ [0i(r)l 4 a ( E  - ei)/~ 6(E - e l )  

i , r  i 
(2.4) 

(the bar indicates the ensemble average). The de- 
nominator is given by the density p of states per site 
and energy 

a (E - e~) = N p (E). (2.5) 
i 

Ig, i(r)l a 6(E 1 -e i )  a(E 1 -E2)  , (2.8) 
i 

so that the limit 

P(2)(E) p(E) = 2n lim (~/A2 (~, E)) (2.9) 
t/~0 

with 

A2 (t/, E) =5 a,(E - E , )  a,(E -E2)  S2(E1, E2) d E  1 d E  2 

( 1 1 )2  
- -~(--4Tg2)  - 1  (r[ E - i ~ l - H  E + i * I - H  Jr} (2.10) 

extracts the [~,i(r)[ 4 contributions. Economou and 
Cohen [6] have used this quantity to define localiza- 
tion. Thus P(2)(E) can be obtained from the knowl- 
edge of the two-particle Green's functions which en- 
ter A2, (2.10). 
The situation is more difficult for/~ which cannot be 
extracted from the continuum of states entering 
A2(r/,E ) in such an obvious way. Therefore we in- 
troduce a quantity pC2), instead, which is obtained by 
replacing ]0i(r)[ 2 by an average of [~,(r)[ 2 over an 
energy width ~/and taking the limit */-~ 0. 

1/p(2)(E) =lim lim {N 2 [ 2  ]~ti(r)l 2 a~(E - el) ] 2/ 
r/~0 N~oo i 

(~  a,(E - ei)) 2} (2.11) 
i 

so that 

p 2 ( E ) / p ( 2 ) ( E )  = lira A 2 (t/, E). (2.12) 
r/~O 

From the calculation for an n-orbital model [7] we 
expect that p(2) has a finite limit for t/--+ 0 in the region 
of extended states. 
Obviously P(2)(E) and p(2)(E) can be generalized to 
p(k) and p(k) as defined in the introduction. In order to 
determine p(k) we observe that the k-particle spectral 
function 
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k 

Sk(E~,..., G)  = l~ <rl 6(E j -  H)Ir> (2.13) 
j = l  

contains a J-function contribution 

k 

I@~(r)l 2k ~ ~(Ej-e~). (2.14) 
i j = l  

With 

+oo 
Ck=tl k-1 ~ (6.(x))kdx=(2n) ~-k(2k-3)!! (2.15) 

_~ ( k -  1)~ 

and 

Ak(r/,E)= ( r [ g _ i t l _ H  g+itl-Hl@(2.16) 

one obtains 

P(k)(E) p(E) = C~ t lim (tl k- ~ Ak(q, E)). (2.17) 
~/~0 

Similarly to p(2), Eq. (2.12), one finds 

pk(E)/p(k)(E) = lim Ak(q, E), (2.18) 
r/~O 

so that the determination of p(k) and p(k) is reduced to 
that of k-particle Green's functions at the same site r. 

3. Scaling Behaviour 

Now the formulation of [2] is used which allows us 
to represent the averaged two-particle Green's func- 
tions 

K= -47r2<rlbn(E-H)lr'><r'lbn(E-H)lr> (3.1) 

K " =  -47c2 <r] Jn(E -H)Ir><r'] Jn(E -H)It'> (3.2) 

with the partial fraction decomposition of ¢5, Eq. 
(1.3), in terms of averages over products of matrices Q 

K= Y" (-)p+p' (Q~g' (r)Q~'f(r')>, a#b (3.3) 
pp" 

g t t  -~ 2 - -  P+P' PP ( )  (Q,a(r)Q~'(r')>, a#b (3.4) 
pp' 

where p and p' run over 1 and 2. 
These averages have to be evaluated for a Hamil- 
tonian 

£g =¼1~ y ddr tr(V Q(r) V Q(r)) 

_ _  P PP +¼~l~-lSddrZ( ) Qa.(r). (3.5) 
p,a 

The symmetric matrices Q have two eigenvalues 21 

and 2 2 of multiplicities m l = m 2 = 0  where 21 and 2 2 

are the averaged one-particle Green's functions 

1 
21,2=<r1 Ir>. (3.6) E~ i~-  H 

The first term of ~ is invariant under orthogonal 
transformations of Q, the second one breaks this 
symmetry, but vanishes for t / ~  0. 
For r= r '  the expressions (3.1) and (3.2) coincide. 
However, it is not obvious that (3.3) and (3.4) are 
equal for r = r'. Indeed the formulation in terms of the 
composite variables Q is only valid in the gauge- 
invariant limit, that is, on a length scale large in 
comparison to the phase coherence length (the mean 
free path). Therefore in order to obtain the mobility 
edge behaviour of A2, Eq. (2.10), we will consider 
local operators which have the same symmetry as 
those entering (3.3) and (3.4) with r =r'. The operators 
in (3.3) and (3.4) can be written 

0 4 = ~ VljktQij(r) Qkl(r) (3.7) 
ijkl 

where index pairs (p, a) are abbreviated by one index 
i. Since the matrices Q are symmetric we require 

l)ijkl = V jikl = l)klij. (3.8) 

Apparently the coefficients of v for the operators 0 4 
entering (3.3) and (3.4) obey 

2 Vukz =Z ViJn =0. (3.9) 
i i 

This property tells us that the operators 0 4 transform 
under orthogonal transformations of the Q's like 
components of an angular momentum with /=4.  
Since for r/--+0 the Hamiltonian (3.5) is invariant 
under orthogonal transformations only operators 
with 1=4 must be considered. 
There are two irreducible representation of these 
operators, a symmetric one with 

Vijkl = 1)ikjl = Vilkj 

and an asymmetric one with 

(3.10) 

1)ijkl ~- I)ikjl ~- Vilkj = 0 (3.11) 

(The dimension of these representations with respect 
to permutations of the indices is 1 and 2, resp.) A 
one-loop calculation for these operators yields the 
following exponents x 

x2~= - 2e + O(e2), X 2 a = £ @ O ( g  2) (3.12) 

where y = d - x  is the full dimension of the operator. 
The full dimension of the symmetric operator exceeds 
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the space dimensionality. This is unusual for con- 
ventional critical phenomena where all operators 
obey x>O,  y < d .  Here it reflects the strong fluc- 
tuations of the wavefunctions in the region of extend- 
ed states near the mobility edge. 
There are also operators cubic in Q and of higher 
orders in Q with /=4. Since Q has only two eigen- 
values they can be reduced to expressions bilinear in 
Q. There are also operators with spacial derivatives. 
Their dimension is smaller by one or several integers. 
Therefore they yield only corrections to the leading 
scaling behaviour. 
In order to discuss the mobility edge behaviour we 
recall that under a renormalization group step which 
changes the length scale by a factor b the operator O, 
E - E ~ ,  and the "frequency" ~ are multiplied by b ~, 
b ~/~, and b a resp. [7-9]. Thus the expectation value of 
O can be written 

< 0 )  = ( E -  E~) ~ f ( ~ / ( E -  E j ~ ) .  (3.13) 

Since both K and K" contain a contribution from the 
symmetric operator and since x 2 s < x 2 , ,  the sym- 
metric one yields the dominant contribution with 

X2sY= --2+O(e) (3.14) 

since [2] 

v = 1/e + 0 (~). (3.15) 

In the region of the extended states one expects that 
the limit 

lim A z(rh E ) ~  ( 0 )  = ( E - E ~) ~ lim f ( rl /( E - E c) a~) (3.16) 

is finite. Therefore with (3.15) one obtains that p(2)(E) 
decays like 

p ( ~ ( E ) ~ ( E - E ~ ) ~  (3.17) 

with 

kt2= - x 2 s v = 2 + O ( D .  (3.18) 

In the region of the localized states one expects, 
compare (2.9), 

lim (t/A2(t/, E)) 

~ ( E - E c )  . . . .  +a~ lim t 1 ( r/ ) ~ o  ( E - E c )  e~ f ( E - E J  ~ (3.19) 

to be finite. Thus P(e)(E) obeys for E < E ~  the power 
law 

p(2)(E) ~ ( E  - E )  ~ (3.20) 

with 

7~ 2 = (X2s -}- d) v = 2 e-  * - 1 + 0 (e). (3.21) 

The exponent x' in [8] is identical with -X2s. 
The mobility edge behaviour of Ak, Eq. (2.16), for k 
=3, 4, 5, ... can be obtained in a similar way. It is 
expressed as expectation value of a homogeneous 
polynomial of order k in Q, which belongs to the 
representations of angular momentum I=2k .  For k 
= 3 there are three irreducible representations, a sym- 
metric one with 

X3s = - -  6 g  qt_ O(/~ 2) (3.22) 

and two other representations 

X3a = - -  g q- O ( g 2 ) ,  X3b=313-]-O(g2) .  (3.23) 

The dimension of these representations with respect 
to the permutations of the indices is 1, 9, and 5 resp. 
The exponent x of the symmetric representation is for 
all k the lowest one yielding the most singular contri- 
bution 

Xk, S = -- k ( k -  1) e + O(e2). (3.24) 

Following the same arguments as for k = 2  one ob- 
tains 

#k=--XksV (3.25) 

and (1.4) to (1.6). 
If it is allowed to extrapolate (3.24) to non-integer k, 
then the exponent x in [8] obeys ~:=2xl /2 ,s=e/2  
+ 0 (e2). 

4. Remarks on the One-Loop Calculation 

In one-loop order the exponents x s (and v) can be 
obtained by the following argument: The diagrams 
for the model (3.5) for matrices Q with two eigen- 
values of multiplicity m 1 and m 2 in one-loop order 
have combinatorial factors linear in m~ and rn 2, how- 
ever the model is invariant under exchange of ml and 
m 2 [10]. Thus the one-loop result depends only on 
m 1 +m 2. Furthermore the n-vector model is a special 
case of this matrix model with components 

Q u = S i S i ,  (4.1) 

and m 1 = 1 eigenvalue S e and rn 2 = n -  1 eigenvalues 
zero [10]. Thus we take the (2+e) expansion for the 
nonlinear cr-model, put n = m ~ + m 2 = O  and obtain 
immediately v from the known solution [11, 12]. The 
substitution of (4.1) in our k th order polynomials in 
Q yields (2k) th order polynomials in S for the 
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Fig. 1. One-loop diagram to F 

symmetric operators, but zero for all asymmetric 
ones. Thus in one-loop order we use the result of [13] 
and obtain 

Xk,s = - ¢2k(n  = 0) = - k(k- 1) e + 0 (e2). (4.2) 

The exponents of the antisymmetric operators are 
obtained in the following way. The diagram which 
determines the critical exponent of the irreducible 
vertex function Fk, that is the exponent Xk--kx 1 (for 
arbitrary multiplicities of m I and m2) in one-loop 
order has the form shown in Fig. 1. The black ring 
indicates the insertion. For k = 2 the diagram is valid 
without the broken lines, for k=3  the broken lines 
have to be added. The propagators are shown as 
double lines carrying both indices. The insertion is of 
the form Q12Q34 and Q12Q34Q56, resp. Apparently 
the insertion Q12Q3,, generates a contribution to 
(Q14Q23) and upon exchange of 3 and 4 a contri- 
bution to (Q13Q24). In order to obtain x one has to 
diagonalize the matrix cM with three entrances for 
the products Q12Q34, Q13Q24, Q14Q23 where c is 
some constant and 

M =  0 . 

1 

(4.3) 

The eigenvectors are (1, 1, 1), (1, - 1, 0), (0, 1, - 1) with 
eigenvalues a = 2 , -  1 , -  1 resp. They correspond to 
the symmetric and asymmetric operators (3.10) and 
(3.11). Since Xx=0 for m a = m 2 = 0  and since x2s= 
- 2 e  we have c = - e  and thus 

x = - ea + O(e2). (4.4) 

For k > 2  we use group theory. For general k we 
obtain from Q12Q34Q56...Q.2k-l,2k altogether q 
= ( 2 k - I ) ! !  different products by permuting the 2k 
indices. The permutations applied on these q prod- 
ucts Q define a representation D of the symmetric 
group. The operator M which produces out of a 
given insertion of type Qk the one-loop contributions 
to F k can be constructed from the operator 

C = ~ (i j) (4.5) 
i>j 

which is the sum of all transpositions. If (i j) is one of 
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the k pairs (1,2), (3,4) . . . .  , ( 2k -1 ,2k )  then it repro- 
duces the product Q 12 Q34 .-. Q2k-1, a k. All other con- 
tributions to C exchange two indices of two factors 
(2. For example (13) and (24) generate 
Q14Q32Q56 . . -Q2k- l , 2k"  In total one finds 

C = k + 2 M .  (4.6) 

The eigenvalues of C are obtained in the following 
way: The representation D of the symmetric group 
reduces to several irreducible representations. Each 
representation has a certain eigenvalue to C. It is 
given by the character )~2 of the class of transpo- 
sitions, that is the class of permutations (2, 12k-2). 
This character has to be multiplied by the total 
number of transpositions 

g2 = k ( 2 k -  1), (4 .7)  

since C is the sum of all of them, and finally to be 
divided by the order )% of the representation, since X2 
is the trace over the representation. ;~o itself is the 
character of the identical transformation, the class 
being denoted by (lZk). Thus the eigenvalues of C are 

= g2 )~2/ZO, (4.8) 

and the eigenvalues of M are 

a=(~ -k) /2.  (4.9) 

The representations of the symmetric group are char- 
acterized by partitions of the number 2k into positive 
integers 21, 2~2 .. . .  ,2,. with 

21 =>'~2 > ' "  > 2m (4.10) 

and 

m 

2i=2k. (4.11) 
i -1  

The quantity a can be calculated from the formula 
for ~ in the book by Hamermesh [14], 

a --~- ~- 
i=1 

There remains the question: Which partitions are 
contained in the representation D? We cannot answer 
this question. However, for k = 1, 2, 3 D contains pre- 
cisely the representations for which all 2 i are even. 
For k = 4, 5 it turns out that 

Zo a" = tr (M") 

holds for n=0,  1,2, 3 where the sum runs over all 
representations with even 2's. The corresponding par- 
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Table 1. Zo and a for partitions with even 2's 

k Partition Zo a 

1 (2) 1 0 

2 (4) 1 2 
(22) 2 - 1 

3 (6) 1 6 
(4, 2) 9 1 
(23 ) 5 - 3  

4 (8) 1 12 
(6, 2) 20 5 
(42 ) 14 2 
(4, 2 2) 56 - 1 
(2 ~) 14 - 6 

5 (10) 1 20 
(8, 2) 35 11 
(6, 4) 90 6 
(6, 2 a) 225 3 
(42, 2) 252 0 
(4, 2 3) 300 - 4 
(25) 42 - 10 

t i t ions  a n d  ;go, a are  l is ted in  T a b l e  1. T h u s  it  seems 
l ikely t ha t  D c o n t a i n s  the  r e p r e s e n t a t i o n s  charac te r -  
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ized by  p a r t i t i o n s  for which  all 2's are  even  precise ly  
once  a n d  n o  o the r  r ep resen ta t ions .  
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