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Mission Statement

In other words, to understand and describe quantitatively 
the structure and dynamics of spacetime on all scales.

To find a theory of Quantum Gravity, that is, 
to find the quantum (field) theory underlying 
the classical theory of General Relativity. 



Classical gravity = General Relativity

Einstein’s 1915 theory unifies the notions of space, time and 
gravity into the single concept of a curved spacetime. His 
profound insight was that because of the universal character 
of gravity, all gravitational interactions (e.g. attraction of 
massive bodies, bending of light and particle trajectories, 
dynamics of the large-scale universe, ...) can be encoded in 
the local curvature structure of empty spacetime itself. 

Empty, curved spacetime can bend 
light rays which pass through it.                        

a gravitational lense
(G2237 + 305)



A lesson from 20th century physics

Contrary to what our everyday intuition may suggest, empty spacetime is in 
itself an interesting entity with intricate dynamical, local curvature properties. 

How spacetime curves and moves, depending on its matter/energy content, and 
subject to boundary conditions, is described by the Einstein equations of 
General Relativity (“classical gravity”), formulated in terms of a Lorentzian 
metric gμν(x) of indefinite signature (-+++),

Rµν [g, ∂g, ∂2g](x)− 1
2
Λ gµν(x) = 8π Tµν(x)

The physical curvature properties of spacetime are invariant under a change of 
coordinates xμ=yμ(xν), a “diffeomorphism”. Therefore, the “habitat” of General 
Relativity is the space of geometries on a differentiable 4-manifold M,

G(M) = Lor(M)/Diff(M)



But this is not the end of it ...

• It is well tested from cosmological scales down to the millimeter range. 

• On atomic/nuclear scales gravity appears to be completely unimportant.

• On even smaller scales, eventually reaching the Planck scale, spacetime must 
be described by quantum, and not by classical equations of motion. 

• Combining general arguments from quantum theory and general relativity, we 
expect that the microstructure of spacetime near the Planck scale is completely 
dominated by quantum fluctuations.

Einstein’s classical theory of General Relativity cannot answer all questions we 
may ask about empty spacetime - it is incomplete!

Spacet
ime

Spacetime Foam?



Some unresolved fundamental questions

• What are the (quantum) origins of space,                                   
time and our universe?

•  What is the microstructure of spacetime? 

•  What are the relevant degrees of freedom                                    
at the Planck scale?

•  Can their dynamics explain the observed                                 
large-scale structure of our universe, that of                                     
an approximate Minkowski de Sitter space?

•  Which aspects of spacetime are dynamical                                     
at the Planck scale: geometry? topology?                        
dimensionality?

•  Are “space”, “time”, and “causality”                                 
fundamental or emergent?



An ultrabrief history of quantum gravity

classical gravity = solving Einstein’s equations 
             a classical spacetime (M, gμν(x))

quantum gravity = solving “quantum Einstein equations”
             a “quantum spacetime” ???

We can distinguish between grand unified approaches (like superstring 
theory) and approaches which treat gravity and matter on a distinct footing,  
akin to what happens in the classical theory.

In the non-unified approaches, one traditionally distinguishes between 
“canonical” and “covariant” methods. In the former, one performs an 
explicit split of time and space and quantizes certain algebras of observables 
in terms of selfadjoint operators (e.g. loop quantum gravity). In the latter, 
one quantizes using path integrals, and keeps the spacetimes intact.   

There is a perturbative version of the gravitational path integral, which 
because of its perturbative nonrenormalizability does not lead to a quantum 
theory valid on all scales. My work uses a nonperturbative path integral.
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today’s topic!



Quantum Gravity from Causal Dynamical Triangulation 
(QG from CDT)

CDT is a no-frills nonperturbative implementation of the gravitational path 
integral, much in the spirit of lattice quantum field theory, but based on 
dynamical lattices, reflecting the dynamical nature of spacetime geometry.

A key result that puts QG from CDT on the 
map as a possible quantum theory of gravity is 
the fact that it can generate dynamically a 
background geometry with semiclassical 
properties from pure quantum excitations, in an 
a priori background-independent formulation. 
(C)DT has also given us crucial new insights 
into nonperturbative dynamics and pitfalls.

(PRL 93 (2004) 131301, PRD 72 (2005) 064014, PLB 607 (2005) 205)

my presentation today is mainly based on joint work with 
J. Ambjørn, J. Jurkiewicz, T. Budd, A. Görlich and S. Jordan



Basic tool: the good old path integral, or,
from classical to quantum trajectories

Textbook example: the nonrelativistic particle (h.o.) in one dimension

Quantum superposition principle: the transition amplitude from xi(ti) 
to xf(tf) is given as a weighted sum over amplitudes exp iS[x(t)] of all 
possible trajectories, where S[x(t)] is the classical action of the path.

(here, time is discretized in steps of length a, and the trajectories are piecewise linear)
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The same superposition principle, applied to gravity

Each “path” is now a four-dimensional, curved spacetime geometry 
g, which can be thought of as a three-dimensional, spatial geometry 
developing in time. The weight associated with each g is given by the 
corresponding Einstein-Hilbert action SEH[g], 

SEH =
1

GN

∫
d4x

√
−det g(R[g, ∂g, ∂2g]− 2Λ)

How can we make Z(GN,Λ) into a meaningful, well-defined quantity?
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Elementary four-simplex, building block 
for a causal dynamical triangulation:

a ~ edge length; diffeomorphism-
invariant UV regulator

Micro-causality is essential! This does 
not work in Euclidean signature - get 
only branched polymers (~mid-90s). CDT’s proper-time slicing

Regularizing the path integral via CDT

‘democratic’, regularized 
sum over piecewise flat 
spacetimes, doesn’t need 
coordinates (Regge); 
continuum limit required 
to obtain universal 
results independent of 
the regularization 



SEH =
1

GN

∫
d4x

√
−det g(R[g, ∂g, ∂2g]− 2Λ)

Wick rotation and analogy with statistical mechanics

 each regularized Lorentzian geometry T allows for a rotation to a unique 
regularized Euclidean geometry Teu, such that the Feynman amplitude of a path 
is turned into a Boltzmann weight, as in statistical mechanics

 this turns the quantum amplitude Z into a partition function Zeu and allows 
us to use powerful numerical methods from statistical mechanics, like Monte 
Carlo simulations

 a ‘classical trajectory’ is an average over quantum trajectories in the 
statistical ensemble of trajectories (the Euclideanized ‘sum over histories’)

 taking the continuum limit of this regularized theory means studying the 
critical behaviour of the underlying statistical theory

 performing an ‘inverse Wick rotation’ on quantities computed in the 
continuum limit is in general nontrivial

eiSRegge(T ) → e−SRegge
eu (Teu)



The phase diagram of Causal Dynamical Triangulations

λ  ~ cosmological constant
κ0 ~ 1/GN inverse Newton’s     
        constant
Δ  ~ relative time/space scaling
 c  ~ numerical constant, >0
Ni ~ # of triangular building 
        blocks of dimension i

The partition function is defined for λ > λcrit (κ0,Δ); 
approaching the critical surface = taking infinite-volume limit. 
red lines ~ phase transitions 

(J. Ambjørn, J. Jurkiewicz, RL, PRD 72 (2005) 064014;
J. Ambjørn,  A. Görlich, S. Jordan, J. Jurkiewicz, RL, PLB 690 (2010) 413;
definite phase transition analysis: work with S. Jordan, to appear)
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Why we are so excited about this approach, or,
The dynamical emergence of spacetime as we know it

CDT is the so far only candidate theory of nonperturbative 
quantum gravity where a classical extended geometry is generated 
from nothing but Planck-scale quantum excitations. 

This happens by a nonperturbative, entropic  mechanism:

Magically, the many microscopic building blocks in the quantum 
superposition arrange themselves into an extended quantum spacetime 
whose macroscopic shape is that of a well known cosmology.

When, from all the gravitational degrees of freedom present, we 
monitor only the spatial three-volume <V3(t)> of the universe as a 
function of proper time t, we find a distinct “volume profile”.

entropy = number of microscopic geometric realizations of a given value of the action



Dynamically generated four-dimensional quantum universe, 
obtained from a path integral over causal spacetimes

time

3-volume

This is a Monte Carlo “snapshot” - still need to average to obtain the 
expectation value of the volume profile.



(A solution to the classical Einstein equations in the presence 
of “dark energy” - a.k.a. a cosmological constant Λ.)
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           a very nontrivial test of the classical limit;
strong flavour of condensed matter phenomena

Our “self-organized quantum spacetime” has the shape 
of a de Sitter universe!

(J. Ambjørn,  A. Görlich, J. Jurkiewicz, RL, PRL 100 (2008) 091304, PRD 78 (2008) 
063544, NPB 849 (2011) 144 (w/ J. Gizbert-Studnicki, T. Trzesniewski)



The volume profile <V3(t)>, as function of Euclidean proper time t=iτ, perfectly 
matches that of a Euclidean de Sitter space, with scale factor a(t)2 given by

What is the concrete evidence for de Sitter space? 
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N.B.: we are not doing quantum cosmology 



SEH =
1

GN

∫
d4x

√
−det g(R[g, ∂g, ∂2g]− 2Λ)

Getting a handle on Planckian physics
Also the analysis of the short-scale structure of the universe proceeds via 
‘computer experiment’, where we measure the expectation values of suitable 
quantum observables     according to Ô

〈Ô〉 =
∫
Dg O e−S[g]

Z
, Z =

∫
Dg e−S[g]

N.B.: because of diffeomorphism invariance, observables cannot depend on 
coordinates, which means that any local         does not qualify. Observables 
which are well defined tend to be nonlocal, e.g. certain spacetime integrals.

φ̂(x)

A distinguished class of observables which probe the average local geometry 
of quantum spacetime are certain notions of “dimension”, first used in the 
context of lower-dimensional (DT) toy models of quantum gravity. 
Remarkably, in such models “dimension” becomes dynamical and can exhibit 
anomalous scaling, and is not a priori determined by the dimension at the cut-
off scale. (H. Kawai, N. Kawamoto, T. Mogami, Y. Watabiki, PLB 306 (1993) 19;  
J. Ambjørn,  Y. Watabiki, NPB 445 (1995) 129). 

        B. Duplantier’s talk



Example 1: the Hausdorff dimension
One way of characterizing quantum geometry in DT gravity models is 
through the Hausdorff dimension dH, obtained by measuring the observable  

phase diagram of Euclidean 
quantum gravity via dynamical 
triangulations in 4D (alas, it 
has no good classical limit).

〈V (R)〉 ∼ RdH

measuring dH in a 2D triangulation 

where V(R) denotes the volume of a geodesic ball of 
radius R around some vertex, averaged over vertices.  
The (discrete) geodesic distance R is given by the 
number of edges in the shortest path connecting a 
pair of vertices, and V is the number of simplices.
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(or, more nonperturbative surprises!)

Another way of probing the geometry of an unknown 
space is by way of a diffusion process. In particular, this 
will be sensitive to the dimension of the “medium” in 
which the “spreading” takes place, 

                   Volume(“ink cloud”) ~ σDs/2,

where σ is the external diffusion time, and DS the so-
called spectral dimension.

Recall diffusion on d-dimensional flat space Rd:

Example 2: the spectral dimension

solvesP (x, x0;σ) =
e−(x−x0)

2/4σ

(4πσ)d/2
∂σP = $∇2P

The average return probability is given by

RV (σ) :=
1

V (M)

∫

M
ddx P (x, x;σ) ≡ 1

(4πσ)d/2
⇒ d = −2

d logRV (σ)
d log σ



What is important for us is that diffusion processes can be defined on much 
more general structures, e.g. curved Riemannian manifolds (M,gμν), piecewise 
flat spaces (and ensembles thereof), graphs, fractals, ...

Implementing diffusion on a d-dim. simplicial DT manifold
Discrete evolution on a triangulation T is defined by 

PT (j, i0;σ + 1) =
1

d + 1

∑

k→j

PT (k, i0;σ), PT (i, i0;σ = 0) = δi,i0

where the simplex with label i0 is the starting point of the diffusion, k labels the 
d+1 neighbouring simplices of simplex j, and σ counts discrete diffusion steps.  

Again, we can use the average return probability (and its ensemble average),

RT (σ) :=
1

V (T )

∑

i0∈T

PT (i0, i0;σ), 〈R(σ)〉V =
1

ZV

∑

TV

1
CTV

e−SRegge(TV )RTV (σ)

 and define the corresponding spectral dimension as

DS(σ) := −2
d log〈R(σ)〉V

d log σ
, σ ! V 2/DS



DS(σ) probes quantum geometry at distances ~ σ1/2. There is no a priori reason 
why this should coincide with the dimension of the triangular building blocks.

Quite remarkably, in CDT quantum gravity in 4D we find that DS(σ) depends on 
the length scale: DS changes smoothly from 4 on large scales to ~2 on short 
scales. (J. Ambjorn, J. Jurkiewicz, RL, PRL 95 (2004) 171301)

More precisely, we extrapolate from the shown infinite-volume limit that 
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Up to this point, measurements of various dimensions in dynamically 
triangulated models of quantum gravity had always thrown up fractal behaviour, 
in the sense of anomalous, but scale-independent dimensions.

Logarithmic derivative of the return probability (at κ0=2.2, Δ=0.4, V4=91k, t=40, 
V3=500...2000) (J. Ambjorn, J. Jurkiewicz, RL, PRD 72 (2005) 064014)

This is even true when measuring the spectral dimension of spatial hyper-
surfaces t=const in 4D CDT quantum gravity:

discretization 
artefacts - discard!



SEH =
1

GN

∫
d4x

√
−det g(R[g, ∂g, ∂2g]− 2Λ)
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quantum spacetime generated by CDT

classical spacetime manifold

We conclude that on short scales, 
our “ground state of geometry” in 4D 
is definitely not a classical manifold. 

This could also mean that 
nonperturbative quantum gravity has 
its own built-in ultra-violet regulator.

Intriguingly, a similar short-scale “dynamical dimensional reduction” has been 
found in a couple of disparate (but also quantum field-theoretic) approaches:

  nonperturbative renormalization group flow analysis (M. Reuter, O. Lauscher, 
JHEP 0510:050, 2005)              M. Reuter’s talk

  nonrelativistic “Lifshitz quantum gravity” (P. Hořava, PRL 102 (2009) 161301)

3d: relating the curve DS(σ) of CDT (D. Benedetti, J. Henson, PRD 80 (2009)
124036) to dispersion relations of suitable differential operators on 3d flat 
space (T. Sotiriou, M. Visser, S. Weinfurtner, arXiv:1105.5646)

Dynamical dimensional reduction in 4D quantum gravity 



SEH =
1

GN

∫
d4x

√
−det g(R[g, ∂g, ∂2g]− 2Λ)

One idea: look at the geometric properties of hypersurfaces:

  compact slices of constant time, t=const.                                                   
(J. Ambjorn, J. Jurkiewicz, RL, PRD 72 (2005) 064014)

Short-scale fractal structure of the quantum universe 

dH ≈ 3, dS ≈ 3/2, γ ≈ 1/3,

where N (N3) ∼ eµ0N3N−3+γ
3

  compact shells of constant radius, r=const. around some point x0                
(J. Ambjørn,  A. Görlich, J. Jurkiewicz, RL, PLB 690 (2010) 420)

The spatial slices of topology S3 have 
a tree structure in terms of smaller 
S3-components separated by “minimal 
necks” (four triangles forming a 
minimal S2, without the interior of the 
tetrahedron being part of the slice). 



SEH =
1

GN

∫
d4x

√
−det g(R[g, ∂g, ∂2g]− 2Λ)

The spectral dimension in quantum gravity

  DS(σ) is the “dimension felt by a scalar test particle” - not really a true 
observable near the Planck scale in the sense of phenomenological implications                                   

  still useful and “covariantly defined” (meaningful in the sum over geometries 
and after averaging over the starting point of the diffusion process) and can be 
computed; characteristically nonlocal

 can play an important role in discriminating between different candidate 
theories of quantum gravity, akin to the computation of “black hole entropy” 
S=A/4, but arguably one that probes the nonperturbative structure, not just 
semiclassical properties 

 various computations of DS(σ) on short scales for nonclassical geometries: 
noncommutative geometry/κ-Minkowski space (D. Benedetti, PRL 102 (2009) 
111303), three-dimensional CDT (D. Benedetti, J. Henson, PRD 80 (2009) 
124036), from area operator in loop quantum gravity (L. Modesto, CQG 26 
(2009) 242002), possible relation with strong-coupling limit of WdW equation 
(S. Carlip, arXiv: 1009.1136), modelling from dispersion relations on flat spaces 
(T. Sotiriou, M. Visser, S. Weinfurtner, arXiv: 1105.6098), modelling by multifractal 
spacetimes (G. Calcagni, arXiv: 1106.0295)



SEH =
1

GN

∫
d4x

√
−det g(R[g, ∂g, ∂2g]− 2Λ)

The quest for observables 

  We are urgently searching quantum observables to characterize the 
Planckian properties of spacetime, going beyond the various notions of 
“dimension”, which contain relatively rough and pregeometric information.                                   

  Natural candidates may be spectral properties other than DS(σ) of 
operators of Laplace type. However, they must have meaningful averages in 
the ensemble of geometries.

 Another cautionary remark: the geometries appearing in nonperturbative 
quantum gravity are not semiclassical (i.e. close to some gμν) on short 
distances, but at most after suitable coarse-graining (which is in itself a 
nontrivial affair). 

 I hope to find inspiration for constructing other “observables” from the 
studies of fractal structures in other contexts, and from talking to the 
various experts present at this workshop!



SEH =
1

GN

∫
d4x

√
−det g(R[g, ∂g, ∂2g]− 2Λ)

Causal Dynamical Triangulations - Summary & Outlook

CDT is a path integral formulation of gravity, which incorporates the dynamical 
and causal nature of geometry. It depends on a minimal number of assumptions 
and ingredients and has few free parameters. Its associated toolbox provides 
us with an “experimental lab” - a nonperturbative calculational handle on 
(near-)Planckian physics (c.f. lattice QCD).

          We have begun to make quantitative statements/predictions.

          We can in principle also test nonperturbative predictions from other 
          fundamental theories containing gravity.
           Many nonperturbative lessons learned so far: relevance of metric  
          signature in the path integral; tendency of geometric superpositions 
          to degenerate; dynamical nature of “dimension”; emergence of  
          classicality from quantum dynamics [not covered in today’s talk: crucial
          role of “entropy”; cure of the conformal divergence; role of “time” and 
          “causality” as fundamental, and not emergent quantities] 
             Hopefully we are seeing glimpses of an essentially unique quantum 
          gravity theory; help us find good “observables” to understand it better!



Where to learn more 

• CDT light: “The self-organizing quantum universe”, by J. Ambjørn, 
J. Jurkiewicz, RL (Scientific American, July 2008)

• A nontechnical review in Contemp. Phys. 47 (2006) [arxiv: hep-th/
0509010]

• recent reviews/lecture notes: arXiv 0906.3947, 1004.0352, 
1007.2560, Physics Report to appear

• links to both review and popular science material can be found on 
my homepage http://www.phys.uu.nl/~loll

http://www.phys.uu.nl/~loll
http://www.phys.uu.nl/~loll
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The End

 Quantum Gravity at the Planck Scale: 
 Getting a Handle on 
 ‘Spacetime Foam’


