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Annals of Mathematics, 141 (1995), 131-145 

Operators with singular continuous 
spectrum: I. General operators 

By BARRY SIMON* 

Introduction 

The Baire category theorem implies that the family, F, of dense sets G6 in 
a fixed metric space, X, is a candidate for generic sets since it is closed under 
countable intersections; and if X is perfect (has no isolated point), then A E F 
has uncountable intersections with any open ball in X. 

There is a long tradition of soft arguments to prove that certain surprising 
sets are generic. For example in C[0, 1], a generic function is nowhere differen- 
tiable. Closer to our concern here, Zamfirescu [20] has proved that a generic 
monotone function has purely singular continuous derivative, and Halmos [7] 
and Rohlin [14] have proved that a generic ergodic process is weak-mixing but 
not mixing. We will say a set S C X is Baire typical if it is a dense G6 and a 
set S C X is Baire null if its complement is Baire typical. 

Our goal is to look at generic sets of self-adjoint operators and show that 
their spectrum is quite often purely singular continuous. Here are three of our 
results that give the flavor of what we will prove in Sections 3 and 4. 

Consider the sequence space, [-a, a]Z, of sequences vo with I v, < a. Given 
any such v, we can define a Jacobi matrix J(v) as the tridiagonal matrix with 
Jnnil = 1 and Jnn = Vn. View J as a self-adjoint operator on t2(z). It is 
known (e.g. [4], [17], [16]) that if one puts a product of normalized Lebesgue 
measures on [-a, a]z (i.e., the Vn are independent random variables each uni- 
formly distributed in [-a,a]), then J(v) is a.e. an operator with spectrum 
[a - 2, a + 2] and the spectrum there is pure point. Thus our first result is 
somewhat surprising. 

THEOREM 1. View [-a, a]Z in the product topology. Then {v I J(v) has 
spectrum [-a - 2, a + 2] and the spectrum is purely singular continuous} is 
Baire typical. 

*This material is based upon work supported by the National Science Foundation under Grant 
No. DMS-9101715. The Government has certain rights in this material. 
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132 BARRY SIMON 

We also have some results if Z is replaced by Z' and the Jacobi matrix 
by the multi-dimensional discrete Schrbdinger operator. One might think that 
the weakness of the topology and the one dimension are critical. They are not, 
as our second result shows. 

For V E C(JR'), let S(V) be the Schr6dinger operator -A + V on L2(Rv). 

THEOREM 2. Let COO(Rv) be the continuous functions vanishing at infin- 
ity in 11 jjo. Then 

{V I S(V) has purely singular continuous spectrum on (0, oo)} 

is Baire typical. 

Note that for V E Cx(R), the essential spectrum, specess(S(V)) = 

[0, co), so Theorem 2 says that generically, the singular continuous spectrum, 
specsc(S(V)) = [0, ox), the absolutely continuous spectrum, specac = 0, and 
the pure point spectrum, specpp(S(V)) C (-ox,0]. For the discrete one- 
dimensional (Jacobi matrix) case, we will be able to say something about 
decay. For example when v = 1, a generic v E ?P (2 < p < Xo) has a J(v) 
with purely singular continuous spectrum in [-2,2]. For p = 1, we know 
specac(J(v)) = [-2,2] so the singular spectrum result does not extend to all 
p; 1 <p 2 is open. 

Our third example is related to the celebrated theorem of Weyl-von Neu- 
mann [18], [19], [8] that given any self-adjoint A and any ?, there exists a 
Hilbert-Schmidt operator B with JIBI12 < ? (where IICI12 = tr(C*C)1/2) so 
that A + B has only point spectrum. That is not the generic situation. 

Definition. A self-adjoint operator, C, is called usual if and only if {1 I 
COt = AX0 and A E specdisc(C), the discrete spectrum of C} U {4t I dLC,(A) 
is purely singular continuous} span the space H. Here dLC4 is the spectral 
measure for (C, 4'); that is, 

(0.1) Je dlu+(A) = (4,e0). 

12 denotes the Hilbert-Schmidt operators in 11 112 norm. 

THEOREM 3. Let A be a fixed self-adjoint operator. Then {B E 12 | 

A + B is usual} is Baire typical. 

For example, if spec(A) = [-1, 1], generically A + B has purely singular 
continuous spectrum in (-1, 1). 

In Section 1 we prove two results asserting that certain families of op- 
erators are always sets G6. We will use this to prove criteria for a generic 
singular spectrum in Section 2. We then study general operators in Section 3 
and Schr6dinger/Jacobi operators in Section 4. 
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SINGULAR CONTINUOUS SPECTRUM: GENERAL OPERATORS 133 

I would like to thank R. del Rio and N. Makarov for discussions which 
stimulated this work, and S. Molchanov and A. Teplyaev for telling me of [10]. 

1. Soft stuff 

A metric space, X, of (perhaps unbounded) self-adjoint operators on a 
separable Hilbert space, N, will be called regular if and only if: 

(1) X is complete. 
(2) If An -* A in the metric topology, then An -) A in the strong resolvent 

sense. 
Our three main technical results are: 

THEOREM 1.1. Fix C C R closed and X a regular metric space of oper- 
ators. Then 

{A I A has no eigenvalues in C} 

is a G6 in X. 

THEOREM 1.2. Fix U C JR open and X a regular metric space of opera- 
tors. Then 

{A I For any spectral measure for A, (i4)ac[U] = 0} 

is a G0 in X. 

Remarks. 1. Note the word "dense" does not appear before G6. That will 
hold sometimes, as we will analyze. 

2. 1LA is defined in (0.1). Note that (v)ac means the absolutely continuous 
component of v. 

THEOREM 1.3. Fix K C JR closed and X a regular metric space of oper- 
ators. Then 

{A I K c spec(A)} 

is a G6. 

LEMMA 1.4. Let An be a sequence of self-adjoint operators on X so that 
An --+ A in a strong resolvent sense for some self-adjoint A. Let K be a 
compact subset of R; (p, a fixed vector in N, and ? > 0. Suppose there exist 
eigenvectors tn of An: 

An'qn = Antqn 
with 11 = 1, An E K and ( 0) I > E. Then A has an eigenvector r with 

AwK1= i1 

with A E K, I Jq I = 1 and I (r,q, )) > ?. 
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134 BARRY SIMON 

Proof. K is compact and {4t E R I 1 ?I < 1} is compact in the weak 
topology. So we can pass to a subsequence and suppose ,n -* %/x weakly and 

n- o0. We will show that 71 E D(A) and Ar1x = Ar0. Since (rq )l, ' > ?, 

we have 71x #& 0 and so r = rw/j7I1jII is the required vector. 
Let 0b E 

' be arbitrary. Then 

(1.1) ((A + i)<7?oo,) = (700, (A - iylp) 

= lim (77n (An -i)-1+) 

=lim ((An + i)1?J1, iP) 

=lim ((An + i) 77n, /)) 

= ((A+i)-17,f). 

It follows that 71 = (A + i), (A + i)- 1rX E D(Ac) and Ar) = ArXp. Equa- 
tion (1.1) holds because (An - 0-10 converges to (A -i)-i>4 in norm and 

rjn 3 77 weakly with 111Il < 1. o 

Proof of Theorem 1.1. Fix K C R compact, ? > 0 and p E 'H. Then 
Lemma 1.4 implies that 

Q (Kf,? = {A E X ] 371 E D(A) with I Jq = 1, ('P Xr > c, 

Arj = Ar for some A E K} 

is a closed subset of X. 
Fix {'l}I', an orthonormal basis of N. For n, 1, m E Z+, let 

Qn,i,m = Q(C n [-n,n], fom-1). 

Then 
U Qn,l,m = {A I A has an eigenvalue in C} 

is an Fa, so its complement is a G6 as claimed. E 

LEMMA 1.5. Let (a, b) be a fixed open interval in Rn and let dpL be a 
measure on R. Then 1L is purely singular on (a, b) if and only if for each 
n > 2, there exist En > 0 and fn obeying 

(1) 0 < fn < 1, 

(2) fn is supported in (a - En, b + En), 

(3) cf20 fn(s)ds < 2 , 

(4) A (X[a-En,7b+En] 
- f) < 2-n 

(5) En < 2. 
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SINGULAR CONTINUOUS SPECTRUM: GENERAL OPERATORS 135 

Proof. Suppose such EL and fn exist. Let 

Cn= {X Ifn(X)> >} 
Then (with = Lebesgue measure): 

|Cnj < 2n+2 

-( [a-?n, b + En] \Cn) < 2n+ 

and 
Cn c [a-En,b+ En]. 

It follows that 
00 

C=n u cn 
m n=m 

obeys JCJ = 0 and ,u([a, b]\C) = 0. 
Conversely, suppose that ,t is purely singular continuous on (a, b). Find 

C in (a, b) so JCJ = 0 and ,u((a,b)\C) = 0. By adding a and/or b to C, we 
can suppose C C [a, b] and ,u([a, b]\C) = 0. Since lim,40 ,([a -E, a)) = 0 and 
lim61o0 ,((b, b + E]) = 0, we can choose En < 2-n so that 

tL([a -nr, a)) + ,u((b, b + En]) < 2n1. 
By regularity of measures, we can find Kn C C C Un C (a -En, b + En) so 

that IUnI < 2-n, ,u([a, b]\Kn) < 2-n-1. By Urysohn's lemma, find f continuous 
with 0< f < 1, f _ 1 on Kn and suppf c Un. Then 

J fn(s)ds < JUnj < 2-n 

while 

Aib (X[a-Enb+en] - fn) < L([a -En, a)) + tu([a, b]\Kn) + pl((b, b + En]) < 2-n 

as required. O 

Proof of Theorem 1.2. Let o E NH, a,b E R and 

Q(?, a, b) = {A I d,4 is purely singular on (a, b)}. 

By Lemma 1.5 
00 

Q(p, a, b) = n U An(fE; (P) 
n=2 (f,E)EBn 

where Bn is the set of pairs (f, E) obeying (1-3; 5) of Lemma 1.5 and 

An(fE; () = {A I ('n, [X[a-E,b+E] (A) - f(A)] #) < 2n}. 

We claim each A is open, and equivalently that 

XAn (f,?; (p) {A I (so, X[a-E,b+E] (A) - f(A) p) > 2-} 
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136 BARRY SIMON 

is closed. Let Al E Ac converge to A in a strong resolvent sense. Then 
lim(o, f(Ai)f) = (p, f(A)o) (see, e.g., [12]). Let hm be continuous functions 
with hm l X[a-E,b+E] monotonically. Then hm(A) -* hm(A) strongly, so 

(P,' X[a-E,b+E] (A) o)= inf (o, hm (A) (o) 
= inf [lim(o, hm(Al)(R)] n 

> lir (p, X[a-Eb+E] (Al) P) ) 

and the claim is proved. 
Any open set U is a countable union of open intervals In = (an, bn). Let 

Sol be an orthonormal basis for A. Then the set that the theorem asserts is a 

G0 is just 0 Qb 
n nQ Q((p an Ibn) 
n=l 1=1 

which is indeed therefore a G6. 

The following is an expression of the well-known fact of lower semiconti- 
nuity of the spectrum under strong limits. 

LEMMA 1.6. If An -) A in a strong resolvent sense and (a, b) n spec(An) 
- 0, then (a, b) n spec(A) = 0. 

Proof. Let f be the function f(x) = dist(x, ]R\(a, b)). Then (a, b) n 
spec(B) = 0 if and only if f (B) = 0. By the continuity of the functional 
calculus of An -* A in a strong resolvent sense, then f(A) = s - lim f(An) = 0 
if (a, b) n spec(An) = 0. 

Proof of Theorem 1.3. Let An be a countable dense set in K. Then 

{A I K C spec(A)} = f {A I An E spec(A)} 
n 

so we need only consider the cases where K = {A}. But 
00 

{A I A ? spec(A)}= U {A I(A- )A n spec(A) =0} 

is an F, by Lemma 1.6. Thus, its complement is a G6. O 

2. Welcome to wonderland 

The main point in the way to generate a generic singular spectrum is: 

THEOREM 2.1. Let X be a regular metric space of self-adjoint operators. 
Suppose that for some interval (a, b), 

(i) {A I A has purely continuous spectrum on (a, b)} is dense in X. 
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SINGULAR CONTINUOUS SPECTRUM: GENERAL OPERATORS 137 

(ii) {A I A has purely singular spectrum on (a, b)} is dense in X. 

(iii) {A I A has (a, b) in its spectrum} is dense in X. 

Then {A I (a, b) c specs,(A), (a, b) nspecpp(A) = 0, (a, b) nspecac(A) = 0} 
is a dense G6. 

Proof. Because (a, b) is an F6, each of the sets in (i)-(iii) is a G6 by 
Theorems 1.1-1.3. (For example, the set in (i) is the intersection of the same 
sets for [a + -, b -1 ].) Thus, by hypothesis they are dense Gb's. By the Baire 
category theorem, their intersection is a dense G6. ] 

Remarks. 1. We pick an interval for definiteness. In many cases, one can 
say things about other sets. 

2. We pick the same set (a, b) for convenience. In some examples later, 
we will take (a, b) = IR in (ii), but replace (a, b) by a closed set in (i). 

Here is a spectacular corollary, which we call the Wonderland Theorem: 

THE WONDERLAND THEOREM. Let X be a regular metric space of op- 
erators. Suppose 

(a) {A I A has purely absolutely continuous spectrum} is dense in X; 

(b) {A I A has purely point spectrum} is dense in X. 

Then Baire typically, A has only singular continuous spectrum. 

Proof. Strictly speaking, this is not a corollary of the theorem but of its 
proof, since we do not specify the spectrum. By Theorem 1.1 and (a) 

{A I A has purely continuous spectrum} 

is Baire typical. Similarly, by Theorem 1.2 and (b) 

{A I A has purely singular spectrum} 

is Baire typical, so their intersection is Baire typical. C 

3. General operators 

We first apply the theory to general self-adjoint operators. Throughout, 
7- is a fixed separable Hilbert space. 
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138 BARRY SIMON 

THEOREM 3.1. Fix a > 0. Let X = {A I A is self-adjoint, JJAJJ < a} 
which is a complete metrizable space in the strong topology. Then 

{A I spec(A) = [-a, a]; A has purely singular continuous spectrum} 

is Baire typical. 

Remark. For example, if fOn is an orthonormal basis, 

00 

p(A, A') - min(2-n, || (A - A 0nl 
n=1 

is a metric. 

Proof. We will use the Wonderland Theorem. By the Weyl-von Neumann 
theorem, the operators with point spectrum are norm dense, but there is a 
simpler argument since we only need strong density. Since the same argument 
is needed for dense, absolutely continuous spectrum, we give it. 

Pick an orthonormal basis {yn}n0'- (this way of counting will be conven- 
ient) and let PN be the projection onto {I~n}lnl<N so that PN -* 1 strongly. 
Let an be a counting of the rationals in [-a, a] and let B be the diagonal 
operator Bcpn = canrpn. Then 

PNAPN + (1- PN)B(1 - PN) A A. 

The operator on the left has spectrum [-a, a] and it is pure point. Thus we 
have two of the three hypotheses of the Wonderland Theorem. 

To prove that absolutely continuous spectrum operators are dense, we 
need only prove that an operator A with point spectrum and IIAII < a - E can 
be approximated since we have just proved such operators are dense. Let {p1f} 
be the eigenvectors of A (say, Acpn = canpn) and let AN = PNAPN. Fix a 
sequence EN with 0 < EN < E/2 and 6N -O 0. Let BN be defined by 

BNpn = 6NG( n+(2N+1) + fen-(2N+1) + On9n 

where f3n = aj for the unique j with n _ j mod(2N - 1). Then IIBNII < a 
since 6N < E/2 and BN -* A strongly as N -x oc. Each BN is a direct sum of 
N + 1 operators of the form 

Xnf?+ 8NJ 

where J is the tridiagonal operator with zeros on the diagonal and 1 on the 
two principal off-diagonals. Also J has absolutely continuous spectrum and 
thus so does anfl + ?;NJ and BN. El 
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SINGULAR CONTINUOUS SPECTRUM: GENERAL OPERATORS 139 

Surprisingly, the strong topology is only relevant to assure that the spec- 
trum is [-a, a]: 

THEOREM 3.2. Fix a < b. Let X = {A A is self-adjoint and spec(A) = 
[a, b] } in the operator norm topology. (X is closed in C(7), and so complete.) 
Then 

{A I A has purely singular continuous spectrum} 

is Baire typical. 

Proof. We will use the Wonderland Theorem. By the Weyl-von Neumann 
theorem, given A C X and e, we can find B1 so that JIBllI < E/2 and Ci = 
A + B1 has pure point spectrum. Now C1 may have eigenvalues in (a - E/2, a) U 
(b, b + E/2) and so not be in X, but we can change those eigenvalues to a or b 
with an operator B2 of norm at most E/2. Then, C2 = A + B1 + B2 E X has 
pure point spectrum and 11C2 - All < E. 

By the above, we need only show that operators in X with pure point 
spectrum can be approximated by operators with purely absolutely continuous 
spectrum. Now, suppose A E X has pure point spectrum. 

Let c =b - a. Given n, let 

[as a + n 1 2 = a+ 2n v a + LC) ,. I2n = b - 2c bJ. 

Let ca be the midpoint of Ij. Suppose 

Alpk = Ak(Pk 

is the orthonormal family of eigenvalues for A. Define Bn by 

BnAk= ajfpk if Ak E Ij 

so that JIBn - All < #c and Bn is a direct sum of elE ... ED a2n with 
each E an infinite dimensional identity. Let D be a self-adjoint operator with 
purely absolutely continuous spectrum on [-1, 1] (e.g., the matrix with 0 on 
the diagonal and 2 on the two principal off-diagonals). Let 

cn = (cx? + 2n+1 D)2n .fl(a2n1[+ 1D) 

Then, C (E X), C has purely absolutely continuous spectrum and IIA - Cn < 

c/2n 0 

THEOREM 3.3. Let A be a fixed self-adjoint operator. Let 12 denote the 
Hilbert-Schmidt operators. Then for a dense G6 of B in 12: 

(1) speca, (A + B) is empty. 

(2) A + B has no eigenvalues on speces(A + B) = speces3(A). 
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140 BARRY SIMON 

Remarks. 1. This is equivalent to Theorem 3 of the introduction. 
2. Given Kuroda's extension of the Weyl-von Neumann theorem [11], this 

theorem extends to lip with p > 1. If A has no absolutely continuous spectrum, 
one can take p = 1. 

Proof. By the Baire category theorem, it suffices to prove the set with (i), 
(ii) separately is given by dense G6's. By Theorem 1.2, the set of operators B 
with specac(A + B) empty is a G6, and by the Weyl-von Neumann theorem, it 
is dense, so (i) yields a dense G6. 

By Weyl-von Neumann and a simple additional argument, given a, we can 
find Bo with gBo012 < E/2 so Ao _ A + Bo has simple pure point spectrum. 
Let ( be a cyclic vector for AO and let Po be the projection onto {cap I a E C}. 
By a theorem of [3], AO + APO has no eigenvalues in spec(Ao) for Baire typical 
A so we can find IA0o < E/2 so that Ao + AoPo has no eigenvalues on specess (A). 
Take B = Bo + AOPo so S BH12 < E. This proves the density of the set in (ii). It 
is a G6 by Theorem 1.1. 

4. Jacobi matrices and Schrodinger operators 

We will begin with the Jacobi matrix case and prove Theorem 1 of the 
introduction. 

THEOREM 4.1. Fix a > 0. Let X be the set of Jacobi matrices on f2(Z): 

Aun = un+1 + un1 + Xnun 

where xn is an arbitrary sequence with lxnl < a. Put the topology of pointwise 
convergence on {fx} (so X is a compact metrizable space). Then 

{A E X I spec(A) = [-a - 2, a + 2], spec(A) is purely singular continuous} 

is Baire typical. 

Proof. We use the Wonderland Theorem. Let dy, be the product of 
Lebesgue measures (2a)-1dxn so that supp(dyL) = [-a, a]z. Let D = {A E 
X I spec(A) = [-a - 2, a + 2], spec(A) is pure point}. Then ,u(X\D) = 0 by 
Anderson localization (see, e.g., [14]). Also, D is dense by the support result. 

Given any xn, let 

x=n xn (In? < j) 

where xi is chosen to be periodic of period 2j + 1 if n> j 
Thus, x(j) -* x and the Jacobi matrix associated to x(j) has purely abso- 

lutely continuous spectrum. n 
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SINGULAR CONTINUOUS SPECTRUM: GENERAL OPERATORS 141 

Remark. We do not need the full proof of Anderson localization; it suffices 
that the Jacobi matrices associated to Lebesgue typical sequences have no a.c. 
spectrum, and this is easier to prove. 

For random Jacobi matrices in higher dimension, it is believed that there 
is sometimes an a.c. spectrum, but that is not so for the generic matrix. Let 
Z1' have the norms Inj = '=i InjI and 11n~l = supj njI. 

THEOREM 4.2. Fix a > 0. Let X be the set of Jacobi matrices on f2(Z>) 

Au, = E un+j + XnUn 
IjI=1 

where x is an arbitrary multisequence with jxnj < n. Put the topology of 
pointwise convergence on {Xn}. Then 

{A E X I spec(A) = [-a - 2v, a + 2v]; spec(A) is purely singular continuous} 

is Baire typical. 

We need a lemma which shows how "loose" generic really is: 

LEMMA 4.3. In the setup of Theorem 4.2, suppose that there is a single 
operator AO E X, specac(Ao) = 0. Then, specac(A) = 0 for a dense set of A 
in X. 

Proof. Let Xn be the multisequence defining AO. Given B E X with 
multisequence Xn, define Aj by the multisequence xn2) where 

XnU) =Xni In| < j, 

x(0), In > j. 

Since xn xn pointwise, Aj -* B. But Aj -* AO is of finite rank, so 
specac(Aj) = specac(Ao) = 0. 

Proof of Theorem 4.2. We use the Wonderland Theorem. For any rational 
q E [-a, a], the set of potentials xn, equal to q if Inj > j for some j, is dense. 
Such a potential yields an operator A with [q - 2v, q + 2v] E spec(A), and so 
generically Uq[q - 2v, q + 2v] is in spec(A). 

As in the proof of Theorem 4.1, the periodic multisequences are dense and 
each yields an operator A with no point spectrum, so the operators with no 
point spectrum are dense. 

By the lemma, we need only find the operator A in our space with no a.c. 
spectrum. Let {Yi }iEZ be a specific sequence in [ M, 2J]Z whose one-dimensional 
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142 BARRY SIMON 

Jacobi matrix Jo has only dense point spectrum in [-2 - a, 2 + a]. Let 

Xn 
- 

Yni + *' + Ynv 

so the corresponding A has the form 

JOX 1 X ... X 1 + 1 0 JO .. *X 1 + *X+ 1 X9 1 X X 

in e2(zv) = f2(z) 0 e2(z) 0 ... 0 f2(z). Then spec(A) is also pure point. E 

THEOREM 4.4. Let co be the sequences {Xn}rnZ with 1Xnj - 0. For 
x E P or in co, let J(x) be the corresponding Jacobi matrix on f2(z). Then 
specess(J(x)) = [-2,2] and 

{x I J(x) has purely singular continuous spectrum on [-2,2]} 

is Baire typical in co and in each eP (p > 2) when these spaces are given the 
norm topology. 

Proof. Since xn -* 0 at ?oo, the diagonal matrix is compact and 
specess(J(X)) = specess(J(x = 0)) = [-2,2]. Thus, it suffices to find dense 
sets with no point spectrum in [-2,2] and with no a.c. spectrum in [-2, 2]. If 
x has finite support, then any solution of J(x)u = Au with A E (-2,2) must be 
a plane wave outside a finite set and so is not in ?2. Since the sequences, x, of 
compact support are dense, we have the required density of operators without 
point spectrum. 

As in the proof of the last theorem, we need only find one x in our space 
with no a.c. spectrum. In [15], Simon showed that if an is a typical random 
sequence, independent and uniformly distributed in [-1, 1], then xn = (Inj + 
l)- aan yields a J(x) with pure point spectrum so long as 3 < 2. This yields 
the required examples in p or co. O 

Remarks. 1. One could instead look at sequences xn with sup (1+Inl)"xnI 
< oo in the obvious norm and get the result so long as / < 2. 

2. For p = 1, or 3 > 1 (in the language of Remark 1), J(x) has lots of 
a.c. spectra, so the result requires some slow fall-off hypothesis. It is likely the 
result remains true for 1 < 3 < 2 and 1 < p < 2, but it is open. 

3. We are unable to extend this result to the higher dimensional (Zv) case 
because neither the method used in Theorem 4.2 (with xn = yn1 + * + Yn,,) 
or Theorem 4.5 (spherical symmetry) works. 

We turn next to Schrddinger operators. We will begin with the case where 
V -- 0 at infinity. 

THEOREM 4.5. Let Cc.(Rv) be the continuous function of Rv which van- 
ishes at infinity in the uniform norm. Then for a Baire typical set of V, -A+V 
has purely singular continuous spectrum on all of (0, oo). 
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Proof. By general principles (see, e.g., [13]), spec,,s(-A + V) = [0, 00) so 
we need only show that for a dense set specac(-A + V) = 0 and for another 
dense set, specpp (-A + V) C (-oc, 0] . 

If V has compact support, it is well-known [13] that specpp(-A + V) C 
(-ox, 0], so we have that required dense set. 

Suppose we find one V E CX(I(RI') with specac(-A + V) = 0. Suppose 
W is another potential with W(x) = V(x) for jxj > R for some R. Then 
specac(-A + W) = 0 by Dirichlet decoupling as in Deift-Simon [2]. Any 
Wo E C,(1R') is a limit of functions equal to V outside of some ball, so we get 
the required density. Thus we need only find one V. 

To find the required V, we choose V spherically symmetric and given by 
a typical potential in the analysis of Kotani-Ushiroya [10]. These go to zero 
at infinity and are known to have spec(-_ S + V(r)) pure point. Each partial 
wave Hamiltonian - + ' + V(r) also has no a.c. spectrum by trace class 
theory, so -A + V has no a.c. spectrum. 

Remark. By looking carefully at [10], we see that the result extends to 
LP (R"'), p> 2n. 

Here is a typical example for random Schrddinger operators. 

THEOREM 4.6. For v E [-a, aft, define V on R' by 

V(x) = V(i(x)) 

where i (x) is defined by 

i(x) = j if jaz <_x] < ja +1. 

Then for a Baire typical v, -A+V has spectrum [-a, oc) and is purely singular 
continuous there. 

Proof. By using periodic v, we see that for Baire typical V has no point 
spectrum. As in the last theorem, we need only find a single v with no a.c. 
spectrum. Take v(i) = ii1 + + vij7 for a one-dimensional v. If - + V 
has point spectrum, so does -A + V. Thus localization in the one-dimensional 
case [5], [9] completes the proof. F 

Finally, we want to say something about the almost periodic case with a 
series of remarks. 

1. Consider the almost Mathieu equation, the Jacobi matrix with v, 
Acos(icran + 0) for A, 0 fixed. For a rational, the potential is periodic and 
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there is no point spectrum. It follows that for Baire typical a, there is no 
point spectrum either. This is a soft version of Gordon's theorem (Gordon [6], 
Avron-Simon [1]). 

2. Fix A, a in the almost Mathieu equation with a irrational. Suppose 
that there is a single S0 leading to purely s.c. spectrum. Then its translates 
are dense and so Baire typically, there will be only s.c. spectrum. It may 
well happen that for a with good Diophantine properties and A > 2, we have 
pure point spectrum for Lebesgue typical 0 and purely s.c. spectrum for Baire 
typical 0. 

3. The argument in Remark 1 applies to generic potentials, v, in spaces 
of limit periodic potentials. 

DIVISION OF PHYSICS, MATHEMATICS, AND ASTRONOMY, CALIFORNIA INSTITUTE OF TECHNOL- 

OGY, PASADENA, CA 
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